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Abstract

For energy management in wireless sensor networks, only the sensors with most
informative measurements are activated to operate. How to select sensors that make
good tradeoff between performance and energy consumption is what many researchers
are focusing on. Existing solutions assume analog data model, i.e., the data from sensors
collected by a center node, called fusion center, are analog measurements. In practical
application, due to limitations of energy of sensors and bandwidth of wireless channel,
original measurements are usually compressed before being transmitted to the fusion
center. In addition, transmitted signals are usually distorted by wireless channel effects,
therefore it is possible that the received data are corrupted with errors.

In this thesis, we consider two compressive techniques: one-bit quantization and
multi-bit quantization. In one-bit quantization, an indicator message is generated in a
sensor according to whether the original measurement is larger than a threshold or not.
In multi-bit quantization, the original measurements are quantized to multiple bits and
only the most significant bits are reserved. The indicators or the most significant bits are
then transmitted through realistic wireless channel to the fusion center for it to process.
By these ways, the transmitted signals are digital, and they may flip into opposite values
by the effects of wireless channels. For one-bit quantization case, we develop a sensor
selection approach, based on convex programming. For multi-bit quantization, we extend
the sensor selection to bit allocation and propose a novel algorithm to determine the
number of bits to transmit for each sensor, which is also based on convex programming.
In both cases we consider the effects of wireless channels, which are characterized as
bit error rate. Particularly, for the multi-bit quantization, numerical results show that
the bit allocation can further reduce the cost that we defined compared with existing
solutions where transmitted data are assumed to be analog.
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Abstract

For energy management in wireless sensor networks, only the sensors with most
informative measurements are activated to operate. How to select sensors that make
good tradeoff between performance and energy consumption is what many researchers
are focusing on. Existing solutions assume analog data model, i.e., the data from
sensors collected by a center node, called fusion center, are analog measurements. In
practical application, due to limitations of energy of sensors and bandwidth of wireless
channel, original measurements are usually compressed before being transmitted to the
fusion center. In addition, transmitted signals are usually distorted by wireless channel
effects, therefore it is possible that the received data are corrupted with errors.

In this thesis, we consider two compressive techniques: one-bit quantization and
multi-bit quantization. In one-bit quantization, an indicator message is generated in
a sensor according to whether the original measurement is larger than a threshold or
not. In multi-bit quantization, the original measurements are quantized to multiple bits
and only the most significant bits are reserved. The indicators or the most significant
bits are then transmitted through realistic wireless channel to the fusion center for it
to process. By these ways, the transmitted signals are digital, and they may flip into
opposite values by the effects of wireless channels. For one-bit quantization case, we
develop a sensor selection approach, based on convex programming. For multi-bit quan-
tization, we extend the sensor selection to bit allocation and propose a novel algorithm
to determine the number of bits to transmit for each sensor, which is also based on
convex programming. In both cases we consider the effects of wireless channels, which
are characterized as bit error rate. Particularly, for the multi-bit quantization, numer-
ical results show that the bit allocation can further reduce the cost that we defined
compared with existing solutions where transmitted data are assumed to be analog.
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Introduction 1
Wireless sensor networks (WSNs) are of great importance in nowadays industrial

applications, like object localization, environment monitoring, mobile target tracking,
to name a few. One crucially important issue in WSNs is energy management [14, 38].
Since in many applications, sensors are usually deployed in hazardous or forbidden
areas, it is usually not an option to maintain the sensors during their operation period.
At the same time, sensors are usually self-powered by the batteries embedded in them,
and the amount of power in the batteries is limited. Therefore, many researches have
designed efficient energy management schemes for a WSN to prolong its longevity. One
popular scheme is sensor selection, i.e., only the most informative sensors are activated
to operate.

The main concept of sensor selection problems is to make a tradeoff between the
performance and the number of activated sensors − basically, the more sensors are
activated the higher the performance that will be achieved, but the energy consumption
will be higher at the same time, and visa versa. Based on this idea, two patterns of
sensor selection were proposed. The first one optimizes the performance and restricts
the number of selected sensors under a certain value, while the second one minimizes
the number of selected sensors and constrains the performance to a predescribed level.
These two patterns have no fundamental differences, and the choice between them
depends on practical applications.

To develop sensor selection schemes, one needs to specify the performance metric,
which depends on the specific problem. For example, if the function of a WSN is for
detection, the performance metric can be the detection or false alarm rate [7], or if it is
for estimation, the mean square error (MSE) is often the performance metric. In this
thesis, we focus on the estimation aspect. Except for the MSE which is the trace of the
error covariance matrix, other metrics are also adopted, like the maximum eigenvalue
of the error covariance matrix, the determinant of the error covariance matrix, or the
largest diagonal element of the error covariance matrix. All these metrics are based on
the error covariance matrix and have their geometrical meanings in error control, which
we will briefly explain in the following. However, for many cases the error covariance
matrices have no closed-form, like for some non-linear models for example. Therefore
many papers focus on finding proxy metrics that do not depend on the error covariance
matrix but are related to it. The authors in [9] propose to replace the error covariance
matrix by the Cramer-Rao lower bound (CRLB). By this, the metrics become the
trace, the minimum eigenvalue and the determinant of the CRLB, etc. Particularly,
when prior knowledge about the unknown parameter is available, the Bayesian CRLB
is a better choice, and this is what we adopt to develop our approaches in this thesis.
For the minimum eigenvalue and trace of the CRLB, we can also find the corresponding
geometrical meaning in error control. Other performance metrics are also proposed for
sensor selection, like frame potential [30], mutual information [15, 20], etc.
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Sensor selection is basically a combinational problem, i.e., the best sub-set of sensors
are selected that meet the requirements. A simple and naive way to solve sensor
selection problems is by exhaustive search: all combinations of sensors are considered
and the optimal one is chosen. By this tactic we can always find the best sub-set.
However, this is an intractable approach if the number of sensors is large. Alternatively,
convex relaxation and greedy algorithms are adopted. Convex relaxation aims to relax
the corresponding optimization problems to convex problems such that they can be
solved efficiently by typical convex optimization tools. Although it is easy to implement,
convex relaxation in general makes no guarantees on the distance between the solution
by convex relaxation and the optimal solution by exhaustive search. In some cases this
distance can be upper bounded, but usually under restrictive assumptions. Greedy
algorithms are computationally more efficient approach for sensor selection. Basically,
they select sensors one by one each round, in a way that the new selected one greedily
maximizes a metric. If the metric for greedy selection can be proved to be normalized
monotone sub-modular, then the value of the metric determined by the subset of sensors
by the greedy selection can be guaranteed within a certain range to the optimal value.
However, it is difficult to find such metrics that are normalized monotone sub-modular
and also related to the error covariance matrix.

1.1 Motivation and Problem Description

Existing works on sensor selection problems assume an analog data model, i.e., the
measurements used to estimate the unknown parameter are analog. This assumption is
impractical, because energy and bandwidth are limited in WSN. Therefore the original
measurements are usually quantized before transmitted over realistic wireless channels.
In addition, the uncertainties considered in existing works only reflect the measure-
ment noise. In practice, the data transmitted over wireless channels may be affected
by channel effects and errors will be brought in the received data. If we consider only
the measurement noise and select a sub-set of sensors with the most informative mea-
surements, a sub-set of sensors with a low channel quality may be selected, such that
the final estimate by the measurements of these sensors has a low quality as well.

In this thesis we consider two quantization schems: one-bit quantization and multi-
bit quantization. In one-bit quantization the transmitted data from a sensor is an
indicator that specifies whether the measurement of the sensor is larger than a pre-
scribed threshold or not. In multi-bit quantization, a simple quantization scheme is
introduced to quantize the bounded measurements to multiple bits.

Over imperfect wireless channels, the transmitted bits may be received and decoded
incorrectly. In one-bit quantization with imperfect wireless channels, the sensor selec-
tion problem is specified as how to select the minimum number of sensors to transmit
one bit information to the fusion center and to guarantee a certain level of estimation
performance. In multi-bit quantization, the sensor selection problem is generalized as
how to determine the number of bits of each sensor that the corresponding cost such
that we defined is minimized and at the same time the performance requirement is
satisfied. The work in this thesis aims at solving these two challenging combinational
problems, via convex relaxation.
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1.2 Outline and Contribution

The contributions of this thesis are highlighted here. We propose to take the effects
of wireless channel into account in sensor selection problem with linear model. The
effects are generalized as bit error rate. We derive the Bayesian Fisher information
matrices for the one-bit quantization and multi-bit quantization, and based on the de-
rived Bayesian Fisher information matrices we first develop a sensor selection approach
for the one-bit case. Then we extend the sensor selection approach to bit allocation in
multi-bit cases and propose a novel bit allocation algorithm for it.

The content of this thesis is organized as follows:

• Chapter 2: Related Work on Sensor Selection
In this chapter, the related works about sensor selection are presented and dis-
cussed. Several aspects of sensor selection are investigated: data models, noise
models, optimization approaches and performance metrics.

• Chapter 3: Wireless Sensor Networks with One-Bit Quantization
We begin our own work in this chapter. First, the framework and data model of
the WSN are presented, and the one-bit quantization scheme is introduced. Then
we briefly discuss the effect of realistic wireless channel and model it as bit error
rate. The likelihood function of the received data through the realistic channel
at the fusion center is derived, and by exploiting it we achieve the maximum a
posteriori estimator and the Bayesian Cramer-Rao lower bound(or the Bayesian
Fisher information). Next, for sensor selection, the performance metrics are dis-
cussed and we adopt the minimum eigenvalue of the Bayesian Fisher information
as the performance metric to determine which sub-set of sensors should trans-
mit one-bit data to the fusion center. The approach to solve this problem is the
convex relaxation method. We then investigate the possibility that the selected
sensors by convex relaxation are the same as an exhaustive search would select
and propose an equivalence theorem under some conditions. Finally simulation
results are presented and discussed.

• Chapter 4: Wireless sensor network with Multi-Bit Quantization
In this chapter, a multi-bit quantization scheme is adopted to quantize the mea-
surements to multiple bits. We then derive the likelihood function with and with-
out the bit errors, as well as the corresponding Fisher information matrices and
the MAP estimator. In addition, the aggregated error is defined, and the Bayesian
mean square error of the least square error estimator is derived. Numerical sim-
ulation results are presented, which discuss the effect on the local measurement
of the bit error rate and number of bits used to perform the quantization. We
then propose a bit allocation algorithm based on convex relaxation exploiting the
derived Bayesian Fisher information.

• Chapter 5: Conclusion and Future Work
The conclusion of this thesis is drawn and future potential works are listed.
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Related Work on Sensor

Selection 2
In this chapter, we review the state of art of sensor selection.

2.1 Linear Case

2.1.1 Basic Model

Many anthors solve sensor selection problems in the scenario of wireless sensor
network (WSN). For the linear case, each sensor acquires scalar measurements linearly
constituted by a unknown parameter θ ∈ R

D and measurement noise,

yn = hT
nθ + wn, (2.1)

where hn is the regressor, and one of the specific meanings of it is to be explained in
Section 3.1.1, and wn is the measurement noise. The main function of such WSN is to
collect measurements from the sensors and exploit them to obtain an accurate estimate
of the unknown parameter θ.

Due to energy or bandwidth limitations, it is wise to activate subset of sensors with
highly informative measurements, for the sake of management of resource of the whole
WSN and prolongation of the longevity of sensors. To this end, it is important to
design a criterion to select the best subset of sensors. Many criteria are based on the
error covariance matrix,

C : = E

{(
θ̂ − θ

)(
θ̂ − θ

)T}
, (2.2)

where θ̂ is an estimate of θ. If Least Squares estimate is used, i.e., θ̂ =
(
HHT

)−1
Hy,

with H := [ h1,h2, ...,hN ] and y := [y1, y2, ..., yN ]
T , C can be explicitly written as,

C =
(
HC

−1
w HT

)−1
(2.3)

where Cw is the covariance matrix of the noise w := [w1, w2, ..., wN ]
T . Notice that this

C involves all sensors. To distinguish, we denote the error covariance matrix of subset
of sensors as C(z), where z ∈ R

N is the selection vector and the n-th element of it zn
indicates whether sensor n is selected(zn = 1) or not(zn = 0). The specific expressions
of C(z) are different with different forms of the noise covariance, i.e., whether the
elements of w are correlated or not. Anyway, C(z) of all cases can be derived based
on (2.3). We will discuss further about the specific expressions of C(z) under different
cases of w later.

Also notice that the metric C(z) used to construct the criterion to select sensors is a
matrix that we cannot exploit directly, therefore a cost function f(C(z)) is used instead.
Now we can come to the illustration of the essential sensor selection problem. Sensor
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selection problems aim at making a good tradeoff between the performance metric C(z)
and the total number of sensor activated. Typically, there exist two patterns of sensor
selection. The first one is to restrict the number of activated sensors to be below a
certain value and minimize f(C(z)),

z∗ = argmin
z

f(C((z)))

s.t. ‖z‖0 ≤ K,
(2.4)

where ‖z‖0 denotes the number of non-zero elements of z, andK is a constant. Another
pattern works opposite to the first one that it restricts the performance metric to be
smaller than a threshold and minimize the number of activated sensors,

z∗ = argmin
z

‖z‖0

s.t. f(C(z)) ≤ T,
(2.5)

where T is a constant threshold. These two types have their own focusing biases. The
first one emphasizes more on the performance metric, while the second one values more
on the sparsity of selected sensor, that the smaller number of sensors to activate is the
goal. These two patterns have no fundamental differences in terms of the techniques to
solve the corresponding optimization problems. In fact, these two optimizations prob-
lems are usually solved by two techniques, convex relaxations and greedy algorithms.
These two patterns both restrict one aspect and try to optimize the other aspect. In
Section 3.3.1, we propose a third pattern by which we can adjust the weight of number
of sensors and the performance metric by parameter µ.

Many papers that delve in sensor selection problems vary on the choices of the
scalarization function f(C(z)). Typical choices are the E-optimal design, A-optimal
design and D-optimal design, which have different geometrical meanings.

2.1.2 Typical Choices of the Scalarization Functions

The error covariance matrix has explicit relation to the accuracy of the estimation.
One accuracy metric is defined as the η-confidence ellipsoid for θ − θ̂ [18, 3],

ǫβ := {a|aT
C(z)a ≤ β(η)} (2.6)

i.e., the estimation error θ − θ̂ lies in the space ǫβ with probability η, where β(η) is a
function depending on η. Typical scalarization functions are relates to this ellipsoid:

• E-optimal design: f(C(z)) = λmax{C(z)}, the maximum eigenvalue of the C(z),
or the norm of C(z), ‖C(z)‖2. Minimization of λmax{C(z)} is equivalent to mini-
mizing the diameter of the confidence ellipsoid.

• A-optimal design: f(C(z)) = Tr{C(z)}, the trace of the error covariance matrix,
or equivalently the mean square error of the estimate.

• D-optimal design: f(C(z)) = log det{C(z)}, the log-determinant of the error
covariance matrix, and minimizing it consequently minimizes the volume of the
confidence ellipsoid [18].
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2.1.3 Convex Relaxation for the Scalarization Functions with Uncorrelated
Noise

Suppose that the elements of the noise vector w are zero-mean and uncorrelated,
i.e., the covariance matrix of w is a diagonal matrix, Cw = diag[σ2

1 , σ
2
2, ..., σ

2
N ]. Due

to the diagonal property of the noise covariance matrix, the error covariance matrix in
term of the selection vector z can be written as,

C(z) =

(
N∑

n=1

znσ
−2
n hnh

T
n

)−1

. (2.7)

Based on this expression, we can re-cast the optimization problems of sensor se-
lection into convex programming, using the three scalarization functions described
above, and the re-casting optimization problems are listed as below, where the set
Z =

{
z|‖z‖1 ≤ K, z ∈ [0, 1]N

}
. The detailed illustrations of the following formula-

tions can be found in [19].

• E-optimal design:

{z∗, t∗} = argmin
z∈Z,t

− t

s.t.
N∑

n=1

znσ
−2
n hnh

T
n � tID.

(2.8)

Here we introduce an auxiliary scalar parameter t.

• A-optimal design:

{z∗, t∗} = argmin
z∈Z,t

‖t‖1

s.t.

[
znσ

−2
n hnh

T
n ej

eT
j tj

]
� 0, j = 1, 2, ..., D.

(2.9)

An auxiliary vector is introduced, t = [t1, t2, ..., tN ]
T ∈ R

D.

• D-optimal design:

{z∗, t∗} = argmin
z∈Z,t

− log det{znσ
−2
n hnh

T
n}. (2.10)

Notice that in the three optimization problems, the selection vector z is relaxed, that
the value of an element of it be chosen in the interval [0, 1], instead of the binary value
{0, 1}, therefore we need to transform the solutions of the above problems to be binary
vectors. One approach is to set the K elements of solution z∗ with largest values to
be 1 and the rest to be zero [18], or alternatively use the random rounding algorithm
[9]. However, one knows little about the gap of the optimal solution (by exhaustive
searching) and the ones of the above relaxed optimization problems. In [16] the authors
proves the equivalence of the optimal solution and the one of the A-optimal design under
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certain conditions, and we propose the equivalence theorem for the E-optimal design
in Section 3.2.3.

The above convex relaxed optimization problems are to solve the first type of sensor
selections problem in 2.4, and it is not difficult to use the similar approaches to reach
the convex relaxed optimization problem for the second type of sensor selection problem
of 2.5.

2.1.4 Convex Relaxation with Correlated Noise

When the noise wn are mutually correlated, the noise covariance matrix is not a
diagonal matrix, therefore we cannot write C(z) as in equation (2.7), and the problem
is more complicated. In this part we discuss the existing works to deal with the sensor
selection problem for the correlated noise, using the A-optimal design scalarization
function, i.e.,

{z∗, t∗} = argmin
z∈Z

f(C(z)) = Tr
{(

HC
−1
w HT

)−1
}
. (2.11)

To simplify the problem, it is reasonable to assume the structure of the noise co-
variance as,

Cw = αIN + S. (2.12)

With this we can express the inverse of the error covariance matrix with respect to the
selection vector z as [22],

(C(z))−1 = HS−1HT −HS−1
(
S−1 + α−1diag(z)

)−1
S−1HT . (2.13)

One good point to express C(z) in this way is that, there is only one term containing
the selection vector z. However, it is still intractable to exploit the above expression
to form a convex optimization problem. To address this issue, [22] proposes a two-
fold relaxation approach by introducing two auxiliary matrices, and the consequently
optimization problem is as below,

{z∗} = argmin
z∈Z,A,V

Tr{A}

s.t. B − V � A−1

V � HS−1
(
S−1 + α−1diag(z)

)−1
S−1HT ,

(2.14)

where B = HS−1HT is constant w.r.t. z. It can be shown that the above optimization
problem is equivalent to the original one that minimize the trace of the error covariance
under the constraint of number of activated sensors, i.e., it is explicit to see that one can
convert the original optimization problem by introducing an auxiliary parameter A and
minimizing the trace of it if we restrict C(z) � A. Also notice that minimizing the trace

of A will at the same time force the right term in (2.13), HS−1 (S−1 + α−1diag(z))
−1
,

to reach its lower bound, therefore we can relax the constraint by introducing another
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auxiliary V , and we reach the equivalent optimization of (2.14). The constraint set in
(2.14) can be re-cast as the SDP form,

[
B − V ID
ID A

]
� 0

[
V HS−1

S−1HT S−1 + α−1diag(z)

]
� 0.

(2.15)

Consequently, the optimization problem in (2.14) is a convex optimization and can be
solved by typical convex optimization tools. Details about the optimization problem
(2.14) can be found in [22]

Notice that the above approach is to solve the general case for correlated noise.
When the noise wn are weakly correlated, i.e., the noise covariance matrix has small
off-diagonal elements compared to the diagonal elements, the error covariance matrix
with respect to z can be approximated as [34, 17, 16, 23],

C(z) =
(
HzzT ⊙ (Cw)

−1
HT

)−1
, (2.16)

where ⊙ is the Hadamark product (element-wise product). To use this expression to
form a computable convex optimization problem, a typical approach is to introduce an
auxiliary matrix Z to replace the term zzT ,

z∗ = argmin
z∈Z

Tr
{(

HZ ⊙ (Cw)
−1

HT
)−1
}

s.t. Z � zzT

0 ≤ {Z}i,j ≤ 1, i, j = 1, 2, ..., N.

(2.17)

2.1.5 Greedy Selection Approach With Uncorrelated Noise

Beside convex relaxations, another prevalent approach for sensor selection is by
greedy selection. The algorithm goes in an iteration manner. The main idea of greedy
selection is summarized below. Basically, one needs to define a metric whose value is
affected by the subset of sensors involved. Two sets of sensors exist initially, one is a
empty set (set A) and the other is a set containing all sensors(set B). In each iteration,
one sensor is selected to be moved from set B to set A, according to the rule that
the new selected sensor together with the existing sensors in set A will contribute the
largest to increase the value of the metric. To be more specific, let us define the metric
as f(S), where S is a set of sensors, and let s denote a individual sensors, then in each
iteration a sensor in set B is selected by,

argmax
s∈B

f(A+ s) (2.18)

The iterations finish when the number of sensors in set A equals to K. The greedy
algorithm can also proceed from the opposite direction, i.e., A is initialized as containing
all sensors and in each iteration we deduct one sensor that minimizes the metric the
least.
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Compared with the convex relaxation approaches, one significant advantage of
greedy selection is that the latter is more computationally efficient, i.e., the compu-
tational complexities for convex relaxation and greedy selection are O(N3D2) and
O(ND3), respectively. The former one is cubic in the number of of all sensors N
and square in the dimension of θ, D, while the latter is linear in N and cubic in D.
However, note that in most case the number of sensors in a WSN is usually much large
than the dimension of θ, therefore N is the dominating part in the complexity analy-
sis. Furthermore, [37] proposes a more efficient greedy algorithm whose complexity is
O(ND2).

Another aspect to discuss about greedy selection is its guarantee of the distance to
the optimal solution if the metric f(.) is a normalized monotone sub-modular function
with respect to the selected sensors. Let A∗ be the optimal subset, and A be the subset
by greedy selection, if f(.) is normalized monotone sub-modular function then we have,

f(A) ≥ (1− e)f(A∗), (2.19)

where e is the Euler’s number. For the definition of normalized monotone sub-modular
function, readers can refer to [28, 30]. The key step to apply greedy selection is to
form a normalized monotone sub-modular metric. Anyway, even the distance of the
value of f(A) to the f(A∗) can be guaranteed within a certain range, we cannot say
that the greedy selection is better than convex relaxation in term of performance. In
addition, for many cases it is hard to find out a suitable normalized monotone sub-
modular metric, and that one is also related to the error covariance matrix. One such
metric, for example, is based on the frame potential [30], defined as,

FP(H) =
∑

i,j

hT
i hj. i, j = 1, 2, ..., N. (2.20)

The work in [30] shows that minimizing the frame potential for the selected sensors
indirectly minimizes the mean square error, which is the trace of the error covariance.
Intuitively, selecting subset of sensors with minimum value of corresponding frame
potential can be seen as choosing sensors with most orthogonal hn. In [30] authors
also propose an metric comprised by the frame potential that can be shown to be
normalized monotone sub-modular, such that when applying greedy algorithm we can
obtain an near optimal solution in term of minimizing the mean square error, which
is computationally efficient compared with convex relaxation. However, it must be
emphasized that the model in [30] requires the variances of wn to be identical, so that
the distinction of sensors’ measurements results from the regressors hn, or in other
words, that approach is invalid when we consider non-identical noise variances.

2.2 Non-Linear Case

In above discussion, we considered the a measurement model where the scalar local
measurement yn is linear in the unknown parameter θ. In many cases, yn is not linear
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with respect to θ, i.e.,

yn = hn(θ) + wn, (2.21)

where hn is a non-linear function of θ. Since the estimates for θ are usually complicated,
there exists no closed-form expression for the error covariance matrix, and the metrics
for sensor selection in linear case described above are not valid here. A popular proxy
for the error covariance matrix is the Cramer-Rao Lower bound. For the E-optimal
and A-optimal design listed above, if we substitute the error covariance matrix by the
Cramer-Rao Lower bound, which is the inverse matrix of the Fisher information, we
can guarantee the mean square error to be below certain level statistically, which will
be presented in detail in Section 3.2.1.

For the case when noises wn are uncorrelated and zero-mean, exploiting the addi-
tive property of Fisher information, the Fisher information can be decomposed by the
summation of the local Fisher information, i.e., the Fisher information with respect to
the selection vector can be expressed as,

F(z) =

N∑

n=1

znF(z)(n), (2.22)

where F(z)(n) is the local Fisher information for sensor n. Details about the description
of F(z) can be found in Section 3.1.4. Based on this expression, it is easy to form a
convex optimization problem for sensor selection [9]. It should be emphasized that
F(z) contains the unknown parameter θ, therefore we cannot exploit this expression
directly for sensor selection because the value of θ is not available in advance. To
address this problem, [9] proposes to restrict the possible values of θ to be a finite set
according to the prior knowledge of θ, and to consider all the possible discrete values
at the same time, or just replace θ by the previous estimate of it as that in [8]. In this
thesis, we adopt the Bayesian Cramer-Rao Lower bound instead of regular Cramer-Rao
Lower bound, which exploits the prior information about θ and it contains no θ in the
expression.

When the noise are correlated, the problem is more complicated because we cannot
separate the Fisher information by the summation of local Fisher information. In [23],
the authors consider the case when the noises are joint Gaussian distributed, and the
Fisher information can be written as,

F = ∇T
θh(θ) C

−1
w ∇θh(θ) (2.23)

where h(θ) = [h1(θ), h2(θ), ..., hN(θ)]. This expression has the same structure as the
error covariance matrix of uncorrelated noise described above, therefore it can be han-
dled by the same approaches.

2.2.1 Other Proxies For The Non-Linear Case

Except substituting error covariance matrix by the Cramer-Rao lower bound, other
proxies or approaches are also developed.

11



The authors in [31] propose to linearize the non-linear term hn(θ) by Taylor expan-
sion to the first order. To implement this idea, we first need to get an estimate of the
unknown parameter θ̂, and approximate the measurement leveraging this estimate,

yn ≈ hn(θ̂) +∇T
θhn(θ̂)(θ − θ̂) + wn (2.24)

By such approximation, the measurement model becomes linear with respect to θ,
therefore it can be handled by typical approaches for linear cases. It must be emphasized
that accuracy of the linearization procedure heavily depends on the accuracy of the
estimate θ̂. If θ̂ is not a good estimate, large bias of the approximation in (2.24) will
occur.

Another performance metric is the mutual information [15, 20], which can be ob-
tained as [10],

I(y, θ) = H(y)−H(y|θ), (2.25)

where H(y) is the amount of uncertainty or information of y and H(y|θ) is the amount
of uncertainty or information of y after knowing θ. Intuitively, from equation (2.25) we
can see the mutual information indicates how close y and θ are related to each other,
and the local mutual information I(yn, θ) can reveal how informative a sensor is. If the
noise wn are uncorrelated, the global mutual information I(y, θ) can be decomposed
as the summation of local mutual informations,

I(y, θ) =
N∑

n=1

I(yn, θ), (2.26)

which has the same form of the Fisher information, hence it can be handled conveniently
in sensor selection.

2.3 Conclusion

In this chapter, the state of art about sensor selection for WSN is presented. Many
researchers propose and investigate approaches to solve the sensor selection problem
under different scenarios. However, there is one issue on the data model that has
not been investigated-the effects of wireless channel. In our following work we delve in
solving sensor selection and bit allocation algorithm considering wireless channel effects.
Traditional bit allocation schemes are usually based on greedy allocation [29]. Related
to our approach is the work in [25]. There the the authors propose to apply convex
tools to allocate a limited number of bits such that the inverse log-determinant of the
posterior Fisher information is minimized. In our approach, we restrict the performance
metric expressed by selection vectors to be larger than a pre-designed threshold, and
minimize the global cost that we defined and this metric is related to the number o
bits of the sensors. Our approach is not limited to the inverse of the log-det and in fact
more general.
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Wireless Sensor Networks with

One-Bit Quantization 3
In this section, we present the wireless sensor network framework and adopt the

one-bit quantization scheme to compress the original measurement to transmit over
the wireless channel. The impact of the wireless channel on the transmitted data is
characterized by the bit error rate. Then we provide the maximum a posteriori esti-
mator and derive the Bayesian Cramer-Rao lower bound. Next we adopt the minimum
eigenvalue of the Bayesian Cramer-Rao lower bound as the performance metric for sen-
sor selection by convex relaxation. Further, the possibility that the solution of convex
relaxation being optimal is investigated and the corresponding equivalence theorem is
proposed.

3.1 One-bit Quantization

3.1.1 Framework Description

Consider a wireless sensor network (WSN) comprised of a set of sensors with a fusion
center. Suppose there are N sensors and let the sensors be indexed from 1 to N , with
the fusion center indexed as 0. The WSN aims at performing surveillance of multiple
signal sources [21]. Suppose there are D signal sources, and the d-th signal source θd
is measured by the n-th sensor as hn,d θd. The value of hn,d depends on the distance
between the corresponding sensor and signal source. Since the locations of the sources
are fixed, it is assumed that hn,d is known to the sensor. The local measurement of
each sensor is consequently the superposition of the receiving signals from all sources
plus noise,

yn =
D∑

d=1

hn,dθd + wn = hT
nθ + wn, n = 1, 2, ...N, (3.1)

where hn := [hn,1, hn,2, ..., hn,D]
T , θ := [θ1, θ2, ..., θD]

T , and wn is the measuring noise
for sensor n. Before further discussion, we make the following assumptions:

Assumption 1. The noise wn is spatially uncorrelated with zero mean and variance
σ2
n, and its pdf, denoted as fn(wn), is known by the fusion center.

Assumption 1 implies that the covariance matrix of w := [w1, w2, ..., wN ]
T is a diagonal

matrix.

Assumption 2. The unknown parameter θ is also a random parameter. The fusion
center knows its a priori pdf p(θ).
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The assumption on the regularity is needed to simply the analysis and the develop-
ment of the algorithms. It is not restrictive in practice since, e.g., a zero mean Gaussian
pdf verifies it.

In each round of measurements, the sensors transmit messages mn = Φ(yn) to
the fusion center, and at the fusion center, an estimate of θ is generated based on
the received messages. If the bandwidth is infinite, sensors can transmit the original
measurements, that is, mn = yn. However, due to bandwidth limitations in reality,
they are not allowed to do so. Instead, message mn is generally a simplified version of
the original measurement. One technique that has been investigated in many works is
the one-bit quantization [33, 2, 42]. In one-bit quantization, the messages are a bit bn
that is generated by the following principle,

bn =

{
1, if yn ∈ [τn,+∞)

0, if yn ∈ (−∞, τn)
(3.2)

i.e, we set a threshold τn so that if yn is larger than it bn is 1, otherwise it is 0.
Figure 3.1.1 depicts the framework.

Measure

w1

Sensor 1

Measure

w2

Sensor 2

Measure

wN

Sensor N

Wireless

Channel
Fusion

CenterSource

Figure 3.1: Illustration of the WSN. In each sensor, the original measurements added with
noise are quantized before transmission.

3.1.2 Imperfect Wireless Channel

Due to the imperfection of the real wireless channel, the transmitted message bn can
be corrupted due to wireless propagation phenomena. Let cn be the reception of bn at
the fusion center. Corruptions result in incorrectness of cn. In other words, cn maybe
flipped to the opposite value of bn, i.e, cn is decoded as 1 while bn is 0, or vice versa.
To characterize the bit errors, we introduce the bit error rate Pen, which specifies the
probability of incorrect decoding of one bit transmitted from sensor n to the fusion
center. The rate Pen is usually the combined result of three factors, namely, the signal
to noise ratio (SNR) Sn/Nn, the modulation scheme and the error correct coding, where
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Sn and Nn are the received signal and noise power, respectively [39]. Generally, Pen
can be approximated as,

Pen = erfc

(√
k
Sn

Nn

)
(3.3)

where erfc(.) is the complementary error function and k is a constant determined by
the modulation and coding type [39] [13].

Note the received signal power Sn is an intricate parameter to be predetermined,
which is the consequence of multiple effects. It is an attenuated version of the transmit-
ted signal power due to the propagation in a wireless channel. Generally, three effects
contribute to the attenuation of the received signal power. They are path-loss resulting
from partial receiving of the whole transmitted power, shadowing due to obstacles in
the propagation path and multi-path fading resulting from reflections. Considering all
the three effects, the received signal power (in dBm) can be modeled as,

Sn = S
′

n +Kn − 10γ log
dn
d0

−An − Bn, (3.4)

where S
′

n is the transmitted signal power, Kn is an unit-less constant, γ is the path-loss
exponent, and dn is the Euclidean distance between sensor n and the fusion center. An

and Bn then characterize the shadowing effect and multi-path fading. Specification of
this model can be found in [32].

In practice, Pen is usually detected during the training period. In this thesis, we
assume it is known to the fusion center.

3.1.3 Maximum A Posteriori Estimation

In this part we derive the maximum a posteriori (MAP) estimate θ̂ MAP. Since the
received data are the indicators, in general it is difficult to find an closed-form estimator.
Since MAP also involves the prior knowledge of θ in consideration, therefore MAP is
a good choice for this case. The reason to choose MAP also results from that it is
simple to implement, i.e., it maximizes the joint likelihood over θ. To obtain a MAP
estimate, it is a prerequisite to derive the expression of the joint likelihood function
p(c, θ), where c := [c1, c2, ..., cN ]

T is the stacked vector of the received messages. We
can see that for the transmitted bit bn the probability that bn = 1 given θ is,

gn := Pr(bn = 1|θ) = 1− Fn(τn − hT
nθ) (3.5)

where Fn(t) is the cumulative density function (CDF) of fn(w), Fn(t) =
∫ t

−∞
fn(w)dw.

As for the probability of cn = 1, by the total probability rule we have,

sn := Pr(cn = 1|θ) =(1− Pen)gn + Pen(1− gn)

=(1− Pen)(1− Fn(τn − hT
nθ)) + PenFn(τn − hT

nθ).
(3.6)
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The joint likelihood can then be expressed as,

p(c, θ) = p(c|θ)p(θ) = p(θ)

N∏

n=1

scnn (1− sn)
1−cn. (3.7)

By Bayes’ rule, the MAP can finally be obtained by [12],

θ̂MAP = argmax
θ

p(θ|c) = arg max
θ

p(c|θ)p(θ), (3.8)

where in the second equation c is seen as a realized parameter. The estimate θ̂MAP can
also be obtained by the logarithm likelihood,

θ̂MAP =argmax
θ

ln p(c|θ)p(θ)

=argmax
θ

ln p(θ) +

N∑

n=1

cn ln sn + (1− cn) ln (1− sn).
(3.9)

Notice that it is hard to achieve a closed-form solution for (3.9), due to the complicated
expression of p(θ) and sn w.r.t. θ. Fortunately, it can be shown that ln p(c|θ)p(θ) is
concave if p(θ) and the pdf of the noise fn(w) are both log-concave. The proof is
similar to that in [33]. Giving the concavity, we can solve (3.9) with typical convex
optimization techniques, steepest descent gradient (SDG) [11], sub-gradient methods,
or Newton’s method, to name a few.

3.1.4 Bayesian Cramer-Rao Lower Bound

Now we derive the Bayesian Cramer-Rao lower bound, which is the lower bound for
the Bayesian error covariance matrices for any estimators, and hence its trace is the
lower bound for the MAP. The error covariance matrix is defined as follows,

CB(θ) , Eθ,c{(θ̂ − θ)(θ̂ − θ)T } (3.10)

The expectation is taken over θ and c. The Bayesian Cramer-Rao lower bound (B-
CRB) provides lower bound on Bayesian error covariance matrix,

BB(θ) � CB(θ). (3.11)

The B-CRB can be obtained by the inverse of the corresponding Bayesian Fisher In-

formation matrix (B-FIM), BB =
(
FB

)−1
, and the expression of the B-FIM is given

by [36],

FB =Eθ,c

{
∇θ ln p(c|θ)∇

T
θ ln p(c|θ)

}
+ Eθ

{
∇θ ln p(θ)∇

T
θ ln p(θ)

}
(3.12)
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The gradient of the conditional likelihood can be computed as,

∇θ ln p(c|θ) =
N∑

n=1

(
cn
sn

−
1− cn
1− sn

)
∇θsn

(1)
=

N∑

n=1

cn − sn
sn(1− sn)

(1− 2Pen)fn(τn − hT
nθ)hn

(3.13)

where the equality (1) is based on the expression of sn in (3.6). Under the regularity
condition and given the independent measurements we then have,

FB =Eθ,c

{
∇θ ln p(c|θ)∇

T
θ ln p(c|θ)

}
+ Eθ,c

{
∇θ ln p(θ)∇

T
θ ln p(θ)

}

=
N∑

n=1

Eθ,cn

{
(cn − sn)

2(1− 2Pen)
2

s2n(1− sn)2
f 2
n(τn − hT

nθ)

}
hnh

T
n

+ Eθ

{
∇θ ln p(θ)∇

T
θ ln p(θ)

}
.

(3.14)

It can be simplified as,

FB =
N∑

n=1

Eθ

{
Ec

{
(cn − sn)

2

s2n(1− sn)2

}
(1− 2Pen)

2f 2
n(τn − hT

nθ)

}
hnh

T
n

+ Eθ

{
∇θ ln p(θ)∇

T
θ ln p(θ)

}

=

N∑

n=1

Eθ

{[
Ec{c2n + s2n − 2sncn}

s2n(1− sn)2

]
(1− 2Pen)

2f 2
n(τn − hT

nθ)

}
hnh

T
n

+ Eθ

{
∇θ ln p(θ)∇

T
θ ln p(θ)

}

(1)
=

N∑

n=1

Eθ

{
(1− 2Pen)

2

sn(1− sn)
f 2
n(τn − hT

nθ)

}
hnh

T
n

+ Eθ

{
∇θ ln p(θ)∇

T
θ ln p(θ)

}

(2)
= :

N∑

n=1

F
(n)
B +Fθ,

(3.15)

Equality (1) is based on the fact that cn is binary such that E{cn} = E{c2n} = sn.
Equality (2) is from the definitions,

F
(n)
B := Eθ

{
(1− 2Pen)

2

sn(1− sn)
f 2
n(τn − hT

nθ)

}
hnh

T
n (3.16a)

Fθ := Eθ

{
∇θ ln p(θ)∇

T
θ ln p(θ)

}
(3.16b)

The B-CRB is then BB =

(
N∑

n=1

F
(n)
B +Fθ

)−1

.
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3.2 Sensor Selection for One Bit Quantization

Observing the measurement model (3.1), we can see that the measurement of each
sensor yn contributes differently in estimating the exact value of θ. The reasons for
this phenomenon can be summarized by the following three factors:

• The regressor hn determines how much information about θ can be revealed
from the measurement yn. Explicitly, only the non-zero elements can convey
the information of the corresponding element of θ. An extreme example is that
when hn is an all-zero vector, yn will only contain the measurement of noise.

• The measurement noise brings uncertainty to the measurement. Noise with a high
variance will degrade severely the quality of the measurement.

• Each sensor has a different channel quality to the fusion center, which is charac-
terized by the bit error rate Pen. If we incorporate the measurement from a bad
channel (high Pen) instead of one of a good channel, a larger estimation error of

θ̂ will be brought.

Given the considerations above, it is wise to select a sub-set of sensors to operate and
transmit measurements to the fusion center. By this strategy, not only can we avoid
highly noisy measurements, but more importantly, the precious resources of the WSN
can be efficiently managed, like the energy in the battery of the sensors, bandwidth
and the computational complexity in the fusion center to compute θ̂.

A primary problem to implement the sensor selection strategy is how to select the
subset of sensors. Considering the estimation performance and resource reservation, we
follow two principles in designing the one-bit sensor selection scheme:

• The number of sensors should be as small as possible, for the purpose of resources
management in WSN.

• The measurements of the selected sensors should result in a limited estimation
error.

Based on these two principles, we introduce some performance measure metrics in
the following and formulate the convex optimization problem to find out the optimal
subset of sensors based on the metrics selected.

3.2.1 Performance Criterion

An explicit performance metric is the mean square error, that is the trace of the
error covariance matrix, or the Bayesian mean square error if prior information about
the unknown parameter θ is available. The performance criterion is then that the
mean square error or Bayesian mean square error should be smaller than a threshold.
However, under the one-bit quantization scheme, we adopt the MAP estimate and we
cannot find out the closed form expression of the error covariance matrix. Therefore
instead of adopting the mean square error or the Bayesian mean square error, we
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introduce two proxy performance metrics that are related to the mean square error.
The two metrics are based on the Cramer-Rao lower bound or Fisher information.

Prior to the description of the metrics, we define a binary vector z := [z1, z2, ..., zN ]
T

to indicate whether a particular sensor is selected to be activated or not, i.e., zn = 1
implies sensor n is selected and vice versa. We can then express the global Fisher
information as,

F(z) =

N∑

n=1

zn F
(n), (3.17)

where F
(n) is the local Fisher information of sensor n. The first performance metric is

the minimum eigenvalue of the global Fisher information, denoted as λmin{F(z)}, and
the performance criterion is that we require it to be larger than a threshold Tf ,

λmin{F(z)} ≥ Tf , (3.18)

The threshold Tf can be chosen as,

Tf =
D

R2
e

1

1− Pc
. (3.19)

In this way, we can guarantee that [40],

Pr(‖θ̂ − θ‖2 ≤ Re) ≥ Pc, (3.20)

i.e., the probability that the estimation error ‖θ̂ − θ‖2 being smaller than Re is larger
than Pc. With this, we can control the tolerance of the estimation error by adjusting the
the error radius Re and the reliability parameter Pc, which are related to the threshold
by (3.19).

Another performance metric is the trace of the Cramer-Rao lower bound,
Tr{(F(z))−1}. The corresponding performance criterion is that it should be smaller
than a threshold,

Tr{(F(z))−1} ≤ Tc (3.21)

In fact, for this metric, if we set Tc = (1− Pc)R
2
e , then (3.20) is also valid [6].

Note that the two criterions based on λmin{F(z)} and Tr{(F(z))−1} are equiv-
alent in terms of controlling the estimation error. However, the criterion based on
λmin{F(z)} is more computationally efficient [9]. Therefore we adopt the criterion
based on λmin{F(z)} for our sensor selection.

Since under Assumption 2, we know the prior pdf of θ, we can substitute the Fisher

Information by the Bayesian Fisher information FB(z) =
N∑

n=1

zn F
(n)
B +Fθ, and the

metric becomes λmin{FB(z)}.
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3.2.2 Sensor Selection with One-bit Quantization

In this part we describe the sensor selection problem, under the assumption that

the bit error rate vector Pe :=
[
Pe1,Pe2, ...,PeN

]T
is known to the fusion center. We

adopt the performance criterion that the minimum eigenvalue of FB(z) is larger than
or equal to Tf ,

λmin{FB(z)} ≥ Tf (3.22)

This means that each eigenvalue of FB(z) should be larger than or equal to Tf , or all
the eigenvalues of FB(z)−TfID are larger than or equals to zero, which further implies
that FB(z)− TfID is a positive semi-definite matrix,

FB(z)− TfID � 0. (3.23)

We require the number of sensors selected to be activated to be as small as possible,
therefore we can consequently formulate the following optimization problem to compute
the optimal z,

z∗ = argmin
z∈{0,1}N

‖z‖0 (3.24a)

s.t.
N∑

n=1

znF
(n)
B +Fθ − TfID � 0, (3.24b)

where the ℓ0 norm ‖z‖0 represents the number of non-zero elements of z. Note that the
constraint in (3.24b) is a linear matrix inequality (LMI) in semidefinite programming,
thus it is convex in z. However the objective function is not convex, which prevents
us to solve the optimization problem (3.24) efficiently. To address this problem, a
prevailing technique is to relax the ℓ0 norm to ℓ1 norm, i.e. ‖z‖0 → ‖z‖1 = 1T

Nz, where
1N is the all-one vector with dimention N . At the same time allowing the domain of z
to be chosen from [0, 1]N . The relaxed optimization problem is then given by,

ẑ = argmin
z∈[0,1]N

‖z‖1 (3.25a)

s.t.
N∑

n=1

znF
(n)
B +Fθ − TfID � 0. (3.25b)

Thanks to its convexity, this optimization problem can be solved effectively. Since
the solution of (3.25) is not a binary vector, we need to transform it to decide which
sensors should be selected. One straightforward way to do this is to select sensors
one by one according to ẑ in the solution of (3.25). Specifically, given the solution of
(3.25), each time we select one sensor from the unselected group whose corresponding
ẑn is the highest among all sensors unselected. This process goes on until the minimum
eigenvalue of the Fisher information FB(θ) of the selected sensors is larger than the
threshold Tf . The specific algorithm is summarized in Algorithm 1.
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Algorithm 1 Transformation of the selection vector of the relaxed optimization problem

1: procedure

2: Initial: Given the solution ẑ , [ẑ1, ẑ2, ...ẑN ], let Ω be the set containing the elements
of z. Define an empty set Jz = Ø

3: Step 1: zm = max{Ω}.
4: Step 2: Put the corresponding sensor index of zm into Jz, delete zm from Ω.

5: Step 3: Compute FB(z) =
∑

j∈Jz

F
(j)
B

6: Step 4: If λmin {FB(z)} ≥ Tf , go to Step 6. Otherwise repeat step 1.
7: end procedure

8: Define an all-zero vector ž, and we set žj = 1, j ∈ Jz. ž is the transformed solution.

3.2.3 Equivalence Theorem

Let the solutions of the original optimization problem (3.24) and the binary trans-
formed solution of the relaxed optimization problem (3.25) be denoted by z∗ and ž,
respectively. Generally, z∗ and ž will not be equivalent, and we cannot say much about
the gap ‖z∗ − ẑ‖2. However, we can prove their equivalence under the assumptions
listed below:

Assumption 3. The regressors hi, i = 1, 2, ..., N satisfy the following:

either hT
i hj = 0 or hi = gi,jhj, i, j = 1, 2, ..., N, (3.26)

where gi,j is a scalar constant. Furthermore, there always exists at least one set of
sensors S, with size |S| = D, whose corresponding regressors are mutually orthogonal,
i.e., they satisfy hT

i hj = 0, for all i, j ∈ S.

This assumption suggests that the hn’s are either orthogonal or linear correlated with
each other, for n = 1, 2, ..., N , and at the same time, H := [h1,h2, ...,hN ] is a full row
rank matrix. This assumption is needed to decompose the convex problem into a linear
programming problem per dimension.

It is useful to fix the ideas with a simple example. Let the number of sensors be
6 and let the dimension of θ be D = 3. Suppose the first three sensors labeled 1, 2, 3
have regressors that are mutually orthogonal, and so the second three sensors (4, 5, 6).
In this case, there are two sets S, namely S1 = {1, 2, 3} and S2 = {4, 5, 6}. In addition,
we suppose that sensors 1 and 4 are linearly correlated, and so the couples 2 and 5,
and 3 and 6 (note: linearly correlated means they are measuring the “same space”).

Assumption 4. The sensors have different regressors hi and channels, so that the
product ai‖hi‖22 with

ai = Eθ

{
(1− 2Pei)

2

s2i (1− si)2
f 2
i (τi − hT

i θ)

}

is different for each sensor.

Assumption 5. The pdfs of the elements of θ are independent with each other and
they are identical.
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We then have the following theorem,

Theorem 1. Let z∗ be the optimal solution of the optimization problem (3.24). This
solution is not unique in general, so let Z∗ be the finite set of optimal solutions, i.e.,
z∗ ∈ Z∗.
Under Assumption 3, Assumption 4, and Assumption 5, the solution of the relaxed
optimization problem (3.25), once mapped to {0, 1} via Algorithm 1 also belongs to the
set Z∗.

Proof. See Appendix 3.4.1

The theorem that we have just proven says that the relaxation and the Algorithm 1
are not completely arbitrary way to approximate the solution of the original non convex
problem (3.24). In fact, under some assumptions their solution are equivalent.

Disclaimer: the assumptions that we have used to prove the theorem in this
section, can be considered restrictive (especially Assumption 3). These assumptions
had the only purpose to help us show that our relaxation was not completely arbitrary.
As such, they will not be used anywhere else in this thesis.

3.2.4 Simulation

In this part, we validate the theoretical derivation and approach by numerical sim-
ulations.

We consider a group of 64 sensors deployed in a grid manner on a two-dimensional
plane. The distance between two subsequent sensors is 1. There are two sources located
in particular locations (Figure 3.2). The signal strength from source d (d = 1 or 2) at
sensor n is hn,dθd, with

hn,d = exp

(
−
Dn,d

σ2

)
, (3.27)

where Dn,d is the distance between sensor n and source d, and σ is a known parame-
ter [21]. We can then generate all the regressors hn, n = 1, 2, ..., N by this model. Let
the distribution of θ be N (3,Σθ), where the covariance matrix Σθ is a diagonal matrix
and the diagonal elements are all 0.5.

The primary step for this simulation is to construct the Bayesian Fisher information
presented in (3.15). Notice that there is no closed form expression for the expectation
over θ, alternatively, we choose a Monte-Carlo approach to approximate the term

Eθ

{
(1− 2Pen)

2

sn(1− sn)
f 2
n(τn − hT

nθ)

}
(3.28)

for each n. Specifically 100 realizations of θ are drawn from its distribution, denoted

as θ̃i, i = 1, 2, ..., 100. The estimation of this term is

Eθ

{
(1− 2Pen)

2

sn(1− sn)
f 2
n(τn − hT

nθ)

}
≈

1

100

100∑

i=1

(1− 2Pen)
2

s̃n,i(1− s̃n,i)
f 2
n(τn − hT

n θ̃i), (3.29)
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where s̃n,i is the sn corresponding to θ̃i. The threshold is set to the value τn = hT
nθµ,

where θµ is the mean of θ. Anyway, one knows nothing about whether this is optimal
threshold for a sensor or not, and we leave the determination of optimal threshold in
this case as the future work. With this we can solve the relaxed optimization problem
(3.25). To solve the relaxed optimization problem we adopt CVX [24], which is a
solver for convex optimization in Matlab. We transform the solution of the relaxed
optimization to a binary vector by Algorithm 1, and decide the selected sensors by the
transformed solution.

To obtain an approximated Bayesian mean square error, for each θ̃i, 500 groups
of measurements and quantized bit data of the selected sensor are generated based

on pre-defined Pe and noise distribution, and accordingly 500 MAP estimates, θ̃i,j, i =
1, 2, ..., 100, j = 1, 2, ..., 500 are produced by (3.9) which is solved by the function Fmin-
con in Matlab (the problem is convex but it is difficult to put it as a SDP and solve

it in CVX). The corresponding approximated mean square error of the particular θ̃i is
then,

MSEi =
1

500

500∑

j=1

(
θ̃i,j − θ̃i

)T (
θ̃i,j − θ̃i

)
. (3.30)

The approximated Bayesian mean square error is then the average of the 100 MSEi,
i.e.,

BMSE =
1

100

100∑

i=1

MSEi. (3.31)

In the first simulation we vary the threshold Tf , from 10 to 38 with an interval of
2. The variances of the noise of each sensor are set to be the same, that is 0.5. The
bit error rate of each sensor is also the same. Three values of the bit error rate are
considered, and they are 0, 0.1 and 0.2. Figure 3.3 depicts the selected value when
Tf = 24,Pe = 0.2, before and after the transformation, and we mark the corresponding
selected sensors in Figure 3.2 with black squares. The completed performance metrics
(the minimum eigenvalue of Fisher information) of the different bit error rates with
respect to the threshold Tf are presented in Figure 3.4. In this figure, it is clear that
all curves are above the dotted line, which is the case when the minimum eigenvalue
equals Tf . These figures confirm the validation of the selected algorithm, that is, the
minimum eigenvalue of the FIM of the selected sensors is equal to or larger than Tf .

To compare the differences of the cases of three bit error rates, we depict the resulted
numbers of selected sensors in Figure 3.5. The curve of Pe = 0.1 is above that of
Pe = 0, and the curve Pe = 0.2 is above the other two. This phenomenon implies that
for the same Tf , when the bit error rate is higher, more sensors are needed to meet
the same performance requirement, because the worse wireless channels deteriorate
the signal from sensors to fusion center. This phenomenon can also be caused by the
measurement noise. In Figure 3.6, we fix the bit error rate to be 0 for all sensors, but
this time we simulate 3 cases when the noise variances of all sensors are σ = 0.5, 0.65
and 0.8, respectively.
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In Figure 3.7, we plot the Bayesian mean squares error of MAP estimator versus
the Tf. From it we can when the threshold Tf is increasing, the Bayesian mean squares
error is decreasing accrodingly.
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Figure 3.2: The locations of sensors and signal sources.
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Figure 3.3: The values of the selection vector, with Pe = 0.2, σ = 0.5 for all sensors.
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Figure 3.4: The minimum eigenvalue of the FIM with a fixed σ = 0.5 for all sensors.
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Figure 3.5: Number of selected sensors with a fixed σ = 0.5 for all sensors.
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Figure 3.6: Number of selected sensors with a fixed Pe = 0 for all sensors.
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Figure 3.7: Bayesian mean squares error, with noise variances are all 0.5, and bit error rates
are all 0.1

3.3 Conclusion

In this chapter, we have discussed a framework of WSNs using a one-bit quantization
scheme, considering the measurement noise and distortion of data in the wireless chan-
nel which is modeled by a related bit error rate. We have seen how to model the sensor
selection problem as a convex optimization problem, in which a relaxation technique
is adopted. We further analyzed the equivalence of the solutions of the original opti-
mization problem and the relaxed optimization problem. Simulation examples confirm
the correction of the theoretical derivations and validation of the relaxed optimization
problem for sensor selection.

As for future work in this direction, we propose the following sensor selection refined
model.

3.3.1 Refined sensor selection model

The sensor selection model (3.24) selects the minimum number of sensors to meet
the requirement (3.23). Generally, the optimal solution of the original optimization
problem is not unique, i.e., more than one sub-set of sensors have the same minimum
number of sensors and their corresponding minimum eigenvalues meet the requirement.
It is quite interesting to investigate how to recognize the best one among the qualified
sub-sets of sensors, i.e., its minimum eigenvalue of the Fisher information is largest
among all. To this aim, we propose a refined model,
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{z∗, t∗} = argmin
z∈{0,1}N , t

‖z‖0 − µt (3.32a)

s.t.
∑

n

znF
(n)
B − tID � 0, (3.32b)

t ≥ Tf , (3.32c)

where µ is a constant which can be altered to change the weights on ‖z‖0 and t. In
this new model, we make a compromise between the number of sensor to activate
and the performance requirement. The latter aspect is implemented by allowing the
performance threshold, denoted by t, to be changeable and a parameter to be optimized.
To guarantee a certain performance level, we impose on t that it should be larger than
a pre-designed threshold Tf . In this case, the choice of Tf becomes less critical, in
the sense that a comparable small Tf can also lead to a high performance solution of
sensor selection. As usual, we relax (3.32) such that it becomes a convex optimization
problem,

{ẑ, t̂} = argmin
z∈[0,1]N , t

‖z‖1 − µt (3.33a)

s.t.
∑

n

znF
(n)
B − tID � 0, (3.33b)

t ≥ Tf , (3.33c)

Note that the weighted factor µ is crucial, and we leave the further analysis for
future studies.
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3.4 Appendix

3.4.1 Proof of Theorem 1

Define:
an := Eθ

{
(1−2Pen)2

s2n(1−sn)2
f 2
n(τn − hT

nθ)
}

F
u
B :=

N∑
n=1

F
(n)
B

With these definitions, we have F
(n)
B = anhnh

T
n , and FB = F

u
B +Fθ (see (3.15)).

Define now the sets Gd, d = 1, 2, ..., D, which contain the indexes of sensors whose hj

are linearly correlated. In our previous example these sets are G1 = {1, 4}, G1 = {2, 5},
and G1 = {3, 6}. The number of these sets is D due to Assumption 3. Furthermore, for

the same assumption for all j ∈ Gd, the ratios
hj

‖hj‖2
are equivalent to each other, and

we define it as,

ĥd :=
hj

‖hj‖2
, j ∈ Gd, d = 1, 2, . . . , D. (3.34)

We can further show that ĥd is one of the eigenvectors of Fu
B. In fact, its norm is

unitary, i.e., ‖ĥd‖ = 1, and according to Assumption 3,

F
u
Bĥd =


∑

j∈Gd

ajhjh
T
j +

∑

j /∈Gd

ajhjh
T
j


 ĥd

=

[
∑

j∈Gd

ajhjh
T
j

]
ĥd

=

[
∑

j∈Gd

aj‖hj‖
2
2

hj

‖hj‖2

hT
j

‖hj‖2

]
ĥd =

[
∑

j∈Gd

aj‖hj‖
2
2 ĥd ĥ

T
d ĥd

]

=

[
∑

j∈Gd

aj‖hj‖
2
2

]
ĥd,

(3.35)

where we have used the fact that sensors in Gd have regressors that are orthogonal to
the ones outside the set (Assumption 3), the definition of ĥd and the fact that its norm
is unitary.
Therefore ĥd is one of the eigenvectors of Fu

B, and
∑
j∈Gd

aj‖hj‖22 is the corresponding

eigenvalue. Consequently, we have the following eigenvalue decomposition of Fu
B,

F
u
B =[ĥ1, ĥ2, ..., ĥD]




∑
j∈G1

aj‖hj‖22

. . . ∑
j∈GD

aj‖hj‖22


 [ĥ1, ĥ2, ..., ĥD]

T

=:UΛUT ,

(3.36)
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where

U :=[ĥ1, ĥ2, ..., ĥD]

Λ :=




∑
j∈G1

aj‖hj‖22

. . . ∑
j∈GD

aj‖hj‖22


 .

(3.37)

As for Fθ, we have,

{Fθ}i,j =Eθ

{
∂ ln p(θ)

∂θi

∂ ln p(θ)

∂θj

}
. (3.38)

Based on Assumption (5) and the regularity property of p(θ), if i 6= j,

{Fθ}i,j =Eθ

{
∂ ln p(θi)

∂θi

∂ ln p(θj)

∂θj

}

=Eθ

{
∂ ln p(θi)

∂θi

}
Eθ

{
∂ ln p(θj)

∂θj

}

=0.

(3.39)

Similarly, when i = j,

{Fθ}i,j =Eθ

{
∂ ln p(θi)

∂θi

∂ ln p(θj)

∂θj

}

=Eθ

{(
∂ ln p(θi)

∂θi

)2
}

=:F s
θ .

(3.40)

Therefore we have the expression for Fθ,

Fθ = F s
θ ID. (3.41)

Based on (3.36) and (3.41), FB can be re-cast as,

FB =F
u
B +Fθ

=UΛUT + F s
θ ID

=U (Λ+ F s
θ ID)U

T

(3.42)

Given (3.42), (3.23) is equivalent to,

Λ+ F s
θ ID =




∑
j∈G1

aj‖hj‖22 + F s
θ

. . . ∑
j∈GD

aj‖hj‖22 + F s
θ


 � TfID, (3.43)
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or,

∑

j∈Gd

aj‖hj‖
2
2 + F s

θ ≥ Tf , d = 1, 2, ..., D. (3.44)

Based on this, the original optimization problem (3.24) becomes,

argmin
z∈{0,1}N

‖z‖0 (3.45a)

s.t.
∑

j∈Gd

zj aj‖hj‖
2
2 + F s

θ ≥ Tf , d = 1, 2, ..., D , (3.45b)

and the equivalent relaxed optimization problem (3.25) is then,

argmin
z∈[0,1]N

‖z‖1 (3.46a)

s.t.
∑

j∈Gd

zj aj‖hj‖
2
2 + F s

θ ≥ Tf , d = 1, 2, ..., D . (3.46b)

The constraints in (3.46b) are linear and they decouple across the dimension d. For
each dimension, given that the optimization problem (3.46) is a linear program and
the coefficients aj‖hj‖22 are all different among each other (Assumption 4), its solution
will lay on the vertices of the polytope described by the constraints. In particular, for
each j ∈ Gd the solution component ẑj will be either 0, 1, or in only one case a number
between 0 and 1. After Algorithm 1, the non-Boolean components will be mapped to
1.

It is not difficult to see that this mapped solution is, in addition, a solution of the
optimization problem (3.45): in fact, it is feasible and it has the minimum cardinality
as possible. Thus the mapped solution of (3.46) with Algorithm 1 belongs to Z∗.
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Wireless sensor network with

Multi-Bit Quantization 4
In this chapter, we introduce a multi-bit quantization scheme such that the original

measurements are quantized to multiple bits to be transmitted through the wireless
channel. Then the important parameters of this quantization approach, like aggregated
errors, Bayesian Cramer-Rao Bound and Bayesian mean square errors etc., are derived,
with and without bit errors. Based on the derived Bayesian Cramer-Rao lower bound
we develop the bit allocation algorithm to optimally decide the numbers of bits for each
sensors to transmit. In our approach, the performance metric is expressed by defined
selection vectors, and we restrict the performance metric to be larger than a threshold
and minimize a defined cost function whose value is determined by the selection vectors.

Table 4.1: Definition of key variables in this Chapter
Variables Definition

yn The original measurement of sensor n

L yn ∈ (−L,L)

xn The convert value of yn, xn = L+yn
2L

bn,i The i-th MSB of xn
x̂n The quantized value of xn
Kn The number of MSB of x̂n
ŷn The quantized value of yn, ŷn = 2Lx̂n − L

ϕ(.) A function that relates yn and ŷn, ŷn = ϕ(yn,Kn)

ǫ̂n The integrated error, ǫ̂n = ŷn − yn

SKn

SKn := {L2−Kn × 0− L, L2−Kn × 1− L, L2−Kn × 2− L,

, ..., L2−Kn × (2Kn − 1)− L}
sKn(j) The j-th elements of SKn

y∗n The noiseless measurement of sensor n, y∗n = hT
nθ

ỹn Received value of ŷn at the fusion center due to bit errors

εen Integrated error in the case of bit errors, εen = ỹn − yn

4.1 Multi-bit Quantization Approach

4.1.1 Bounded Measurement Model

To proceed with the multi-bit quantization discussion, we make a reasonable as-
sumption on the measurement model yn = hnθ + wn.

Assumption 6. The zero-mean noise wn is bounded as (−B,B), where B is a positive
scalar, and each element of θ and hn are also bounded. As a result, we can always find
a positive scalar L for which the measurement of each sensor yn is bounded as (−L, L).

33



We remark that, it is quite reasonable to make such an assumption. In fact, although
most noise models are unbounded, the probability for the noise to be very large is very
small and (we assume here) negligible. Given this, we can set a threshold B that is large
enough such that the probability pn(wn) is practically zero if wn ∈ (−∞,−B]

⋃
[B,∞).

Therefore, when dealing with unbounded noise, we can truncate the pdf pn(wn) in a
way that outside (−B,B), it becomes zero. To make the integral of the probability
equal to 1, the probability is scaled up as

fn(wn) =





(
1 +

Fn(−B) + 1− Fn(B)

Fn(B)− Fn(−B)

)
fn(wn) , if wn ∈ (−B,B)

0 , otherwise
(4.1)

i.e., fn(wn) and Fn(wn) are the pdf and cdf of the original noise, respectively, and
fn(wn) is the truncated and scaled version of fn(wn). By such a transformation, the
integral of fn(wn) over (−B,B) equals one.

In practice, we assume that when a sensor obtains measurements that are outside
the range (−L, L), a censored action is taken to abandon the “outlier”, such that no
out-ranged measurement will be transmitted to the fusion center [26, 27]. In what
follows, we just assume that wn has a bounded pdf, as well as yn (i.e., Assumption 6
holds).

4.1.2 Multi-Bit Quantization When No Bit Error Occurs

We start our analysis by considering the case in which there is no bit error in the
communication of the quantized measurements.

Given that the measurement yn is bounded as yn ∈ (−L, L) for all n, we can map
it, at the local sensor, to a variable xn that varies between (0, 1) as

xn =
L+ yn
2L

. (4.2)

Express now the mapped xn by its binary form,

xn =
∞∑

i=1

bn,i2
−i, with bn,i ∈ {0, 1}, (4.3)

where bn,i is defined as the i-th most significant bit (MSB) of xn. We can form a
message Mn that contains the first Kn MSBs of xn as,

Mn = {bn,1, bn,2, ..., bn,Kn
} (4.4)

and this message is sent to the fusion center through the wireless channel. The message
will be then used to reconstruct the quantized value of xn at the fusion center, by using
the Kn MSBs,

x̂n =

Kn∑

i=1

bn,i2
−i. (4.5)
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In this part, we assume the wireless channel to be perfect, that is: no bit error occurs
during transmission; therefore the message Mn will be correctly received at the fusion
center. We also note that the numbers of MSBs Kn may be different across sensors be-
cause measurements of different sensors have different quality, (we will describe how to
select the best quantization later, in the Bit Allocation Algorithm, in Section 4.2). The
approximation of the measurement yn at the fusion center is consequently [Cfr. (4.2)],

ŷn = 2Lx̂n − L. (4.6)

We can see ŷn as a function of the original measurement yn to be reconstructed and
the number of MSBs Kn as

ŷn = ϕ(yn, Kn), (4.7)

where ϕ(·, ·) is the nonlinear function that summarizes the steps from encoding (4.2)
to reconstruction (4.6).

The framework with multi-bit transmission that we present in this part is visualized
in Figure 4.1. In the figure, the measurement yn in sensor n is converted to xn. After
quantizing xn, theKn MSBs of xn are preserved to generate the quantized value x̂n. The
Kn MSBs are contained in a message Mn, which is transmitted through the errorless
wireless channel to the fusion center. At the fusion center, x̂n is correctly decoded.
A quantized value of the original measurement of yn, is then reconstructed and it is
denoted by ŷn.

Conversion
yn xn =

L+yn
2L Quantization

x̂n =
Kn∑
i=1

bn,i2
−i

Perfect Channel

Reconstruction
x̂nŷn = 2Lx̂n − L

Sensor

Fusion Center

Other Actions

Transmission

Mn

Mn

Reception

Figure 4.1: Procedure of transmission and reception by multi-bit quantization in a perfect
wireless channel.

4.1.3 Aggregated Error in the Case of No Bit Error

When we use the multi-bit quantization scheme to send only the Kn MSBs of each
sensor’s measurement, not only the measurement noise wn is involved, but the quanti-

35



zation error is introduced. The aggregated error for sensor n that contains these two
sources of errors is defined as,

εn = ŷn − hT
nθ. (4.8)

An extreme case is when we send an infinite number of bits to the fusion center such
that ŷn = yn, and thus εn is exactly the measurement noise wn. In this case, since we
have full knowledge about the pdf of wn, the characteristics of it can be exploited for
many purposes, such as the derivation of the MSE, or other estimates based on the
knowledge of the pdf of wn. Under the same philosophy, we wonder if in the general
case — when a finite number of bits is sent — we can characterize the aggregated error
εn, based on the fact that we already have the knowledge of the pdf of the regular noise
wn. In fact, we can show that εn is a discrete distributed random parameter. Prior to
this, we compute the possible values of ŷn, and show that they belong to a discrete set.

Definition 1. The set SKn

SKn
:= {0×L2−Kn+1−L, 1×L2−Kn+1−L, 2×L2−Kn+1−L, ..., (2Kn−1)×L2−Kn+1−L}

(4.9)
is a sorted set with 2Kn elements, and the i-th element is denoted as sKn

(i) = i ×
L2−Kn+1 − L.

Lemma 2. The quantized value ŷn = ϕ(yn, Kn) that is generated via the Kn MSBs
has a discrete possible value that belongs to the sorted set SKn

. If ŷn = sKn
(j) with j

a particular integer, then we have

yn ∈
[
sKn

(j) , sKn
(j) + L2−Kn+1

)
=
[
sKn

(j) , sKn
(j + 1)

)
. (4.10)

Proof. See Appendix 4.4.1.

With this lemma, we can derive the pdf of the aggregated error εn:

Definition 2. We define with y∗n the noiseless measurement, i.e., y∗n := hT
nθ, and with

ŷ∗n its corresponding quantized value, i.e., ŷ∗n := ϕ(y∗n, Kn).

Theorem 3. When the pdf of wn, i.e., fn(wn), and the corresponding cdf Fn(wn) are
known, the aggregated error εn, defined in (4.8), is a discrete random parameter. Its
possible values are

εn(t) = ŷ∗n − y∗n + tL2−Kn+1, (4.11)

with t an integer, and their probabilities are,

ηn(t) := Pr
[
εn = εn(t)

]
=Pr

[
εn(t) ≤ wn < εn(t) + L2−Kn+1

]

=Fn

(
εn(t) + L2−Kn+1

)
− Fn (εn(t)) .

(4.12)

Proof. See Appendix 4.4.2.
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This theorem states that the aggregated noise has discrete values, and provides the
probability distribution of it, which we exploit to derive the Bayesian error covariance
matrix and the related Bayesian mean square error in Appendix 4.4.4. Although the
Bayesian error covariance matrix has no direct use by far, but the Bayesian mean square
of the least square error estimator is tighter to other mean square error than the ones
by Bayesian Cramer-Rao lower bound, therefore exploiting Bayesian mean square for
bit allocation is defined as our future work.

4.1.4 Maximum a Posteriori Estimator and Bayesian Cramer-Rao Lower
Bound

Since the quantized value ŷn has a gap with the original measurement yn due to
quantization, that we see θ as a random parameter. Generally, it is hard to find a
closed-form solution. Therefore, the maximum a posteriori (MAP) is a good choice for
the estimation of θ. It considers the prior knowledge of θ and is easy to obtain if we
have the expression of the likelihood function p(ŷ, θ), with ŷ = [ŷ1, ŷ2, ..., ŷN ].

According to Lemma 2, we have ŷn ∈ SKn
, thus we specify p(ŷn, θ) as p(ŷn =

sKn
(p), θ), therefore the likelihood function can also be factorized as p(ŷ, θ) =

p(θ)
N∏

n=1

p(ŷn = sKn
(p)|θ). Since the prior p(θ) is known under Assumption 2, the

remaining part is the conditional likelihood function, p(ŷn = sKn
(p)|θ). In fact, based

on Lemma 2, a necessary and sufficient condition for ŷn to be equivalent to sKn
(p) is

that yn ∈
[
sKn

(p), sKn
(p+ 1)

)
, i.e.,

p(ŷn = sKn
(p)|θ) =Pr{sKn

(p) ≤ hT
nθ + wn<sKn

(p) + L2−Kn+1}

=Pr{sKn
(p)− hT

nθ ≤ wn<sKn
(p) + L2−Kn+1 − hT

nθ}

=Fn(sKn
(p) + L2−Kn+1 − hT

nθ)− Fn(sKn
(p)− hT

nθ)

(4.13)

where Fn(.) is the cdf of wn. The log-likelihood function is then,

L(ŷ, θ) = log p(ŷ, θ) =
N∑

n=1

log p(ŷn = sKn
(pn)|θ) + log p(θ). (4.14)

where pn is a particular integer. The MAP is obtained by maximizing L(ŷ, θ) over θ.
We can prove the concavity of L(ŷ, θ) under certain conditions such that we can find
out the global solution by typical convex optimization tools,

Theorem 4. The logarithm likelihood function L(ŷ, θ) is concave with respect to θ if
the probability functions p(θ) and fn(wn) are log-concave for with n = 1, 2, ..., N .

Proof. We begin the proof by first showing that p(ŷn = sKn
(p)|θ) is log-concave if
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fn(wn) is log-concave. To show this, notice that,

p(ŷn = sKn
(p)|θ) = Fn(sKn

(p) + L2−Kn+1 − hT
nθ)− Fn(sKn

(p)− hT
nθ)

=

∫ sKn(p)+L2−Kn+1−hT
nθ

sKn(p)−hT
nθ

fn(t) dt

=

∫
fn(t)

[
u(t+ hT

nθ − sKn
(p))− u(t+ hT

nθ − sKn
(p) + L2−Kn+1)

]
dt

(4.15)
where u(.) is the step function. Note that the part[
u(t+ hT

nθ − sKn
(p))− u(t+ hT

nθ − sKn
(p) + L2−Kn+1)

]
is a log-concave

function in t and θ. The product of two log-concave functions,
fn(t)

[
u(t+ hT

nθ − sKn
(p))− u(t+ hT

nθ − sKn
(p) + L2−Kn+1)

]
, is still log-concave

function, and integral over t of this product function is log-concave function in θ

(see [3]). That is to say, p(ŷn = sKn
(p)|θ) is log-concave, and the logarithmic of it is

concave. Finally, L(ŷ, θ) is a linear combination of multiple concave functions, hence
it is concave.

We next derive the Bayesian Cramer-Rao lower bound using the likelihood function,
which is an lower bound for any estimate of θ. The gradient of the local logarithm
conditional likelihood with respect to θ can be computed as,

∇θ ln p(ŷn = sKn
(p)|θ) =∇θ ln

[
Fn(sKn

(p) + L2−Kn+1 − hT
nθ)− Fn(sKn

(p)− hT
nθ)
]

(1)
=
∇θ

{
Fn(sKn

(p) + L2−Kn+1 − hT
nθ)− Fn(sKn

(p)− hT
nθ)
}

Fn(sKn
(p) + L2−Kn+1 − hT

nθ)− Fn(sKn
(p)− hT

nθ)

=
−fn(sKn

(p) + L2−Kn+1 − hT
nθ) + fn(sKn

(p)− hT
nθ)

Fn(sKn
(p) + L2−Kn+1 − hT

nθ)− Fn(sKn
(p)− hT

nθ)
hn

(4.16)
where in the equality we use the fact that the gradient of the cdf is the pdf. The local
Bayesian Fisher Information is then,

Fn(Kn) =Eŷn,θ{∇θ ln p(ŷn = sKn
(p)|θ)∇T

θ ln p(ŷn = sKn
(p)|θ)}

=Eŷn,θ

{[
−fn(sKn

(p) + L2−Kn+1 − hT
nθ) + fn(sKn

(p)− hT
nθ)

Fn(sKn
(p) + L2−Kn+1 − hT

nθ)− Fn(sKn
(p)− hT

nθ)

]2}
hnh

T
n

(1)
=Eθ




2Kn−1∑

i=0

[
−fn(sKn

(i) + L2−Kn+1 − hT
nθ) + fn(sKn

(i)− hT
nθ)

Fn(sKn
(i) + L2−Kn+1 − hT

nθ)− Fn(sKn
(i)− hT

nθ)

]2
×

p(ŷn = sKn
(i)|θ)

]
hnh

T
n

=G(Kn)hnh
T
n ,

(4.17)
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where in equality (1) the expectation over ŷn is specified exploiting the probability of
ŷn, and we defined

G(Kn) := Eθ



2
Kn

−1∑

i=0

[
−fn(sKn

(i) + L2−Kn+1 − hT

n
θ) + fn(sKn

(i)− hT

n
θ)

Fn(sKn
(i) + L2−Kn+1 − hT

nθ)− Fn(sKn
(i)− hT

nθ)

]2
p(ŷn = sKn

(i)|θ)


 .

(4.18)

Based on (3.12), and the independent property of Fisher Information, the Bayesian Fisher
Information is the summation of the N local Fisher information plus the Fisher Information
of θ,

FB =

N∑

n=1

Fn(Kn) +Fθ. (4.19)

4.1.5 Remark: Without Prior Knowledge of the Unknown Parameter

In this remark, we want to discuss some aspect of quantization and the generation of
unbiased estimates of least square error estimate when no prior knowledge about the unknown
parameter θ is available. This is a remark, and as such none of its derivations will be used
later on.

When we have no prior knowledge about the unknown parameter θ, maximum likelihood
estimate (MLE) is adopted instead. Alternatively, we can use least square error estimate
(LSE) to estimate θ, which is more computational efficient than MLE. To exploit LSE, the
reconstructed value ŷn is seen as an estimate of the original measurement yn adding with
quantized error. LSE is obtained by,

θ̂LS =argmin
θ

N∑

n

‖ŷn − hT
nθ‖

2
2

=argmin
θ

‖ŷ −Hθ‖22,

(4.20)

with the following definitions,

H := [h1,h2, ...,hN ] ∈ R
D×N

ŷ := [ŷ1, ŷ2, ..., ŷN ]T ∈ R
N

y := [y1, y2, ..., y1]
T ∈ R

N

Suppose H is a matrix with full row rank, such that HHT is invertible. Therefore we have
the solution for (4.20) by [36],

θ̂LS =
(
HHT

)−1
Hŷ. (4.21)

Since we abandon the bits after the Kn-th MSB, the quantized x̂n equals or it is smaller
than the original xn. Since ŷn = 2Lx̂n − L, then ŷn is also smaller than or equal to yn. This
means that the estimated θ (via the LSE) will be in general biased.
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When θ is a scalar value, i.e., yn = θ + wn, to make the expectation of ŷn unbiased, [41]
proposes to add an extra bit, the probabilistic bit to the message Mn, bn,e, which has a value,

Pr[bn,e = 1] = 2Kn

∞∑

i=Kn+1

bn,i2
−i =: rn

Pr[bn,e = 0] = 1−Pr[bn,e = 1] = 1− rn.

(4.22)

With this probabilistic bit, x̂n becomes,

x̂n =

Kn∑

i=1

bn,i2
−i + bn,e2

−Kn . (4.23)

and the re-constructed quantized value of yn at the fusion center is,

ŷn = 2L

(
Kn∑

i=1

bn,i2
−i + bn,e2

−Kn

)
− L. (4.24)

In our case, θ is not scalar, however with the probabilistic bit bn,e, we can show that ŷ :=

[ŷ1, ŷ2, ..., ŷN ]T is an unbiased estimate of y with the extra probabilistic bits, and θ̂LS is
consequently an unbiased estimate of θ.

To prove this, we begin by making the following definitions,

be := [ b1,e, b2,e, ..., bN,e ] ∈ R
N

r := [ r1, r2, ..., rN ] ∈ R
N

c := [ 2−K1+1L, 2−K2+1L, ..., 2−KN+1L ] ∈ R
N

The original measurement yn at sensor n can be expressed as,

yn = 2Lxn − L

= 2L
∞∑

i=1

bn,i2
−i − L = 2L

(
Kn∑

i=1

bn,i2
−i +

∞∑

i=Kn+1

bn,i2
−i

)
− L

(1)
= 2L(x̂n + 2−Knrn − 2−Knbn,e)− L

= 2Lx̂n − L+ 2−Kn+1L(rn − bn,e)

(2)
= ŷn + 2−Kn+1L(rn − bn,e),

(4.25)

where (1) is due to the definition (4.23), while (2) is due to the definition (4.24).

Therefore, one can see that ŷ−y = c ⊙ (be−r), with ⊙ the Hadamard product multiplication.
The expectation of ŷ − y yields,

E{ŷ − y} =c ⊙ (E{be} − r) (4.26)
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The definition of the elements of r in (4.22) implies that E{be}−r = 0. Therefore E{ŷ−y} =
0, that is ŷ is an unbiased estimate of y. Consequently,

E{θ̂LS} =
(
HHT

)−1
H E{ŷ}

=
(
HHT

)−1
H E{y}

=
(
HHT

)−1
H E{

(
HTθ +w

)
}

=θ +
(
HHT

)−1
H E{w}

(4.27)

By definition, w is zero-mean, therefore E{θ̂LS} = θ, that is θ̂LS is an unbiased estimate of
θ.

We can see the the role of the probabilistic bit bn,e is to make θLS unbiased. At the
same time, transmitting an extra bit increases the cost of energy of the WSN, and we cannot
say much about the benefits of including the extra probabilistic bit rather than including
the next MSB bn,Kn+1. In addition, adding the bit bn,e makes the analysis of the multi-bit
scheme significantly more involved. Given this, in what follows we will not include the extra
probabilistic bit bn,e, and we leave a thorough analysis as future research.

4.1.6 Multi-Bit Quantization When Bit Errors Occur

bn,1 bn,2 bn,3 bn,Kn

cn,1 cn,2 cn,3 cn,Kn

Imperfect Wireless Channel

Mn

˜
Mn

Figure 4.2: Illustration of transmission and reception of each bit over imperfect wireless
channel

In the previous part, we have regarded the wireless channel as being perfect, so that the
transmitted message Mn can be errorless received. In realistic environments, the received
message, denoted as M̃nn may be different from the transmitted message due to bit errors in
the wireless channel. We denote the bits that are contained in M̃n as cn,i, i = 1, 2, ...,Kn , i.e,

M̃n := {cn,1, cn,2, ..., cn,Kn}, (4.28)

41



where cn,i corresponds to the original transmitted bit bn,i (see Figure 4.2), and we make the
following assumption on the bit error process.

Assumption 7. Each bit bn,i contained in the transmitted message Mn is independently
affected by the wireless channel.

This assumption indicates that for a wireless channel with bit error rate Pen, a transmitted
bit bn,i is incorrectly received with probability Pen, and it may happen that bn,i 6= cn,i.

The quantized value of yn based on M̃n at the fusion center is denoted as ỹn,

ỹn = 2L

Kn∑

i=1

cn,i2
−i − L, (4.29)

Notice that ỹn can also be written as

ỹn = L2−KN+1
Kn∑

i=1

cn,i2
Kn−i − L, cn,i ∈ {0, 1} (4.30)

and as such, the possible values of ỹn are the same as in the no bit error case, ŷn (see Lemma
2), i.e., ỹn belongs to the discrete set SKn , which is defined in Definition 1.

The Illustration of the transmission and reception procedure with bit errors is depicted in
Figure 4.3.

Conversion
yn xn =

L+yn
2L Quantization

x̂n =
Kn∑
i=1

bn,i2
−i

Imperfect Channel

Reconstruction
x̃nỹn = 2Lx̃n − L

Sensor

Fusion Center

Other Actions

Transmission

Mn

M̃n

Reception

Figure 4.3: Procedure of transmission and reception by multi-bit quantization in imperfect
wireless channel where bit errors occur.

4.1.6.1 Distribution of The Aggregated Error With Bit Errors

We provide the distribution of the aggregated considering the bit errors. To distinguish
from the case when no bit errors occur, we denote the respective aggregated error as,

εen = ỹn − yn (4.31)
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We are interested in the distribution of εen. As we have discuss above, εen has the same
possible discrete values as the no bit error case, εn(t). In fact, bit errors will only change the
distribution of the aggregated error. In order to show this, we need some extra background
and definitions. First, as said both ỹn and ŷn belong to the set SKn . In general, we can say
that ŷn = SKn(p), for a certain element p, while ỹn = SKn(q) for another element q. If p = q

then there aren’t any bit error, while if p 6= q then bit errors have occurred.

Since we assume that the bits of ŷn are independently affected by the channel effect, we need
to decompose the element SKn(p) in its bit decomposition as

sKn(p) = L2−KN+1
Kn∑

i=1

bn,i2
Kn−i − L = ŷn, (4.32)

while

sKn(q) = L2−KN+1
Kn∑

i=1

cn,i2
Kn−i − L = ỹn. (4.33)

Finally, the probability that the element sKn(p) is transformed into sKn(q) by the channel
will be indicated as T (sKn(p), sKn(q)).

We are now ready for the main result of this section.

Theorem 5. When bit errors occur, the probabilities of the aggregated errors are,

ηen(t) : = Pr{εen = εn(t)}

=
2Kn−1∑

i=0

T (sKn(i), sKn(n0 + t)) ηn(i− n0),
(4.34)

where ηn(i − n0) is defined in (4.12), n0 is the value with the quantized value of the noise-
less measurement ŷ∗n = ϕ(y∗n,Kn) = sKn(n0), and the probability T (sKn(p), sKn(q)) has the
expression

T (sKn(p), sKn(q)) =

Kn∏

i=1

(1− Pen)
1−|bn,i−cn,i|Pe

|bn,i−cn,i|
n . (4.35)

Proof. See Appendix 4.4.3.

4.1.6.2 Bayesian Cramer-Rao Lower Bound With Bit Errors

As stated above, when the fusion center receives ỹn = sKn(q), with q a particular integer,
which it can be altered from all possible values of ŷn = sKn(i), i = 0, 1, 2, ..., 2Kn − 1, and the
probability of it is T (sKn(i), sKn(q)). Therefore by the Total Probability Theorem,

p(ỹn = sKn(q)|θ) =
2Kn−1∑

i=0

p(ŷn = sKn(i)|θ)T (sKn(i), sKn(q)). (4.36)
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The logarithmic gradient of it is,

∇θ ln p(ỹn = sKn(q)|θ)

=

2Kn−1∑

i=0

T (sKn(i), sKn(q))∇θ ln p(ŷn = sKn(i)|θ)

=

2Kn−1∑

i=0

−fn(sKn(i) + L2−Kn+1 − hT
nθ) + fn(sKn(i)− hT

nθ)

Fn(sKn(i) + L2−Kn+1 − hT
nθ)− Fn(sKn(i) − hT

nθ)
T (sKn(i), sKn(q))hn

(4.37)

That leads to the local Bayesian Fisher Information,

Fn(Kn) =

= Eỹn,θ









2Kn−1∑

i=0

−fn(sKn
(i) + L2−Kn+1 − h

T
nθ) + fn(sKn

(i)− h
T
nθ)

Fn(sKn
(i) + L2−Kn+1 − hT

nθ) − Fn(sKn
(i)− hT

nθ)
T (sKn

(i), sKn
(q))




2

hnh
T
n

= Eθ





2Kn−1∑

j=0

O(Kn, j) p(ỹn = sKn
(j)|θ)



hnh

T
n

= Eθ





2Kn−1∑

j=0

O(Kn, j)

2Kn−1∑

i=0

p(ŷn = sKn
(i)|θ)T (sKn

(i), sKn
(j))



hnh

T
n

=GPe(Kn)hnh
T
n

(4.38)

with

O(Kn, j) :=



2
Kn−1∑

i=0

−fn(sKn
(i) + L2−Kn+1 − hT

nθ) + fn(sKn
(i)− hT

nθ)

Fn(sKn
(i) + L2−Kn+1 − hT

nθ)− Fn(sKn
(i)− hT

nθ)
T (sKn

(i), sKn
(j))



2

.

(4.39)

And the Fisher Information can also be obtained using (4.19).
It is worth to emphasize that the expression of the local Bayesian Fisher information

presented in (4.38) is a generalized version of the local Bayesian Fisher information with no
bit error in (4.17). In fact, when no bit errors occur, Pen = 0, for , n = 1, 2, ..., N , which
implies T (sKn(p), sKn(q)) = 1 iff sKn(p) equals sKn(q), and zero otherwise. Therefore, there
is only one term in the summation in (4.38), that is exactly the equality (1) in (4.17).

4.1.6.3 Maximum A Posteriori With Bit Errors

As above, we can use the maximum a posteriori to estimate θ in the case of bit errors
occur.

By (4.14) and (4.36) we can explicit write the log-likelihood function as,

L(ỹ,θ) =
∑

n=1

ln



2Kn−1∑

i=0

p(ŷn = sKn(i)|θ)T (sKn(i), ỹn)


+ ln p(θ) (4.40)

We can maximumize L(ỹ,θ) with respect to θ to obtain an MAP estimate. However, note
that we cannot prove L(ỹ,θ) is concave in θ, therefore no guarantee of optimality about the
solution.
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4.1.7 Impact of Number of Bits and Bit Error Rate to the Local Bayesian
Fisher information

Two important factors in this model are the numbers of bits used to quantize the original
measurements and the channel effect, the bit error rate. One may wonder how these two will
affect the final estimating performance. Intuitively, more bits involved to quantize are prone
to increase the accuracy to reconstruct the original measurements and consequently improve
the performance, and it seems that we can always benefit from low bit error rates. To further
analyze these effects, we conduct a simulation to show the relations between the two factors
and the coefficient of the local Bayesian Fisher information (See (4.38) ),

GPe(Kn) := Eθ





2Kn−1∑

j=0

O(Kn, j) p(ỹn = sKn(j)|θ)



 . (4.41)

This is a term related to the number of bits and the bit error rate and the value of it reflects the
potential contribution of the sensor directly, therefore we adopt GPe(Kn) to see the impact
of the two factors. We consider the regressor hn = [ 0.2 0.5 ]T , and let the wn to be a
random value with zero-mean and variance 0.5 Gaussian noise. In Figure 4.4 we plot the
value of GPe(Kn) versus Pen and the number of bits. The surface of it presents a shape of
half saddle. To see it more deeply, Figure 4.5 and Figure 4.6 extract the traverse-sections
from two directions. From these two figures we can see that more bits always lead to higher
value of GPe(Kn). Particularly, Figure 4.5 shows that the increasing amount of GPe(Kn) is
significant from one bit to two bits and this metric becomes more constant with numbers of
bits increasing, and when the numbers of bits reach four or higher, the curves are almost flat.
That means we get no further gain in GPe(Kn) by adding more bits. Therefore, we can see the
case of four bits as approximately being equivalent to the case of analog transmission in this
configuration. The curves in Figure 4.6 present a shape of symmetric valley, i.e., the values
of GPe(Kn) are the highest when Pen is near to 0 and 1 and become the lowest exactly at the
0.5. It seems to be opposite to the common sense, that higher bit error rates close to one can
also bring lower GPe(Kn), and thus the the measurement of this sensor is less informative.
However, it is not difficult to explain this phenomenon: if the bit error rate is closed to 0, we
know that a bit received tends to be the true value of the original transmitted bit, and on
the other hand when bit error rate is closed to 1, the received bit is highly probable to have
a value that is opposite to the original transmitted bit. A extreme example is that, when the
bit error rate is 1, we know the bit received is absolutely opposite to the original transmitted
bit. Therefore if we flip the received bit we can obtain the true value of the transmitted bit.
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Figure 4.4: Values of the coefficient versus bit error rates and numbers of bits.
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Figure 4.6: Values of the coefficient versus bit
error rates.

4.2 Bit Allocation Algorithm

4.2.1 Problem Formulation

As stated above, the measurements of different sensors contribute in different ways to
the final estimate at the fusion center, due to the regressor hn, noise variance and the bit
error rate Pen. For the one-bit quantization, we determined which subset of sensors should
be enabled to transmit their measurement, according to the criterion in (3.18) which states
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that the minimum eigenvalue of the BFIM should be larger than a threshold. From another
perspective, this scheme is equivalent to determining which sensors should transmit one bit
while the others transmit zero bits. When we extend this to the multi-bit case, one interesting
problem is how can we determine the number of bits that each sensor will transmit to the
fusion center.

From the simulation results in Section 4.1.7, we can see that more bits to transmit leads to
a higher performance of the final estimation at the fusion center. However, it means a higher
cost of resources will occur in the WSN. It is a tradeoff between estimation performance and
resource management. To specify the cost, we can assign a cost parameter for each number
of bits to transmit from a sensor, i.e., for a sensor to transmit k bits, it will cost Ck. Note
that Ck is the same for each sensor because we assume that the cost of the same number of
bits are the same for any two different sensors. As stated above, each sensor transmits Kn

bits, with the corresponding cost CKn , therefore the global cost is the summation of the cost
sof all sensors,

Cg =

N∑

i=1

CKi
. (4.42)

For the sake of resource management, we aim at minimizing the global cost Cg, and at
the same time, the performance of the estimate at the fusion center should be guaranteed
to be above certain level. We denote the performance metric as P(K,θ), where K :=
[K1,K2, ...,KN ]. This definition indicates how the number of bits and the unknown parameter
θ affect the performance metric. We restrict the choice of the number of bits Kn in a finite
sorted set, UK , and the elements in it vary from the smallest value Umin to the largest value
Umax, and we denote the size of UK as MU = Umax−Umin+1. It also means that the Kn can
be chosen from MU candidate values plus the zero value (no bit is transmitted). With this,
we can consequently state the bit allocation problem as,

argmin
K∈{UK ,0}N

Cg =
N∑

i=1

CKi

subject to : P(K,θ) ≤ T

(4.43)

i.e, this optimization problem aims at finding out the optimal bit number setK that minimizes
the global cost Cg, and at the same time, constrain the performance P(K,θ) to be smaller
than a threshold T . Note that P(K,θ) does not have to be necessarily smaller than a
threshold. For some metric, the P(K,θ) can be constrained to be larger than a threshold.

The remained problem is to define the performance metric P(K,θ). Intuitively, we can
specify P(K,θ) as the Bayesian mean square error that is the trace of the Bayesian error
covariance matrix derived in (4.74). However, it is intractable to handle the bit allocation
with Bayesian mean square error restriction. Alternatively, we adopt the metric of the mini-
mum eigenvalue of the corresponding Bayesian Fisher information that is used in the one-bit
quantization case. The criterion is to restrict it to be larger than a threshold.

4.2.1.1 Remark: Discussion About the Cost

It is worth to discuss how to determine the values of Cj (the cost that a sensor transmits
j bits).
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Generally, more bits to transmit results in a higher cost, in other words, Ci ≤ Cj if i ≤ j.
Intuitively, it is reasonable to set Cj to be proportional to j, that implies one more bit to
transmit requires one more unit of cost. However, in practical cases, the cost is not always
increasing linearly with the number of bits to transmit for a single sensor, because to start
a transmission extra information is needed to be exchanged between a sensor and the fusion
center, therefore, for example, transmitting two bits for a sensor at the same time always cost
less than twice the cost of transmitting one bit.

Another factor needed to be considered in designing the value of the cost is the remaining
energy of a sensor. One scheme to prolong the longevity of a WSN is to consume energy
of sensors in balance or evenly. In other words, it is not wise to overuse a particular sub-
set of sensors than others, because by this way the energy of this sub-set of sensors will be
exhausted faster than others. To solve such a problem, we can allow the cost Cj to be various
over different sensors and design the values of the cost considering the remaining energy of a
sensor, i.e., when a sensor has less remaining energy, the costs for all numbers of bits should
be set to higher values than other sensors.

4.2.2 Bit Allocation Based on the Minimum Eigenvalue of the Bayesian
Fisher Information

We specify the performance metric P(K,θ) by the minimum eigenvalue of the Bayesian
Fisher information. To begin with, we define vectors fn that have a dimension as the same
with size of the bit number candidate set UK . The elements of fn is the defined as,

{fn}j :=G(UK(j))

=Eθ





2UK(j)−1∑

i=0

[
−fn(sUK(j)(i) + L2−UK(j)+1 − hT

nθ) + fn(sUK(j)(i)− hT
nθ)

Fn(sUK(j)(i) + L2−U(j)+1 − hT
nθ)− Fn(sUK(j)(i) − hT

nθ)

]2
×

p(ŷn = sUK(j)(i)|θ)
}

(4.44)
where UK(j) is the j-th element of the sorted set UK (see (4.18)). We then can express the
local Bayesian Fisher information matrix, when UK(j) quantized bits are used, as {fn}jhnh

T
n

(see (4.17)), or equivalently,

Fn(UK(j)) := I
(j)
MU

T
fnhnh

T
n = {fn}jhnh

T
n , (4.45)

where I
(j)
MU

is the j-th column of the identity matrix with dimention MU . In bit allocation
problem, we need to decide which number of bits for sensor n should be used, i.e, determine
the value of j which ranges from 1 to the size of UK , MU . To this aim, we define a variable
vector vn for each sensor.

Definition 3. The vector vn is a vector with dimension MU , that corresponds to sensor n.
It is either an all-zero vector, or a vector with only one element of it is 1 and the remaining
elements are all zeros. V stacks vn for n = 1, 2, ..., N , V = [v1,v2, ...,vN ].

We can also interpret the definition of vn in a mathematical way,

vn ∈ {0, 1}MU ,

‖vn‖0 ≤ 1,
(4.46)
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The vn can be used to express the local Bayesian Fisher information, i.e., when UK(j) bits
for sensor n are used, we can set vn as an all-zero vector except that the j-th element of it is
1, then (4.45) can be written as,

Fn(UK(j)) := G(UK(j))hnh
T
n = vT

nfnhh
T , (4.47)

Since our goal is to determine the number of bits for each sensor, we see vn as an undetermined
parameter, then the corresponding global Bayesian Fisher Information that depends on V is,

F(V ) =

N∑

n=1

vT
nfnhh

T +Fθ (4.48)

For the case when bit errors occur, we can substitute G(UK(j)) with GPe(UK(j)) (see (4.38)).

The minimum eigenvalue of the Bayesian Fisher Information is the matrix that we use
for bit allocation, which we require to be larger than a threshold Tf . Since the minimum
eigenvalue of the Bayesian Fisher information equals the inverse of the maximum eigenvalue
of the Bayesian Cramer-Rao lower bound, the constraint in (4.43) becomes,

P(K,θ) = max{(F )−1} ≤
1

Tf
(4.49)

Next we construct the global cost with respect to vn. Define a cost vector, C :=
[CUK(1), CUK(2), ..., CUK (MU )]

T . The vector C stacks all costs of the number of bits in UK

for a sensor to transmit. Then the local cost can be expressed as CTvn, i.e., when the num-
ber of bits for sensor n to transmit is UK(j), then the j-th element of vn is 1 and the other
elements of it are zero. The local cost is CUK(j), or equivalently, CTvn. The global cost is
then,

Cg =

N∑

n=1

CTvn (4.50)

and we can finally formulate the optimization problem to search for the optimal value of vn
(or the optimal number of bits for each sensor to transmit, Kn),

V ∗ = argmin
V

Cg =
N∑

n=1

CTvn

subject to : λmin

{
N∑

n=1

vT
nfnhh

T +Fθ

}
≥ Tf

vn ∈ {0, 1}MU , ||vn||0 ≤ 1,

n = 1, 2, ..., N

(4.51)

where λmin{} denotes the minimum eigenvalue of a matrix. To make it to be solvable, we
relax it to an SDP problem by allowing the values of the elements in vn to vary between [0, 1]
and constrain their summation to be not larger than 1. Also, we replace the performance
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constraint by,
N∑

n=1
vT
nfnhh

T +Fθ � TfID. The relaxed SDP becomes,

V̂ = argmin
V

Cg =
N∑

n=1

CTvn

subject to :

N∑

n=1

vT
nfnhh

T +Fθ � TfID

vn ∈ [0, 1]MU , ‖vn‖1 ≤ 1,

n = 1, 2, ..., N.

(4.52)

Note that the solution of (4.52) is not the one in Definition 3. It is probable that for a v̂n (the
n-th column in V̂ ), more than one element have a non-zero value. To address this problem,
we reserve only the largest element in v̂n by set it to be 1, and set the others to be zero. After
we obtained the transform solution V ∗ = {v∗

1,v
∗
2 , ...,v

∗
N}, the decisions of the number of bits

for each sensor can be determine by v∗
n, i.e., if the j-th element of v∗

n is 1, then the number
of bits for sensor n, Kn, is UK(j). The algorithm is summarized in the following.

Algorithm 2 Transformation procedure of the solution of the relaxed problem

1: Initial: Giving the solution V̂ , define Ω := {|v̂1|, |v̂2|, ..., |v̂N |}, and an empty vector set
J v, and an empty index set Iv. Define an all-zero matrix V ∈ R

MU×N

2: Step 1: Let t be the index of max{Ω}, and set the corresponding max{Ω} to be zero.
Also let vm be t-th column of V̂ ∗.

3: Step 2: Set the element of vm with largest value to be 1, and the other elements to be 0.
Put vm in to J v, t into Iv.

4: Step 3: Set the t-th column of V̂ ∗ to be vm
5: Step 4: Compute F(V ∗)
6: Step 5: If λmin {F(V ∗)} ≥ Tf , go to Step 6, otherwise repeat Step 1.
7: The V ∗ is the final transformed solution. The number of bits for each sensor can be

obtained by seeing which element of v∗
n in V ∗ is non-zero.

4.2.3 Sparsity-Enhanced Iterative Algorithm

The solution of the original optimization problem presents a characteristic of sparsity.
The sparsity resides on two aspects: (1). If Tf is not a large number, it is likely that only a
small sub-set of sensors needs to transmit a certain number of bits to meet the performance
constraint, that means most vn will be zero vectors. (2). At most one element of vn is
non-zero according to its definition.

To utilize the sparsity features, we refine the objective function of (4.51) or (4.52). The
philosophy behind the refined relaxed optimization problem is based on the re-weighted ℓ1-
norm iterative algorithm, that was proposed in [4] and is applied in [6] [35].

The specific modification is first to introduce a weight for each term of the summation in
the objective function,

N∑

n=1

CTvn qn = CTV q (4.53)
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where qn ∈ R
1 and q :=

[
q1, q2, ..., qN

]T
∈ R

N . Unlike the original objective function, which
we can see equivalently as each term in the summation has a fixed weight 1, qn is fluctuating
according to the value of ‖v̂n‖2 of the previous iteration, once the ‖v̂n‖2 from last iteration’s
solution is small, qn will be set to a large value. As for the sparsity for the elements of vn,
another term is adding in the new objective and the whole becomes,

N∑

n=1

CTvn qn + µ uT
nvn = CTV q + µ Tr{UTV } (4.54)

where un ∈ R
MU is a non-negative vector corresponding to vn and U :=

{
u1,u2, ...,uN

}
∈

R
MU×N , with MU the size of the bit number candidate set UK . It is the same with q, un

updates according to the v̂n of the solution of last iteration. The detailed algorithm is
described as follow:

STEP 1) Initialization: k = 0, q(0) = 1N , U (0) = 0MU
0TN , with 0t and 1t are

t-dimension zero and one vectors, respectively.

STEP 2) Computation: Solve the following optimization problem,

V̂ = argmin
V

CTV q(k) + µ Tr{U (k)TV }

subject to :

N∑

n=1

vT
nfnhh

T +Fθ ≥ TfID

vn ∈ [0, 1]MU , ‖vn‖1 ≤ 1,

n = 1, 2, ..., N.

(4.55)

STEP 3) Update: q
(k+1)
n = 1

ǫ+‖v
(k)
n ‖2

, the ith element of u
(k+1)
n , {un}

(k+1)
i = 1

ǫ+|{v
(k)
n }i|

,

with n = 1, 2, ..., N , i = 1, 2, ...MU .

STEP 4) Judgement: k = k + 1. If k = kmax or the iteration converges, stop iteration,
otherwise repeat from the computation step.

The role of the very small positive number ǫ is to prevent q(k) or U (k) to have elements with
infinite value.

4.2.4 Simulation

Simulation results about the numerical analysis of the new approach are presented. This
time we consider a WSN with N = 64 sensors and use the same model to generate hn as in
the simulation in the previous chapter. The θ is set to be an random parameter with each
element of it follows zero-mean truncated Gaussian distribution with variance σ2

θ = 0.2 and
bounded by 0.5. The bound L = 1.5 to make sure that yn is swinging between (−L,L).

In the first simulation, we set the noise for each sensor to be a zero-mean truncated
Gaussian distributed parameter with variance σ2

w = 0.3 and bounded by 0.5. To compare we
consider five bits allocation schemes: The numbers of bits in the first four are fixed from 1
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to 4. That is to say, if we fix the number of bits to be K then a sensor will either transmits
K bits or transmits no bits. In the last scheme we let the number of bits to be flexible, that
is exactly our new approach. Since from previous simulation we learn that when the number
of bits reaches 4 or higher, there is no significant increasing in the Fisher information, we let
the set of number of bits to be UK = [1, 2, 3, 4]. Without loss of generality, the cost Ck is set
to be the same with the number of bits, i.e., Ck = k and C = [1, 2, 3, 4]. That also means
minimizing the global cost is equivalent to minimizing the total number of bits for the whole
WSN.

In Figure 4.7,4.8, 4.9 we plot the values of Cg versus the threshold Tf , with the bit error
rates setting to be 0, 0.1, 0.2, respectively. It can be seen from these figures that among all
the bits allocation schemes, our approach achieves smallest cost for a particular threshold Tf .
Especially, it is better than the case of fixed 4 bits. This has a significant meaning because
the fixed 4 bits case is regarded as the case of transmitting analog signal, that is to say, by our
new approach we can further reduce the cost of a WSN compared with the existing sensors
selection techniques which aim to determine a sensor is to transmit analog signals or not.

We can also see that the curves of the schemes with higher fixed number of bits are in
general above those with smaller fixed numbers of bits. In particular, when Tf is small, the
curves of the flexible number of bits are almost the same with the curves of the case of fixed
one bit scheme. These phenomenons mainly result from two reasons. First, the values of the
costs Ck in the simulation are set to be proportional to the numbers of bits transmitted. The
second reason is based on the identical values of the bit error rate and variance of noise of each
sensor, with them the differences of contributions of sensors depend only on the regressors
hn. In figure 4.4 we see that the gain to add one more bit to quantize the measurement
is getting less and less with number of bits increasing. Therefore, the whole system benefits
more by activating another sensor or adding a bit to the sensors already allocated with smaller
number of bits, or in other word it gets more improvement in performance at less cost in this
way. However, when Tf grows large, for the fixed schemes with small number of bits, the
performance requirement is not satisfied even when all sensors are activated. In practical
situation, the costs of transmitting bits are usually not proportional to the numbers of bits,
and bit error rates and variances of noise are most likely not identical over sensors. To verify
our analysis, we do another simulation, with the cost vector to be C = [1 1.5 2 2.5], and the
bit error rates and variance are set to be uniform random values between [0, 0.3] and [0.1, 0.5],
respectively, and the results are plot in figure 4.10. From it we can see that the phenomenas
disappear.

In Figure 4.11 the costs of different bit error rates of all sensors are compared. It can
be seen that with a higher bit error rate, the cost is always higher, which implies more bits
are needed to obtain the same level of performance. The phenomenon can also be seen with
different noise variance (See Figure 4.12)

4.3 Conclusion

In this chapter, to further exploit the original measurements, multi-bit quantization ap-
proach is introduced that reserve multiple MSBs of a measurement. Based on this quantization
scheme we derive the likelihood function, with and without bit errors. Based on the likeli-
hood function, the log-likelihood function is formed, which we prove to be concave, therefore
global optimality can be obtained. We also derive the Bayesian Cramer-Rao lower bound.

52



10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

The threshold Tf

C
os

t o
f t

he
 s

el
ec

te
d 

se
ns

or
s

 

 

flexible number of bits

fixed 1 bit

fixed 2 bits

fixed 3 bits

fixed 4 bits

Figure 4.7: The cost versus the threshold. Bit
error rates are all 0, variance of noises are all
0.5
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Figure 4.8: The cost versus the threshold. Bit
error rates are all 0.1, variance of noises are all
0.5.
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Figure 4.9: The cost versus the threshold. Bit
error rates are all 0.1, variance of noises are all
0.5.

10 12 14 16 18 20 22 24 26 28
5

10

15

20

25

30

The threshold Tf

C
os

t o
f t

he
 s

el
ec

te
d 

se
ns

or
s

 

 

flexible number of bits

fixed 1 bit

fixed 2 bits

fixed 3 bits

fixed 4 bits

Figure 4.10: The cost versus the threshold.
The bit error rates and the variance of noises
are random, and the costs are not linear to the
number of bits.

We propose the bit allocation algorithm, which is a generalized version of sensor selection,
i.e., it decides not only which sensors should be activated, but further, the number of bits
each sensors should transmit. Simulation results show that the bit allocation algorithm can
further reduce the cost of a WSN compared with the sensor selection where analog data is
adopted. From the simulations we can also see the effect of wireless channel, i.e., when all
wireless channels have bad quality, more sensors or more bits are needed to obtain a certain
level of estimation performance.

We adjust the sparsity enhance algorithm to improve the sparsity of the solution of our
approach. Since the result of the bit allocation without the sparsity enhance operation is
good enough, therefore we did not validate the efficiency of sparsity enhance algorithm by
simulation, but in other WSN configuration, the solutions may not sparse enough, therefore
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the sparsity enhance algorithm will be of use.
We also define the aggregate error and based on it the Bayesian mean square error of the

least square error estimate is derived. Since it is intractable to exploit the Bayesian mean
square error for bit allocation, therefore we define it as our future work.
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4.4 Appendix

4.4.1 Proof of Lemma 2

Rewrite ŷn as,

ŷn =2Lx̂n − L

(1)
=2L

Kn∑

i=1

bn,i2
−i − L

=2L2−Kn

Kn∑

i=1

bn,i2
Kn−i − L

(2)
=L2−Kn+1B − L,

(4.56)

In equality (1) we expand x̂n by its binary form (see (4.5)), and in equality (2), B :=
Kn∑
i=1

bn,i2
Kn−i. Note that B ∈ {0, 1, ..., 2Kn − 1}, therefore ŷn ∈ SKn

Rewrite now the original measurement yn as,

yn =2Lxn − L

(1)
=2L

∞∑

i=1

bn,i2
−i − L

(2)
=2L

Kn∑

i=1

bn,i2
−i + 2L

∞∑

i=Kn+1

bn,i2
−i − L

(3)
= ŷn + 2L

∞∑

i=Kn+1

bn,i2
−i.

(4.57)

where in equality (1), xn is expanded by its binary form (see (4.3)). In equality (2), we
separate the summation of bits into two parts, one is from 1 to Kn and the other is from

Kn + 1 to infinity. Note that ŷn = 2L
Kn∑
i=1

bn,i2
−i − L, thus we reach equality (3), and based

on it we have the expression of the aggregated error

εn = ŷn − yn = −2L
∞∑

i=Kn+1

bn,i2
−i, (4.58)

which is bounded as,

0 ≥ εn = −2L
∞∑

i=Kn+1

bn,i2
−i>− 2L2−Kn = −L2−Kn+1, (4.59)

which implies

ŷn ≤ yn < ŷn + L2−Kn+1, (4.60)

or sKn(j) ≤ yn < sKn(j) + L2−Kn+1 = sKn(j) + sKn(j + 1)
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4.4.2 Proof of Theorem 3

We start by considering the noiseless case

y∗ =hT
nθ

ŷ∗n =ϕ(y∗,Kn)

ε∗n =ŷ∗n − y∗n.

(4.61)

In this case, ε∗n is exactly the quantization error because no measurement noise is involved.
Suppose y∗n ∈ [sKn(n0), sKn(n0 + 1)), with n0 a particular integer, such that ŷ∗n = sKn(n0).
Equivalently, we can see ŷ∗n as y∗n adding a noise, and the value of the noise is ε∗n with
probability 1,

ŷ∗n = hT
nθ + ε∗. (4.62)

Then, we add measurement noise to y∗n, as yn = y∗n + wn. We first consider the special
case when the quantized value ŷn = ϕ(yn,Kn) equals the one of the noiseless one, i.e., ŷn =
ŷ∗n = sKn(n0). In fact, for this case

yn ∈
[
sKn(n0), sKn(n0 + 1)

)
, (4.63)

that means that the noise

wn ∈
[
ŷ∗n − y∗n, ŷ

∗
n − y∗n + L2−Kn+1

)
(4.64)

and the aggregated error in this case is εn(0) = ε∗n = ŷ∗n − y∗n with probability,

Pr
[
εn = εn(0)

]
= Pr

[
wn ∈ [ ŷ∗n − y∗n, ŷ

∗
n − y∗n + L2−Kn+1 )

]

= Fn

(
ŷ∗n − y∗n + L2−Kn+1

)
− Fn (ŷ

∗
n − y∗n) .

(4.65)

In the general case, for ŷn = sKn(n0 + t) with t an integer, then from Lemma 2, the
original measurement yn ∈

[
sKn(n0 + t), sKn(n0 + t+ 1)

)
, and the aggregated error becomes

εn = εn(t) = ŷ∗n − y∗n + tL2−Kn+1, (4.66)

with probability,

ηn(t) := Pr
[
εn = εn(t)

]
=

Pr
[
ŷ∗n − y∗n + tL2−Kn+1 ≤ wn < ŷ∗n − y∗n + (t+ 1)L2−Kn+1 )

]

= Fn

(
ŷ∗n − y∗n + (t+ 1)L2−Kn+1

)
− Fn

(
ŷ∗n − y∗n + tL2−Kn+1

)

= Fn

(
εn(t) + L2−Kn+1

)
− Fn (εn(t)) .

(4.67)

4.4.3 Proof of Theorem 5

We begin by proving the expression of T (sKn(p), sKn(q)). Since we assume that the bits
of ŷn are independently affected by the channel effect, we only need to analyze the bits
separately.
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The probability for a bit bn,i to be correctly received, i.e, bn,i = cn,i, is (1 − Pen), or
equivalently (1− Pen)

1−|bn,i−cn,i|, because |bn,i − cn,i| = 0 when being correctly received.

On the other hand, the probability of being incorrectly received is Pen, or equivalently

Pe
|bn,i−cn,i|
n , due to the fact that |bn,i − cn,i| = 1. Note that whether being correctly received

or not, the probabilities can both be expressed as

(1− Pen)
1−|bn,i−cn,i|Pe

|bn,i−cn,i|
n . (4.68)

Because of independent transmissions of each bit, the probability is then the product of the
single probabilities, i.e.,

T (sKn(p), sKn(q)) =

Kn∏

i=1

(1− Pen)
1−|bn,i−cn,i|Pe

|bn,i−cn,i|
n , (4.69)

which was what we needed to prove.

We move now on the aggregated error probability. When the aggregated error εen = εn(t),
it implies ỹn = sKn(n0 + t), where n0 is the value with the quantized value of the noiseless
measurement ŷ∗n = ϕ(y∗n,Kn) = sKn(n0) and y∗n = hT

nθ. In fact, for a quantized value
sKn(n0 + t) at the fusion center, it can be altered from all possible values of the quantized
values from the sensor ŷn = sKn(i), i = 0, 1, 2, ..., 2Kn − 1. When ŷn = sKn(i), the aggregated
error is εn(i − n0), which has a probability ηn(i − n0) provided in (4.67), therefore by the
Total Probability rule we have the expression of ηen(t) shown above.

4.4.4 Derivations of Bayesian Error Covariance Matrix and Bayesian Mean
Square Error

The Bayesian mean square error of the least squares estimate is an important metric
to evaluate the performance of the estimation. It equals the trace of the Bayesian error
covariance matrix, which is defined as,

C := Eθ,ŷ

{(
θ̂LS − θ

)(
θ̂LS − θ

)T}
(4.70)

In this part we derive the Bayesian error covariance from its definition. Since we can
decompose the received signal ŷn from sensor n by ŷn = hTθ + εn, which comprises the
certain part hTθ and the uncertain (noisy) part εn. Therefore we can recast the received
signal vector ŷ := [ŷ1, ŷ2, ..., ŷN ]T as,

ŷ = HTθ + ε, (4.71)

where ε := [ε1, ε2, ..., εN ]T . Plugging this into the expression of θ̂LS in (4.21) yields

θ̂LS =
(
HHT

)−1
Hŷ = θ +

(
HHT

)−1
Hε. (4.72)
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Expand (4.70) and substitute θ̂LS with (4.72). Then, we have

C :=Eθ,ŷ

{(
θ̂LS − θ

)(
θ̂LS − θ

)T}

=Eθ,ε

{[(
HHT

)−1
Hε

] [(
HHT

)−1
Hε

]T}

=
[(
HHT

)−1
H
]
Eθ,ε

{
εεT

} [(
HHT

)−1
H
]T

=
[(
HHT

)−1
H
]
Cε

[(
HHT

)−1
H
]T

,

(4.73)

where from the second equation the expectation is taking over ε instead of ŷ, and Cε :=
Eθ,ε

{
εεT

}
. Take two times the pseudo-inverse of the expression of C in (4.73) and apply the

product property of pseudo inverse [1] , we have

C =
[(
HHT

)−1
H
]
Cε

[(
HHT

)−1
H
]T

=

{{[(
HHT

)−1
H
]
Cε

[(
HHT

)−1
H
]T}†

}†

=

{[[(
HHT

)−1
H
]T]†

C†
ε

[(
HHT

)−1
H
]†
}†

(1)
=
(
HC

†
εH

T
)†

(2)
=
(
HC

−1
ε HT

)−1
.

(4.74)

In equality (1), we use the fact that the pseudo-inverse of
[(
HHT

)−1
H
]
is HT . In equality

(2), the pseudo-inverses are changes to regular inverse because the pseudo-inverse of an full
rank square matrix is equivalent to the regular inverse. Notice Cε is generally not a diagonal
matrix because the ε is not a zero mean vector, although the elements of it is uncorrelated.
The Bayesian mean square error is explicitly,

BMSE := Tr
{ (

HC−1
ε HT

)−1 }
. (4.75)
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Conclusion and Future Work 5
In this thesis, we consider the sensor selection problems (it extends to bit allocation in

multi-bit quantization case) in two practical scenarios − one bit quantization and multi-
bit quantization. We propose to involve the consideration of the effects of realistic wireless
channel, in which the transmitted bits from sensors to the fusion center may be flipped into
their opposite values, and we characterize them as bit error rate.

In one bit quantization, the likelihood function and the related Bayesian Cramer-Rao
lower bound are derived, and we maximize the log-concave log-likelihood function to obtain
the maximum a posteriori estimate. The sensor selection problem is formulated and convex
relaxation is adopted to solve it. An equivalence theorem is also proposed that states the
equivalence relation between the solution from the convex relaxation problem and the optimal
one from exhaustive searching, under some assumptions. The numerical simulation results
verify the correction of the established model by showing that when the bit error rates or
variance of noise are higher, more sensors are needed to meet a certain level of performance.
It is also shown that when the performance metric, the minimum eigenvalue of the Bayesian
Fisher information is higher, the Bayesian mean squares error of the maximum a posteriori
estimator is accordingly smaller.

In multi-bit quantization, the properties of an quantization scheme are investigated, and
based on them, the likelihood functions, Bayesian Cramer-Rao lower bounds are derived
and maximum a posterior estimators are provided, with and without the occurrence of bit
errors. A novel approach for bit allocation is proposed. In the new approach, the number
of bits for each is indicated by a selection vector, and the cost of the number of bits for the
WSN is presented by the cost vector. Leveraging the selection vectors and the cost vector a
optimization problem is formed and convex relaxation is applied to it. The simulation results
show the validation of this new approach. To further emphasize the sparsity of the selection
vector, the traditional sparsity enhanced approach is adapted to our case. By numerical
examples, it can be seen that the new bit allocation approach can further reduce the cost
compared with the existing solution of sensor selection where analog data model is assumed.
In addition, we consider the case when no prior knowledge of θ is available, in which case
the least squares error estimator is investigated and based on it and the defined aggregated
error the Bayesian error covariance matrix and the related Bayesian mean squares error are
derived.

As for the future work, we suggest the following directions:

• We consider a WSN with one-hop communication from sensors to the fusion center.
Multi-hop communication pattern is also prevalent in the operation of WSNs, in which
the sensors remote from the fusion center will leverage their neighboring sensors as the
relaying node to transmit data to the fusion center. In this scenario, how to select
which sensors to activate is a challenging task, because we not only need to consider
the performance constraint, but also the connectivity of the whole WSN [13, 43, 5].

• Investigate the configuration of the cost vector C, such that the value of it not only
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considers the number of bits, but it can also be adjusted according to the amount of
remained energy in a sensor. By this way the remained energy will be balanced over
each sensor in the long run of the WSN.

• We consider the measurement noise as being uncorrelated over sensors. When two
sensors are near to each other, it is likely that the measurement noises are correlated.
In this case the covariance noise will not be diagonal. We can try to develop the
sensors selection and bit allocation approach with correlated noise. However, this is
also a challenging task, because it needs the expression of joint cdf of noise, that is not
available yet by now as we know.

• Investigate the new proposed model of sensor selection presented in Section 3.3.1.

• Investigate the multi-bit quantization scheme with the probabilistic extra bit that makes
the least squares error estimator unbiased.

• Extend our work in a time-variant context, i.e., the unknown parameter θ is changing
over time. In this case, we can substitute the Bayesian Cramer-Rao lower bound with
the Conditional posterior Cramer-Rao lower bound (Conditional-PCRLB) [45, 44]. The
Conditional-PCRLB depends on the previous realized data and provides a tighter lower
bound for the error covariance matrix.

• Develop a bit allocation algorithm based on the Bayesian error covariance matrix of
the least squares error estimator. Although the least squares error estimator does not
include the consideration of the prior knowledge of θ, but the related Bayesian error
covariance matrix will in general be tighter to other error covariance matrix, compared
with Bayesian Cramer-Rao lower bound. The challenge in it lies in the fact that Cε

defined in 4.73 is not a diagonal matrix. In sensor selection problems, we only to
decide which sensors to be activated, but in bit allocation the problem is generalized to
deciding the number of bits for each sensors. In this sense, it is very difficult to handle
the Bayesian error covariance matrix if Cε is not diagonal.
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