
Inexact
Distributed
Optimization
Schemes
A convergence analysis using monotone
operator theory

N. (Niels) vanWijngaarden

possibly
spanning

Inexact
Distributed
Optimization
Schemes

A convergence analysis using monotone
operator theory

by

N. (Niels) van Wijngaarden
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday July 17, 2018 at 13:30.

Student number: 4063899
Thesis committee: Dr. ir. R. Heusdens, TU Delft, supervisor

Dr. ir. R.C. Hendriks, TU Delft
Dr. ir. J.C.A. van der Lubbe, TU Delft
T.W. Sherson TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Distributed optimization has been an extensively studied field for years. Recent developments in the area of
sensors makes it possible to create networks consisting of a large number of nodes. The focus of this thesis will
be optimizing distributed problems over a decentralized network. These distributed optimization schemes
operate in an iterative matter as follows. First each node performs some local computations, after which the
data is transmitted to its neighbours. The purpose of this study is to investigate the effects of approximat-
ing these local computations inexactly on the convergence of distributed optimization schemes. Although
we consider many optimization schemes in general, the primal-dual method of multipliers (PDMM) is used
during the simulations. Therefore we start off by deriving the inexact iteration for PDMM which shows how
the inexactness propagates through the iterates. This derivation also suggests that the inexactness depends
on the optimization constant, which was verified during the simulations. After that, the convergence of dis-
tributed optimization schemes is analyzed by making use of monotone operator theory to investigate under
which conditions convergence will be reached. This convergence analysis has two main results. It firstly
shows that distributed optimization schemes converge to a fixed point if the error is summable and secondly
that an error has less influence as iterations pass. Thereafter simulations are presented that suggest that the
inexactness affects how far the algorithm converges, thus what the remaining error is when convergence is
reached. Decreasing the error when convergence is reached causes the inexact PDMM iteration to resume
converging at the rate of the standard PDMM algorithm. These observations holds in synchronous as well as
asynchronous operation. Introducing packet loss only influences the convergence rate of the inexact PDMM
iteration.

3

Preface

Before you lies my master thesis submitted to obtain the degree Master of Science (MSc) in Electrical Engi-
neering at the Delft University of Technology (TU Delft), Netherlands. Writing this thesis has been a challeng-
ing but enriching experience and would not have been possible without people supporting me.

Hereby, I would like to take the opportunity to express my gratitude to a few people. The research in this
thesis has been conducted under the supervision of Dr. ir. R. Heusdens and Ph.D student T. Sherson to whom
I am both very grateful for their valuable support and guidance throughout this research. Secondly I wish to
thank my colleagues, with a special thanks to Jake Jonkman for the valuable discussions, who has been kind
enough to proofread large parts of my thesis and has contributed to the nice ambiance. Lastly, I would like to
thank my family for their support throughout the process. I would not have been able to complete my thesis
without all of you.

I sincerely hope you will enjoy reading my thesis.

N. van Wijngaarden
Delft,

July 5, 2018

5

Contents

1 Introduction 1
2 Background 5

2.1 Introduction . 5
2.2 Iterative methods . 7

3 Monotone operator theory 9
3.1 Fixed point iteration . 12
3.2 Inexact Krasnosel’skii-Mann iteration . 12
3.3 Operator splitting methods . 13

3.3.1 Peaceman-Rachford splitting method . 13
3.3.2 Douglas-Rachford splitting method . 14

3.4 Primal-dual method of multipliers . 15
3.5 Inexact primal-dual method of multipliers . 16
3.6 Determining the optimal z . 17
3.7 Asynchronous updates and packet loss . 19

4 Convergence analysis 21
5 Results 25

5.1 Distributed average consensus . 25
5.1.1 Comparison between domains. 26
5.1.2 Inexact PDMM iteration . 27
5.1.3 Synchronous . 28
5.1.4 Asynchronous . 30

5.2 P-norm optimization . 31
5.2.1 Synchronous . 31
5.2.2 Asynchronous . 33

5.3 Channel capacity problem . 35
5.3.1 Synchronous . 36
5.3.2 Asynchronous . 38

6 Conclusion and FutureWork 41
6.1 Conclusion . 41
6.2 Future work . 42

A Primal-dual method ofmultipliers 45
A.1 General PDMM . 45

B Distributed optimization problems 51
B.1 Distributed average consensus . 51
B.2 P-norm optimization . 53
B.3 Channel capacity optimization . 55

B.3.1 Inexact Channel capacity problem . 59

Bibliography 61

7

1
Introduction

Distributed optimization has been an extensively studied field for many years [8, 17]. Solving a problem over
a decentralized network has certain advantages such as the ease to alter the topology, and the added robust-
ness since the network is not completely dependent on one central node meaning that the network does
not contain a single point of failure. Recent developments in the area of sensors make it possible to have
cheap sensors that have some processing and communication capabilities to both perform some local com-
putations and to share data with their neighbors. This has increased the interest in distributed optimization
schemes even more.

A sensor network consists of a large number of nodes. These can for example be distributed in a random
way, meaning that each node does not need to have a specified location. Each node consists of a sensor, a
processing unit and has the ability to communicate with his neighbors. Interested readers are referred to [1]
for a more comprehensive overview of sensor networks in general.

The main interest will be distributed problems that are optimized over a decentralized network. This
means that there will not be a central processing point present, in contrast to a centralized network. All
nodes will have the capability to do some computations and communicate. Because of these capabilities,
the networks can be modelled as undirected connected graphs. With undirected meaning that if there is a
connection between two nodes, the connection is bidirectional. Also a graph is called connected if there
exists a path between every pair of nodes in the network, thus none of the nodes is unreachable. The concept
of a decentralized network in comparison to a centralized network is graphically displayed in Figure 1.1.

There are many practical examples for which these decentralized sensor networks can be used. For exam-
ple, consider disaster management or more specifically forest fire detection. The United States Forest Service
has spent more than $2 billion on fire suppression over the last year alone [19], which indicates the impact
forest fires have. With the changing climate only contributing to the increase of forest fires, the need to find
ways to fight forest fires also increases. Besides prevention, early detection is of crucial importance. This is
one example of a problem where distributed optimization can be used. Imagine placing a large number of
cheap temperature sensors within a forest, which creates a wireless sensor network where each of the sensors
represents a node of the network. These sensors could collaboratively collect and process data to detect a
forest fire in an early stage, which ensures that the damage can be controlled as much as possible.

This thesis focuses on algorithms that solve the minimization of the sum of convex functions in a dis-
tributed way. These distributed problems will be optimized over a graphical model G = (V ,E), where V is the
vertex set (nodes) and E the set of undirected edges or connections between nodes. We also define the num-
ber of nodes as n = |V | and the number of vertices as m = |E |. The considered problems take on the following
form

min
x

∑
i∈V

fi (xi), (1.1)

s.t . Ai j xi + A j i x j = bi j , ∀(i , j) ∈ E ,

with variable x ∈ Rn , fi : Rn → R∪ {∞} closed convex and proper (CCP) functions, fi the objective function
of node i , A ∈ Rm×n defining the connections and b ∈ Rm defining the constraints between the nodes. The

1

2 1. Introduction

Centralized network Decentralized network

Figure 1.1: The difference between a centralized network and a decentralized network both consisting of 31 nodes. The central
processing point is displayed in black, the nodes in red and the edges are given by the blue lines

A matrix is not necessarily full rank. However, the linearly dependent constraints defined by A and b can be
removed if the matrix is not full rank. The newly constructed full rank matrix combined with the new vector
can be substituted for the old A matrix and b vector, meaning that it can be assumed that A is full rank.

There are two approaches that are mainly used to solve a problem of this form (1.1), one based on proba-
bilistic inference and the other on convex optimization. Probabilistic inference determines the probability of
a certain instance happening, as the name suggests. Examples of probabilistic inference algorithms are the
sum-product and the max-sum algorithm [21]. These algorithms can solve quadratic objective functions by
message passing, which means that information is sent forwardly and backwardly through a network. An-
other probabilistic inference algorithm is the linear coordinate descent algorithm, which does not have the
requirement that the objective function has to be quadratic [29].

The second option to solve problems that attain the form of (1.1) is by means of convex optimization,
which is where this research is focused on. One of the earliest methods based on convex optimization is the
dual-ascent method [4, 13]. This method uses gradient ascent to solve the dual problem, which means that
the assumption is made that the dual function is differentiable. There are objective function without differen-
tiable dual function for which the dual-ascent method can still be used, however, this can only be done under
certain strong assumptions that do not hold in many applications [8, p. 8]. In this case the method becomes
a subgradient method and has a much slower convergence rate. The method of multipliers was proposed
in order to have an algorithm that is more useful in practical applications. This algorithm uses the aug-
mented Lagrangian, causing it to need fewer restrictions in order to guarantee convergence. The drawback
this method has is that if the objective function is separable, the augmented Lagrangian will not be separable
meaning that the updates cannot be done in parallel. An algorithm that combines the advantages both of the
previously discussed algorithms have is the alternating direction method of multipliers (ADMM) [8, 11]. This
algorithm does not require strong assumptions while it still has the benefit of seperability, meaning that it
is possible to update in parallel. Another promising algorithm, called the primal-dual method of mulitpliers
(PDMM), has recently been proposed [30–33]. The advantage of ADMM is that the algorithm is guaranteed to
converge for every problem, whereas the PDMM algorithm has the advantage of an higher convergence rate
but does not always converge.

The previously discussed distributed algorithms operate in an iterative manner. First, a minimization is
solved locally at each node. The solution of this minimization is then manipulated with linear operations,
after which the result is transmitted to its neighbors. These steps are repeatedly performed in order to get a
good approximation of the optimal point. The local computation consists of a minimization for which it is
not always possible to derive an algebraic expression. If an algebraic expression for the local computation
does not exist, the solution is found by using an iterative scheme such as a proximal point method or the

3

Table 1.1: The different optimization problems that are considered for the simulations. The objective function of the channel capacity
optimization problem is optimized over both µi and λi

Problem Corresponding objective function

Distributed average consensus
∑

i∈V
1
2 (xi −x(0)

i)2

P-norm optimization ‖x −a‖p
p

Channel capacity optimization
∑[

log2

(
−1

µi+λi

)
−µiσ

2
i −λiσ

2
i −

µi
N

]

Newton-Raphson method. Since a finite number of iterations is used, this will cause the approximation to be
inexact, where the error of the solution depends on the accuracy of the minimization done locally at a node.
Therefore it is interesting to investigate the convergence properties with this inexactness incorporated. The
first thing to look at are the mathematical properties of distributed optimization schemes when inexactness
is introduced. After that it is important to validate these results with simulations. During the simulations, the
PDMM algorithm is used to solve three selected problems that can be found in Table 1.1. These simulations
minimize an objective function, which is of the form of (1.1), in a distributed way. To confirm that the results
are not problem dependent, three different objective functions will be considered. The first is an averaging
problem, where each node gets a value assigned and the goal is to find the average of these values. The
objective of the second problem is to minimize a p-norm to the power p. The final problem is the channel
capacity problem, where each node represents a channel and is characterized by its noise variance. The aim
of this problem is to optimize the capacity of all channels combined.

Each of these objective functions (Table 1.1) is locally minimized by each node. The nodes often use an
iterative method to approximate the solution to this problem, which is where the inexactness arises. This
means that the chosen objective function as well as the iterative method influences the magnitude of the in-
exactness. The iterative method that will be used in this thesis for this approximation is the Newton-Raphson
method, which appears to have first been used in 1669 [12, p. 64]. This method makes a second order ap-
proximation of a desired function at a given point within the domain of the function [6, p. 484].

To solve the averaging problem, a quadratic objective function is minimized. The second order approx-
imation of the Newton-Raphson method will give an accurate solution in a single step. Secondly a p-norm
optimization problem is considered to investigate the behavior for higher powers than two (where p defines
the order of the problem). A second order approximation of an higher power than two will not be accurate
anymore, which results in inexactness. Finally a Gaussian channel capacity problem is formulated. This
problem differentiates itself from the others in the sense that it includes a logarithm in the objective func-
tion and must be optimized over two variables. This means that the objective function that belongs to this
problem can also not be accurately approximated by the Newton-Raphson method and therefore results in
inexactness. The Gaussian channel capacity problem is in essence not a distributed problem and is therefore
rewritten, this causes the objective function to be dependent on two optimization variables, instead of one.
The actual objective functions for each of these problems are summarized in Table 1.1 and are discussed in
depth in Appendix B.

One more differentiation will be made during the simulations, the synchronous and asynchronous updat-
ing of the variables. Synchronously updating entails all the nodes sending their local update at the exact same
moment. From a practical standpoint the asynchronous updating schemes are of particular interest, the rea-
son being that the clock of all the nodes must be perfectly synchronized in order to have the network operate
synchronously. This makes the distributed optimization scheme still dependent on a global clock, which goes
against the motivation to use a distributed optimization scheme. A second argument as to why asynchronous
operation is important, is that this makes the optimization scheme more robust against changes in topology
since nodes can easily be added or removed without having to synchronize it to the rest of the network. Fi-
nally, the convergence of the algorithm in the case of packet loss is investigated. This is implemented in the
asynchronous operation by only updating a part of the neighbors of the chosen node, where the probability
of updating a certain neighbor is predefined.

To summarize the content of this chapter and define the direction of the research, the following research
question is formulated:

4 1. Introduction

Research question:

What is the influence of inexact local updates on the convergence of distributed optimization schemes?
Will the effects be different in asynchronous operations in comparison to synchronous operation and
does packet loss have an influence on the convergence?

The remainder of this document is organized as follows: Chapter 2 will start with a background on some
mathematical principles and a short introduction into monotone operator theory. The PDMM algorithm,
with the influence of the inexact update included, is derived in Chapter 3. Chapter 4 gives the mathematical
proof that distributed optimization schemes still converge in the case of inexactness. The three different
optimization problems are defined and cast into the PDMM iterates to study how PDMM can be used to solve
the problems in Chapter 5. Chapter 6 contains the results from the simulations. A conclusion, discussion and
future work are discussed in Chapter 7.

2
Background

This chapter gives an overview of the important mathematical definitions that will be used throughout this
document. Some relevant convex set and function theory will be presented first. Then a basic introduction
into monotone operator theory is given. Finally, the fixed point iteration, the Krasnosel’skii-Mann iteration
and two different splitting methods are discussed. This chapter will only scratch the surface of most subjects.
A more in depth explanation of convex functions can be found in [3, 6], while readers are referred to [24] for a
more comprehensive introduction into monotone operator theory.

Unless otherwise specified, ‖·‖ is the 2-norm and log(·) is the base-2 logarithm throughout the remainder
of this document.

2.1. Introduction
To start off, a few important properties of convex functions are explained that will serve as a foundation for
the remainder of this work.
Convex set. A set C is a convex set if for any x, y ∈C and 0 ≤ θ ≤ 1, we have

θx + (1−θ)y ∈C .

Intuitively this means that the line segment between any 2 points of the set lies fully in the set. The concept
of a convex set is graphically demonstrated in Figure 2.1.
Convex function. A function f :Rn →R is convex if the domain of the function is a convex set and if for all
x, y ∈Rn , and with θ restricted by 0 ≤ θ ≤ 1, the following holds

f (θx + (1−θ)y) ≤ θ f (x)+ (1−θ) f (y). (2.1)

To develop some intuition, this means that the chord from x to y completely lies above or on the graph of f . A
function is called strictly convex if (2.1) holds with strict inequality. An example of a convex function is given
in Figure 2.2.
Subgradient. A function does not necessarily have to be differentiable. We define the subgradient, which
holds for the points where a function is differentiable as well as the points where a function is non differen-
tiable. The subgradient g ∈ Rn of the function f : Rn → R at the point x ∈ Rn is defined if for all y ∈ Rn the
following holds

f (y) ≥ f (x)+ g T (y −x).

Intuitively this means that the function should never lie below the tangent line to the function at the point
x with gradient g . Note that for differentiable points we have g = {∇ f (x)}, meaning that the subgradient
becomes the derivative. A graphical illustration with three subgradients can be found in Figure 2.3.
Subdifferential. The set containing all subgradients of a function f is called the subdifferential and is
defined as

5

6 2. Background

Figure 2.1: Convex set

(x,f(x))

(y,f(y))

Figure 2.2: (strictly) Convex function

∂ f = {(x, g)|x ∈Rn ,∀y ∈Rn : f (y) ≥ f (x)+ g T (y −x)}.

Convex function. Functions that contain non differentiable points can still be convex. To include these
functions, the convexity requirement (2.1) is rewritten. A function f : Rn → R is a convex function of for all
x, y ∈Rn the following holds

f (y) ≥ f (x)+ g T (y −x).

This requirement is the same as the definition of the subgradient, with the added constraint that it has to hold
for all x in the domain of f . This is a crucial difference since the subgradient is not necessarily defined for
all x in the domain of f . Recall that in the case that f is differentiable at x, we have ∂ f (x) = {∇ f (x)}, which
is a singleton. This means that this requirement is applicable to both differentiable functions as well as non
differentiable functions.
Indicator function. For an example of a subdifferential we first consider the indicator function, IC (x). The
indicator function to a closed convex set C is defined as

IC =
{

0, x ∈C ,

∞, x ∉C .

Normal cone operator. The subdifferential of the indicator function, ∂IC (x), is given by the normal cone
operator as

NC (x) =
{

{g |g T (y −x) ≤ 0,∀y ∈C }, x ∈C

;, x ∉C .

At the boundary of the domain C , NC (x) is pointing outwards. This means that the number of subgradients
at a given x depends on the smoothness of the boundary of C at that point. A boundary that is not smooth
will result in multiple subgradients at the point where the non smoothness occurs. Another reason that both
these functions are introduces here is the fact that both are needed for the derivation of the PDMM algorithm.
Closed function. A function f :Rn →R is closed if it satisfies the following three conditions that are equiv-
alent: [3, Proposition 2.5]

1. The function f is a lower-semicontinuous function.

2. For all α ∈R the level set {x ∈Rn | f (x) ≤α} is closed.

3. The epigraph of the function defined as epi f = {(x,λ)|x ∈Rn ,λ ∈R, f (x) ≤λ} is closed.

2.2. Iterative methods 7

x1 x2

f(x
1
) + g

1
T(x-x

1
)

f(x
2
) + g

2
T(x-x

2
)

f(x
2
) + g

3
T(x-x

2
)

Figure 2.3: Three subgradients of the function in blue, subgradient g1 at the point x1 and subgradients g2 and g3 at the point x2

Proper convex function. A convex function f that is not the constant function +∞ and for which f (x) >
−∞ holds for every x in its domain is called a proper convex function.

The functions in the remainder of this document are assumed to be closed, convex and proper (CCP).
Lipschitz continuity. An important tool that will be used in the convergence analysis later on is Lipschitz
continuity. A function f is Lipschitz continuous with parameter L ≥ 0 if for all x, y ∈Rn the following holds

|| f (y)− f (x)|| ≤ L||y −x||. (2.2)

The Lipschitz parameter L is a bound on the derivative of the function f . This means that a function that is
Lipschitz continuous is limited in the magnitude of its change by its Lipschitz constant L.
Conjugate function. Another operation that plays a vital role later on in the derivation of the PDMM algo-
rithm in Appendix A is the conjugate of a function. The conjugate f ∗ : Rn → R of the function f : Rn → R is
given by

f ∗(y) = sup
x

(yT x − f (x)), (2.3)

where x, y ∈ Rn . Intuitively in the case of a function f : Rn → R, the conjugate function can be interpreted as
the maximum gap between the function f (x) and the linear line x y . If the function f (x) is closed convex and
proper, which is assumed throughout this document, we have f ∗∗ = f [23, Theorem 12.2]. Another useful
identity of the conjugate function is ∂ f ∗ = (∂ f)−1 [24, p. 6].

2.2. Iterative methods
This thesis focuses on methods that solve distributed convex optimization problems, more specifically min-
imizing a convex function, in an iterative way. The aim of an iterative method is to generates a sequence of
successive approximations, where each approximation makes use of the previous one, to reach a desired so-
lution. Such a sequence of approximations is also called a minimizing sequence and is of the form x(0), x(1), . . .
with x(0) some starting point and each of the points in the domain of the function.

Assuming that an optimal point, x∗, for the minimization exists we have x(k) → x(∗) for k →∞. This means
that the iterative algorithm goes from a starting point x(0) and moves towards the optimal point as iterations
pass. A stopping tolerance ε > 0 is specified to determine when the algorithm should stop. The algorithm is
terminated at iteration k for which

∥∥x(k) −x∗∥∥≤ ε holds.

3
Monotone operator theory

Monotone operator theory is an important tool that can be used to derive many minimization algorithms.
Besides the derivation, the properties of the monotone operators can also be used in the mathematical proof
for the convergence of the algorithm.

In this work both the derivation of the PDMM algorithm in Appendix A as well as the convergence analy-
sis in Chapter 4 make use of monotone operator theory. For the derivation of the PDMM algorithm a general
minimization problem will be rewritten where the objective becomes to find the zero of a monotone opera-
tor. The PDMM algorithm is derived from this monotonic inclusion problem by applying a splitting method
that is discussed later on in Section 3.3.1. The convergence analysis makes use of properties of monotone op-
erators, such as Lipschitz continuity, in order to ensure convergence when the iterates are updates inexactly.
Operator. We begin by defining a relation or operator T that maps a point x ∈ Rn to a set y ∈ Rn and is
formally defined as

T (x) = {y ∈Rn |∃x ∈Rn : (x, y) ∈ T }.

In the case that an operator T (x) is a point-to-point mapping instead of a point-to-set mapping for all x in
the domain of T , the operator is called a function and will from now on be written as T (x) = y in contrast
to T (x) = {y}, which is the correct notations. An example of an operator is the identity operator given by
I = {(x, x)|x ∈Rn}.
Domain. The domain of the operator T is defined as

domT = {x ∈Rn |T (x) 6= ;}.

It is possible to have operators interact with each other in ways of summation and composition. These two
operations are now, for the sake of clarity, defined.
Addition. First the sum of the two operators R and S is given by

R +S = {(x, y + z)|(x, y) ∈ R, (x, z) ∈ S}.

Composition. Secondly, the composition of the operators R and S is defined as

R ◦S = {(x, y)|∃z(x, z) ∈ S, (z, y) ∈ R}.

To develop some intuition, consider the case where we have R ◦ S(x). First the operator S is applied on x,
resulting in the set z as S(x) = z. Then the second operator R is applied to z, yielding the set y as R(z) = y
which is the solution of the composition applied on x.
Inverse. An important property of an operator is the inverse relation. The inverse of an operator always
exists, even when the operator is a point-to-set mapping, and is defined as

T −1 = {(x, y)|(y, x) ∈ T }.

9

10 3. Monotone operator theory

The name inverse could give the false intuition that the composition of an operator with its inverse results in
identity, which is not the case. Written in a formal mathematical notation this means T −1◦T 6= I . As a counter
example consider the zero relation defined as 0 = {(x,0)|x ∈Rn}. Even though the composition of an operator
with its inverse is not necessarily identity, an equality that does hold is T −1 ◦T (x) = x if T −1 is a function.
Zero set. Many problems can be posed as finding the zero of an operator. This is written as 0 ∈ T (x), which
means that the point x is a zero of the operator T . The zero set of an operator is the set containing all the
zeros and is formally defined as

T −1({0}) = {x|(x,0) ∈ T }.

Monotone operator. The operator T is monotone if for all u ∈ T (x), v ∈ T (y) and x, y ∈Rn it satisfies

(u − v)T (x − y) ≥ 0.

For some intuition, consider the two dimensional case, with x, y ∈ R, where the operator T maps point-to-
point and is therefore a function. A monotone function preserves the order, which means that the function
is either entirely non-decreasing or entirely non-increasing. The monotonicity condition can in functional
notation also be written as

(T (x)−T (y))T (x − y) ≥ 0. (3.1)

Strongly monotone. An operator T is called strongly monotone or coercive with parameter m if for x, y ∈
Rn , the following holds

(T (y)−T (x))T (y −x) ≥ m||y −x||2.

Again consider the two dimensional case with x, y ∈R. Roughly speaking the inequality to determine whether
an operator (or function in this case) is monotone (3.1) will become a strict inequality, causing the function
to be either completely increasing or completely decreasing, where the minimal slope is determined by the
parameter m. The inverse of a strongly monotone operator is single valued and Lipschitz continuous with
parameter L = 1/m.
Maximal monotone. A stronger condition on an operator is maximal monotonicity. The operator T is
called maximal monotone if T has no proper monotone extension. This means that there is no other mono-
tone operator that properly contains it. The operator T not being a maximal monotone operator means that
there exist a pair (x,u) ∉ T such that T ∪ {(x,u)} is still monotone.
Lipschitz continuity. Recall the definition of Lipschitz continuity for a function (2.2). This also applies to
operators. Rewriting Lipschitz continuity for an operator T gives

||T (y)−T (x)|| ≤ L||y −x||, (3.2)

for all (x, y) ∈ domT . If the operator is Lipschitz continuous with parameter L = 1, the operator is nonexpan-
sive and when L < 1 the operator is a contraction. A contractions implies that when the points x and y are
mapped by the operator, the distance between the points becomes smaller. Or in other words, for iterative
methods the distance between the points x and y decreases at each successive iteration and after sufficient
iterations of applying the operator, a fixed point will be reached. For a nonexpansive operator it is guaranteed
that the distance does not become larger when the points are mapped, however the distance can stay equal
meaning that a fixed point will not be reached.

Now consider the two operators R and S with respectively Lipschitz constant L and L̃. The Lipschitz
constant of the contraction R ◦S has the Lipschitz constant LL̃ [24]. This implies that when either one of the
operators is a contraction and the other is nonexpansive, the composition will be nonexpansive. This notion
is important since the composition of two operators will be something that we will come across often in the
remainder of this thesis.

Two other things that will be used very frequently throughout this document are the resolvent of an op-
erator and the Cayley operation on an operator. More specifically, these are used for the operator splitting

11

methods in Section 3.3, the derivation of the PDMM algorithm in Appendix A as well as the convergence
analysis in Chapter 4.
Resolvent. We start off by defining the resolvent of an operator. The resolvent with constant c ∈ R and
cT = {(x,c y)|(x, y) ∈ T } of an operator T is defined as

JcT = (I + cT)−1,

Cayley operator. The Cayley operator or reflection operation on an operator T is defined as

CcT = 2JcT − I . (3.3)

In the case that T is a monotone operator, both the resolvent and the Cayley operator are nonexpansive
functions. Another property is that the composition of two nonexpansive operators is also nonexpansive, as
discussed before. These notions are essential since the composition of two Cayley operations is assumed to
be nonexpansive during the convergence analysis later on.
Cayley operator identity. At this point an identity of the Cayley operator needs to be derived. This identity
is needed for the derivation of the operator splitting methods in section 3.3.

CT ◦ (I +αT) = I −αT (3.4)

Proof.

CT ◦ (I +αT)(x) = 2(I +αT)−1 ◦ (I +αT)(x)− (I +αT)(x)

= 2I (x)− (I +αT)(x)

= (I −αT)(x)

Proximal operator. Another operation needed during the derivation of the PDMM algorithm is the prox-
imal operator or proximity operator. This operator is the resolvent of the subdifferential of a function. The
proximal operator associated with the function f and parameter c > 0 is given by [24, p. 25]

Jc∂ f (x) = proxc f (x) = argmin
u

[
f (u)+ 1

2c
‖u −x‖2

]
. (3.5)

The resolvent Jc∂ f = (I +c∂ f)−1 is called the proximal operator. In the case that the function f is CCP, we have
domJc∂ f (x) =Rn , even when dom f 6=Rn [24, p. 25].
Fixed point set. A fixed point of the operator T is a point that is mapped to itself by the operator. The point
x is a fixed point of an operator T : Rn 7→ Rn if T (x) = x. The set containing all fixed points is called the fixed
point set of the operator T and is formally defined as

FixT = {x ∈Rn |T (x) = x},

and is a closed and convex set. The fixed point set can be empty, contain one point, but can also contain
many points. In the case that the operator T is a contraction and its domain is Rn , the fixed point set will
contain exactly one point. [24, p. 6]
Representation lemma. The final thing to introduce about monotone operators is the representation
lemma, which is needed for the derivation of the splitting methods later on. Every z ∈Rn can be represented
in at most one way by z = x+c y , where y ∈ T (x), c > 0 and T a monotone operator on Rn . In the case that the
operator T is maximal monotone, any z ∈Rn can uniquely be written as z = x + c y .

Proof.

z = x + c y,

z ∈ x + cT (x),

z ∈ (I + cT)(x),

x = (I + cT)−1(z),

x = JcT (z).

12 3. Monotone operator theory

For a maximal monotone operator T , the resolvent JcT is single valued and has full domain. This results in
the fact that every z ∈Rn can be uniquely expressed by z = x + c y .

In a similar fashion it can be derived that every z ∈Rn can be expressed as z = x−c y , where −y ∈ T (x) and
x = JcT (z). These two notions are essential in the derivation of the Peaceman-Rachford splitting method in
Section 3.3.1

3.1. Fixed point iteration
A fixed point iteration is a method for iteratively approximating the fixed points of monotone operators. The
PDMM algorithm is an example of a fixed point method. Recall that the point x of an operator T :Rn 7→Rn is
a fixed point of T if T (x) = x. The fixed point iteration is therefore given by

x(k+1) = T (x(k)),

which is initialized at some starting point x(0) ∈ Rn . This iteration is applied repeatedly in order to find the
fixed point of the operator T . There are two ways to guarantee that the fixed point iteration converges; the
operator T being contractive or by averaging the operator, where only the latter will be discussed in depth
here. Interested readers are referred to [24] for the convergence proof in the case of a contractive operator.

3.2. Inexact Krasnosel’skii-Mann iteration
A theory that links the fixed point iteration to the splitting methods later on in Section 3.3 is the Krasnosel’skii-
Mann iteration. This iteration averages the fixed point iteration and provides some interesting insight into the
convergence properties. The relevance of the Krasnosel’skii-Mann iteration will become clear when splitting
methods are discussed. These splitting methods can be cast as specific cases of the Krasnosel’skii-Mann
iteration. The source of this section, that can also be used for a more detailed explanation is [16].
Krasnosel’skii-Mann theorem. The fixed point iteration is guaranteed to converge for every starting point
x(0) ∈ Rn if the operator T : Rn 7→ Rn is averaged. In this case the fixed point iteration is also called the
Krasnosel’skii-Mann iteration [15, 18, 24].
Krasnosel’skii-Mann iteration. The Krasnosel’skii-Mann iteration with T : Rn 7→ Rn a nonexpansive oper-
ator, averaging parameter 0 ≤λ(k) ≤ 1 and FixT 6= ; is given by

z(k+1) = (1−λ(k))zk +λ(k)T (z(k)). (3.6)

Intuitively this means that the newly computed z is a weighted combination of the previous value of z and
the newly computed z by mapping the previous z by the operator T .

This thesis focuses on the case where the operator is applied inexactly. In order to take this into account,
the standard Krasnosel’skii-Mann iteration can be slightly adjusted in order to incorporate an error as

z(k+1) = (1−λ(k))zk +λ(k)(T (z(k))+ε(k)), (3.7)

where ε(k) the error caused by the inexact approximation of the mapping of the operator T . The error of an
iteration is now defined as

e(k) = (I −T)(z(k)) = z(k) − z(k+1)

λ(k)
+ε(k).

It is known that the iteration error e(k) of the inexact Krasnosel’skii-Mann iteration converges to zero, meaning
that a fixed point will be reached, if the inexact Krasnosel’skii-Mann iteration (3.7) satisfies the following two
conditions

• (λ(k)(1−λ(k)))k∈N ∉ l 1+,

• (λ(k)
∥∥ε(k)

∥∥)k∈N ∈ l 1+,

3.3. Operator splitting methods 13

with l 1+ the set of summable sequences in [0,∞[[16, p. 4]. Meaning that if something is summed over all
iterations and it results in either zero or a finite positive value it is within the set l 1+. Intuitively the first re-
quirement means that for all k, 0 < λ(k) < 1 must hold, so the averaging parameter cannot be either 0 or 1
for any k. In order to fulfill the second requirement, either λ(k) or ε(k) must become zero at some point. This
means that the error of approximating the operator must decrease and eventually become zero since the first
requirement caused λ(k) 6= 0.

3.3. Operator splitting methods
Solving optimization problems often entails finding the zero of a monotone operator. It is required to evaluate
the resolvents of an operator in order to find the zero. Recall that the resolvent of an operator T is given by
JcT = (I + cT)−1. This inversion could cause difficulties while evaluating the resolvent. Therefore we will
look at two different splitting methods that can be applied to split one operator into two maximal monotone
operators, such that T = T1 + T2, where T the original operator. The reason behind this is that it can be
easier to separately evaluate the resolvents of T1 and T2 than evaluating the resolvent of T . The two discussed
splitting methods are the Peaceman-Rachford splitting method and the Douglas-Rachford splitting method.

3.3.1. Peaceman-Rachford splitting method
One operator splitting method is the so called Peaceman-Rachford splitting method. As previously discussed,
the aim is often to find a zero of a monotone operator. This leads, for the monotone operator T , to the
following problem

0 ∈ T (x).

To decrease the difficulty of the problem the original operator is now split up into two operators. The original
operator T can be split up as T = T1 +T2, with T1 and T2 maximal monotone operators as

0 ∈ (T1 +T2)(x),

0 ∈ T1(x)+T2(x). (3.8)

Now the operators T1 and T2 can be evaluated separately instead of evaluating the original operator T (x). At
this point it is important to note that the only way that x minimizes the original operator T is if the following
holds

y ∈ T1(x),

−y ∈ T2(x),

such that the summation of both equals zero. Now recall the representation lemma. This lemma stated
that for the monotone operator T and with y ∈ T (x), every z ∈ Rn can be represented in at most one way as
z = x + c y with x = JcT (z). With a comparable result for −y ∈Rn resulting in the following two things:

1. z = x + c y , where y ∈ T (x) and x = JcT (x + c y).

2. z = x − c y , where −y ∈ T (x) and x = JcT (x − c y).

Recognize that the first one can be applied to y ∈ T1(x) and the second statement can be applied to−y ∈ T2(x).
Analyzing each of these notions separately gives

z = x+cy, x = JcT1 (x+cy), y ∈ T1(x) z = x−cy, x = JcT2 (x−cy), −y ∈ T2(x)
x − c y = JcT1 (x + c y)+x − (x + c y)

= 2JcT1 (x + c y)− (x + c y)
= (2JcT1 − I)(x + c y)
=CcT1 (x + c y)

x + c y = JcT2 (x − c y)+x − (x − c y)
= 2JcT2 (x − c y)− (x − c y)
= (2JcT2 − I)(x − c y)
=CcT2 (x − c y)

14 3. Monotone operator theory

These results can be combined to rewrite the problem with two separate operators (3.8). At this point we start
off with the result at the right side, which is x + c y =CcT2 (x − c y). Then the x − c y within the brackets can be
replaced by the result on the left side; x − c y =CcT1 (x + c y). Following these steps results in

x + c y =CcT2 (x − c y),

=CcT2 ◦CcT1 (x + c y).

Which, by using the representation lemma again, is equal to

z =CcT2 ◦CcT1 (z).

Summarizing the results thus far gives the following fixed point result

0 ∈ (T1 +T2)(x) ⇔ CcT2 ◦CcT1 (z) = z, x = JcT1 (z). (3.9)

This splitting method is called Peaceman-Rachford splitting. The solution of this splitting method is found in
an iterative manner. To do so we can formulate the following iteration

z(k+1) =CcT2 ◦CcT1 (z(k)). (3.10)

After this iteration reaches convergence, the optimal value for x can be computed by x∗ = JcT1 (z∗). Now recall
the Cayley operator defined by CcT = 2JcT − I . This can be used to rewrite (3.10) as

z(k+1) =CcT2 ◦CcT1 (z(k)),

= (2JcT1 − I)◦CcT2 (z(k)),

= (2JcT1 − I)◦ (2JcT1 − I)(z(k)).

With this notion, the Peaceman-Rachford iteration can now be expressed as

x(k+1) = JcT2 (z(k))

y (k+1) = JcT1 (2x(k+1) − z(k)) (3.11)

z(k+1) = 2y (k+1) −2x(k+1) + z(k).

Where the y-iterate is only an intermediate iterate. The iterates of intereset are the x-iterate and the z-iterate.
The x-iterate is the zero of the original problem 0 ∈ T (x) and the z-iterate is the dual variable which needs to
converge for the x-iterate to converge.

Recacll that the Cayley operator of a monotone operator is nonexpansive. This causes the composition
CcT2 ◦CcT1 to also be nonexpansive, which in turn means that the Peaceman-Rachford iteration is not guar-
anteed to converge. It is only guaranteed to converge if either CcT1 or CcT2 is contractive, which will cause the
iteration to converge geometrically.

As stated when the Krasnosel’skii-Mann iteration was introduced in Section 3.2, the discussed splitting
methods are specific cases of the Krasnosel’skii-Mann iteration. This iteration (3.6) was given by z(k+1) =
(1−λ(k))zk +λ(k)T (z(k)). In the case that we substitute λk = 1 ∀k, this iteration becomes the Peaceman-
Rachford iteration. This confirms the relevance of the Krasnosel’skii-Mann iteration since it has a clear link
with the Peaceman-Rachford splitting method.

3.3.2. Douglas-Rachford splitting method
A second splitting method is the Douglas-Rachford splitting method. This method is motivated by the fact
that the Peaceman-Rachford method is not guaranteed to converge. The Krasnosel’skii-Mann theorem (Sec-
tion 3.2) ensures that applying averaging to the Peaceman-Rachford iteration will result in a method that

3.4. Primal-dual method of multipliers 15

converges to a fixed point of CcT2 ◦CcT1 . Therefore, the Douglas-Rachford splitting method averages the op-
erator and has the advantage that it always converges to the fixed point when 0 ∈ T1(x)+T2(x) has a solution.
Averaging the Peaceman-Rachford iteration with averaging factor 1/2 leads to the Douglas-Rachford splitting
method given by

0 ∈ (T1 +T2)(x) ⇔
[

1

2
I + 1

2
(CcT2 ◦CcT1)

]
(z) = z, x = JcT2 (z). (3.12)

Notice that substituting λ(k) = 1/2 ∀k into the Krasnosel’skii-Mann iteration (3.6) results in the same up-
date equation for z. This shows that the Douglas-Rachford splitting method is also a specific case of the
Krasnosel’skii-Mann iteration.

In a similar fashion as we previously did for the Peaceman-Rachford splitting method, the iteration for
the Douglas-Rachford splitting method can be written as

x(k+1) = JcT2 (z(k)),

y (k+1) = JcT1 (2x(k+1) − z(k)), (3.13)

z(k+1) = z(k) + y (k+1) −x(k+1).

The only iterate that has changed in comparison to the iteration of the Peaceman-Rachford splitting method
(3.11) is the z-iterate. The advantage of the Douglas-Rachford splitting method is that it is guaranteed to
converge to an optimal point if one exists.

3.4. Primal-dual method of multipliers
The algorithm used to validate the theoretical results later on during the simulations in Chapter 5 is the
primal-duel method of multipliers (PDMM) algorithm. This section will discuss the iteration of the PDMM
algorithm. The complete derivation of the PDMM algorithm can be found in Appendix A.

As touched upon in the introduction, the objective of the PDMM algorithm is to minimize the sum of
convex functions over a graphical model, G = (V ,E), with V the set of nodes in the network and E the edges
or connections in the network. Furthermore the number of nodes is denoted by n = |V | and the number of
edges is given by m = |E |.

Consider the following general convex optimization problem:

min
x

∑
i∈V

fi (xi), (3.14)

s.t . Ai j xi + A j i x j = bi j , ∀(i , j) ∈ E ,

with variable x ∈ Rn , fi : Rn → R∪ {∞} closed convex and proper (CCP) functions, fi the objective function
of node i , A ∈Rm×n defining the connections and b ∈Rm×1 defining the constraints between the nodes. The
A matrix is not necessarily full rank. However, the linearly dependent constraints defined by A and b can be
removed if the matrix is not full rank. The newly constructed full rank matrix combined with the new vector
can be substituted for the old A matrix and b vector, meaning that it can be assumed that A is full rank. In
vector form this general problem becomes

min
x

f (x), (3.15)

s.t . Ax = b.

This minimization problem can be solved with the aid of the PDMM algorithm. The PDMM algorithm itera-
tively applies the following iteration in order to converge to the optimal solution

x(k+1) = argmin
x

[
f (x)+ z(k)T

(C x −d)+ c

2
‖C x −d‖2

2

]
,

λ(k+1) = z(k) + c(C x(k+1) −d),

y (k+1) = 2λ(k+1) − z(k),

z(k+1) = P y (k+1).

(3.16)

16 3. Monotone operator theory

These are the iterates of the standard PDMM algorithm. The P matrix is a permutation matrix, exchanging
the upper half and the lower half of the y-iterate with each other. Applying the permutation matrix means that
two nodes connected by an edge exchange their values, thus the permutation matrix represents the transmis-
sion of data between neighbouring nodes. Notice that A and b, which respectively defined the connections
and constraints between the nodes, have disappeared. These have been restructured into the C matrix and d
vector to have the proper dimensions in order to make it possible to solve the minimization problem (3.15)
in a distributed manner. The C matrix and d vector are constructed as follows:

•
C (l , i) = Ai j , for i < j ,

C (l +m, i) = Ai j , for i > j ,

• d = 1
2

[
b
b

]
where C ∈R2m×n and d ∈R2m . After rewriting A and b into C and d , these can be substituted into the x-iterate
of the PDMM algorithm (3.16) along with the objective function. After substituting, the PDMM algorithm can
iteratively be applied to find the optimal solution to the minimization problem (3.15).

3.5. Inexact primal-dual method of multipliers
The previously discussed PDMM algorithm assumed that the minimization problem to update the x-iterate
is solved in an exact manner, without error. However often times this update needs to be approximated,
which will lead to an error. The next thing to do is look at the implications when the update of the x-iterate is
approximated. In order to do this, the iterates of the PDMM iteration are slightly adjusted to incorporate the
inexactness. This way it becomes clear what the influence is of updating the x-iterate in an inexact manner.

The minimization problem to update the x-iterate can be solved by either using an algebraic expression
if this exists or by using an iterative method to approximate the x value for which the argument is minimized.
Using an algebraic expression will give the exact solution without an error, which means that this results in
the standard PDMM algorithm. However, implementations of an iterative method will use a finite number of
iterations. This causes the approximation of the x-iterate to be inexact. This is where the focus of this thesis
specifically lies, the influence of the inexactness when the x-iterate is approximated.

At this point it is necessary to define some notation. The notation that will be used throughout this anal-
ysis is that ε is introduced as the error caused by the limited iterations. The inexact version of an iterate is
represented by a tilde (̃·) and an exact update, which after the first iteration is based on an inexact iterate
from the previous iteration is represented by a hat (̂·).

The approach will be to look at each of the iterates of the PDMM algorithm one by one to see how an error
that is introduced in the x-iterate propagates throughout the iteration. We start off by slightly adjusting the
x-iterate to incorporate this error term as

x̂(k+1) = argmin
x

[
f (x)+ ẑ(k)T

(C x −d)+ c

2
‖C x −d‖2

2

]
+ε(k+1),

= x̃(k+1) +ε(k+1).

This means that the inexact update, x̂, consists of the exact update given by x̃, with an error added that is
given by ε(k+1). The added error represents the inexactness caused by the approximation. The second iterate
is the λ-iterate, which now becomes

λ̂(k+1) = ẑ(k) + c(C x̂(k+1) −d),

= ẑ(k) + c(C x̃(k+1) −d)+ cCε(k+1),

= λ̃(k+1) + cCε(k+1).

The error introduced in the x-iterate, ε(k+1), is multiplied by the optimization constant c and the matrix C .
The optimization constant c is empirically optimized for each problem and influences the convergence rate
of the PDMM algorithm. However, this shows that the optimization variable not only influences the conver-
gence rate but also has an effect on the error since the error is multiplied by the optimization constant. The

3.6. Determining the optimal z 17

matrix C represents the connections between the nodes and is filled with zeros and ones. This matrix will
therefore not have an influence on the magnitude of the error.

The third iterate is the y-iterate. Substituting λ̂(k+1) into this iterate gives

ŷ (k+1) = 2λ̂(k+1) − ẑ(k),

= 2(ẑ(k) + c(C x̃(k+1) −d)+ cCε(k+1))− ẑ(k),

= ẑ(k) +2c(C x̃(k+1) −d)+2cCε(k+1),

= ỹ (k+1) +2cCε(k+1).

At this point the error is multiplied by 2cC , this means that it is doubled when compared to the error in the
λ-iterate. The final iterate to look at is the z-iterate. Substituting ŷ (k+1) gives

ẑ(k+1) = P ŷk+1,

= P (ẑ(k) +2c(C x̃(k+1) −d)+2cCε(k+1)),

= P ẑ(k) +2cP (C x̃(k+1) −d)+2cPCε(k+1),

= z̃(k+1) +2cPCε(k+1).

The error is multiplied with the permutation matrix P when comparing to the previous iterate. The permu-
tation matrix represents the transmission of data by permuting the upper half of the y-iterate with the lower
half. This causes the permutation matrix to be filled with ones and zeros and will not affect the magnitude of
the error. The influence of the permutation matrix is that an error caused by a node has an effect on the value
of the z-iterate of its neighbour. To summarize, the full inexact PDMM iteration is given by

x̂(k+1) = x̃(k+1) +ε(k+1),

λ̂(k+1) = λ̃(k+1) + cCε(k+1),

ŷ (k+1) = ỹ (k+1) +2cCε(k+1),

ẑ(k+1) = z̃(k+1) +2cPCε(k+1).

(3.17)

Since the P and C matrices do not have an influence on the magnitude of the error, the only thing that can be
taken into consideration when implementing the PDMM algorithm is the optimization constant c. As stated
before, this will be a trade off between optimizing the convergence rate and not choosing c too large since the
error will be multiplied by this optimization constant.

The mathematical proof of the convergence of inexact PDMM in Chapter 4 will use properties of mono-
tone operators. This analysis later on will look at the convergence of the z-iterate, since this iterate directly
influences the convergence of the x-iterate. Therefore the inexact z-iterate in operator notation is also re-
quired. The standard z-iterate (A.9) can be adjusted to include the inexactness term as

ẑ(k+1) =CcT 2 ◦CcT 1(z̃(k) +2cPCε(k))+2cPCε(k+1), (3.18)

=CcT 2 ◦CcT 1(ẑ(k))+2cPCε(k+1). (3.19)

This is the notation that will be used throughout the convergence analysis in Chapter 4, since the properties
of monotone operators can be applied to this.

3.6. Determining the optimal z
In order to show the convergence of the algorithm later on, the optimal values for the x and z iterates are
needed beforehand. The way to determine the optimal value for x will be problem specific and will be dis-
cussed for each problem separately during the derivation of the problems in Appendix B. However, it is pos-
sible to formulate a general method to compute the optimal value for z, z∗, for all problems beforehand. This
is used later on to compute the difference between the value of z at a certain iteration denoted as z(k) and z∗,
to graphically demonstrate the convergence of z.

18 3. Monotone operator theory

At this point it is necessary to discuss the behavior of the z-iterate. The first important thing to realize is
that the C matrix is a tall matrix. This causes C as well as PC to have a rank of n. By inspection of the PDMM
iteration (3.17), we see that these two matrices are the only matrices that have an influence on z, which has a
length of 2m. This means that only a part of z, determined by the column space of C , will be altered during
the PDMM iterations since the matrices have a lower rank than the dimension of z. The part of z that will
be altered will be called the controllable part of z from now on. This inherently means that there will be a
part of z that remains unchanged and is called the uncontrollable part of z. However, z is multiplied by C
in the minimization to update the x-iterate. This means that the uncontrollable part of z will not have an
influence on x and therefore does not matter. The magnitude of the uncontrollable part is determined by the
initialization. If z is initialized as the all zero vector, there is no uncontrollable part. However, if z is initialized
with anything other than all zeros, the uncontrollable part will most likely not be zero.

Recall that the P matrix was a permutation matrix that interchanges the upper half of z with the lower half
of z. This means that after two consecutive iterations, z is permuted twice so the uncontrollable part will be
exactly the same again. This causes the algorithm to have two optimal values for z, that both have an identical
controllable part, but a permuted uncontrollable part. Both these optimal values lead to the same x∗, since
this uncontrollable part has no influence on x. We define the two optimal values as z∗

1 and z∗
2 . This realization

can be used to derive a method to compute z∗. From the standard PDMM iterates (A.16), at convergence we
have

z∗
2 = P (z∗,1 +2cC x∗), (3.20)

z∗
1 = P (z∗,2 +2cC x∗).

Recall that the x-iterate of the standard PDMM algorithm (A.16) is given by

x(k+1) = argmin
x

[
f (x)+ z(k)T

(C x −d)+ c

2
‖C x −d‖2

2

]
.

We know that at convergence the derivative of the x-iterate vanishes, since a fixed point is reached and an
additional iteration will not change the value of x anymore. We start of by computing the derivative of the
x-iterate of the standard PDMM algorithm, which results in

d xk+1

d x
= d f (x)

d x
+C T z + cC T C x. (3.21)

For both optimal points, the derivative of the x-iterate (3.21) should be equal to zero since an optimal point
x∗ has been reached. Writing this out for both optimal points results in

d f (x)

d x
=−C T z∗

1 − cC T C x∗, (3.22)

d f (x)

d x
=−C T z∗

2 − cC T C x∗. (3.23)

Recall that we started off by writing out an expression for z∗
2 . Now this expression (3.20) can be substituted

into (3.23) resulting in

d f (x)

d x
=−C T P (z∗

1 +2cC x∗)− cC T C x∗,

=−C T P z∗
1 −2cC T PC x∗− cC T C x∗,

=−C T P z∗
1 − cC T PC x∗− cC T (PC x∗+C x∗),

=−C T P z∗
1 − cC T PC x∗. (3.24)

This expression and 3.22 can be rearranged in order to find an expression for the optimal value of z. First
these expressions can be rearranged into

3.7. Asynchronous updates and packet loss 19

−C T z∗
1 −

g1︷ ︸︸ ︷
(
∂ f (x∗)

∂x
+ cC T C x∗) = 0,

−C T P z∗
1 − (

∂ f (x∗)

∂x
+ cC T PC x∗)︸ ︷︷ ︸

g2

= 0.

By defining g1 and g2 as indicated, these equations can more compactly be written in matrix form as

−
[

C T

PC T

]
z∗

1 =
[

g1

g2

]
.

Finally this is rewritten to find an expression to compute the optimal value for z as

z∗
1 =−

[
C T

PC T

]† [
g1

g2

]
,

where † stands for the Moore-Penrose pseudoinverse [22]. The consequence of using the pseudoinverse of
[C T PC T]T is that the result will only consist of the controllable part, hence z∗

1 = z∗
2 = z∗. This means that we

will end up with the optimal value for z. This value for z∗ can now be used can now be used to determine the
error

∥∥z(k) − z∗∥∥ at each iteration in order to investigate the convergence.

3.7. Asynchronous updates and packet loss
There are two ways in which the PDMM algorithm can be used, synchronous and asynchronous updating of
the nodes. Synchronous updating means that all the nodes in the network do their local computations and
transmit at the exact same moment. Realistically it is not desirable to have all the nodes do their local compu-
tations based on a global clock since this goes against the idea of distributed processing. The asynchronous
PDMM algorithm does not have the disadvantage of having all the nodes work on a global clock. Therefore, it
is interesting to also implement the asynchronous version of PDMM during the simulations and see whether
this gives similar results to the synchronous updates.

The implementation of the asynchronous PDMM algorithm goes as follows:

1. Randomly select a node i , with i ∈V .

2. Compute the x-iterate and z-iterate for the selected node i .

3. Determine the neighbours of the selected node i .

4. Update the indices of the z vector that are affected by transmitting the data of the selected node i to its
neighbors.

So instead of updating the complete z vector at a single iteration, only the part of the z vector that is
affected by sending the data of node i to its neighbors is updated.

Another thing to take into consideration is packet loss. In a realistic scenario there is always a possibility
that a transmission from a node to one or more of its neighbors fails. Therefore simulations will be presented
that include packet loss. This is implemented in the asynchronous case by updating each neighbour of the se-
lected node with a specified probability. To clearly demonstrate effect of packet loss, a packet loss probability
of 0.5 is used throughout the simulations.

4
Convergence analysis

Recall from the introduction that the aim of this thesis is to investigate the influence of inexact local updates
on the convergence of distributed optimization schemes. The algorithm that will have our particular interest
is the PDMM algorithm since this algorithm is chosen to be used during the simulations later on. The inexact
PDMM iteration in which the inexactness is incorporated was derived in Section 3.5 and can now be used to
investigate the mathematical properties in the case of inexact updates. More specifically, it is important to
investigate if the algorithm still converges and what the influence of an error is. Consider the general inexact
update equation for the z-iterate (3.18) given by

ẑ(k+1) =CcT2 ◦CcT1 (z̃(k) +2cPCε(k))+2cPCε(k+1). (4.1)

This is the exact update (based on an inexact previous iterate) given by CcT 2 ◦CcT 1(z̃(k) +2cPCε(k)) with the
error caused by the approximation during the current iteration given by 2cPCε(k+1) added. Notice that the
exact update is based on an inexact variable from the previous iteration. This is why the error of the previous
iteration, given by 2cPCε(k), occurs within the argument of the Cayley operator. Whether an error is the
inexactness at the current iteration or still belongs to the previous iteration can be determined by looking at
the difference in indices in the update equation. The term z̃(k) +2cPCε(k) represents the inexact z-iterate of
the previous iteration, with the error ε(k) also caused during the previous iteration. The other term ε(k+1) is
the error caused by approximating the x-iterate during the current iteration.

Realize that without the inexactness, the update equation (4.1) is the z-iterate of any problem to which the
Peaceman-Rachford splitting method is applied. The only thing that could be different when the Peaceman-
Rachford method is applied to a different problem are the resulting operators T1 and T2. Also the 2cPC term,
which is where the error is multiplied by, arises due to the monotone operators that resulted after applying
Peaceman-Rachford splitting in order to derive the PDMM iteration. This means that this term should be re-
placed by the appropriate error term when the Peaceman-Rachford splitting method is applied to a different
monotone operator. However, replacing this term would not change anything to the derivations in the re-
mainder of this chapter, meaning that all the following proofs hold for Peaceman-Rachford splitting applied
to any monotonic inclusion problem.

The proofs presented in this chapter assume that the operator CcT2 ◦CcT1 is either nonexpansive or Lip-
schitz continuous with parameter 0 < L ≤ 1. However, the Cayley operator of a monotone operator is always
a nonexpansive function [24, p. 22] and if the operator CcT2 ◦CcT1 is nonexpansive, the averaged operator
(1/2I + 1/2CcT2 ◦CcT1) will be nonexpansive as well. This averaged operator is the update equation for the
z-iterate of the Douglas-Rachford splitting method (3.12). This means that replacing the operator by its aver-
aged operator will not change this property and that the presented proofs are also valid for problems to which
Douglas-Rachford splitting is applied. Realize that Douglas-Rachford splitting will most likely result in a dif-
ferent Lipschitz parameter and error term, but this has no influence on the presented proofs. To conclude,
this means that the analysis presented in the remainder of this chapter do not only hold for the specific case
(PDMM) to which it is shown but holds for any problem to which either Douglas-Rachford or Peaceman-
Rachford splitting is applied as long as the resulting operator CcT2 ◦CcT1 satisfies the assumptions that are
clearly stated at each theorem.

21

22 4. Convergence analysis

From here on the analysis will be done by making use of the inexact PDMM iteration since this algorithm is
used during the simulations. This inexact update equation for the z-iterate 4.1 shows that an error introduced
in iteration k will be included within the operator in iteration k +1. The inexact update of the z-iterate can
also be written as (3.19)

ẑ(k+1) =CcT 2 ◦CcT 1(ẑ(k))+2cPCε(k+1),

where ẑ(k) the inexact update of the previous iteration. This is again the z-iterate of the standard Peaceman-
Rachford iteration, where the 2cPCε(k+1) term can be replaced in the case that splitting is applied to a differ-
ent monotonic inclusion problem.

In the case that the iteration converges we have CcT 2 ◦CcT 1(ẑ(k+1)) = ẑ(k+1) at convergence, since a fixed
point is reached and the operator maps this point to itself. Therefore we start off by looking at the difference
between the exact update and the inexact input variable of this update, so

∥∥CcT 2 ◦CcT 1(ẑ(k+1))− ẑ(k+1)
∥∥. This

norm should go to zero after sufficient iterations if there exists a fixed point of the operator CcT 2◦CcT 1(ẑ(k+1)).
The first theorem of this chapter makes use of the fact that the operator CcT 2 ◦CcT 1 is nonexpansive 3.2.
To prevent any confusion, we will first quickly repeat the definition of a nonexpansive operator. Recall

that an operator is Lipschitz continuous with constant L if the following holds (2.2)

∥∥T (y)−T (x)
∥∥≤ L

∥∥y −x
∥∥ .

A nonexpansive operator has Lipschitz constant L = 1, meaning that we then have
∥∥T (y)−T (x)

∥∥ ≤ ∥∥y −x
∥∥.

By making use of this property we can now proof the first theorem, which is given by

Theorem 1. For the nonexpansive operator CcT 2 ◦CcT 1, the following holds:∥∥∥CcT 2 ◦CcT 1(ẑ(k+1))− ẑ(k+1)
∥∥∥≤

∥∥∥CcT 2 ◦CcT 1(ẑ(k))− ẑ(k)
∥∥∥+2

∥∥∥2cPCε(k+1)
∥∥∥ .

Proof. We have

∥∥∥CcT 2 ◦CcT 1(ẑ(k+1))− ẑ(k+1)
∥∥∥=

∥∥∥CcT 2 ◦CcT 1(ẑ(k+1))−CcT 2 ◦CcT 1(ẑ(k))−2cPCε(k+1)
∥∥∥ ,

(a)≤
∥∥∥CcT 2 ◦CcT 1(ẑ(k+1))−CcT 2 ◦CcT 1(ẑ(k))

∥∥∥+∥∥∥2cPCε(k+1)
∥∥∥ ,

(b)≤
∥∥∥ẑ(k+1) − ẑ(k)

∥∥∥+∥∥∥2cPCε(k+1)
∥∥∥ ,

=
∥∥∥CcT 2 ◦CcT 1(ẑ(k))− ẑ(k) +2cPCε(k+1)

∥∥∥+∥∥∥2cPCε(k+1)
∥∥∥ ,

(c)≤
∥∥∥CcT 2 ◦CcT 1(ẑ(k))− ẑ(k)

∥∥∥+2
∥∥∥2cPCε(k+1)

∥∥∥ ,

where (a) uses the triangle inequality, (b) uses nonexpansiveness and at (c) the triangle inequality is applied
again. Theorem 1 analyses the behavior of the distance between the exact update, CcT 2◦CcT 1(ẑ), and ẑ. If the
error ε(k+1) is a finitely summable sequence, we can conclude that this distance will be a nonexpansive series.

By looking at the first theorem, it becomes clear that ‖2cPCε‖ is a determining factor in the rate at which
the fixed point is reached. For a given node 2cPC is constant over iterations, meaning that the error ε caused
by the inexactness will determine the magnitude of the factor ‖2cPCε‖ at a certain iteration. Therefore it is
interesting to look at the behavior of this error. For this, Lipschitz continuity will be used again. The error
including 2cPC can be investigated with the aid of Lipschitz continuity, which leads to the second theorem.

23

Theorem 2. Suppose a fixed point z∗ of the operator CcT 2◦CcT 1 exists and assume that the operator CcT 2◦CcT 1

is Lipschitz continuous with parameter 0 < L ≤ 1. For geometric convergence with parameter p, we have∥∥∥2cPCε(k+1)
∥∥∥≤ (p −L)

∥∥∥ẑ(k) − z∗
∥∥∥ ,

where p ≥ L since p −L has to be non-negative.

Proof. ∥∥∥ẑ(k+1) − z∗
∥∥∥=

∥∥∥CcT 2 ◦CcT 1(ẑ(k))+2cPCε(k+1) −CcT 2 ◦CcT 1(z∗)
∥∥∥ ,

=
∥∥∥CcT 2 ◦CcT 1(ẑ(k))−CcT 2 ◦CcT 1(z∗)+2cPCε(k+1)

∥∥∥ ,

(a)≤
∥∥∥CcT 2 ◦CcT 1(ẑ(k))−CcT 2 ◦CcT 1(z∗)

∥∥∥+∥∥∥2cPCε(k+1)
∥∥∥ ,

(b)≤ L
∥∥∥ẑ(k) − z∗

∥∥∥+∥∥∥2cPCε(k+1)
∥∥∥ , (4.2)

where (a) uses the triangle inequality and (b) uses Lipschitz continuity. For geometric convergence with
parameter p,

∥∥ẑ(k+1) − z∗∥∥≤ p
∥∥ẑ(k) − z∗∥∥ must hold, which leads to

L
∥∥∥ẑ(k) − z∗

∥∥∥+∥∥∥2cPCε(k+1)
∥∥∥≤ p

∥∥∥ẑ(k) − z∗
∥∥∥ ,∥∥∥2cPCε(k+1)

∥∥∥≤ (p −L)
∥∥∥ẑ(k) − z∗

∥∥∥ ,

where p ≥ L since p −L has to be non-negative.

Notice the intermediate result given by
∥∥ẑ(k+1) − z∗∥∥≤ L

∥∥ẑ(k) − z∗∥∥+∥∥2cPCε(k+1)
∥∥. For the interpretation

of this intermediate result we assume that the error ε(k+1) is a finitely summable sequence. This means that
the error becomes zero at some point and does not have an influence from that point on. If this is the case, we
will end up with

∥∥ẑ(k+1) − z∗∥∥≤ L
∥∥ẑ(k) − z∗∥∥ after sufficient iterations. This means that the distance between

ẑ and the optimal z will not increase over iterations. In the case that the operator CcT 2 ◦CcT 1 is Lipschitz
continuous with parameter 0 < L < 1, the distance between ẑ and the optimal z will decrease over iterations
and an inexact distributed optimization scheme is guaranteed to reach a fixed point.

Theorem 2 shows that there are three things that determine the rate at which the error decreases: the
Lipschitz parameter L, the geometric convergence parameter p and the norm

∥∥ẑ(k) − z∗∥∥. The Lipschitz pa-
rameter is problem dependent, since this is a bound on the mapping of the operator CcT2 ◦CcT1 . This means
that the Lipschitz parameter will be constant over iterations. The parameter p is determined by the geometric
convergence, thus that parameter is also constant over iterations. However, the error at a certain iteration be-
tween the current value of z and the fixed point z∗ given by

∥∥ẑ(k) − z∗∥∥ does change over iterations. Therefore
the final thing to investigate is the behaviour of this error. Examining this norm leads to the third and final
theorem given by

Theorem 3. Suppose a fixed point z∗ of operator CcT 2 ◦CcT 1 exists and assume that the operator CcT 2 ◦CcT 1 is
Lipschitz continuous with parameter 0 < L ≤ 1. For the convergence of z, the following holds

∥∥∥ẑ(k+1) − z∗
∥∥∥≤ Lk+1 ∥∥z(0) − z(∗)∥∥+ k∑

i=0
Li

∥∥∥2cPCε(k+1−i)
∥∥∥ .

Proof. Consider (4.2) given by

∥∥∥ẑ(k+1) − z∗
∥∥∥≤ L

∥∥∥ẑ(k) − z∗
∥∥∥+∥∥∥2cPCε(k+1)

∥∥∥ .

Repeatedly applying this expression results in

∥∥∥ẑ(k+1) − z∗
∥∥∥≤ Lk+1 ∥∥z(0) − z(∗)∥∥+ k∑

i=0
Li

∥∥∥2cPCε(k+1−i)
∥∥∥ .

24 4. Convergence analysis

Theorem 3 shows that an error at a certain iteration as well as the error made by the initialization of z
becomes less influential as more iterations pass. This is caused by the fact that at each iteration previous er-
rors are multiplied by the Lipschitz parameter L, which is strictly smaller than 1 if the operator is contractive.
This means that the simulation presented later in chapter 5 should confirm that in the case that the error
decreases, the algorithm will converge to the optimal point z∗ or the two optimal points z∗

1 , z∗
2 in the case

that z is initialized with non-zeros and the uncontrollable subspace is thereby non-empty.

5
Results

To validate the theoretical results derived in the previous chapters, simulations are presented in this chapter.
The first thing to verify is the correctness of the derivation of the inexact PDMM iteration (3.17). The inexact
PDMM iteration shows that the inexactness also depends on the optimization constant ρ. Therefore the
second thing to look at is to determine whether this dependence also holds during the simulations.

After that, three problems are solved under various conditions. The problems are derived and casted into
the PDMM iteration in appendix B. The first thing to differentiate between during the simulations is solving
the problems in a synchronous and asynchronous manner, where packet loss is taken into consideration for
the latter. Another aspect that is varied during the simulations is the difference in the way the local variable,
the x-iterate, is computed by each node. In the case that an analytic expression is known, this is used first. The
inexactness is simulated by adding a random Gaussian error to this exact update. The Gaussian error is zero-
mean with a varying variance. This gives full control over the error, which makes it possible to investigate
the convergence of the algorithm under accurately specified conditions. A second option to approximate
the x-iterate is to either use a built-in MATLAB solver or implement a solver. As previously discussed, the
Newton-Raphson method is implemented to use when this is chosen over a built-in solver.

Using a solver instead of the analytic expression is motivated by the fact that the standard PDMM algo-
rithm can be used when an analytic expression exists since everything can be computed exact. However by
using a solver, the iterate is approximated and inexactness is introduced, which leads to the previously de-
rived inexact PDMM algorithm. The results when using a solver are then compared to the first results, where
a Gaussian error was added to the exact update, to investigate if these results are similar.

Within the minimization problem to update the x-iterate of the PDMM algorithm is the optimization
constant ρ. This constant is empirically optimized throughout all simulations.

5.1. Distributed average consensus
The first problem that is solved is the distributed averaging problem, of which the derivation can be found in
Appendix B.1. This optimization problem assigns a value to each node and the aim is to compute the average
of all values. This is achieved by solving the following minimization problem

min
x

∑
i∈V

1

2
(xi −x(0)

i)2,

s.t . xi −x j = 0, ∀(i , j) ∈ E

where x(0)
i is the initial value of node i . A predefined topology is used to have consistent results and to be able

to fairly compare the different results. A network is generated and is used for these simulations. The chosen
topology has the following characteristics:

• Square 30×30 grid.

• 100 Nodes randomly placed.

• Node transmission range of 5.

25

26 5. Results

Figure 5.1: Topology used to solve the averaging problem

Throughout the results for the averaging problem it is assumed that we are dealing with a sensor network
where each node measures the temperature and the goal is to compute the average of all of these temper-
atures in a distributed manner. For each node a temperature value is generated. These temperatures are
normally distributed with mean µ = 20◦C and variance σ2 = 1◦C . The topology including the temperature
values can be found in Figure 5.1.

5.1.1. Comparison between domains
The first thing to start the simulations off with is the comparison between both domains. This is important
since the convergence analysis in Chapter 4 has completely been conducted in the dual domain while we are
interested in the optimal value in the primal domain. The comparison presented here is done by looking at
the convergence in the primal domain, which is the x-iterate and the convergence in the dual domain, the
z-iterate. This simulation is also ran in order to show and give a better understanding of the uncontrollable
part of the z-iterate, which was discussed in Section 3.6. The PDMM algorithm permutes the uncontrollable
part of the z-iterate. This means that after two iterations, the uncontrollable part is exactly the same again.
Therefore it is chosen to plot separate curves of the even and odd iterations in the dual domain such that each
curve has its own uncontrollable part. The resulting plots of the convergence in the primal and dual domain
can be found in Figure 5.2.

0 0.5 1 1.5 2 2.5 3 3.5

Number of transmissions 105

10-15

10-10

10-5

100

Error, ||z-z*|| with = 0.9

PDMM even iterations
PDMM odd iterations

0 0.5 1 1.5 2 2.5 3 3.5

Number of transmissions 105

10-15

10-10

10-5

100

Error ||x-x*|| with = 0.9

Figure 5.2: Comparison between primal and dual convergence of the PDMM algorithm. The difference between the even and odd
iterations in the dual domain is caused by the uncontrollable part of the z-iterate.

5.1. Distributed average consensus 27

The plot on the left hand side shows the convergence in the primal domain. It shows the error between the
current value of the iterate and the optimal value on the y-axis versus the total number of transmissions that
has currently been sent within the network on the x-axis. Thus a decreasing curve means that the x-iterate
converges over the number of transmissions that has been sent. The curve flattening out at approximately
10−12.5 implies that convergence has been reached. This same reasoning holds for the plot of the convergence
in the duel domain on the right hand side. The difference between both curves in the dual domain is solely
caused by the uncontrollable part of the z-iterate, which does not change in magnitude but permutes each
iteration. However, this simulation shows that the uncontrollable subspace does not have an influence on
the convergence in the primal domain. This means that the uncontrollable subspace does not matter since
the x-iterate is the variable of interest. In the remainder of this chapter only plots of the convergence in the
primal domain will be presented since this is the variable of interest.

5.1.2. Inexact PDMM iteration
The first thing to verify is the inexact PDMM iteration. Recall the inexact PDMM iteration (3.17) given by

x̂(k+1) = x̃(k+1) +ε(k+1)

λ̂(k+1) = λ̃(k+1) +ρCε(k+1)

ŷ (k+1) = ỹ (k+1) +2ρCε(k+1)

ẑ(k+1) = z̃(k+1) +2ρPCε(k+1).

(5.1)

These can be verified during the simulations since an algebraic expression for the x-iterate is known and
a random zero-mean generated Gaussian error (ε) is added to the exact update (x̃) to get the inexact x-
iterate(x̂). This means that both the exact update as well as the error are known. The exact and inexact
variant of the x-iterate are both used to compute an exact and inexact variant of the z-iterate in parallel.
Adding 2ρPCε to the exact variant should give the same result as the inexact variant. The process to ver-
ify this correctness is shown in Figure 5.3 and the resulting plot of the difference ‖ẑ1 − ẑ2‖ can be found in
Figure 5.4.

Adding 2ρPCε to the exact z-iterate gives a similar result as the inexact z-iterate, which was computed
by using the inexact x-iterate. The slight difference that can be observed between ẑ1 and ẑ2 is caused by the
finite precision of MATLAB . This means that the correctness of the inexact PDMM iteration is confirmed.

x̃(k+1)
1 +

ε(k+1)

x̂(k+1)
1 ẑ(k+1)

1

x̃(k+1)
2 z̃(k+1)

2 +

2ρPCε(k+1)

ẑ(k+1)
2

− ẑ(k+1)
1 − ẑ(k+1)

2

Figure 5.3: Block diagram to show the method to verify the correctness of the inexact PDMM algorithm. The inexact update of the
z-iterate is computed in two ways, after which the difference is computed.

28 5. Results

0 1 2 3 4 5 6 7 8 9

Number of transmissions 105

10-14

10-13

10-12

Figure 5.4: Error in the dual domain to show the correctness of the inexact PDMM iteration.

0 1 2 3 4 5 6 7 8

Number of transmissions 106

10-1

100

101

102

103
Error ||x-x*|| with varying

 = 0.01
 = 0.9
 = 10
 = 100
 = 500

Generated error

Figure 5.5: Primal convergence of the synchronous PDMM algorithm for different values of the optimization constant ρ. This shows the
influence of the optimization constant on the error of the inexact PDMM algorithm.

Another thing that the inexact PDMM iteration (5.1) shows is that the inexactness also depends on the
optimization constant ρ. The algorithm should be more accurate for a lower optimization optimization con-
stant and thus converge further, which is verified in Figure 5.5.

5.1.3. Synchronous
After verifying the inexact PDMM iteration, we can now look at the influence of the inexactness on the con-
vergence of the algorithm. The first step is to solve the averaging problem in a synchronous manner. This
means that all nodes are updated simultaneously at a single iteration of the PDMM algorithm.

There exists an algebraic expression for the update equation of the x-iterate (B.3) for the averaging prob-
lem. This expression can be used to compute the update of the x-iterate in an exact manner. The inexactness
is then simulated by adding a random Gaussian error to the exact value. Since the error is generated, the
magnitude of the error can easily be altered. This is done by keeping the mean of the Gaussian error zero
while adjusting the variance. Two different types of the random Gaussian error are considered, a step error
where the variance of the error suddenly significantly changes and an error where the variance of the error
decreases geometrically. The resulting plot can be found in Figure 5.6.

5.1. Distributed average consensus 29

0 2 4 6 8 10 12 14 16

Number of transmissions 105

10-15

10-10

10-5

100

Error ||x-x*|| with = 0.9

Figure 5.6: Primal convergence of the synchronous PDMM algorithm with a random Gaussian error added to the x-iterate. The 2ρPC
distance between the PDMM algorithm and the error is visible as well as the adjusted convergence rate in the case of a geometrically

decreasing error.

The algorithm converges up until a certain distance from the error level, where the distance is determined
by the term 2ρPCε. This means that if a certain convergence accuracy is desired, this can be used to deter-
mine how accurate the solver to compute the x-iterate should be since the approximation of the solver results
in the inexactness ε. Another thing to note is that when the error suddenly decreases, which was shown by
adding the step error to the exact update, the PDMM algorithm starts to converge further at the rate of the
standard PDMM algorithm. In the case that the error on the x-iterate is increased, the error of the PDMM
algorithm instantly increases up until a distance of 2ρPCε from the new error. In the case of a geometrically
decreasing error, the PDMM algorithm converges with a rate equal to the rate at which the error decreases as
long as the rate of error of the error is lower than the rate of the standard PDMM algorithm.

The previous results used the algebraic expression of the x-iterate. In practice the algebraic expression is
often not known and the x-iterate is computed by using an iterative solver. Therefore the next step is to use a
solver to approximate the x-iterate investigate the behavior of the PDMM algorithm. As previously discussed,
it is expected that the error of the solver determines how far the algorithm converges. The plots where the
x-iterate is computed with the aid of a solver can be found in Figure 5.7.

0 0.5 1 1.5 2 2.5 3

Number of transmissions 105

10-15

10-10

10-5

100

Error ||x-x*|| with = 0.9

Figure 5.7: Primal convergence of the synchronous PDMM algorithm when a solver is used to approximate the x-iterate.

30 5. Results

What stands out when inspecting this figure is the consistently low error of the solver. This is caused
by the fact that the build-in MATLAB solver ’fminunc’ is used, which uses the quasi-newton method. This
method finds the minimum by locally approximating the objective function as a quadratic function. For the
averaging problem this will give the exact solution in one step since the objective function is quadratic. The
only remaining error is caused by the finite precision of MATLAB . This causes the inexact PDMM algorithm
that uses the solver to reduce to the standard PDMM algorithm without inexactness.

5.1.4. Asynchronous
Up until this point the simulations have been in a synchronous manner. Synchronous means that all the
nodes in the network do their local computations and transmit at the exact same moment. Realistically it
is not desirable to have all the nodes do their local computations based on a global clock. Asynchronous
PDMM does not have this disadvantage. Therefore it is interesting to investigate if the previously simulated
convergence of the inexact PDMM algorithm also holds in the asynchronous case, where packet loss is also
taken into consideration.

We start off by again by adding a random Gaussian error to the exact update. This simulations is done to
investigate the behavior of the asynchronous PDMM algorithm with a Gaussian error and packet loss. The
error to simulate the inexactness is again generated from a zero-mean Gaussian distribution with varying
variance. In the synchronous case, at a single iteration of the PDMM algorithm, 100 random error values are
generated. Plotting the norm of these 100 values at each iteration gave a reasonably constant line. However, in
the asynchronous case only a single error value is generated since only one node is updated. This means that
it is only possible to take the absolute value of the error which would result in a heavily fluctuating plot, even
when the variance is kept constant. Therefore plotting the absolute value of the error makes it impossible to
see the main results of the simulation. To overcome this, the mean and maximum value of the error is plotted
over the parts of the simulation where the variance of the noise is constant. Finally, the simulation can be
compared to the synchronous case to determine if the results are similar. The resulting plot of this simulation
can be found in Figure 5.8.

The results are similar to the results in the synchronous case. The PDMM algorithm took a slightly smaller
number of transmission to converge. However, this changes each time an asynchronous simulation is run.
During the asynchronous simulations, every iteration a single node is randomly chosen which does its local
computations and broadcasts to its neighbors. Some nodes in the network can have a larger impact on the
convergence, for example selecting the same node coincidentally over and over again will lead to a decreased
convergence rate. This means that randomly selecting these nodes more often will lead to a decreased con-
vergence rate.

It becomes clear that the PDMM algorithm with packet loss converges slower, but still converges to the

0 1 2 3 4 5 6 7

Number of transmissions 105

10-15

10-10

10-5

100

Error ||x-x*|| with = 0.9 and packet loss probability p
loss

 = 0.5

Figure 5.8: Primal convergence of the asynchronous PDMM algorithm with the inexactness simulated by adding a random Gaussian
error to the exact update. It converges up until a certain distance from the error and packet influences the convergence rate.

5.2. P-norm optimization 31

same point as the standard PDMM algorithm. This makes sense since on average only half of the transmitted
packages are received. The PDMM algorithm also starts converging further when the variance of the noise is
suddenly lowered. So the only difference between the standard PDMM algorithm and the PDMM algorithm
with packet loss is the rate of convergence. Another thing to note is that the PDMM algorithm again converges
up until the same distance from, in this case, the maximum of the error. Note that the lines of the PDMM
algorithms always lie above the maximum error of the solver.

Recall the synchronous simulations, where the x-iterate was updated with the aid of a solver. It was shown
during these simulations that the solver will accurately approximate this update since the objective function
is quadratic. Showing asynchronous simulations that make use of a solver would therefore not add anything
useful and hence these simulations are left out.

5.2. P-norm optimization
The simulations up until now were all solving the averaging problem, where each node got a value assigned
and the goal was to compute the average of all of these values. Now the same simulations are done, but now
with the p-norm problem derived in Appendix B.2. This solution to this problem is found by minimizing the
following minimization problem

min
x

‖x −a‖p
p , (5.2)

s.t . xi −x j = 0, ∀(i , j) ∈ E ,

where x, a ∈ Rn with n the number of nodes and p an integer restricted by 2 < p <∞. The vector a consists
of (different) constant values, one for each node. For this problem a new graph is generated over which the
p-norm problem is solved. The network can be found in Figure 5.9 and has the following characteristics

• Square 4×4 grid.

• 14 Nodes randomly placed.

• Node transmission range of 1.5.

5.2.1. Synchronous
First the p-norm optimization problem is solved by updating the nodes in a synchronous manner. For the
first simulation a value of three is chosen for p, which defines the order of the problem. The iterative method

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4
Network, consisting of 14 nodes

Figure 5.9: Topology used to solve the p-norm problem.

32 5. Results

to locally solve the minimization is the Newton-Raphson method. The number of Newton steps that a node
is allowed to take is varied with the aim to introduce inexactness. The resulting simulation can be found in
Figure 5.10.

The simulation shows that only the curve where each node is limited to a single iteration is slightly differ-
ent in comparison to the rest. This is caused by the fact that the objective function is still fairly close to being
quadratic by keeping the order of the problem low. One way to overcome this is by increasing the order of the
problem from three to five. The result of this change can be found in Figure 5.11.

0 1000 2000 3000 4000 5000 6000 7000

Number of transmissions

10-15

10-10

10-5

100

105
Error ||x-x*|| with = 60, p = 3 and = 1e-27

PDMM using Newton with 1 iteration
PDMM using Newton with 2 iterations
PDMM using Newton with 3 iterations
PDMM using Newton with 4 iterations
PDMM using Newton with 1000 iterations

Figure 5.10: Primal convergence of synchronous PDMM of an objective function of order three and the number of Newton-Raphson
iterations varied. The only curve that slightly differs from the others is when the Newton-Raphson is limited to a single iteration.

0 0.5 1 1.5 2

Number of transmissions 104

10-15

10-10

10-5

100

105
Error ||x-x*|| with = 200000, p = 5 and = 1e-27

PDMM using Newton with 1 iteration
PDMM using Newton with 2 iterations
PDMM using Newton with 3 iterations
PDMM using Newton with 4 iterations
PDMM using Newton with 1000 iterations

Figure 5.11: Primal convergence of synchronous PDMM of an objective function of order five and with the number of Newton-Raphson
iterations varied. Notice the high value of the optimization constant.

5.2. P-norm optimization 33

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Number of transmissions

10-15

10-10

10-5

100

105
Error ||x-x*|| with = 60, p = 3 and = 1e-27

PDMM using Newton with step size 0.6
PDMM using Newton with step size 0.7
PDMM using Newton with step size 0.8
PDMM using Newton with step size 0.9
PDMM using Newton with step size 1

Figure 5.12: Primal convergence of synchronous PDMM of an objective function of order three and where the step size of the
Newton-Raphson method is varied while keeping the number of Newton-Raphson iterations limited to one. The artificially introduced

inexactness influences the convergence rate.

The two things that stand out from this simulation are the severe increase of the optimization constant
and the increased number of transmissions needed in order to reach convergence. Even after increasing the
order of the minimization problem, the simulation where the Newton-Raphson method is limited to a single
iteration still gives the same result as the simulations where the Newton-Raphson method is allowed to use
upto a 1000 iterations. This means that the convergence rate of the PDMM algorithm is lower than the rate at
which the inexactness decreases.

The final option is to artificially introduce inexactness. One way to do so is by keeping the number of
Newton-Raphson iterations limited to a single iteration and by varying the step size. This means that in-
stead of taking a full step in the right direction, only a specified fractions of this step is taken. The resulting
simulation can be found in Figure 5.12.

Artificially introducing inexactness results in significantly different curves. The only thing affected by this
inexactness is the convergence rate of the inexact PDMM algorithm. All simulations converge, even though
it does take a different number of transmissions before convergence is reached.

5.2.2. Asynchronous
After investigating the convergence in synchronous operation we now look at solving the p-norm minimiza-
tion problem while updating in a asynchronous manner. So a single node is selected and, local computations
are conducted and the data is transmitted to its neighbor. Besides this packet loss is taken into account again
with a probability of 0.5, meaning that on average only half of the sent packages is received. The first thing to
look at is the convergence with a low order of p = 3. The resulting plot can be found in Figure 5.13.

This simulation yields similar results in comparison to synchronous operation. The number of allowed
iterations for the Newton-Raphson method has no influence on the convergence rate. The reason that the
three curves where packet loss is kept constant slightly differ is that every iteration of the PDMM algorithm, a
node is selected at random. This means that it is possible to select either a node that has a high influence on
the convergence rate or a node that has a low influence. Another thing to note is that in this case taking packet
loss into consideration will only have an influence on the convergence rate. However, since the number
of allowed iterations for the Newton-Raphson method has no influence on the inexactness this will also be
the case when the order is raised since this also leads to a decrease in the convergence rate of the PDMM
algorithm. Therefore one way to simulate inexactness is by varying the size of the Newton-Raphson step
again. This will show the effect of inexactness even though it is artificially generated. The result when varying
the step size can be found in Figure 5.14.

34 5. Results

0 2000 4000 6000 8000 10000 12000
10-15

10-10

10-5

100

Error ||x-x*|| with = 100, order p = 3, packet loss probability p
loss

 = 0.5 and = 1e-27

PDMM using Newton with 1 iteration
PDMM using Newton with 2 iterations
PDMM using Newton with 1000 iterations
PDMM with packet loss using Newton with 1 iterations
PDMM with packet loss using Newton with 2 iterations
PDMM with packet loss using Newton with 1000 iterations

Figure 5.13: Primal convergence of asynchronous PDMM of an objective function of order three and the number of Newton-Raphson
iterations varied. All curves show a similar convergence rate

0 0.5 1 1.5 2

Number of transmissions 104

10-15

10-10

10-5

100

105
Error ||x-x*|| with = 100, order p = 3, packet loss probability p

loss
 = 0.5 and = 1e-27

PDMM using Newton with step size 1
PDMM using Newton with step size 0.7
PDMM using Newton with step size 0.4
PDMM with packet loss using Newton with step size 1
PDMM with packet loss using Newton with step size 0.7
PDMM with packet loss using Newton with step size 0.4

Figure 5.14: Primal convergence of asynchronous PDMM of an objective function of order three and where the step size of the
Newton-Raphson method is varied while keeping the number of Newton-Raphson iterations limited to one. The artificially introduced

inexactness influences the convergence rate.

The simulations show that both packet loss as well as an artificially generated error only have an effect
on the convergence rate of the inexact PDMM iteration. What does stand out is that the curve where the
x-iterate is approximated by using the Newton-Raphson method with a single iteration and a step size of 0.4
has a lower convergence rate than the curve where a step size of 0.7 is used and packet loss with a probability
of 0.5 is taken into account. Furthermore we can conclude that inexactness have the same effect on both
problems thus far. The inexact PDMM algorithm will continue to converge as long as the error decreases.

5.3. Channel capacity problem 35

5.3. Channel capacity problem
The final problem we consider is the channel capacity problem. The objective of this problem is to distribute
the available power among channels in a way that maximizes the capacity of all channels combined. The
following minimization problem is solved in order to find the solution to the channel capacity problem

min
x

− ∑
i∈V

log(σ2
i +xi),

s.t . x º 0, 1T x = 1,

where xi the power allotted to channel i and σ2
i the noise variance of channel i . A new random network is

generated for these simulations. For this problem, each of the nodes in the network represents a channel
that is characterized by the noise variance of its channel. The chosen noise variances including the optimal
power distribution can be found in Figure 5.15 while the generated network for this problem can be found in
Figure 5.16 and has the following characteristics:

• Square 12×12 grid.

• 15 Nodes randomly placed.

• Node transmission range of 5.

In this case the PDMM algorithm finds values for the µ and λ iterates, which are used to compute the
x-iterate. This means that the error caused by the solver is introduced on the µ and λ iterates. The analysis
in Appendix B.3.1 shows the impact that errors on the µ and λ iterates have on the x-iterate. A simplified
expression was derived for the case that |µi +λi |À |εµi +ελi |, which is given by

∥∥∥ε(k)
xi

∥∥∥=
∥∥∥∥∥∥

ε(k)
µi

+ε(k)
λi

(µ̃(k)
i + λ̃(k)

i)2

∥∥∥∥∥∥ . (5.3)

Noise variances (
i
2) and optimal power distribution (x

i
) for the chosen network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Channel

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ow

er

i
2

x
i

Figure 5.15: Chosen noise variances and optimal power distribution for the simulations of the channel capacity problem

36 5. Results

Table 5.1: The optimal values for each channel

Channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
µ∗

i -2.84 -2.84 -2.84 -2.84 -2.84 -2.84 -2.84 -2.84 -2.84 -2.84 -2.84 -2.84 -2.84 -2.84 -2.84
λ∗

i 0.375 0 0 0 0 0 0 0.053 1.023 0 0 0.635 0.932 0 0.929
µ∗

i +λ∗
i -2.46 -2.84 -2.84 -2.84 -2.84 -2.84 -2.84 -2.78 -1.81 -2.84 -2.84 -2.20 -1.91 -2.84 -1.91

0 2 4 6 8 10 12
0

2

4

6

8

10

12
Network, consisting of 15 nodes

Figure 5.16: Topology used to solve the channel capacity problem.

It is important to first determine the values for µi and λi to see if the simplification is justified. To demon-
strate this, the optimal values for the channels are used and are summarized in Table 5.1.

From the table it becomes clear that min(|µ∗
i +λ∗

i |) = 1.81, and therefore the simplification is justified for
iteration numbers close to convergence. Recall that the impact that an error on µ and λ has on x is in the
logarithmic domain given by given by

log
∥∥∥ε(k)

xi

∥∥∥= log
∥∥∥ε(k)

µi
+ε(k)

λi

∥∥∥− log
∥∥∥(µ̃(k)

i + λ̃(k)
i)2

∥∥∥ .

Thus an error introduced on the µ and λ iterates results in a lower error on the x iterate in the logarith-
mic domain. Therefore the convergence of µ and λ should show the same distance between the error and
the point to which it converges, namely 2ρPCε. However, the x-iterate should converge further, which is

determined by the term − log
∥∥∥(µ̃(k)

i + λ̃(k)
i)2

∥∥∥.

5.3.1. Synchronous
For the channel capacity problem exist analytic expressions to compute the µ and λ iterates. These analytic
expressions can be used to compute the updates for these iterates in an exact manner after which the error
can be simulated by adding a random Gaussian error. We therefore start off by adding a random Gaussian
error to the exact update to see what the influence of the error is. The first thing to confirm is whether the
x-iterate indeed converges further than the µ and λ iterates. The result of this simulation is displayed in
Figure 5.17.

From the figure it becomes clear that the x-iterate converges further than the generated error, whereas
the µ and λ iterates converge up until a distance 2ρPCε of the error. The curve of the error on the µ-iterate is
barely visible because this curve is nearly the same as the curve for the error on the λ-iterate. Also notice that
the distance between the error of the µ and λ iterates and the randomly generated error is decreased. This
distance was determined by 2ρPCε and for this problem and the defined topology the optimal optimization
constant is significantly lower than for the distributed averaging problem. Therefore this decreased constant
also causes a decrease in distance between the error of the PDMM iterates and the generated error.

5.3. Channel capacity problem 37

0 5 10 15

Number of transmissions 104

10-20

10-15

10-10

10-5

100

Respective errors with = 0.1

PDMM error of x: ||x-x*||

PDMM error of : || - *||

PDMM error of : || - *||
Random generated error on , : || ||

Figure 5.17: Convergence of the different iterates of the synchronous PDMM algorithm with a Gaussian error added to the exact update
of the µ and λ iterates

In the remainder of this section, plots that only show the error of the x-iterate are presented since this is
the variable of interest.

The next thing to simulate is the behavior of the algorithm when the µ and λ iterates are approximated
by using a solver. The MATLAB solver fmincon is used for the channel capacity problem since the constraints
must be taken into account. Using a solver results in the simulation shown in Figure 5.18

Even though the updates are done in a synchronous matter, the error of the solver deviates quite signif-
icantly over the transmissions. This is caused by the fact that the network for the channel capacity problem
contains fewer nodes than the network for the previous problems. The network of the previous problems
contained 100 nodes whereas the newly generated network for the channel capacity problem contains 15
notes. Computing the norm of 15 values at a single iteration results in a heavier fluctuating curve than the
norm of 100 values. However, this simulation does show the expected result in comparison to the simulation

0 1 2 3 4 5 6 7 8 9 10

Number of transmissions 104

10-20

10-15

10-10

10-5

100

Error ||x-x*|| with = 0.1

PDMM
PDMM using a solver
Error caused by the solver: || ||

Figure 5.18: Primal convergence of the synchronous PDMM algorithm that uses a solver to approximate the µ and λ iterates

38 5. Results

0 0.5 1 1.5 2 2.5 3 3.5

Number of transmissions 104

10-20

10-15

10-10

10-5

100

Error ||x-x*|| with = 0.05 and packet loss probability p
loss

=0.5

PDMM
PDMM with packetloss
PDMM with step error
PDMM with packet loss and step error
Mean of the step error (|| ||) on and
Max of the error (|| ||) on and

Figure 5.19: Primal convergence of the asynchronous PDMM algorithm with a Gaussian error added to the exact updates for the µ and
λ iterates.

where the x-iterate converges further than the error.

5.3.2. Asynchronous
The simulations of the channel capacity problem thus far have all been in a synchronous manner. As previ-
ously explained, doing the local computations at the nodes and updating the nodes asynchronously is more
realistic. The implementation of the asynchronous version of the channel capacity problem, with packet loss
taken into consideration, is done in a similar manner as the previous problems.

First a Gaussian error is added to the exact update of the µ and λ iterates. From (5.3) it is clear that the x-
iterate is equivalently affected by an error on either theµ orλ iterate. Therefore the error can be characterized
by computing the norm of both these errors. However, the same issue occurs as in the case of the previous
problems. Plotting the absolute value at each iteration would give a heavily fluctuating curve. Therefore the
mean and maximum value of the error is plotted over the iterations where the noise variance is constant. The
resulting plot can be found in Figure 5.19.

The standard inexact PDMM algorithm and the inexact PDMM algorithm with packet loss both converge
in the same way as their exact variants up until the distance determined by (5.3). The PDMM algorithm where
packet loss is taken into consideration shows a slower convergence rate. Also, the algorithms converge further
when the variance of the generated error suddenly lowers.

Finally asynchronous inexact PDMM and approximating the µ and λ iterates with the aid of a solver are
combined. The mean and maximum value of the error is again used in order to have a plot where it is still
possible to distinguish the different curves. The resulting plot is presented in Figure 5.20.

The behavior is under these conditions still unchanged. The inexact PDMM algorithm with packet loss
taken into consideration will inherently converge at a slower rate than the standard PDMM algorithm since
on average only half of the sent packages are received. Also introducing an error causes the algorithms to
converge up until a certain point from the error.

If a certain accuracy is desired, the inexact update equations of the standard PDMM algorithm (3.17) can
be used to determine the errors on the µ and λ iterates. Then these errors in combination with the equation
of the analysis of the inexact channel capacity problem (5.3) can be combined to find the link between the
needed accuracy of the solver and the desired accuracy of the convergence of the x-iterate.

5.3. Channel capacity problem 39

0 0.5 1 1.5 2

Number of transmissions 104

10-20

10-15

10-10

10-5

100

Error ||x-x*|| with = 0.05 and packet loss probability p
loss

=0.5

PDMM
PDMM with packetloss
PDMM using a solver
PDMM with packet loss and using a solver
Mean of the error (|| ||) on and
Max of the error (|| ||) on and

Figure 5.20: Primal convergence of the asynchronous PDMM algorithm that uses a solver to approximate the µ and λ iterates.

6
Conclusion and Future Work

The final chapter of this thesis focuses on conclusions that can be drawn from the research throughout this
work and future work that could be done in order to investigate the topic even further.

6.1. Conclusion
To draw a conclusion we look at the research question and in particular we will see how the research question
can be answered. The research question formulated in the introduction was:

What is the influence of inexact local updates on the convergence of distributed optimization schemes?
Will the effects be different in asynchronous operations in comparison to synchronous operation and does
packet loss have an influence on the convergence?

First two chapters were dedicated to a mathematical background and monotone operator theory in order to
give a better understanding of the topic. The monotone operator theory also showed the link between the
Krasnosel’skii-Mann iteration and operator splitting methods. These chapters were followed by the conver-
gence analysis. This analysis provided mathematical proof for the convergence of the inexact PDMM algo-
rithm. The chapter after that provided simulation results to validate the mathematical proofs of the conver-
gence analysis.

The conclusion will be split up into two parts, each part addressing one of the parts of the research ques-
tion. The first part of the research question is given by:

What is the influence of inexact local updates on the convergence of distributed optimization schemes?

Answering this part of the research question will be done in three parts. First we look at the derivation of the
inexact PDMM iteration, after that the question will be addressed from the perspective of the convergence
analysis after which it is answered from the point of view of the simulation results.

The chapter dedicated to monotone operator theory contained a section that introduced the inexact
PDMM algorithm. This showed how an error introduced on the primal variable propagates to the dual vari-
able. This derivation also showed that the error of the inexact PDMM iteration depends on the optimization
variable. The next thing to discuss is the convergence analysis. The first important thing to realize is the fact
that the convergence analysis was an analysis that holds for many distributed optimization schemes. Even
though the PDMM algorithm was used for the simulation, the analysis was not limited to this algorithm. The
foundation for this lies in the chapter about monotone operator theory and more specifically the sections
about the Krasnosel’skii-Mann iteration and the splitting methods. The first thing shown by the convergence
analysis was that the inexact PDMM algorithm still converges to a fixed point even if the primal variable is
updated in an inexact manner as long as the error is finitely summable. Another thing shown by the con-
vergence analysis is that the current error as well as all errors from previous iterations are multiplied by the
Lipschitz parameter. This meant that an error has a decreasing influence as iterations pass.

With the convergence analysis treated it is time to move on to the simulations and discuss if the results
confirmed convergence analysis. The first thing to verify was the correctness of the inexact PDMM iteration.

41

42 6. Conclusion and Future Work

This was done by computing the inexact z-iterate in two ways and determining the difference between the
both. This gave the expected result meaning that the inexact PDMM algorithm is correct. The second thing
the inexact PDMM algorithm showed was the dependence on the optimization constant, which was verified
by keeping the error constant and varying the optimization constant. After treating the inexact PDMM it-
eration, simulations were presented to investigate the mathematical proofs from the convergence analysis.
The main conclusion about this is that the error only influences how far the algorithm converges, thus the
magnitude of the resulting error when the inexact PDMM algorithm has reached its fixed point. If the error
is suddenly lowered, the inexact PDMM algorithm starts converging further again at the convergence rate of
the standard PDMM algorithm. When the error suddenly increases, the error of the inexact PDMM algorithm
also instantly increases. If a geometrically decreasing error decreases at a rate lower than that of the standard
PDMM algorithm, the inexact PDMM algorithm converges at the rate that the error decreases. The final thing
that has to be kept in mind is that the inexact PDMM iteration only holds for variable that is directly opti-
mized by the PDMM algorithm. The variable of interest can be different, as has been shown for the channel
capacity optimization problem. However, the derivation of the channel capacity problem in Appendix B.3.1
shows how the inexact PDMM influences the variable of interest for this problem. The same approach can be
used when one desires to solve other problems where the distributed optimization scheme does not directly
solve for the variable of interest.

After treating the first part of the research question, we will now take a look at the second part of the
research question. This part was formulated as:

Will the effects be different in asynchronous operations in comparison to synchronous operation and does
packet loss have an influence on the convergence?

The conclusion of this part can be done in a concise manner since the results of synchronous and asyn-
chronous updating are very similar. The behavior previously discussed for the first part of the research ques-
tion is similar when the iterates are updated in an asynchronous matter. There is one thing that stands out
during the asynchronous simulations. Recall that the inexact PDMM iteration shows what the distance be-
tween the error and the convergence of an iterate is. When asynchronously updating it turned out that it
then becomes the distance between the maximum of the error and the convergence of an iterate instead of
the mean of the error. The introduction of packet loss only results in a decreased convergence rate. The
relevance of asynchronous updating could be underestimated since the results are similar to synchronous
updating. However, it is important to realize that in a practical setup it is not desirable to update in a syn-
chronous matter. The reason for this is that in synchronous operation all nodes still have to operate on a
global clock. This makes it relevant to confirm that the convergence analysis also hold for asynchronous
operation.

6.2. Future work
It is always important to determine the scope of a thesis by estimating what is feasible to achieve within the
available time. This also means that there will always be things that are left out due to time constraints. This
section will discuss things that could be interesting to further investigate.

To start off the PDMM algorithm was chosen as the distributed optimization scheme to use for the simu-
lation. This is the reason that the inexact PDMM algorithm was derived. This was specifically focused on the
PDMM algorithm. If one desires to use a different distributed optimization scheme, this needs to be derived
again. Therefore it could be interesting to derive the inexact iteration for other popular algorithms.

Optimization problems were needed in order to conduct the simulations. In this thesis, three different
problems were solved during the simulations. The first two problems gave either a low or no error when a
solver was used. The third problem optimized over two variables where constraints needed to be taken into
account. Therefore a built-in MATLAB solver was chosen which had a constant error. It could be interesting
to run simulations of a distributed optimization scheme to solve different problems.

Another thing that was kept constant during the simulations was the distributed optimization scheme.
All simulations made use of the PDMM algorithm. To validate that the results are not algorithm dependent
it could be interesting to run simulations that use a different distributed optimization scheme for which the
convergence analysis also holds.

6.2. Future work 43

Another property that could be useful is self-concordance [6, p. 496]. This property is used to determine a
practical upper bound on the maximum number of Newton-Raphson iterations. This could be helpful since
one requirement is that the error has to be a finitely summable sequence. One approach could be to start
off with a low number of allowed iterations and increase this when the inexact PDMM algorithm stops with
converging. Making use of self-concordance then gives the maximum number of Newton-Raphons iterations
to which it has to increase.

The final thing to address is that one of the advantages of distributed processing is the ease to alter the
topology. During the simulations the topology has been kept fixed. Therefore a change in topology could be
implemented to investigate whether the behavior of the inexact PDMM iteration changes. However, since
asynchronous updating and packet loss have been implemented a change in topology will most likely not
have an effect on the inexact PDMM algorithm.

A
Primal-dual method of multipliers

The algorithm used to validate the theoretical results during the simulations in Chapter 5 is the primal-duel
method of multipliers (PDMM) algorithm. This appendix will treat the derivation of the PDMM algorithm.

As touched upon in the introduction, the objective of the PDMM algorithm is to minimize the sum of
convex functions over a graphical model, G = (V ,E), with V the set of nodes in the network and E the edges
or connections in the network. Furthermore the number of nodes is denoted by n = |V | and the number of
edges is given by m = |E |.

A.1. General PDMM
The first thing to do is to derive the standard PDMM iteration. The following steps are taken in order to
achieve this. We start off by formulating a general convex optimization problem and finding the dual func-
tion of this problem. However, this dual problem still has all the nodes dependent on each other. Since the
aim is to solve problems in a distributed manner, the dual function is reformulated to remove the global de-
pendencies. Peaceman-Rachford splitting is applied to the reformulated dual problem in order to find the
solution to the optimality condition of the dual problem. The iterates of the Peaceman-Rachford splitting
method are then rewritten to end up with the PDMM iteration.

Consider the following general convex optimization problem:

min
x

∑
i∈V

fi (xi), (A.1)

s.t . Ai j xi + A j i x j = bi j , ∀(i , j) ∈ E ,

with variable x ∈ Rn , fi : Rn → R∪ {∞} closed convex and proper (CCP) functions, fi the objective function
of node i , A ∈Rm×n defining the connections and b ∈Rm×1 defining the constraints between the nodes. The
A matrix is not necessarily full rank. However, the linearly dependent constraints defined by A and b can be
removed if the matrix is not full rank. The newly constructed full rank matrix combined with the new vector
can be substituted for the old A matrix and b vector, meaning that it can be assumed that A is full rank. In
vector form this general problem becomes

min
x

f (x), (A.2)

s.t . Ax = b.

In order to find the dual problem, we first derive the Lagrangian. The Lagrangian of this general problem is
given by

L (x,δ) = f (x)+δT (Ax −b), (A.3)

where δ ∈Rm denotes the Lagrange multiplier. The dual function is defined as the infimum of the Lagrangian
over x. Therefore the dual function that belongs to the general problem (A.2) is given by

45

46 A. Primal-dual method of multipliers

g (δ) = inf
x

[
f (x)+δT (Ax −b)

]
.

Recall from the background in Chapter 2 that the conjugate of a function is defined as (2.3)

f ∗(y) = sup
x∈dom f

[
yT x − f (x)

]
.

This definition is used to replace the infimum of the dual function with the conjugate function. Doing this
results in the following dual function

g (δ) = inf
x

[
f (x)+δT (Ax −b)

]
,

=−sup
x

[−ATδx − f (x)+bTδ
]

,

=− f ∗(−ATδ)−bTδ,

where the final step uses the definition of the conjugate function. This dual function is now used to formulate
the dual problem. The dual problem is defined as the maximum of the dual function over δ. This results in
the following dual problem

max
δ

− f ∗(−ATδ)−bTδ.

Which can equivalently be written as

min
δ

f ∗(−ATδ)+bTδ. (A.4)

At the optimal point, the gradient of the dual problem should vanish. This is called the optimality condition.
For the derived dual problem (A.4) the optimality condition is given by

0 ∈−A∂ f ∗(−ATδ)+b

Alternatively the optimality condition can be written in element-wise notation as

bi j ∈−∂δi j f ∗
i (−aT

i δ)−∂δi j f ∗
j (−aT

j δ), ∀(i , j) ∈ E .

This means that both f ∗
i and f ∗

j both depend on the same edge variable δi j . Therefore all nodes are still

dependent on each other and at this point it is not possible to find the solution to the dual problem (A.4) in
a distributed manner. Hence, auxiliary variables are introduced to remove these dependencies. Two node
variables, λi | j and λ j |i , are created for each edge (i , j) ∈ E with the constraint λi | j = λ j |i = δi j . All these
auxiliary variables, λi | j , are stacked in the λ vector. For an arbitrary edge number l that connects nodes i and
j , with (i , j) ∈ E and i < j , we haveλ(l) =λi | j . Similarly when i > j with (i , j) ∈ E , this becomesλ(l+m) =λi | j ,
with m still the number of edges. This means that the top half of λ should be identical to the bottom half of
λ.

The dimensions of the A matrix and the newly introduced λ vector do not match. In order to overcome
this problem we introduce the matrix C that matches the dimension of the λ vector. To achieve this, the top
m ×n part of the C matrix is filled with the positive values of the A matrix and the lower m ×n part of the C
matrix is filled with the negative values of the A matrix.

Finally we define a vector d ∈ R2n in order to convert the b vector to the appropriate dimension. This d
vector is defined as d T = 0.5[bT ,bT].

To summarize, the λ vector, C matrix and d vector are constructed as follows:

A.1. General PDMM 47

•
λ(l) =λi | j , for i < j ,

λ(l +m) =λi | j , for i > j ,

}
At convergence:λ(l) =λ(l +m) = δi j

•
C (l , i) = Ai j , for i < j ,

C (l +m, i) = Ai j , for i > j ,

• d = 1
2

[
b
b

]
,

where λ ∈ R2m , C ∈ R2m×n and d ∈ R2m . The introduction of the λ vector, C matrix, and d vector was mo-
tivated by the fact that it was not possible to solve the derived dual problem (A.4) in a distributed manner.
The final thing to introduce such that it is possible to rewrite the dual problem into a distributed problem is
a permutation matrix P . This matrix exchanges the upper m rows with the lower m rows of either a vector or
a matrix. This means that the top and bottom half of a vector or matrix are exchanged. The physical meaning
behind the permutation matrix is the transmission of data along an edge. Using this permutation matrix the
following equivalence holds

C x +PC x = 2d ⇔ Ax = b. (A.5)

This means that solving with the constraint C x = d is equivalent to solving with the constraint Ax = b, since
we have C +PC = (AT AT)T . Thus replacing the constraint of the general problem (A.2) with C x = d will keep
the problem exactly the same. After replacing the constraint, the dual problem becomes

min
λ

f ∗(−C Tλ)+d Tλ+ IΛ(λ), (A.6)

where IΛ the indicator function. Recall that the indicator function is defined as

IΛ

{
0, λ ∈Λ,

∞, λ ∉Λ.

with Λ the set defined by Λ = {λ ∈ R2m |λ = Pλ} and P the discussed permutation matrix. The reason that
the indicator function is added in the dual problem is to ensure that the solution of the minimization lies in
the set Λ. This set causes the upper half of the vector λ to be equal to the lower half, which is the way λ was
defined.

In order to find the optimal solution for the rewritten dual problem (A.6), the optimality condition can
be derived again. At the optimal point, the gradient should vanish. This results in the following optimality
condition

0 ∈−C∂ f ∗(−C Tλ)+d +NΛ(λ), (A.7)

where NΛ(λ) the normal cone operator. This is the gradient of the indicator function and is defined as

NΛ(λ) =
{

g |g T (y −λ) ≤ 0,∀y ∈Λ, λ ∈Λ,

;, λ ∉Λ.

Recall the Peaceman-Rachford splitting method that was discussed in Section 3.3.1. This splitting method
can be applied to the optimality condition (A.7). The optimality condition can be split up into the two oper-
ators T1 and T2 as

0 ∈
T1(λ)︷ ︸︸ ︷

−C∂ f ∗(−C Tλ)+d +
T2(λ)︷ ︸︸ ︷

NΛ(λ) . (A.8)

48 A. Primal-dual method of multipliers

The solution to this monotone inclusion problem is iteratively approximated by the Peaceman-Rachford it-
eration, which is given by

z(k+1) =CcT2 ◦CcT1 (z(k)), (A.9)

λ(k+1) = JcT1 (z(k)),

where the Cayley operator was defined as (3.3) CcT = 2JcT −I . Therefore a closer look is taken at the resolvents
of T1 and T2, respectively JT1 and JT2 , in order to simplify the iterates. This is where the proximal operator (3.5)
from Chapter 2 comes in useful. The proximal operator is the resolvent of the subdifferential of a function,
defined as

Jc∂ f (x) =proxc f (x) = argmin
u

[
f (u)+ 1

2c
‖u −x‖2

2

]
.

This is used to rewrite the resolvent of the operator T2(λ) (A.8) as JcT 2(y) = JcNΛ (y) = Jc∂IΛ (y). Recognize
that the latter is the resolvent of the subdifferential of a function, which was the definition of the proximal
operator. Rewriting the resolvent JcT2 by making use of the proximal operator gives

JcT2 (y) = argmin
u

[
IΛ(u)+ 1

2c

∥∥u − y
∥∥2

2

]
,

= argmin
u∈Λ

∥∥u − y
∥∥2

2 , (A.10)

=ΠΛ(y),

where ΠΛ(y) the projection of y onto Λ, which will from now on be written as u+. This projection can be
further simplified. The Lagrangian and optimality conditions are derived from (A.10) to obtain an alternative
expression for u+. We start of by deriving the Lagrangian as

L (y,u,ν) = ∥∥u − y
∥∥2

2 +νT (Pu −u).

This Lagrangian leads to two different different partial derivatives, one with respect to u and the other with
respect to ν. Setting both these derivatives equal to zero results in the optimality conditions as

∂L

∂u
= 0 ⇒ 2(u+− y)+ (P − I)Tν= 0, (A.11)

∂L

∂ν
= 0 ⇒ Pu+−u+ = 0. (A.12)

These optimality conditions are combined in order to arrive at an expression for u+ as

u+ =1

2

(
u++u+)

,

(A.12)= 1

2

(
u++Pu+)

,

(A.11)= 1

2

(
y +P y

)
,

=1

2
(I +P) y.

This means that we now have JcT2 = 1/2(I +P). This can be used to rewrite the Cayley operator on T2 as

CcT 2 = 2JcT2 − I ,

= 2

[
1

2
(I +P)

]
− I ,

= P.

A.1. General PDMM 49

So the Cayley operator on operator T2 can be replaced by the permutation matrix P . This observation can be
used to simplify the Peaceman-Rachford iteration (A.9) as

λ(k+1) = JcT1 (z(k)),

y (k+1) = 2λ(k+1) − z(k),

z(k+1) = P y (k+1).

(A.13)

Notice that the y-iterate is simply the Cayley operator on operator T1 written out as CcT1 = 2JcT1 − I , which
means that the z-iterate is still CcT2 ◦CcT1 (z(k)).

At this point the λ-iterate has not changed when compared to the standard Peaceman-Rachford iteration
(A.9). Therefore we will now take a closer look at this iterate in order to simplify the expression. The definition
of the resolvent is needed in order to find an equivalent expression for JcT1 (z) and was given by JcT = (I +
cT)−1. The λ-iterate of the Peaceman-Rachford iteration can be used to find an alternative expression for
λ+ = JcT1 (z) (A.13) as

λ+ = JcT1 (z),

λ+ = (I + cT1)−1(z),

λ++ cT1(λ+) = z,

λ+ ∈ z − cT1(λ+), (A.14)

where the operator T1 is given by T1(λ+) = −C∂ f ∗(−C Tλ)+d (A.8). This operator can be substituted into
(A.14) resulting in

λ+ = z − c
(−C x++d

)
, (A.15)

where x+ ∈ ∂ f ∗(−C Tλ+). Recall the relation between the derivative of the conjugate function and the deriva-
tive of a standard function, which is given by ∂ f ∗ = (∂ f)−1. This property can be applied to x+ as

x+ ∈ ∂ f ∗(−C Tλ+),

∂ f (x+) =−C Tλ+,

0 ∈ ∂ f (x+)+C Tλ+.

Substituting the previously derived expression for λ+ (A.15) results in

∂ f (x+)+C T z + cC T (C x+−d) = 0.

Which means that we end up with the following expression for x+

x+ = argmin
x

[
f (x)+ zT (C x −d)+ c

2
‖C x −d‖2

2

]
.

With this expression for the x-iterate, the full iteration (A.13) now becomes

x(k+1) = argmin
x

[
f (x)+ z(k)T

(C x −d)+ c

2
‖C x −d‖2

2

]
,

λ(k+1) = z(k) + c(C x(k+1) −d),

y (k+1) = 2λ(k+1) − z(k),

z(k+1) = P y (k+1).

(A.16)

These are the iterates of the standard PDMM algorithm. The P matrix is still the permutation matrix,
exchanging the upper half and the lower half of the y-iterate with each other. Recall that λwas constructed in
a way that at convergence λ(l) =λ(l +m), with l an arbitrary edge number. Applying the permutation matrix
means that two nodes connected by an edge exchange their value, thus the permutation matrix represents
the transmission of data between neighbouring nodes.

B
Distributed optimization problems

During the simulations in Chapter 5, the PDMM algorithm is applied to three different problems. This elim-
inates the possibility that the convergence rate of the inexact PDMM algorithm depends on the optimized
objective function. Also, as mentioned in the introduction, the problem defines the objective function that is
minimized locally and will therefore have an influence on the inexactness. The three different problems that
are simulated are: A quadratic problem, a problem of a higher order and a problem with a logarithm in the
objective function. The first problem is the distributed average consensus problems where a distinct value is
assigned to each node and the aim is to find the average of the values of all nodes in the network. The second
problem minimizes a p-norm to the power p, where the order of the problem is determined by the parameter
p and is chosen as 2 < p <∞. Lastly, the third problem is the Gaussian channel capacity problem, where the
objective is to allocate power among different channels in a way that optimizes the capacity of all channels
combined. In this appendix, the three problems are formulated, rewritten if necessary and finally cast in the
previously derived PDMM iteration (A.16).

B.1. Distributed average consensus
The first problem is the distributed average consensus problem, where each node has a distinct different
value assigned and the goal is to compute the average of all values. Consider a network in which each node
i ∈ V has an initial value x(0)

i . The objective is to reach consensus at the average of all these initial values.
The distributed consensus problem is an important problem and has been studied extensively on its own
[7, 10, 17, 27, 28]. It is also used in various other applications such as distributed sensor fusion [25, 26], load
balancing among processors in parallel computers [2, 5, 10] and the distributed coordination of autonomous
moving agents [14, 20].

The first step in deriving the PDMM iteration for the distributed averaging problem is to state the problem
as a minimization problem. This minimization is then compared to the general optimization problem (A.1)
to see how it can be cast into the PDMM algorithm. The distributed averaging problem is given by

min
x

∑
i∈V

1

2
(xi −x(0)

i)2, (B.1)

s.t . xi −x j = 0, ∀(i , j) ∈ E

where x(0)
i is the initial value of node i . Setting the derivative of the objective function (B.1) equal to zero

results in the average value, which verifies that this objective function leads to the desired value. Recognize
that (B.1) is already of the same form as the general convex optimization problem (A.1). Therefore this can be
cast directly in the PDMM iteration (A.16) with f (x) =∑

i∈V
1
2 (xi − x(0)

i)2 and d = 0, since b = 0. This results in
the following PDMM iteration to solve the distributed averaging problem

51

52 B. Distributed optimization problems

x(k+1) = argmin
x

[∑
∈∈V

(
1

2
(xi −x(0)

i)2
)
+ z(k)T

C x + ρ

2
‖C x‖2

2

]
,

λ(k+1) = z(k) +ρC x(k+1),

y (k+1) = 2λ(k+1) − z(k),

z(k+1) = P y (k+1).

(B.2)

Notice that the constant c of the PDMM iteration is replaced by ρ. The ρ is exactly the same thing, but this
way the difference between the matrix C and the optimization constant ρ is clearer. From now on ρ will
consistently be used when referring to the optimization variable.

The next thing to do is to derive an analytic expression for the x-iterate. This is used for the simulations in
two ways. Firstly the analytic expression of the update equation for the x-iterate is used to simulate the exact
PDMM algorithm, which is used to compare the other results to. The second way the analytic expression is
used is that the minimization to compute the x-iterate is also simulated by computing the x-iterate exact and
adding a randomly generated Gaussian error to it. This way it is possible to accurately control the variance
of the error, which directly impacts the magnitude of the error. The first step is to write the x-iterate vector
based as

x(k+1) = argmin
x

[
1

2
(x −x(0))T (x −x(0))+ z(k)T

C x + ρ

2
‖C x‖2

2

]
,

where x, x(0) ∈ Rn , with n the number of nodes in the network and x(0) a vector with all the initial values
stacked. The optimal value for this update equation is found by setting the derivative equal to zero which
yields

∂x(k+1)

∂x
= x −x(0) +C T z + cC T C x, (B.3)

⇒ x = (I + cC T C)−1(x(0) −C T z).

This is the analytic expression that is used during the simulations to find the exact value for the x-iterate.

B.2. P-norm optimization 53

B.2. P-norm optimization
The previous average consensus problem had a quadratic objective function (B.1), which can accurately be
approximated by the Newton-Raphson method in one step since this method uses a second order approx-
imation. The next thing to investigate is the behaviour of the inexact PDMM algorithm with an objective
function of higher powers than two. This higher power will result in an inexact approximation when the
Newton-Raphson method is used. This problem is mainly theoretically motivated in an attempt to test the
inexact PDMM algorithm by optimizing various different problems. We start off by formulating the p-norm
optimization problem as

min
x

‖x −a‖p
p , (B.4)

s.t . xi −x j = 0, ∀(i , j) ∈ E ,

where x, a ∈Rn with n the number of nodes and p an integer restricted by 2 < p <∞. The vector a consists of
(different) constant values, one for each node. If this vector was not subtracted, the optimal x would always
be a vector containing all zeros. The optimization problem (B.4) can equivalently be written as

min
x

∑
i∈V

|xi −ai |p

s.t . xi = x j , ∀(i , j) ∈ E .

The problem can now be compared to the general optimization problem (A.1) to investigate how this can
be solved by using the PDMM algorithm. The p-norm optimization problem is already of the same form as
the general optimization problem and can therefore directly be cast into the PDMM iteration (A.16), which
results in

x(k+1) = argmin
x

[∑
i∈V

(|xi −ai |p
)+ z(k)T

C x + ρ

2
‖C x‖2

2

]
, (B.5)

β(k+1) = z(k) +ρC x(k+1),

y (k+1) = 2β(k+1) − z(k),

z(k+1) = P y (k+1).

Notice that the absolute value in the objective function causes it to be defined as

fi (x) =
{

xi −ai xi ≥ ai

−xi +ai xi < ai

The obvious thing to do is finding an algebraic expression for the x-iterate in order to have a way to compute
the iterate exact. The derivative of the x-iterate (B.5) results in

∂x(k+1)

∂xi
=

{
p(xi −ai)p−1 +C T

i z(k) +ρC T
i Ci xi , xi ≥ ai ,

−p(−xi +ai)p−1 +C T
i z(k) +ρC T

i Ci xi , xi < ai ,

where the two different derivatives are caused by the absolute value. For 2 < p < ∞, the derivative has an
order of at least two, which means that it is not possible to compute the x-iterate algebraically while keeping
p variable. The only way to compute the x-iterate is by using a solver. The two options are to either use a
built-in solver from MATLAB or implement a solver. The latter is chosen to have as much control as possible
over the solver. The algorithm that is implemented is the Newton-Raphson method. This method iteratively
approximates the minimization by using the first and second order derivatives to take a step in the direction
where the value of the objective function decreases. Interested readers are referred to [6, p. 484] for a detailed
explanation on the Newton-Raphson method and its implementation. Besides the previously derived first or-
der derivatives, the second order derivatives are also needed for the implementation of the Newton-Raphson
method, which are given by

54 B. Distributed optimization problems

∂2x(k+1)

∂x2
i

=
{

p(p −1)(xi −ai)p−2 +ρC T
i Ci , xi ≥ ai ,

p(p −1)(−xi +ai)p−2 +ρC T
i Ci , xi < ai .

With both the first and second order derivatives derived, the Newton-Raphson method can be imple-
mented. The disadvantage of not having an algebraic expression is that it is impossible to compute the solu-
tion of the x-iterate exact and that the Newton-Raphson method will always be an approximation. However
by carefully choosing the stopping criterion and allowing the Newton-Raphson method to have a sufficient
number of iterations, the error of the approximation becomes small enough for trustworthy simulations.

B.3. Channel capacity optimization 55

B.3. Channel capacity optimization
The third optimization problem that will be solved in a distributed manner by using the PDMM algorithm
is the channel capacity problem. Consider k different parallel Gaussian channels, each characterized by its
noise variance σ2

i with 1 ≤ i ≤ k, where the channels have a shared power constraint. This power constraint
specifies the total power that is available to distribute among the channels. The objective is to distribute the
total power Ptot in a way that optimizes the capacity of all channels combined. This is a well-known problem
in the information theorem which results is the water-filling solution [6, 9]. The idea behind water-filling is
to allot the available power to the channels with the lowest noise. This principle is illustrated in Figure B.1,
where we can see that the available power is allotted to the three channels with the lowest noise and the
channel with the highest noise does not get any power assigned, since the total available power was already
distributed before the level of the noise variance of the fourth channel was reached.

The standard channel capacity problem is an iterative and centralized approach. However, a decentral-
ized version of this approach can be derived. The centralized channel capacity problem is rewritten as a
consensus problem such that it is possible to solve the problem in a distributed manner by making use of the
PDMM algorithm. The following steps are taken to rewrite the problem:

1. Formulate the channel capacity problem as a minimization problem.

2. Construct the Lagrangian to eliminate the global constraint.

3. Compute the Karush-Kuhn-Tucker conditions, which are necessary to ensure that the computed solu-
tion is optimal.

4. Find the dual problem and rewrite this into a consensus problem.

5. Cast the dual problem into the PDMM algorithm.

6. The constrained minimization problem can now be solved in a distributed manner.

The first step is to formulate the channel capacity problem as a convex optimization problem. We consider
the problem

min
x

− ∑
i∈V

log(σ2
i +xi), (B.6)

s.t . x º 0, 1T x = 1,

1 2 3 4

Channel

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ow

er

i
2

x
i

Figure B.1: Waterfilling

56 B. Distributed optimization problems

where xi the power allotted to channel i andσ2
i the noise variance of channel i . Without loss of generality it is

assumed that Ptot = 1, otherwise the constraint 1T x = 1 can simply be altered to a desired 1T x = Ptot with Ptot

the total available power. This is a convex optimization problem with an equality and an inequality constraint,
where the equality constraint is a global constraint. To derive a distributed approach, both constraints have to
be local such that the constraints can be checked at the nodes. To achieve this, the Lagrangian is first derived
as

L (x,µ,λ) = ∑
i∈V

[− log(σ2
i +xi)

]−µ(1T x −1)−λT x, (B.7)

s.t . λº 0,

where µ ∈R,λRn×1 the Lagrange multipliers. To ensure that the found solution is optimal, the Karush-Kuhn-
Tucker (KKT) conditions for the channel capacity problem are derived as

x∗ º 0,

1T x∗ = 1,

λ∗ º 0,

λ∗
i x∗

i = 0 ∀i ∈V , (B.8)

−1

σ2
i +x∗

i

−µ∗−λ∗
i = 0 ∀i ∈V. (B.9)

The last KKT-condition can be used to derive an expression for the optimal value of x. This expression can
be used in Appendix B.3.1 to investigate the effect of inexact updates on the channel capacity problem. By
making use of the last KKT-condition, the expression for the optimal value of x becomes

x∗
i = −1

µ∗+λ∗ −σ2
i . (B.10)

The originally stated problem (B.6) had a global constraint. Therefore the dual function is now derived, which
leads to a dual problem that can be solved in a distributed manner. The Lagrangian (B.7) and the analytic
expression for xi (B.10) are combined to end up with the following dual function

g (λ,µ) = ∑
i∈V

[
− log

(−1

µi +λi

)
+1+µσ2

i +λiσ
2
i

]
+µ. (B.11)

The logarithm in the dual function results in an additional constraint on the Lagrange multipliers, namely
µi +λi < 0. The dual problem with the dual function (B.11) and the additional constraint becomes

min
λ,µ

∑
i∈V

[
log

(−1

µi +λi

)
−µiσ

2
i −λiσ

2
i −

µi

N

]
,

s.t . µi =µ j ∀(i , j) ∈V ,

µi +λi < 0 ∀i ∈V ,

λi ≥ 0 ∀i ∈V.

(B.12)

At this point the problem is rewritten as a consensus problem and can now be solved by using using the
PDMM algorithm. The dual problem (B.12) can be cast into the PDMM iteration (A.16), which gives the
following iteration

B.3. Channel capacity optimization 57

λ(k+1),µ(k+1) = argmin
µ,λ

(∑
i∈V

[
log

(−1

µi +λi

)
−µiσ

2
i −λiσ

2
i −

µi

N

]
+ z(k)T

Cµ+ ρ

2

∥∥Cµ
∥∥2

2

)
,

s.t . µi +λi < 0, λi ≥ 0 ∀i ∈V ,

β(k+1) = z(k) +ρCµ(k+1),

y (k+1) = 2β(k+1) − z(k),

z(k+1) = P y (k+1).

(B.13)

This is equivalent to the iteration for both previous problems except for the constraints that are now present
at the update equation for the x-iterate and the fact that the x-iterate is computed by optimizing over two
variables. To solve this constrained problem, the following steps are taken:

1. Solve the minimization as if the constraints are not present.

2. Check if the computed solutions fulfill the constraints.

3. If the constraints are not fulfilled, we have λi < 0. The reason for this will be explained when the con-
straints are discussed in detail. To find the optimal solution set λi = 0, which is the closest point to the
optimal value, and solve for µi again.

First, in order to solve the optimization, the update equation for the λ and µ iterates is rewritten to include
everything within the summation as

λ(k+1),µ(k+1) = argmin
λ,µ

[∑
i∈V

log

(−1

µi +λi

)
−µiσ

2
i −λiσ

2
i −

µi

N
+ z(k)T

Ciµi + ρ

2
C T

i Ciµ
2
i

]
, (B.14)

where Ci the i -th column of C . In order to find an analytic expression for µi and λi , the partial derivatives are
derived as

∂
(
λ(k+1),µ(k+1)

)
∂µi

= −1

µi +λi
−σ2

i −
1

N
+C T

i z +ρC T
i Ciµi , (B.15)

∂
(
λ(k+1),µ(k+1)

)
∂λi

= −1

µi +λi
−σ2

i . (B.16)

These partial derivatives can be used to find algebraic expressions for the λ and µ iterates. These partial
derivatives vanish at the optimal points. First (B.16) is set to zero in order to find an expression for λi , which
is given by

λi =−µi − 1

σ2
i

. (B.17)

This expression for λi is substituted into (B.15) in order to obtain an expression for µi as

µi =
1/N −C T

i z

ρC T
i Ci

. (B.18)

These expressions are used to solve the minimization without taking the constraints into considerations,
which was the first step. The second step is to check whether the computed µi and λi fulfill the constraints.
The two constraints that have to be fulfilled are

1. µi +λi < 0,

2. λi ≥ 0.

58 B. Distributed optimization problems

By inspection of the constraint on λi (B.17), we see that this can be rewritten as

λi +µi =− 1

σ2
i

,

where the σ2
i values are positive since these represent the noise variances of the channels. This means that

the first constraint is automatically fulfilled, so only checking the second constraint is sufficient. If λi < 0, the
second constraint is not fulfilled. In this case, the previously derived expressions for λi (B.17) and µi (B.18)
do not hold anymore. The way to solve the problem then is to set λi = 0 and substitute this into (B.15) to find
an alternative expression for µi . This results in the following expression

−1

µi
−σ2

i −
1

N
+C T

i z +ρC T
i Ciµi = 0,

⇒ ρC T
i Ci︸ ︷︷ ︸
a

µ2
i +

[
−σ2

i −
1

N
+C T

i z

]
︸ ︷︷ ︸

b

µi −1︸︷︷︸
c

= 0. (B.19)

Equation (B.19) is solved to find an expression for µi by using the standard quadratic formula as

µi = −b ±
p

b2 −4ac

2a
. (B.20)

Now the expression for µi has changed, the constraints have to be checked again. However, since λi = 0,
the constraints can be simplified. The constraint λi ≥ 0 will automatically be satisfied and the constraint
µi +λi < 0 becomes µi < 0. We start by investigating a,b and c from the quadratic formula independently to
see if µi satisfies this constraint. Recall that the C matrix is constructed by using the A matrix, which defines
the edges (connections) in the network. Since the A and C matrix both contain an equivalent number of
non-zero values in each column, we have C T

i Ci = AT
i Ai , which is the number of neighbors of node i . Since

the network is connected, each node has at least one neighbour and we have C T
i Ci > 0. The optimization

constant ρ will also be larger than zero. Combining this means that for a of the quadratic formula (B.20),
a > 0 holds.

Since c =−1 and a > 0, we have−4ac = 4a > 0. Evaluating the argument of the square root of the quadratic
formula and using −4ac > 0 gives b2 −4ac > b2. To summarize for both of the cases of the quadratic formula
we have:

µi ,1 = −b +
p

b2 −4ac

2b
,

> −b +
p

b2

2b
,

= −b +|b|
2b

.

µi ,2 = −b −
p

b2 −4ac

2b
,

< −b −
p

b2

2b
,

= −b −|b|
2b

.

This means that there will always be exactly one solution to the quadratic formula for which µi < 0 holds and
therefore fulfills the constraint.

The final thing to discuss is the computation of the optimal values of the power distribution (x∗
i) as well as

the Lagrange multipliers (λ∗
i and µ∗

i). The optimal values are needed to compute the error at each iteration,
since the results will be presented as plots showing the error. Later on in Appendix B.3.1 the dependency
between the errors caused by the inexact PDMM algorithm on µi and λi , and the variable that we are inter-
ested in, xi , will be derived. Therefore the optimal values of all three these variables are needed, to see if this
dependency is also confirmed by the simulations.

We start off by discussing an approach to obtain the optimal value of x. Since this is standard water-filling,
the optimal value can easily be computed in a non-distributed way. Without loss of generality assume that the
channels are sorted with the first channel having the lowest noise variance and the last channel the highest
noise variance, thus σ2

1 ≤σ2
2 ≤ . . . ≤σ2

n . Then the optimal power distribution can be computed as follows:

B.3. Channel capacity optimization 59

1. Begin by allotting power (xi) to the first channel.

2. Keep adding power to the first channel until either x1 = Ptot or σ2
1 +x1 =σ2

2

3. Evenly add power to both channels until either x1 +x2 = Ptot or σ2
1 +x1 =σ2

3

4. Keep repeating this process of distributing the available power untill the noise variance of the next
channel is reached or until the total amount of power, Ptot , is used.

In these steps, Ptot is the total available power and xi is the power allotted to channel i . Recall that the total
available power was assumed to be 1 (B.6). This process was also graphically shown in the beginning of this
section in fig. B.1. With this method, the optimal power distribution can be computed.

Next, the optimal values for µ and λ are also needed as reference. At this point it is important to realize
that the channel capacity problem was rewritten as a consensus problem (B.12), where the consensus was
defined by µi = µ j ,∀(i , j) ∈ V . This means that at convergence, all nodes ends up with the exact same value
for µ. The consequence is that computing µ∗

i for one of the nodes in the network gives µ∗ for all nodes in
the network. Recall the complementary slackness condition (B.8) given by λ∗

i x∗
i = 0. This means that for

each node either λ∗ or the x∗ must be equal to zero. The interpretations for the channel capacity problem
is that for the channels to which power is allotted (x∗

i 6= 0), have λ∗
i = 0. Since the optimal values for x have

previously been computed, it can easily be checked which ones are non-zero. The nodes for which x∗
i 6= 0

holds, have λ∗
i = 0. By choosing one of the nodes for which λ∗

i = 0 holds, the expression for the optimal value
of x (B.10) can be rewritten and λ∗

i = 0 is substituted to find an expression for µ∗ as

µ∗ = −1

x∗
i +σ2

i

, when λ∗
i = 0.

At this point it is possible to find reference values for x∗ and µ∗. As previously discussed, λ∗
i = 0 if x∗

i 6= 0, so
only λ∗

i needs to be calculated for nodes for which x∗
i = 0 holds. For the optimal value of λ, λ∗

i , (B.17) can be
used, which results in

λ∗
i =−µ∗

i − 1

σ2
i

.

B.3.1. Inexact Channel capacity problem
The PDMM iteration to solve the channel capacity problem has just been derived. This was all under the
assumption that all the iterates are computed exact. However, by inspection of the iteration (B.13) it becomes
clear that the λ and µ iterates are approximated by solving a minimization. This inherently means that this
approximation will introduce inexactness again. Therefore it is interesting to determine the effect of the
inexact PDMM algorithm on the exactness of the resulting x-iterate for the channel capacity problem, since
this is the variable of interest. The error of an iterate is defined as the difference between the exact update
and the inexact update as

∥∥∥ε(k)
xi

∥∥∥=
∥∥∥x̂(k)

i − x̃(k)
i

∥∥∥ , (B.21)

where the hat represents the inexact update and the tilde stands for the exact update, both based on the
inexact variables from the previous iteration. To clarify in what way the update is based on an inexact variable,
the minimization (B.14) to compute λ and µ is based on the inexact z from the previous iteration. The exact
update of the x-iterate is defined as (B.10)

x̃(k)
i = −1

µ̃(k)
i + λ̃(k)

i

−σ2
i .

The link between the PDMM algorithm and the x-iterate is that the PDMM algorithm finds values for µ(k)
i

and λ(k)
i , which are substituted into the expression for the x-iterate. Therefore ε(k)

µi
and ε(k)

λi
are introduced as

60 B. Distributed optimization problems

respectively the error on the µ-iterate and the error on the λ-iterate at iteration k. Now the inexact update for
the x-iterate can be defined with these errors explicitly incorporated as

x̂(k)
i = −1

µ̂(k)
i + λ̂(k)

i

−σ2
i ,

= −1

µ̃(k)
i +ε(k)

µi
+ λ̃(k+1)

i +ε(k)
λi

−σ2
i .

The difference between the exact update and the inexact update is that the errors caused by the PDMM algo-
rithm appear in the inexact expression. With both the exact and inexact update equations derived, these can
be substituted and the error on the x-iterate (B.21) becomes

∥∥∥ε(k)
xi

∥∥∥=
∥∥∥x̂(k)

i − x̃(k)
i

∥∥∥ ,

=
∥∥∥∥∥∥
 −1

µ̃(k)
i +ε(k)

µi
+ λ̃(k)

i +ε(k)
λi

−σ2
i

−
(

−1

µ̃(k)
i + λ̃(k)

i

−σ2
i

)∥∥∥∥∥∥ ,

=
∥∥∥∥∥∥ 1

µ̃(k)
i + λ̃(k)

i

− 1

µ̃(k)
i +ε(k)

µi
+ λ̃(k)

i +ε(k)
λi

∥∥∥∥∥∥ ,

=
∥∥∥∥∥∥

ε(k)
µi

+ε(k)
λi

(µ̃(k)
i + λ̃(k)

i)(µ̃(k)
i + λ̃(k+1)

i +ε(k)
µi

+ε(k)
λi

)

∥∥∥∥∥∥ .

This is the influence errors on the λ-iterate and µ-iterate, which are caused by using the PDMM algorithm
with a limited number of iterations, have on the x-iterate. This expression shows that the error on the x-
iterate does not only depends on the errors introduced by the inexactness of the PDMM algorithm, εµi and

ελi , but also on the actual vales ofµ∗
i andλ∗

i . This because we know that if the algorithm converges, µ̃(k+1)
i and

λ̃(k+1)
i will get closer to the optimal values µ∗

i and λ∗
i at each successive iteration. Now recall the constraint

given by µi +λi < 0. This means that the sum of both will most likely not be zero and therefore it is safe to
assume that if the algorithm converges, |µi +λi | À |εµi + ελi |, which makes the errors in the denominator
negligible. Applying this observation results in

∥∥∥ε(k)
xi

∥∥∥=
∥∥∥∥∥∥

ε(k)
µi

+ε(k)
λi

(µ̃(k)
i + λ̃(k)

i)2

∥∥∥∥∥∥ , (B.22)

where the tilde on a variable still means that it represents the exact update. The plots presented in chapter 5
will be on a logarithmic scale since the PDMM algorithm has the property that it converges at a geometric
rate [34]. Therefore it is interesting to investigate what (B.22) implies in the logarithmic domain. This results
in

log
∥∥∥ε(k)

xi

∥∥∥= log
∥∥∥ε(k)

µi
+ε(k)

λi

∥∥∥− log
∥∥∥(µ̃(k)

i + λ̃(k)
i)2

∥∥∥ .

This expression implies that, when shown on a logarithmic scale, the error on x-iterate is the errors caused
by the PDMM algorithm on the µ and λ-iterates with the sum of the actual values of µ and λ squared and
subtracted from that. Note that this expression is problem specific for the channel capacity problem and will
not hold for the other problems.

Bibliography

[1] I. F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks. IEEE
Communications Magazine, 40(8):102–114, Aug 2002. ISSN 0163-6804. doi: 10.1109/MCOM.2002.
1024422.

[2] Amnon Barak and Amnon Shiloh. A distributed load-balancing policy for a multicomputer. Software:
Practice and Experience, 15(9):901–913, 9 1985. ISSN 1097-024X. doi: 10.1002/spe.4380150905. URL
http:https://doi.org/10.1002/spe.4380150905.

[3] Viorel Barbu and Teodor Precupanu. Convexity and optimization in Banach spaces. Springer Science &
Business Media, 2012.

[4] Jacques F Benders. Partitioning procedures for solving mixed-variables programming problems. Nu-
merische mathematik, 4(1):238–252, 1962.

[5] J. E. Boillat. Load balancing and poisson equation in a graph. Concurrency: Practice and Experience, 2
(4):289–313, 12 1990. ISSN 1096-9128. doi: 10.1002/cpe.4330020403. URL http:https://doi.org/

10.1002/cpe.4330020403.

[6] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

[7] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip algorithms.
IEEE/ACM Transactions on Networking (TON), 14(SI):2508–2530, 2006.

[8] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in
Machine Learning, 3(1):1–122, 2011.

[9] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons, 2012.

[10] George Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal of parallel
and distributed computing, 7(2):279–301, 1989.

[11] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear variational problems
via finite element approximation. Computers & Mathematics with Applications, 2(1):17–40, 1976.

[12] Herman Heine Goldstine. A History of Numerical Analysis from the 16th through the 19th Century, vol-
ume 2. Springer Science & Business Media, 2012.

[13] Ralph E Gomory. An algorithm for integer solutions to linear programs. Recent advances in mathematical
programming, 64:260–302, 1963.

[14] A. Jadbabaie, Jie Lin, and A. S. Morse. Coordination of groups of mobile autonomous agents using near-
est neighbor rules. IEEE Transactions on Automatic Control, 48(6):988–1001, June 2003. ISSN 0018-9286.
doi: 10.1109/TAC.2003.812781.

[15] Mark Aleksandrovich Krasnosel’skii. Two remarks on the method of successive approximations. Uspekhi
Matematicheskikh Nauk, 10(1):123–127, 1955.

[16] Jingwei Liang, Jalal Fadili, and Gabriel Peyré. Convergence rates with inexact non-expansive operators.
Mathematical Programming, 159(1-2):403–434, 2016.

[17] Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[18] W Robert Mann. Mean value methods in iteration. Proceedings of the American Mathematical Society, 4
(3):506–510, 1953.

61

http:https://doi.org/10.1002/spe.4380150905
http:https://doi.org/10.1002/cpe.4330020403
http:https://doi.org/10.1002/cpe.4330020403

62 Bibliography

[19] USDA Press Office. Forest service wildland fire suppression costs exceed $
2 billion. URL https://www.usda.gov/media/press-releases/2017/09/14/

forest-service-wildland-fire-suppression-costs-exceed-2-billion.

[20] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switching topology
and time-delays. IEEE Transactions on Automatic Control, 49(9):1520–1533, Sept 2004. ISSN 0018-9286.
doi: 10.1109/TAC.2004.834113.

[21] Judea Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach. Cognitive Systems
Laboratory, School of Engineering and Applied Science, University of California, Los Angeles, 1982.

[22] Roger Penrose. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge philo-
sophical society, volume 51, pages 406–413. Cambridge University Press, 1955.

[23] Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 2015.

[24] Ernest K Ryu and Stephen Boyd. Primer on monotone operator methods. Appl. Comput. Math, 15(1):
3–43, 2016.

[25] Demetri P Spanos, Reza Olfati-Saber, and Richard M Murray. Distributed sensor fusion using dynamic
consensus. In IFAC World Congress. Prague Czech Republic, 2005.

[26] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion based on average consensus.
In IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005.,
pages 63–70, April 2005. doi: 10.1109/IPSN.2005.1440896.

[27] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters, 53
(1):65–78, 2004.

[28] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average consensus with least-mean-square
deviation. Journal of Parallel and Distributed Computing, 67(1):33 – 46, 2007. ISSN 0743-7315.
doi: https://doi.org/10.1016/j.jpdc.2006.08.010. URL http://www.sciencedirect.com/science/

article/pii/S0743731506001808.

[29] G. Zhang and R. Heusdens. Linear coordinate-descent message-passing for quadratic optimization. In
2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2005–
2008, March 2012. doi: 10.1109/ICASSP.2012.6288301.

[30] Guoqiang Zhang and Richard Heusdens. Bi-alternating direction method of multipliers. In Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 3317–3321. IEEE,
2013.

[31] Guoqiang Zhang and Richard Heusdens. Bi-alternating direction method of multipliers over graphs. In
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pages 3571–
3575. IEEE, 2015.

[32] Guoqiang Zhang and Richard Heusdens. On simplifying the primal-dual method of multipliers. In
Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on, pages 4826–
4830. IEEE, 2016.

[33] Guoqiang Zhang and Richard Heusdens. Distributed optimization using the primal-dual method of
multipliers. IEEE Transactions on Signal and Information Processing over Networks, 2017.

[34] Guoqiang Zhang, Richard Heusdens, and W Bastiaan Kleijn. On the convergence rate of the bi-
alternating direction method of multipliers. In Acoustics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on, pages 3869–3873. IEEE, 2014.

https://www.usda.gov/media/press-releases/2017/09/14/forest-service-wildland-fire-suppression-costs-exceed-2-billion
https://www.usda.gov/media/press-releases/2017/09/14/forest-service-wildland-fire-suppression-costs-exceed-2-billion
http://www.sciencedirect.com/science/article/pii/S0743731506001808
http://www.sciencedirect.com/science/article/pii/S0743731506001808

	Introduction
	Background
	Introduction
	Iterative methods

	Monotone operator theory
	Fixed point iteration
	Inexact Krasnosel'skii-Mann iteration
	Operator splitting methods
	Peaceman-Rachford splitting method
	Douglas-Rachford splitting method

	Primal-dual method of multipliers
	Inexact primal-dual method of multipliers
	Determining the optimal z
	Asynchronous updates and packet loss

	Convergence analysis
	Results
	Distributed average consensus
	Comparison between domains
	Inexact PDMM iteration
	Synchronous
	Asynchronous

	P-norm optimization
	Synchronous
	Asynchronous

	Channel capacity problem
	Synchronous
	Asynchronous

	Conclusion and Future Work
	Conclusion
	Future work

	Primal-dual method of multipliers
	General PDMM

	Distributed optimization problems
	Distributed average consensus
	P-norm optimization
	Channel capacity optimization
	Inexact Channel capacity problem

	Bibliography

