
Extending the Multi-Label A* Algorithm for
Multi-Agent Pathfinding with Multiple Waypoints

Arjen Ferwerda
a.ferwerda@student.tudelft.nl

Supervised by: Jesse Mulderij, Mathijs de Weerdt
Delft University of Technology

21/06/2020

Abstract
Multi-Agent Pathfinding (MAPF) is a problem in which the goal is to plan paths

for distinct agents while avoiding collisions between agents. We consider a new varia-
tion of MAPF, namely MAPF with multiple waypoints (MAPFW), where agents are
required to visit a set of intermediary locations before visiting their end goal. MAPFW
may have interesting applications, such as in the field of train scheduling and routing.
To solve MAPFW problems we present the new algorithm Extended Multi-Label A*
(EMLA*), which is based of the existing MLA* algorithm. Experimental evaluation
shows that Heuristic-Based EMLA* (HB-EMLA*) for unordered MAPFW outperforms
other algorithms when it comes to the number of agents and waypoints it is able to
handle. However, HB-EMLA* struggles to find solutions to instances which are not
well-formed, as resting agents may block planning agents preventing a valid plan from
being found. HB-EMLA* generally outperforms other algorithms when it comes to
run time of larger instances. This comes at the cost of solution quality, where the
solutions provided by EMLA* are 30% worse than the best solution of the compared
algorithms. Lastly, set benchmarks show that a simple Nearest Waypoint heuristic
generally outperforms other tested heuristics for HB-EMLA*.

1 Introduction
Multi-Agent Pathfinding (MAPF) is a classical problem in which the goal is to plan paths for
distinct agents while avoiding collisions between agents. Multi-Agent Pickup and Delivery
(MAPD) is a variant of MAPF where agents must select tasks where they must travel
to a pickup-location followed by a drop-off-location [Grenouilleau et al., 2019]. Finding an
optimal solution to MAPF problems, and by extension MAPD problems, is NP-hard [Nebel,
2019]. In fact, the complete composite search-space, which considers all possible positions of
all agents at each time step, grows exponentially with the number of agents [Ryan, 2008]. As
such, it is essential to find algorithms which can as-fast-as-possible compute paths for a large
number of agents. Similarly, it is essential to find fast algorithms for real-time applications,
such as automated warehouses [Wurman et al., 2008] and autonomous vehicles [Stern et al.,
2019].

There are numerous optimal algorithms for the MAPF problem [Lam et al., 2019, Sharon
et al., 2015, Yu and LaValle, 2013], and there are several algorithms for the MAPD problem

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

mailto:a.ferwerda@student.tudelft.nl

as well [Grenouilleau et al., 2019, Ma et al., 2017]; however, these algorithms are not always
applicable to other variants of the MAPF problem. Therefore, one aim of this paper is to
explore an additional variant with useful applications. One variant, which might be useful
for train shunting and service, is MAPF with multiple waypoints (MAPFW) [Mulderij et al.,
2020]. This is a variant where agents are assigned a set of intermediate locations (waypoints)
which they must visit before reaching their final goal. Since there are no existing algorithms
for MAPFW, the goal of this paper is to explore MAPFW, and to develop new algorithms
to effectively solve it.

One way to solve MAPD problems is with the The MLA* algorithm [Grenouilleau et al.,
2019]. In MLA* agents are assigned tasks, and then they perform a search for their pickup
location and end goal in a combined search. Since MAPD is very similar to MAPFW, but
with a single waypoint, we believe that MLA* may be suitable to be extended so that agents
visit multiple waypoints before reaching their goal.

The main contributions of this paper are as follows. First, we present an Extended Multi
Label A* (EMLA*) algorithm to solve MAPFW. Using set benchmarks we demonstrate that
EMLA* is able to solve a large number of instances. We show that it performs well with
a large number of agents and waypoints, provided instances are well-formed. However,
EMLA* struggles when instances are not well-formed, as resting agents can block agents
being planned, which prevents EMLA* from finding valid plans. Using set benchmarks we
show that EMLA* generally performs faster than other algorithms, with the performance
being relatively the fastest when instances are well-formed, and when there are many conflicts
between agents. However, the average solution quality of EMLA* is 30% worse than an
optimal algorithm, although this is highly dependent on the features of the graph. Lastly,
using set benchmarks we demonstrate that a simple Nearest Waypoint heuristic generally
outperforms other tested heuristics for solving unordered MAPFW with Heuristic-Based
EMLA*.

2 Multi-Agent Pathfinding Problem
We formulate the MAPF problem as follows. The input to the problem with k agents is a
tuple 〈G, s, e〉, where G = (V,E) is a connected undirected graph, s : [1, 2, ..., k]→ V maps
agents to their start location, and e : [1, 2, ..., k] → V maps agents to their end locations.
Time is discretized starting at 0, and on each time step an agent is situated on one of the
graph vertices. Between time steps the agent may move to an adjacent vertex using an edge
in E, or the agent may remain at their current vertex [Stern et al., 2019].

A plan, or path p of length n ∈ Z+ for agent i is a sequence (v0, v1, ..., vn−1), where
pi[t] = vt denotes that agent i is at vertex vt at time step t. The plan starts at the agent’s
starting position and ends with the agent’s ending position. Formally, pi[0] = s(i), and
pi[n − 1] = e(i). For all time steps t ≥ n, agent i is assumed to remain at e(i) [Mulderij,
2020, Stern et al., 2019].

The goal of MAPF is to find a plan for each agent such that each plan is valid. For a
plan to be valid, all adjacent nodes in the plan must be adjacent in the graph (connected
by an edge), or the nodes must be the same, e.g. for an agent i and associated plan pi,
{pi[m− 1], pi[m]} ∈ E or pi[m− 1] = pi[m] for all 1 ≤ m ≤ n, where n is the length of plan
pi. Furthermore, a valid plan has no collisions, which occur when agents attempt to cross
the same edge or vertex simultaneously.

Formally, we recognize three types of conflicts following the definitions from [Stern et al.,
2019], namely edge, vertex, and swap conflicts. We define these as follows, considering a

2

pair of agent plans pi and pj :

• Edge Conflict. An edge conflict occurs iff any two agents are planned to cross an
edge in the same direction at the same time i.e. there is an edge conflict between i
and j iff pi[m] = pj [m] and pi[m + 1] = pj [m + 1] for some time step m.

• Vertex Conflict. A vertex conflict occurs iff any two agents are planned to converge
to the same vertex on a given time step. Formally, there is a swapping conflict between
i and j when pi[m] = pj [m] for some time step m.

• Swap Conflict. A swap conflict occurs iff any two agents are planned to swap places
with each other by crossing the same vertex in opposite directions i.e. there is a swap
conflict between i and j iff pi[m] = pj [m+ 1] and pi[m+ 1] = pj [m] for some time step
m.

The minimal solution to a MAPF instance is a set P consisting of valid plans pi ∈ P ,
where pi is the valid plan of agent i, such that the sum of the lengths of all plans is minimal.
We define this sum to be Σ1≤i≤k|pi| for a MAPF instance with k agents. We use solution
quality to refer to this sum.

2.1 Multi-Agent Pathfinding with Unordered Waypoints
Multi-Agent Pathfinding with Unordered Waypoints, or unordered MAPFW, is a variant
of MAPF where agents are assigned a set of intermediate locations (waypoints) which they
must visit before reaching their final goal.

The input to this problem is the same as classical MAPF, with the addition of a set of
waypoints for each agent w : [1, 2, ..., k] → ℘(V) or a mapping of the k input agents to a
subset of the vertices of the input graph.

Agents must visit all of their assigned waypoints, meaning the plan pi of agent i must
contain all the assigned waypoints. Formally, ∀x ∈ w(i), x ∈ pi where pi is the plan of i.
Other constraints on the plans from the classical problem still apply, such as pi[0] = s(i),
pi[n− 1] = e(i), etc.

2.2 Multi-Agent Pathfinding with Ordered Waypoints
We also consider a variant of MAPF with multiple ordered waypoints (Ordered MAPFW),
where agents are required to visit a set of intermediary waypoints in a given order before
reaching the end goal. The input to ordered MAPFW is the same as classical MAPF, with
the addition of a linearly ordered set of waypoints for each agent w : [1, 2, ..., k] → ℘(V).
We denote ≤i to be the total order of w(i) for agent i, i.e. a ≤i b iff i must visit waypoint
a before waypoint b. We require that each agent visits each node in the set of waypoints
in the order they are given. Agents may traverse waypoints in any order i.e. an agent may
traverse node x before node y even if y ≤ x, however for a plan to be valid each waypoint
in the agents plan must be preceded by all previous waypoints based on the total order ≤i

for agent i. We formalize this as:
∀x, y ∈ w(i), x ≤i y =⇒ ∃a, b((pi[a] = x) ∧ (pi[b] = y) ∧ (a ≤ b))

3

Figure 1: Example of a grid-based graph where the path of one agent blocks the path of
another. Agent 2 utilizes wait-at-start to wait for agent 1 to pass. We use sn and gn
to denote the starting and goal location of the nth agent respectively. Black squares are
impassable.

3 Summary of MLA*
Recall that in MAPD, agents must visit pickup locations before visiting their goal locations
(of their chosen task). In MLA*, each agent is tasked with finding a combined path, visiting
the pickup and drop off location, using a singular A*-based search. To do this the authors
use a binary label for each search node of the A* search. If the label is 1 the agent is
searching for the pickup location, and if the label is 2 the agent is searching for the drop off
location. The search commences with the initial node having label 1, which is then switched
to label 2 once a path to the pickup location has been found. Presumably, conflicts with
other agents are avoided with use of a token, which is similar to a global reservation table,
although it is not specified. When an agent finds a valid path, the path is added to the
reservation table, and the reserved paths are considered blocked by subsequently planned
agents.

It is not clear how agents can consider wait actions in MLA*, so we assume agents will
only wait when they are not able to find a path to any task.

The approach of MLA* is similar to a decoupled approach, which provides a non-optimal
solution. This is contrasted with a centralized approach, where a search is performed on (a
part of) the complete abstract state space, and which provides an optimal solution [Stern
et al., 2019]. Since MLA* does not provide optimal solutions, our algorithm also does not
provide optimal solutions.

4 Extended Multi-Label A*
We introduce Extended Multi-Label A* (EMLA*) as a generalized and extended version
of MLA* intended to solve Ordered MAPFW. MLA* associates a label with the pickup
location and one with the drop off location. We generalize this idea by associating a label
with each waypoint, and one label with the goal location. In practice, EMLA* performs a
combined A*-based search for all waypoints and the end goal, where agents search for each
consecutive waypoint, before finally searching for the goal location. As in MLA*, agents are
planned sequentially, although EMLA* uses an arbitrary ordering of agents.

4

EMLA* follows the outline of the A* algorithm [Hart et al., 1968]. To conduct a search
of the graph, we define for each search node n the variables gn, ln, and pn, which denote
respectively the nodes g value (the number of time steps elapsed), the nodes label, and the
nodes position. The label specifies which waypoint the agent is searching for, or whether
the agent is searching for the end goal (after having visited all waypoints). For an agent
with k waypoints, ln = 1 indicates that the agent is searching for the first waypoint, ln = 2
indicates that the agent is searching for the second waypoint, etc. ln = k + 1 indicates that
the agent is searching for the end goal. Nodes also have an f -value, and an h-value, where
fn = gn + hn. The f -value is used to prioritize which search node should be expanded, and
nodes with a smaller f -value are expanded first. The h-value is a heuristic for the distance
of the search node to the current goal of the agent (be it a waypoint or the end goal).

We compute the h-value as follows. For an agent i we denote the jth waypoint using wi
j ,

e.g. wi
5 is agent i’s 5th waypoint. For an agent i with k waypoints:

hn =

h(pn, w
i
1) + h(wi

1, w
i
2) + . . . + h(wi

k, e(i)) ln = 1

h(pn, w
i
2) + h(wi

2, w
i
3) + . . . + h(wi

k, e(i)) ln = 2
...
h(pn, w

i
k) + h(wi

k, e(i)) ln = k

h(pn, e(i)) ln = k + 1

and we define h(·, ·) as the Manhattan distance between two positions. This is a generaliza-
tion of the h-value in MLA* [Grenouilleau et al., 2019].

In Algorithm 1 we give the pseudo-code for our EMLA* algorithm, which finds a plan
for a single agent i. We run EMLA* for an agent, and we create an initial search node,
which we add to a queue. We then iterate as long as the queue is not empty, or until we
find a path. The node with the lowest f -value is removed from the queue, and checks are
performed to see if the node has the same position as a waypoint, or the end goal, depending
on the label of the node. When the node is not at one of the agent’s goals, it is expanded,
meaning neighbouring nodes are added to the queue.

To compute the plans for all agents, we take an arbitrary ordering of agents and run
EMLA* sequentially for each agent. When an agent finds a valid plan, the plan is added to
a global reservation table, which is then used by subsequently planned agents.

4.1 Avoiding Conflicts
To avoid conflicts between agents, we introduce wait-at-start (WAS), where agents that
cannot find a path due to conflicts will wait at their start location. Agents can also wait
next to a reserved location while still searching for a path, which we refer to as neighbouring-
wait (NW). Agents may be blocked by other agents, which results in agents sometimes not
being able to reach a waypoint, or the end goal. To resolve such a conflict, we use WAS to
force the blocked agent to wait at their starting location for a certain number of time steps.
Figure 1 gives an example where one agent must wait for the other agent at the start. sn
and gn denote the starting and goal location of the nth agent respectively. In this example,
agent 2 waits for 4 time steps at its starting location before moving towards its goal.

We define two methods to determine the WAS time:

• Linear-k WAS is a method of determining the WAS time by adding an integer k to
the WAS time each failed iteration of the algorithm. Agents initially wait 0 time steps,

5

Algorithm 1 Extended Multi-label A*
1: Create initial node n0 with ln0

= 1, gn0
= was_time, hn0

= 0, fn0
= 0, and pn0

= the
agents starting location and add n0 to Q

2: Determine l∗ . Label corresponding to end goal
3: while Q is not empty do
4: Remove the node n from Q which has the smallest fn and add n to closed
5: if pn ∈ resting or pn is reserved at time step gn then
6: continue (reject this node and go to the top of while loop)
7: else if pn = the position of lwth waypoint then
8: Create n′ with ln′ = ln + 1, gn′ = gn, and pn′ = pn
9: Q← [n′], closed← {}

10: continue
11: else if ln == l∗ and pn = e(i) then
12: return the found path
13: else
14: for all adjacent vertices /∈ closed do
15: Expand node n if adjacent vertex not reserved at time step gn.
16: Add an NW node if applicable.
17: end for
18: end if
19: end while
20: Increase was_time and run the algorithm again withWAS enabled until a path is found.

but if they cannot find a path to their goal or waypoint, they try the search again
after waiting k time steps at their start location. Each failed iteration afterwards adds
a further k time steps to the WAS time.

• Exponential-k WAS is a method of determining the WAS time by multiply the
WAS time by an integer k each failed iteration of the algorithm. Agents initially wait
0 time steps, but if they fail to find a path to their goal or waypoint, they attempt to
search again after waiting 1 time step at their start location. Each subsequent failed
iteration multiplies this WAS time by k.

The aim with these two approaches is to give an option for both solution quality, and run
time. Using linear-k WAS might give better solutions since the WAS time can be increased
by small increments depending on k, whereas exponential-k WAS might decrease the run
time when agents must wait for a large amount of time.

A reservation table is used to keep track of the various planned paths for each planned
agent. For an entry (p, t), we consider the position p to be impassable at time step t by
any agent. Let us consider a search node n at position p, and at time step t. Normally, if a
vertex at position pa adjacent to p is reserved in the next time step t + 1, that position is
considered blocked, and is not added to the search. However, in these situations we use NW
to add a search node with position pa at time step t + 2. This search node represents two
actions: a wait at position p for 1 time step, followed by a move to position pa in the next
time step. This allows agents to wait next to a reserved location, before moving onto that
location in the next time step provided it is no longer reserved. Figure 2 gives an example.

It should be noted that the NW and WAS are not effective at resolving all kinds of
conflicts. Agents are planned sequentially, and agents are assumed to rest at their starting

6

Figure 2: Example of a grid-based graph illustrating neighbouring-wait. Agent 2’s path to
their goal is blocked by agent 1, but agent 2 is able to wait 1 time step at a neighbouring
node to wait for agent 1 to pass.

location before being planned. This means that it is possible that some problem instances
cannot be solved by our EMLA* algorithm, since a resting agent might be blocking the path
of an agent who is at that moment being planned. Consider the example in Figure 3, where
the given instance is not solvable using EMLA*, since it requires the simultaneous planning
of two agents. In general, we refer to such instances as being not well-formed.

Specifically, we define the inverse, a well-formed instance, as follows:
A well-formed instance is an instance where for each connected component of the input
graph, all waypoints and the goal location of an agent are reachable without passing through
the start or end point of another agent. More formally, for an instance with k agents, for
all agents i, there must exist a path from s(i) to each waypoint, and a path from s(i) to
e(i), that does not pass through any starting vertex s(j), or any ending vertex e(j) for any
j where 1 ≤ j ≤ k, j 6= i.

4.2 Heuristic-Based EMLA*
One limitation of EMLA* is that it can only solve ordered MAPFW instances. To solve
unordered MAPFW instances, we introduce Heuristic-Based EMLA* (HB-EMLA*).

Unlike ordered MAPFW, there is no ordering given for the waypoints, so agents are free
to choose the order in which they visit their waypoints. A flexible way to determine the
order of waypoints is by using heuristics to determine the waypoint the agent will attempt

7

Figure 3: Example of a grid-based graph instance
which is not well-formed. Agent 1 and 2 are both
located at their starting locations, and both agents
are blocking the path of the other agent. Regardless
of the ordering of the agent planning, neither agent
can find a path to their goal.

to reach. Essentially, when the agent is at the starting location, and every time the agent
reaches a waypoint, we compute a heuristic for each waypoint to determine which waypoint
should be visited by the agent. Once the agent has visited all waypoints, the agent simply
proceeds to the end goal, similar to achieving the label l∗ in EMLA*. In practice, the
algorithm starts by selecting a waypoint for the agent based on the heuristics, and every
time the agent reaches the selected waypoint, a new waypoint is selected, and the label is
increased.

There are several heuristics available in order to compute which waypoint to select. We
give several:

• TheNearest Waypoint (NW) heuristic simply computes the distance from the agent
to each waypoint, and then selects the closest waypoint. For the distance calculation
we use the Manhattan distance, though other distance calculations are possible.

• The Nearest Waypoint * Nearest Neighbour (NW*NN) heuristic computes the
distance from the agent to each waypoint, and then from each waypoint the distance
to the nearest neighbour (the closest other waypoint). The waypoint that is selected
by the agent is the waypoint where the product between the agent-waypoint distance
and the waypoint-nearest-neighbour distance is minimal.

• The Nearest Waypoint + Nearest Neighbour (NW+NN) heuristic is similar to
the previous heuristic, but instead of calculating the product, the sum of the agent-
waypoint and waypoint-nearest-neighbour distance is used instead.

The goal of these heuristics is to minimize the distance the agent has to travel. Thus,
the intention of the NW heuristic is for an agent to simply visit the waypoints closest to it.
The idea of the NW*NN and NW+NN heuristics is to minimize the time the agent walks
back and forth between waypoints by having the agent prioritize clustered sets of waypoints,
rather than distant and isolated waypoints.

5 Experimental Evaluation
The goal of our experimental evaluation is to test the how effective HB-EMLA* is at solving
instances with many agents and waypoints. Additionally, we explore the conditions under
which HB-EMLA* outperforms other (optimal) algorithms. Lastly, we compare different
heuristic approaches for HB-EMLA* to see which is most effective under different conditions.

To help answer our research questions, we perform the following three experiments:

8

Figure 4: Performance of HB-EMLA* on progressive benchmarks from mapfw.nl, as com-
pared to the MAPFW algorithms A*+OD+ID, Inflated M*, and BCP.

• To generally measure the effectiveness of EMLA* we use progressive benchmarks.
These benchmarks use a set graph structure, but randomly place an increasing number
of agents, and randomly place a set number of waypoints per agent.

• To compare the performance of our algorithm with that of other (optimal) algorithms
we make use of set benchmarks. These benchmarks use both a set graph structure,
and set agent and waypoint locations.

• To compare different heuristic approaches for our HB-EMLA* we again use set bench-
marks.

To run these benchmarks we use the website mapfw.nl, which allows users to run bench-
mark problems and submit their solutions to the website, allowing evaluation and com-
parisons of various algorithms [Jadoenathmisier and Siekman, 2020]. We use the mapfw
python library to obtain the benchmarks from the mapfw.nl server, and then run them on
our algorithm. All benchmarks, and all solutions can be seen on mapfw.nl.

In some of our experiments, we compare our results with those of 4 other algorithms,
which were developed in parallel with EMLA*. CBSW is an extension of the Conflict-
Based Search algorithm [Sharon et al., 2015, Jadoenathmisier, 2020]. BCP is an extension
of the branch-and-cut-and-price for MAPF algorithm [Lam et al., 2019, Michels, 2020].
A*+OD+ID is an extension of an A*-based algorithm which combines operator decomposi-
tion and independence detection to refine the search-space [Standley, 2010, Siekman, 2020].
Lastly, Inflated M* is a non-optimal extension of the optimal M* algorithm for MAPF
[Wagner and Choset, 2011, Dijk, 2020].

9

(a) Benchmark with an increasing number of agents. (b) Benchmark with an increasing number of waypoints
per agent.

Figure 5: Additional experiment showing performance of HB-EMLA* on two new bench-
marks from mapfw.nl.

5.1 Measuring Effectiveness of EMLA*
We ran our HB-EMLA* algorithm on the progressive benchmarks from mapfw.nl. For each
benchmark, 50 runs with random agent and waypoint locations are started every time the
number of agents is increased, and the benchmark ends when all of the 50 runs fail. A run
fails when the algorithm is not able to find a valid solution, or when the run takes longer
than the timeout limit, which depends on the benchmark. The aim is to increase the number
of agents as much as possible before the algorithm fails all 50 runs.

Figure 4 illustrates the results of HB-EMLA*, and 3 comparative algorithms, on the
progressive benchmarks, which have a 20 second timeout. The vertical axis shows the
number of successful runs, and the horizontal axis shows the number of agents in each run.
In this experiment our HB-EMLA* algorithm uses linear-1 WAS for conflict resolution, and
uses the Nearest Waypoint heuristic for waypoint selection.

Our algorithm outperforms the other algorithms when it comes to number of agents it
can handle. What is not shown in the graphs is the solution quality. It seems that our
algorithm generally sacrifices solution quality for speed, which allows it to handle more
agents.

It is notable that our algorithm has relatively poor performance on benchmark #81, and
exceptional performance on benchmark #82. Benchmark #81 consists of many corridors,
where only 1 agent can pass through a corridor at a time. Benchmark #82 is a large graph,
with a lot of open space, but where all 5 agent waypoints overlap with the waypoints of the
other agents. The result is that, despite causing numerous conflicts, agents in benchmark
#82 are usually able to find a path to their waypoints. On the contrary, the many corridors
in benchmark #81 limit the number of paths agents are able to take to their waypoints, or
end goal. Additionally, it is more likely that resting agents block the path of other agents in
benchmark #81, meaning it is sometimes impossible for agents to find a path to their goals.

As a followup experiment, we ran our HB-EMLA* algorithm on two new progressive
benchmarks. Benchmark # 85 is similar to benchmarks #79-82, although the graph is
much larger, and with fewer choke points. Benchmark #91 is a 16x16 grid, where for each
run 20% of the vertices are randomly made impassable. Additionally, in benchmark # 91
the number of waypoints per agent is increased rather than increasing the number of agents.
Figure 5 summarizes the results of these experiments.

10

Benchmark HB-EMLA* CBS A*+OD+ID Inflated M* BCP
5 14 ms 1.77 s 27.61 s 556 ms 201 ms
8 71 ms 1 min, 58 s 1 min, 22s 27.77s -
10 618 ms 33.49 s - 244 ms 14.18 s
11 8 ms 12 ms 24 ms 4 ms 6 ms
12 12 ms 299 ms 3.59 s 133 ms 25 ms
19 510 ms - - 35.91 s -
24 129 ms 6 min, 46 s - 1 min, 8 s 1.46 s
27 12 ms 63 ms 92 ms 14 ms 7 ms
59 166 ms 1 min, 38 s - 1 min, 16 s 5 min, 37 s
64 9 ms 10.92 s 6.21 s 7 ms 592 ms

(a) Run time for each algorithm to compute all agent plans.

Benchmark HB-EMLA* CBS A*+OD+ID Inflated M* BCP
5 135 119 119 119 119
8 1187 821 821 821 -
10 2162 1590 - 1598 1590
11 111 100 100 100 100
12 123 115 115 115 115
19 4066 - - 2921 -
24 1996 1542 - 1551 1994
27 173 169 169 169 169
59 1312 824 - 850 824
64 151 96 96 193 96

(b) Solution quality for each algorithm. The value is the sum of length of agent plans.

Table 1: Performance of HB-EMLA* and other algorithms on 10 random benchmarks. The
smallest values for each benchmark are in bold.

HB-EMLA* performs well on benchmark # 85, since it lacks small choke points, and
due to the size it is often well-formed. However, it seemingly struggles with the large size of
the benchmark, as many more runs fail due to a timeout. Comparatively, it performs worse
than M*, unless the number of agents is sufficiently large. This may be due to the lack of
optimizations in EMLA*, and the large search space which is not sufficiently reduced by our
algorithm.

On benchmark #91 our algorithm underperforms compared to BCP and A*+OD+ID,
although it is able to handle some of the instances with a large number of waypoints.
This may be due to the same limitation as in benchmark #81, where instances with more
waypoints increase the likelihood that an instance is not well-formed. When a waypoint
for an agent is placed on the start- or end location of another agent, the instance is not
well-formed, and thus is often not solvable using EMLA*. Furthermore, due to the random
placement of obstacles in benchmark # 91, instances may feature choke points, further
increasing the odds that instances are not well-formed.

Based on our experiments, it seems that our algorithm is most effective when instances
are open with few obstacles, and when instances are well-formed. The performance suffers
when there are many choke points, or when there are a large number of agents or waypoints
on a relatively small graph.

11

5.2 Algorithmic Comparisons
We ran our HB-EMLA* algorithm on 10 randomly selected benchmarks, from a list of
17 manually selected candidate benchmarks. Candidate benchmarks were selected from
mapfw.nl based on size, and whether or not EMLA* could find a solution. More details on
the candidates and these criteria can be found in appendix A.

As in 5.1, our HB-EMLA* algorithm uses linear-1 WAS and the Nearest Waypoint
heuristic. Table 1 summarizes the results, showing the benchmark id’s, and the results of
HB-EMLA* and 4 comparison algorithms. Table 1a shows the run times for each algorithm
on each benchmark, and Table 1b shows the solution quality. Values in bold are the smallest
values for each benchmark.

It is clear that our algorithm generally under performs when it comes to solution quality.
On average, HB-EMLA*’s solution is 30% worse than the best solution; however, there
is a large variation between benchmarks. Our algorithm provides worse solutions on large
benchmarks with many waypoints, as the ordering of waypoints has a large impact on the
solution quality in those situations.

This is contrasted with the generally good run time performance of HB-EMLA*. There
is a large variation between benchmarks, as well as between the algorithms. In the worst
case, the performance is comparable with Inflated M*, or BCP. In the best case, it performs
458 times better (benchmark #59).

Benchmark #59 consists of a relatively large graph with many waypoints, and long rows
of obstacles with some space between rows. This instance resembles the instances used to
simulate warehouses in other studies [Ma et al., 2017]. HB-EMLA* shows similar results
to other similar benchmarks (such as benchmark #64 which is a candidate benchmark),
demonstrating the effectiveness of EMLA* at solving such instances.

5.3 Heuristic Comparisons
For this experiment, we ran the same benchmarks as in section 5.2, but using variations
of our HB-EMLA*. Specifically, we used the three distinct heuristics, NW, NW+NN, and
NW*NN. All variants use Linear-1 WAS.

Table 2 shows the performance of HB-EMLA* using different heuristics. Table 2a shows
the run times for each variation, and Table 2b shows the solution qualities.

For most benchmarks, Nearest Waypoint outperforms the other heuristics in terms of
solution quality. In terms of run time, there is no clear winner, although NW + NN con-
siderably underperforms in benchmark #19. Interestingly, although NW * NN generates
the worst solution for benchmark #19, it has the fastest run time. Comparatively, NW +
NN generates a better solution, but the run time is around 10 times worse. Benchmark
#19 resembles a maze, with large open spaces connected with long corridors acting as choke
points. It is possible that the large difference in run time is due to the particular ordering of
waypoints, which causes an agent to not be able to find a path to their goals, thus requiring
WAS to find a path. Unfortunately, this can be quite costly if an agent must wait for a
long time, since the agent will perform a search on the graph each time the WAS time is
increased. In situations were an agent must wait for a long time at the start, the run time
can be decreased by using a larger k when determining the WAS time. We ran benchmark
#19 using the NW + NN heuristic, and with linear-10 WAS, and the run time was reduced
to 580 ms, while the solution quality remained 4327. Exponential-k WAS may provide a
similar benefit, although it is not clear to what extent.

12

Benchmark Nearest wp. NW + NN NW * NN
5 9 ms 9 ms 9 ms
8 52 ms 55 ms 55 ms
10 510 ms 202 ms 232 ms
11 4 ms 5 ms 4 ms
12 6 ms 8 ms 6 ms
19 413 ms 3.98 s 368 ms
24 114 ms 135 ms 103 ms
27 6 ms 8 ms 6 ms
59 135 ms 100 ms 176 ms
64 4 ms 7 ms 6 ms

(a) Run time for HB-EMLA to compute all agent plans using dif-
ferent heuristics.

Benchmark Nearest wp. NW + NN NW * NN
5 135 135 135
8 1187 1301 1301
10 2162 2099 2099
11 111 111 111
12 123 123 123
19 4066 4327 4414
24 1996 2130 2030
27 173 193 193
59 1312 1402 1383
64 151 182 150

(b) Solution quality for HB-EMLA* using different heuristics.

Table 2: Performance of HB-EMLA* using different heuristics for waypoint selection. All
variations use Linear-1 WAS.

Since it is hard to predict how the heuristics will perform, it is advisable to use NW
since it generally provides satisfactory results. This is the reason why we use NW for our
other experiments.

6 Ethicality and Reproducibility
An effort has been made to conduct this research in an ethically responsible way. The
results are presented in an honest and straightforward manner, and the implications of the
conclusions have been thoroughly considered.

In order to facilitate the reproduction of the results in this paper, the benchmarks
which have been used are publicly available at mapfw.nl and the source code is available at
github.com/ArjenFerwerda/EMLA.

This paper was written for academic purposes, as part of the CSE3000 course offered by
the Technical University Delft. It was written under supervision of the university, and as
such, we believe there are no conflicts of interest.

13

7 Discussion & Reflection
This research was affected by a few limitations which influenced the results. Due to a
limitation in resources and time, most of the data from the set benchmarks were obtained
locally, on different machines, rather than from a centralized computer or server. This means
that some of the differences in run times and agent numbers between the other algorithms
might be due to differences in hardware. Additionally, some data from the progressive
benchmarks were obtained locally, though for all algorithms benchmarks #79 through #82
were run on a centralized server to mitigate the potential hardware difference, and to improve
consistency.

The choice of programming language may affect the results, as the algorithms in this
research were written in Python, while the BCP algorithm was written in C++ [Michels,
2020]. A* + OD + ID, Inflated M*, and CBSW were also written in Python [Siekman,
2020, Bestebreur, 2020, Jadoenathmisier, 2020].

8 Conclusions
This paper attempts to find an effective way to extend the existing MLA* algorithm to
solve the MAPFW problem. We have implemented two algorithms, EMLA* for ordered
waypoints, and HB-EMLA* for unordered waypoints. We explore under what conditions
our algorithms outperform other (optimal) algorithms, and we explore different heuristic
approaches to solve unordered MAPFW.

Experimental evaluation shows that our algorithms are able to solve a large number
of instances, and it performs well with a large number of agents and waypoints, provided
instances are well-formed. However, when instances are not well-formed, EMLA* may fail to
find solutions, since resting agents may block the path of agents being planned. Furthermore,
EMLA* performs relatively poorly on random instances with small graphs relative to the
number of agents or waypoints, since instances are more likely to be not well-formed.

EMLA* generally performs faster than other algorithms, with the performance being
relatively the fastest when instances are well-formed, and when there are many conflicts
between agents. In these conditions, HB-EMLA* is often able to find alternate paths to
agents’ goals when conflicts arise, or WAS and NW can be used to avoid conflict. When
instances feature many choke points, the performance of EMLA* suffers, though this can
be alleviated by using linear-k or exponential-k WAS with a large k-value. This comes at
the cost of solution quality, as alternate paths tend to be longer than the optimal paths,
and WAS can introduce a large amount of unnecessary wait time. When problem instances
become sufficiently large, the run time of EMLA* also suffers. This may be due to a lack of
optimizations, and the larger search space.

Using benchmarks, we have found that using a simple nearest-waypoint heuristic is an
effective way to order an agents’ waypoints, when compared to other heuristics. However,
since it is a heuristic approach, good performance is not always guaranteed, and the ordering
is often non-optimal. This also results in a drop in solution quality when compared to optimal
algorithms on instances with many waypoints, or with maze-like instances.

14

9 Future Work
While our experiments focused on using a non-optimal algorithm for unordered problems,
future work may also focus more on solving ordered MAPFW using optimal or non-optimal
algorithms.

Future work should also aim to make results more comparable by running different
algorithms on the same machine. To facilitate this, it is essential that future researchers
aim to make their algorithms as reproducible as possible, possibly by publishing source-code.

Although linear-k WAS, exponential-k WAS, and NW help agent planning when con-
flicts arise, future work should explore further options for conflict resolution. Dynamic
agent planning may re-plan agents to wait when they cause conflicts for future agents. Sim-
ilarly, resting agents may move to nearby vertices devoid of other agents or waypoints when
they block other agents, which is similar to moving agents to "free endpoints" in the HBH
algorithm [Grenouilleau et al., 2019].

A major limitation of EMLA* is its inability to solve most instances which are not well-
formed. Future work should focus on possible solutions to this problem, such as by adding
dynamic agent ordering. Agents can be planned as necessary to move out of the way of
other agents, or to re-plan agents who cause conflicts with subsequently planned agents.

HB-EMLA* can perform well on large instances, but more optimizations can help im-
prove performance when instances become extremely large. An option to improve the A*
search on is to use better heuristics, such as the abstract heuristic calculated by the Reverse
Resumable A* algorithm [Silver, 2005]. Alternatively, for an instance with static graph
structure, the abstract path length (the length of the path between two vertices without
agents) can be computed for every vertex with polynomial overhead.

While the Nearest Waypoint heuristic has satisfactory results for most instances, future
work should focus on testing different approaches in determining waypoint ordering. One
approach may focus on using (optimal) Travelling Salesperson Problem solvers to determine
waypoint ordering, which is an approach already taken by the MAPFW CBS algorithm
[Jadoenathmisier, 2020].

10 Acknowledgements
We would like to thank Jesse Mulderij and Mathijs de Weerdt for their guidance and su-
pervision. We would like to thank Jeroen van Dijk, Noah Jadoenathmisier, Andor Michels,
Timon Bestebreur, and Stef Siekman for their cooperation and help with this research.

References
[Bestebreur, 2020] Bestebreur, T. (2020). Analysis of the influence of graph characteristics

on MAPFW algorithm performance. TU Delft Repository.

[Dijk, 2020] Dijk, J. v. (2020). Solving the multi-agent path finding with waypoints problem
using subdimensional expansion. TU Delft Repository.

[Grenouilleau et al., 2019] Grenouilleau, F., van Hoeve, W.-J., and Hooker, J. N. (2019). A
multi-label a* algorithm for multi-agent pathfinding. In ICAPS, pages 180–185.

15

[Hart et al., 1968] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for
the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern.,
4(2):100–107.

[Jadoenathmisier, 2020] Jadoenathmisier, N. (2020). Extending CBS to efficiently solve
MAPFW. TU Delft Repository.

[Jadoenathmisier and Siekman, 2020] Jadoenathmisier, N. and Siekman, S. (2020).
MAPFW Benchmarks. Accessed 31th of May, 2020. https://mapfw.nl/.

[Lam et al., 2019] Lam, E., Le Bodic, P., Harabor, D. D., and Stuckey, P. J. (2019). Branch-
and-cut-and-price for multi-agent pathfinding. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence, IJCAI-19, pages 1289–1296. In-
ternational Joint Conferences on Artificial Intelligence Organization.

[Ma et al., 2017] Ma, H., Li, J., Kumar, T., and Koenig, S. (2017). Lifelong multi-agent
path finding for online pickup and delivery tasks. In Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, pages 837–845.

[Michels, 2020] Michels, A. C. (2020). Multi-agent pathfinding with waypoints using
Branch-Price-and-Cut. TU Delft Repository.

[Mulderij, 2020] Mulderij, J. (2020). MAPF problem description. Personal communication.

[Mulderij et al., 2020] Mulderij, J., Huisman, B., Tönissen, D., van der Linden, K., and
de Weerdt, M. (2020). Train unit shunting and servicing: a real-life application of multi-
agent path finding.

[Nebel, 2019] Nebel, B. (2019). On the computational complexity of multi-agent pathfinding
on directed graphs. arXiv preprint arXiv:1911.04871.

[Ryan, 2008] Ryan, M. (2008). Exploiting subgraph structure in multi-robot path planning.
Journal of Artificial Intelligence Research, 31:497–542.

[Sharon et al., 2015] Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R. (2015).
Conflict-based search for optimal multi-agent pathfinding. Artificial Intelligence, 219:40
– 66.

[Siekman, 2020] Siekman, S. (2020). Extending A* to solve multi-agent pathfinding prob-
lems with waypoints. TU Delft Repository.

[Silver, 2005] Silver, D. (2005). Cooperative pathfinding. In Proceedings of the 1st Artificial
Intelligence and Interactive Digital Entertainment Conference, AIIDE 2005, pages 117–
122.

[Standley, 2010] Standley, T. S. (2010). Finding optimal solutions to cooperative pathfinding
problems. In AAAI.

[Stern et al., 2019] Stern, R., Sturtevant, N. R., Felner, A., Koenig, S., Ma, H., Walker, T.,
Li, J., Atzmon, D., Cohen, L., Kumar, T. K. S., Boyarski, E., and Barták, R. (2019).
Multi-agent pathfinding: Definitions, variants, and benchmarks. In SOCS.

16

[Wagner and Choset, 2011] Wagner, G. and Choset, H. (2011). M*: A complete multirobot
path planning algorithm with performance bounds. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3260–3267.

[Wurman et al., 2008] Wurman, P., D’Andrea, R., and Mountz, M. (2008). Coordinating
hundreds of cooperative, autonomous vehicles in warehouses. AI Magazine, 29:9–20.

[Yu and LaValle, 2013] Yu, J. and LaValle, S. M. (2013). Planning optimal paths for mul-
tiple robots on graphs. In 2013 IEEE International Conference on Robotics and Automa-
tion, pages 3612–3617.

17

A Set Benchmark Selection
To select the set benchmarks for our experimental evaluation, we used two criteria:

• Size: part of the intention of this research is to find the conditions in which it is
better to use a non-optimal MAPFW solver, and in our case EMLA*, as opposed to an
optimal solver. Generally EMLA* either performs similarly to an optimal algorithm,
or worse, when instances are sufficiently small. For this reason the benchmarks we
select from mapfw.nl must have at least 100 nodes, or at least as large as a 10x10 grid.

• Solvable using EMLA*: in order to facilitate comparison, it is necessary to use
benchmarks which are solveable using our algorithm.

The full list of candidates is: 1, 5, 7, 9, 10, 11, 12, 19, 21, 22, 23, 24, 27, 33, 59, 61, 64.

18

	Introduction
	Multi-Agent Pathfinding Problem
	Multi-Agent Pathfinding with Unordered Waypoints
	Multi-Agent Pathfinding with Ordered Waypoints

	Summary of MLA*
	Extended Multi-Label A*
	Avoiding Conflicts
	Heuristic-Based EMLA*

	Experimental Evaluation
	Measuring Effectiveness of EMLA*
	Algorithmic Comparisons
	Heuristic Comparisons

	Ethicality and Reproducibility
	Discussion & Reflection
	Conclusions
	Future Work
	Acknowledgements
	Set Benchmark Selection

