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“Philosophy, though unable to tell us with certainty what is the true answer to the doubts
which it raises, is able to suggest many possibilities which enlarge our thoughts and free
them from the tyranny of custom. Thus, while diminishing our feeling of certainty as to

what things are, it greatly increases our knowledge as to what they may be; it removes the
somewhat arrogant dogmatism of those who have never travelled into the region of

liberating doubt, and it keeps alive our sense of wonder by showing familiar things in an
unfamiliar aspect.”

– Bertrand Russell. “The Problems of Philosophy.”
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SUMMARY

Most of the mainstream cryptographic protocols that are used today rely on the assump-
tion that the adversary has limited computational power, and that a given set of mathe-
matical problems is hard to solve (on average), i.e. that there is no polynomial time algo-
rithm that solves these problems. While these assumptions are reasonable for now they
might not be as relevant for long term security. Indeed, all the communication that hap-
pens today can be recorded by an adversary who can later – when the technology allows
it – break security. There are good reasons to think that technological progress may lead
to break the assumptions made today. For example the rapidly increasing computational
power of our computer already allows one to break anything that has been encrypted us-
ing DES in the 70s and 80s in few days using regular desktop type devices. There is also
the constant improvement of the efficiency of the known algorithms that solve a class of
problems. Note that, even though the discovery of a polynomial algorithm for a problem
we believe to be hard is still possible, much weaker improvements on current algorithms
that solve these hard problems, can already be a threat for security.

One of the main goals of quantum cryptography is to make protocols safer. In prac-
tice safer means safe for a long period of time. Research in using quantum communica-
tion for cryptography has had some big success toward this goal. The best known and
mature result is that there exists a quantum protocol called Quantum Key Distribution
(QKD), that solves a cryptographic task that cannot be solved without quantum commu-
nication.

Despite its potential, quantum cryptography comes with its own challenges. Indeed,
beyond all the new infrastructure a quantum network requires in order to run these
quantum protocols, the manipulation of quantum systems is very unreliable. Devices
that prepare and measure quantum systems are noisy, faulty and in general not very
efficient. In order to achieve security in practical implementation, it is important that
quantum protocols are designed in a way that their security is tolerant to all these flaws
in the devices used. Indeed, it has been proven that these flaws may be exploited by an
adversary to bypass the security proofs.

One radical approach to this issue, is to design protocols whose security does not
dependent on the behavior of the quantum devices used in the protocol. In particu-
lar we can even assume that these devices may behave maliciously. Protocols showing
this type of security are said to be device-independent protocols. In the recent years
device-independence has successfully been included into security proofs for QKD. How-
ever there is very little work in including device-independence in the security proofs of
protocol beyond QKD. This it what we propose in this thesis. More specifically, we design
protocols for a class of cryptographic tasks called two-party cryptography, or sometimes
secure function evaluation. We also improve and extend existing device-independent
protocols for QKD.
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SAMENVATTING

De meeste gangbare cryptografische protocollen die tegenwoordig worden gebruikt, gaan
uit van de veronderstelling dat de kwaadwillende beperkte rekenkracht heeft en dat een
bepaald aantal wiskundige problemen bestaat moeilijk (gemiddeld) is op te lossen, d.w.z.
dat er geen poly-tijd algoritme is dat deze problemen oplost. Terwijl deze veronderstel-
lingen redelijk zijn voor nu zijn ze misschien niet zo relevant voor de beveiliging op lange
termijn. Inderdaad, alle communicatie die vandaag plaatsvindt kan worden bevaard
door een kwaadwillende die later - wanneer de technologie het toe staat - de beveili-
ging kan breken. Er zijn goede redenen om te denken dat technologische vooruitgang
kan leiden tot het breken van de aannames die vandaag zijn gedaan. Bijvoorbeeld , van-
wege de snel toenemende rekenkracht van onze computer kunnen we met behulp van
gewone desktopcomputers in enkele dagen alles breken dat in de jaren 70 en 80 is ge-
codeerd met DES. Er is ook een constante verbetering van de efficiëntie van de bekende
algoritmen die een klasse problemen oplossen. Merk op dat, hoewel de ontdekking van
een poly-tijd algoritme voor een probleem waarvan wij denken dat het moeilijk is, nog
steeds mogelijk is, veel zwakkere verbeteringen op de huidige algoritmen die deze grote
problemen oplossen al een bedreiging voor de veiligheid kunnen zijn.

Een van de belangrijkste doelen van kwantumcryptografie is om protocollen veiliger
te maken. In de praktijk betekent veiliger voor een lange periode veilig. Onderzoek in
het gebruik van kwantumcommunicatie voor cryptografie heeft een groot succes in de
richting van dit doel behaald. Het best bekende en het best uitgedachte resultaat is dat
er een kwantumprotocol bestaat genaamd Quantum Key Distribution (QKD), dat een
cryptografische taak oplost die niet kan worden opgelost zonder kwantumcommunica-
tie.

Ondanks zijn potentieel heeft kwantumcryptografie zijn eigen uitdagingen. Inder-
daad, naast alle nieuwe infrastructuur die een kwantumnetwerk nodig heeft om deze
kwantumprotocollen te kunnen gebruiken, is de manipulatie van kwantumsystemen
zeer onbetrouwbaar. Apparaten die kwantumsystemen produceren en meten, zijn rui-
zig, defect en in het algemeen niet zeer efficiënt. Om veiligheid te bereiken in de pra-
tische implementatie is het belangrijk dat kwantumprotocollen zó ontworpen zijn, dat
hun veiligheid niet teniet gedaan wordt door fouten in de gebruikte apparaten. Inder-
daad, het is bewezen dat deze fouten door een kwaadwillende kunnen worden uitgebuit
om de beveiligingsbewijzen te omzeilen.

Een radicale benadering van dit probleem is het ontwerpen van protocollen waarvan
de beveiliging niet afhankelijk si van het gedrag van de kwantumapparaten die in het
protocol worden gebruikt. We kunnen zelfs aannemen dat deze apparaten zich kwaad-
aardig gedragen. Er wordt gezegd dat protocollen die dit type beveiliging tonen “device-
independent” protocollen zijn. In de afgelopen jaren is “device-independence” met suc-
ces opgenomen beveiligingsbewijzen voor QKD. Er is echter heel weinig werk in het toe-
voegen van “device independence” in de beveiliginsbevewijzen die verder gaan dan QKD

xiii



xiv SAMENVATTING

Dit is wat we in dit proefschrift voorstellen. In het bijzonder ontwerpen we protocollen
voor een klasse van cryptografische taken genaamd tweepartige cryptografie of soms
veilige functie-evaluatie. Wij verbeteren ook bestaande “device-independent” protocol-
len voor QKD en breiden ze bovendien uit.
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2 1. INTRODUCTION

The intention of garbling messages in a way that makes them understandable by only
a very specific person dates back to Antiquity. At the time “cryptographic” schemes were
simple and essentially based on substitution of characters as for the famous Caesar ci-
pher. With time these schemes have become more sophisticated. In the years 1800s
cryptography started to become more systematically studied even though not yet based
on rigorous definitions and security proofs. It is during this period, late 1800s, that the
well known principle of cryptography, known as Kerckhoffs’s principle, came out. It
states, among other things, that security of a scheme should not be based on the secrecy
of the scheme but on the secrecy of a “secret key”. In the same period, the scheme now
known as one-time pad was invented. During World War II, the popularity of mechanical
and electromechanical machines allowed to design cipher schemes much more complex
than anything done before, like the now very famous Enigma Machine. These schemes,
even though very sophisticated were still not based on rigorous definitions and proofs.
In the 1940s, Shannon for the first time, defined and rigorously proved that one-time
pad gives absolute secrecy, meaning that if one is only given a single cipher, they could
never find out what message has been used to produce this cipher. It is in the 70s and
80s that modern cryptography started to use rigorous definitions and security proofs. At
the same times the idea of using the unique features of quantum mechanics for cryptog-
raphy was born [1, 2]. Nowadays, cryptography goes far beyond protecting the content
of messages. Among other things, it allows for identification, homomorphic encryption
[3], secure multipartite computation [4], secret sharing [5], anonymous communication
etc.

The use of quantum communication in cryptography allows to achieve a level of se-
curity that cannot be achieved when only using classical communication. The most fa-
mous and mature example of this is Quantum Key Distribution [2]. Indeed when using
classical communication to implement Key Distribution, one has to assume that an ad-
versary is limited in computational power, and that some mathematical problem is hard
to solve. Such assumptions are called computational assumptions. A protocol proven
secure under these assumptions is said to be computationally secure. When using Quan-
tum Key Distribution, one can remove these computational assumptions, and the pro-
tocol is then said to be statistically secure or information theoretically secure.

However, manipulating and sending quantum information is much harder than ma-
nipulating and sending classical information. In practice, this translates into high noise
level, high losses etc. Such high level of noise together with the imperfections of the
quantum devices used (e.g. single photon detectors) can be exploited by a malicious
party in order to break implicit assumptions made in the security proofs of the quan-
tum protocols, and thus break their security. For example an adversary can use lasers
in order to essentially take (partial) control of the single photon detectors used by the
honest parties, and decide which of the detector will click or not [6, 7].

A promising approach to solve this problem consists in trying to design protocols
whose security is independent of the inner working of the quantum devices. This way
even if the adversary takes control of the quantum devices used by the honest parties, se-
curity can be guaranteed. This approach is called device-independence. In this context
the quantum devices are modeled as black boxes solely characterized by the probability
distribution of their outputs given their inputs. To achieve device-independence, one
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somehow needs to test the quality of their devices. In general, this test is performed by
using the non-local property of quantum mechanics via the use of Bell’s inequality [8, 9].
Indeed if the probability distribution of the inputs and outputs of the devices allows for
the violation of Bell’s inequality, then the amount by which Bell’s inequality is violated
can be seen as a constraint the probability distribution has to satisfy [10]. This allows to
prove security for several quantum protocols in the DI settings.

1.1. CHALLENGES OF DEVICE-INDEPENDENCE
While device-independence provides strong security guarantees, it is still hard to prove
security in this quite generic framework. In particular, device-independent security has
only been proven for a handful of protocols, namely protocols implementing Quantum
Key Distribution, Randomness Amplification and Randomness Expansion [11–19]. It
is still not clear whether this approach can be used for other cryptographic tasks like
two-party cryptography. Moreover, device-independent protocols are in general exper-
imentally more demanding than their trusted device counterpart, which makes them
challenging to implement in practice. Indeed device-independent protocols in general
require a lot more rounds to achieve the same security as their device-dependent coun-
terpart, and in general they tolerate less noise.

In this thesis, we aim at applying this device-independent approach to other crypto-
graphic protocols. We will also improve the efficiency, and benchmark existing device-
independent protocols with the intent of easing experimental challenges, and eventually
permitting the implementation of these protocols in the near future.

1.2. CHAPTER OVERVIEW
This thesis is divided in 7 chapters. The first two chapters (including this one) are intro-
ductory chapters. They provide the reader with essential notation and definitions that
will be used throughout the thesis. From chapter 3 to 6 we introduce new protocols and
prove their security with diverse degrees of device-independence.

Chapter 2: This chapter is a preliminary chapter which provides the reader with notions
of quantum information theory as well as with the cryptographic primitives that
we will use in this thesis. The reader will also find in this chapter the notation that
will be used across all chapters.

Chapter 3: In this chapter we improve the device-independent security proof provided
in [20] for two-party cryptography in the scenario where the devices are assumed
to be IID (see IID-Assumption 2.4.2 in Chapter 2). In particular our new proof
allows to tolerate a more powerful adversary while using the same amount of re-
sources for the honest party. Moreover we discuss the relation between security of
two-party cryptography and the security of an other task called Position Verifica-
tion.

Chapter 4: In this chapter we propose a new protocol for Conference Key Agreement
based on the use of GHZ states. We prove that this protocol is device-independently
secure. We compared the key rate achieved by our GHZ-based protocol to the
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key rate achieved by protocols based on multiple execution of (bipartite) Device-
Independent Quantum Key Distribution, which then only use Bell pairs.

Chapter 5: In this chapter we optimise key rate of the Device-Independent Quantum
Key Distribution Protocol (DIQKD) of [11]. We discuss the potential of different
platforms on which DIQKD could be implemented, by computing the relevant pa-
rameters that have been achieved on each of the platforms. By doing so we assess
how far each platform is from an actual implementation of DIQKD.

Chapter 6: In this chapter we present the first protocols that are secure in the measurement-
device-independent model. This is a model that is less general than the regular
device-independence model. In this model, not all quantum devices are mod-
eled as black boxes, only the measurement-devices are. On the other hand this
model allows to have better efficiency. Moreover we discuss how the security of
certain protocol can be affected by some types of imperfection of the quantum
state sources.

Chapter 7: This chapter provides with the general conclusion of the thesis together with
an outlook for future research.

REFERENCES
[1] S. Wiesner, Conjugate coding, ACM Sigact News 15, 78 (1983).

[2] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and
coin tossing, Theoretical Computer Science 560, Part 1, 7 (2014), theoretical As-
pects of Quantum Cryptography – celebrating 30 years of {BB84}.

[3] C. Gentry et al., Stoc, Vol. 9 (2009) pp. 169–178.

[4] D. Chaum, C. Crépeau, and I. Damgard, Proceedings of the twentieth annual ACM
symposium on Theory of computing (1988) pp. 11–19.

[5] A. Shamir, How to share a secret, Communications of the ACM 22, 612 (1979).

[6] V. Makarov, A. Anisimov, and J. Skaar, Effects of detector efficiency mismatch on se-
curity of quantum cryptosystems, Phys. Rev. A 74, 022313 (2006).

[7] S. Sajeed, I. Radchenko, S. Kaiser, J.-P. Bourgoin, A. Pappa, L. Monat, M. Legré, and
V. Makarov, Attacks exploiting deviation of mean photon number in quantum key
distribution and coin tossing, Phys. Rev. A 91, 032326 (2015).

[8] J. S. Bell, On the eintein podolsky rosen paradox, Physics 1, 195-200 (1964).

[9] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test
local hidden-variable theories, Phys. Rev. Lett. 23, 880 (1969).

[10] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality,
Rev. Mod. Phys. 86, 419 (2014).

http://dx.doi.org/ http://dx.doi.org/10.1016/j.tcs.2014.05.025
http://dx.doi.org/ 10.1103/PhysRevA.74.022313
http://dx.doi.org/ 10.1103/PhysRevA.91.032326
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/ 10.1103/RevModPhys.86.419


REFERENCES

1

5

[11] R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, and T. Vidick, Practical device-
independent quantum cryptography via entropy accumulation, Nature Communi-
cations 9, 459 (2018).

[12] U. Vazirani and T. Vidick, Fully device-independent quantum key distribution, Phys.
Rev. Lett. 113, 140501 (2014).

[13] S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz,
S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Random numbers
certified by bell’s theorem, Nature 464, 1021 (2010).

[14] J. Barrett, R. Colbeck, and A. Kent, Unconditionally secure device-independent
quantum key distribution with only two devices, Phys. Rev. A 86, 062326 (2012).

[15] J. Bouda, M. Pawłowski, M. Pivoluska, and M. Plesch, Device-independent random-
ness extraction from an arbitrarily weak min-entropy source, Phys. Rev. A 90, 032313
(2014).

[16] M. Kessler and R. Arnon-Friedman, Device-independent randomness amplification
and privatization, arXiv preprint arXiv:1705.04148 (2017).

[17] R. Gallego, L. Masanes, G. De La Torre, C. Dhara, L. Aolita, and A. Acín, Full ran-
domness from arbitrarily deterministic events, Nature Communications 4 (2013),
10.1038/ncomms3654.

[18] C. A. Miller and Y. Shi, Universal security for randomness expansion from the spot-
checking protocol, SIAM Journal on Computing 46, 1304 (2017).

[19] R. Colbeck and R. Renner, Free randomness can be amplified, Nature Physics 8, 450
(2012).

[20] J. Kaniewski and S. Wehner, Device-independent two-party cryptography secure
against sequential attacks, New Journal of Physics 18, 055004 (2016).

http://dx.doi.org/ 10.1038/s41467-017-02307-4
http://dx.doi.org/ 10.1038/s41467-017-02307-4
http://dx.doi.org/ 10.1103/PhysRevLett.113.140501
http://dx.doi.org/ 10.1103/PhysRevLett.113.140501
http://dx.doi.org/ 10.1038/nature09008
http://dx.doi.org/ 10.1103/PhysRevA.86.062326
http://dx.doi.org/ 10.1103/PhysRevA.90.032313
http://dx.doi.org/ 10.1103/PhysRevA.90.032313
http://dx.doi.org/10.1038/ncomms3654
http://dx.doi.org/10.1038/ncomms3654
http://stacks.iop.org/1367-2630/18/i=5/a=055004




2
PRELIMINARIES

“The language of science is the language of probability, and not of p-values.”

– Luis Pericchi

In this chapter we introduce quantum information formalism, the common notation used
across all the chapters, as well as the main cryptographic primitives and concepts of this
thesis.

7
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NOTATION
In this thesis we will write An

1 to denote the string A1, . . . , An . We will use [n] as a short-
hand notation for the set {1, . . . ,n}. We denote by “log” the logarithm to base 2 and by
“ln” the natural logarithm.

2.1. DISCRETE PROBABILITY THEORY
A common ground to all areas of information theory is the use of probabilities. In this
section we briefly introduce (discrete) probability theory. We point the reader to [1] for
more details on probability theory.

2.1.1. DISCRETE PROBABILITY SPACES

Intuitively, in an “experimental situation”, probabilities give a measure of certainty over
all the different possible outcomes of the experiment we consider. Note that here, the
“experiment” does not have to be an actual concrete physical realisation of an experi-
ment, but may very well be a thought experiment i.e. an hypothetical situation. A simple
example is a situation in which someone is throwing a dice, in which case the set of pos-
sible outcomes is simply the set of faces (or corresponding numbers) of the dice. This
set is usually referred as the sample space and is often denotedΩ. In a given experiment
one may ask what the probability is that the outcome satisfies a certain condition. For
the example of the dice, one may ask what the probability is that the number on the
face of the dice is odd, or that it is smaller than 3. Given a certain condition, the set of
outcomes satisfying this condition must obviously be a subset of sample space Ω. Each
condition will define such a subset of the sample space, so that we can identify the set of
all possible questions to a set of subset of Ω. In other words, the set of all questions one
can ask about the outcomes is formalized by a set F ⊆ 2Ω, where 2Ω denotes the power
set of Ω, i.e. the set of subset of Ω. F is called a σ-algebra. The measure of probability
will assign to each of these questions a probability, which is a number in [0,1]. As such,
a probability measure is a function µ : F 7→ [0,1].

Definition 2.1.1 (Probability space). We call the triplet
(
Ω,F ,µ

)
a probability space, if

Ω,F , and µ satisfy the following:

• Ω is a set.

• F (the σ-algebra) is a subset of 2Ω such that:

1. Ω ∈F .
This condition simply says that one should be able to ask the trivial question:
“What is the probability that the outcome is one of all the possible outcomes?”

2. ∀A ∈ 2Ω, (A ∈F ) ⇒ (Ac ∈F ), where Ac :=Ω\A is the complement of A.
This condition can be read as: for every condition A for which one can ask
what is the probability that A is satisfied, one should also be able to ask what
is the probability that A is not satisfied.
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3. For every countable family of sets
(

Ai
)∞

i=1 of 2Ω, (∀i , Ai ∈F ) ⇒ (
⋃∞

i=1 Ai ∈F ).
This condition states that one can combine different conditions into a single
one.

The elements of F are called events.

• µ : F 7→ [0,1] is a function, called the probability measure, that satisfies the follow-
ing.

1. µ(Ω)=1.
This condition is very natural if one wantsΩ to be the set of all outcomes. This
conditions can be read as: the probability that the outcome is one of the possi-
ble ones is 1.

2. For every countable family of disjoint events
(

Ai
)∞

i=1, µ
(⋃∞

i=1 Ai
)=∑∞

i=1µ
(

Ai
)
.

This condition generalises the intuition that we can decompose an event into
its partition.

From this definition one can deduce the following properties.

Property 2.1.2.

• For every countable family
(

Ai
)∞

i=1 of sets in 2Ω, (∀i Ai ∈F ) ⇒ (
⋂∞

i=1 Ai ∈F ). This

follows from the fact that ∩i Ai =
(∪i Ac

i

)c .

• For every event A, µ(Ac ) = 1−µ(A). This follows from 1 =µ(Ω) =µ(A∪ Ac ) =µ(A)+
µ(Ac ).

In this thesis we will mostly use finite or sometimes countable probability theory.
This means that we will consider Ω to be a finite (countable) set. For finite (discrete)
probability theory it is common to take F = 2Ω. This combined with the finite (count-
able) size of Ω simplifies the situation. Indeed we can now, for every event A ∈ 2Ω, de-
fine its probability as µ(A) = ∑

x∈A µ({x}). This means that in the case of finite (count-
able) sample space one only needs to define the probability measure for every singleton
{x} ∈ 2Ω. In this case we will often use px to denote µ({x}), x ∈Ω, and the tuple (px )x∈Ω is
called a probability distribution. Similarly, we will often use Pr(A) to denote µ(A), where
A ∈ 2Ω is an event.

2.1.2. RANDOM VARIABLES
Intuitively, a random variable transforms outcomes into other outcomes. For example
let us consider a gambling game in which one has to pay 2e to participate. In the game,
a dice is thrown. The player wins 6e if and only if the outcome is larger or equal than
5. In this game the sample space can be considered as the the set of faces of the dice.
But these faces are then translated into a win or a loss. This translation is formalised
by the random variable X : Ω 7→ W , which is a function from the sample space Ω :=
{face1, face2, face3, face4, face5, face6}, into the “gain set” W := {−2,6}.

Definition 2.1.3. A random variable X : Ω 7→ E is a measurable function from a proba-
bility space (Ω,F ,µ) into a measurable set (E ,E ), where E ⊆ 2E denotes a σ−algebra on
E. We will very often take E to be a finite (countable) subset of R.



2

10 2. PRELIMINARIES

Using the same notation as above, we can define the probability distribution of the
random variable X as follows. If B ∈ E then the probability Pr(X ∈ B) that X ∈ B is given
by µ(X −1(B)), where X −1(B) := {ω ∈Ω : X (ω) ∈ B} is the preimage of B under X . Since X
is measurable we have that X −1(B) ∈F and therefore µ(X −1(B)) is well defined. If x ∈ E ,
we denote Pr(X = x) to be Pr(X ∈ {x}). Of course, this is only possible if {x} ∈ E . But since
in this thesis we will exclusively consider the case where E is finite (or countable), we will
choose E = 2E , and then we always have {x} ∈ E .

Remark 2.1.4. When the σ-algebras considered (F and E ) are the power set of there re-
spective set (Ω and E), every function is measurable. Since, in this thesis, we focus on finite
(or countable) sets, with their σ-algebra being their power set, all the random variables
we will define, will automatically be measurable. For this reason we will omit to mention
the probability space on which a random variable is defined.

When working with a random variable it is often useful to define the conditional
probability.

Definition 2.1.5. Let X be a random variable, and let A be an event such that Pr(A) > 0.
Then for any x in the codomain of X , the probability of X = x conditioned on A is defined
as

Pr(X = x|A) = Pr(X −1(x)∩ A)

Pr(A)
. (2.1)

When we consider a random variable taking value in a finite (or countable) subset of
the real numbers, we will define its expectation value as follows.

Definition 2.1.6. Let X be a random variable taking value in the finite (or countable) set
S ⊂R, then the expectation value of X , denoted E(X ), is defined as,

E(X ) := ∑
x∈S

x ·Pr(X = x), (2.2)

where Pr(X = x) :=∑
y Pr(X = x,Y = y).

Very often in this thesis we will consider a set of random variables and say that they
are independent. Intuitively, if we consider X and Y being two random variables, then
we would like to say that they are independent if for any value y that Y takes, the (con-
ditional) probability of X = x is always the same, i.e. independent of the values taken by
Y :

∀x, y, Pr(X = x|Y = y) = Pr(X = x).

To avoid problems with the definition of the conditional probability when Pr(Y = y) = 0,
we, in general, prefer to rewrite the above inequality as,

∀x, y, Pr(X = x,Y = y) = Pr(X = x)Pr(Y = y).

This generalizes to n variables as follows.

Definition 2.1.7. Let us consider X1,. . . ,Xn be n random variables taking value in some
set E. We say that these random variables are independent if ∀(x1, . . . , xn) ∈ E n ,

Pr(X1 = x1, . . . , Xn = xn) =
n∏

i=1
Pr(Xi = xi ).
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HOEFFDING INEQUALITY

The Hoeffding inequality is a very useful concentration bound that will be used many
times throughout this thesis, and which quantifies how far from its expectation value
the sum of independent and bounded random variables can be.

Theorem 2.1.8 ([2]). Let X1,. . . ,Xn to be n discrete independent real random variables
such that for any i , ai ≤ Xi ≤ bi . Let ε> 0, and X :=∑

i Xi , then,

Pr(X −E(X ) ≥ nε) ≤ exp

(
− 2n2ε2∑

i (bi −ai )2

)
. (2.3)

2.2. BASICS OF QUANTUM INFORMATION THEORY
In this section we will introduce the formalism and notation of quantum information
theory that will be used throughout this thesis. In particular, we will only focus on fi-
nite dimensional quantum information theory. The content of this section is based on
the introductory text book Nielsen and Chuang’s Quantum Computation and Quantum
Information [3], as well as on [4] and [5]. The reader already familiar with quantum in-
formation theory may skip this section.

2.2.1. HILBERT SPACES, AND LINEAR OPERATORS

HILBERT SPACES

Let H be a finite-dimensional vector space over the complex numbers equipped with an
inner product 〈·, ·〉 : H ×H 7→C. Using Dirac’s notation, the vectors of H will be written
as “kets”. For example, we will write |v〉 ∈ H . Let H ∗ be the dual space of H , i.e. the
space of linear forms (we also say linear functionals) on H . Using Dirac’s notation, a
vector of the dual is denoted with a “bra”: 〈v | ∈H ∗. The action of a linear form 〈v | ∈H ∗
onto a vector |w〉 ∈ H is denoted 〈v |w〉. For every vector |x〉 ∈ H , its dual 〈x | ∈ H ∗ is
defined through the inner product as being the unique linear form such that,

∀|v〉 ∈H , 〈x |v〉 = 〈|x〉, |v〉〉.

As a consequence, from now on, the inner product of vectors |x〉 and |y〉 will be denoted
as 〈x |y〉.

The inner product of the space H has to satisfy the following three conditions:

Conjugate Symmetry: ∀|x〉, |y〉 ∈ H , 〈x |y〉 = (〈y |x〉)∗ where here ∀z ∈ C, z∗ denotes
for the complex conjugate of z.

Right Linearity: ∀α,β ∈C and ∀|x〉, |y〉, |z〉 ∈H , 〈z |(α|x〉+β|y〉)=α〈z |x〉+β〈z |y〉.
Definite Positiveness: ∀|x〉 ∈ H , 〈x |x〉 ≥ 0 and 〈x |x〉 = 0 ⇒ |x〉 = 0, where 0 is the 0

vector of H .

BASES OF A HILBERT SPACE

A finite family of vectors {|v1〉, . . . , |vn〉} is said to be linearly independent if and only if
∀α1, . . . ,αn ∈C,

α1|v1〉+ . . .+αn |vn〉 = 0 ⇒ α1 = . . . =αn = 0.
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The span of a family of vectors is defined as,

Span(|v1〉, . . . , |vn〉) := {∑
i
αi |vi 〉 : ∀i ,αi ∈C

}
.

In a finite-dimensional Hilbert space, the cardinal of a linearly independent family
of vectors assumes a maximum value called the dimension of the space dim(H ).

A linearly independent family of vectors that has a cardinal equal to dim(H ) is called
a basis of the space. A basis spans the full space H . Moreover, a basis {|v1〉, . . . , |vdim(H )〉}
is called orthonormal if and only if ∀i , j ∈ {

1, . . . ,dim(H )
}
,

〈vi |v j 〉 = δi j ,

where δi j is the Kronecker symbol.

LINEAR OPERATOR ON HILBERT SPACES

A linear operator L from H to H ′ is a map L : H 7→H ′ such that the linearity condition
is satisfied: ∀α,β ∈C,∀|v1〉, |v2〉 ∈H ,

L
(
α|v1〉+β|v2〉

)=αL
(|v1〉

)+βL
(|v2〉

)
.

The space of linear operators from H to H ′ is denoted L (H ,H ′).
The linearity property, together with the fact that a basis spans the whole space, al-

lows one to fully characterize a linear operator L by its action on a basis. This means
that by choosing bases for spaces H and H ′, a linear operator L can be represented by
a matrix (written in these bases). Let us denote these bases by {|ei 〉} and {|e j 〉}. If one
chooses these bases to be orthonormal, the matrix entry [L]i j of the matrix representing
operator L in the bases {|ei 〉} and {|e j 〉} is given by [L]i j = 〈ei |L|e j 〉.

For every operator L ∈ L (H ,H ′), the adjoint operator L† ∈ L (H ′,H ) is defined
such that ∀|v1〉 ∈H and ∀|v2〉 ∈H ′(〈v1 |L†|v2〉

)∗ = 〈v2 |L|v1〉.

We define the kernel of an operator L ∈L (H ,H ′) as

Ker(L) := {|v〉 ∈H : L|v〉 = 0}.

The image of L is
Im(L) := {|v〉 ∈H ′ : ∃|v ′〉 ∈H , L|v ′〉 = |v〉}.

The support of L is the subspace of H orthogonal to Ker(L). The rank rank(L) is the
dimension of Im(L).

In the following, we will use L (H ) as a shorthand notation for L (H ,H ). A pro-
jection is an operator P in L (H ,H ) such that P 2 = P . A projection P is said to be an
orthogonal projection if Im(P ) = Ker(P )⊥, where A⊥ denotes the subspace orthogonal to
subspace A ⊆H .

We denote by 1H the identity operator on the space H . Let L ∈ L (H ,H ′) be a
linear operator. If there exists a linear operator M ∈L (H ′,H ) such that ML = 1H and
LM = 1H ′ then M is the unique operator satisfying these two conditions, and L is said
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to be invertible. M will be called the inverse of L and will be denoted L−1. Furthermore,
if L−1 exists, it must be the case that dim(H ) = dim(H ′). The generalized inverse of
L ∈ L (H ,H ′) is the unique operator, also denoted L−1, such that L−1L = PL , where PL

denotes the projection on the support of L.

An eigenvalue of an operator L ∈ L (H ) is a number λ ∈ C (if it exists) such that
∃|vλ〉 ∈ H , |vλ〉 6= 0 for which L|vλ〉 = λ|vλ〉. The vector |vλ〉 is called an eigenvector
associated to λ.

The trace is the linear form tr : L (H ) 7→C, such that

∀L, M ∈H , tr(LM) = tr(ML) and tr(1) = dim(H ).

The trace can be written in an orthonormal basis {|e〉} as tr(L) = ∑
|e〉〈e |L|e〉. Note

that this is independent of the choice of the basis {|e〉}.

HERMITIAN, POSITIVE AND DENSITY OPERATORS

A linear operator H ∈ L (H ) such that H = H † is called a hermitian operator or a self-
adjoint operator. The set of self-adjoint operators will be denoted by Sa(H ). A self-
adjoint operator H is orthodiagonializable, meaning that there exists an orthonormal
basis in which the matrix of H is diagonal. Equivalently, this means that a matrix rep-
resenting H can be diagonalized by a unitary transformation. The eigenvalues of a self-
adjoint operator are real numbers.

The set of positive semi-definite operators, denoted P (H ), is the set of self-ajoint
operators that have non-negative eigenvalues. We will often write L ≥ 0 for L ∈ P (H ),
and L ≥ M for L−M ∈P (H ).

The set of density operators on H , denoted by S (H ), is the set of positive operators
of trace equal to 1. The set of non-normalized density operators, denoted S•(H ), is the
set of positive semi-definite operators of trace smaller or equal to 1.

Definition 2.2.1. Let f be an analytical function from I ⊆C to C, and let N ∈L (H ) be a
diagolizable operator whose eigenvalues {zi }i belong to the set I . Then we define f (N ) as
the diagonalizable operator that has the same eigenvectors as N , and whose eigenvalues
are { f (zi )}i .

SINGULAR VALUE DECOMPOSITION

For any operator L ∈ L (H ,H ′) there exists an orthonormal basis {|ei 〉} of H and an
orthonormal basis {|e ′i 〉} for H ′, such that

L =∑
i

si |e ′i 〉〈ei |, s1 ≥ . . . ≥ srank(L) > 0,

where s1, . . . , srank(L) are called the singular values of L.

The singular values, are also the non-zero eigenvalues of |L| :=
p

L†L, where for any op-
erator M ≥ 0,

p
M denotes the unique operator N ≥ 0, such that N 2 = M .
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UNITARIES AND ISOMETRIES

A unitary operator is a bijective linear map U ∈L (H ,H ′) that preserves the inner prod-
uct:

∀|v1〉, |v2〉 ∈H , 〈v1 |v2〉 = 〈v1 |U †U |v2〉.

This condition is equivalent to U †U = 1H . Since U is bijective and linear dim(H ) =
dim(H ′), and we also get that UU † = 1H ′ . The set of unitary operators acting from
space H to H ′ will be denoted as U (H ,H ′), and if H =H ′ we will denote it as U (H ).
If a linear operator V ∈ L (H ,H ′), is not bijective but still preserves the inner product,
we say that V is an isometry.

TENSOR PRODUCT OF SPACES

Tensor product of spaces will be used to describe composite systems (see Section 2.2.2).
Here, we define the tensor product of two Hilbert spaces in the finite dimensional case.

Let H1 and H2 be two finite dimensional Hilbert spaces, and let {|e i
1〉} and {|e j

2〉} be
orthonormal bases of H1 and H2 respectively. The tensor product space H1 ⊗H2 can
be defined as the space that has for orthonormal basis, the set

B1,2 := {|e i
1〉}× {|e j

2〉}, (2.4)

where {|e i
1〉}× {|e j

2〉} denotes the direct product of the finite set {|e i
1〉} and {|e j

2〉}. The ele-

ments ofB1,2 are in general denoted by |e i
1〉⊗|e j

2〉, or sometimes |e i
1〉|e

j
2〉, or even |e i

1,e j
2〉.

Moreover we will impose a “bilinearity constraint” on the space H1⊗H2, namely we re-
quire that for any |v1〉, |v ′

1〉 ∈H1, |v2〉, |v ′
2〉 ∈H2, and α ∈C,

• α(|v1〉⊗ |v2〉) = (α|v1〉)⊗|v2〉 = |v1〉⊗ (α|v2〉)

• |v1〉⊗ |v2〉+ |v1〉⊗ |v ′
2〉 = |v1〉⊗ (|v2〉+ |v ′

2〉) and
|v1〉⊗ |v2〉+ |v ′

1〉⊗ |v2〉 = (|v1〉+ |v ′
1〉)⊗|v2〉.

By definition, the finite set B1,2 is an orthonormal basis of H1 ⊗H2, and H1 ⊗H2 =
Span(B1,2). The dimension of H1 ⊗H2 satisfies dim(H1 ⊗H2) = dim(H1)×dim(H2).

Note that this definition automatically defines the inner product of the space H1 ⊗
H2 in such a way that

〈|v1〉⊗ |v2〉, |v ′
1〉⊗ |v ′

2〉
〉= 〈v1 |v ′

1〉〈v2 |v ′
2〉.

We will often write A⊗n to denote A⊗ . . .⊗ A︸ ︷︷ ︸
n times

. Here A can be an operator, a vector a

Hilbert space etc.

2.2.2. QUANTUM SYSTEMS AND QUANTUM STATES
In this section we briefly describe what we call a quantum system and a quantum state,
and how this relates to the mathematical formalism we have introduced in the previous
sections. In this thesis we only consider finite dimensional systems.

Quantum mechanics being a physical theory, talks about real physical systems like
electrons or photons. However, in this manuscript, we will abstract the notion of phys-
ical system into an abstract object that only inherits the degrees of freedom of the true
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physical system. The number of degrees of freedom will be called dimension of the sys-
tem.1

Quantum systems, also called quantum registers, will be denoted by capital letters
A,B , . . .. We will often denote |A| for logdim(A), where A is an arbitrary quantum or
classical system. In particular |A| tells us how many qubits are needed to encode all the
information of a quantum system of dimension dim(A).

Postulate 2.2.2. A quantum system A of dimension dim(A) will be modeled by a Hilbert
space H A of dimension dimH A = dim(A). The quantum state of system A will be mod-
eled by a density operator ρA acting on H A .

Intuitively the state should represent everything that can be known about the system.
We will usually denote quantum systems by Greek letters ρ,σ,τ, . . ..

When one considers two systems A and B , the composite system AB will be modeled
by the tensor space H AB :=H A⊗HB , and the joint state will be a density operator ρAB ∈
S (H AB ).

A state is called pure when it cannot be written as a convex combination of other
states. A pure state has rank 1. In this case, there exists a unit vector (unique up to a phase
factor) |Ψ〉 ∈ H , such that the state ρ = |Ψ〉〈Ψ|. The state ρ can then be represented by
the corresponding vector |Ψ〉 ∈H .

The set of states, or equivalently the set of density operators, is a convex set, meaning
that any convex combination of states is a state. If ρA and σA are states of a system A,
then pρA + (1−p)σA is also a valid state of A for p ∈ [0,1].

A state, being a positive semi-definite operator of trace one, can be written in an
orthonormal basis {|Ψi 〉} (of the underlying space H ) as,

ρ =∑
i

pi |Ψi 〉〈Ψi |,

where (pi ) are the eigenvalues of ρ, and form a probability distribution. This means that
any state can be interpreted as a probability mixture of a set of pure orthogonal states
|Ψi 〉〈Ψi |.

For a classical (non-quantum) system X , all states of X will be diagonal in a fixed
orthonormal basis. They will differ only by their eigenvalues. For example let {|x〉}x∈χ be
the fixed basis in which the classical states are written. Then a classical state on X can
be ρX =∑

x px |x〉〈x |, and an other one can be ρ′
x =∑

x p ′
x |x〉〈x |.

We can now consider a composite system X A in which X is classical and A is quan-
tum, a state of such a system is of the form,

ρX A =∑
i

px |x〉〈x |X ⊗σA|x ,

where {|x〉}x is the basis associated to the classical system X , and {σA|x }x is a finite set of
quantum states on A. These states are called classical-quantum states, or CQ-states or
even cq-states.

1 The dimension of a quantum system can be seen as the maximal number of distinct symbols one can (un-
ambiguously) encode in the system.
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In the case when we consider several classical systems, X associated to a basis {|x〉 ∈
HX } and Y associated with a basis {|y〉 ∈HY }, the state of the composite system will be
diagonal in the product basis {|x〉⊗ |y〉}, namely,

ρX Y =∑
x y

px y |x〉〈x |X ⊗|y〉〈y |Y .

SEPARABILITY AND ENTANGLEMENT

Let AB be composite system comprised of subsystem A and subsystem B . Let ρAB be the
state of system AB . The state is said to be separable across A and B if it can be written
as,

ρAB =∑
i j

pi j σA|i ⊗σB | j , (2.5)

where (pi j )i j is a probability distribution over a finite set, and σA|i is a density operator
acting on H A and σB | j is a density operator acting on HB . A state that is not separable
across A and B is said to be entangled across A and B . Note that classical states, and
CQ-states are always separable.

A separable state ρAB ∈S (H AB ) of the form ρAB =σA ⊗σ′
B is called a product state.

Moreover a state on ρAn
1
∈S (H ⊗n

A ) is said to be independent and identically distributed

(IID) when ρAn
1
= ρ⊗n

A .

SCHMIDT DECOMPOSITION

Every pure state |Ψ〉AB ∈ H A ⊗HB of a composite system AB can be decomposed as
follows,

|Ψ〉AB =∑
i

p
λi |ei 〉A ⊗|e ′i 〉B , (2.6)

where {|ei 〉} is a basis of H A and {|e ′i 〉} is a basis of HB , and where
∑

i λi = 1. Such a state
is entangled if and only if the Schmidt decomposition contains more than one term.

FROM MULTIPLE SUBSYSTEMS TO ONE SUBSYSTEM

Let ρAB be the joint state on composite system AB . Let us say that we are now only
interested in system A. In particular, we would like to find a way to transform ρAB into a
state that only describes A. To do so one only has to compute the partial trace as follows.
Let {|ei 〉} be a basis of space HB , then the marginal state on A will be,

ρA := trB (ρAB ) :=∑
i
1A ⊗〈ei |B ρAB 1A ⊗|ei 〉B . (2.7)

This definition will be justified in the section 2.2.3, when we will introduce measure-
ments.
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EXTENSIONS OF STATES

Let A be a system, and let ρA be a state of A. If there exists another system B such that
the joint state ρ′

AB of AB satisfies,

ρA = trB (ρ′
AB ), (2.8)

then the state ρ′
AB is called an extension of ρA .

Note that such a system B always exists. Indeed, let B be a system of the same di-
mension as A, and let {|e ′i 〉B } be a basis of space HB . Let {|e j 〉A} be a basis in which ρA

is diagonal i.e. ρA =∑
i pi |ei 〉〈ei |A . Consider the following pure state on AB ,

|Ψ〉AB =∑
i

p
pi |ei 〉A ⊗|e ′i 〉B .

One can check that,

ρA = trB (|Ψ〉〈Ψ|AB ),

and therefore |Ψ〉〈Ψ|AB is an extension of ρA . Moreover the above shows that a state
always has an extension that is pure, in which case the extension |Ψ〉〈Ψ|AB is called a
purification of ρA , and the system B is called the purifying system.

2.2.3. EVOLUTION OF QUANTUM SYSTEMS AND QUANTUM MEASUREMENTS
If one accepts Postulate 2.2.2 about states being described as density operators, one has
to describe evolution of such states as maps that transform any density operator acting
in some space H into a density operator acting on some, maybe different, space H ′. In
particular if M : L (H ) 7→L (H ′) is such a map, we require that for any state ρ,

M (ρ) ≥ 0 and tr
(
M (ρ)

)= 1. (2.9)

In fact the above should be true, even if M (·) only act on a subsystem of a larger
system, namely, if M : L (H ) 7→L (H ′), then for any density operator ρ ∈S (H ⊗H ′′)
we should have, M (ρ) ∈L (H ′⊗H ′′) such that eq. (2.9) holds.

Moreover, we have seen in the previous section that a state can be seen as a proba-
bilistic mixture of pure states that form a basis. This gives us a probabilistic interpreta-
tion of a state, and it is very natural to require that the evolution of a state is compatible
with this interpretation. More precisely, let ρ be a state such that ρ = ∑

i pi |Ψi 〉〈Ψi |.
This means that with some probability pi the state ρ is in fact the state |Ψi 〉〈Ψi |, in
which case, if one applies a map M on ρ, one in fact applies a map on |Ψi 〉〈Ψi |. In other
words, for all i , with probability pi the output states of map M should be M

(|Ψi 〉〈Ψi |
)
,

i.e. we would like that,

∀ρ ∈S (H ), M
(
ρ
)=M

(∑
i

pi |Ψi 〉〈Ψi |
)=∑

i
pi M (|Ψi 〉〈Ψi |). (2.10)

The equation (2.10) simply means that we require that the evolution of a state is
described by a map that is affine. Note that, since for any affine map M such that
tr(L) = 1 ⇒ tr(M (L)) = 1, there exists a linear map N such that tr(L) = 1 ⇒M (L) =N (L),
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we can choose evolution maps to be linear without affecting the underlying physics. In
this thesis we will only consider linear evolution maps.

Using linearity of such an evolution map M , one can conclude that for any linear
operator L ∈L (H ) with tr(L) 6= 0,

tr(M (L)) = tr
(

tr(L) ·M (
L/tr(L)

))= tr(L), and therefore ∀L ∈L (H ), (2.11)

we have tr(M (L)) = tr(L) (2.12)

Equations (2.9),(2.10), and (2.12) motivate the following definition and postulate about
transformation (or evolution) of quantum states.

Definition 2.2.3. Let H ,H ′,H ′′ be three Hilbert spaces. A linear map M ∈L (L (H ),L (H ′))
is called a Completely Positive and Trace Preserving (CPTP) map is it satisfies the following
properties,

Complete Positivity: For any operator ρ ∈P (H ⊗H ′′), we have M ⊗1H ′′ (ρ) ≥ 0.

Trace Preservation: For any operator L ∈L (H ⊗H ′′), we have tr
(
M ⊗1H ′′ (L)

)= tr(L).

A map will be simply called Completely Positive (CP) if it only satisfies the Complete
Positivity condition, and it will be said to be Completely Positive and Trace Non Increas-
ing (CPTNI) if the Trace Preservation condition is replaced by tr

(
M ⊗1H ′′ (ρ)

)≤ tr(ρ).

Postulate 2.2.4. Any physical transformation of a quantum state is described by a CPTP
map. CPTP maps will also be called quantum channels or simply channels.

A linear map M from some operator space L (H ) to another operator space L (H ′)
is often called a super operator, and a superoperator M is an element of L (L (H ),L (H ′)).

STINESPRING DILATION

Stinespring Dilation relates CPTP maps to unitary evolution in a higher dimensional
space.

Lemma 2.2.5 ([6]). Let M ∈L (L (H ),L (H ′)). M is CPTP if and only if there exists an
isometry V ∈L (H ,H ′⊗H ′′) such that, for any L ∈L (H ),

M (L) = trH ′′ (V LV †). (2.13)

Stinespring Dilation is in fact more general, but this version will be sufficient for the
purpose of this thesis.

In particular, since for any isometry V ∈ L (H ,H ′⊗H ′′) there exists a unitary U ∈
U (H ⊗H ′′,H ′⊗H ′′) such that ∀L ∈L (H ),

V LV † =U (L⊗|0〉〈0|) U †, (2.14)

Stinespring Dilation relates any physical evolution of a quantum system to a unitary evo-
lution of a bigger system containing the initial system. The extension added to the initial
system can be interpreted as being part of the environment.
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KRAUS DECOMPOSITION

It is sometimes convenient to decompose a CPTP into its Kraus form.

Lemma 2.2.6. Let M ∈ L (L (H ),L (H ′)). M is CPTP if and only if there exists a finite
family of operators {Kk } in L (H ,H ′), such that for any L ∈L (H ),

M (L) =∑
k

Kk LK †
k . and (2.15)∑

k
K †

k Kk =1H . (2.16)

The operators {Kk }k are called Kraus operators.

Proof. This follows from Stinespring Dilation Lemma 2.2.5. Indeed, using notation from
Lemma 2.2.5, one can choose Kk = (1⊗〈k |)V , where {|k〉} forms an orthonormal basis
of space H ′′.

The Kraus Decomposition comes very handy, for example, when it comes to relate
CPTP maps and measurements as we explain in the next section.

MEASUREMENTS

Since from Postulate 2.2.4 every transformation has to be described by a CPTP map, the
action of making a measurement should also be described by a CPTP map. In particular,
since measurement outcomes are classical values, a measurement will be modeled by a
CPTP map M from some space L (H A) (of a system A) to L (HX ⊗H A′ ) (of a CQ-system
X A′). HX denotes the Hilbert space of a classical system X that stores the measurement
outcomes (that belong to finite alphabetχ), and H A′ denotes the space a potential quan-
tum system A′.

From Lemma 2.2.6 such a channel must have a Kraus decomposition. Moreover,
since one of the output registers is classical, the Kraus operator must have have the fol-
lowing form: Kk = |xk〉⊗K ′

k , where K ′
k is an operator in L (H A ,H A′ ) such that,

∑
k K ′

k
†K ′

k =
1A . We can, thus, write the state after measurement as,

ρX A′ =M (ρA) =∑
k

KkρAK †
k =∑

k
|xk〉〈xk |⊗K ′

kρAK ′
k

†

= ∑
x∈χ

|x〉〈x |⊗ ∑
k:xk=x

K ′
kρAK ′

k
†

= ∑
x∈χ

px |x〉〈x |⊗ ∑
k:xk=x

(K ′
kρAK ′

k
†)/px ,

(2.17)

where

px := tr

( ∑
k:xk=x

K ′
kρAK ′

k
†

)
.

Therefore, the outcome x occurs with probability px and the post-measurement state
for this given outcome is

ρA′|x := ∑
k:xk=x

(K ′
kρAK ′

k
†)/px .
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Sometimes one is only interested in describing the probability distribution of the
measurement outcomes without having to describe the post-measurement state ρA′|x .
In this case, one can simplify the measurement, description as follows. In the above we
have seen that for any measurement the probability distribution is given by,

px = tr

( ∑
k:xk=x

K ′
kρAK ′

k
†

)
,

so by using cyclicity and linearity of the trace this is equivalent to

px = tr

( ∑
k:xk=x

K ′
k

†K ′
k ρA

)
.

Let us define
Px := ∑

k:xk=x
K ′

k
†K ′

k .

One can check that ∀x ∈ χ, Px ≥ 0, and
∑

x Px =1A . This motivates the following defini-
tion of POVM measurements, which are the most general description of measurements
if we are only interested in the probability distribution of the outcome.

Definition 2.2.7 (Positive Operator Valued Measure (POVM)). A POVM is a (finite) set of
operators {Px }x∈χ in L (H A), such that ∀x, Px ≥ 0, and

∑
x Px = 1A . Moreover, if ∀x, x ′ ∈

χ, Px Px′ = δx,x′Px , then the measurement is said to be a projective measurement. The
probability of getting outcome x, while performing a measurement given by POVM {Px }x∈χ
on some state ρ, is given by,

px := tr(Pxρ). (2.18)

Lemma 2.2.8. For any POVM {Px ∈ L (H )}x∈χ, there exists an isometry V ∈ L (H ,H ⊗
H ′) and a projective measurement {Πx ∈ L (H ⊗H ′)}x∈χ, such that for any state ρ ∈
S (H ) and for any outcome x,

px = tr(Pxρ) = tr(ΠxV ρV †) (2.19)

Proof. Choose V :=∑
x |x〉⊗

p
Px , andΠx := |x〉〈x |H ′ ⊗1H .

Using the definition of a general measurement (Def. 2.2.7), we can retrospectively
justify eq. (2.7), in which it is stated that the marginal state of a system A, where A is a
subsystem of system AB , is given by the partial trace of the joint state ρAB , namely,

ρA = trB (ρAB ). (2.20)

Indeed, intuitively we want that any two states which always lead to the same out-
come distribution to be equal. This means that for any two states ρ1

A and ρ2
A of system

A, we wish that

ρ1
A = ρ2

A ⇐⇒ ∀{Px }x , tr(P A
x ρ

1
A) = tr(P A

x ρ
2
A), (2.21)
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where {Px }x are POVMs. (We will see in the next section that eq. (2.21) is indeed true. It
is due to the fact that the trace distance (Def. 2.2.15) is a distance and therefore satisfies
the indiscerniblility property (Def. 2.2.10))

Moreover, according to Def. 2.2.7, if system AB is in state ρAB , then for any POVM
{P A

x }x measuring subsystem A, the probability distribution of any outcome x is given by,

px = tr
(
P A

x ρAB
)= tr

(
P A

x trB (ρAB )
)

. (2.22)

If one computes the same probability distribution using directly the marginal state ρA of
subsystem A, one gets,

px = tr
(
P A

x ρA
)

, (2.23)

Therefore for any POVM {P A
x }x and for any outcome x we have tr(P A

x ρA) = px

= tr
(
P A

x trB (ρAB )
)
, and therefore, from eq. (2.21) we must have ρA = trB (ρAB ).

Given a POVM M = {Px }x , one can define an observable as,

O =∑
x

x Px . (2.24)

The observable is an operator that allows us to compute the expectation values of the
measurement outcome of M when evaluated on a quantum state. Let X be the random
variable modeling the outcome of the measurement, then

E(X ) =∑
x

xpx =∑
x

x tr(Pxρ) = tr(Oρ). (2.25)

2.2.4. NORMS AND DISTANCE MEASURES
In this section we will introduce different norms and distances that we use in this thesis.
First we remind the reader of the definitions of a norm and a distance.

Definition 2.2.9 (Norm). A norm ‖ · ‖ is a function from a vector space V (over field K ∈
{R,C}) to real numbers such that,

• (Positive definitness). ∀|v〉 ∈V , ‖|v〉‖ ≥ 0 and ‖|v〉‖ = 0 ⇒|v〉 = 0.

• (Absolute homogeneity). ∀λ ∈ K , and ∀|v〉 ∈ V , ‖λ|v〉‖ = |λ| · ‖|v〉‖, where | · | de-
notes the absolute value of field K .

• (Triangle inequality). ∀|v〉, |w〉 ∈V , ‖|v〉+ |w〉‖ ≤ ‖|v〉‖+‖|w〉‖.

Definition 2.2.10 (Distance). Let E be a set. A distance d(·, ·) on E , is a function from
E ×E to the real numbers such that,

• (Non-negativity and indiscernibility). ∀a,b ∈ E , d(a,b) ≥ 0 and d(a,b) = 0 ⇔ a =
b.

• (Symmetry). ∀a,b ∈ E , and d(a,b) = d(b, a).

• (Triangle inequality). ∀a,b,c ∈ E , d(a,b) ≤ d(a,c)+d(c,b).

Note that a norm on a vector space induces a distance defined as ∀|v〉, |w〉 ∈ H ,
d(|v〉, |w〉) := ‖|v〉− |w〉‖.
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INDUCED NORMS

The inner product of a Hilbert space induces a norm. Namely ∀|v〉 ∈ H , ‖|v〉‖2 :=p〈v |v〉.
Remark 2.2.11. Note that the space L (H ,H ′) is also a Hilbert space with inner product
(the Hilbert-Schmidt product) defined for all L, M ∈L (H ,H ′) as,

〈L, M〉 := tr
(
L†M

)
. (2.26)

As a consequence, the Hilbert-Schmidt product induces a norm called the Hilbert-Schmidt
norm.

One can use the norm on a Hilbert spaces H and H ′ to induce a norm on the space
of linear operators L (H ,H ′) called the induced norm. This norm intuitively tells us by
how much an operator can stretch a vector.

Definition 2.2.12. Let L ∈L (H ,H ′) be a linear operator. The induced norm of operator
L is defined as,

‖L‖I := sup
|v〉∈H ,|v〉6=0

‖L|v〉‖2

‖|v〉‖2
(2.27)

SCHATTEN NORMS

Schatten norms, or Schatten p-norms are a family of norms indexed by a parameter p
that are defined as follows.

Definition 2.2.13. Let p ∈ [1,∞[, and let L ∈L (H ,H ′), then

‖L‖p :=
(∑

i
si (L)p

)1/p

, (2.28)

where si (L) are the singular values of L.

When p →∞, the Schatten p−norm tends to the operator norm ‖·‖∞, where ‖L‖∞ :=
maxi si (L). Note that the operator norm equals the induced norm ‖L‖∞ = ‖L‖I .

Property 2.2.14. Let us here list some of the properties of the Schatten p−norms that will
be useful in this thesis.

Monotonicity: For all p, p ′ ∈ [1,∞] such that p ′ ≤ p, we have, ‖ ·‖′p ≥ ‖·‖p .

Isometry invariance: Let L ∈L (H ,H ′), and p ∈ [1,∞]. For any isometries V ∈L (H ′,H ′′)
and V ′ ∈L (H ′′′,H ) we have ‖V L V ′‖p = ‖L‖p .

Hölder’s inequality: Let p ∈ [1,∞] and q such that 1
p + 1

q = 1, then for any operators

L ∈L (H ,H ′), M ∈L (H ′′,H ′)

‖LM‖1 ≤ ‖L‖p‖M‖q (2.29)

Duality: Let p ∈ [1,∞] and q such that 1
p + 1

q = 1, then for any L ∈L (H ,H ′)

‖L‖p = sup
M :‖M‖q=1

|〈L, M〉|, (2.30)

where 〈·, ·〉 is the Hilbert-Schmidt product. Note that this duality condition implies
that ‖ ·‖2 equals the Hilbert-Schmidt norm.
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TRACE DISTANCE

In this section we will introduce the trace distance. This is a distance that is used a lot for
“measuring” the distance between states, because it has an operational interpretation.
Imagine a one-player guessing game in which the player receives from a black-box a
state ρ with probability 1/2 or a state σwith a probability 1/2, and where he has to guess
which of the two states he has received from the box. If the player randomly guesses
the state without performing any measurement on the system he receives, his guess will
be correct with probability 1/2. If he measures the system he increases the probability
that his guess will be correct: For example, for a given measurement, he may get a cor-
rect guess with probability 1/2+δ, where δ > 0 is called the “distinguishing probability
advantage”. The trace distance is directly related to the best “distinguishing probability
advantage” the player can obtain, by optimizing over all the possible measurements he
can perform on the state.

Definition 2.2.15 (Trace Distance). Let L and M be operators in L (H ), then we define
the trace distance between L and M as,

∆(L, M) := sup
0≤P≤1

∣∣ tr
(

P (L−M)
)∣∣. (2.31)

It is not hard to check that the trace distance is a distance according to Def. 2.2.10. In
particular the trace distance satisfies the indiscerniblility property of a distance, which
justifies why a quantum state is fully characterized by the set of probability distribution
induced by all the possible POVM measurements (see eq. (2.21)).

If L and M are self-adjoint then one can write their trace distance as,

∆(L, M) = 1

2
‖L−M‖1 + 1

2
| tr(L−M)|, (2.32)

where ‖ ·‖1 is the Schatten 1−norm.
We will often writeσ≈ε ρ if the trace distance between state ρ and stateσ is∆(ρ,σ) ≤

ε.
Let us now see how the trace distance relates to the best distinguishing probability

advantage in the above mentioned guessing game. The best guessing probability the
player can have in the guessing game can be written as,

Pguess = sup
{Pρ ,Pσ}

1

2
tr(Pρ ρ)+ 1

2
tr(Pσσ), (2.33)

where {Pρ ,Pσ} is a POVM. But since {Pρ ,Pσ} is a POVM, we can rewrite Pσ as 1−Pρ and
thus, the guessing probability becomes,

Pguess = sup
0≤Pρ≤1

1

2
tr(Pρ ρ)+ 1

2
tr((1−Pρ)σ) (2.34)

= 1

2

(
1+ sup

0≤Pρ≤1
| tr(Pρ (ρ−σ))|) (2.35)

= 1

2

(
1+∆(ρ,σ)

)
. (2.36)
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ä
The last equation shows that the best distinguishing probability advantage δ the

player can have is bounded by 1/2 ∆(ρ,σ).
Let us spell out one last property of the trace distance. The trace distance contracts

under the action of a CPTNI map, namely for any CPTNI map M and any operator L, M ∈
L (H ),

∆
(
M (L),M (M)

)≤∆(L, M). (2.37)

This can be interpreted as: “Transformation can only erase information.” They cannot
allow to increase the distinguishability of two states.

PURIFIED DISTANCE

The purified distance is another distance that is very often used. Indeed, it is directly
related to the fidelity. Fidelity is a measure of closeness between states that is relatively
easy to estimate in an implementation, and thus relevant for experiments. In a more
theoretical perspective, a property that makes the fidelity interesting is that it behaves
nicely under extension of states, and in particular under purification. One other prop-
erty is that for pure states fidelity is linear for one of the state: If ρ,σ1, and σ2 are states
and ρ is pure, then F (ρ,ασ1 +βσ2) =αF (ρ,σ1)+βF (ρ,σ2).

Definition 2.2.16 (Purified Distance). Let ρ and σ be non-normalized states in S•(H ) ,
then their purified distance is defined as

∇(ρ,σ) :=√
1−F (ρ,σ), (2.38)

where F (ρ,σ) is the fidelity defined as,

F (ρ,σ) :=
(

tr
(|pρpσ|)+√

(1− tr(ρ))(1− tr(σ))
)2

. (2.39)

The purified distance is related to the trace distance by the following Fuchs-Van de
Graaff inequality. For any states ρ,σ ∈S•(H ),

∆(ρ,σ) ≤∇(ρ,σ) ≤√
2∆(ρ,σ). (2.40)

As for the trace distance, the purified distance contracts under the action of a CPTNI
(see eq. (2.37)).

For any two states ρA andσA on system A their fidelity can be expressed as a function
of their purification. In particular, let |ρ〉AB be any purification of ρA . Then,

F (ρA ,σA) = max
|σ〉AB

F
(|ρ〉, |σ〉)= max

|σ〉AB
|〈σ|ρ〉|2, (2.41)

where we have used that fidelity for any pure states |v〉 and |w〉 is simply |〈v |w〉|2, and
the maximum is taken over all purifications |σ〉AB of σA .

Note that for pure states ρ and σ we have that the purified distance and the trace
distance are equal: ∆(ρ,σ) =∇(ρ,σ). Combining this with equation (2.41) we get that for
any two statess ρA and σA on syatem A,

∇(ρA ,σA) = min
|σ〉AB

∆(|ρ〉AB , |σ〉AB ), (2.42)

where |ρ〉AB is a purification of ρA , and where the minimisation is taken over the purifi-
cations |σ〉AB of σA .
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2.2.5. NON LOCALITY AND CHSH INEQUALITY
In this thesis, we will be interested in non-local features of quantum mechanics, and
in particular, in the CHSH inequality. Indeed, one can use an observed violation of the
CHSH inequality in order to lower-bound some entropic quantities [7, 8]. We will use
this in many of the security proofs presented in this thesis.

We provide in this section a very short introduction to the notion of non-locality,
local hidden variables, and to the CHSH inequality. We refer a curious reader to [9] for
more information.

NON-LOCALITY

Non-locality states that space-like separated systems can influence each other. In other
words, it says that a system A can influence a system B instantaneously, no matter how
far from each other they are. Note that this does not necessarily imply that the systems
are sending a signal to each other. Non-locality should be understood as a statement on
the probability distributions of measurement outcomes of a set of local measurements
{M A

x }x and {M B
y }y . {M A

x }x denotes a POVM M A
x := {P x

a : ∀a, P x
a ≥ 0&

∑
a P x

a =1}and {M B
y }y

performed on systems A, and similarly M B
y is a POVM performed on system B . As such,

and as a first approximation, non-locality states that the joint probability distribution
p(a,b|x, y) of the outcomes a and b for any given two local measurements M A

x and M B
y

performed on systems A and B respectively cannot necessarily be factorized i.e. in gen-
eral,

p(a,b|x, y) 6= p(a|x, y)p(b|x, y). (2.43)

This means that given any measurement labeled by x on A and y on B , the outcomes
a and b are not necessarily independent; they influence each other. This does not im-
ply that one can use this non-locality in order to send a message. To do so, one would
need that the output a depends on which measurement y as been performed on B , or
reciprocally, that b depends on the measurement choice x. That is, one would need that,

∃y, y ′,∃x, p(a|x, y) 6= p(a|x, y ′) or, (2.44)

∃x, x ′,∃y, p(b|x, y) 6= p(b|x ′, y). (2.45)

Since the non-local condition eq. (2.43) does not imply the “signaling” condition
eq. (2.44) or (2.45), one can have a non-local theory that does not violate the non-signaling
principle stating that no signal can travel faster than the speed of light. Quantum me-
chanics is such a theory; it is a non-local and non-signaling theory (for space-like sepa-
rated systems).

The condition eq. (2.43) is not exactly what a non-local condition should be. Indeed,
if both systems A and B carry some shared (classical) information λ, that can be for ex-
ample a bit string, it is not very surprising that the outcomes a and b are correlated. Such
extra information will be called a local hidden variable. In this thesis, we will therefore
called a theory non-local if it is not a local hidden variable theory, which we define below.

Definition 2.2.17 ([10]). A local hidden variable theory, is a theory in which the outcome
statistics of any set of local measurements {M A

x }x on systems A and local measurements
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{M B
y }y on systems B, are such that there exists a random variable Λ taking values in some

set {λ}λ, such that, for all x, y, a,b, and λ,

p(a,b|x, y,λ) = p(a|x,λ)p(b|y,λ), (2.46)

where a and b are the outputs of the measurements performed on A and B respectively.
The random variablesΛ is called the “local hidden variable”.

Note that in the above definition we write p(a|x,λ) and p(b|y,λ) and not p(a|x, y,λ)
and p(b|x, y,λ), because we also require that a local hidden theory is non-signaling.

Definition 2.2.18. A non-local theory, is a theory that is not a local hidden variable theory.
Such a theory can be non-signaling, which is the case for example for quantum mechanics.

CHSH INEQUALITY

One of the big questions of the 20th century in physics [11] was to know whether physical
quantum systems could be described by a local hidden variable theory, or, as suggested
by the theory of quantum mechanics, whether physics is inherently non-local.

In 1964 Bell [10] formalized the notion of local hidden variables as in Definition
2.2.17, and he showed that local theories must satisfy some constraint which non-local
theories (like quantum mechanics) do not necessarily satisfy. This constraint can be ob-
served by a statistical test. In other words, Bell found a test that can tell whether our
physical world is local or not. The constraint he found, and all the constraints that were
found after him are now called Bell inequalities. In this Thesis we will focus on one of the
simplest of them, namely, we will mostly talk about the Clauser–Horne–Shimony–Holt
(CHSH) inequality [12].

The simplest way to express the CHSH inequality, is by expressing it as a bound on
the winning probability of a game called the CHSH game. Let Alice and Bob be the two
players of this game. They receive independent random bits x and y respectively. After
receiving these bits they have to output bits a and b respectively. They win the game if
and only if their output bits satisfy the following equality,

a +b = x y (mod)2. (2.47)

From the moment they receive their input bits x and y to the moment they both output
their bits a and b, they are not allowed to communicate at all. They can however agree on
an arbitrary strategy beforehand. The CHSH inequality simply states that if their strategy
can be modeled by a local hidden variable theory, then their winning probability P CHSH

w
is bounded as,

P CHSH
w ≤ 3/4. (2.48)

Quantum mechanics predicts that if Alice and Bob’s strategy is based on quantum
systems then they can achieve a winning probability up to cos(π/8)2 ≈ 0.85 > 3/4. This
means that quantum mechanics cannot be modeled by local hidden variables. Bell ex-
periments show that quantum mechanics gives the correct predictions of a violation of
the CHSH inequality (the observed P CHSH

w > 3/4). Therefore, quantum systems exhibit a
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non-local behavior. Note that quantum mechanics predicts that the states that achieve
a winning probability higher than 3/4 are necessarily entangled states. Separable states
do not violate the CHSH inequality and they show a local behavior.

The CHSH inequality is often expressed as an inequality on “two-body correlators”.
Let us consider that Alice and Bob, instead of outputting bits as in the CHSH game, they
output Ax ∈ {−1,1} and By ∈ {−1,1} when given as inputs bit x and y respectively. Then
the CHSH inequality (2.48) can be re-expressed as,

S := E (A0B0 + A0B1 + A1B0 − A1B1) ≤ 2. (2.49)

The value S ∈ [−4,4] taken by E (A0B0 + A0B1 + A1B0 − A1B1) is called the CHSH value.
In fact, any strategy between Alice and Bob that gives them some CHSH value of S, leads
to a winning probability P CHSH

w of the CHSH game given by,

P CHSH
w = 1

2
+ S

8
. (2.50)

From there one can recover that if P CHSH
w ≤ 3/4 then S ≤ 2. If, as for quantum mechanics,

P CHSH
w ≤ cos(π/8)2 = 1

2 + 1
2
p

2
then S ≤ 2

p
2. To see more precisely how P CHSH

w relates to

the CHSH value S, we point the reader to Ref. [9].

2.3. ENTROPIES
In this section we will introduce the entropic quantities that will be used throughout
this thesis as well as some of their properties. This section heavily uses definitions and
results from [5], and we point to reader to this book for more extensive discussions about
entropies.

VON NEUMANN ENTROPY

The easiest and the most know entropy for quantum states is the Von Neumann entropy
which generalizes Shannon entropy to the quantum case.

Definition 2.3.1 (Von Neumann entropy). Let ρA be a state on system A. The Von Neu-
mann entropy of ρA is defined as,

H(A)ρ :=− tr(ρA log(ρA)). (2.51)

Intuitively, this entropy measures how mixed the state ρA is. The more the state is
mixed the less one has information about system A.

Let us now consider two systems A and B in a joint state ρAB . We expect that giving
system B to some individual will increase his knowledge about system A i.e. the entropy
conditioned system B is smaller than the entropy of A alone. To more formally encom-
pass this intuition we define the conditional Von Neumann entropy by analogy to the
classical conditional Shannon entropy as,

Definition 2.3.2. Let ρAB be a state on system AB. Then the Von Neumann entropy of A
conditioned on B is defined as

H(A|B)ρ := H(AB)ρ −H(B)ρ . (2.52)
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Using the fact that Von Neumann entropy is additive under tensor product, we have
that if ρAB = ρA ⊗ρB then H(A|B)ρ = H(AB)ρ−H(B)ρ = H(A)+H(B)ρ−H(B)ρ = H(A)ρ .
This simply means that if A and B are not correlated then B does not bring any informa-
tion about A.

2.3.1. MIN- AND MAX-ENTROPY
In this thesis we will also use (smooth) min- and max-entropies [5], which are useful to
characterize the “amount of information” in the finite regime. This is in contrast to the
Von Neumann entropy which is mostly useful to characterise the amount of information
in the asymptotic limit when one is assumed to be able to repeatedly use some resource
many times independently (see 2.3.8).

Definition 2.3.3 ([5]). Let ρAB be a quantum state. The min-entropy on A conditioned on
B is,

Hmin(A|B)ρ :=− inf
σB∈S•(H )

inf
{
η ∈R : ρ ≤ 2η1A ⊗σB

}
, (2.53)

=− min
σB∈S•(H )

log
∥∥σ−1/2

B ρABσ
−1/2
B

∥∥∞ (2.54)

where σB is a non-normalized density operator on system B.

When register A is classical, the min-entropy can be interpreted as − log of the best
guessing probability of the value of A for a party having access to system B [13]. The best
guessing probability is obtained by maximizing the probability that the outcome equals
the value of A, over all measurements on system B ,

Pguess(A|B) := max
{Pa }a

∑
a

Pr(A = a) tr(PaρB |a) = 2−Hmin(A|B)ρ , (2.55)

where the maximization is taken over all POVM {Pa}a .
We will sometimes also use the max-entropy defined as,

Definition 2.3.4 ([5]). Let ρAB be a state. Then the max entropy of A conditioned on B is,

Hmax(A|B)ρ := max
σB∈S•(H )

log
∥∥σ1/2

B ρABσ
1/2
B

∥∥
1/2, (2.56)

where σB is a non-normalized density operator on system B.

CONDITIONING ON CLASSICAL INFORMATION

For any qqc-state ρABY , if one conditions the min- and max-entropies with the classical
system Y , then one can expand the expression of these entropies as follows,

Hmin(A|BY )ρ =− log

(∑
y

py 2
−Hmin(A|BY =y)ρ|y

)
, (2.57)

Hmax(A|BY )ρ = log

(∑
y

py 2
Hmax(A|BY =y)ρ|y

)
. (2.58)
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SMOOTH ENTROPIES

On many occasions it will be easier to use smoothed versions of the min- and max-
entropies.

Definition 2.3.5 ([5]). LetρAB be a non-normalized state. Let ε ∈ [
0,

√
tr(ρAB )

]
, then the

ε−smooth min- and max-entropies are defined as,

Hε
min(A|BY )ρ = sup

ρ̂∈B(ρ,ε)
Hmin(A|BY )ρ̂ , (2.59)

Hε
max(A|BY )ρ = inf

ρ̂∈B(ρ,ε)
Hmax(A|BY )ρ̂ , (2.60)

where B(ρ,ε) denotes the ball of non-normalized state centered in ρAB and of radius ε.
The radius is defined with respect to the purified distance. If ε= 0 then the smoothed min-
entropy is simply the min-entropy.

In particular, some chain rules hold for the smooth entropies, but not for the non-
smooth versions.

2.3.2. SOME ADDITIONAL PROPERTIES
When A is classical, the smooth min-entropy can be interpreted as the amount of nearly
random bits that can be extracted from A with respect to B .

Lemma 2.3.6 (Leftover Hash Lemma with smooth min-entropy [14, 15]). Let ρAn
1 B be a

classical-quantum state, where An
1 denotes the string of binary random variables A1, . . . , An ,

and let H be a 2-universal family of hash functions, from {0,1}n to {0,1}l , that maps the
classical n-bit string An

1 into K A , and let ε≥ 0. Then

‖ρK A HB −τK A ⊗ρHB‖1 ≤ 2−
1
2

(
Hε

min(An
1 |B)ρ−l

)
+2ε, (2.61)

where τK A is maximally mixed, i.e. τK A := 1K A
dimK A

.

One possible operational interpretation of the smooth max entropy we will use in
this thesis, is that it gives the amount of information one needs to get, in order to correct
a string in which some errors have been introduced.

Theorem 2.3.7 (Max entropy [16] and [17] Lemma 18). Let X and Y be random variables
held by Alice and Bob respectively. Let `ε(X |Y ) be the minimum amount of information in
bits (let denote this information by O, then |O| = `ε(X |Y )) that Alice needs to send to Bob,
such that there exists a function f such that with probability at least 1−ε X = f (Y ,O). Let
ε′+ε′′ = ε, then

`ε(X |Y ) ≤ Hε′/2
max(X |Y )+ log(8/ε′2 +2/(2−ε′))+ log(1/ε′′). (2.62)

These theorems state that smooth min- and max-entropies have operational inter-
pretation in the finite regime, i.e. for finite n. On the other hand, using the next theorem,
one can recover the fact that the operational asymptotic behavior (when n →∞) is given
at first order by the Von Neumann entropy.
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Theorem 2.3.8 (Asymptotic Equipartition Property (AEP)[18]). Letρ = ρ⊗n
AB be an IID state.

Then for n ≥ 8
5 log 2

ε2

Hε
min(An

1 |B n
1 )ρ⊗n

AB
≥ nH(A|B)ρAB −p

nδ(ε,η) (2.63)

and similarly

Hε
max(An

1 |B n
1 )ρ⊗n

AB
≤ nH(A|B)ρAB +p

nδ(ε,η) (2.64)

where δ(ε,η) = 4logη
√

log 2
ε2 and η=

√
2−Hmin(A|B)ρAB +

√
2Hmax(A|B)ρAB +1.

Many times we will use a chain rule on min-entropy stating that a conditioning quan-
tum register cannot decrease the entropy more than by its size expressed in qubits.

Theorem 2.3.9 (min-entropy chain rule ([14] or [19],eqs. (2.6))). Let ρX KQ be classical on
X K , and ε≥ 0. Then we have

Hε
min(X |KQ) ≥ Hε

min(X |K )− logdim(Q). (2.65)

2.3.3. ENTROPY ACCUMULATION THEOREM (EAT)
One of the main tools that we will use in Chapters 4 and 5 of this thesis is the Entropy Ac-
cumulation Theorem (EAT) developed relatively recently in [20, 21]. We point the reader
to [22] for a discussion about the EAT. Roughly speaking the EAT generalizes the AEP
(Theorem 2.3.8) to the case where the state ρAn

1 B n
1

is not IID. However, it requires that the
state on which the EAT is applied, satisfy a Markov condition.

Definition 2.3.10 (Markov Condition). Let ρABC be a state in S (H ABC ). We say that
ρABC satisfies the Markov condition A ↔ B ↔C if and only if

I (A : C |B)ρ = 0, (2.66)

where I (A : C |B)ρ := H(A|B)ρ +H(C |B)ρ −H(AC |B)ρ is the mutual information between
A and C conditioned on B for the state ρABC .

This condition becomes trivial when A, B and C are independent random variables.
For more details on the definition of the Markov condition see [23, section 2.2 & appendix
C].

To be more precise, the EAT applies to states of the form,

ρC n
1 An

1 B n
1 E := (trRn ◦Mn ◦ . . .◦M1 ⊗1E )(ρR0E ), (2.67)

for some arbitrary initial state ρR0E ∈ S (HR0E ) and, ∀i ∈ [n], Mi is a EAT channel de-
fined as follows.

Definition 2.3.11 (EAT channels (from [20])). For i ∈ [n] we call Mi a EAT channel if Mi

is a CPTP map from Ri−1 to Ci Ai Bi Ri such that ∀i ∈ [n]:

1. Ai ,Bi ,Ci are finite dimensional systems, Ci is classical and Ri is an arbitrary quan-
tum system.
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2. For any state σRi−1R , where R is isomorphic to Ri−1, the output state σRi Ai Bi Ci R :=
(Mi ⊗1R )σRi−1R is such that the classical register Ci can be measured from σAi Bi .

3. Any state defined as in (2.67) satisfies the following Markov conditions,

∀i ∈ [n], Ai−1
1 ↔ B i−1

1 E ↔ Bi . (2.68)

To state EAT we also need the notion of min- and max-tradeoff functions. Let P(C )
be the set of distributions on the alphabet C of Ci . For any q ∈P(C ) we define the set of
states

Σi (q) := {σCi Ai Bi Ri R = (Mi ⊗1R )(σRi−1R ) :σRi−1R ∈S (HRi−1R ) & σCi = q}. (2.69)

Definition 2.3.12. A real function fi onP(C ) is called a min-tradeoff function for a map
Mi if

fi (q) ≤ inf
σ∈Σi (q)

H(Ai |Bi R)σ, (2.70)

and max-tradeoff function for a map Mi if

fi (q) ≥ sup
σ∈Σi (q)

H(Ai |Bi R)σ. (2.71)

If Σi (q) =∅, the infimum is taken to be +∞ and the supremum −∞.

Definition 2.3.12 states that the min-(max-)tradeoff function is a lower (upper) bound
on the conditional von Neumann entropy H(Ai |Bi R)σ of a final state σCi Ai Bi Ri R , for all
states that result from the action of the channel Mi on an arbitrary initial state and ex-
hibit a particular distribution q over the classical variable Ci , where R is a side informa-
tion. Typically, when analysing protocols we will use the CPTP map Mi to model the set
of operations performed in a protocol at round i . In particular, this means that the EAT
fundamentally requires a protocol to be sequential2. Note that in the protocols we will
analyze in this thesis, Ci will be the variable that encodes the wins or the losses of a CHSH
game (or a similar game) performed in the test rounds of these protocols. Therefore, in
this thesis, the set Σi (q) can be seen as the set of states that achieve certain statistics
in the Bell test. This means that the min-tradeoff function is a lower-bound on the Von
Neumann entropy for all states which achieve some CHSH value.

Let freq(C n
1 ) be the vector in P(C ) that contains the frequency of apparition of each

of the elements of C in C n
1 . We can now state the EAT.

Theorem 2.3.13 (EAT from [20]).
Let M1, . . . ,Mn be EAT channels and ρC n

1 An
1 B n

1 E be a state as defined in (2.67), let h ∈ R, f
be an affine min-tradeoff function for all the maps Mi , i ∈ [n], and ε ∈]0,1[. For any event
Ω⊆C n such that f (freq(C n

1 )) ≥ h,

Hε
min(An

1 |B n
1 E)ρ|Ω ≥ nh − v

p
n, (2.72)

2In fact, it requires that the state produced by the studied protocol can also be produced by some sequential
protocol
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where v = 2(log(1+2dA)+d‖∇ f ‖∞e)
√

1−2log(ε ·pΩ), where dA is the maximum dimen-
sion of the system Ai . On the other hand we have,

Hε
max(An

1 |B n
1 E)ρ|Ω ≤ nh̃ + v

p
n, (2.73)

where we replace f by an affine max-tradeoff function f̃ , such that the event Ω implies
h̃ ≥ f̃ (freq(C n

1 )).

2.4. CRYPTOGRAPHY

2.4.1. DEVICE INDEPENDENCE (DI)
Many quantum protocols have been proven to be secure implicitly by assuming that the
preparation device – which prepares quantum states – or the measurement devices used
during the protocol, work as expected. However, in real implementations, measurement
devices use photon detectors that do not have 100% efficiency, and many photons are
lost in fibers etc. This may allow the adversary to tamper with these devices to get ad-
vantage and break security. This is what has been shown in [24, 25].

In order to remedy these issues, one could, each time a security flaw is discovered,
try to fix it. On the other hand, a more satisfactory approach is that one could try to fix
all possible flaws at once. Even though the latter approach may seem surprising at first,
this is the path taken by many, and it has lead to the notion of device-independence
(DI) [7, 26, 27].

The device-independent scenario models the underlying system and measurement
devices as black boxes where the only relevant information is the statistics of inputs and
outputs. In particular, we often rely on the ability of these devices to violate a Bell in-
equality. In this thesis we will focus on the CHSH inequality or some variant of it. To
check whether a set of devices can achieve Bell violation, DI protocols include some test
rounds in which the parties play a CHSH game. This will allow to collect some statis-
tics and test the quality of the device. Therefore, no assumptions on the dimension of
the quantum systems or the particular measurements performed by the devices are re-
quired. This represents a significant relaxation of the assumptions present in an imple-
mentation of, for example, the BB84 protocol [28]. However, it is important to remark
which assumptions remain present in any implementation of a DI protocol.

Assumptions 2.4.1 (Device-Independent model). In the device-independent model we
assume:

1. Isolated labs: no information is leaked from or enters Alice’s and Bob’s labs, apart
from the state distribution before the measurements and the public classical infor-
mation dictated by the protocol.

2. Isolated source: the preparation of states is independent of the measurements.

3. Trusted classical post-processing: the local classical computations are trusted.

4. Classical authenticated channel3 : all the public classical communication is per-
formed using an authenticated channel.

3This condition only applies when it makes sense, i.e. when at least two parties trust each other and defend
again an external adversary.
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5. Trusted Random Number Generators: If the parties use a Random Number Genera-
tor, we will assume that the honest parties possess independent and trusted random
number generators.

It is sometimes hard to work with this level of generality, and the protocols that are
device-independent may be much less efficient than their “trusted devices” counterpart,
which may lead one to assume further conditions.

Assumptions 2.4.2 (IID-Assumption). It is often assumed that, even if the behavior of the
devices used during the protocol can deviate arbitrarily form their honest behavior, the
devices used behave in the exact same way for each use of theses devices, independently of
the other uses:

IID-Source: If the device is a quantum state preparation device (also called source), the
state produced across the n uses of this device will have the IID form: ρAn

1
= ρ⊗n

A .

IID-Measurement Device: For all of the uses of the measurement device, each setting of
the device can be modeled by a single POVM measurement. In particular, these
POVMs only depend on the settings, not on the use of the device, so that for a fixed
setting, the POVM for the first use is the same as for any other use of the device.

In practice, the IID-Assumption is not always satisfied, and therefore, if one wants to
prove security for a practical set-up, then they would need to remove this assumption.
However, the techniques used to prove security with the IID-Assumption are often very
useful for the more general case. As such, proofs with the IID-Assumption can be seen
as first step towards full Device-Independent security.

Assumptions 2.4.3 (Measurement-Device Independence (MDI)). Sometimes, one may
still trust the preparation devices but not the measurement devices used in a protocol. In
this case we talk about Measurement-Device Independence, and only the measurement
devices are treated as black boxes, while the preparation devices are assume to be suffi-
ciently well characterized so that we know which state is produced every time it is used.

One of the reason why one would like to prove security in the MDI settings, is that
protocols in the MDI settings are often easier to implement and more efficient than DI
protocols, while providing with sufficiently good security guarantees.

2.4.2. KEY DISTRIBUTION/AGREEMENT
Key distribution, or key agreement, is the task that consists in giving to two or more
parties a random key in such a way that any external party is ignorant about the key4,
even if the external party is spying over all available communication performed during
the protocol.

If no assumption is made on the power of the external party – usually called adver-
sary, or eavesdropper – then there is no secure protocol implementing key distribution
using only classical communication. However, if one uses quantum communication,
then there exist protocols that achieve this task [28]. For historical reasons, in the case

4Being ignorant about the key, roughly speaking, means that the maximum probability of guessing the key is
2−length of key
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where only two parties want to share a key, these protocols are referred to as Quan-
tum Key Distribution (QKD) protocols, and the multyparty case is called Conference Key
Agreement (CKA).

Let K A and KB1 , . . . ,KBN−1 denote the final key held by Alice and Bob1,. . . , BobN−1, re-
spectively, after they perform a QKD protocol. A QKD protocol is secure if it is correct and
secret. Correctness is the statement that Alice and Bob share the same key at the end of
the protocol, i.e., K A = KB1 = . . . = KBN−1 . Secrecy is the statement that the eavesdropper
is totally ignorant about the final key.

More formally, the security definition we will use in this thesis goes as follows.

Definition 2.4.4. (Correctness) We will call a Device-Independent Conference Key Agree-
ment (DICKA) protocol εcorr-correct for an implementation, if Alice’s and Bobs’ keys, K A ,
KB(1) , . . . ,KB(N−1) , are all identical with probability at least 1−εcorr.

Definition 2.4.5. (Secrecy) We say that a DICKA protocol is εsec-secret for an implementa-
tion, if conditioned on not aborting Alice’s key K A is εsec-close to a key that Eve is ignorant
about. More formally for a key of length l , we want

pΩ̂ · 1

2

∥∥∥∥ρK A E |Ω̂− 1A

2l
⊗ρE |Ω̂

∥∥∥∥
1
≤ εsec,

where Ω̂ is the event of the protocol not aborting, and pΩ̂ is the probability for Ω̂.

Note that if a protocol is εcorr-correct and εsec-secret then it is εs -correct-and-secret
for εs ≥ εcorr +εsec.

Definition 2.4.6 (Security). A Key Distribution/Agreement protocol is called (εs ,εc , l )-secure
if:

1. (Soundness) For any implementation of the protocol, either it aborts with probabil-
ity greater than 1−εs or it is εs -correct-and-secret.

2. (Completeness) There exists an honest implementation of the protocol, such that the
probability of aborting the protocol is less than εc , that is 1−pΩ̂ ≤ εc .

Note that in the trusted device scenario, this definition provides very strong secu-
rity guarantees. In particular, a protocol that satisfies this definition can be composed
with other arbitrary protocols while preserving security. The protocol is then said to be
universally composable. In the device-independent settings, the situation is more com-
plicated. Indeed, in order to guarantee composibility with the DI definition one has to
destroy the devices used after each execution of a protocol and replace them by new
ones [29]. Some works address this issue [30] by using secure multi-party computation
techniques.

2.4.3. TWO-PARTY CRYPTOGRAPHY
Two party cryptography allows two parties – e.g. Alice and Bob – to jointly compute a
function f (·, ·) on their respective inputs a and b, in a way that these inputs remain pri-
vate with regard to the other party (Fig. 2.1). We stress that in a two-party protocol Alice
and Bob cannot trust each other, as opposed to a QKD protocol.
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The generality of two-party cryptography allows for many different tasks. One sim-
ple example is called private identification. Let’s say Alice is a server, and Bob is a client
who wants to connect to the server. The server (Alice) will only allow Bob to connect
if Bob inputs the good password K . Alice knows the password (or maybe some hash of
it). The two-party function they then want to implement is the following. Alice’s input
a password K ′′, and Bob′ input his guess of the password K ′, the function f (K ,K ′) out-
puts 1 to both Alice and Bob if K = K ′ and 0 otherwise. Of course, if Bob is a legitimate
user who knows the password, there is no problem, he will always input K ′ = K , and the
function will always output 1. But maybe some non-authorised client Bob′ tries to im-
personate Bob and tries to connect while not knowing the password. Of course, we do
not want that Bob′ to get any information about K while interacting with the server Al-
ice. On other hand, if a fake server Alice′ who does not know K and tries to impersonate
Alice, then we do not want Alice′ to get any information about K either.

f (·, ·)

Alice Bob
a b

f (a,b) f (a,b)

Figure 2.1: Schematic of a two-party computation. Each of the parties has an input, and they must compute
the function f on these inputs, in a way that Alice never learns Bob’s input and vice versa.

It has been shown [31] that any two party protocol can be build upon of a much
simpler task called Oblivious Transfer (OT) (see the next section). For this reason we
say that OT is universal. This makes OT a central and well-studied task in two-party
cryptography. Another well studied task is Bit Commitment (BC) (see details below). If
we limit the parties to classical communication, it can be shown that BC is not universal,
since it cannot be used to get OT [32]. However, many protocols implementing two-party
cryptographic tasks use BC as a subroutine, even thought BC is not universal in purely
classical protocols. Interestingly, when quantum communication is used in a protocol,
Bit Commitment becomes universal [33].

Unfortunately, it is well known that neither of these two tasks – OT and BC – can be se-
cure against an arbitrarily powerful adversary, even using quantum mechanics [34–36].
This sharply contrasts with QKD and other Key Agreement tasks, in which there is no in-
formation theoretically secure classical protocol, but for which using quantum systems
allows to achieve such security. These no-go results motivate the use of assumptions on
the power of the adversary. In particular, one popular assumption is the Bounded Quan-
tum Storage Model (BQSM) or its generalization, the Noisy Quantum Storage Model
(NQSM). In the BQSM the adversary is assumed to be unable to store more than a certain
amount of quantum information. In other words, the size of the adversary’s quantum
memory is bounded. On the other hand, in the NQSM the adversary is assumed to have
a quantum memory that is not perfect; it is noisy. The BQSM can be viewed as a particu-
lar case of the NQSM, where the noise erase all the information beyond a certain storage
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capacity. The NQSM allows to prove the security of protocols for OT and BC [37–41]. For
all the Chapters treating of two-party cryptography protocols we will work in the NQSM.

In the two next sections we present the variants of OT and BC that we will use in
this thesis, as well as an other primitive called Weak String Erasure (WSE). The formal
definitions we will use for these tasks are based on [39].

OBLIVIOUS TRANSFER

OT, or rather its variant called Randomized 1-out-2 Oblivious String Transfer, is a task in
which Alice receives two random strings (S0,S1), and Bob receives one of these strings SC

together with its corresponding index C (see Fig. 2.2). As explained in [39], Randomised
OT can be transformed into a non-randomised version, in which Alice can chose the
strings she “receives”.

BobAlice OT
(S0,S1) (SC ,C )

Figure 2.2: In a Randomized 1-out-2 Oblivious String Transfer, Alice should get two random l-bit strings (S0,S1)
and Bob should receive a random bit C together with SC which is one of the two strings Alice has received. Alice
should never learn C and Bob should remain ignorant about at least one of the two bit-strings Alice receives.

Informally, we say a protocol implementing this Randomized 1-out-2 Oblivious String
Transfer is secure for honest Alice, if dishonest Bob is ignorant about one of the two
strings S0 or S1 that Alice obtained. On the other hand, the protocol is secure for honest
Bob if dishonest Alice is ignorant about which string honest Bob received.

In this thesis we will use the security definition of Oblivious Transfer from [39] stated
below.

Definition 2.4.7 (Randomized 1-out-2 (l ,ε)-Oblivious String Transfer (OST)).
Let τR denote the maximally mixed state on register R.

A fully randomized 1-out-2 (l ,ε)-Oblivious String Transfer scheme is a protocol be-
tween two parties, Alice and Bob, that satisfies the following three conditions.

Correctness If both parties are honest there exists an ideal state σS0S1C SC , where S1,S1 ∈
{0,1}l and C ∈ {0,1}, such that:

• The distribution over S0,S1 and C is uniform:

σS0S1C = τS0 ⊗τS1 ⊗τC . (2.74)

• The real state ρ produced by the protocol is ε-close (in the trace distance) to the
ideal state:

ρS0S1C ŜC
≈ε σS0S1C SC . (2.75)

Security for Bob If Bob is honest, there exists an ideal state σAS0S1C such that:

• Alice is ignorant about C :

σAS0S1C =σAS0S1 ⊗τC . (2.76)
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• The real state ρ produced by the protocol is ε−close (in the trace distance) to
the ideal state:

ρAC ŜC
≈ε σAC SC . (2.77)

Security for Alice If Alice is honest, there exists an ideal state σS0S1BC such that:

• Bob is ignorant about S1−C :

σS0S1BC =σSC BC ⊗τS1−C . (2.78)

• The real state ρ is ε−close (in the trace distance) to the ideal state:

ρS0S1B ≈ε σS0S1B . (2.79)

BIT COMMITMENT

Bit Commitment is a two-phase task between two parties, Alice and Bob, where in the
first phase Alice commits to a bit of her choice to Bob. Later they can run the second
phase (the “Open” phase) where Alice reveals the bit to which she committed. Impor-
tantly, Alice should not be able to open a bit different than the one to which she commit-
ted. We also require that Bob cannot learn the value of the committed bit before Alice
opens it. The case in which Alice commits to a bit-string rather than a single bit is called
String Commitment. In the following we give a definition for a randomized version of
String Commitment, in which Alice does not get to choose the string she commits to.
This string will be chosen uniformly at random by the protocol. Note that a Randomized
String Commitment can be turned into a String Commitment scheme as explained in
[39].

BobAlice Commit
C l

1 ∈R {0,1}l
“Committed”

BobAlice Open
“Open” C l

1

Figure 2.3: Ideal Randomized String Commitment. In the first part Alice gets a random l-bit string C l
1 ∈ {0,1}l ,

and Bob is notified that the string is committed. In the second phase, Alice asks “the box” to reveal the string
to Bob.

Informally, a protocol implementing Randomized String Commitment is said to be
secure for honest Alice, if before the Open phase, dishonest Bob is ignorant about the
committed string. It is said to be secure for honest Bob, if after the Commit phase, there
exists only a single string to which dishonest Alice can open while honest Bob accepts.

In this thesis we will use the security definition of String Commitment from [39]
stated below.
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Definition 2.4.8 (Randomized String Commitment). Let τR denote the maximally mixed
state on a register R.

A (l ,ε)-Randomized String commitment scheme is a protocol between Alice and Bob
that satisfies the following three properties.

Correctness When both parties are honest, then there exists a state σC l
1C l

1F , called the

ideal state that is defined as:

• σC l
1F := τC l

1
⊗|accept〉〈accept |F ,

• The real state produced by the protocol ρC l
1C̃ l

1F is ε-close (in the trace distance)

to the ideal state σC l
1C l

1F ,
ρC l

1C̃ l
1F ≈ε σC l

1C l
1F .

Security for Alice (against dishonest Bob) When Alice is honest, Bob is ignorant about
C l

1 before the Open phase:

ρC l
1B ≈ε τC l

1
⊗ρB .

The protocol is then said to be ε-hidding.

Security for Bob (against dishonest Alice) After the Commit phase and before the pen
phase, there exists an ideal state σC l

1 AB such that for any Open algorithm, describe

by the CPTP maps OA B , in which Bob is honest, we have:

• Bob almost never accepts C̃ l
1 6=C l

1:
for (1C l

1
⊗OAB )(σC l

1 AB ) we have Pr(C̃ l
1 6=C l

1and F = accept ) ≤ ε.

• The real state produced in the commitment phase is close (in the trace dis-
tance) to the ideal state:

ρAB ≈ε σAB .

The protocol is then said to be ε-binding.

WEAK STRING ERASURE ( WSE)
Weak String Erasure (WSE) is a primitive that allows one to get OT and BC using only
classical post-processing (see [39] or see Chapter 6: in all the protocols presented, the
“preparation phase” of OT and BC protocols in fact corresponds to a protocol that im-
plements WSE). As a consequence, it is also impossible to have a protocol implementing
WSE that is secure against an all powerful adversary, even using quantum communica-
tion. Therefore, we will also treat WSE (in particular in Chapter 3) in the NQSM.

WSE is a two-party primitive, such that if Alice and Bob are honest then at the end
of its execution Alice holds a random bit string X n

1 ∈ {0,1}n and Bob holds a random
substring XI of X n

1 where I is a random subset of {1,2, . . . ,n}. WSE is secure for honest
Bob if Alice cannot guess the set I better than random chance, and for honest Alice if it
is hard for Bob to guess the entire Alice’s string, i.e. if the probability that X n

1 = X̃ n
1 is low,
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where X n
1 is the random variable corresponding to Alice’s output measurement and X̃ n

1
is the random variable corresponding to Bob’s guess, that is

∃α> 0 : Hmin(X n
1 |Bob) ≥αn

⇔∃α> 0 : Pguess(X n
1 |Bob) = 2−Hmin(X n

1 |Bob) ≤ 2−αn . (2.80)

In this thesis, we will use the definition from [39] stated below.

Definition 2.4.9 ((α,ε)−Weak String Erasure).

Correctness: If both Alice and Bob are honest, then the state ρX n
1 (XI ,I ) produced at the

end of the protocol, where Alice holds X n
1 and Bob holds (XI ,I ), is such that the

marginal ρX n
1 ,I is ε−close (in the trace distance) to τX n

1
⊗τI , where τ denotes the

maximally mixed state.

Security for Alice: If Alice is honest, then the state ρX n
1 B produced at the end of the proto-

col, where Alice holds X n
1 and Bob holds B, is such that,

∃α> 0 : Hε
min(X n

1 |B)ρ ≥αn. (2.81)

Security for Bob: If Bob is honest, then there exists an ideal state σX n
1 A(XI ,I ) such that

the marginal ρAI of the real the state ρA(XI ,I ) produced at the end of the protocol
is ε−close (in the trace distance) to σA,I , and where the ideal state σX n

1 A(XI ,I ) is
such that σX n

1 AI =σX n
1 A ⊗σI .

2.4.4. POSITION VERIFICATION (PV )
In most cryptographic protocols, the credential used by the users or by the end nodes,
is something they “know”: A secret key, a password etc. Position-Based Cryptography
(PBC) [42–44] provides another paradigm in which the only credential used is the phys-
ical position of the user/process. A central task in PBC is Position Verification (PV). In
this section, we informally describe PV.

Position Verification (PV) has three protagonists in the honest scenario, namely two
verifiers V1 and V2, and one prover P . For simplicity, we restrict to position verification in
one spatial dimension. The prover claims to be at some geographical position, and the
PV protocol permits to prove to the verifiers whether this is true. The protocol is then
secure, if the probability that one or more dishonest provers impersonate a real prover
in the claimed position, decays exponentially with the number of qubits exchanged in
the protocol.

When the devices are trusted and the prover is honest, a protocol implementing PV
can be as follows [45–49] (see Fig. 2.4). V1 prepares n EPR entangled pairs, measures
half of all the pairs in some bases Θn

1 ∈ {0,1}n to get outcomes X n
1 ∈ {0,1}n , and sends

the other half to the prover P . V2 sends Θn
1 to P ; this random string can be preshared

between the verifiers before the protocol begins. When the prover receives all the infor-
mation, he measures the halves of the EPR pairs he received in the bases Θn

1 to get X n
1

and sends it back to both verifiers. Then the verifiers check whether the prover’s answer
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is correct, and measure the time it took between the moment they sent information and
the moment they receive the answer from the prover. If the answer is correct and if the
prover replies within a predefined time ∆t , then the execution of the protocol is consid-
ered successful.

A protocol implementing PV is said secure if, for any group of dishonest prover in
which none of them is at the claimed position, the probability that the verifiers accept is
decaying exponentially in the number of messages sent by the verifiers to the the provers.

x

t

V1 P V2

M̄V1 ⊗1P

Θn
1

X n
1

ρP

MP

Θn
1

Y n
1 Y n

1

X X

∆t

Figure 2.4: V1 uses Θn
1 as an input to his device, which creates a bipartite state ρAP and sends the part ρP to

the prover P , and measures the other part ρA to produce X n
1 ∈ {0,1}n as output. At the same time V2 sendsΘn

1
to P . When P receives the state and Θn

1 , he makes a measurement on the state and obtains Y n
1 ∈ {0,1}n . He

sends Y to both verifiers. The verifiers check if Y n
1 = X n

1 (or if Y n
1 is "close enough" to X n

1 ), and measure the
time it took to get back an answer from P .

A single dishonest prover cannot cheat, because he cannot reply on time to both ver-
ifiers. More than one dishonest prover is required and, without loss of generality (in one
dimension), we can consider at most two dishonest provers whose goal is to imperson-
ate one honest prover who would be at the claimed position. In this case there exists
a general attack on the protocol [47, 50]. This attack, however, requires an exponential
amount of entanglement with respect to the amount of quantum information received
from the verifiers. Hence, it is natural to ask if security is possible when the adversaries
hold a limited amount of entanglement. In this thesis we will work in this framework of
dishonest provers.
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Quantum communication has demonstrated its usefulness for quantum cryptography far
beyond Quantum Key Distribution. One domain is Two-Party Cryptography, whose goal
is to allow two parties who may not trust each other to solve joint tasks. Another inter-
esting application is Position-Based Cryptography whose goal is to use the geographical
location of an entity as its only identifying credential. Unfortunately, security of these
protocols is not possible against an all powerful adversary. However, if we impose some
realistic physical constraints on the adversary, there exist protocols for which security can
be proven, but these so far relied on the knowledge of the quantum operations performed
during the protocols. In this chapter we improve the device-independent security proofs
of [1] for Two-Party Cryptography (with memoryless devices) and we add a security proof
for device-independent Position Verification ( also memoryless devices) under different
physical constraints on the adversary. We assess the quality of the devices by observing a
Bell violation and as for [1] security can be attained for any violation of the Clauser-Holt-
Shimony-Horne inequality.

Parts of this chapter have been published in Phys. Rev. A, 97:022307, 2018.
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VERIFICATION WITH MEMORYLESS DEVICES

3.1. INTRODUCTION
In this chapter we will improve results from [1]. In particular we show that the Device-
Independent (DI) quantum protocol for the Two-Party Cryptography (2PC) primitive
called Weak String Erasure (WSE) is secure against an adversary holding a quantum
memory twice as big as what is shown in [1]. We will then use this result to prove se-
curity of Position Verification (PV) by using the construction of [2].

As stated in Chapter 2 neither WSE not PV can be securely implemented if no as-
sumption is made on the adversary. We will therefore work in the Noisy Quantum Stor-
age Model (NQSM) [3–7] Here, the adversary is allowed to have an unlimited amount
of classical storage, but his ability to store quantum information is limited. This is a
relevant assumption since reliable storage of quantum information is challenging. Sig-
nificantly, however, security can always be achieved by sending more qubits than the
storage device can handle. Specifically, if we assume that the adversary can store at most
r qubits, then security can be achieved by sending n qubits, where r ≤ n −O(logn) [6],
which is essentially optimal since no protocol can be secure if r ≥ n [8, 9]. The cor-
responding quantum protocols require only very simple quantum states and measure-
ments – and no quantum storage – to be executed by the honest parties, and their feasi-
bility has been demonstrated experimentally [10, 11]. It is known that the Noisy Quan-
tum Storage Model allows protocols for tasks such as oblivious transfer, bit commitment,
as well as Position-Based Cryptography [2, 12–15].

In all these security proofs, however, one assumes perfect knowledge of the quantum
devices used in the protocol. In other words, we know precisely what measurements the
devices make, or what quantum states they prepare. Here, we present a general method
to prove security for 2PC and PV, in the Device-Independent (DI) model. There is a large
body of work in DI QKD (see e.g. [16–18]), but in contrast there is hardly any work in
DI 2PC. A protocol has been proposed by Silman [19] for bit commitment which does
not make physical assumptions, and hence only achieved a weak primitive. First steps
towards DI PV have also been made in [20], and for one-sided DI QKD in [14].

Achieving DI security for 2PC [1] and PV presents us new with challenges which re-
quire a different approach than what is known from QKD.

1. In QKD Alice and Bob trust each other, while Eve is an eavesdropper trying to break
the protocol. As in DI QKD we will assume that the devices used in the protocol
are made by the dishonest party.

2. In QKD, after Eve has prepared and given the devices – which she might be entan-
gled with – to Alice and Bob, there is no more direct communication between them
and Eve. On the contrary in two party cryptography, the dishonest party, who pre-
pared the devices, will receive back quantum communication from these devices.
This feature leads to different security analysis between DI QKD and DI 2PC, and
also requires us to develop new proof techniques.

In this chapter, we present a method for improving the device-independent security
of Two-Party Cryptography presented in [1] and add the device independent analysis of
position-verification. We accomplish that by first reusing the device independent model
of [1] (in particular they also use the memoryless device assumption for Alice’s devices),
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[1] This chapter

IID assumption on Alice’s devices yes yes

Bound on Pguess (cf. (2.80)) d

(
1
2 + 1

2

√
1+ζ

2

)n (
1−o(1)

) ·pd

(
1
2 + 1

2

√
1+ζ

2

)n

Memory size r := log(d) (in qubits)
for which security can be achieved

for a maximal Bell violation
r . 0.22n r . 0.45n

Security for PV no yes

Adversary memory reduction to classical adversary deals with the memory directly

Jordan’s Lemma not used
reduction of dimensionality

thanks to Jordan’s Lemma

Absolute effective
anti-commutator

used used

Table 3.1: Comparison of the proof techniques used in [1] with those of this chapter. This chapter relates the
security directly to the entanglement cost of the adversary’s storage channel, however, we borrow concepts
on how to test our quantum devices from the earlier work. Security is possible whenever Pguess ≤ 2−αn (see
equation (2.80)) for some α> 0, which depends on the dimension d of the adversary’s storage device as well as
the parameter ζ estimated during the Bell test. Our new analysis allows to prove security for a storage device
that is at least twice as large as the one allowed by the previous results. We also know that an optimal bound on
r := log(d) must satisfy r

n . 1 since attacks on WSE can be found if an adversary has a memory of r = n +O(1)
qubits.

and where to obtain DI security, Alice performs a Bell test on a subset of the quantum
systems used in the protocol. It is an appealing feature of this analysis that security can
be attained for any violation of the Clauser-Holt-Shimony-Horne (CHSH) inequality [21].
We then follow their reduction of the security of DI-WSE onto bounding the cheating
probability on a "guessing game" (see Sec. 3.1.3).

In order to analyze the bound on the probability of winning the "guessing game" that
we developed new techniques. The previous analysis [1] permitted to prove a bound
on the cheating probability proportional to the dimension d of the adversary’s quan-
tum storage (see Table 3.1). To do so, the authors first reduced the dishonest party to a
classical adversary thanks to an entropy inequality. Then they used the absolute effec-
tive anti-commutator to prove some uncertainty relations and finally lower bound some
min-entropy (which is equivalent to upper-bound the cheating probability).

Here we deal directly with a quantum adversary, which permits us to prove security
for an adversary quantum memory (of size r qubits) that is at least twice as large as in
the previous analysis (see Table 3.1). We do not know if our new bound is optimal, we
know however that the bound must satisfy r

n . 1. We would like to highlight the fact that
finding an optimal bound is highly non trivial: even in the trusted scenario, it took sev-
eral years to go from the first security proof for WSE [7] to a tight bound on the adversary
memory size [6], and the techniques used cannot, as far as we know, be extended to the
device independent scenario.

To overcome the difficulties induced by dealing directly with the adversary quantum



3

48
3. DEVICE-INDEPENDENCE FOR TWO-PARTY CRYPTOGRAPHY AND POSITION

VERIFICATION WITH MEMORYLESS DEVICES

memory we had to use different tools (see Table 3.1). While the adversary can be fully
general during the course of the protocol, we assume in this chapter that the devices he
prepared earlier are memoryless (see IID-Assumption 2.4.2 of Chapter 2), which means
that the devices behave in the same manner every time they are used. By analogy to
classical random variables such devices are often referred to as IID devices (which stands
for independent and identically distributed).

3.1.1. WEAK STRING ERASURE

To analyze 2PC protocols, we focus on a simpler primitive, namely Weak String Erasure
(WSE) [7]. In this chapter we will use the formal security definition of (α,ε)-WSE pro-
posed in [7] which we already give in Chapter 2 Definition 2.4.9.

One possible implementation of WSE [7] in case of honest parties and trusted devices
is as follows. Alice prepares n EPR entangled pairs, measures randomly half of all the
pairs in BB84 [22] bases Θ ∈ {0,1}n and gets X ∈ {0,1}n . At the same time, she sends the
other half to honest Bob who measures it in some random bases Θ′ ∈ {0,1}n and gets
Z ∈ {0,1}n . As Bob does not know Θ, he has measured some of his states in the wrong
basis, so the outcome bits corresponding to these measurements provide no information
about Alice’s outcome. At this stage, Bob does not know which of his measurement were
done in the good basis and which were done in the wrong one. After Alice and Bob have
waited for a duration ∆t , Alice sends Θ to Bob. Bob can now compare Θ with Θ′ and
deduce the set I := {k ∈ {0, . . . ,n} :Θk =Θ′

k } of indexes where Bob’s bases are the same as
Alice’s ones. For these indexes we have Zk = Xk and Bob erases all the other bits. At this
stage Bob holds (I , XI ), where XI is the substring of X corresponding to the set I .

In the device-independent version of the protocol Alice holds two devices: the main
device and the testing device. Alice uses the main device to prepare and measure states,
and the testing device to measure states. In the honest scenario, Alice first tests her de-
vices by proceeding to a Bell test following Protocol 3.2.2 (in section 3.2.1), i.e. Alice
checks that the states produced and measurements performed by the main device can
be used to violate the CHSH inequality. Then Alice and Bob proceed as in the trusted
device protocol.

In the dishonest Alice scenario, Alice is allowed to create Bob’s measurement device,
but we assume that the device is IID . If one hopes to be able to compose WSE to get
other protocols such as Oblivious Transfer or Bit Commitment the above security con-
dition is not enough. A stronger one (against dishonest Alice) is given by the following:
Let ρ̂A′B be the state after the execution of WSE, where B := (I , XI ) (X is the random
variable for the bit string X and XI is the random variable for the substring XI of X ) is
held by Bob and A′ is an arbitrary quantum register held by Alice. WSE is secure for an
honest Bob if it exists a state τA′ X̂ I such that τA′ X̂ I = τA′ X̂ ⊗ 1

|I | and that for any given
set I , τA′ X̂I I = ρ̂A′XI I . We leave open the question of whether this definition is strong
enough to get any composability statement in the Device Independent setting [23].

In the dishonest Bob scenario, we can assume that it is Bob who created Alice’s de-
vices to gain extra information and compromise Alice’s security. Consequently, at the
very beginning of the protocol, Alice needs to test her devices (thanks to a Bell test). She



3.1. INTRODUCTION

3

49

then uses the device n times to produce a bipartite state ρAB = σ⊗n
AB (IID assumption),

where σAB is an unknown but fixed state, measures the ρA part to get X ∈ {0,1}n and
sends the ρB part to Bob. Bob can proceed to any kind of operation not necessarily IID
on ρB and stores the outcome for the duration ∆t to get a cq-state ρK B ′ . When he re-
ceivesΘ from Alice he performs a general measurement on his cq-state which produces
the guess X̃ . Bob’s cheating is considered successful if X̃ = X . However, as his quantum
storage is assumed to be bounded (or noisy) which impose a restriction on the possible
state Bob can hold, and permits us to show that,

• WSE is secure: for Alice against dishonest Bob who holds a bounded (or noisy)
storage device of size up to r . 0.45n (n being the number rounds of the proto-
col) and is allowed to create the honest party’s devices (but these devices have to
be memoryless), and for Bob against dishonest Alice. This improves the previous
known security proof [1] where security was shown for r . 0.22n.

To establish this result we proceeded in a similar way as in [1], that’s to say we reduce
the security of WSE to a bound on the probability of winning what we call a "guess-
ing game". The main difference between our approach and the one presented in [1] is
that we introduce new techniques to analyze this guessing game (more details about the
guessing game are provided in section 3.1.3). As mentioned above our analysis improves
the size of (dishonest) Bob’s quantum memory that can be securely tolerated by a DI-
WSE protocol. More precisely we show that the protocol is secure as long as the size
(measured in qubits) r of Bob’s quantum memory is r . 0.45n (where n the number of
round of the protocol), while [1] shows security for r . 0.22n.

The detailed Weak String Erasure protocol is presented in section 3.3.1 (Protocol
3.3.1). The precise formal result is presented in the Corollary 3.3.3 in section 3.3.1.

3.1.2. POSITION VERIFICATION
We use the security proof of WSE together with the security reduction of [2] to show
device independent security for PV.

Note that to make the security reduction from PV to WSE we use a model introduced
in [2] where the dishonest provers do not have access to quantum channels but only
to limited entanglement and arbitrary classical communication. However they can use
teleportation with their entanglement to recreate a quantum channel. Therefore this
model is in fact equivalent as to considering dishonest provers having access to limited
entanglement and limited quantum channels (and arbitrary classical communication).
Moreover if the dishonest provers have access to arbitrary quantum channels they can
use them to prepare and store an arbitrary amount of entanglement before the protocol
starts as shown in Fig. 3.4 in Technical Details section 3.5.3 which would lead to known
attacks.

As security of PV can be reduced to the security of WSE, we prove that

• PV is secure against adversaries who share a "noisy" entangled state and who can-
not use quantum communication but are allowed to create the honest party’s de-
vices (these devices have to be memoryless).

The precise formal result is presented in Lemma 3.3.11, and this follows from a tech-
nical result informally presented in the next section.
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3.1.3. METHODS
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Figure 3.1: Security is possible for any violation of the CHSH inequality, but depending on the violation we
need to send a larger number of qubits n.

In order to prove DI security for Weak String Erasure and Position Verification, we an-
alyze a related task known as the post-measurement guessing game. This is a two-player
game where Alice plays against Bob. Alice inputs a bit string into her main device and
receives an output string; Bob wins the game if he guesses correctly the output of Alice’s
device given his knowledge of Alice’s input.

In the DI version, Alice demands that she has another test device different from her
main device and dishonest Bob is allowed to create these two devices of Alice (Fig. 3.2).
Alice can use these two devices to perform a Bell test (CHSH game), which certifies the
quality of the devices. Having tested her devices, Alice uses the main device to prepare
a bipartite (arbitrary) state and measures half of it by inputting Θ ∈ {0,1}n in her main
device, gets an outcome X ∈ {0,1}n , and sends the other part of the quantum system to
Bob. Later she sends him the input she used to perform her measurements. Once Bob
has received all information he has to guess Alice’s measurement outcome X .
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Figure 3.2: Alice is in possession of two devices prepared by Bob: The "main device" permits Alice to prepare a
bipartite state ρAB and measure the ρA part of it according to a list of bases Θ ∈ {0,1}n . The "testing device"
measures according to a list of bases t ∈ {0,1}m . These two devices are assumed to be memoryless (or IID).
A dishonest Bob is assumed to be only limited by the dimension of his quantum memory, so he is allowed to
make arbitrary measurements on states of dimension at most d .

The main device prepares a bipartite state ρAB = σ⊗n
AB (the tensor form follows the IID assumption),

one part ρA is measured by the main device, with the measurement settings specified by a random bit string
Θ ∈ {0,1}n , to produce the bit string X ∈ {0,1}n . The other part ρB of the state is sent to a switch that Alice
controls. As the devices are memoryless, Alice can first test her devices, and so sets her switch such that the
system B is sent to the testing device. She then repeatedly performs the CHSH test to estimate the violation.
After that she sets her switch so that the system B is sent to Bob. Bob’s goal is to guess Alice’s output X , i.e. he
wants to achieve X̃ = X .

To find a bound on Bob’s winning probability, we have to assume that Bob has limited
quantum storage or else he wins with certainty: he would just have to store the quantum
system until he receives the basesΘ and then he can measure his system in those bases.
As a first step towards security against fully uncharacterized devices, we assume for now
that all devices used by Alice are memoryless or IID, so they behave in the same way
each time Alice uses them. This implies that Alice’s measurement operators are a tensor
product of binary measurement operators, and the state she prepares is also of product
form. This memoryless assumption also permits Alice to perform the Bell test before the
actual guessing game, and from this test, to estimate an upper bound ζ := S

4

p
8−S2 on a

quantity we call the effective absolute anti-commutator of Alice’s measurement denoted
ε+ [1], where S is the left hand side of the CHSH inequality. Since ε+ is always larger than
the effective anti-commutator, one can show that it gives rise to strong uncertainty rela-
tions [24].

Despite the memoryless assumption (on Alice side only), the problem remains hard.
Indeed, we cannot use techniques coming from DI QKD, since in QKD the honest parties
do not send back quantum information to the eavesdropper, in contrast to the guessing
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game. The analysis must be different. As we do not know what Alice’s measurements
are, there is no limitation on the dimension on which Alice’s devices act, so we cannot
use bounds depending on the dimensionality of Alice’s states or measurements. More-
over we have to express the absolute anti-commutator ε+ of Alice’s measurement, in a
way that allows us to relate it to Bob’s guessing probability. In the previous work on DI-
WSE [1], the authors reduced the problem to proving security against a classical adver-
sary (see Table 3.1 for a more detailed comparison between the works). This reduction
leads to a bound which is proportional to d , the dimension of the adversary’s quantum
memory. To improve this bound we must deal with Bob’s measurement, which are fully
general though acting on a space of dimension at most d .

We overcome these difficulties thanks to Jordan’s Lemma [25, 26], which permits to
block diagonalize Alice’s measurement and reduces the dimensionality of these mea-
surements into a list of qubit measurements. The price to pay is that we lose the "iden-
tically distributed" part of the IID assumption on these qubit measurements. Jordan’s
Lemma permits us to express the absolute effective anti-commutator in an adapted form,
such that we can link it to the guessing probability of Bob. Finally we prove the following.

• Main technical result: Assuming Alice’s devices are memoryless, and Bob has a
noisy storage device, there is a DI upper-bound on the success probability of Bob
in the guessing game, which decays exponentially in n, the length of Alice’s mea-
surement outcomes X ∈ {0,1}n which coincides here with the number of qubits
exchanged in the honest execution protocol. This bound scales as

p
d (where d

is the dimension of the quantum system Bob can store) and holds for any CHSH
violation, i.e. ∀S ∈]2,2

p
2] (see Fig. 3.1). This improves the previous known bound

by a factor
p

d .

The precise formal statement is given in Theorem 3.2.8.

From this result follows the DI security of WSE and PV. Indeed any attack on WSE can
be viewed as a guessing game where Bob tries to guess Alice’s complete string X . Like-
wise in the case of PV we can see any attack as a guessing game: the dishonest provers
have to guess V1’s outcome, and one can map the operations they used to the guessing
game and hence show that these operations would permit Bob to win the guessing game.
This implies that the cheating probability in PV is lower than that of the guessing game.
This statement has been shown in [2] (the remapping was done between attacks on PV
and attacks on WSE, but it is essentially the same since any attack on WSE can be seen
as a guessing game).

3.2. DEVICE-INDEPENDENT GUESSING GAME

3.2.1. PRELIMINARIES
In this chapter, because we heavily use the operator norm (Schatten ∞-norm) ‖ · ‖∞ we
will simply denote it by ‖·‖ without any subscript. Some useful properties of the operator
norms are ‖L‖2 = ‖L†L‖ = ‖LL†‖ for all L ∈ L (H ) and if A,B ∈ P (H ) such that A ≥ B
then ‖A‖ ≥ ‖B‖. Moreover, whenever A,B ,L ∈L (H ) and A† A ≥ B †B then ‖AL‖ ≥ ‖BL‖
[14, Lemma 1].



3.2. DEVICE-INDEPENDENT GUESSING GAME

3

53

Vector p-norms induce the corresponding operator p-norms, which we denote as
‖ ·‖I

p to distinguish them from Schatten p-norms. They are defined as

‖A‖I
p = sup

x 6=0

‖Ax‖p

‖x‖p
. (3.1)

In the proof of a technical Lemma in the Technical Details section, we will need the in-
duced 1-norm and ∞-norm

‖A‖I
1 = max

1≤ j≤n

m∑
i=1

|ai j | and ‖A‖I
∞ = max

1≤i≤m

n∑
j=1

|ai j | (3.2)

which can be seen as the maximum absolute column sum and maximum absolute row
sum, respectively, and where m and n are the maximum row and column indexes respec-
tively. Note that the induced 2-norm and the operator norm are the same ‖ ·‖I

2 = ‖·‖.
For a bit string x ∈ {0,1}n , |x| denotes its length n and the Hamming weight wH (x) is

the number of 1’s in x. For x, y ∈ {0,1}n the Hamming distance is defined as dH (x, y) :=
wH (x ⊕ y).

If I is a subset of [n] then by xI we mean the substring of x with indices I .
E (1)

C,LOCC(ρAB ) is the one shot entanglement cost to create a bipartite state ρAB from a
maximally entangled state using only local operations and classical communication. It
is formally defined as

E (1)
C,LOCC(ρ) := min

M ,Λ

{
log(M) :Λ(ΨĀB̄

M ) = ρAB ,Λ ∈ LOCC, M ∈N
}

, (3.3)

whereΨĀB̄
M is a maximally entangled state of dimension M

ΨĀB̄
M := |ΨĀB̄

M 〉〈ΨĀB̄
M |, |ΨĀB̄

M 〉 := 1p
M

M∑
i=1

|i Ā〉|i B̄ 〉. (3.4)

Similarly, we have E (1)
C (E ) [27, Definition 10] is the one shot entanglement cost to simu-

late a channel E : L (H A) →L (HB ) using LOCC and preshared entanglement:

E (1)
C (E ) := min

M ,Λ

{
log(M) : ∀ρA ∈L (H A), Λ(ρA ⊗ΨĀB̄

M ) = E (ρA)
}

(3.5)

where Λ is a LOCC with A Ā → 0 (no output) on Alice’s side and B̄ → B on Bob’s side, and
M ∈N. Note that we require a single LOCC map to simulate the effect of the channel E

soΛmust be independent of ρA .
In this chapter, we will call binary observable any hermitian operator A such that

A2 ≤1.

MODELS AND ASSUMPTIONS

In this section we explain in detail the assumptions imposed on the model, which are
motivated by considerations on the WSE and PV protocols and our IID constraint.

Assumptions 3.2.1. These are the assumptions on our device-independent guessing game:
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1. In device-independent protocols, the security cannot rely on the knowledge we have
about the devices used by the honest party (the inner workings are unknown). These
devices may even be maliciously prepared by the dishonest party to compromise se-
curity.

• Thus in this context, dishonest Bob is allowed to create the two devices of hon-
est Alice: the main device and the testing device. These devices are assumed to
be memoryless (or IID), which means that they behave in the same way every
time Alice uses them. In other words, the measurements made by the devices
in one round of usage depend only on Alice’s input in this round (and not on
previous rounds), and the state ρAB = σ⊗n

AB created by her device has a tensor
product form where σAB may be chosen by Bob. The testing device is used in
the testing protocol 3.2.2.

• Similarly dishonest Alice can prepare honest Bob’s measurement device. It is
also assumed to be IID .

2. When Bob receives his state ρB from Alice, we allow him to perform any quantum
operation on it. After the operation the global state can be written as ρAB ′K where
Alice’s part ρA has a tensor product form, and ρB ′K is an arbitrary qc-state held by
Bob such that |B ′| ≤ d (see assumptions 3.2.5).

3. Alice can test her devices before using them in the protocol as they are memoryless.
We describe the testing procedure in detail in the following Protocol 3.2.2.

The testing procedure aims to estimate how much the two binary measurements
made by Alice’s main device are incompatible given the prepared state. This is accom-
plished by measuring how much the main and test devices can violate the CHSH in-
equality.

Protocol 3.2.2. Let A0, A1 be the two binary observables of Alice’s main measurement
device, and T0,T1 be the two binary observables of her testing device.

1. Alice creates a bipartite state ρAB using her main device.

2. She sends the B subsystems in state ρB to her testing device and statistically
estimates S := tr(W ρAB ), where W is the CHSH operator defined as

W := A0 ⊗T0 + A0 ⊗T1 + A1 ⊗T0 − A1 ⊗T1. (3.6)

The test is said to be successful if S > 2.

The following Lemma 3.2.4 shows that this testing procedure permits Alice to esti-
mate the absolute effective anti-commutator defined as follows.
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Definition 3.2.3. Let ρAB be a bipartite state then for two binary measurements with
POVM elements {P 0

0 ,P 0
1 } and {P 1

0 ,P 1
1 }, we define the absolute effective anti-commutator

ε+ := 1

2
tr(|{A0, A1}|ρA) (3.7)

where A0 := P 0
0 −P 0

1 and A1 := P 1
0 −P 1

1 , {A0, A1} := A0 A1 + A1 A0, and ρA := trA(ρAB ).

Lemma 3.2.4 (Proposition 2 of [1]). LetρAT ∈S (H AT ) and let A0, A1 and T0,T1 be binary
observables on subsystem A and T , respectively, achieving tr(W ρAT ) =: S for S ≥ 2 with W
being the CHSH operator. The absolute effective anti-commutator on Alice’s side satisfies

ε+ ≤ S

4

√
8−S2 =: ζ ∈ [0,1]. (3.8)

This estimation ζ of ε+ is central to our proof. Indeed the security bounds we de-
rive below rely on the fact that ζ < 1, which means that any Bell violation in the testing
procedure leads to security on WSE and PV. In other words it is enough for Alice to esti-
mate ζ< 1 in the testing procedure to be sure that her devices permit her to execute the
protocols (PV or WSE) securely under

Assumptions 3.2.5. We assume that the adversarial or dishonest party cannot have access
to an unlimited and perfect quantum memory or quantum entanglement. More specifi-
cally,

1. In the guessing game and in WSE, the adversary will either have a bounded storage
or a noisy storage.

2. In PV, the adversary will either have access to bounded entanglement or noisy en-
tanglement.

3.2.2. GUESSING GAMES AND RESULTS

In this section, we describe and analyze the perfect and imperfect guessing games. As
the name suggests, the winning condition of the perfect guessing game is more strict
than that of the imperfect guessing game. Bounding the probability that Bob wins the
perfect guessing game is the first step to bounding the probability that he wins the more
general imperfect guessing game. The motivation behind the analysis of the imperfect
guessing game is to prove security of WSE and PV even if the protocol is made robust to
noise, which is inherent to any experimental implementation.

PERFECT GUESSING GAME

We state here a formal description of the perfect guessing game.
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Protocol 3.2.6. (Perfect guessing game)
Alice runs Protocol 3.2.2, if the devices pass the test successfully then she gets an es-
timate ζ < 1 that upper bounds the effective anti-commutator associated with her
measurement device and the state produced by the source. If the devices do not pass
the test Alice aborts. After this testing phase Alice and Bob proceed as follows.

1. Alice creates n identical bipartite states, chooses uniformly at random a string
Θ ∈ {0,1}n and measures her kth register using her main device with input Θk

to obtain an outcome Xk . This measurement produces an outcome string X ∈
{0,1}n . At the same time she gives all the B parts to Bob.

2. Alice waits for a duration ∆t before sending her stringΘ to Bob.

3. Bob tries to guess X using Θ and all his available information. In other words,
Bob produces an output Y and the (perfect) winning condition is Y = X .

Let us analyze this game from the perspective of quantum theory and under the
IID assumption 3.2.1. We will go through each step of the protocol again but with added
descriptive comments. In the first step of the protocol, using the device n times, Alice
produces a bipartite state ρAB = σ⊗n

AB , and chooses the measurement setting Θ to mea-

sure ρA = σ⊗n
A with the POVM {Pθ

x = ⊗
k Pθk

xk
: x ∈ {0,1}n}. This measurement can be

seen as a tensor product of two binary measurements {P 0
0 ,P 0

1 } and {P 1
0 ,P 1

1 } because of
the IID assumption. At the same time, Alice sends to Bob a state which has IID form
ρB = σ⊗n

B due to our assumption. Then, the waiting time enforces the Noisy Quantum
Storage Model: Bob is allowed to perform any quantum operation to transform B to B ′K
where B ′ is his quantum memory of dimension d and K is his (unbounded) classical
memory. Bob is allowed to perform any measurement on his system B ′, as advised by
K and Θ and his information about the state (since he prepares the devices), in order to
guess X . Note that for an honest implementation of the protocol, Alice does not need
quantum memory, which makes the protocol easy to implement.

As the security of the protocols WSE and PV are expressed in terms of cheating proba-
bility (or equivalently in terms of min-entropy), we are here interested in the probability
that Bob wins the guessing game. Indeed if this probability is low, then it means that the
probability that the two protocols PV and WSE can be cheated is low as well. To win the
guessing game Bob needs first to pass the testing phase of Protocol 6 described in Pro-
tocol 2. Therefore we will consider that Bob passes the tests with some value ζ< 1. This
value ζ constrains the possible measurement devices and source that Alice can have. Let
P(ζ) be the set of possible main measurement device and source Alice can have con-
ditioned on the fact that Bob has successfully passed the testing procedure with value
ζ< 1. More formally,

P(ζ) := {(
σAB , {P 0

0 ,P 0
1 }, {P 1

0 ,P 1
1 }

) ∈S (H AB )×P (H A)2 ×P (H A)2 : ∀i ∈ {0,1}, P i
0 +P i

1 =1A ,ε+ ≤ ζ}.

Then under Assumptions 3.2.1 and 3.2.5, and for devices Γ ∈P(ζ), Bob’s guessing prob-
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ability is defined as,

λ(n,d ,Γ) := max
ρAB ′K

qqc
dim(HB ′ )≤d

max
{F θ}

tr

(
2−n

∑
θ,x∈{0,1}n

Pθ
x ⊗F θ

x ρAB ′K

)
, (3.9)

where the first maximization is over all qqc-states ρAB ′K such that trB ′K (ρAB ′K ) =
trB (ρAB ) = ρA , where ρAB =σ⊗n

AB is the initial state as defined above and Pθ
x are the mea-

surement operators of Alice as mentioned above. F θ
x are arbitrary measurement opera-

tors of Bob acting on B ′K register. Note that the state ρB ′K := trA(ρAB ′K ) is the qc-state
that Bob gets after a quantum operation on the initial state ρB = σ⊗n

B sent to him by Al-
ice. The second maximization is a short hand for 2n separate maximizations: for each θ
we pick the POVM F θ = {F θ

x : x ∈ {0,1}n} which maximizes the sum over x.
The following Lemma, whose proof is presented in the Technical Details section,

gives a bound on the probability λ(n,d ,Γ).

Lemma 3.2.7 (Key Lemma). In a perfect guessing game where the adversary holds a bounded
quantum memory of dimension at most d, we have

λ(n,d ,Γ) ≤
p

d

1

2
+ 1

2

√
1+ζ

2

n

−
t∑

k=0

(
n

k

)
2−n

(p
d

(
1+ζ

2

)k/2

−1

)
=: B(n,d ,ζ) (3.10)

where t is defined as

t =
⌊
− logd ·

[
log

(1+ζ
2

)]−1⌋
, (3.11)

which implies that,

∀k : 0 ≤ k ≤ t ,

(p
d

(
1+ζ

2

)k/2

−1

)
≥ 0.

Observe that by forgetting the second term of B(n,d ,ζ) that is always negative, one can
check that when the size of Bob’s memory r := log(d) = κn the bound B(n,2r ,ζ) decays ex-

ponentially when n →∞ (and for constant ζ< 1) as long as κ<−2log

(
1
2 + 1

2

√
1+ζ

2

)
≈ 0.45︸ ︷︷ ︸
for ζ=0

which is an improvement of a factor 2 for the size of Bob’s memory compare to [1].

IMPERFECT GUESSING GAME

The consideration of imperfect guessing game is motivated by noise in experimental
realizations of any protocols. Allowing noise between provers and verifiers in WSE or
PQV allows these protocols to be implemented with current state-of-the-art quantum
technologies.

Formally, the imperfect guessing game consists of exactly the same steps as the guess-
ing game discussed in the previous section, except for the winning condition of Bob. Un-
like the guessing game’s strict winning condition y = x, in the imperfect guessing game
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Bob wins if his guess y is such that dH (x, y) ≤ γn for γ ∈ [0,1[, where dH (·, ·) is the Ham-
ming distance. Formally

λip(n,d ,Γ,γ) := max
ρAB ′K

qqc
dim(HB ′ )≤d

max
{F θ}

tr
(
2−n

∑
θ,x∈{0,1}n

∑
y∈{0,1}n

dH (x,y)≤γn

Pθ
x ⊗F θ

y ρAB ′K
)
, (3.12)

where Γ ∈P(ζ) (see eq. (3.9)), and γ can be understood as the maximum quantum
bit error rate (QBER) allowed in the protocol. We recover the perfect guessing game by
taking γ= 0.

One of our main results in this chapter is the following

Theorem 3.2.8 (Main Theorem). For an imperfect guessing game with the maximum
"QBER" allowed γ ∈ [0,1/2], where Bob holds a noisy storage device E such that E (1)

C (E ) ≤
log(d), the winning probability of Bob

λip(n,d ,Γ,γ) ≤ 2h(γ)nB(n,d ,ζ) =: B ′(n,d ,ζ,γ) (3.13)

where h(·) is the binary entropy and B(n,d ,ζ) is the bound defined in Lemma 3.2.7.

Proof. (sketch) We first look at the imperfect guessing game in the Bounded Quantum
Storage Model where the dimension of B ′ is bounded by d . To obtain an upper bound
on λip(n,d ,Γ,γ) we note that

tr
( ∑

x∈{0,1}n

∑
y∈{0,1}n

dH (x,y)≤γn

Pθ
x ⊗F θ

y ρAB ′K
)
= tr

( ∑
x∈{0,1}n

∑
z∈{0,1}n

wH (z)≤γn

Pθ
x ⊗F θ

x⊕z ρAB ′K
)

(3.14)

= ∑
z∈{0,1}n

wH (z)≤γn

tr
( ∑

x∈{0,1}n
Pθ

x ⊗F θ
x⊕z ρAB ′K

)
. (3.15)

Then combining the previous remark with (3.12) we have,

λip(n,d ,Γ,γ) ≤ ∑
z∈{0,1}n

wH (z)≤γn

max
ρAB ′K

qqc
dim(HB ′ )≤d

max
{F θ}

tr
( ∑

x∈{0,1}n
Pθ

x ⊗F θ
x⊕z ρAB ′K

)
(3.16)

where the first maximization is over all qqc-states compatible with the marginal on Alice.
Note that all the trace terms in the sum are equivalent since z only permutes Bob’s mea-
surement operators. Then by using the Key Lemma 3.2.7 to bound each term of the sum
over z we can write,

λip(n,d ,Γ,γ) ≤ B(n,d ,ζ)× ∑
z∈{0,1}n

wH (z)≤γn

1 (3.17)

= B(n,d ,ζ)×
bγnc∑
k=0

(
n

i

)
(3.18)
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To proceed further, we assume that γ< 1/2 so bγnc is bounded by bn/2c and therefore by
Lemma 25 of [6] we can bound the binomial sum by the binary entropy function h(·) so
that,

λip(n,d ,Γ) ≤ 2h(γ)n ·B(n,d ,ζ) =: B ′(n,d ,ζ,γ). (3.19)

It remains to extend this bound to an adversary who holds a noisy memory E such
that the one-shot entanglement cost satisfies E (1)

C (E ) ≤ log(d). Indeed, by definition of
the one-shot entanglement cost [27], the above condition means that E can be simulated
by the identity channel 1d . Then all strategies achievable with E are achievable with 1d ,
particularly the strategy which maximizes the probability of winning in the Bounded
Quantum Storage Model. This proves the Theorem.

The bound on the winning probability of the imperfect guessing game also decays
exponentially in n for suitably chosen parameters.

Lemma 3.2.9. If the maximum QBER allowed γ satisfies the following conditions

γ≤ 1/2 (3.20)

h(γ) <− log

1

2
+ 1

2

√
1+ζ

2

 (3.21)

then B ′(n,d ,ζ,γ) decays exponentially in n, when n →∞ and d ,ζ are fixed.

Note that it is always possible to have a γ which satisfies these conditions since the
right hand sides of the inequalities are strictly positive.

Proof. First note that B ′(n,d ,ζ,γ) = 2h(γ)nB(n,d ,ζ). According to Lemma 3.2.7, B(n,d ,ζ) =
p

d

(
1
2 + 1

2

√
1+ζ

2

)n

−O(nt ·2−n) It is now straightforward to see that the condition on γ im-

plies the exponential decay of B ′(n,d ,ζ,γ).

3.3. APPLICATIONS
Following the analysis of [1] the bound on the winning probability of the guessing game
can be applied to prove the security of several two-party cryptographic protocols. Here
we will apply it to prove the security of Weak String Erasure and Position Verification. For
the first protocol, we can directly consider an attack on WSE as an attack on the guessing
game. For the second protocol, as the security of PV can be reduced to the security of
WSE [2], we also get a security proof for PV.

3.3.1. DEVICE-INDEPENDENT WEAK STRING ERASURE
This section is divided into two subsections.

1. In the first we prove security of DI-WSE in the Noisy Quantum Storage Model (see
Corollary 3.3.3).
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2. The second part aims to make the transition between WSE and PV since security
of (DI) PV can be derived easily from the security of (DI) WSE in the "noisy entan-
glement" model [6]. Therefore we explain the (DI) WSE protocol in the "noisy en-
tanglement" model that is a variant of WSE in the Noisy Quantum Storage Model,
and we show security in this model.

(α,ε=0)-WSE IN THE NOISY QUANTUM STORAGE MODEL

Let the two protagonists of (α,ε)-WSE be Alice and Bob. The goal of this cryptographic
primitive is that at the end of its execution Alice holds a random bit string X and Bob
holds a random substring of X called XI . We can view this XI as X where we have
randomly erased some bits, hence the name WSE (Protocol 3.3.1). For a formal definition
of (α,ε)-WSE we refer to [7].

Protocol 3.3.1 (Weak String Erasure). In the case where Alice and Bob are honest, the
protocol is executed as follows:

1. Alice tests her devices following the testing protocol 3.2.2 and obtains ζ, an esti-
mate of an upper bound on the absolute effective anti-commutator.

2. Alice creates n identical bipartite states σAB . She chooses uniformly at random
a string Θ ∈ {0,1}n and measures her part of the kth register by inputting it and
Θk to her measurement device to get an outcome Xk . This process generates an
outcome string X ∈ {0,1}n . At the same time she sends all the B registers of σAB

to Bob.

3. Bob chooses uniformly at randomΘ′ ∈ {0,1}n , and measures his registers in the
same manner as Alice to get an outcome string X ′ ∈ {0,1}n .

4. Alice waits for a duration ∆t before sendingΘ to Bob.

5. Bob determines the index set I := {k ∈ [n] : Θ′
k = Θk }, and obtains the corre-

sponding substring X ′
I

.

At the end of the protocol Alice holds X and Bob holds (I , X ′
I

). It can be easily
checked that in the ideal implementation, X ′

I
is a substring of X so Bob does not know

the full X and Alice does not know I .

SECURITY FOR HONEST BOB

Let ρAB be the state that dishonest Alice produces at the beginning of the protocol, ρ̂A′B
the state after the execution of WSE, where B := (I , XI ) (X is the random variable for
the bit string X and XI is the random variable for the substring XI of X ) is held by Bob
and A is an arbitrary quantum register held by Alice.

WSE is secure for an honest Bob if it exists a (ideal) state τAX̂ I such that τA′ X̂ I =
τAX̂ ⊗ 1

|I | and for any given I , τAX̂I I = ρ̂A′XI I .
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Let us now take τA′ X̂ I as being the state we would obtain after the protocol 3.3.1
if Bob (in some imaginary scenario), instead of measuring the B part of state ρAB in
his chosen bases Θ′, measured it in Alice’s bases Θ while Alice performs her "cheating"
operations (an arbitrary CPTP map from A to A′) on the A system (all the other part of
the protocol being the same).

We show in the following theorem that this definition for the state τAX̂I I satisfies the
two properties described above, and hence that the protocol 3.3.1 implements a secure
WSE for Bob.

Theorem 3.3.2. The protocol 3.3.1 realizes a secure WSE for Bob. Indeed the state τA′ X̂ I

defined above satisfies the two required relations:

• τA′ X̂I I = ρ̂A′X ′
I

I ,

• τA′ X̂ I = τA′ X̂ ⊗ 1
|I | ,

where ρ̂A′X ′
I

I is the real state produced after the excution of WSE.

Proof. Let us first see why τA′ X̂ I = τA′ X̂ ⊗ 1
|I | . For that let us consider the hypothetical

scenario. By definition of I , Alice is ignorant about I if and only if she is ignorant about
Θ⊕Θ′. Because she knowsΘ, she is ignorant about I if and only if she is ignorant about
Θ′. But Bob choses Θ′ uniformly at random and independently of everything. Moreover
he does not even use Θ′ to produce X̂ (we are in the hypothetical scenario). So even
giving X̂ to Alice keeps her uncorrelated to Θ′ and so to I . This means that the state
τA′ X̂ I is such that

τA′ X̂ I = τA′ X̂ ⊗ 1

|I | .

Let us now compare the operations performed during the real protocol, where Bob
measures in his own bases Θ′, with the ones performed in the hypothetical scenario
where Bob choses the basesΘ′ but measures in Alice’s basesΘ.

In both scenarios Alice produces the state ρAB . In both scenarios apply the map
MA 7→A′ ⊗1B (A′ = ΘT where Θ is the register for the bit string Θ and T is an arbitrary
quantum register) to ρAB and send the B part to Bob. In both scenarios Bob choses
uniformly at random a bit string Θ′. Now Bob will apply two different measurement
depending on the scenario:

• In the real scenario Bob applies a measurement modeled by a CPTP map M real
B

going from B to X ′I . The correspond to the choice of basisΘ′.

• In the hypothetical scenario Bob applies a measurement modeled by a CPTP map

M
hyp
B going from B to X̂ I . The correspond to the choice of basisΘ.

Because Bob’s device is memoryless, Bob’s map has a tensor product form across all
rounds. In particular we can write M real

B = M real
BI

⊗M real
BI c

, the first map acting on the

rounds in I and the second on the ones in the complementary. For the same reason we

can do the same in the hypothetical scenario M
hyp
B =M

hyp
BI

⊗M
hyp
BI c

.

Because the device are memoryless and because on the rounds in I the bits of Θ
and Θ′ agree, the measurement on BI are equal in both scenario, meaning that M real

BI
=
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M
hyp
BI

=: MBI
. Then we can write τA′ X̂ I = (

MA 7→A′ ⊗MBI
⊗M

hyp
BI c

)
(ρAB ). Moreover

because Bob will trace out (in both scenarios) all the outcomes of the rounds in I c , the
fact that the measurement are different on these rounds do not affect the outcomes in
I , meaning that,

trX ′
I c

(
(1A′ ⊗MBI

⊗M real
BI c )(ρA′B )

)
= trX̂I c

(
(1A′ ⊗MBI

⊗M
hyp
BI c

)(ρA′B )
)

(3.22)

⇐⇒ ρ̂A′X ′
I

I = τA′ X̂I I . (3.23)

SECURITY FOR HONEST ALICE

According to Definition 2.4.9, to prove security for Alice we only need to lower bound
the smooth min-entropy of X (where X is the random variable representing Alice’s mea-
surement output) condition on Bob’s register. Therefore it is sufficient to lower bound
the min-entropy as follows,

∃α> 0 : Hmin(X |BKΘ)/n ≥α.

This is equivalent as to show that the probability λWSE(n,d ,Γ) that Bob guesses x, and so
that he succeeds to cheat, decays exponentially with n, where,

λWSE(n,d ,Γ) := max
ρABK

max
{F θ}

tr

(
2−n

∑
θ,x∈{0,1}n

Pθ
x ⊗F θ

x ρABK

)
, (3.24)

and where the first maximization is over all qqc-states compatible with the marginal on
Alice.

If Bob is dishonest, we can look at any attack strategy of Bob as a guessing strategy in
the guessing game where Bob has to guess Alice’s bit string x. Thus we have the following:

Corollary 3.3.3. For (α,ε = 0)-WSE in the Noisy Quantum Storage Model, under the as-
sumption 3.2.1, if Alice’s memoryless device is such that ζ< 1 then the cheating probabil-
ity λWSE(n,d ,Γ) of Bob is upper bounded by B ′(n,d ,ζ,γ), where B ′(n,d ,ζ,γ) is defined in
Theorem 3.2.8.

Proof. We can directly apply Theorem 3.2.8 on (α,ε= 0)-WSE by considering Bob’s cheat-
ing strategy as a guessing game.

(α,ε=0)-WSE IN NOISY ENTANGLEMENT MODEL

In order to make the link between WSE and PV, we describe briefly WSE in the noisy
entanglement model (see [2] for more details). The protocol is the same as before but
now there are two Bobs, called Bob1 and Bob2, who share an entangled state ρB1B2 such
that E (1)

C (ρB1B2 ) ≤ log(d) (which replaces Bob’s channel E used in the Noisy Quantum
Storage Model), and can only communicate classically from Bob1 to Bob2. It is Bob2 who
is asked to get the pair (I , XI ), while Alice sends ρB to Bob1 and Θ to Bob2. If the Bobs
are cheaters, Bob1 will try to send ρB to Bob2 using their entanglement and classical
communication, in order to enable Bob2 to guess the full outcome string X ∈ {0,1}n of
Alice in the perfect case (or at least (1−γ)n bits in the imperfect case).
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The Bobs play the role of the malicious provers in PV, called M1 and M2 who both
want to guess X . The fact that in PV they both have to guess X to be able to cheat the
protocol makes PV harder to cheat than WSE in the noisy-entangled model where only
one Bob (Bob2) needs to guess X . Because it is harder to cheat in PV, proving the se-
curity on this model of WSE proves the result for PV [2]. Again we say that WSE in the
noisy-entangled model is secure if the cheating probability denoted by λN E decays ex-
ponentially with n. In the two following Lemmas we first prove the security of WSE for
the bounded-entanglement model, and then extend it to noisy-entanglement model.

Definition 3.3.4. For (α,ε= 0)-WSE in the bounded-entanglement model, the probability
λBE (n,d ,Γ) that Bob2 perfectly guesses Alice’s output string X ∈ {0,1}n is,

λBE(n,d ,Γ) := max
ρAB2K

max
{F θ}

tr

(
2−n

∑
θ,x∈{0,1}n

Pθ
x ⊗F θ

x ρAB2K

)
(3.25)

where the first maximization is over all qqc-states compatible with the marginal on Alice
(which are constraint by the value ζmeasured in the testing procedure). Here the state ρB2

is of dimension at most d.

In the following Lemma 3.3.5 we look at the special case where ρB1B2 is a maximally
entangled state of local dimension d (this case is WSE in the bounded entanglement
model). This Lemma is a variant of Lemma 3.2.7.

Lemma 3.3.5. For WSE in the bounded-entanglement model, where the two Bobs share
a perfect entangled state ρB1B2 of dimension at most d 2, the probability λBE (n,d ,Γ) that
Bob2 perfectly guesses Alice’s output string X ∈ {0,1}n is

λBE(n,d ,Γ) ≤ B(n,d ,ζ) (3.26)

where B(n,d ,ζ) is defined in Lemma 3.2.7.

Proof. The guessing probability of Bob2 in this model is given by

λBE(n,d ,Γ) := max
ρAB2K

max
{F θ}

tr

(
2−n

∑
θ,x∈{0,1}n

Pθ
x ⊗F θ

x ρAB2K

)
(3.27)

where the first maximization is over all qqc-states compatible with the marginal on Alice.
Note that this is the same expression as λ(n,d ,Γ) except that the state ρAB ′K is replaced
by ρAB2K . We can then invoke Lemma 3.2.7 since Bob2’s measurements are also acting
jointly on d-dimensional quantum register B2 and an arbitrary large classical register
K .

We now want to extend the result to the case where the adversary holds noisy entan-
glement and must guess Alice’s string up to some error tolerance γ.

Definition 3.3.6. For (α,ε = 0)-WSE in the noisy-entanglement model, the probability
λN E (n,d ,ζ,γ) that Bob2 guesses Alice’s output string x ∈ {0,1}n with an error rate, as de-
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fined in the paragraph before equation (3.12), at most γ is,

λNE(n,d ,Γ,γ) := max
ρAB2K

max
{F θ}

tr

2−n
∑

θ,x∈{0,1}n

∑
y∈{0,1}n

dH (x,y)≤γn

Pθ
x ⊗F θ

y ρAB2K

 (3.28)

where the first maximization is over all qqc-states compatible with the marginal on Alice.
Here we assume that the state shared by the two Bobs ρB1B2 is such that E (1)

C (ρB1B2 ) ≤
log(d).

Now we tackle the general case where ρB1B2 is a noisy-entangled state such that
E (1)

C (ρB1B2 ) ≤ log(d).

Lemma 3.3.7. Consider (α,ε = 0)-WSE in the noisy-entanglement model, where the two
Bobs share a noisy entangled state ρB1B2 such that E (1)

C (ρB1B2 ) ≤ log(d). If Alice’s device is
such that ζ< 1, then the probability λNE(n,d ,Γ) that Bob2 produces a guess y ∈ {0,1}n and
dH (x, y) ≤ γn with x ∈ {0,1}n being Alice’s output string, is upper bounded as follows

λNE(n,d ,Γ,γ) ≤ B ′(n,d ,ζ,γ) (3.29)

where B ′(n,d ,ζ,γ) is defined in Theorem 3.2.8.

Proof. We first look at the imperfect guessing game in the bounded entanglement model,
where Bob1 and Bob2 share a maximally entangled state of dimension M ≤ d :∣∣∣ΨB1B2

M 〉 := 1p
M

M∑
i=1

∣∣i B1〉 ∣∣i B2〉 (3.30)

DenoteΨM :=
∣∣∣ΨB1B2

M 〉〈ΨB1B2
M

∣∣∣. Note that the fact that the local dimensionΨM is at most

d implies that Bob2’s quantum state ρB2 has a dimension bounded by d . Hence it is easy
to see that

λNE(n,d ,Γ,γ) := max
ρAB2K

max
{F θ}

tr

2−n
∑

θ,x∈{0,1}n

∑
y∈{0,1}n

dH (x,y)≤γn

Pθ
x ⊗F θ

y ρAB2K

 (3.31)

≤ max
ρAB2K

max
{F θ}

tr

2−n
∑

θ,x∈{0,1}n

∑
z∈{0,1}n

wH (z)≤γn

Pθ
x ⊗F θ

x⊕z ρAB2K

 (3.32)

≤ ∑
z∈{0,1}n

wH (z)≤γn

max
ρAB2K

max
{F θ}

tr

(
2−n

∑
θ,x∈{0,1}n

Pθ
x ⊗F θ

x⊕z ρAB2K

)
(3.33)

where the first maximization is over all qqc-states compatible with the marginal on Alice,
can be bounded by the techniques in the proof of the Theorem 3.2.8 since the register B2

has bounded dimension. We have

λNE(n,d ,Γ,γ) ≤ 2h(γ)n ×B(n,d ,ζ) ≤ B ′(n,d ,ζ,γ). (3.34)
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We can extend this bound against an adversary who holds a noisy entangled state
ρB1B2 such that E (1)

C,LOCC(ρB1B2 ) ≤ log(d). Indeed by definition (eq. (3.3)) of the one shot

entanglement cost of the stateρB1B2 denoted E (1)
C,LOCC(ρB1B2 ) [28], saying that E (1)

C,LOCC(ρB1B2 ) ≤
log(d) means that ρB1B2 can be created from a perfectly entangled state ΨM of dimen-
sion M ≤ d . Thus, all strategies achievable with ρB1B2 are achievable with ΨM . In par-
ticular the strategy which maximizes the probability of winning with respect to ρB1B2 is
achievable withΨM which proves the Lemma.

If γ in the protocol is such that it satisfies the condition of Lemma 3.2.9, the previous
bound proves the security of (α,ε= 0)-WSE since it decays exponentially.

3.3.2. DEVICE-INDEPENDENT POSITION VERIFICATION
In the following we will prove that PV in the noisy entanglement model (NE) is device-
independently secure. Indeed the attacks on PV in the NE model can be mapped to
attacks on WSE in the NE model [2, Theorem 14]. As we have proved in Lemma 3.3.7
that WSE in the NE model is device-independently secure, PV in the NE model must be
secure.

Here we only speak about the one dimensional position verification protocol. In PV
there are three protagonists in the honest case: two verifiers (V1 and V2) and one prover
(P ). The prover claims to be at some geographical position, and the PV protocol permits
to check whether this is true.

Protocol 3.3.8 (Position Verification). Let us assume P has claimed his position to be
in the middle of both verifiers (Fig. 2.4). The verifiers check this claim by the following
procedure:

1. V1 tests his devices as described in the testing protocol 3.2.2

2. At the beginning of the protocol, the two verifiers V1 and V2 share a random bit
stringΘ ∈ {0,1}n .

3. V1 prepares a bipartite state (which is ideally a maximally entangled state)
ρV1P = σ⊗n

V1P which has a tensor product structure, and sends the part ρP :=
trV1 (ρV1P ) to the prover.

V2 sends the stringΘ to the prover, such that the prover receivesΘ and ρP at the
same time.

V1 applies the measurement M θ = {Pθ
y := ⊗

j∈[n] P
θ j
y j

, y ∈ {0,1}n} to his part of
the state ρV1P and gets X .

4. The prover applies a projective measurement M θ, and gets a bit string Y ∈
{0,1}n . Then he sends Y to both verifiers.

5. Then V1 compares (using the Hamming distance) his outcome X with the string
Y he receives from the prover, and measures how much time passed between the
moment he sent the state to P and the moment he receives Y from P.
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6. V1 sends X to V2 so V2 can also compare Y and X . V2 also measures how long
it took for the message to come back.

7. If X = Y (or dH (X ,Y ) ≤ γn) and the time measured by the verifiers is lower than
a certain fixed bound∆t then the prover passes the protocol, which means that
the verifiers accept that the prover is at his claimed position.

As mentioned in Chapter 2, if the prover is dishonest, it suffices to consider the sce-
nario where there are two dishonest provers B1 and B2 who impersonate being at some
claimed location. The protocol is secure against adversaries holding an entangled state
ρB1B2 with one shot entanglement cost bounded by d if the probability that the adver-
saries cheat the protocol decays exponentially with the length n of x (which is also the
number of quantum system the verifiers send to the prover).

Definition 3.3.9. In the general case when the winning condition on the prover’s guess Y
is dH (X ,Y ) ≤ γn, where X is the verifiers’ bit string and γ ∈ [0,1[ is the maximal QBER, the
probability of cheating in PV is defined as

λPV(n,d ,Γ,γ) := max
ρV1 M1 M2

max
{T θ}

max
{F θ}

tr

2−n
∑

θ,x∈{0,1}n

∑
y∈{0,1}n

dH (x,y)≤γn

Pθ
x ⊗T θ

y ⊗F θ
y ρV1M1M2


where the first maximization is over all states compatible with the marginal on V1, Pθ

x ,
T θ

x and F θ
x are the measurement operators for V1, M1 and M2 respectively, and where the

second and the third maximisations are short hand for 2n separate maximisations: for
each θ, M1 and M2 choose the POVMs which maximize λPV(n,d ,Γ,γ)

Definition 3.3.10. PV is said to be α-secure if there exists α> 0 and an integer N ≥ 1 such
that ∀n ≥ N the probability λPV(n,d ,Γ,γ) that dishonest provers pass the protocol is such
that:

λPV(n,d ,Γ,γ) ≤ 2−αn . (3.35)

Note that the value of α may depend on d ,ζ and γ.

In our case we limit the attack scheme by assuming that the adversaries can only
share a limited amount of entanglement (assumptions 3.2.5) and that they do not use
quantum communication, but they have access to perfect and unlimited classical com-
munication. Moreover we will assume that the device-independent assumption 3.2.1 is
satisfied in our model of attack.

Lemma 3.3.11. In PV in the Noisy Entanglement model, where Bob1 and Bob2 share a
state ρB1B2 such that E (1)

C,LOCC(ρB1B2 ) ≤ log(d), if V1’s device is such that ζ < 1 then the



3.4. CONCLUSION

3

67

probability λPV(n,d ,Γ,γ) that Bob2 guesses a string Y ∈ {0,1}n and dH (X ,Y ) ≤ γn, where
X is V1’s outcome measurement, is upper bounded by

λPV(n,d ,Γ,γ) ≤ B ′(n,d ,ζ,γ) (3.36)

where B ′(n,d ,ζ,γ) is defined in Theorem 3.2.8.

Proof. We use the proof in [2, Theorem 14], which reduces the security of PV under the
assumption that there is no quantum communication between cheaters, to the security
of Weak String Erasure in the noisy entanglement model, in other words it proves that
λPV(n,d ,Γ,γ) ≤λN E (n,d ,Γ,γ) and then using Lemma 3.3.7 we conclude the proof.

If γ is such that it satisfies the condition of Lemma 3.2.9 this bound proves the se-
curity of PV since B ′(n,d ,ζ,γ) decays exponentially (see figure 3.3). The security proof is
independent of the implementation of the protocol. Moreover, to allow an honest prover
to pass the protocol even when there is some noise in the quantum channel between V1

and P or if honest prover’s measurements are not perfect means that we allow the prover
P to guess the string x with some error quantified by the Hamming distance. This choice
obviously makes the protocol easier to cheat on when P is dishonest, but according to
Lemmas 3.3.11 and 3.2.9 the protocol is still secure if the fraction of errors γ allowed in
the guessed string is small enough.

Note that PV is still secure if we allow V1’s device to send the string x to the prover
after V1 makes the measurements on his state. V1 just has to wait long enough before
measuring his state. Then dishonest provers cannot use this information since there is a
time constraint on their answers.

3.4. CONCLUSION
By dealing directly with quantum memory in the guessing game, we show that security
in WSE can be achieved device independently against an adversary holding a quantum
memory of size r := log(d) . 0.45n qubits. This improves the previous known result [1]
which proved security for r . 0.22n qubits (see Table 3.1). This result remains valid in
the noisy storage device model. To deal with the quantum memory, we had to develop
new techniques. This result is a first step toward optimality of the bounds and opens the
door to further analyzes of optimal bound in the IID device independent scenario. We
don’t know however if our bound is optimal. The results in the trusted devices scenario
suggest that the optimal bound implies that security can be achieved against an adver-
sary holding a memory of size r . n. It is still an open question if this can be achieved in
the device independent scenario.

We also prove security condition stronger than in [1] for a dishonest Alice which can
become useful when using WSE in other two-party cryptographic protocol. The previous
result only proves security of two-party cryptographic protocol against classical adver-
sary, by proving that at the end of WSE Alice is ignorant about the set I .

Finally we link the security of WSE with the security of PV, and therefore we show for
the first time that device independent security can be achieved for PV.
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Figure 3.3: QBER γ allowed in function of the CHSH violation S obtained in the testing procedure when n →∞
and d finite. The blue region is the secure region i.e. the region where the bound B ′(n,d ,ζ,γ) decays exponen-
tially in n for a fixed d .

3.5. TECHNICAL DETAILS

3.5.1. TECHNICAL LEMMA
In the proof of the Key Lemma to be presented below, we will need the following result.
Similar results about norm of sums of operators have been obtained by Kittaneh [29], see
also [14, Lemma 2].

Lemma 3.5.1. If A1, A2, . . . , AN are positive semi-definite operators, then∥∥∥ ∑
i∈[N ]

Ai

∥∥∥≤ max
j∈[N ]

∑
i∈[N ]

∥∥∥√
Ai

√
A j

∥∥∥ , (3.37)

where [N ] := {1, . . . , N }.

Proof. Let K be an N × N block matrix with entries Ki j =
p

Ai
√

A j and L is an N × N
matrix of entries Li j = ‖pAi

√
A j ‖, we first show that∥∥∥ ∑

i∈[N ]
Ai

∥∥∥= ‖K ‖ ≤ ‖L‖ . (3.38)
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Defining K̃ :=∑
j | j 〉⊗√

A j , a direct calculation reveals

K̃ †K̃ =∑
j

A j and K̃ K̃ † =∑
j k

| j 〉〈k |⊗
√

A j

√
Ak = K , (3.39)

from which follows the first equality since the operator norm satisfies ‖K̃ †K̃ ‖ = ‖K̃ K̃ †‖.
We are thus left with proving ‖K̃ K̃ †‖ ≤ ‖L‖ where now we rewrite L in the following form

L =∑
j k

| j 〉〈k |⊗‖
√

A j

√
Ak‖ . (3.40)

Since the operator norm of a positive semidefinite matrix corresponds to its largest eigen-
value, it suffices to prove that the largest eigenvalue of K̃ K̃ † is not greater than the largest
eigenvalue of L. Let |α〉be an eigenvector corresponding to the largest eigenvalue of K̃ K̃ †

and write it as

|α〉 =∑
j
α j | j 〉|e j 〉, (3.41)

where α j are real and positive and |e j 〉 are arbitrary but normalised. Then

‖K̃ K̃ †‖ = 〈α|K̃ K̃ †|α〉 =∑
j k
α jαk〈e j |

√
A j

√
Ak |ek〉. (3.42)

Now it suffices to prove that this can be upper bounded by 〈α′ |L|α′〉 for

|α′〉 =∑
j
α j | j 〉, (3.43)

which implies

‖K ‖ = ‖K̃ K̃ †‖ = 〈α|K̃ K̃ †|α〉 ≤ 〈α′ |L|α′〉 ≤ ‖L‖. (3.44)

To show 〈α|K |α〉 ≤ 〈α′ |L|α′〉, we begin by rewriting K as

K =∑
j k

| j 〉〈k |⊗
√

A j

√
Ak (3.45)

= ∑
j<k

| j 〉〈k |⊗
√

A j

√
Ak +|k〉〈 j |⊗

√
Ak

√
A j︸ ︷︷ ︸

=:B j k

+∑
j
| j 〉〈 j |⊗ A j (3.46)

This form makes hermitian matrices B j k and | j 〉〈 j |⊗A j appear in the sums. K is positive
semidefinite so 〈α|K |α〉 = |〈α|K |α〉| and,

|〈α|K |α〉| = | ∑
j 6=k

α jαk〈 j |〈e j |B j k |k〉|ek〉+
∑

j
α2

j 〈e j |A j |e j 〉︸ ︷︷ ︸
≤‖A j ‖

| (3.47)

≤ ∑
j 6=k

α jαk |〈 j |〈e j |B j k |k〉|ek〉|+
∑

j
α2

j ‖A j ‖. (3.48)
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Now by decomposing the vectors | j 〉|e j 〉 = ∑
l β

j
l |βl 〉 and |k〉|ek〉 =

∑
m βk

m |βm〉 in an
eigenbasis of B j k noted {|βi 〉}i we get,

|〈 j |〈e j |B j k |k〉|ek〉| = |∑
lm
β

j∗
l βk

m〈βl |B j k |βm〉| (3.49)

= |∑
l
β

j∗
l βk

l λl | (3.50)

where {λl }l are the eigenvalues of B j k . Using the triangle inequality we have,

|∑
l
β

j∗
l βk

l λl | ≤
∑

l
|β j∗

l ||βk
l ||λl | (3.51)

≤ max
i

|λi |
∑

l
|β j∗

l ||βk
l |︸ ︷︷ ︸

≤1

(3.52)

≤ max
i

|λi | = ‖B j k‖. (3.53)

It is easy to check that ‖B j k‖ = ‖√A j
√

Ak‖. Using that and (3.53) in the inequality (3.48)
we have,

‖K ‖ = 〈α|K |α〉 ≤∑
j k
α jαk‖

√
A j

√
Ak‖ = 〈α′ |L|α′〉 ≤ ‖L‖ (3.54)

which gives the desired inequality ‖K ‖ ≤ ‖L‖.
Using Hölder’s inequality (Lyapunov’s inequalities) for induced p-norms, we have

‖L‖ = ‖L‖I
2 ≤

(‖L‖I
1 · ‖L‖I

∞
)1/2

, (3.55)

where the norms on the right hand side are equal to the maximum absolute row or col-
umn sums

‖L‖I
1 = max

j

∑
i
‖
√

Ai

√
A j ‖, (3.56)

‖L‖I
∞ = max

i

∑
j
‖
√

Ai

√
A j ‖. (3.57)

The Lemma follows since these two norms are equal for hermitian matrices.

3.5.2. PROOF OF THE KEY LEMMA
The main content of this section is a detailed proof of the Key Lemma presented in the
main text. Specifically, we prove a bound on the probability that Bob wins the game, only
depending on a quantity ζ that Alice can estimate experimentally, Bob’s memory size d ,
and n which is the number of rounds played in the game.

We split this proof into four steps. In Step 1 we analyse how Jordan’s Lemma permits
us to conveniently express the effective absolute anti-commutator of Alice’s measure-
ments. In Step 2 we derive a bound on the winning probability expressed in terms of



3.5. TECHNICAL DETAILS

3

71

what we call "operator overlap", then in Step 3 we bound this overlap by a simpler ex-
pression depending on the effective anti-commutator. We finish the proof in Step 4 by
replacing, in the previous simple bound on the overlap, the effective anti-commutator
by a quantity that Alice can estimate experimentally.

For the reader’s convenience, we have included Table 3.2 which explains the symbols
used in the proof.

STEP 1: ALICE’S IID STATE-PREPARATION AND MEASUREMENT DEVICE

In this section we use Jordan’s Lemma to rewrite Alice’s measurement operators and the
absolute effective anti-commutator.

We assume that the devices used by Alice to prepare and measure satisfy the IID as-
sumption, i.e. the state produced in n rounds is of the form ρAB = σ⊗n

AB and the mea-

surement corresponding to input θ ∈ {0,1}n can be written as {Pθ
x = ⊗

k Pθk
xk

: x ∈ {0,1}n},
where {P 0

0 ,P 0
1 } and {P 1

0 ,P 1
1 } are some unknown (but fixed) binary measurements. It is

worth stressing that this implies that the reduced state on Alice is of product form, ρA =
σ⊗n

A , regardless of how Bob manipulates his subsystem. We make no assumptions on the
dimensions of the system (except that they are finite dimensional).

By Naimark’s dilation Theorem we can without loss of generality assume that the
measurements {P 0

0 ,P 0
1 } and {P 1

0 ,P 1
1 } are projective, which allows us to apply Jordan’s

Lemma [25, 26]. The projectors representing the first outcome P 0
0 and P 1

0 can be simul-
taneously decomposed into orthogonal projections of rank at most one, projecting on
either one or two dimensional subspaces invariant under the action of both projectors
(a subspace W is invariant under the linear opearator T if and only if T W ⊆ W ). More-
over we only get two-dimensional blocks when the projectors have non-trivial overlap,
i.e. they are neither orthogonal nor identical:

P 0
0 = ∑

j∈J

P 0
0| j , P 1

0 = ∑
j∈J

P 1
0| j , (3.58)

where P a
0| j (a ∈ {0,1}) are such that ∀ j , j ′ P a

0| j P a
0| j ′ = δ j j ′P

a
0| j and are acting on a subspace

of dimension one or two. Then we have,

P 0
1 = ∑

j∈J

(S j −P 0
0| j ), P 1

1 = ∑
j∈J

(S j −P 1
0| j ). (3.59)

where S j is a projection which projects on the subspace where P a
0| j and P a

1| j act. Note

that the number of non-zero summands in (3.58) is equal to the rank of P 0
0 or P 1

0 respec-
tively.

A convenient basis of the Hilbert space can be chosen as follows. Each index j ∈ J

corresponds to either a one or two dimensional subspace. For the two dimensional sub-
spaces indexed by j in J where both P 0

0| j and P 1
0| j are nonzero, we pick the orthonormal

eigenbasis of P 0
0| j , namely |00

| j 〉 and |10
| j 〉, as the basis for these subspaces

P 0
0| j |00

| j 〉 = |00
| j 〉, P 0

0| j |10
| j 〉 = 0. (3.60)
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Moreover, one can pick these basis vectors (by including a phase factor if necessary) such
that the eigenstates |01

| j 〉 and |11
| j 〉 of P 1

0| j , which satisfy

P 1
0| j |01

| j 〉 = |01
| j 〉, P 1

0| j |11
| j 〉 = 0, (3.61)

are related to those of P 0
0| j by

|01
| j 〉 = cosβ j |00

| j 〉+ sinβ j |10
| j 〉, |11

| j 〉 = sinβ j |00
| j 〉−cosβ j |10

| j 〉, (3.62)

for some angle β j ∈ [0,π/2]. For the one dimensional subspaces (also indexed by j ∈J )
we define |00

| j 〉 being a unit vector, and |10
| j 〉 is the null vector. Then we define |01

| j 〉 and

|11
| j 〉 as previously but with β j = 0 or β j = π/2. In summary, since we have defined a

basis for each j ∈ J , taking the direct sum gives a basis for the whole Hilbert space.
Any binary (projective) measurement device admits a characterization through the an-
gles β j ∈ [0,π/2] for j ∈ J and this characterization turns out to be sufficient for our
purposes.

The previous block decomposition allows us to conveniently compute the effective
absolute anticommutator defined as ε+ := 1

2 tr(|{A0, A1}|σA) where Aθ := Pθ
0 −Pθ

1 for θ ∈
{0,1}. The word "effective" means that ε+ depends not only on Alice’s measurements, but
also on the state on which the measurements act. Under Jordan’s Lemma, the absolute
anticommutator becomes

|{A0, A1}| = |∑
j

{A0| j , A1| j }| =∑
j

2|cos(2β j )|S j (3.63)

with Aθ| j := Pθ
0| j −Pθ

1| j and S j being the orthogonal projections defined above, where

the absolute anticommutator of a two dimensional block j is computed using (3.62) and
that of a one dimensional block follows from our definition of β j = 0 in Step 1. Let p j :=
tr(S jσA) be the probability of σA being projected in the j -th block, then, the absolute
effective commutator can be written as

ε+ =∑
j

p j |cos(2β j )| =∑
j

p j ε j , (3.64)

where ε j := |cos(2β j )| is the absolute effective anticommutator of the block j . It is worth
pointing out that for qubit observables there is no notion of "effectiveness", i.e. the in-
compatibility is fixed by the observables and does not depend on the state.

Also, the previous decomposition of Alice measurements enables the n run projec-
tors to be block diagonalized as

Pθ
x =

n⊗
k=1

Pθk
xk

=
n⊗

k=1

∑
bk∈J

Pθk
xk |bk

= ∑
b∈J n

Pθ
x|b , (3.65)

where Pθ
x|b := ⊗n

k=1 Pθk
xk |bk

, and J is the set of indices which label blocks and J n :=
J×n . We denote the set of projectors associated with this direct sum decomposition

by {Sb}b∈J n , where Sb :=⊗n
k=1 Sbk

. For each k, we have Pθk
xk |bk

Pθk

x′
k |b′

k
= δxk ,x′

k
δbk ,b′

k
Pθk

xk |bk
,

and Pθk
xk |bk

orthogonal to P
θ′k
x′

k |b′
k

whenever bk 6= b′
k . The analysis of the guessing game will

rest on these orthogonality relations and the set of angles β j defined above.
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Variable Range Meaning
n N total number of (measurement) runs
k [n] index of the run (subscript) or

the classical information of Bob (superscript)
θ {0,1}n measurement string
θk {0,1} kth measurement
x {0,1}n output string

xk {0,1} kth output
j J index of Jordan’s Lemma decomposition
b J n vector indexing block combination

bk J kth element of b
p(·) [0,1] probability of (·) (depending on context)
βbk

[0,π/2] angle of Alice’s binary measurement in block bk

εbk
[0,1] absolute effective anticommutator in block bk

Table 3.2: Table of symbols for this Technical Details section.

STEP 2: FROM GUESSING PROBABILITY TO "OPERATOR OVERLAPS"

The goal of this section is to bound Bob’s wining probability in term of the overlap
∥∥∥√

Πθ
′,k

b

√
Πθ,k

b

∥∥∥.

To be precise we show that,

Lemma 3.5.2. Let Πθ,k
b := ∑

x Pθ
x|b ⊗F θ,k

x , where Alice’s POVM elements Pθ
x are defined in

(3.65), and where F θ
x are arbitrary POVM element acting on Bob’s systems (registers B ′K :

see eq. (3.9)), and F θ,k
x are defined in eq. (3.70). Bob’s wining probability λ(n,d ,Γ) defined

in equation (3.9) is bounded as follow:

λ(n,d ,Γ) ≤ max{
pk ,ρk

AB ′
} max

{F θ,k }

∑
k,b

pk pb|k max
θ′

2−n
∑
θ

∥∥∥∥√
Πθ

′,k
b

√
Πθ,k

b

∥∥∥∥ (3.66)

Proof. Since we assume that the quantum memory of Bob is bounded he cannot store
the entire register B received from Alice. More specifically, according to the Bounded
Quantum Storage Model he must immediately input the register B into an encoding map
which outputs a quantum register B ′ (whose dimension is bounded by d) and a classical
register K (of arbitrary size). The joint state between Alice and Bob is then a qqc-state
ρAB ′K = ∑

k pkρ
k
AB ′ ⊗|k〉〈k| whose marginal remains IID ρA = trB ′K (ρAB ′K ) = σ⊗n

A . Once
Alice has measured her part of the system, Bob is told the choice of her measurements
represented by θ ∈ {0,1}n and is asked to guess the string of outcomes. We take the suc-
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cess probability given by (3.9) and expand the classical register K to obtain

λ(n,d ,Γ) = max
ρAB ′K

qqc
dim(HB ′≤d)

max
{F θ}

tr

(
2−n

∑
θ,x∈{0,1}n

Pθ
x ⊗F θ

x ρAB ′K

)
(3.67)

= max{
pk ,ρk

AB ′
}max

{F θ}

∑
k

pk tr

(∑
θ,x

2−nPθ
x ⊗F θ

x ρ
k
AB ′ ⊗|k〉〈k |K

)
(3.68)

= max{
pk ,ρk

AB ′
} max

{F θ,k }

∑
k

pk tr

(∑
θ,x

2−nPθ
x ⊗F θ,k

x ρk
AB ′

)
, (3.69)

where Pθ
x are the measurement operators on Alice’s side, and

F θ,k
x := trK (F θ

x1B ′ ⊗|k〉〈k |K ) (3.70)

are d-dimensional measurement operators on Bob’s side acting on B ′, which depend
both on his classical memory k and the basis string θ received from Alice. The outer op-
timization is constrained to ensembles which yield the correct marginal on Alice’s side,
i.e. trB ′ (

∑
k pkρ

k
AB ′ ) =σ⊗n

A . The inner maximization represents |Θ||K | independent max-

imizations each of which is over a POVM {F θ,k
x }. The rest of the proof will be concerned

with upper bounding λ(n,d ,Γ).
Inserting (3.65) into (3.69) we get

λ(n,d ,Γ) = max{
pk ,ρk

AB ′
} max

{F θ,k }

∑
k

pk tr

(∑
θ,x

2−n
∑
b

Pθ
x|b ⊗F θ

x ρ
k
AB ′

)
, (3.71)

Recall that Sb represents the projection operator into the blocks indexed by b ∈ J n .
Define ρk

Ab B ′ := (Sb ⊗1B ′ )ρk
AB ′ (Sb ⊗1B ′ )/pb|k to be the normalized projections of ρk

Ab B ′

into these various blocks with pb|k := tr
(
(Sb ⊗1B ′ )ρk

AB ′
)
. Then

λ(n,d ,Γ) = max{
pk ,ρk

AB ′
} max

{F θ,k }

∑
k

pk

∑
b

pb|k tr

(∑
θ,x

2−nPθ
x|b ⊗F θ,k

x ρk
Ab B ′

)
, (3.72)

and for convenience let us denoteΠθ,k
b :=∑

x Pθ
x|b ⊗F θ,k

x so that

λ(n,d ,Γ) = max{
pk ,ρk

AB ′
} max

{F θ,k }

∑
k,b

pk pb|k tr

(∑
θ

2−nΠθ,k
b ρk

Ab B ′

)
. (3.73)

Bounding each of the trace terms by its operator norm yields

λ(n,d ,Γ) ≤ max{
pk ,ρk

AB ′
} max

{F θ,k }

∑
k,b

pk pb|k

∥∥∥∥∥∑
θ

2−nΠθ,k
b

∥∥∥∥∥ . (3.74)
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For each b,k the corresponding operator norm can be bounded using Lemma 3.5.1 as
follows ∥∥∥∥∥∑

θ

2−nΠθ,k
b

∥∥∥∥∥≤ 2−n max
θ′

∑
θ

∥∥∥∥√
Πθ

′,k
b

√
Πθ,k

b

∥∥∥∥ (3.75)

from which (3.74) becomes

λ(n,d ,Γ) ≤ 2−n max{
pk ,ρk

AB ′
} max

{F θ,k }

∑
k,b

pk pb|k max
θ′

∑
θ

∥∥∥∥√
Πθ

′,k
b

√
Πθ,k

b

∥∥∥∥︸ ︷︷ ︸
=:Λ

. (3.76)

STEP 3: BOUND ON OPERATOR OVERLAPS

The goal of this section is to find a bound on
∥∥∥√

Πθ
′,k

b

√
Πθ,k

b

∥∥∥ which holds independenly

of k. The superscript k of the operator Πθ
′,k

b reminds us that Bob’s measurement might
depend on his classical information. Here, we derive a bound which only depends on
the dimension of his quantum system i.e. independent of k. Therefore, we will from now
omit the superscript k which represented the classical information of Bob. The following
Lemma is the key towards the main result.

Lemma 3.5.3. For all θ′,θ ∈ {0,1}n and b ∈J n , we have

∥∥∥∥√
Πθ

′
b

√
Πθb

∥∥∥∥≤ min

{
1,
p

d
n∏

k=1

(
max{cosβbk

, sinβbk
}
)wk

}
, (3.77)

where d is the dimension of Bob’s quantum memory, and w := θ′⊕θ ∈ {0,1}n

Proof. Let us begin by simplifying
√
Πθ

′
b

√
Πθb using the definition of Πθb in Step 2 and

orthogonality relations of Pθ
x|b in Step 1. Let S = {k ∈ [n] : θ′k = θk } and T = {k ∈ [n] : θ′k 6=

θk } be the indices where the measurement choices agree and differ respectively. Then,√
Πθ

′
b

√
Πθb =∑

x,y
Pθ′

x|bPθ
y |b ⊗

√
F θ′

x

√
F θ

y (3.78)

=∑
x,y

⊗
k∈S

P
θ′k
xk |bk

Pθk
yk |bk

⊗
k∈T

P
θ′k
xk |bk

Pθk
yk |bk

⊗
√

F θ′
x

√
F θ

y (3.79)

=∑
x,y

⊗
k∈S

δxk ,yk Pθk
yk |bk︸ ︷︷ ︸

(?)

⊗
k∈T

∣∣∣∣xθ′kk|bk
〉〈x

θ′k
k|bk

∣∣∣yθk
k|bk

〉〈yθk
k|bk

∣∣∣⊗√
F θ′

x

√
F θ

y (3.80)

where
∣∣∣yθk

k|bk
〉 are the eigenvectors defined in Step 1. The notation

∣∣∣yθk
k|bk

〉 should be read

as the eigenvector representing the outcome yk ∈ {0,1} of the measurement θk ∈ {0,1}
restricted to the block bk ∈J .
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The sum over x = (x1, ..., xn), y = (y1, ..., yn) ∈ {0,1}n can be split into a sum of vari-
ables with indices in S which we will denote by x̃, ỹ and indices in T denoted x ′, y ′. The
definition of S implies that x̃ = ỹ . Let

Mx̃ := ∑
x′,y ′∈{0,1}|T |

⊗
k∈T

∣∣∣∣xθ′kk|bk
〉〈x

θ′k
k|bk

∣∣∣yθk
k|bk

〉〈yθk
k|bk

∣∣∣⊗√
F θ′

x̃x′
√

F θ
x̃ y ′ , (3.81)

where the two strings x ′ and x together form a bit string of length n and give meaning to
the notation F θ′

x̃x′ (same for F θ
x̃ y ′ ). Since the register labelled as (?) consists of orthogonal

projectors, the desired operator norm is achieved by a maximization over x̃ ∈ {0,1}|S|.
That is ∥∥∥∥√

Πθ
′

b

√
Πθb

∥∥∥∥= max
x̃∈{0,1}|S|

‖Mx̃‖ (3.82)

In the following we derive an upper bound which does not depend on x̃. Since for k ∈ T
we have θk 6= θ′k , we use Eq. (3.62) to evaluate the inner product

〈x
θ′k
k|bk

∣∣∣yθk
k|bk

〉 = (−1)xk yk cos(βbk
)xk⊕yk sin(βbk

)xk⊕yk , (3.83)

where xk ⊕ yk = 1−xk ⊕ yk . Therefore,

Mx̃ = ∑
x′,y ′

(−1)x′·ȳ ′ ⊗
k∈T

cos(βbk
)xk⊕yk sin(βbk

)xk⊕yk

∣∣∣∣xθ′kk|bk
〉〈yθk

k|bk

∣∣∣⊗√
F θ′

x̃x′
√

F θ
x̃ y ′ . (3.84)

where ∀x, y ∈ {0,1}m , x.y :=∑
k xk yk

From ‖Mx̃‖ =
√
‖Mx̃ M †

x̃‖ and the definition

f (βb , x ′, y ′, z ′) := (−1)(x′⊕z ′)·ȳ ∏
k∈T

cos(βbk
)xk⊕yk+zk⊕yk sin(βbk

)xk⊕yk+zk⊕yk , (3.85)

where βb is a vector of angles, we simplify Mx̃ M †
x̃ and get

‖Mx̃‖ =

∥∥∥∥∥∥∥∥∥∥∥
∑

x′,z ′

⊗
k∈T

∣∣∣∣xθ′kk|bk
〉〈z

θ′k
k|bk

∣∣∣∣⊗√
F θ′

x̃x′

(∑
y ′

f (βb , x ′, y ′, z ′)F θ
x̃ y ′

)√
F θ′

x̃z′︸ ︷︷ ︸
(∗∗)

∥∥∥∥∥∥∥∥∥∥∥

1/2

. (3.86)

Bounding the register labelled as (∗∗) by its operator norm does not decrease the norm
as mentioned in Lemma 3.5.1. Hence we have

‖Mx̃‖ ≤
∥∥∥∥∥ ∑

x′,z ′

⊗
k∈T

∣∣∣∣xθ′kk|bk
〉〈z

θ′k
k|bk

∣∣∣∣ ·∥∥∥√
F θ′

x̃x′

(∑
y ′

f (βb , x ′, y ′, z ′)F θ
x̃ y ′

)√
F θ′

x̃z′

∥∥∥∥∥∥∥∥
1/2

. (3.87)

Bounding the outer operator norm with Schatten two norm (‖ ·‖ ≤ ‖ ·‖2) gives

‖Mx̃‖ ≤
∥∥∥∥∥ ∑

x′,z ′

⊗
k∈T

∣∣∣∣xθ′kk|bk
〉〈z

θ′k
k|bk

∣∣∣∣ ·∥∥∥√
F θ′

x̃x′

(∑
y ′

f (βb , x ′, y ′, z ′)F θ
x̃ y ′

)√
F θ′

x̃z′

∥∥∥∥∥∥∥∥
1/2

2

(3.88)

=
( ∑

x′,z ′

∥∥∥∥∥√
F θ′

x̃x′

(∑
y ′

f (βb , x ′, y ′, z ′)F θ
x̃ y ′

)√
F θ′

x̃z′

∥∥∥∥∥
2)1/4

. (3.89)
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Using submultiplicativity of the operator norm we have

‖Mx̃‖ ≤
( ∑

x′,z ′

∥∥∥∥√
F θ′

x̃x′

∥∥∥∥2
∥∥∥∥∥∑

y ′
f (βb , x ′, y ′, z ′)F θ

x̃ y ′

∥∥∥∥∥
2 ∥∥∥∥√

F θ′
x̃z′

∥∥∥∥2
)1/4

(3.90)

=


∑

x′,z ′

∥∥∥F θ′
x̃x′

∥∥∥∥∥∥∥∥∑
y ′

f (βb , x ′, y ′, z ′)F θ
x̃ y ′

∥∥∥∥∥
2

︸ ︷︷ ︸
(∗)

∥∥∥F θ′
x̃z′

∥∥∥


1/4

. (3.91)

From the definition of f (βb , x ′, y ′, z ′) in (3.85) it is easy to see that

| f (βb , x, y, z)| ≤ ∏
k∈T

max{cos2βbk
, sin2βbk

}. (3.92)

Since this bound does not depend on y ′ we can take it out of the sum

(∗) ≤ ∏
k∈T

max{cos4βbk
, sin4βbk

}

∥∥∥∥∥∑
y

F θ
x̃ y ′

∥∥∥∥∥
2

(3.93)

≤ ∏
k∈T

max{cos4βbk
, sin4βbk

}. (3.94)

The latter inequality holds because
∑

y F θ
x̃ y ≤1. Using this bound in (3.91) gives us,

∥∥∥∥√
Πθ

′
b

√
Πθb

∥∥∥∥≤ ∏
k∈T

max{cosβbk
, sinβbk

}

[∑
x′z ′

‖F θ′
x̃x′‖‖F θ′

x̃z′‖
]1/4

(3.95)

= ∏
k∈T

max{cosβbk
, sinβbk

}

[∑
x
‖F θ′

x̃x′‖
]1/2

(3.96)

≤
p

d
∏

k∈T
max{cosβbk

, sinβbk
} (3.97)

where in the last inequality we use the observation that for all x̃ ∈ {0,1}n−t

∑
x′
‖F θ′

x̃x′‖ ≤
∑
x

tr(F θ′
x̃x′ ) = tr

(∑
x

F θ′
x̃x′

)
≤ tr(1d ) = d (3.98)

since Bob’s quantum memory is of dimension at most d . Combining this bound with the

trivial bound
∥∥∥√

Πθ
′

b

√
Πθb

∥∥∥≤ 1 completes the proof.

Lemma 3.5.4. For all θ′,θ ∈ {0,1}n and b ∈J n , we have∥∥∥∥√
Πθ

′
b

√
Πθb

∥∥∥∥≤ min

{
1,
p

d
n∏

k=1

(
1+εbk

2

)wk /2
}

, (3.99)

where d is the dimension of Bob’s memory and w := θ⊕θ′ ∈ {0,1}n
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Proof. Recall that for all k ∈ [n] and b ∈J n

εbk
:= |cos2βbk

| =
{

cos2βbk
if βbk

∈ [0,π/4]

−cos2βbk
if βbk

∈]π/4,π/2]
(3.100)

• If βbk
∈ [0,π/4] then cosβbk

≥ sinβbk
and

max{cosβbk
, sinβbk

} = cosβbk
=

√
1+cos2βbk

2
=

√
1+εbk

2
. (3.101)

• Similarly, if βbk
∈]π/4,π/2] then sinβbk

≥ cosβbk
and

max{cosβbk
, sinβbk

} = sinβbk
=

√
1−cos2βbk

2
=

√
1+εbk

2
. (3.102)

Plugging

max{cosβbk
, sinβbk

} =
√

1+εbk

2
, (3.103)

into Lemma 3.5.3 completes the proof.

STEP 4: COMPLETING THE PROOF
In this section we first we bound Bob’s winning probability in terms of the absolute anti
commutator ε+, and then bound it by a quantity that Alice can evaluate experimentally
since it is a function of the Bell violation she estimates during the testing phase.

We are now in a position to relate the guessing probability with the average incom-
patibility ε+. That’s to say we show that,

Lemma 3.5.5. In (3.76) we bounded the winning probability in terms of Λ, which can be
further bounded as follows

Λ= 2−n
∑
k,b

pk pb|k max
θ′

∑
θ

∥∥∥∥√
Πθ

′,k
b

√
Πθ,k

b

∥∥∥∥≤ 2−n
∑
w

min
(
1, g (~ε+, w)

)
, (3.104)

where w := θ′⊕θ ∈ {0,1}n , ε+ =∑
j∈J p j ε j ,~ε+ is the vector (ε+,ε+, . . . ,ε+), and

g (~a, w) :=
p

d
n∏

k=1

(
1+ak

2

)wk /2

,

where ~a is a vector (a1, . . . , ak , . . . , an).

Proof. Define

g (εb , w) =
p

d
n∏

k=1

(
1+εbk

2

)wk /2

, w := θ′⊕θ ∈ {0,1}n . (3.105)
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When we apply Lemma 3.5.4 we get the bound

max
θ′

2−n
∑
θ

∥∥∥∥√
Πθ

′,k
b

√
Πθ,k

b

∥∥∥∥≤ 2−n max
θ′

∑
θ

min
(
1, g (εb , w)

)
. (3.106)

From (3.105), we observe that

max
θ′

∑
θ

min
(
1, g (εb , w)

)=∑
w

min
(
1, g (εb , w)

)
(3.107)

because the objective function to be maximized is independent of θ′. The objective func-
tion in the optimization of (3.76) can be bounded as

∑
k,b

pk pb|k max
θ′

∑
θ

2−n
∥∥∥∥√

Πθ
′,k

b

√
Πθ,k

b

∥∥∥∥ (3.108)

≤∑
k,b

pk pb|k 2−n
∑
w

min
(
1, g (εb , w)

)
, (3.109)

where the inner expression is independent of k. This is the uniform bound we men-
tioned. Performing the sum over k first gives∑

k
pk pb|k =

(3.72)

∑
k

pk tr(Sb ⊗1B ′ρk
AB ′Sb ⊗1B ′ ) (3.110)

= tr(Sb ⊗1B ′K ρAB ′K Sb ⊗1B ′K ) (3.111)

= tr(Sbσ
⊗n
A Sb) =

n∏
k=1

tr(Sbk
σASbk

) =
n∏

k=1
pbk

=: pb . (3.112)

where pbk
for bk ∈J has been defined before (3.64).

Hence we see explicitly that while the attack of Bob may induce pb|k non-IID for
some k, on average he cannot influence Alice’s local IID state and therefore pb remains
IID

Swapping the order of summation over b and w and pulling the summation over b
inside the minimum (which can only increase the value) gives the upper bound

2−n
∑
b,w

pb min
(
1, g (εb , w)

)
(3.113)

≤ 2−n
∑
w

min
(
1,

∑
b

pb g (εb , w)
)

(3.114)

The sum inside the minimum,

∑
b

pb g (εb , w) =∑
b

pb

p
d

n∏
k=1

(
1+εbk

2

)wk /2

, (3.115)

is a product of sums because pb is a product (see eq. 3.112):

∑
b

pb g (εb , w) =
p

d
n∏

k=1

∑
j∈J

p j

(
1+ε j

2

)wk /2

. (3.116)
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Now each sum in the product can be bounded because of the concavity of the square
root we get

∑
b

pb g (εb , w) ≤
p

d
n∏

k=1

(
1+ε+

2

)wk /2

= g (~ε+, w) (3.117)

hence we have

2−n
∑
b,w

pb min
(
1, g (εb , w)

)
(3.118)

≤ 2−n
∑
w

min
(
1, g (~ε+, w)

)
(3.119)

where ε+ =∑
j∈J p j ε j and~ε+ is the vector (ε+,ε+, . . . ,ε+)

The following Lemma forms the main result of this appendix. It bounds the winning
probability λ(n,d ,Γ) by a function of d and ζ

Lemma 3.5.6. In the perfect guessing game where Alice’s devices behave IID and Bob has
a quantum memory of dimension d, his winning probability is bounded by

λ(n,d ,Γ) ≤ 2−n

[
t∑

k=0

(
n

k

)
+
p

d
n∑

k=t+1

(
n

k

)(
1+ζ

2

)k/2
]

, (3.120)

where t is the threshold defined as

t :=
⌊
− logd ·

[
log

(
1+ζ

2

)]−1⌋
(3.121)

and ζ := S
4

p
8−S2 with S being the CHSH violation as defined in Lemma 3.2.4.

Proof. Combine (3.119) with (3.105) and (3.76) and note that the maximizations over
all strategies of Bob drop out because we have bounded the winning probability of an
arbitrary strategy. Therefore, we obtain

λ(n,d ,Γ) ≤ 2−n
∑
w

min

{
1,
p

d
n∏

k=1

(
1+ε+

2

)wk /2
}

. (3.122)

Using Lemma 3.2.4 we have ε+ ≤ ζ and then

λ(n,d ,Γ) ≤ 2−n
∑
w

min

{
1,
p

d
n∏

k=1

(
1+ζ

2

)wk /2
}

. (3.123)

Since the right-hand side depends only on the Hamming weight of w ∈ {0,1}n it is easy
to perform the minimization explicitly, which yields

λ(n,d ,Γ) ≤ 2−n

[
t∑

k=0

(
n

k

)
+
p

d
n∑

k=t+1

(
n

k

)(
1+ζ

2

)k/2
]

, (3.124)

where t is the threshold defined in the Lemma.
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Figure 3.4: On the left hand side an illustration on how to store a certain number of qubits (here two EPR
pairs, the red and the green pairs) in an arbitrary large quantum channel thanks to one qubit memory on each
side. Alice and Bob keep forwarding each other their half of an entangled state in such a way that the state is
preserved in the quantum channel. The right hand side figure illustrates how to create another EPR pair (here
the blue EPR pair) using three qubits memory on Alice’s side and one on Bob’s side. These constructions works
for an arbitrarily high amount of EPR pairs by iterating the procedure.

3.5.3. CHEATING STRATEGY USING UNLIMITED QUANTUM CHANNELS
The Figure 3.4 shows how using unbounded quantum channels one can store (left) and
create (right) an arbitrary amount of entanglement without having access to more that
four qubits memory. This shows that having access to arbitrary quantum channels would
allow dishonest parties to prepare and share an arbitrary large amount of entanglement,
and therefore it would allow them to successfully attack PV.
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4
FULLY DEVICE-INDEPENDENT

CONFERENCE KEY AGREEMENT

Jérémy RIBEIRO, Gláucia MURTA, Stephanie WEHNER

We present the first security analysis of conference key agreement (CKA) in the most ad-
versarial model of device independence (DI). Our protocol can be implemented by any
experimental setup that is capable of performing Bell tests (specifically, we introduce the
“Parity-CHSH” inequality), and security can in principle be obtained for any violation
of the Parity-CHSH inequality. We use a direct connection between the N -partite Parity-
CHSH inequality and the CHSH inequality. Namely the Parity-CHSH inequality can be
considered as a CHSH inequality or an another CHSH inequality (equivalent up to rela-
belling) depending on the parity of the output of N − 2 of the parties. We compare the
asymptotic key rate for DICKA to the case where the parties use N −1 DIQKD protocols in
order to generate a common key. We show that for some regime of noise the DICKA protocol
leads to better rates.

Parts of this chapter have been published in Phys. Rev. A, 97:022307, 2018.
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4.1. INTRODUCTION
Significant efforts have been undertaken to establish the security of device-independent
(DI) QKD [1–7], leading to ever more sophisticated security proofs. Initial proofs as-
sumed a simple model in which the devices act independently and identically (IID) in
each round of the protocol. This significantly simplifies the security analysis since the
underlying properties of the devices may first be estimated by gaining statistical con-
fidence from the observation of the measurement outcomes in the tested rounds. The
main challenge overcome by the more recent security proofs [4–7] was to establish secu-
rity even if the devices behave arbitrarily from one round to the next, including having
an arbitrary memory of the past that they might use to thwart the efforts of Alice and
Bob. Assuming that the devices carry at least some memory of past interactions is an ex-
tremely realistic assumption due to technical limitations, even if Alice and Bob prepare
their own trusted, but imperfect, devices, highlighting the extreme importance of such
analyses for the implementation of device-independent QKD. In contrast, relatively little
is known about device independence outside the realm of QKD [8–12].

Conference key agreement [13–15] (CKA or N-CKA) is the task of distributing a secret
key among N parties. In order to achieve this goal, one could make use of N −1 individ-
ual QKD protocols to distribute N − 1 different keys between one of the parties (Alice)
and the others (Bob1, . . . ,BobN−1), followed by Alice using these keys to encrypt a com-
mon key to all the participants. However the existence of genuine multipartite quantum
correlations can bring some advantage to multipartite tasks, and, as shown in Ref. [15],
exploring properties of genuine multipartite entanglement can lead to protocols with
better performance for conference key agreement.

Here we present the first security analysis of conference key agreement in the most
adversarial model of device independence. Our protocol can be implemented using any
experimental setup that is capable of violating the Parity-CHSH inequality that we intro-
duce in Def. 4.2.1. Our proof is based on a the connection between the Parity-CHSH in-
equality and the CHSH inequality [16]. We also compare the asymptotic rates obtained
for DICKA with the implementation of N − 1 independent DIQKD, and show that for
some regime of noise it is advantageous to perform DICKA.

This chapter is organized as follows: In Section 4.1.1 we informally present the main
results of the chapter. In Section 4.1.2 we quickly remind the reader with some the no-
tation and some definitions and theorems (in particular the Entropy Accumulation The-
orem) which are going to be used in the main proofs. We finish discussing the set of
hypothesis contained in the device-independent (DI) model. In Section 4.2, we state
the DICKA protocol and present the detailed security proof. In Section 4.3 we present
the noise model to compare the asymptotic key rate of the DICKA protocol to the case
where the parties perform N − 1 independent DIQKD protocols in order to generate a
common key.

4.1.1. RESULTS
In this section we present the results of this chapter: we propose a new protocol for
CKA, and analyse its security in the device-independent setting. We then compare the
asymptotic key rate of our N -partite CKA protocol to the key rate of a protocol based on
(N −1) executions of DIQKD [7].
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THE PROTOCOL

Here we present our protocol for DICKA using a N -partite GHZ state and using a Bell
test based on a variation of the CHSH inequality that we call the Parity-CHSH inequality
which we introduce in section 4.2.1.

For a device-independent implementation of CKA, we consider a protocol with N
parties: Alice who possesses one device with two inputs {0,1}, and Bob1 who possesses
a device with three inputs {0,1,2}, and ,Bob2,. . .,BobN−1 who possess each one device
with two inputs {0,1}. Every device has two outputs. During the protocol, Alice and the
Bobs randomly choose some rounds to test for the violation of the Parity-CHSH inequal-
ity. They abort the protocol if the frequency of rounds where they win the Parity-CHSH
game do not reach a specified threshold δ. We also consider that Alice has a source for
generation of the states, which is independent of her measurement device.

Protocol 4.1.1 (DICKA).

1. For every round i ∈ [n] do:

(a) Alice uses her source to produce and distribute an N -partite state,
ρAi B(1...N−1),i , shared among herself and the N −1 Bobs.

(b) Alice randomly picks Ti , s.t. P (Ti = 1) = µ, and publicly communicates it
to all the Bobs.

(c) If Ti = 0 Alice and the Bobs choose (Xi ,Y(1...N−1),i ) = (0,2,0, ...,0),
and if Ti = 1 Alice chooses Xi ∈R {0,1} uniformly at random, Bob1

chooses Y(1),i ∈R {0,1} uniformly at random, and Bob2,. . . ,BobN−1 choose
(Y(2...N−1),i ) = (1, . . . ,1).

(d) Alice and the Bobs input the previously chosen values in their respective
device and record the outputs as A′

i ,B ′
(1...N−1),i .

2. They all communicate publicly the list of bases X n
1 Y(1...N−1)

n
1 they used.

3. Error correction: Alice and the Bobs apply an error correction protocol. We
call O A the classical information that Alice sends to the Bobs. For the purpose
of parameter estimation, the Bobs also send some error correction information
for the bits produced during the test rounds (Ti = 1), we denote O(k) the error
correction information sent by Bobk . If the error correction protocol aborts for
at least one Bob then they abort the protocol. If it does not abort they obtain the
raw keys K̃ A = A′, K̃B(1...N−1) .

4. Parameter estimation: For all the rounds i such that Ti = 1, Alice uses A′
i and

her guess on B ′
(1...N−1),i to set Ci = 1 if they have won the N-partite Parity-CHSH

game in the round i , and she sets Ci = 0 if they have lost it. Finally she sets
Ci = ⊥ for the rounds i where Ti = 0. She aborts if

∑
i Ci < δ ·∑i Ti , where

δ ∈]3/4,1/2+1/2
p

2[.



4

88 4. FULLY DEVICE-INDEPENDENT CONFERENCE KEY AGREEMENT

5. Privacy amplification: Alice and the Bobs apply a privacy amplification pro-
tocol to create final keys K A ,KB(1...N−1) . We denote S the classical information
publicly sent by Alice during this step.

In this protocol, the ideal state one would like to produce in each round is a N -partite
GHZ state. The parties’ measurements, ideally, correspond to single qubit Pauli mea-
surements. More details on the measurements are given in Section 4.2.2.

Security Definitions. For completeness, before stating our main result, which estab-
lishes the secret key length of Protocol 4.1.1, we first formalise what it means for a DICKA
protocol to be secure. As for QKD [17, 18] the security of conference key agreement [15]
can be split into two terms: correctness and secrecy. Correctness is a statement about
how sure we are that the N parties share identical keys, and secrecy is a statement about
how much information the adversary can have about Alice’s key.

Definition 4.1.2. (Correctness and secrecy (informal)) A DICKA protocol is εcorr-correct
if Alice’s and Bobs’ keys, K A , KB(1) , . . . ,KB(N−1) , are all identical with probability at least
1− εcorr. And it is εsec-secret, if Alice’s key K A is εsec-close to a key that Eve is ignorant
about. This condition can be formalized as

pΩ̂ ·
∥∥∥∥ρK A E |Ω̂− 1A

2l
⊗ρE |Ω̂

∥∥∥∥
tr
≤ εsec,

where ‖ · ‖tr denotes the trace norm, l is the key length, Ω̂ is the event of the protocol not
aborting, and pΩ̂ is the probability for Ω̂.

If a protocol is εcorr-correct and εsec-secret then it is εs -correct-and-secret for any εs ≥
εcorr +εsec.

A more complete definition can be found in Chapter 2 section 2.4.2.
So in general when we say that a CKA (or a QKD) protocol is εs secure, we mean that

for any possible physical implementation of the protocol, either it aborts with proba-
bility higher than 1− εs or it is εs -correct-and-secret, according to Definition 2.4.6 (see
section 4.2.2).

A combination of Definition 2.4.6 and the Leftover Hash Lemma (see Theorem 2.3.6
or [17]) relates the length of a secret key, that can be obtained from a particular proto-
col, with the smooth min-entropy of Alice’s raw key A′ conditioned on Eve’s information
(see [17] for a detailed derivation of this statement): An εsec -secret key of size

l = Hε
min(A′|E)−2log

1

εPA
(4.1)

can be obtained, for εsec > 2ε+ εPA . The conditional smooth min-entropy is defined as
Hε

min(A|E)ρ := supσ∈B(ρ) Hmin(A|E)σ (see Chapter 2).
Our main result establishes the length of a secure key that can be obtained from Pro-

tocol 4.1.1.
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Theorem 4.1.3. Protocol 4.1.1 generates an εs -correct-and-secret key, with εs ≤ εPA+2(N−
1)ε′EC +2ε+εEA, of length:

l = max
pmin≤δopt≤pmax

(
( f (δ,δopt)−µ) ·n − ṽ

p
n

)
+3log(1−

√
1− (ε/4)2)−2log(ε−1

PA ) (4.2)

− leakEC(O A)−
N−1∑
k=1

leakEC(O(k)),

where ε′EC is an error parameter of the error correction protocol, εPA is the privacy ampli-
fication error probability, εEA is a chosen security parameter for the protocol, and ε is a
smoothing parameter. δ is the specified threshold bellow which the protocol aborts. The
function f ( · ,δopt) is the tangent of f̂ (·) (defined in Lemma 4.2.9) in the point δopt, where
δopt ∈]3/4,1/2 + 1/2

p
2[ is a parameter to be optimized. ṽ = 2

(
log(13) + ( f̂ ′(popt)/µ+

1)
)√

1−2log(ε ·εEA) + 2log(7)
√
− log(ε2

EA(1−
√

1− (ε/4)2)). And the leakages due to er-
ror correction, leakEC, can be estimated according to a particular implementation of the
protocol.

The security proof of Protocol 4.1.1 consists of two main steps: We first use the re-
cently developed Entropy Accumulation Theorem [19] to split the overall entropy of Al-
ice’s string, produced during the protocol, into a sum of the entropy produced on each
round of the protocol. Then we develop a new method to bound the entropy produced in
one round by a function of the violation of the N -partite Parity-CHSH inequality, which
generalises the bound for the bipartite case derived in [1, 2]. An expanded and detailed
derivation of Theorem 4.1.3 is presented in Section 4.2.

ASYMPTOTIC KEY RATE AND COMPARISON WITH DIQKD BASED PROTOCOL

In this section we compare (Fig. 4.1) the asymptotic key rate achieved by our N -partite
DICKA protocol to the asymptotic key rate of protocol based on N −1 execution of the
DIQKD protocol presented in [7]. We do this assuming that the noise affecting the qubits
is a depolarizing noise.

We remark that bipartite QKD has of course been studied in the device-independent
setting [7], but as we are going to see in Figure 4.1, a conference key agreement protocol
can be beneficial for certain regimes of noise.

Using Theorem 4.1.3 we get a lower bound on the length of secret key we can obtain
with Protocol 4.1.1, which, when divided by the number of rounds n, gives us a lower
bound on the secret key rate.

In order to calculate the secret key rate, we also need to estimate the leakages due to
error correction, and for that we need to specify the model for an honest implementa-
tion. Modeling the noise on the distributed state as a depolarising noise we get:

leakEC(O A) ≤ ((1−µ)h(Q)+µ)n +O (
p

n), (4.3)

and

leakEC(O(k)) ≤µn +O (
p

n), (4.4)
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Figure 4.1: Asymptotic key rate for N -DICKA (dashed lines), and for the distribution of a secret key between
N parties through N −1 DIQKD protocols (solid lines), when each qubit experiences independent bit errors
measured at a bit error rate (QBER) Q. From top to bottom, the lines correspond to N = {3,4,5,6,7}. We
observe that for low noise regime it is advantageous to use DICKA instead of (N −1)×DIQKD [7]. In general,
the comparison between the two methods depends on the cost and noisiness of producing GHZ states over
pairwise EPR pairs.

where Q is the quantum bit error rate (QBER) between Alice and one of the Bobs. A
detailed calculation of the leakage for this particular noise model is presented in Section
4.3.

Using this estimation of the leakage in the bounds for the key length (4.15), and by
taking µ→ 0, s.t. µ

p
n →∞, we get the asymptotic key rate for Protocol 4.1.1:

r∞
N -DICKA

= 1−h

1

2
+ 1

2

√√√√√√16

√
1−2Q

N

2
p

2
+

(1−2Q)
(
1−√

1−2Q
N−2

)
8
p

2

2

−1

−h(Q).

(4.5)

We compare the above rate with the one we would have if Alice was performing N −1
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DIQKD protocols in order to establish a common key with all the Bobs [7]:

r∞
(N−1)×DIQKD

=
1−h

(
1
2 + 1

2

√
2(1−2Q)2 −1

)
−h(Q)

N −1
. (4.6)

Because when Alice runs N−1 DIQKD protocols she needs n rounds for each of the N−1
Bobs, the key rate r∞

(N−1)×DIQKD
gets a factor of 1

N−1 . Note that here we consider that the cost
for locally producing an N -partite GHZ state is comparable to the cost of producing EPR
pairs. An analysis taking into account these costs for particular implementations will
lead to a more fair comparison.

A comparison of these key rate is given in Figure 4.1, where we see that in some
regime of noise, it can be advantageous to use the N -partite DICKA Protocol 4.1.1 in-
stead of N −1 independent DIQKD protocols.

Remark 4.1.4. We remark that proving advantage for a small number of parties already
leads to better protocols for networks. Indeed, instead of using DIQKD as building block
for a N -DICKA protocol (for large N ), one can use k-DICKA protocols, upon availability
of k-GHZ states for k = 3,4 or 5.

4.1.2. PRELIMINARIES
Before going into the proof of our main Theorem 4.1.3, we state the model and assump-
tions we use in this Chapter. This preliminary section is mostly a reminder for the reader
since most of the model and assumptions have been explained in Chapter 2

NOTATION

If we deal with a system composed with N subsystems within a round i of a protocol we
denote A(k...l ),i for A(k),i , . . . A(l ),i (k, l ∈ [N ] : k ≤ l ), where A(k),i is the kth subsystem of
the round i . If we deal with a system composed of n subsystems across the n rounds of
a protocol we denote Al

k for Ak , . . . , Al (k, l ∈ [n] : k ≤ l ). Therefore A(k...l )
o
m is a short for

A(k...l ),m , . . . A(k...l ),o (k, l ∈ [N ],m,o ∈ [n] : k ≤ l ,m ≤ o).
We define a cq-state ρX A|Ω conditioned on an eventΩ⊂X as,

ρX A|Ω := 1

pΩ

∑
x∈Ω

px · |x〉〈x |X ⊗ρA|x , where pΩ := ∑
x∈Ω

px . (4.7)

We will denote by CPTP maps the linear maps that are Completely Positive and Trace
Preserving.

Let C be an alphabet, and C1, . . . ,Cn be n random variables on this alphabet. We
call freq(C n

1 ) the vector whose components labeled by c ∈ C are the frequencies of the
symbol c:

freq(C n
1 )c := |{i : Ci = c}|

n
.

ENTROPIES

Throughout this work we will make use the smooth min- (max-) entropy as defined in
Chapter 2. Moreover in this chapter we use the Entropy Accumulation Theorem (EAT).
The statement of the EAT is quite technical so give in this section a very short reminder.
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For more details about the EAT we advise the reader who is not very familiar with this
theorem to refer to Chapter 2 Section 2.3.3 on page 30.

Theorem 4.1.5 (The Entropy Accumulation Theorem (EAT) [7, 19]). For 1 ≤ i ≤ n let Mi

be a EAT channel from register Ri−1 to Ai Bi Ci Ri , and let ρAn
1 B n

1 E of the form,

ρAn
1 B n

1 E = trRn (Mn ◦ . . .◦M1(ρR0E )). (4.8)

Let fmin be an affine min-tradeoff function, and fmax be an affine max-tradeoff function.
For an event Ω that happens with probability p(Ω), and for t such that fmin(freq(cn

1 )) ≥ t
∀ cn

1 ∈Ω, it holds that

Hε
min(An

1 |B n
1 E)ρ|Ω > nt −νpn (4.9)

and similarly, for t ′ such that fmax(freq(cn
1 )) ≤ t ′ ∀ cn

1 ∈Ω,

Hε
max(An

1 |B n
1 E)ρ|Ω < nt ′+νpn (4.10)

with

ν= 2
(
log(1+2dA)+d‖∇ f ‖∞e)√1−2log

(
εs ·p(Ω)

)
(4.11)

for f equals to fmin and fmax respectively .

In simple terms the EAT allows to decompose the conditioned smooth (max) min-
entropy of a string into the sum of the Von Neumann entropy of each element of the
string which is itself bounded by the (max) min-tradeoff function..

DEVICE-INDEPENDENT ASSUMPTIONS

In this section we remind the reader the assumptions we make in the Device-Independent
scenario and comment upon them.

Assumptions 4.1.6. Our DICKA protocol considers N parties, namely Alice, Bob1, . . . ,BobN−1,
and the eavesdropper, Eve. They satisfy the following assumptions:

1. Each party is in a lab which is isolated from the outside (in particular from Eve). As
a consequence no non-intended information can go in or out of the labs.

2. Each party holds a trusted random number generator (RNG).

3. All classical communications between the parties are assumed to be authenticated,
and all classical operations are assumed to be trusted.

4. Each party has a measurement device in their lab in which they can input classi-
cal information and which outputs 0 or 1. The measurement devices are otherwise
arbitrary, and therefore could be prepared by Eve.

5. Alice has a source that produces some N partite quantum state ρAi B(1...N−1),i in the
round i . We allow Eve to hold the purification of ρAn

1 B(1...N−1)
n
1

(the state between
Alice and the Bobs for the n rounds of the protocol) and we denote the pure global
state ρAn

1 B(1...N−1)
n
1 E . This source is also assumed to be arbitrary, and therefore we can

assume that it is prepared by Eve.
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6. We will assume that Alice’s source and her measurement device are independent
(e.g. Alice can isolate the source from the measurement device). Therefore there is no
non-intended communication between the source and her measurement device.

Point 6 of Assumptions 4.1.6 is usually not explicitly stated in previous works on
device-independent QKD, however we remark that this assumption is also present in
all previous protocols. Indeed assumption 6 is important to guarantee that no extra in-
formation about the outcomes of Alice’s device is leaked to Eve (since Alice and Bob are
in isolated labs), apart from what she can learn from the purifying system in her posses-
sion and the classical communication intentionally leaked during the protocol. Previous
protocols usually assume that an external source is responsible for producing the states.
However note that in order to distribute the states to Alice and Bob’s devices one need a
quantum channel connecting the external source with their labs, and similarly it is as-
sumed that no information from the devices is leaked through this quantum channel.
An alternative approach is to assume that the full state for the n rounds of the protocol
is already shared between the two parties at the very beginning of the protocol (and any
quantum channel connecting the source and the devices is disconnected once the pro-
tocol starts). However this is an unrealistic assumption, since an implementation of such
protocol would require quantum memory to last for the entire duration of the protocol.
For that reason, here we chose NOT to assume that the state is already shared among all
the parties, and assumption 6 prevents the simple attack described in [20, Appendix C],
where the outcome of round i is leaked throughout the state transmitted to Bob in the
next rounds.

4.2. FROM SELF-TESTING TO DEVICE-INDEPENDENT CONFER-
ENCE KEY AGREEMENT

The Clauser-Horne-Shimony-Holt (CHSH) inequality [16] has been successfully used to
prove security of DIQKD [7] in the most adversarial scenario, where only a minimal set
of assumptions (similar to Assumptions 4.1.6) is required. The main point of using the
CHSH inequality for cryptographic protocols is due to its self-testing properties, which
allows one to derive properties about the devices used during the protocol. Therefore, in
order to prove the security of Device-Independent Conference Key Agreement (DICKA)
it is very natural to think of an N -partite extension of the CHSH inequality.

In this section we will start by introducing our new N -partite Parity-CHSH inequal-
ity, which we devise in such a way that it closely relates to the CHSH inequality. Then,
we presents our DICKA protocol in details and prove its security using the connection
between our Parity-CHSH inequality and the CHSH inequality.

4.2.1. FROM CHSH INEQUALITY TO “PARITY-CHSH” INEQUALITY.
In this section we present our new Parity-CHSH inequality, that is derived from the CHSH
inequality in such a way that a N -partite GHZ state can maximally violate it.

The CHSH inequality [16] a two-partite inequality that has already proven its useful-
ness for device-independent protocols [1, 2, 4–7, 9, 21, 22]. In this section we introduce
a slightly different inequality for N parties. Indeed we use the fact that a N−partite GHZ
state can be turned into either Φ+ := (|00〉+|11〉)(〈00 |+〈11 |)

2 or Φ− := (|00〉−|11〉)(〈00 |−〈11 |)
2 . by
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measuring N −2 parties in the X basis. More precisely if the parity of the outcomes of
the N −2 measurements in the X basis is 0 then the state on the remaining 2 parties is
Φ+, and if the parity of these outcomes is 1 then the state on the remaining systems is
Φ−.

The state Φ+ can be used to maximally violate the CHSH inequality, and Φ− can be
used to maximally violate an equivalent inequality. Therefore one would expect that the
GHZ state can violate a mixing these two CHSH inequality depending on whether we
create a stateΦ+ orΦ−.

We remind the reader with the definition of the CHSH inequality in order to later
define our new Parity-CHSH inequality.

Definition (CHSH inequality). Let Alice and Bob be the two players in this game called
the CHSH game. At the beginning of the game, they are both asked a uniformly random
binary question x ∈ {0,1} and y ∈ {0,1} respectively. They then have to answer bit a and b
respectively. They win the game if and only if

a +b = x y mod 2.

No communication is allowed between Alice and Bob during the game. They can, however,
agree on any strategy before the start of the game. The CHSH inequality states that by using
a classical strategy – i.e. modeled with local hidden variables – Alice and Bob’s winning
probability must satisfy the following,

P CHSH
w ≤ 3

4
. (4.12)

The state Φ+ allows to reach the maximum winning probability achievable by quan-
tum mechanics, i.e. it allows for P CHSH

w = 1
2+ 1

2
p

2
≈ 0.85. SimilarirlyΦ− allows to reach the

maximum winning probability achievable quantum mechanics(Pw ≈ 0.85) for a game
equivalent (up to relabelling) to the CHSH game, in which the winning condition is
a +b = x(y +1) mod 2.

Our new “Parity-CHSH” inequality extends the CHSH inequality to N parties as fol-
lows.

Definition 4.2.1 (Parity-CHSH inequality). Let Alice, Bob1, . . . , BobN−1 be the N players of
the following game (the Parity-CHSH game). Alice and Bob1 are asked uniformly random
binary questions x ∈ {0,1} and y ∈ {0,1} respectively. The other Bobs are each asked a fixed
question, e.g. always equal to 1. The parties all answer bits a,b1, . . . ,bN−1 respectively. We
denote by,

b̄ := ⊕
2≤i≤N−1

bi ,

the parity of the all answers of Bob2,. . . ,BobN−1. The players win if and only if

a +b1 = x(y + b̄) mod 2. (4.13)

No communication is allowed between Alice and Bob during the game. They can, however,
agree on any strategy before the start of the game. As for the CHSH inequality, classical
strategies for the Partity-CHSH game must satisfy,

P Parity−CHSH
w ≤ 3

4
. (4.14)
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Remark 4.2.2. Note that if we condition on b̄ = 0, the game is essentially the CHSH game.
When conditioned on b̄ = 1 the Parity-CHSH game reduces to a game equivalent to the
CHSH up to relabelling the question y.

4.2.2. DEVICE-INDEPENDENT CONFERENCE KEY AGREEMENT
We now present a device-independent conference key agreement (DICKA) protocol and
prove its security in two steps. We first use the recently developed Entropy Accumula-
tion Theorem [19] to split the overall entropy of Alice’s string produced during the pro-
tocol, into a sum of entropy produced on each round of the protocol. Then we use the
relation between the Parity-CHSH inequality and the CHSH inequality, to bound the en-
tropy produced in one round by a function of the violation of the N -partite Parity-CHSH
inequeality, which generalize the bounds found for the bipartite case in [2].

THE PROTOCOL
In this chapter we work with the security Definition 2.4.6 of Chapter 2, which we have
already informally spelled out in the Results section of this chapter.

We remark again that this definition was proven to be a criteria for composable secu-
rity for Quantum Key Distribution in the device dependent scenario [18]. However, for
the device-independent case it is not known whether such a criteria is enough for com-
posable security. Indeed, Ref. [23] suggests that this is not the case if the same devices are
used for generation of a subsequent key since this new key can leak information about
the first key. Following Ref. [7] we choose to adopt Definition 2.4.6 as the security criteria
for DICKA.

We now prove that the DICKA Protocol 4.2.3, under the Assumptions 4.1.6, satisfies
the above definitions of security. For completeness we re-state the protocol here.

Protocol 4.2.3 (More detail version of Protocol 4.1.1). The protocol runs as follows
for N parties:

1. For every round i ∈ [n] do:

(a) Alice uses her source to produce and distribute a N -partite state,
ρAi B(1...N−1),i , shared among herself and the N −1 Bobs.

(b) Alice randomly picks Ti , s.t. P (Ti = 1) =µ, and publicly communicates it
to all the Bobs.

(c) If Ti = 0 Alice and the Bobs choose (Xi ,Y(1...N−1),i ) = (0,2,0, ...,0),
and if Ti = 1 Alice chooses Xi ∈R {0,1} uniformly at random, Bob1

chooses Y(1),i ∈R {0,1} uniformly at random, and Bob2,. . . ,BobN−1 choose
(Y(2...N−1),i ) = (1, . . . ,1).

(d) Alice and the Bobs input the value they chose previously in their respective
device and record the output as A′

i ,B ′
(1...N−1),i

2. They all communicate publicly the list of bases X n
1 Y(1...N−1)

n
1 they used.
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3. Error correction: Alice and the Bobs apply an error correction protocol. Here
we chose a protocol based on universal hashing [24, 25]. If the error correction
protocol aborts for at least one Bob then they abort the protocol. If it does not
abort they obtain the raw keys K̃ A , K̃B(1...N−1) . We call O A the classical informa-
tion that Alice has sent to the Bobs during the error correction protocol. Also the
Bobs will send some error correction information but only for the bits produced
during the testing rounds (Ti = 1), for the purpose of parameter estimation. We
call Alice’s guess on Bobs’ strings G(1...N−1), and we denote O(k) the error correc-
tion information sent by Bobk .

4. Parameter estimation: For all the rounds i such that Ti = 1, Alice uses A′
i and

her guess on B ′
(1...N−1),i to set Ci = 1 if they have won the N-partite Parity-CHSH

game in the round i , and she sets Ci = 0 if they have lost it. Finally she sets
Ci = ⊥ for the rounds i where Ti = 0. She aborts if

∑
i Ci < δ ·∑i Ti , where

δ ∈]3/4,1/2+1/2
p

2[.

5. Privacy amplification: Alice and the Bobs apply a privacy amplification pro-
tocol (namely the universal hashing described in [26]) to create final keys
K A ,KB(1...N−1) . We call S the classical information that Alice sent to the Bobs
during the privacy amplification protocol.

Note that the above Protocol 4.2.3 is very similar to the DIQKD protocol given in [7],
the difference being that since N parties are present here we use a shared N -partite GHZ
state, instead of EPR pairs, and we have to add error corrections. Indeed we have an
error correction protocol that permits all the parties to get the same raw key. But since
we have N parties involved in the protocol, at least one of the parties needs to know all
the other parties’ outputs for the testing rounds (when Ti = 1) in order to estimate, in
the parameter estimation phase, how many times do they succeed in the Parity-CHSH
game. For simplicity of the analysis we choose, in Protocol 4.2.3, to communicate this
information through error correction protocols.

In the ideal scenario (when there is no noise and no interference of Eve) the state
ρAn

1 B(1...N−1)
n
1

produced corresponds to n copies of the N -partite GHZ state, distributed
across the N parties, and Alice and the Bobs measure the following observables:

1. Alice’s observable for Xi = 0 is σZ and for Xi = 1 it is σX .

2. Bob1 uses observable σZ when Y(1),i = 2, σZ +σXp
2

when Y(1),i = 0, and σZ −σXp
2

when

Y(1),i = 1.

3. For the other Bobs, they have the observableσZ for Y(k),i = 0, and for Y(k),i = 1 they
have observable σX .

In the next sections we are going to present the detailed proof of the following main
result:
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Theorem 4.2.4. Let εEC,ε′EC ∈]0,1[ be the two error parameters of the error correction
protocol as described in the Section 4.2.2, εPA ∈]0,1[ be the privacy amplification error
probability, εEA ∈]0,1[ be a chosen security parameter for Protocol 4.2.3, and ε ∈]0,1[ be a
smoothing parameter. Protocol 4.2.3 is (εs ,εc , l )-secure according to Definition 2.4.6, with

εs ≤ εPA+2(N −1)ε′EC+2ε+εEA, εc ≤ (N −1)(2εEC+ε′EC)+
(
1−µ

(
1−exp

[−2(pexp−δ)2
]))n

,

and

l = max
3/4≤ popt

µ ≤1/2+1/2
p

2

(
( f (q̂ , popt)−µ) ·n − ṽ

p
n

)+3log(1−
√

1− (ε/4)2)−2log(ε−1
PA )

− leakEC(O A)−
N−1∑
k=1

leakEC(O(k)),

(4.15)

where ṽ = 2
(

log(13)+( f̂ ′(popt)+1)
)√

1−2log(ε ·εEA)+2log(7)
√
− log(ε2

EA(1−
√

1− (ε/4)2)),

popt ∈]µ3/4,µ(1/2+ 1/2
p

2)[ is a parameter to be optimized: more precisely popt is the
unique point were the tangent function f ( · , popt) to the function f̂ (·) (see Lemma 4.2.9) is
such that f (popt, popt) = f̂ (popt) (by convexity of f̂ we have ∀x ∈ [0,1] f (x, popt) ≤ f̂ (x)).
Finally pexp is the expected winning probability to win a single round of the Parity-CHSH
game for a honest implementation, δ ∈]3/4,1/2+1/2

p
2[ is the threshold defined in Pro-

tocol 4.2.3, and q̂ is the vector (µδ,µ−µδ,1−µ)t .

CORRECTNESS
The correctness of Protocol 4.2.3 comes from the first part of the error correction proto-
col used by the parties, where Alice sends information to the Bobs so that they generate
the raw keys K̃ A , K̃B(1...N−1) . We want here an error correction protocol that uses only com-
munication from Alice to the Bobs and that minimizes the amount of communication
needed. Therefore we are going to use an error correction protocol as the one described
in [24, 25]. The idea of this error correction code is that Alice chooses a hash function and
sends to the Bobs the chosen function and the hashed value of her bits. We denote this
communication O A . Then each Bobk will individually use O A and his own prior knowl-
edge B(k)

n
1 X A

n
1 Y(1...N−1)

n
1 T n

1 to guess Alice’s string. Each of the Bobs can fail to produce
a guess, so if one of them fails the protocol aborts. In an honest implementation of the
protocol, the probability that one particular Bob, say Bobk (k ∈ [N −1]), aborts is upper
bounded by εEC. Therefore the probability that at least one of them aborts in an honest
implementation is at most (N −1)εEC. If for k ∈ [N −1] Bobk does not abort we then have
that P (K̃ A 6= K̃B(k) ) ≤ ε′EC. Therefore if none of the Bobs aborts we have that,

P
(
K̃ A = K̃B(1) = . . . = K̃B(N−1)

)= 1−P
(
K̃ A 6= K̃B(1) OR.. .OR K̃ A 6= K̃B(N−1)

)
≥ 1− (N −1)ε′EC ≥ 1−εcorr,

where we take εcorr ≥ (N −1)ε′EC, which proves the following lemma:

Lemma 4.2.5. The Protocol 4.2.3 is εcorr-correct, for any εcorr ≥ (N −1)ε′EC, where ε′EC is
such that if ∀k ∈ [N − 1] Bobk does not abort the error correction protocol then P (K̃ A 6=
K̃B(k) ) ≤ ε′EC .
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COMPLETENESS
We call an honest implementation of the protocol, an implementation where the mea-
surement devices used act in the same way in all the rounds of the protocol, the state
used for the n rounds is of the form ρ⊗n

AB(1...N−1)
(the measurements and the state are then

said to be identically and independently distributed (IID)), and such that for one single
round, the probability of winning the N partite Parity-CHSH game is pexp ∈ ]

3/4,1/2+
1/2

p
2
]
.

Lemma 4.2.6. For any parameter δ ∈ ]
3/4,1/2+1/2

p
2
[
, Protocol 4.2.3 is εc -complete, for

εc ≤ (N −1)(2εEC +ε′EC)+
(
1−µ

(
1−exp

[−2(pexp −δ)2]))n
, (4.16)

where pexp > δ, δ is a threshold.

Proof. Protocol 4.2.3 can abort at two moments: it can abort during the error correction
or during the parameter estimation. For the error correction step, the protocol aborts if
one of the Bobs aborts while trying to guess Alice’s string, or if Alice aborts while guessing
Bobs’ testing bits. We are assuming that the Bobs use the same error correction protocol
in order to send information about their outputs in the test rounds so that Alice can
make her guess. Therefore the overall probability of aborting during the error correction
protocol is then bounded by 2(N −1)εEC for an honest implementation. The probability
of aborting during the parameter estimation part (conditioned on not aborting the error
correction step) is given by:

PPE(abort) = P (G(1...N−1) is correct)P
(∑

i
Ci < δ ·

∑
i

Ti

∣∣∣G(1...N−1) is correct
)

+P (∃k : G(k)is wrong)P
(∑

i
Ci < δ ·

∑
i

Ti

∣∣∣∃k : G(k)is wrong
) (4.17)

where G(k) is Alice’s guess for Bobk ’s testing rounds bits. It is said to be correct when
the string G(k) = B ′

(k),I for I := {i ∈ [n] : Ti = 1}. By bounding P (G(1...N−1) is correct) by 1,

P (∃k : G(k)is wrong) by (N −1)ε′EC, and P
(∑

i Ci < δ ·∑i Ti

∣∣∣∃k : G(k)is wrong
)

by 1, we get

PPE(abort) ≤
n∑

j=0
P

(∑
i

Ti = j
)
·P

(∑
i

Ci < δ · j
∣∣∣∑

i
Ti = j & ∀kK̃ A = K̃B(k)

)
+ (N −1)ε′EC.

(4.18)

Let us consider an honest implementation such that pexp > δ, we can then rewrite
(4.18) as,

PPE(abort)

≤
n∑

j=0
P

(∑
i

Ti = j
)
·P

(∑
i

Ci <
(
pexp − (pexp −δ)

) · j
∣∣∣∑

i
Ti = j & G(1...N−1) is correct

)
+ (N −1)ε′EC.

(4.19)



4.2. FROM SELF-TESTING TO DEVICE-INDEPENDENT CONFERENCE KEY AGREEMENT

4

99

Note that the expectation value E(Ci ) = pexp and because an honest implementation is

IID we can use Hoeffding inequalities to bound P
(∑

i Ci <
(
pexp − (pexp −δ)

) · j
∣∣∣∑i Ti =

j & G(1...N−1) is correct
)
< exp(−2(pexp−δ)2 j ). Moreover the the IID random variables Ti

follow a Bernoulli distribution with P (Ti = 1) = µ. Pluging all of this into eq. (4.19) gives
us,

PPE(abort) ≤
n∑

j=0

(
n

j

)
(1−µ)n− jµ j ×exp(−2(pexp −δ)2 j )+ (N −1)ε′EC (4.20)

=
n∑

j=0

(
n

j

)
(1−µ)n− j (µ×exp(−2(pexp −δ)2)

) j + (N −1)ε′EC (4.21)

=
(
1−µ

(
1−exp

[−2(pexp −δ)2]))n + (N −1)ε′EC, (4.22)

where the last equality comes from the binomial theorem.

SOUNDNESS
In order to complete the security proof of Protocol 4.2.3, it remains to prove secrecy. Let
Ω̂′ be the event that Protocol 4.2.3 does not abort and that the error correction step is
successful. The Leftover Hash Lemma [17, Corollary 5.6.1] states that the secrecy of the
final key, after a privacy amplification protocol using a family of two-universal hashing
functions, depends on the amount of smooth min-entropy of the state before privacy
amplification conditioned on the event Ω̂′.

Theorem 4.2.7 (Leftover Hash Lemma [17]). Let F be a family of two-universal hashing
functions from {0,1}n → {0,1}l , such that F (An

1 ) = K A for F ∈F , then it holds that∥∥∥∥ρK A E |Ω̂′ − 1A

2l
⊗ρE |Ω̂′

∥∥∥∥
tr
≤ 2ε+2

− 1
2 (Hε

min(An
1 |E)ρ|Ω̂′−l )

. (4.23)

According to Theorem 4.2.7, in order to prove the secrecy of Protocol 4.2.3 we need
to lower bound the smooth min-entropy Hε

min(A′n
1 |X n

1 Y(1...N−1)
n
1 T n

1 OO(1...N−1)E)ρ|Ω̂′ . The
proof goes in the following steps: In Lemma 4.2.10, we introduce an error correction map
and bound the entropy Hε

min(A′n
1 |X n

1 Y(1...N−1)
n
1 T n

1 E) for the state after the action of the
error correction map, conditioned on the event that a particular violation is observed
and the error correction protocol is successful. In Lemma 4.2.11, we relate the state
generated by Protocol 4.2.3 conditioned on the event that the error correction proto-
cols were successful to the state artificially introduced in Lemma 4.2.10, and we estimate
Hε

min(A′n
1 |X n

1 Y(1...N−1)
n
1 T n

1 OO(1...N−1)E), taking into account the information leaked dur-
ing the error correction protocol. Finally, in Lemma 4.2.12, we combine the previous
results proving the soundness of Protocol 4.2.3.

To bound the smooth min-entropy we will use the Entropy Accumulation Theorem
(EAT).

Remark 4.2.8. The reader who is not very familiar with this theorem may read the Entropy
Accumulation Theorem section of Chapter 2 on page 30.
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Mi

Ei Di

Ai

B(1),i

···
B(N−1),i

Ri−1 Ri ,C̃i

Xi ,Ti

Y(1),i ,Ti

Y(N−1),i ,Ti

A′
i , Xi

B ′
(1...N−1),i ,

Y(1...N−1),i ,Ti

Figure 4.2: Description of the map Mi . This map describes the round i of the first step of the Protocol 4.2.3.
Ti is chosen at random such that P (Ti = 1) = µ. Xi ∈ {0,1} represents the “basis” in which Alice’s device,
represented by the CPTP map Ai , measures its input to get the output A′

i ∈ {0,1}. Xi = 0 when Ti = 0 and
Xi ∈R {0,1} otherwise. Y(k),i ∈ {0,1,2} represents the “basis” in which Bobk ’s device, represented by the CPTP
map B(k),i , measures its input to get the output B ′

(k),i ∈ {0,1}. If Ti = 0 we have Y(k),i = 2, else we have Y(k),i ∈R

{0,1}. If Ti = 0 then C̃i =⊥, else C̃i = wParity−CHSH(A′
i ,B ′

(1...N−1),i , Xi ,Y(1...N−1),i ).

Indeed, before the error correction part, Protocol 4.2.3 can be described by a compo-
sition of EAT channels that we will call M1, . . . ,Mn (see Fig. 4.2).

In order to apply Entropy Accumulation Theorem (EAT) (see Theorem 2.3.13 of Chap-
ter 2) we need to find a min-tradeoff function (see Definition 2.3.12 of Chapter 2) for the
maps Mi defined by the Figure 4.2. I.e., we need to find a function f such that

f (q) ≤ inf
σ∈Σi (q)

H(A′
i C̃i |Xi Y(1...N−1),i Ti R)σ, (4.24)

for

Σi (q) := {σC̃i A′
i B ′

(1...N−1),i Xi Y(1...N−1),i Ti Ri R = (Mi⊗1R )(σRi−1R ) :σRi−1R ∈S (HRi−1R ) &σC̃i
= q},

whereΣi (q) is the set of states that can be generated by the action of the channel Mi ⊗1R

on an arbitrary state and such that the classical register C̃i has distribution q .

Lemma 4.2.9. The real function defined as,

f̂ (x) :=
(
1− µ

2

)(
1−h

(
1

2
+ 1

2

√
(4x/µ−2)2 −1

))
(4.25)

is a min-tradeoff function for the EAT channels Mi defined by the Figure 4.2. Here µ is the
testing probability of the Protocol 4.2.3, and h(x) is the binary entropy: h(x) =−x log(x)−
(1−x) log(1−x).
We define the affine function f ( · , popt) over the probability distribution P({1,0,⊥}) as,

∀ q = (
q(1), q(0), q(⊥)

)t ∈P({1,0,⊥}),

f (q, popt) := f̂ ′(popt)q(1)+ f̂ (popt)− f̂ ′(popt)popt, (4.26)
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where popt ∈]µ3/4,µ(1/2+1/2
p

2)[.

In order to make the argument more rigorous and general, here f (·, popt) is a function

that takes as input the vector of frequencies q = (
q(1), q(0), q(⊥)

)t .

Proof. Let us take a state σC̃i A′
i B ′

(1...N−1),i Xi Y(1...N−1),i Ti Ri R ∈Σi (q). Then we define the state

σ′
C̃i A′′

i B ′′
(1),i B ′

(2...N−1),i Xi Y(1...N−1),i Ti Fi Ri R
(4.27)

to be the state we obtain from σC̃i A′
i B ′

(1...N−1),i Xi Y(1...N−1),i Ti Ri R by replacing A′
i by A′′

i := A′
i ⊕

Fi and B ′
(1),i by B ′′

(1),i := B ′
(1),i ⊕Fi where Fi is a bit that is chosen uniformly at random.

None of the other registers are changed, in particular, note that we still have thatσ′
C̃i

= q ,

where the value of C̃i can be determined by the registers A′′
i , B ′′

(1),i , and B ′
(2...N−1),i . More-

over, since Fi is completely independent of the other variables and given the definition
of A′′

i , it is easy to check that,

H(A′
i C̃i |Xi Y(1...N−1),i Ti R)σ = H(A′′

i C̃i |Fi Xi Y(1...N−1),i Ti R)σ′ . (4.28)

This entropy can be lower bounded as follows:

H(A′′
i C̃i |Fi Xi Y(1...N−1),i Ti R)σ′ ≥ H(A′′

i C̃i |Fi Xi Y(1...N−1),i Ti R, b̄)σ′ , (4.29)

where b̄ denotes the register containing the parity of B ′
(2...N−1),i . The right-hand side of

the above inequality can be expended as,

H(A′′
i C̃i |Fi Xi Y(1...N−1),i Ti R, b̄)σ′ = pb̄=0H(A′′

i C̃i |Fi Xi Y(1...N−1),i Ti R, b̄ = 0)σ′ (4.30)

+pb̄=1H(A′′
i C̃i |Fi Xi Y(1...N−1),i Ti R, b̄ = 1)σ′

We will now detail the derivation of a lower bound for H(A′′
i C̃i |Fi Xi Y(1...N−1),i Ti R, b̄ = 0).

The lower bound on H(A′′
i C̃i |Fi Xi Y(1...N−1),i Ti R, b̄ = 1) follows the exacte same steps.

Using the chain rule,

H(A′′
i C̃i |Fi Xi Y(1...N−1),i Ti R, b̄ = 0)σ′ ≥ H(A′′

i |Fi Xi Y(1...N−1),i Ti R, b̄ = 0)σ′ , (4.31)

and since P (Xi = 0) = 1− µ
2 ,

H(A′′
i |Fi Xi Y(1...N−1),i Ti R, b̄ = 0)σ′ ≥

(
1− µ

2

)
·H(A′′

i |Fi Y(1...N−1),i Ti R, Xi = 0, b̄ = 0)σ′ .

(4.32)

Given that for Xi = 0 Alice’s measurement is independent of Y(1...N−1),i and Ti we have

H(A′′
i |Fi Y(1...N−1),i Ti R, Xi = 0, b̄ = 0)σ′ = H(A′′

i |Fi R, Xi = 0, b̄ = 0)σ′ . (4.33)

Using the definition of the conditional Von Neumann entropy we can write:

H(A′′
i |Fi R, Xi = 0, b̄ = 0)σ′ = H(A′′

i Fi R|Xi = 0, b̄ = 0)σ′ −H(Fi R|Xi = 0, b̄ = 0)σ′ (4.34)

= H(A′′
i |Xi = 0, b̄ = 0)σ′ +H(Fi R|Xi = 0, b̄ = 0)σ′ −H(Fi R|Xi = 0, b̄ = 0)σ′︸ ︷︷ ︸

=−χ(A′′
i :Fi R|X=0,b̄=0)σ′

(4.35)

= 1−χ(A′′
i : Fi R|Xi = 0, b̄ = 0)σ′ (4.36)
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where χ(A′′
i : Fi R|Xi = 0, b̄ = 0) is the Holevo quantity, and the last equality comes from

the definition of A′′
i being a uniform variable (for any value of Xi and b̄).

In the following we will use pw as a short for P Parity−CHSH
w . From the definition of

the Parity-CHSH inequality (see Def. 4.2.1), one can noticed that conditioned on b̄ = 0,
the Parity-CHSH game reduces the the usual CHSH game, and conditioned on b̄ = 1 it re-
duces to a game that is equivalent to CHSH up to flipping input y . Therefore we can write
pw = pb̄=0pw |b̄=0+pb̄=1pw |b̄=1, where pw |b̄=0 can be viwed as the winning probability of
a CHSH game, and pw |b̄=1 as the winning probability of the CHSH game with flipped in-

put y . Moreover, for any state leading to a CHSH violation of P CHSH
w = pw |b̄=0 ∈ [3/4,1/2+

1/2
p

2], Ref. [2, Section 2.3] gives a tight upper bound on χ(Ai : Fi R|Xi = 0, b̄ = 0):

χ(A′′
i : RFi |Xi = 0, b̄ = 0) ≤ h

(
1

2
+ 1

2

√
(4pw |b̄=0 −2)2 −1

)
, (4.37)

where h(x) =−x log(x)− (1−x) log(1−x). This leads to,

H(A′′
i C̃i |Fi Xi Y(1...N−1),i Ti R, b̄ = 0)σ′ ≥ 1−h

(
1

2
+ 1

2

√
(4pw |b̄=0 −2)2 −1

)
. (4.38)

Similarly we can bound,

H(A′′
i C̃i |Fi Xi Y(1...N−1),i Ti R, b̄ = 1)σ′ ≥ 1−h

(
1

2
+ 1

2

√
(4pw |b̄=1 −2)2 −1

)
. (4.39)

Using these two above inequalities in eq. (4.30) we get,

H(A′′
i C̃i |Fi Xi Y(1...N−1),i Ti R, b̄)σ′ = pb̄=0

(
1−h

(
1

2
+ 1

2

√
(4pw |b̄=0 −2)2 −1

))
(4.40)

+pb̄=1

(
1−h

(
1

2
+ 1

2

√
(4pw |b̄=1 −2)2 −1

))
≥

(
1−h

(
1

2
+ 1

2

√
(4(pb̄=0pw |b̄=0 +pb̄=1pw |b̄=1)−2)2 −1

))
(4.41)

=
(
1−h

(
1

2
+ 1

2

√
(4pw −2)2 −1

))
, (4.42)

where the last inequality holds by convexity.
Note that pw can be expressed in terms of the probability distribution q = (q(1), q(0), q(⊥))t

(where t is the transpose) as pw = q(1)
1−q(⊥) . And because in our case the definition of the

maps Mi implies 1−q(1) =µ we have pw = q(1)
µ . Therefore the function

f̄ (q) = f̂ (q(1)) =
(
1− µ

2

)
·
(
1−h

(
1

2
+ 1

2

√(
4 ·q(1)/µ−2

)2 −1

))
, (4.43)

is a min-tradeoff function, and f̂ is a differentiable convex increasing function of one
variable. To find an affine min-tradeoff function f we take a tangent to f̂ for some value
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popt(n,δ) ∈ ]
µ ·3/4,µ · (1/2+1/2

p
2)

[
to be chosen, where µ and δ are defined in the Pro-

tocol 4.2.3, which gives us,

f (q, popt) := f̂ ′(popt)q(1)+ f̂ (popt)− f̂ ′(popt)popt. (4.44)

In the following Lemma we show that the state ρ̃ created by applying a sequence of n
CPTP maps of the form described by Fig. 4.2 on some initial state, (when conditioned on
the event of having (statistically) high enough Bell violation), possesses a linear amount
of entropy.

Lemma 4.2.10. Let MEC be the CPTP map A′n
1 B ′

(1...N−1)
n
1 7→ A′n

1 B ′
(1...N−1)

n
1 KB(1...N−1)G(1...N−1)

that models the error correction protocols, applied during Step 3 of Protocol 4.2.3, which
produce the raw keys KB(1...N−1) and the guess G(1...N−1). For i ∈ [n] let Mi be the CPTP map
from Ri−1 to A′

i B ′
(1...N−1)i C̃i Xi Y(1...N−1),i Ti Ri defined in the Fig. 4.2. Let Ω be the event

{
∑

j C̃ j ≥ δ·∑ j T j for δ ∈ ]
3/4,1/2+1/2

p
2
[

and all the error correction protocols were suc-
cessful, meaning that ∀k, A′n

1 = KB(k) and Alice guess G(1...N−1) is correct}. We define the
state,

ρ̃A′n
1 C̃ n

1 B ′
(1...N−1)

n
1 X n

1 Y(1...N−1)
n
1 T n

1 E := (trRn ◦Mn ◦ . . .◦M1 ⊗1E )(ρR0E ), (4.45)

where R0 = An
1 B(1...N−1)

n
1 , and ρR0E is the state shared between Alice, the Bobs, and Eve

(produced by Alice’s source) across the n rounds of the Protocol 4.2.3 before they apply any
measurement. Then we have for any ε ∈]0,1[,

Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
MEC(ρ̃)|Ω ≥ (

f (q̂ , popt)−µ
) ·n − ṽ

p
n +3log(1−

√
1− (ε/4)2),

(4.46)

where ṽ = 2
(

log(13)+( f̂ ′(popt)+1)
)√

1−2log(ε ·pΩ)+2log(7)
√
− log(p2

Ω
(1−

√
1− (ε/4)2)),

and q̂ = (
δµ,µ−δµ,1−µ)t ∈P({1,0,⊥}).

Proof. Note that ρ̃|Ω := trKB(1...N−1) G(1...N−1)

(
MEC(ρ̃)|Ω

)
, therefore

Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
MEC(ρ̃)|Ω = Hε

min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
ρ̃|Ω .

The maps M1, . . . ,Mn are EAT channels with the following Markov conditions,

∀i ∈ [n], A′i−1
1 C̃ i−1

1 ↔ X i−1
1 Y(1...N−1)

i−1
1 T i−1

1 E ↔ X i
1Y(1...N−1)

i
1T i

1 . (4.47)

Indeed for any round i ∈ [n] the variables Xi Y(1...N−1),i Ti are chosen independently of
any other round j 6= i . We have proven that the function f ( · , popt) is a min-tradeoff func-
tion for the maps M1, . . . ,Mn . We can therefore use the EAT to bound
Hε

min

(
A′n

1 C̃ n
1 |X n

1 Y(1...N−1)
n
1 T n

1 E
)
ρ̃|Ω :

Hε
min

(
A′n

1 C̃ n
1 |X n

1 Y(1...N−1)
n
1 T n

1 E
)
ρ̃|Ω ≥ n f (q̂ , popt)− c

p
n, (4.48)

where q̂ = (µδ,µ−µδ,1−µ), c = 2
(

log(13)+d f̂ ′(popt)e
)√

1−2log(ε ·pΩ), and pΩ is the
probability of the event Ω. This is true because f (q, , popt) is an increasing function
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of q(1), so for any event that implies
∑

j C̃ j ≥ δ ·∑ j T j we have that f (freq(C̃ n
1 ), popt) ≥

f (q̂ , popt), in particularΩ⇒ f (freq(C̃ n
1 ), popt) ≥ f (q̂ , popt). Note that because∀x ∈R, dxe ≤

x+1 we can upper bound d f̂ ′(popt)eby f̂ ′(popt)+1 and then take c = 2
(

log(13)+( f̂ ′(popt)+
1)

)√
1−2log(ε ·pΩ).

Using [27, eq. (6.57)] we can relate Hε
min

(
A′n

1 C̃ n
1 |X n

1 Y(1...N−1)
n
1 T n

1 E
)
ρ̃|Ω to

Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
ρ̃|Ω :

Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
ρ̃|Ω

≥H
ε
4

min

(
A′n

1 C̃ n
1 |X n

1 Y(1...N−1)
n
1 T n

1 E
)
ρ̃|Ω −H

ε
4

max
(
C̃ n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
ρ̃|Ω

+3log(1−
√

1− (ε/4)2).

(4.49)

We now need to upper bound H
ε
4

max
(
C̃ n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
ρ̃|Ω . First we note that,

H
ε
4

max
(
C̃ n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
ρ̃|Ω ≤ H

ε
4

max
(
C̃ n

1 |T n
1 E

)
ρ̃|Ω .

To upper bound H
ε
4

max
(
C̃ n

1 |T n
1 E

)
ρ̃|Ω we will use [20, Lemma 28]. Indeed H

ε
4

max
(
C̃ n

1 |T n
1 E

)
ρ̃|Ω

can be bounded exactly in the same as in [20, Lemma 28], and leads to:

Hε/4
max(C̃ n

1 |T n
1 E)ρ̃|Ω ≤µn +n(α−1)log2(7)+ α

α−1
log

(
1

pΩ

)
− log(1−

√
1− (ε/4)2)

α−1
(4.50)

≤µn +n(α−1)log2(7)− log(p2
Ω(1−

√
1− (ε/4)2))

α−1
, (4.51)

for α ∈]1,2].

Taking α= 1+
√

− log(p2
Ω

(1−
p

1−(ε/4)2))

n log2(7)
gives us,

Hε/4
max(C̃ n

1 |T n
1 E)ρ̃|Ω ≤µn +2

p
n log(7)

√
− log(p2

Ω
(1−

√
1− (ε/4)2)). (4.52)

Putting eq. (4.48),(4.49) and (4.52) together gives us,

Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
ρ̃|Ω ≥ (

f (q̂ , popt)−µ
) ·n − ṽ

p
n +3log(1−

√
1− (ε/4)2),

(4.53)

where ṽ = 2
(

log(13)+( f̂ ′(popt)+1)
)√

1−2log(ε ·pΩ)+2log(7)
√
− log(p2

Ω
(1−

√
1− (ε/4)2)).

Since Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
MEC(ρ̃)|Ω = Hε

min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
ρ̃|Ω , we have,

Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
MEC(ρ̃)|Ω ≥ (

f (q̂ , popt)−µ
) ·n − ṽ

p
n +3log(1−

√
1− (ε/4)2).

(4.54)

This bound holds for any popt ∈]µ3/4,µ(1/2+1/2
p

2)[.
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In the following Lemma we link the result of the previous Lemma to the real state ρ
generated by the protocol 4.2.3. Indeed, in the real state, the “Bell violation” is not esti-
mated directly, but via the error corrections that might fail with some small probability.
We show that the real state of the protocol, when conditioned on the event that Protocol
4.2.3 does not abort and the error corrections were successful, possesses a linear amount
on entropy.

Lemma 4.2.11. Let us call Ω̂ the event of not aborting the Protocol 4.2.3 and Ω̂′ the event
Ω̂ and all the error correction protocols were successful, meaning that ∀k ∈ [N−1], KB(k) =
A′n

1 and Alice’s guess G(1...N−1) is correct. Then, for any εEA,ε′EC,ε ∈]0,1[, Protocol 4.2.3 ei-

ther aborts with a probability 1−P (Ω̂) ≥ 1− (
1−2(N −1)ε′EC

)
εEA (⇔ P (Ω̂′) ≤ εEA) or

Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 O AO(1...N−1)E
)
ρ|Ω̂′ ≥

max
3/4≤ popt

µ ≤1/2+1/2
p

2
n

((
f (q̂ , popt)−µ

)− 2
(

log(13)+ ( f̂ ′(popt)+1)
)√

1−2log(ε ·εEA)p
n

)

−p
n

(
2log(7)

√
− log(ε2

EA(1−
√

1− (ε/4)2))

)
+3log(1−

√
1− (ε/4)2)− leakEC(O A)

−
N−1∑
k=1

leakEC(O(k)),

(4.55)

where q̂ = (µδ,µ−µδ,1−µ)t .

Proof. Using the chain rule [27, Lemma 6.8] we get:

Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 O AO(1...N−1)E
)
ρ|Ω̂′

≥ Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
ρ|Ω̂′ − leakEC(O A)−

N−1∑
k=1

leakEC(O(k)), (4.56)

where leakEC(O A) is the leakage due to the error correction protocol (when the Bobs try
to guess Alice’s bits) and leakEC(O(k)) is the leakage due to error correction (when Alice
tries to guess Bobk ’s test rounds bits). These leakages will be estimated in Section 4.3.

We now need to bound Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
ρ|Ω̂′ . Note that the reduced state

on A′n
1 X n

1 Y(1...N−1)
n
1 T n

1 E of the global state at the end of the Protocol 4.2.3 conditioned
on the event Ω̂′ of not aborting and all the error correction protocol were successful, is
equal to the state MEC(ρ̃A′n

1 X n
1 Y(1...N−1)

n
1 T n

1 E )|Ω, therefore using Lemma 4.2.10 we get:

Hε
min

(
A′n

1 |X n
1 Y(1...N−1)

n
1 T n

1 E
)
ρ|Ω̂′ ≥

(
f (q̂ , popt)−µ

) ·n − ṽ
p

n +3log(1−
√

1− (ε/4)2),

(4.57)

where ṽ = 2
(

log(13)+( f̂ ′(popt)+1)
)√

1−2log(ε ·pΩ̂′ )+2log(7)
√
− log(p2

Ω̂′ (1−
√

1− (ε/4)2)).
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The following Lemma concludes on the soundness of Protocol 4.2.3. To do so we
need to relate the event Ω̂ that the protocol 4.2.3 does not abort, with the event Ω̂′ that
protocol 4.2.3 does not abort and that the error corrections are successful.

Lemma 4.2.12. For any implementation of the Protocol 4.2.3, either the protocol aborts
with a probability greater than 1−εEA or it is ((N−1)εEC+εPA+ε)-correct-and-secret while
producing keys of length l defined in eq. (4.15).

Proof. Let Ω̂ be the event of not aborting in the protocol 4.2.3, and Ω̂′ the event Ω̂ and all
the error correction protocols were successful. According to Lemma 4.2.11 we are into
one of the two following cases:

• The protocol aborts with a probability 1−P (Ω̂) ≥ 1− (
1−2(N −1)ε′EC

)
εEA. This is

equivalent to P (Ω̂′) ≤ εEA and implies that 1−P (Ω̂) ≥ 1−εEA.

• The aborting probability is 1 − P (Ω̂) ≤ 1 − εEA (which implies that P (Ω̂′) ≥ εEA)
and the smooth min-entropy of the final state conditioned on Ω̂′ is bounded as
in eq. (4.57). Conditioned on Ω̂ there is two cases:

– The error correction step failed. This happens with probability at most 2(N −
1)ε′EC.

– The error correction were successful and then all the keys agree. We have
then the event Ω̂′. Therefore according to Lemma 4.2.11 the entropy is high
enough to produce keys of length l such that:∥∥∥∥ρK A E |Ω̂− 1A

2l
⊗ρE |Ω̂

∥∥∥∥
tr
≤ εPA +2ε, (4.58)

where εPA is the privacy amplification error probability and ε is the smooth-
ing parameter.

By combining the two above cases we have that the Protocol 4.2.3 is (εPA +2(N −
1)ε′EC +2ε)-correct-and-secret.

4.3. ASYMPTOTIC KEY RATE ANALYSIS
In this section we evaluate the asymptotic key rate of the DICKA Protocol 4.2.3 and com-
pare it to the case where the parties perform N −1 DIQKD protocols in order to establish
a common key. In implementations where the efficiency of generation of GHZ states is
comparable to the efficiency of the generation of EPR pairs a common key using a DICKA
protocol can be, in principle, stablished in a much smaller number of rounds, however
one need to analyse how the QBER and the leakages in the error correction protocol af-
fects the key generation.

To analyse the key rate we need to evaluate the length l of the final key produced by
Protocol 4.2.3, Eq. (4.15), and compute the rate r := l

#rounds . To achieve this, we need
to estimate the leakage due to the error correction step. We use in our analysis an error
correction protocol based on universal hashing [24, 25]. The size of the leakage is taken
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to be the amount of correction information needed if the implementation were honest,
for some abort probability of the error correction protocol of at most εEC, and such that
the guess (when not aborting) is correct with probability at least 1− ε′EC. For a given
honest implementation, this leakage can be bounded as follows [25]:

leak(OA) ≤ max
k∈[N−1]

H ε̃EC
0 (An

1 |B ′
(k)

n
1 X n

1 Y(1...N−1)T
n
1 )+ log(ε′EC

−1), (4.59)

leak(O(k)) ≤ H ε̃EC
0 (B ′

(k),I |A′n
1 X n

1 Y(1...N−1)T
n
1 )+ log(ε′EC

−1), (4.60)

for εEC = ε̃EC+ε′EC, I := {i ∈ [n] : Ti = 1} and where H ε̃EC
0 is evaluated on the state produced

by the honest implementation. If it turns out that the implementation is not the expected
one then the protocol will just abort with a higher probability but the security is not
affected.

We will consider here one particular honest implementation to evaluate the leakage.
Then we will compare it to what we would get using N −1 device-independent quantum
key distribution ((N − 1)×DIQKD) protocols to distribute the key to the N parties. For
the key rate of the latter we will use the recent and most general analysis given in [7]. Of
course the following calculations can be adapted to other implementations.

Lemma 4.3.1 (Asymptotic key rate). There exist an implementation of Protocol 4.2.3 in
which the achieved asymptotic key rate is given by

rN−CKA,∞ = 1−h

1

2
+ 1

2

√√√√√√16

√
1−2Q

N

2
p

2
+

(1−2Q)
(
1−√

1−2Q
N−2

)
8
p

2

2

−1

−h(Q),

(4.61)

where Q is the QBER between Alice and each of the Bobs.

Proof. In the following analysis we chose an IID honest implementation scenario where
we assume that the channel between Alice and each of the Bobs is a depolarizing chan-
nel:

D(ρ) = (1−pdep)ρ+pdep
1

2
, (4.62)

for pdep ∈]0,1[. We will also apply this channel to model the noise on Alice’s side. The
state that is produced by Alice’s source is supposed to be a N -GHZ state denoted GHZN :=
|GHZN 〉〈GHZN |, where |GHZN 〉 := |0〉⊗N+|1〉⊗Np

2
. Therefore the state shared between Alice

and the Bobs in one round is ρAB(1...N−1) := D⊗N (GHZN ). The QBER between Alice and

each of the Bobs can then be expressed as Q = 2pdep−p2
dep

2 (⇔ pdep = 1−√
1−2Q) and the

expected winning probability of the Parity-CHSH game is given by:

pexp =
[

1

2
+ (1−pdep)N

2
p

2
+ (1−pdep)2(1− (1−pdep)N−2)

8
p

2

]
.
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We can bound H0 by Hmax [28, Lemma 18] as,

H ε̃EC
0 (An

1 |B ′
(k)

n
1 X n

1 Y(1...N−1)T
n
1 ) ≤ H ε̃EC/2

max (An
1 |B ′

(k)
n
1 X n

1 Y(1...N−1)T
n
1 )+ log(8/ε̃2

EC +2/(2− ε̃EC)).
(4.63)

Using the non-asymptotic version of the Asymptotic Equipartition Theorem (see Theo-
rem 2.3.8 or [29, Theorem 9]) we get:

H ε̃EC/2
max (An

1 |B ′
(k)

n
1 X n

1 Y(1...N−1)T
n
1 ) ≤ nH(A′

i |B ′
(1...N−1),i Xi Y(1...N−1),i Ti )+p

n∆(ε̃EC), (4.64)

where ∆(ε̃EC) := 4log
(
2

√
2Hmax(A′

i |B ′
(1...N−1),i Xi Y(1...N−1),i Ti ) + 1

)
·
√

2log(8/ε̃2
EC). We can now

upper bound the entropy for honest implementation of Protocol 4.2.3 as,

H(A′
i |B ′

(1...N−1),i Xi Y(1...N−1),i Ti ) = (1−µ) ·H(A′
i |B ′

(1...N−1),i Xi Y(1...N−1),i ,Ti = 0) (4.65)

+µ ·H(A′
i |B ′

(1...N−1),i Xi Y(1...N−1),i ,Ti = 1)︸ ︷︷ ︸
≤1

≤ (1−µ) ·h(Q)+µ, (4.66)

and Hmax(A′
i |B ′

(1...N−1),i Xi Y(1...N−1),i Ti ) ≤ 1. This gives us an upper bound on leak(O A):

leak(O A)

≤ n · ((1−µ) ·h(Q)+µ)+p
n ·4log

(
2
p

2+1
)
·
√

2log(8/ε̃2
EC)+ log(8/ε̃2

EC +2/(2− ε̃EC)).

(4.67)

Using the same reasoning, we get:

leak(O(k)) ≤ n ·µ+p
n ·4log

(
2
p

2+1
)
·
√

2log(8/ε̃2
EC)+ log(8/ε̃2

EC +2/(2− ε̃EC)). (4.68)

Putting this into equation (4.15) we get,

l =(
f (q̂ , popt)− (1−µ)h(Q)− (N +1)µ

) ·n − v̂
p

n +3log(1−
√

1− (ε/4)2)− log(ε−1
PA )

−N · log(8/ε̃2
EC +2/(2− ε̃EC)),

(4.69)

where v̂ = ṽ +N ·4log
(
2
p

2+1
)
·
√

2log(8/ε̃2
EC), and ṽ is defined in Theorem 4.2.4.

Note that in the asymptotic regime n →∞ we can take the threshold δ to be δ= pexp,
and the optimal popt will be popt =µδ=µpexp. Also for the asymptotic analysis we chose

µ= n−1/10. Therefore the asymptotic rate r∞ := limn→∞ l
#rounds becomes,

rN−CKA,∞ = f̂ (µpexp)−h(Q)

= 1−h

1

2
+ 1

2

√√√√√√16

√
1−2Q

N

2
p

2
+

(1−2Q)
(
1−√

1−2Q
N−2

)
8
p

2

2

−1

−h(Q).

(4.70)
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Figure 4.3: Asymptotic key rate for N -device-independent CKA (DICKA, dashed lines), and for the dis-
tribution of a secret key between N parties through N − 1 device-independent quantum key distribution
((N − 1)×DIQKD) protocols (solid lines), when each qubit experiences independent bit errors measured at
a bit error rate (QBER) Q. From top to bottom, the lines correspond to N = {3,4,5,6,7}. We observe that for low
noise it is advantageous to use our device-independent N -CKA protocol instead of using N −1 DIQKD proto-
cols [7]. In general, the comparison between the two methods depends on the cost and noisiness of producing
GHZ states over pairwise EPR pairs.

We then compare it to the asymptotic rate we would get if in order to distribute a
key to N parties, Alice were to use a DIQKD protocol for each of the Bobs. To get the
asymptotic rate for the (N −1) DIQKD protocols, we use the analysis given in [7]. In their
DIQKD protocol they consider an honest implementation where the state is a depolar-
ized EPR pair (1−ν)ΦAB +ν12 . If we say that, for each Bob, Alice sends the state via the
same depolarizing channel she uses in the previous analysis (and that she has the same
noise on her qubits), we can link the parameter ν with the depolarizing parameter pdep

of the channel and to the QBER Q: ν= 2p −p2 = 2Q. Therefore we get:

r(N−1)×QKD,∞ =
1−h

(
1
2 + 1

2

√
2 · (1−2Q)2 −1

)
−h(Q)

N −1
. (4.71)

Note that the factor 1/(N −1) comes from the fact that the total number of rounds while
running N − 1 DIQKD protocols is (N − 1)n, where n is the number of rounds for one
DIQKD protocol.
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The comparison of the key rates of DICKA, Eq. (4.70), and (N −1)×DIQKD, Eq. (4.71),
for different values of N , are plotted in Fig. 4.3. The results show that for low noise it is
advantageous to use the DICKA protocol. In this comparison we assume that the cost
of generation of a GHZ state is the same as the cost to generate one EPR pair. How-
ever, in implementations where the GHZ state is created out of EPR pairs that will not
be the case. Therefore the cost of creation of these states must be taken into account in
the analysis of the particular implementations. Note, also, that in this Section we have
modelled the implementation for depolarising channels, however the security analysis
is general and can be adapted for any particular implementation.

4.4. CONCLUSION
We presented the first security proof for a fully device-independent implementation of
conference key agreement. We have shown that, in principle, security can be achieved
for any violation of the Parity-CHSH inequality that detects genuine multipartite entan-
glement. It remains an open point whether the protocol can be extended in such a way
that for violations of the Parity-CHSH inequality that do not certify genuine N -partite
entanglement we can still guarantee security.

We have compared the asymptotic key rates achieved with the DICKA protocol versus
N −1 implementations of DIQKD, modelling the quantum channel connecting the par-
ties as depolarising channels. For implementations where the cost of local generation of
GHZ states and EPR pairs is comparable, we show that it is advantageous to use DICKA
for low noise regimes. A careful analysis that takes into account the costs of generation
of the states is still needed for particular implementations.

We remark that proving advantage for a small number of parties already leads to
better protocols for networks. Indeed, instead of using DIQKD as building block for a
N -DICKA protocol (for large N ), one can use k-DICKA protocols, upon availability of
k-GHZ states for k = 3,4 or 5.

Finally, we also remark that our DICKA protocol can be adapted for other multipartite
Bell inequalities. However, in general, finding good lower bounds on Eve’s information
about Alice’s output as a function of the Bell violation is a difficult task.
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5
TOWARDS A REALIZATION OF

DEVICE-INDEPENDENT QUANTUM

KEY DISTRIBUTION

Glaúcia MURTA, Suzanne B. VAN DAM, Jérémy RIBEIRO,
Ronald HANSON, and Stephanie WEHNER

In the implementation of device-independent quantum key distribution we are interested
in maximizing the key rate, i.e. the number of key bits that can be obtained per signal,
for a fixed security parameter. In the finite size regime, we furthermore also care about the
minimum number of signals required before key can be obtained at all. Here, we perform
a fully finite size analysis of device independent protocols using the CHSH inequality both
for collective and coherent attacks. For coherent attacks, we sharpen the results recently
derived in Arnon-Friedman et al., Nat. Commun. 9, 459 (2018) [1], to reduce the min-
imum number of signals before key can be obtained. In the regime of collective attacks,
where the devices are restricted to have no memory, we employ two different techniques
that exploit this restriction to further reduce the number of signals. We then discuss ex-
perimental platforms in which DIQKD may be implemented. We analyse Bell violations
and expected QBER achieved in previous Bell tests with distant setups and situate these
parameters in the security analysis. Moreover, focusing on one of the experimental plat-
forms, namely nitrogen-vacancy based systems, we describe experimental improvements
that can lead to a device-independent quantum key distribution implementation in the
near future.

Parts of this chapter have been published in Quantum Science and Technology, 4:035011, 2019
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5.1. INTRODUCTION

5.1.1. QUANTUM KEY DISTRIBUTION
Quantum key distribution (QKD) [2, 3] is a remarkable example of the advantages that
quantum systems bring to accomplishing classical tasks. All the classical crypto-systems
used for key exchange are based on computational assumptions and, therefore, are sus-
ceptible to retroactive attacks. Indeed, if an adversary keeps track of the public informa-
tion exchanged during the communication of an encrypted message and, in a later fu-
ture, a more efficient algorithm or faster machines become available, then the messages
exchanged in the past can be decrypted. The novelties brought by quantum systems al-
low two parties to establish a common key that is information-theoretically secure and,
therefore, can be used to achieve perfect secure communication with a one-time pad
encryption.

Quantum key distribution schemes explore intrinsic properties of quantum systems,
such as no-cloning [4, 5] and monogamy of entanglement [6], in order to achieve se-
curity even against an all powerful adversary who has unlimited computational power.
The well known quantum key distribution scheme BB84 [2] can tolerate a reasonable
amount of noise and decent rates1 can be achieved with current technology, see for ex-
ample the analyses of [9–11]. BB84-based QKD has been successfully implemented over
long distances, see for example [12, 13], and even satellite-based secure quantum com-
munication was established [14].

A successful implementation of the BB84 protocol is, however, highly dependent on a
good characterisation of the underlying quantum system and the measurement devices.
For example, the protocol can easily be broken if the devices are performing measure-
ments in four dimensional systems instead of qubits, see discussions in [15, 16]. Fur-
thermore, hacking of existent implementations that exploit experimental imperfections
were presented (see e.g. [17–20]).

A good characterization of the experimental setup is a strong assumption. What is
more, when quantum technologies become commercially available, we might often buy
devices from a provider which is not entirely trustworthy. Fortunately, quantum proper-
ties allow us to overcome this problem: By exploring the strong correlations that arise in
quantum systems, one can prove security of quantum key distribution even in the very
adversarial scenario where Alice and Bob do not have complete knowledge of the inter-
nal working of their measurement devices or the underlying quantum system that they
are measuring [1, 16, 21–34]. This is the device-independent (DI) model.

5.1.2. THE DEVICE-INDEPENDENT SCENARIO
In this section we remind the reader with the assumptions we make in the device-indepdent
scenario and extensively comment its implications and possible issues one might have
in practice.

Assumptions 5.1.1 (Device-independent model). In the device-independent model we
assume:

1Due to finite size effects a minimal number of rounds is required in order to guarantee security. For the BB84
protocol this minimal number of rounds required is ∼ 104. Moreover, a quantum bit error rate (QBER) of up
to 20% can be tolerated [7, 8] for large enough number of rounds.
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1. Isolated labs: no information is leaked from or enters Alice’s and Bob’s labs, apart
from the state distribution before the measurements and the public classical infor-
mation dictated by the protocol.

2. Isolated source: the preparation of states is independent of the measurements.

3. Trusted classical post-processing: all the public classical communication is per-
formed using an authenticated channel and the local classical computations are
trusted.

4. Trusted Random Number Generators: Alice and Bob possess independent and trusted
random number generators.

A bit of thought can make one conclude that completely removing any of these as-
sumptions leads to a strategy where the key is leaked to the adversary. However, we
remark that partial relaxation of these assumptions can still be considered. In Ref. [35],
QKD is proved to achieve everlasting security by relaxing Assumption 5.1.1(3) to a com-
putationally secure authenticated channel, but assuming the eavesdropper to be com-
putationally bounded during the execution of the protocol. In many device indepen-
dent protocols, instead of Assumption 5.1.1(2), it is assumed that all the n systems are
prepared before the measurement phase starts, so that no information other than the
classical public communication is exchanged during the protocol. However, this would
require quantum memory from Alice and Bob in order to store the quantum states along
the protocol. In an implementation where the quantum states are generated round by
round, and therefore in which no long term quantum memory is required, Assump-
tion 5.1.1(2) is necessary to avoid that the state prepared by the source leaks the raw
bits generated by Alice’s device in the previous round. Indeed, if the source is arbitrarily
correlated with the measurement devices the state prepared can contain an additional
degree of freedom that encodes the string of bits generated in the previous rounds (this
strategy is detailed in [36, Appendix C]). We remark that, in experimental platforms, the
preparation of states and the measurements are either performed within the same sys-
tems or optically connected ones, and therefore one needs to assume that the process
of generating a quantum state is not correlated with the previously performed measure-
ments. This assumption is, however, often well justified based on a description of the
setup. Ref. [37] addresses the problem of hidden memory in the devices. The authors
show that a malicious eavesdropper can program the measurement devices in such a
way that information about a previously generated key may be leaked through the pub-
lic communication of a subsequent run of the key generation protocol, if the devices are
re-used. Ref. [38] proposes an alternative to overcome memory attacks and covert chan-
nels in general, as well as the need to assume that all the classical post-processing is
trusted. By introducing protocols based on secure multi-party computation distributed
among more devices, ref. [38] relaxes the black-box model to reliability of only one of the
quantum devices. Moreover, the classical post-processing can tolerate up to a third of
malicious classical devices.

Another assumption that is often used in security proofs is that the rounds of the
experiment are independent and identically distributed (IID). This, in particular, implies
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that the measurement devices are memoryless and the state shared by Alice and Bob
is the same for every round on the protocol. The IID assumption can be justified, for
example, in experimental setups where Alice and Bob control to some extent the source
and measurement devices, but do not have a full characterization of their working.

Assumptions 5.1.2 (IID assumption). An IID implementation assumes:

• IID devices: the devices behave independently and in the same way in every round
of the protocol.

• IID states: The state distributed is the same for every round of the protocol. In sum-
mary, the state of the n rounds can be written as ρAn

1 B n
1 E = ρ⊗n

ABE .

The eavesdropper attacks in QKD are classified in three types: Individual attacks,
where the eavesdropper has no memory and therefore is restricted to attack individu-
ally each round of the protocol; Collective attacks: where in every round the systems
of Alice and Bob, as well as the measurement devices, are prepared identically but the
eavesdropper is allowed to make arbitrary global operations on her quantum side infor-
mation; and Coherent attacks: additionally to the global operations the eavesdropper
can perform in her quantum side information, the states shared by Alice and Bob in
each round can be arbitrarily correlated, as well as the measurement devices in the DI
scenario can have memory and operate according to the results of previous rounds, i.e.,
do not satisfy the IID assumption. The IID assumption, stated in Assumptions 5.1.2,
corresponds to the scenario where the eavesdropper is restricted to collective attacks. In
what follows we focus on two types of adversarial attacks: collective attacks and coherent
attacks.

5.1.3. DEVICE-INDEPENDENT QUANTUM KEY DISTRIBUTION PROTOCOLS
The first ideas of device-independent QKD arose in the E91 protocol [3], which uses a
test of the CHSH inequality [39] in order to certify that Alice and Bob share a maximally
entangled state. This idea of self-testing quantum devices was further explored in [15].
Indeed, device-independent quantum key distribution relies on the violation of a Bell
inequality in order to certify the security of the generated key. The simplest DIQKD pro-
tocol uses the CHSH inequality for the security test:

S = E(A0B0)+E(A0B1)+E(A1B0)−E(A1B1) ≤ 2, (5.1)

where E(Ax By ) = p(a = b|x y)−p(a 6= b|x y) represents the correlation of the outputs a,b
of Alice and Bob when they perform the measurement labeled by x, y respectively. The
CHSH inequality can be phrased as a game [40] in which Alice and Bob receive x and
y , respectively, as inputs and the winning condition is that their outputs satisfy a +b =
x · y , with the operations +, · taken modulo 2. The winning probability ω := P CHSH

w of the
CHSH game relates to the violation S by

ω= 4+S

8
. (5.2)

For DIQKD based on the CHSH inequality, we consider protocols where Alice pos-
sesses a device with two possible inputs X ∈ {0,1} and Bob has a device with three pos-
sible inputs Y ∈ {0,1,2}. The inputs X ∈ {0,1} and Y ∈ {0,1} are used to test for the CHSH
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inequality, and the inputs X = 0 and Y = 2 are used for the other rounds, often called key
generation rounds, where maximal correlation of the outputs is expected. The param-
eters of interest are the Bell violation S, or winning probability ω, achieved in the test
rounds and the quantum bit error rate (QBER) Q of the key generation rounds. We con-
sider that an implementation of the protocol is expected to have n rounds and a portion
γn of these rounds is used for testing of the CHSH condition.

A DIQKD protocol can be divided in three phases:

• An initial phase where Alice and Bob use their respective devices to measure the
quantum systems and, according to the obtained outputs, generate the n-bit strings
An

1 and B n
1 .

• A second phase where Alice and Bob publicly exchange classical information in
order to perform error correction, to correct their respective strings generating the
raw keys; and parameter estimation, to estimate the parameters of interest (Bell
violation, S, and QBER, Q). At the end of this phase Alice and Bob are supposed to
share equal n-bit strings and have an estimate of how much knowledge an eaves-
dropper might have about their raw key.

• In the final phase, Alice and Bob perform privacy amplification, where the not fully
secure n-bit strings are mapped into smaller strings K A and KB , which represents
the final keys of Alice and Bob respectively.

The specific protocols we consider for our analyses are detailed in Section 5.2, (see
Protocol 5.2.1 and Protocol 5.2.3).

In order to define security of a DIQKD protocol, we follow Refs. [1, 41] and adopt the
security definition that is universally composable for standard QKD protocols [42]. Uni-
versal composability is the statement that a protocol remains secure even if it is used
arbitrarily in composition with other protocols. It is important to remark that, for the
device-independent case, attacks proposed in Ref. [37] show that composability is not
achieved if the same devices are re-used for generation of a subsequent key. Indeed, in
[37], the authors have shown that a malicious eavesdropper can program the measure-
ment devices in such a way that information about a previously generated key may be
leaked through the public communication of a subsequent run of the key generation
protocol, if the devices are re-used. It is still an open problem what is the minimum set
of assumptions that can lead to universal composability of DIQKD (e.g. the attacks of
Ref. [37] can be avoided if we assume that Alice and Bob have sufficient control over the
existing internal memory of their devices, so that they can re-set it after an execution of
the protocol).

Let K A and KB denote the final key held by Alice and Bob, respectively, after they
perform a DIQKD protocol. A DIQKD protocol is secure if it is correct and secret (see
Definition 2.4.6). Correctness is the statement that Alice and Bob share the same key at
the end of the protocol, i.e., K A = KB . Secrecy is the statement that the eavesdropper is
totally ignorant about the final key.

Definition 5.1.3 (Correctness). A DIQKD protocol is εcor r -correct if the probability that
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the final key of Alice, K A , differs from the final key of Bob, KB , is smaller than εcor r , i.e.

P (K A 6= KB ) ≤ εcor r . (5.3)

Definition 5.1.4 (Secrecy). Let Ω denote the event of not aborting in a DIQKD protocol
and p(Ω) be the probability of the event Ω. The protocol is εsec -secret if, for every initial
state ρABE it holds that

p(Ω) · 1

2
‖ρK A E |Ω−τK A ⊗ρE‖1

≤ εsec , (5.4)

where τK A = 1
|K A |

∑
k |k〉〈k |A is the maximally mixed state in the space of strings K A , and

‖ ·‖1 is the trace norm.

If a protocol is εcor r -correct and εsec -secret, then it is εs
D IQK D -correct-and-secret for

any εs
D IQK D ≥ εcor r + εsec . See Definition 2.4.6 for a more detailed definition of security

of a DIQKD protocol.
Given an DIQKD protocol that has n rounds and generates a final correct-and-secret

key of l bits, then the secret key rate is defined as

r = l

n
. (5.5)

Our goal is to derive the secret key rate as a function of the parameters of interest, S and
Q, that Alice and Bob can estimate during the execution of the protocol.

5.1.4. SECURITY PROOF OF DIQKD
Even though the BB84 quantum key distribution scheme dates back to 1984 [2], the for-
mal security proof in the asymptotic regime only came out more than a decade later,
see e.g. [43–46]. Security in the composable paradigm in the finite regime against gen-
eral coherent attacks was only formalized in 2005 [47–49]. Moreover, a finite key analysis
without the IID assumption over the state preparation and with parameters compatible
with current technology only came in 2012 [9, 10].

In the device-independent scenario, security against a quantum eavesdropper2 re-
stricted to collective attacks was first proved in [16, 27]. A proof against general attacks
assuming memoryless devices was presented in [28, 29]. The problem of extending the
security proofs to coherent attacks in the device-independent scenario remained open
for a long time. One of the main difficulties is that de Finetti techniques [48, 51], used
to extend security proofs against collective attacks to general coherent attacks in stan-
dard QKD, are not applicable in the DI scenario. A series of recent works [31–34] cul-
minated in the Entropy Accumulation Theorem (EAT) [1] (see [41, 52] for extended ver-
sions). The EAT allows one to extend the analysis against collective attacks to the fully
device-independent scenario, resulting in asymptotically tight security proofs and high
rates in the finite size regime.

2A discussion on earlier security proofs that do not restrict the eavesdropper to the quantum formalism can
be found in [50].
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5.1.5. EXPERIMENTAL DIQKD
Protocols for DIQKD rely on a Bell test between two distant parties [16]. In order to
certify security, this Bell test should be free of loopholes that could be exploited by an
adversary. While closing the detection loophole is crucial for a DIQKD implementation,
the spacelike separation required for loophole-free Bell tests can be relaxed. In a DIQKD
experiment, no-communication between the devices does not have to be guaranteed
by spacelike separation, since the assumption of isolated labs, Assumption 5.1.1(1), is
already needed to ensure that the generated key is not leaked to the eavesdropper at
any point in time. We are thus interested in considering Bell violations between distant
- albeit not necessarily spacelike separated - setups in which the detection-loophole is
closed [53–60]. The recent performance of fully loophole-free Bell tests [53–56] mark
technological progress towards Bell tests without detection loophole over increasingly
distant setups, as needed for practically useful DIQKD.

Despite the experimental progress, a device-independent quantum key distribution
protocol has not yet been performed. The reason for this is that a Bell violation alone is
not enough to guarantee security in a DIQKD protocol. One also needs to account for the
amount of information leaked during the error correction, when Alice and Bob correct
their string of bits in order to achieve a perfectly correlated raw key. The amount of
information required for error correction is determined by the QBER. With a finite QBER,
as in practical systems, a large Bell violation is needed to achieve a positive key rate.
Moreover, a high minimal number of rounds is required for security due to finite-size
effects. The large number of necessary rounds requires a significantly high entangling
rate. Altogether, DIQKD demands a low QBER, high Bell violation and high entangling
rates. Even though some systems satisfy parts of these requirements, e.g. a high Bell
violation [53, 56, 59, 60] or high entangling rate [54, 55, 57, 58], so far there are no systems
that combine all requirements. In section 5.2.3 we describe the potential platforms for
an experimental implementation of DIQKD in detail.

5.2. RESULTS
We now present our results. In Section 5.2.1, we establish the key rates for DIQKD pro-
tocols based on the CHSH inequality, both for coherent and collective attacks in the fi-
nite size regime. As a benchmark, in Section 5.2.2, we compare the key rates that can
be achieved in the finite regime for the two adversarial scenarios (collective and coher-
ent attacks) using an implementation with depolarizing noise. In Section 5.2.3, we dis-
cuss the state of the art of experimental implementations. We estimate the parameters
of interest for previously performed Bell experiments and situate them in the security
proofs. Additionally, focusing on Nitrogen-vacancy based systems we indicate experi-
mental improvements that can lead to an implementation of DIQKD in the near future.
Throughout this manuscript we use Log10 to denote logarithm to base 10 and log to de-
note logarithm to base 2.

5.2.1. KEY RATES

In the following, we derive the key rates in the finite size regime for DIQKD protocols
where the CHSH inequality is used for certifying security. For coherent attacks we sharpen
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the results recently derived in [1]. For collective attacks we perform the analysis by em-
ploying two techniques: the finite version of the asymptotic equipartition property [61]
and the additivity of the 2-Rényi entropy.

KEY RATES FOR COHERENT ATTACKS.
In order to analyze the key rates against general coherent attacks we use the recently
developed Entropy Accumulation Theorem (EAT) [1, 41, 52] and consider the following
protocol.

Protocol 5.2.1 (DIQKD Protocol for coherent attacks [41]).

for For every block j ∈ [m]

Set i = 0 and C j =⊥.

while i ≤ smax

Set i = i +1.

Alice and Bob choose a random bit Ti ∈ {0,1} such that P (Ti = 1) = γ.

If Ti = 0 Alice and Bob choose inputs (Xi ,Yi ) = (0,2).

else they choose Xi ,Yi ∈ {0,1} (the observables for the CHSH test).

end if

Alice and Bob use their devices with the respective inputs and record their
outputs, Ai and Bi respectively.

If Ti = 1 they set i = smax +1.

end while

end for

Error Correction: Alice and Bob apply the error correction protocol EC , communi-
cating script OEC in the process. If EC aborts they abort the protocol, else they
obtain raw keys Ãn

1 and B̃ n
1 .

Parameter estimation: Using B n
1 and B̃ n

1 , Bob sets

Ci =


1, if Ti = 1 and Ai ⊕Bi = Xi ·Yi

0, if Ti = 1 and Ai ⊕Bi 6= Xi ·Yi

⊥, if Ti = 0

(5.6)

He aborts if ∑
j

C j < m × (
ωexp −δest

)
(1− (1−γ)smax ),

i.e., if they do not achieve the expected violation.

Privacy Amplification: Alice and Bob apply the privacy amplification protocol PA
and obtain the final keys K A and KB of length l .
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In Protocol 5.2.1, the total number of rounds is not fixed in advance, however for a
number of blocks m large enough the number of rounds will correspond, with high prob-
ability, to the expected value n. This is a technicality introduced in Ref. [1, 41] in order
to obtain better rates in the finite regime. A more detailed explanation can be found in
[41, Appendix B]. Improvements on the second order term of the Entropy Accumulation
Theorem, that do not rely on the introduction of blocks, were recently obtained in [62].
Following the techniques of [1, 41], we derive Theorem 5.2.2.

Theorem 5.2.2 (Key rates for coherent attacks). Either Protocol 5.2.1 aborts with proba-
bility higher than 1− (εE A +εEC ), or it generates a (2εEC +εPA +εs )-correct-and-secret key
of length

l ≥n

s̄
ηopt − n

s̄
h(ωexp −δest )−

√
n

s̄
ν1 − leakEC (5.7)

−3log

1−
√

1−
(

εs

4(εE A +εEC )

)2
+2log

(
1

2εPA

)
,

where leakEC is the leakage due to error correction step and the functions s̄, ηopt , ν1 and
ν2 are specified in Table 5.1.

Theorem 5.2.2 sharpens the original analysis [1, 41] and has slightly improved key
rates in the finite regime. This results in a reduction of the minimum number of rounds
(signals) required for positive rates by about a factor of two, as illustrated in Figure 5.1. A
detailed derivation of Theorem 5.2.2 can be found in 5.5.2.

Figure 5.1: Key rate r vs logarithm of the number of rounds n. Comparison of the improvements in the key rate,
for an implementation where the maximally entangled state is subjected to depolarizing noise and therefore
S = 2

p
2(1−2Q), for QBER Q = {0.5%,2.5%,5%}. The dashed curves correspond to the key rates derived in the

original analysis [1, 41], the solid lines represent the key rates derived in Theorem 5.2.2. Similarly to [1], we
take εc

D IQK D = 10−2 and εs
D IQK D = 10−5.
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smax =
⌈

1
γ

⌉
s̄ = 1−(1−γ)

⌈
1
γ

⌉
γ

ηopt = max 3
4 <

pt (1)
1−(1−γ)smax < 2+p2

4

[
Fmin(~p,~pt )− 1p

m
ν2

]
Fmin(~p,~pt ) = d

d p(1) g (~p)
∣∣∣
~pt

·p(1)+
(

g (~pt )− d
d p(1) g (~p)

∣∣∣
~pt

·pt (1)

)
g (~p) = s

[
1−h

(
1
2 + 1

2

√
16 p(1)

1−(1−γ)smax

(
p(1)

1−(1−γ)smax −1
)
+3

)]
ν2 = 2

(
log(1+2 ·2smax 3)+

⌈
d

d p(1) g (~p)
∣∣
~pt

⌉)√
1−2logεs

ν1 = 2
(
log7+

⌈ |h′(ωexp+δest )|
1−(1−γ)smax

⌉)√
1−2logεs

Table 5.1: Explicit form of the terms that appear in Theorem 5.2.2. For a detailed derivation see 5.5.2.

KEY RATES FOR COLLECTIVE ATTACKS

For collective attacks, we derive the finite key rates by employing two techniques: the
finite version of the asymptotic equipartition property and the additivity property of the
conditional α-Rényi entropies. To deal with collective attacks we can use a simplified
version of Protocol 5.2.1, where the number of rounds is fixed.

Protocol 5.2.3 (DIQKD protocol for collective attacks).

for i = 1 to n

Alice and Bob choose a random bit Ti ∈ {0,1} such that P (Ti = 1) = γ.

if Ti = 0 Alice and Bob choose inputs (Xi ,Yi ) = (0,2).

else they choose Xi ,Yi ∈ {0,1} (the observables for the CHSH test).

end if

Alice and Bob use their devices with the respective inputs and record the outputs,
Ai and Bi respectively.

end for

Error correction: Alice and Bob apply the error correction protocol EC , communi-
cating OEC in the process. If EC aborts they abort the protocol, else they obtain
raw keys Ãn

1 and B̃ n
1 .

Parameter estimation: Using B n
1 and B̃ n

1 , Bob sets for the first test rounds

Ci =
{

1, if Ai ⊕Bi = Xi ·Yi

0, if Ai ⊕Bi 6= Xi ·Yi
(5.8)

For the remaining rounds he sets Ci =⊥.
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He aborts if ∑
j

C j < γn × (
ωexp −δest

)
,

i.e., if they do not achieve the expected violation.

Privacy Amplification: Alice and Bob apply the privacy amplification protocol PA
and obtain the final keys K A and KB of length l .

In the following theorem we state the length of a secure key that can be derived using
the asymptotic equipartition property, which is formally stated in Theorem 5.4.6.

Theorem 5.2.4. Either Protocol 5.2.3 aborts with probability higher than 1− (εcon +εEC ),
or it generates a (2εEC +εs +εPA)-correct-and-secret key of length:

l ≥ n
[
1−h

(
1

2
+ 1

2

√
16(ωexp −δest −δcon)((ωexp −δest −δcon)−1)+3

)
− (1−γ)h(Q)−γh(ωexp )

]
(5.9)

−p
n

(
4log

(
2
p

2+1
)(√

log
2

ε2
s
+

√
log

8

ε′2EC

))

− log

(
8

ε′2EC

+ 2

2−ε′EC

)
− log

(
1

εEC

)
−2log

(
1

2εPA

)

A detailed derivation of Theorem 5.2.4 can be found in 5.5.2.

Using a different technique, namely bounding the key rate by the conditional colli-
sion entropy, we derive the following result.

Theorem 5.2.5. Either Protocol 5.2.3 aborts with probability higher than 1− (εcon +εEC ),
or it generates a (2εEC +εPA)-correct-and-secret key of length:

l ≥ n
[
− log

(
1

2
+ 1

2

√
16(ωexp −δest −δcon)(1− (ωexp −δest −δcon))−2

)
− (1−γ)h(Q)−γh(ωexp )

]
−p

n

(
4log

(
2
p

2+1
)√

log
8

ε′2EC

)
(5.10)

− log

(
8

ε′2EC

+ 2

2−ε′EC

)

− log

(
1

εEC

)
−2log

(
1

2εPA

)
−2log

(
1

εcon +εEC

)
.
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An important step in the proof of Theorem 5.2.5 is to derive a lower bound on the
collision entropy as a function of the CHSH violation S. A tight lower bound is proved in
Theorem 5.4.10. The detailed proof of Theorem 5.2.5 is presented in 5.5.2.

The rates presented in Theorem 5.2.4 are asymptotically tight, while Theorem 5.2.5
achieves strictly smaller asymptotic rates. However, one can note that in Theorem 5.2.5
the term proportional to

p
n has a smaller pre-factor. This can potentially lead to an ad-

vantage for the minimum number of rounds required for security. For Protocol 5.2.3, an
advantage can only be observed for very low noise regime, as illustrated in Figure 5.2.
We remark, however, that for protocols based on other Bell inequalities the techniques
used for deriving Theorem 5.2.5 can present significant advantage for the collective at-
tack analysis. This is further discussed in Section 5.4.3.

Figure 5.2: Key rates vs logarithm of the number of rounds n for Protocol 5.2.3 (collective attacks). The blue
curve represent the key rate using Theorem 5.2.4 and the yellow curve shows the key rate using Theorem 5.2.5.
It is considered an implementation with depolarizing noise and QBER Q = 0.01%. The inset graph shows a
zoom in the region of low number of rounds. Similarly to [1], we take εc

D IQK D = 10−2 and εs
D IQK D = 10−5.
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The following table lists the parameters of the DIQKD protocols in consideration.
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n expected number of rounds
l final key length
γ fraction of test rounds
Q quantum bit error rate
S CHSH violation

ωexp expected winning probability on the CHSH game in an honest implementation
δest width of the statistical interval for the Bell test
δcon confidence interval for the Bell test in Protocol 5.2.3
εs smoothing parameter

εEC ,ε′EC error probabilities of the error correction protocol
εE A error probability of Bell violation estimation in Protocol 5.2.1
εcon error probability of Bell violation estimation in Protocol 5.2.3
εPA error probability of the privacy amplification protocol

leakEC leakage in the error correction protocol

Table 5.2: Parameters of the considered DIQKD protocols, Protocol 5.2.1 and Protocol 5.2.3.

5.2.2. COMPARISON OF KEY RATES FOR DEPOLARIZING NOISE MODEL

We now compare the key rates achieved in the finite regime under the assumption of
collective attacks (IID scenario) and against general coherent attacks (fully DI scenario).
As a benchmark, we focus on an honest implementation where the maximally entangled
state is prepared and subjected to depolarizing noise3:

ρ = (1−ν)|Φ+〉〈Φ+ |+ν I

4
. (5.11)

In this case, the parameters of interest – the value of the CHSH inequality S and the QBER
Q – relate to the noise parameter ν by

Q = ν

2
and S = 2

p
2(1−ν) → S = 2

p
2(1−2Q). (5.12)

In Figure 5.3 we compare the key rates achievable under the IID assumption, given
by Theorem 5.2.2, and in the fully DI scenario, Theorem 5.2.4, for an honest implemen-
tation with depolarizing noise.

3This noise model can also be seen as the case where each individual qubit suffers a depolarization with pa-

rameter ν′, where ν= 2ν′−ν′2.
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Figure 5.3: Key rates vs logarithm of the number of rounds for collective attacks (dashed lines) and coherent
attacks (solid lines). The different curves represent different values of QBER Q = (0.5%,2.5%.5%) considering
an implementation where the maximally entangled state is subjected to depolarizing noise (see relation (5.12)).
The security parameters are taken as εc

D IQK D = 10−2 and εs
D IQK D = 10−5.
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Figure 5.3 shows that the key rates approach the same asymptotic values, however
the minimum number of rounds required to guarantee security is significantly higher
for general coherent attacks. Indeed, by adding the assumption that the eavesdropper
is restricted to collective attacks, the minimum number of signals required to have a
positive key rate drops by about two orders of magnitude. However, even for collective
attacks, this minimum number of required rounds is considerably large given the current
entanglement generation rates. This is one of the big challenges to be overcome for a
DIQKD implementation. In the next Section we are going to discuss the state of the art
of experiments, and situate the current achievable parameters (Bell violation, QBER and
entanglement generation rate) in the security proofs.

5.2.3. THE STATE-OF-THE-ART EXPERIMENTAL DIQKD
In the following, we discuss experimental platforms in which DIQKD may be imple-
mented. We analyse Bell violations and expected QBER achieved in previous Bell tests
with distant setups and situate these parameters in the context of the key rates derived
in Theorems 5.2.2 and 5.2.4. A summary of the findings is presented in Table 5.4 and
Figures 5.5 and 5.6.

In experimental setups, distant entanglement is typically generated using photons
to establish the connection. We distinguish two approaches based on the role of the
photonic qubits: (i) All-photonic schemes: Approaches in which the entangled state is
encoded in the photonic state directly. In this case, measurements of the photonic states
on two remote setups enable to infer their entanglement. (ii) Heralded schemes: In this
case, the entangled state is typically created in a long-lived system and the photons are
used as a means of establishing the entanglement between two distant systems.

In this section we provide a discussion of the parameters in each of these schemes
and the related challenges towards an implementation of DIQKD. We provide a more
detailed discussion of one of the systems, namely nitrogen-vacancy (NV) centres in dia-
monds, and describe improvements in experimental parameters that can lead to a DIQKD
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implementation in the near future.

DIQKD WITH ALL-PHOTONIC ENTANGLEMENT.
Since in all-photonic schemes the entangled state is directly encoded on the photonic
state, photon losses limit the entangled state detection efficiency. Closing the detection
loophole in a Bell test thus requires very efficient entangled-photon sources and photon
detectors. Recent technological advances enabled all-photonic Bell tests that close the
detection-loophole [57, 58], later combined with spacelike separation in loophole-free
Bell tests [54, 55].

In photonic systems the detection efficiency also impacts the entangled state fidelity.
We thus may expect that Bell violations are low in photonic systems. To avoid having to
deal with undetected events, photonic Bell tests typically employ the CH-Eberhard in-
equality [63, 64]. The CHSH and CH-Eberhard inequalities are equivalent4, such that we
can estimate the CHSH violation achieved in photonic experiments. Table 5.4 presents
the corresponding value for the CHSH inequality achieved in the experiments of Refs.
[54, 55, 57, 58]. One can note that the violations achieved are indeed low, ranging from
2.00004 to 2.02. Combined with a finite QBER (> 2%), this poses a significant challenge
for the implementation of a DIQKD protocol in photonic systems.

However, if these systems would enter the regime of positive key rates, the entangle-
ment generation rate can be very high (∼ 105 Hz), such that they could easily reach the
asymptotic key rate values.

In order to overcome photon losses, several proposals for implementing heralding
schemes in all-photonic systems were presented. In this case, the entangled state is cre-
ated between photons and, also, this entanglement is heralded by the interference of
other photons. In particular, in Ref. [65] the authors propose a scheme based on a qubit
amplifier that combines single photon sources and linear optics. This proposal was fur-
ther explored in Ref. [66]. Schemes based on entanglement swapping by quantum re-
lay were also considered [67–69]. Ref. [67] makes a comparison of the performance of
the two types of schemes. Analyses in Refs. [65, 67–69] make assumptions on the pos-
sible attacks performed by the eavesdropper. New protocols based on single photon
sources were recently proposed in Ref. [70]. The proposed schemes uses a combination
of spontaneous parametric down conversion sources and single-photon sources in or-
der to achieve a setup where a heralding process could overcome transmission photon
losses. The security analysis presented in Ref. [70] does not restrict the eavesdropper
attacks. These setups are a promising proposal to bring the parameters of all-photonic
systems to the region of positive asymptotic key rates (see Figure 5.5 and 5.6). How-
ever single-photon sources still lack the required performance for an implementation of
these schemes.

DIQKD WITH HERALDED ENTANGLEMENT.
Due to the nature of heralded entangling schemes, photon losses do not influence the
entangled state detection efficiency or fidelity. Heralded schemes have been used to
entangle distant atomic ensembles [71, 72], trapped ions [73], atoms [74], NV centres

4One can see that by replacing non-detected events by the deterministic classical strategy “output 1" in a test
of the CHSH inequality.
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[75], quantum dots [76], and mechanical oscillators [77]. So far, entangled state fidelities
sufficiently high to violate Bell’s inequalities have only been reached with trapped ions
[59, 60], atoms [56, 74], and with NV centres [53, 78]. The Bell violations observed in
Refs. [53, 56, 59, 60, 78] are in the range S = 2.22 to S = 2.41, with a lower bound on the
QBER, estimated from detection efficiencies alone, around 0.04 (see Table 5.4 for a full
overview). Apart from the results reported in [60], these parameters are not in the region
of positive key rate (see Figures 5.5 and 5.6). However, all of them are in the proximity of
this region, such that setup improvements may enable to reach it.

The challenge for these implementations is however their low entangling rate, in-
duced by photon losses. Current rates range from (minutes)−1 [56, 59, 60, 74] to (hours)−1

[53, 78]. A significant speed-up in the entanglement generation rate is thus needed in or-
der to achieve the minimum number of rounds required for DIQKD. Higher entangling
rates in heralded schemes were recently achieved with trapped ions [79] and NV centres
[80, 81], although with lower state fidelities, and no Bell violations are reported. Even
though in Ref. [81] the state fidelity is just high enough to be able to violate Bell inequal-
ities, the expected Bell violation would be low. Enhancement in entangling rates, e.g.
with optical cavities to improve light-matter coupling efficiency [82] is therefore crucial
to achieving an implementation of DIQKD with heralded schemes.

NITROGEN-VACANCY CENTRE-BASED NETWORKS.
In this section, we focus on heralded entanglement generation between nitrogen-vacancy
centres in diamond for DIQKD. Nitrogen-vacancy (NV) centres are defect centres in the
diamond lattice. They contain an electronic spin with good coherence properties and
spin-selective optical transitions that can be used for intialization, readout and entan-
glement generation [75, 83]. Next to the electronic spin, nearby weakly coupled nuclear
spins can serve as long-lived memories [84, 85]. These properties make the NV centre a
promising quantum network node.

Entanglement between distant NV centres can be generated using an heralded scheme.
Typically, local entanglement is first generated between the NV electronic spin and a
photon mode. And subsequently, entanglement between distant NV centres is achieved
through entanglement swapping by interfering the two photon modes from distant se-
tups [86]. As discussed above for heralded protocols, photon attenuation does not influ-
ence the fidelity of the generated entangled state or the detection efficiency. The detec-
tion of the spin states has near-unit efficiency [87].

DIQKD PARAMETERS.
In a loophole-free Bell test with NV centres [53, 78], a CHSH violation S = 2.38± 0.14
was observed between systems separated by 1.3 kilometers. Taking into account the en-
tangled state fidelity and detection efficiency, we estimate that the corresponding QBER
would be Q = 0.06±0.03. The Bell violation achieved in [53, 78] is considerably high, es-
pecially if compared to loophole-free Bell test experiments in photonic systems [54, 55].
However, these parameters are not good enough to generate a secure key. Indeed, using
Theorems 5.2.2 and 5.2.4, one concludes that it is not possible to achieve positive key
rate with these parameters (see Figures 5.5 and 5.6).

In the following, we suggest two near-term experimental improvements to enhance
these parameters.
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Firstly, the frequency stability of the laser used to excite NV centres during the en-
tanglement protocols can be increased using an external cavity. The instability of the
laser can influence the indistinguishability of photons emitted by the distant NV cen-
tres. The indistinguishability is crucial for photon interference, which can be quantified
by the visibility of the two-photon quantum interference (TPQI). We expect that com-
pared to previous implementation [53], the improved laser frequency stability can lead
to an improvement in TPQI visibility from 0.88 to 0.90.

Secondly, both the CHSH violation S and the QBER Q are impacted by the NV elec-
tronic spin state readout. The readout can be performed using resonant excitation of
a spin-selective optical transition [87]. Improvements to the detection efficiency can
be obtained by storing the spin state in the nearby nitrogen spin state, and performing
repeated readout [88]. We estimate that the repeated readout can lead to an average
readout fidelity of ≈ 0.985, compared to an initial 0.97 [89] 5.

Other improvements can be envisioned, such as enhancement of the detection effi-
ciency by improving the photon collection efficiency through the use of parabolic reflec-
tors [90] or optical cavities [91]. In the following discussion we limit ourselves to the two
advances listed above and summarized in Table 5.3.

DIQKD parameters Ref. [53, 78] Expected
setup A B A B
average readout fidelity 0.974 0.969 0.985 0.985
TPQI visibility 0.88 0.90
S 2.38 ± 0.14 2.47
Q 0.06 ± 0.03 0.051

Table 5.3: The CHSH violation S and QBER Q in NV centre-based implementations are strongly dependent
on the TPQI visibility and the readout fidelity. The resulting values are shown for parameters achieved in a
loophole-free Bell test, and for expected values from several readily-implementable improvements.

Taking into account these improvements, the expected DIQKD parameters are S ≈
2.47 and Q ≈ 0.051. In Figure 5.4 we illustrate the rates achievable for these parameters
against general coherent attacks and under the assumption that the eavesdropper is re-
stricted to collective attacks. We see that the required minimum number of rounds is of
order 108 for general attacks, and about 5×106 for collective attacks.

5We note that this readout method increases the readout duration, which compromises spacelike setup-
separation. However, security in a DIQKD implementation does not require spacelike separation since it
is superfluous with the assumption of isolated labs in place (see Assumptions 5.1.1). Therefore, an increased
readout time does not present a problem for security.
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Figure 5.4: Key rates vs logarithm of the number of rounds n for parameters that are readily-implementable
in NV centres setups (CHSH violation S = 2.47 and QBER Q = 0.051). The red line shows the key rates ob-
tained against general coherent attacks, and the blue dashed line shows the key rates under the assumption of
collective attacks. The security parameters are chosen to be εc

D IQK D = 10−2 and εs
D IQK D = 10−5.

ENTANGLING RATE.
Although the improved parameters lead to a positive key rate, this does not mean that
DIQKD with NV centres is readily achievable. The system faces another challenge: the
probabilistic nature of the heralded entanglement scheme limits the entanglement gen-
eration rate.

In the heralded entanglement generation protocol used in [53, 75] the photonic qubit
is time-bin encoded and entanglement is heralded with the detection of a photon in each
of two time-bins [86]. Since two photons have to be detected, the rate of the protocol is
proportional to the square of the photon losses. For the spacelike separated setups in
[53] the total emission and detection efficiency per photon is ≈ 10−4, leading to a total
success probability of ≈ 10−8. Since the repetition rate, limited by the spin-state reset
time, is of the order of ≈ µs, generating a raw key of length 106 bits would take ≈ 103

days. It is clear that a speed-up of entanglement generation rate is required to use NV
centres in a DIQKD protocol. We describe two approaches toward this.

Firstly, this could be achieved by adapting the entanglement generation protocol.
A linear dependency of the rate on photon losses can be achieved by employing an
extreme-photon-loss (EPL) protocol [92] or single-photon (SP) protocol [93]. Demon-
strated implementations of these protocols with NV centres indeed provide a speed-up
in entanglement rate of three orders of magnitude [80, 81]. However, these implementa-
tions do not yet provide the entangled state fidelities leading to Bell violations that allow
for DIQKD (the entangled state fidelities are FEPL = 0.65± 0.03 and FSP = 0.81± 0.02,
leading to no Bell violation for the EPL protocol and a small violation SSP = 2.1 for the
single photon protocol). Better parameters may be achieved with improvements of the
robustness of the nuclear-spin memories [85] and with an improved photon detection
versus dark-count rate [93].

Secondly, an increase in the entanglement rate can be achieved by a reduction of
the photon losses per round. These losses consist of three parts: a low coherent-photon
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emission probability, a non-unit collection efficiency and fiber attenuation. The photon
attenuation during transmission over fibers is ≈ 8 dB for the NV emission wavelength
(637 nm). To maintain high entangling rates for distant setups, this should be reduced.
This can be achieved by frequency downconversion of the photons at a wavelength of
637 nm emitted by the NV centres to telecom frequencies [94, 95]. The emission proba-
bility of coherent photons, ≈ 3%, and subsequent collection efficiency (≈ 10%, [75]) to-
gether limit the best achievable entangling rates. They can be addressed simultaneously
by embedding the NV centre in an optical cavity to enhance coherent-photon emission
and the collection efficiency [91]. A promising approach employs NV centres in diamond
membranes in Fabry-Perot microcavities [96–98]. In such a design NV centres remain far
away from the optical interface, retaining bulk-like optical coherence properties. These
cavities are expected to provide three orders of magnitude enhancement in entangling
rate for a two-click protocol [97]. Together with the improved DIQKD parameters de-
scribed above, this makes a demonstration of DIQKD with NV centres experimentally
feasible.

S Q
(1) Matsukevich et al., PRL 100, 150404 (2008) [59] 2.22±0.07 0.041±0.003
(2) Pironio et al., Nature 464, 1021-1024 (2010) [60] 2.414±0.058 0.041±0.003
(3) Giustina et al., Nature 497, 227-230 (2013) [57] 2.02096±0.00032 0.0297±0.0003
(4) Christensen et al., PRL 111, 130406 (2013) [58] 2.00022±0.00003 0.0244±0.0009
(5) Giustina et al., PRL 115, 250401 (2015) [54] 2.000030±0.000002 0.0379±0.0002
(6) Shalm et al., PRL 115, 250402 (2015) [55] 2.00004±0.00001 0.0292±0.0002
(7) Hensen et al., Nature 526 682-686 (2015) [53] 2.38±0.14 0.06±0.03
(8) Rosenfeld et al., PRL 119, 010402 (2017) [56] 2.221±0.033 0.035±0.003
(9) Expected improvements in NV systems 2.47 0.051

Table 5.4: Summary of the estimated parameters of interest for DIQKD. (1,2) are Bell tests with trapped ions, (3-
5) are all-photonic experiments, (7) uses NV centres and (8) trapped atoms. (9) reports on near-term achievable
parameters with NV centers as described in Section 5.2.3. In all experiments the detection loophole is closed;
(5-8) additionally close the locality loophole. The CHSH violations for neutral atoms (8), trapped ions (1,2)
and NV centres (7) are as reported in the corresponding experiments. For (3), (4) and (5), in which the value
of the CH-Eberhard inequality J is reported, we make use of the relation S = 4J +2 between the CHSH value
and the CH-Eberhard value. This relation is found if one attributes “output 1" to undetected events in a CHSH
inequality test. For (6) the CHSH violation was estimated directly from the reported data. For the estimation of
the QBER (Q), in (1),(2) and (8) we assume perfect classical correlation in the generated state and find a lower
bound for the QBER from reported detection efficiencies (0.979±0.002 [99] for (1) and (2), and 0.982±0.002
[100] for (8)). For NV centres (7), we additionally account for imperfections in the entangled state based on
the reported density matrix. For all-photonic systems (3-6), the QBER is estimated by taking into account
the detection efficiency and using the reported estimated state and the measurements performed by Alice,
optimizing over measurements for Bob.
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Figure 5.5: Region of positive key rates for coherent attacks: The red area is the region of values of QBER (Q)
and CHSH violation (S) for which a positive key rate cannot be reached with any number of rounds. In the
green area, the dashed curves represents the minimum number of rounds required to get positive key rate.
For parameters above each curve, a key rate can be extracted if the number of rounds is higher than specified
in the curve. The points show the Bell violation and estimated QBER achieved by previous experiments (see
Table 5.4). They, however, do not reflect the corresponding entanglement generation rates. Similarly to [1], we
take εc

D IQK D = 10−2 and εs
D IQK D = 10−5.
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Figure 5.6: Region of positive key rates for collective attacks: The red area is the region of values of QBER (Q)
and CHSH violation (S) for which a positive key rate cannot be reached with any number of rounds. In the
green area, the dashed curves represents the minimum number of rounds required to get positive key rate.
For parameters above each curve, a key rate can be extracted if the number of rounds is higher than specified
in the curve. The points show the Bell violation and estimated QBER achieved by previous experiments (see
Table 5.4). They, however, do not reflect the corresponding entanglement generation rates. Similarly to [1], we
take εc

D IQK D = 10−2 and εs
D IQK D = 10−5.
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5.3. DISCUSSION
Detection-loophole-free Bell tests between separated setups mark an important step to-
wards the implementation of DIQKD. Progress towards extending Bell experiments to
larger distances were also achieved, in particular by the Bell tests additionally closing
the locality loophole. However a DIQKD protocol has not yet been implemented.

In order to shed light on the experimental performance needed for DIQKD, we have
derived the key rates in the finite size regime as a function of the experimental param-
eters: CHSH violation S and QBER Q. For comparison of the key rates obtained in the
finite regime for coherent and collective attacks, we have used as a benchmark an imple-
mentation where the maximally entangled state is subjected to depolarizing noise. Al-
though the asymptotic key rates against collective attacks and general coherent attacks
coincide, it is known that this is not the case in the finite regime. We find that, with the
currently available tools, security against coherent attacks requires a minimum num-
ber of rounds about two orders of magnitude higher than what is necessary for security
against collective attacks for realistic near-term parameters.

Here, we have focused on DIQKD protocols that use the CHSH inequality. So far the
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CHSH inequality is the one which leads to the best performance for a DIQKD protocol.
The challenge in using other Bell inequalities is that, up to date, only non-tight lower
bounds on the secure key rates can be derived. Therefore, it is still an open question
whether any other Bell inequality can outperform the CHSH, either in terms of maxi-
mum tolerable QBER, higher rates or lower minimum number of rounds required.

Towards exploring the potential of different experimental platforms to implement
DIQKD, we have analyzed the Bell violation and expected QBER of previously performed
Bell tests and situated these parameters in the context of the derived key rates. Figures
5.5 and 5.6 summarize this analysis.

For photonic systems, a DIQKD implementation is currently barred by the very low
CHSH violation. To overcome this, a strong reduction of photon losses is required.

Detection-loophole free Bell tests based on heralded entanglement schemes approach
the allowed region, with the Bell test of Ref. [60], performed with trapped ions separated
by 1 meter, even exhibiting parameters in the allowed region. These heralded schemes
however suffer from low entangling rates resulting from photon losses. An increase in the
entangling rates is expected to be achieved by improving collection efficiencies, e.g. by
employing optical cavities. Moreover, with frequency downconversion these results can
be extended to long (À 1 km) distances. We illustrate that with near-term experimental
improvements for NV centres, in combination with optical cavities for enhancing entan-
gling rate, described in Section 5.2.3, a demonstration of DIQKD is achievable.

5.4. METHODS
We now present the theoretical tools that allows us to derive the key rates for the device-
independent quantum key distribution protocols, Protocol 5.2.1 and Protocol 5.2.3. We
start by defining some quantities that are going to play an important role in the security
proof and state in more details the security definition for device-independent quantum
key distribution.

5.4.1. NOTATION AND DEFINITIONS
As for the previous chapters we will use the (smoothed) min- and max-entropy as de-
fined in Chpater 2. In this chapter we will however use other entropic quantities of
interest that are the conditional von-Neumann entropy, H(A|E)ρ , and the conditional
collision entropy H2(A|E)ρ . They are particular cases of the one-parameter family of
entropies called sandwiched conditional Réyni entropies, first defined in Ref. [101].

Definition 5.4.1. For any density operator ρAE and for α ∈ [ 1
2 ,1)∪ (1,∞) the sandwiched

α-Réyni entropy of A conditioned on E is defined as

Hα(A|E)ρ := 1

1−α log

(
Tr

[(
ρ

1−α
2α

E ρAEρ
1−α
2α

E

)α])
, (5.13)

where ρ
1−α
2α

E is a short notation for 1A ⊗ρ
1−α
2α

E .
A variant can also be defined as

H↑
α(A|E)ρ := sup

σE∈S

1

1−α log

(
Tr

[(
σ

1−α
2α

E ρAEσ
1−α
2α

E

)α])
, (5.14)
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where S denotes the set of quantum states and the supremum is taken over density oper-
ators σE .

The min- and max- entropy correspond to the extremal cases of definition (5.14) for
α =∞ and α = 1

2 respectively. For α→ 1, definition (5.13) and (5.14) coincide and one
recover the standard conditional von-Neumann entropy. Properties of the conditional
α-Réyni entropies are presented in 5.5.1.

5.4.2. SECURITY OF DIQKD
In order to determine what it means for a DIQKD protocol to be secure, we adopt the se-
curity definition used in [41]. This security definition follows the universally composable
security definition for standard QKD protocols [42]. However it is important to note that
for the device-independent case composability was never proved and attacks proposed
in Ref. [37] show that composability is not achieved if the same devices are re-used for
generation of a subsequent key.

In the composably secure paradigm, the security of a protocol is defined in terms
of its distance to an ideal protocol [42, 102]. Following this definition, given a protocol
described by the completely positive and trace preserving (CPTP) map diqkdreal, we say
that the protocol is εs

D IQK D -secure for any εs
D IQK D ≥ ε if:

ε := 1

2
‖diqkdreal −diqkdideal‖¦ (5.15)

= sup
ρABE

1

2
‖diqkdreal(ρABE)−diqkdideal(ρABE)‖1. (5.16)

Expression (5.16) can be split into two terms that reflect independently the correctness
and the secrecy of the protocol (see [42]), given by Definitions 5.1.3 and 5.1.4. Correct-
ness is the statement that Alice and Bob share equal strings of bits at the end of the
protocol. And secrecy states how much information the eavesdropper can have about
their shared key.

Another requirement for a good DIQKD protocol is that there exist a realistic imple-
mentation that do not lead the protocol to abort almost all the time, i.e., the protocol
should have some robustness. This is captured by the concept of completeness.

Definition 5.4.2 (Security). A DIQKD protocol is (εs
D IQK D ,εc

D IQK D , l )-secure if

1. (Soundness) For any implementation of the protocol, either it aborts with probabil-
ity greater than 1− εs

D IQK D or an εs
D IQK D -correct-and-secret key of length l is ob-

tained.

2. (Completeness) There exists an honest implementation of the protocol such that the
probability of not aborting, p(Ω), is greater than 1−εc

D IQK D .

The correctness of the final key is ensured by the error correction step. During error
correction, Alice sends to Bob a sufficient amount of information so that he can correct
his raw key. If Alice and Bob do not abort in this step, then the probability that they end
up with different raw keys is guaranteed to be very small. For the secrecy of the protocol,
according to Definition 5.1.4, one needs to estimate how far the final state describing
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Alice’s key and the eavesdropper system is from a state where the eavesdropper is to-
tally ignorant about Alice’s key, see Eq. (5.4). The formal security proof of quantum key
distribution became possible due to the quantum Leftover Hash Lemma [49, 103] that
quantifies the secrecy of a protocol as a function of a conditional entropy of the state
before privacy amplification and the length of the final key.

Theorem 5.4.3 (Leftover Hash Lemma ([49], Theorem 5.5.1)). Let ρAn
1 E be a classical-

quantum state and let H be a 2-universal family of hash functions, from {0,1}n to {0,1}l ,
that maps the classical n-bit string An

1 into K A . Then

‖ρK A HE −τK A ⊗ρHE‖1 ≤ 2
− 1

2

(
H↑

2 (An
1 |E)ρ−l

)
. (5.17)

For the proof of the Leftover Hash Lemma we refer to Ref. [49]. In Ref. [49], it was
shown that the Leftover Hash lemma can also be formulated in terms of the smooth
min-entropy, and the price to pay is only a linear term in the security parameter6.

Theorem 5.4.4 (Leftover Hash Lemma with smooth min-entropy [11, 49]). Let ρAn
1 E be a

classical-quantum state and let H be a 2-universal family of hash functions, from {0,1}n

to {0,1}l , that maps the classical n-bit string An
1 into K A . Then

‖ρK A HE −τK A ⊗ρHE‖1 ≤ 2−
1
2

(
Hε

min(An
1 |E)ρ−l

)
+2ε. (5.18)

Given the Leftover Hash Lemma, stated in Theorems 5.4.3 and 5.4.4, and the defi-
nition of secrecy, Definition 5.1.4, we can now express the length of a secure key as a
function of the entropy of Alice’s raw key conditioned on Eve’s information before pri-
vacy amplification.

Theorem 5.4.5 (Key length). Let p(Ω) be the probability that the DIQKD protocol does
not abort for a particular implementation. If the length of the key generated after privacy
amplification is given by

l = H↑
2 (An

1 |E)ρ|Ω −2log

(
1

2εPA

)
. (5.19)

then the DIQKD protocol is εPA-secret.
We can also express the key length in terms of the smooth min-entropy, where if l sat-

isfies

l = Hεs /p(Ω)
min (An

1 |E)ρ|Ω −2log

(
p(Ω)

2εPA

)
(5.20)

≥ Hεs /p(Ω)
min (An

1 |E)ρ|Ω −2log

(
1

2εPA

)
, (5.21)

then the DIQKD protocol is (εPA +εs )-secret.

We see that the leftover hash lemma expressed in terms of smooth min-entropy only
leads to an extra εs term in the security parameter. However, the smooth min-entropy
can be much larger than the 2-Rényi entropy H↑

2 and, therefore, it is advantageous to
lower bound the key by the smooth min-entropy.

6In Ref. [49], the leftover hash lemma was formulated with the smooth min-entropy defined as a supremum
over states that are ε-close to ρ in the trace norm. The proof of Theorem 5.4.4, with the smooth min-entropy
defined according to Definition 5.4.1, can be found in Ref. [11].
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5.4.3. SECURITY ANALYSIS
In the previous section we have seen that in order to determine the length of a secret key
generated by a particular protocol one needs to estimate the (smooth-min or 2-Rényi)
entropy of Alice’s string conditioned on all the information available to the eavesdrop-
per before privacy amplification. Now, in order to estimate this quantity for a DIQKD
protocol one faces two main challenges:

• How to evaluate the entropy of a very long string of bits?

• How to evaluate the one-round entropy in the device-independent scenario?

In Section 5.4.3 we present the theoretical tools that allow to reduce the problem of
evaluating the entropy of a string of bits to the evaluation of a single round. Moreover, in
the DI scenario we do not want to make any assumptions over the underlying quantum
state and measurement devices. In Section 5.4.3 we present a tight bound derived in
[16, 27] for the one round conditional von Neumann entropy of protocols where Alice
and Bob test the CHSH inequality. Moreover we explore further this bound to prove a
tight bound on the single round conditional collision entropy as a function of the CHSH
violation.

REDUCING THE PROBLEM TO THE ESTIMATION OF ONE ROUND.

We now present the techniques that allow to reduce the evaluation of the entropy Hεs /p(Ω)
min (An

1 |E)ρ|Ω
to the estimation of the conditional von Neumann entropy of a single round for the
two adversarial scenarios under consideration, collective attacks and coherent attacks.
Moreover, for the IID scenario, i.e. when the eavesdropper is assumed to be restricted
to collective attacks, we show how to break the analysis of the entropy H↑

2 (An
1 |E)ρ|Ω into

single rounds evaluation.

THE IID SCENARIO (COLLECTIVE ATTACKS).
When we restrict the eavesdropper to collective attacks, we are assuming that, even
though she can perform an arbitrary operation in her quantum side information, the
state distributed by the source and the behavior of Alice’s and Bob’s devices are the same
in every round of the protocol. This implies that after n rounds, the state shared by Alice,
Bob and Eve is ρAn

1 B n
1 E = ρ⊗n

ABE . In this case, the quantum asymptotic equipartition prop-

erty (AEP) [61] allows to break the conditional smooth min-entropy of state ρ⊗n
AE into n

times the conditional von Neumann entropy of the state ρAE .

Theorem 5.4.6 (Asymptotic equipartition property [61]). Let ρ = ρ⊗n
AE be an IID state.

Then for n ≥ 8
5 log 2

ε2

Hε
min(An

1 |E n
1 )ρ⊗n

AE
≥ nH(A|E)ρAE −p

nδ(ε,η) (5.22)

and similarly

Hε
max(An

1 |E n
1 )ρ⊗n

AE
≤ nH(A|E)ρAE +p

nδ(ε,η) (5.23)

where δ(ε,η) = 4logη
√

log 2
ε2 and η=

√
2−Hmin(A|E)ρAE +

√
2Hmax(A|E)ρAE +1.
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The quantum AEP is a generalization to quantum systems of the classical statement
that, in the limit of many repetitions of a random experiment, the output sequence is one
from the typical set. Therefore, under the assumption of collective attacks, the quantum
AEP reduces the problem of estimating the key rate of a string of n bits to the problem
of bounding the one-round conditional von Neumann entropy. We remark that the AEP
implies an additional term, proportional to

p
n, which is significant for the finite regime

analyses.

In Section 5.4.2, we have seen that the left-over hash lemma can also be stated in the
terms of the 2-Réyni conditional entropy H↑

2 (A|E)ρ . A useful property of the conditional

H↑
α entropies is additivity [104] (see 5.5.1 Property 5.5.1(2)), which implies the following

lemma.

Lemma 5.4.7. Let ρ = ρ⊗n
AE be an IID state. Then

H↑
2 (An

1 |E n
1 )ρ⊗n

AE
= nH↑

2 (A|E)ρAE ≥ nH2(A|E)ρAE , (5.24)

where H2(A|E)ρAE denotes the collision entropy.

Validity of Lemma 5.4.7 can be seen from the following: equality in (5.24) follows
from the additivity property of H↑

α entropies, Property 5.5.1(2) in 5.5.1, and the inequality
follows from the definition of α-Rényi entropies, Definition 5.4.1.

Therefore, for collective attacks one can break the analysis into the evaluation of
a single-round entropy by using both, the formulation of the left-over hash lemma in
terms of the smooth-min entropy, Theorem 5.4.4, and in terms of the 2-Rényi entropy,
Theorem 5.4.3. The possible advantage of using Lemma 5.4.7 over the AEP, Theorem 5.4.6,
is that no extra overhead term O (

p
n) is gained due to the additive property of the 2-Réyni

conditional entropy H↑
2 (A|E)ρ . However, in general the von Neumann entropy can be

much larger than the collision entropy, and this trade-off has to be taken into account.
We remark that, for protocols based on other Bell inequalities, the techniques used for
deriving Theorem 5.2.5 can be advantageous for collective attack analysis. This is due to
the fact that for other Bell inequalities there is no known technique to directly bound the
conditional von-neumann entropy and a good bound on the min-entropy can be found
using semidefinite-programming techniques (see Section 5.4.3).

THE FULLY DI SCENARIO (COHERENT ATTACKS).
In the fully device-independent scenario the eavesdropper can perform a general coher-
ent attack, and the state shared by the parties may not be of the form ρ⊗n

ABE . Therefore,
the tools presented in the previous section are not applicable in this scenario. In stan-
dard QKD, de Finetti techniques [48, 49, 51] allow one to extend the proofs against col-
lective attacks to coherent attacks for protocols that present some symmetry. The price
to pay is an overhead term O (

p
n) whose pre-factor depends on the dimension of the

underlying system. However, in the device-independent scenario, we do not want to
make assumptions on the dimension of the underlying system. Moreover, symmetry of
the protocol is not guaranteed, as we do not know the behaviour of the measurement
devices. Therefore, de Finetti techniques cannot be used to straightforwardly extend the
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security proofs against collective attacks to coherent attacks in the device-independent
scenario.

Recently, this problem was overcome by the Entropy Accumulation Theorem (EAT)
[1, 52]. In this section, we state the Entropy Accumulation Theorem, which allows to

break the entropy Hεs /p(Ω)
min (An

1 |E)ρ|Ω into the entropy of single rounds and therefore ex-
tends proofs against collective attacks to coherent attacks.

We give here a quick reminder of the statement of the Entropy Accumulation Theo-
rem. For more details see Chapter 2 Section 2.3.3.

Theorem 5.4.8 (The Entropy Accumulation Theorem (EAT) [52]). For 1 ≤ i ≤ n let Mi be
a EAT channel from register Ri−1 to Ai Bi Ci Ri , and let ρAn

1 B n
1 E of the form,

ρAn
1 B n

1 E = trRn (Mn ◦ . . .◦M1(ρR0E )). (5.25)

Let fmin be an affine min-tradeoff function, and fmax be an affine max-tradeoff function.
For an event Ω that happens with probability p(Ω), and for t such that fmin(freq(cn

1 )) ≥ t
∀ cn

1 ∈Ω, it holds that

Hε
min(An

1 |B n
1 E)ρ|Ω > nt −νpn (5.26)

and similarly, for t ′ such that fmax(freq(cn
1 )) ≤ t ′ ∀ cn

1 ∈Ω,

Hε
max(An

1 |B n
1 E)ρ|Ω < nt ′+νpn (5.27)

with

ν= 2
(
log(1+2dA)+d‖∇ f ‖∞e)√1−2log

(
εs ·p(Ω)

)
(5.28)

for f equals to fmin and fmax respectively .

Analogous to the AEP, the Entropy Accumulation Theorem allows us to break the en-
tropy of the string of bits into the entropy of a single round. Note, however, that this
single-round entropy does not refer to the real entropy of each round of the protocol,
but is evaluated over the hypothetical states that would achieve the observed violation.
It is important to remark that a crucial assumption in the EAT [1, 52] is that some of the
variables of interested satisfy what is called the Markov condition (see Chapter 2 Section
2.3.3). This is the case for QKD protocols performed sequentially. For definition and
discussion of the implications of the Markov condition, see [52].

ESTIMATING THE ONE-ROUND ENTROPY.
Now that we have reduced the evaluation of the secret key length to the estimation of
the conditional von Neumann entropy of a single round, we are ready to face the next
challenge: How to estimate the single round entropy without any assumptions on the
quantum states and behavior of the measurement devices.
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THE CHSH SCENARIO:
The CHSH scenario [39], where Alice and Bob each perform one among two possible
binary measurements, is significantly simpler than other Bell scenarios. Due to the fact
that the CHSH inequality has only two binary inputs per party, a strong result [105, 106]
states that the description of any realization of a CHSH experiment can be decomposed
into subspaces of dimension two, where projective measurements are performed in each
subspace. This allows one to restrict the analysis to qubits, which significantly simplifies
the problem. Exploring these nice properties, a tight bound on the von Neumann en-
tropy of Alice’s outcome conditioned on Eve’s information, as a function of the CHSH
violation, was derived in [16, 27].

Lemma 5.4.9. Given that Alice and Bob share a state ρAB that achieves a violation S for
the CHSH inequality, it holds that

H(A|E)ρ ≥ 1−h

1

2
+ 1

2

√(
S

2

)2

−1

 . (5.29)

In Section 5.4.3 we have seen that for collective attacks the key rate can also be esti-
mated by the single round collision entropy. And due to the additivity property of H↑

2 , no
overhead

p
n term is present. Therefore, this analysis can potentially lead to an advan-

tage with respect to the minimum number of rounds required for positive key rate. The
conditional collision entropy satisfies the following relation [104, Corollary 5.3]

H2(A|E)ρ ≥ Hmin(A|E)ρ . (5.30)

And a lower bound for the conditional min-entropy as a function of the Bell violation
was derived in [107]:

Hmin(A|E)ρ ≥− log

1

2
+ 1

2

√
2− S2

4

 . (5.31)

Therefore expression (5.31) can be used to bound the conditional collision entropy
as a function of the violation S. We now prove that this bound is actually tight.

Theorem 5.4.10. There exist a state ρ∗
AB and measurements for Alice and Bob such that,

ρ∗
AB achieves violation S and the collision entropy of Alice’s output A conditioned on Eve’s

quantum information E is

H2(A|E)ρ∗ =− log

1

2
+ 1

2

√
2− S2

4

 . (5.32)

The proof of Theorem 5.4.10 is presented in 5.5.3. Theorem 5.4.10 together with re-
lations (5.30) and (5.31) imply a tight lower bound for the conditional collision entropy
as a function of the CHSH violation S. In Figure 5.7 we plot H(A|E) and H2(A|E) as a
function of the violation S. One can see that the points of maximum and minimum
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entropy (corresponding to maximal violation S = 2
p

2 and no violation, respectively) co-
incide, but for intermediate values of S the conditional collision entropy is smaller than
the conditional von Neumann entropy.
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Figure 5.7: Graph illustrating the difference of the conditional von Neumann entropy H(A|E) and the condi-
tional collision entropy H2(A|E) as a function of the CHSH violation S.

OTHER BELL INEQUALITIES AND THE MIN-ENTROPY ESTIMATION:
The use of different Bell inequalities has proved to be advantageous in different taks. For
example, a tilted CHSH inequality was used to certify maximal randomness in states ar-
bitrarily close to separable [108], and inequalities with more inputs and outputs have
shown to exhibit higher noise robustness [109]. Therefore it is natural to ask whether
other Bell inequalities can also bring advantage to the task of device-independent quan-
tum key distribution.

By considering an arbitrary Bell inequality, one faces the problem that the tech-
niques used to bound the conditional von Neumann entropy as a function of the CHSH
violation do not apply. Indeed, the proof of Lemma 5.4.9 is highly based on the fact
that one can reduce the analysis to qubits. In fact, very few results are known on tight
bounds for the conditional von Neumann entropy as a function of the Bell violation for
other inequalities. In [110] a bound was derived for a family of inequalities denoted
measurement-device-dependent inequalities [111], which are very suitable for the task
of randomness amplification. In [112] a tight bound was derived as a function of the vi-
olation of the multipartite MABK inequality [113–115]. However in these two cases the
proof is based on a reduction to the CHSH inequality.

In general, the conditional von Neumann entropy can be lower bounded by the con-
ditional min-entropy

H(A|E)ρ ≥ Hmin(A|E)ρ . (5.33)

The advantage of looking at the conditional min-entropy is that it can be computed as a
function of the Bell violation by a semi-definite programming [107]. The idea is that in
order to estimate the min-entropy one can upper bound the guessing probability, Pguess

(see Eq. (2.55) in Chapter 2), of the eavesdropper. This problem can then be expressed as
an optimization over probability distributions, which is exactly the information available
in the device-independent scenario. As shown in Ref. [107], for any Bell inequality, an
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upper bound on the pguess can be obtained by a semidefinite programming making use
of the NPA-hierarchy [116, 117].

Lower bounding the conditional von-Neumann entropy by the min-entropy might
be far from optimal. For example, for the CHSH inequality we have that the conditional
von Neumann entropy as a function of the violation is much larger than the conditional
min-entropy, as illustrated in Fig. 5.7 (recall that, in Theorem 5.4.10, Hmin(A|E)ρ was
shown to be a tight bound on H2(A|E)ρ as a function of the CHSH violation). By mak-
ing use of the tight bound on the conditional von Neumann entropy, eq. (5.29), one
can prove security for DIQKD up to 7.1% of QBER [16], whereas using the min-entropy,
eq. (5.31), security can only be guaranteed up to a QBER of 5.2% [107].

It is still an open problem whether any other Bell inequality can lead to better per-
formance for DIQKD than the CHSH inequality. Recently, an extensive analysis of the
performance of different Bell inequalities for the task of randomness expansion was pre-
sented in [118].

KEY RATES.
The techniques presented in Sections 5.4.3 and 5.4.3 allows us to establish the length of
a secure key that can be extracted as a function of the CHSH violation S and QBER Q.

For coherent attacks, the Entropy Accumulation Theorem (Theorem 5.4.8) and the
tight lower bound on the conditional von Neumann entropy (Lemma 5.4.9) are the key
tools to establish Theorem 5.2.2. The complete proof of Theorem 5.2.2 includes several
intermediate steps, and is presented in details in 5.5.2.

For collective attacks, the key ingredients to derive Theorem 5.2.4 are the asymp-
totic equipartition property (Theorem 5.4.6) and Lemma 5.4.9. A detailed proof of Theo-
rem 5.2.4 is presented in 5.5.2. We have also presented a different technique of breaking
the entropy of Alice’s string into the entropy of single rounds in the IID scenario, namely
by making use use of the additivity of 2-Réyni entropy, Lemma 5.4.7. This technique,
together with Theorem 5.4.10 leads to Theorem 5.2.5. A detailed proof of Theorem 5.2.5
can be found in 5.5.2.

5.5. TECHNICAL DETAILS

5.5.1. DEFINITIONS
In this Section we present some properties of the conditional sandwiched α-Réyni en-
tropies [101], Definition 5.4.1, and the smoothed entropies that are used for the security
proof.

Proposition 5.5.1. The conditional α-Rényi entropies satisfy:

1. Data processing ([104] Corollary 5.1): Let τAB ′ = I A⊗EB (ρAB ), where EB is a CPTP(B ,B ′)
channel, then

Hα(A|B)ρ ≤ Hα(A|B ′)τ and H↑
α(A|B)ρ ≤ H↑

α(A|B ′)τ. (5.34)

2. Additivity ([104] Corollary 5.2): For ρAB ⊗τA′B ′ it holds that

H↑
α(A A′|BB ′)ρ⊗τ = H↑

α(A|B)ρ +H↑
α(A′|B ′)τ. (5.35)
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3. Entropy of classical information([104] Lemma 5.3): For ρAB X classical in X

Hα(X A|B)ρ ≥ Hα(A|B)ρ and H↑
α(X A|B)ρ ≥ H↑

α(A|B)ρ . (5.36)

4. Conditioning on classical information (see [104] Lemma 5.4): For ρAB X classical
in X ,

H↑
α(A|X B) ≥ H↑

α(A|B)− log
(
rank(ρX)

)
(5.37)

≥ H↑
α(A|B)− log |X |, (5.38)

where rank(ρX) is the rank of matrix ρX and |X | is the dimension of system X .

5. Conditioning on classical information (see [104] Proposition 5.1): LetρAB X =∑
x pxρ

x
AB⊗

|x〉〈x | then,

Hα(A|B X )ρ = 1

1−α log

(∑
x

p(X = x)2((1−α)Hα(A|B X=x)ρ)
)

, (5.39)

H↑
α(A|B X )ρ = α

1−α log

(∑
x

p(X = x)2

(
1−α
α H↑

α(A|B X=x)ρ
))

. (5.40)

And for the conditional von Neumann it holds that

H(A|B X )ρ =
∑
x

p(X = x)H(A|B X = x)ρ . (5.41)

6. Entropy of the conditioned state (see [52] Lemma B.5): Let ρAB X = ∑
x pxρAB |x

then,

H↑
α(A|B)ρAB |x ≥ H↑

α(A|B)ρ − α

α−1
log

(
1

px

)
. (5.42)

In Property 5.5.1.(4), the relation H↑
α(A|X B) ≥ H↑

α(A|B)− log |X | was stated in [104].
We remark that the middle inequality follows from the fact that H↑

α(A|X B) is invariant
under local isometries. Therefore if X ′ = V (X ) is a full rank operator where V (·) is an
isometry, we have that

H↑
α(A|X B) = H↑

α(A|X ′B) ≥ H↑
α(A|B)− log |X ′| (5.43)

and since V (·) is an isometry |X ′| = rank(ρX).
The min- and max- entropy are the particular extreme cases of H↑

α forα=∞ andα=
1
2 respectively. For α→ 1 one recovers the standard conditional von-Neumann entropy.

The smoothed entropies satisfy several chain rules. Some of them are stated below.
A more complete list of chain rule relations can be found in [104, 119].

Proposition 5.5.2 (Chain rules for the smooth min-entropy). The smooth min-entropy
satisfy the following relations
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1. For a quantum state ρABC ,

Hε
min(A|BC )ρ ≥ H

ε
4

min(AB |C )ρ −H
ε
4

max(B |C )ρ (5.44)

−2log

(
1−

√
1−

( ε
4

)2
)

.

2. If X is a classical register and ρAB X a quantum-quantum-classical state, it holds
that7

Hε
min(A|X B)ρ ≥ Hε

min(A|B)ρ − log
(
rank(ρX)

)
, (5.45)

where rank(ρX) is the rank of state ρX .

A fully contained overview with properties and relations between different entropies
can be found in [104] (see also, [120]).

5.5.2. SECURITY PROOF
According to Definition 5.4.2, a security proof of a DIQKD protocol consists in complete-
ness and soundness. We start by proving completeness of Protocols 5.2.1 and 5.2.3.

Theorem 5.5.3 (Completeness). The DIQKD protocols in consideration, Protocols 5.2.1
and 5.2.3 are εc

D IQK D complete, with

εc
D IQK D ≤ εc

EC +εest +εEC . (5.46)

Proof. The protocols in consideration can abort in two steps. Either because the error
correction fail, or because the estimated Bell violation is not high enough. Let us con-
sider an honest implementation consisting of IID rounds where the expected winning
CHSH probability is ωexp .

p(abort) = p((ECabort)or(ECdoesnotabortandBell testfail))

≤ p(ECabort)+p(ECdoesnotabortandBell testfail)

Now, the probability that the error correction protocol abort for an honest implementa-
tion is p(ECabort) ≤ εc

EC . And for the other term we have

p(ECdoesnotabortandBell testfail)

= p(K A = KB )p(
∑

i
Ci <

∑
i

Ti ×
(
ωexp −δest

) |K A = KB )

+p(K A 6= KB )p(
∑

i
Ci <

∑
i

Ti ×
(
ωexp −δest

) |K A 6= KB )

≤ εest +εEC ,

where εest = e−2γn(δest )2
follows from Hoeffding’s inequality.

7In [104] relation Hε
min(A|X B)ρ ≥ Hε

min(A|B)ρ− log |X | was proved. Relation (5.45) with the rank of ρX follows
as pointed out in Property 5.5.1.(4).
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For the soundness proof we have to evaluate correctness and secrecy, Definitions
5.1.3 and 5.1.4. For an error correction protocol with error parameter εEC we have that
given that the error correction protocol does not abort, the probability that the string
B̃ after error correction is equal to An

1 with probability higher than 1− εEC and conse-
quently

P (K A 6= KB ) ≤ εEC . (5.47)

For the secrecy let us recall that, for each considered Protocol, Ω is defined as the
event that the respective protocols do not abort. That happens when the error correction
protocol does not abort and they achieved the required violation of CHSH according to
Bob’s estimation of Alice’s string. Now, let us the define the event Ω̂ as the eventΩ of the
Protocol not aborting and the error correction being successful, i.e. B̃ n

1 = An
1 . Now the

quantity we need to estimate for the secrecy, relates to the event Ω̂ by

‖ρK A E |Ω−τK A ⊗ρE‖1
≤ ‖ρK A E |Ω−ρK A E |Ω̂‖1

+‖ρK A E |Ω̂−τK A ⊗ρE‖1

≤ εEC +‖ρK A E |Ω̂−τK A ⊗ρE‖1
(5.48)

which follows from the fact that, since when error correction succeeds, the probability of
B̃ n

1 = An
1 is higher than (1− εEC ) then the following operator inequality holds: ρK A E |Ω ≥

(1−εEC )ρK A E |Ω̂.
In the following, we proceed to evaluate ‖ρK A E |Ω̂−τK A ⊗ρE‖1

in order to prove The-
orems 5.2.2, 5.2.4 and 5.2.5.

PROOF OF THEOREM 5.2.4
In this Section we present the proof of Theorem 5.2.4, that determines the size of a secret
key one can extract from Protocol 5.2.3 under the assumption that the eavesdropper is
restricted to collective attacks. Importantly, Theorem 5.2.4 is based on the asymptotic
equipartition property, Theorem 5.4.6, in order to break the entropy of the n rounds into
the one-round entropy.

The collective attacks assumption implies that in each round of the protocol the state
distributed to Alice and Bob is the same, as well as their devices function in the same
way, i.e. the rounds are independent and identically distributed (IID). Therefore the
state shared between Alice, Bob and Eve after Alice and Bob measure their raw keys is
described by a tensor product form ρ⊗n

ABE .
The asymptotic equipartition property (AEP) [61], Theorem 5.4.6, states that the smooth

min-entropy of a tensor product of states is almost equivalent (up to terms of order ofp
n) to n times the von-Neumann entropy of an individual system. We now make use

of the quantum AEP to derive the length of a secure key that one can achieve for Proto-
col 5.2.3.

As established by the Leftover Hash Lemma, Theorem 5.4.4, the maximal length of a
secure key is determined by the smooth min-entropy of Alice’s raw key conditioned on
all information available to the eavesdropper, given that the protocol did not abort. In
the case of Protocol 5.2.3, it is given by

H
εs

p(Ω)

min (An
1 |X n

1 Y n
1 T n

1 EOEC )ρ|Ω̂ . (5.49)
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Here we recall that OEC is the information exchanged by Alice and Bob during the error
correction protocol. T n

1 , X n
1 ,Y n

1 are, respectively, the variable that determines whether
the round is a test or a key generation round, and Alice and Bob’s inputs, which are com-
municated publicly. Ω̂ is the event that error correction protocol succeeds, i.e. K A = KB

and the CHSH probability estimated by Bob is ω ≥ ωexp −δest . In the following we de-
scribe the steps to estimate (5.49).

In order to avoid the conditioned state we can give one step back and note that in
Definition 5.1.4 we want to bound

p(Ω̂)‖ρK A HE |Ω̂−τK A ⊗ρHE |Ω̂‖1
= ‖ρK A HE∧Ω̂−τK A ⊗ρHE∧Ω̂‖1

(5.50)

where ρK A HE∧Ω̂ = p(Ω̂)ρK A HE |Ω̂. Now using the Leftover Hash Lemma, Theorem 5.4.4,
we can express an (εPA +εs )-secret key by

l = Hεs
min(An

1 |E)ρ∧Ω −2log

(
1

2εPA

)
. (5.51)

Now we make use of the fact that the smooth-min-entropy of the conditioned state is
lower bounded by the smooth-min-entropy of the state without conditioning, as proved
in Ref. [11, Lemma 10]

Hεs
min(An

1 |E)ρ∧Ω ≥ Hεs
min(An

1 |E)ρ . (5.52)

In the following we proceed to estimate the quantity

Hεs
min(An

1 |X n
1 Y n

1 T n
1 EOEC )ρ . (5.53)

STEP 1: ACCOUNTING FOR THE LEAKAGE IN THE ERROR CORRECTION.
Using the chain rule relation for the smooth min-entropy conditioned on classical infor-
mation, Property 5.5.2(2), we have

Hεs
min(An

1 |X n
1 Y n

1 T n
1 EOEC )ρ ≥ Hεs

min(An
1 |X n

1 Y n
1 T n

1 E)ρ − leakEC , (5.54)

where leakEC = rank(ρOEC ) represents the minimum amount of classical information
that needs to be communicated from Alice to Bob in order to perform error correction1.
We consider that Alice and Bob use a protocol based on universal hashing which has
minimum leakage [121]. In [122] it was proved that the minimum leakage is given by

leakEC ≤ H
ε′EC
0 (An

1 |B n
1 X n

1 Y n
1 T n

1 )+ log

(
1

εEC

)
, (5.55)

where, if Alice and Bob do not abort, then K A = KB with probability at least 1−εEC . And
for an honest implementation, the error correction protocol aborts with probability at

1Note that in a realistic implementation Alice might send the error correction information using an encoding
in order to overcome errors in the transmission due to channel losses. Therefore, in general ρOEC may not be
full rank.
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most εc
EC = ε′EC+εEC . Here H0 is a Rényi entropy first introduced in Ref. [49] (in Ref. [104],

it is denoted H̄↑
0 ). The entropy Hε

0 , relates to the smooth max-entropy in the following
way [103, Lemma 18],

H
ε′EC
0 (An

1 |B n
1 X n

1 Y n
1 T n

1 ) ≤H
ε′EC

2
max (An

1 |B n
1 X n

1 Y n
1 T n

1 ) (5.56)

+ log

(
8

ε′2EC

+ 2

2−ε′EC

)
.

We now can use of the asymptotic equipartition property, Theorem 5.4.6, to decom-
pose (5.56) into the sum of the entropy of single rounds. Moreover, for an honest imple-
mentation with winning CHSH probability ωexp and QBER Q we have that for the test
rounds H(A|B X Y T = 1) = h(ωexp ) and for the key generation rounds H(A|B X Y T = 0) =
h(Q). Therefore the one round entropy is given by

H(A|B X Y T ) = p(T = 0)H(A|B X Y T = 0)+p(T = 1)H(A|B X Y T = 1)

= (1−γ)h(Q)+γh(ωexp ), (5.57)

where in the first equality we have use Property 5.5.1(5).
Therefore, the leakage due to error correction is given by

leakEC ≤n((1−γ)h(Q)+γh(ωexp ))+p
n

(
4log

(
2
p

2+1
)√

log
8

ε′2EC

)

+ log

(
8

ε′2EC

+ 2

2−ε′EC

)
+ log

(
1

εEC

)
. (5.58)

It is not known if an efficient error correction protocol can achieve the minimum
leakage estimated in Eq. (5.58), and practical implementations may use protocols with
higher leakage. Ref. [123] analyses the leakage in error correction for concrete proto-
cols, based on state-of-the-art error correcting codes, with efficient implementation. A
more realistic analysis of the error correction leakage should take into account an spe-
cific code.

STEP 2: BREAKING THE ENTROPY INTO SINGLE ROUNDS.
We now can use the asymptotic equipartition property in order to bound Hεs

min(An
1 |X n

1 Y n
1 T n

1 E)ρ .
The assumption of collective attacks implies that the state under consideration has the
tensor product form and therefore

Hεs
min(An

1 |X n
1 Y n

1 T n
1 E)ρ ≥ n H(A|X Y T E)ρ −

p
nδ(εs ,η), (5.59)

where δ(εs ,η) and η are specified in Theorem 5.4.6.
For the scenario under consideration we have

η≤ 2
√

2Hmax(A|X Y T E)ρ +1 ≤ 2
p

2+1. (5.60)

The first inequality follows from the fact that A is a classical register and therefore has
positive conditional min-entropy, which implies−Hmin(A|X Y T E)ρ ≤ Hmin(A|X Y T E)ρ ≤
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Hmax(A|X Y T E)ρ . The second inequality follows from the fact that since A is a binary
variable Hmax(A|X Y T E)ρ ≤ 1. Therefore,

δ(εs ,η) ≤ 4log
(
2
p

2+1
)√

log

(
2

ε2
s

)
. (5.61)

STEP 3: ESTIMATING THE ONE-ROUND ENTROPY.
Now it only remains to lower bound H(A|X Y T E)ρ . Lemma 5.4.9 states the tight lower
bound for the conditional von-Neumann entropy as a function of the winning probabil-
ity ω for the CHSH game derived in [16, 41]. Using this bound we have that if ρ is a state
that achieves winning probability ω then

H(A|X Y T E)ρ ≥ 1−h

(
1

2
+ 1

2

√
16ω(ω−1)+3

)
. (5.62)

Now, Protocol 5.2.3 aborts if the observed frequency of winning events is smaller than
ωexp −δest . Therefore, given the event Ω̂ that Protocol 5.2.3 does not abort and K A = KB ,
we have that Alice and Bob observe a violation higher than ωexp −δest . Now we need to
take into account that the CHSH violation is estimated with a finite number of rounds.
So in order to infer the real winning probability ω∗ of the IID implementation, we can
make use of the Hoeffding’s inequality in order to define a confidence interval: If ω∗ <
ωexp −δest −δcon then

Pr
(
ωobser ved ≥ωexp −δest

)≤ e−2γn(δcon )2
:= εcon . (5.63)

Therefore, given that Alice and Bob do not abort the protocol, we infer that the expected
winning probability of the system under consideration is higher than ωexp −δest −δcon ,
and therefore

H(A|X Y T E)ρ ≥ (5.64)

1−h
(1

2
+ 1

2

√
16(ωexp −δest −δcon)((ωexp −δest −δcon)−1)+3

)

Putting the results of these steps together we have that either Protocol 5.2.3 aborts
with probability higher than 1−(εcon+εEC ), or the probability of aborting is smaller than
(εcon +εEC ) and a (2εEC +εs +εPA)-correct-and-secret key can be generated of size

l ≥ n
[

1−h

(
1

2
+ 1

2

√
16(ωexp −δest −δcon)((ωexp −δest −δcon)−1)+3

)
− (1−γ)h(Q)−γh(ωexp )

]
(5.65)

−p
n

(
4log

(
2
p

2+1
)(√

log
2

ε2
s
+

√
log

8

ε′2EC

))

− log

(
8

ε′2EC

+ 2

2−ε′EC

)
− log

(
1

εEC

)
−2log

(
1

2εPA

)
.

This establishes Theorem 5.2.4.
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PROOF OF THEOREM 5.2.5
We now present the proof of Theorem 5.2.5, that determines the size of a secret key one
can extract from Protocol 5.2.3 for collective attacks, but differently from Theorem 5.2.4,
we now use the additivity property of the 2-Rényi entropy, Lemma 5.4.7, in order to break
the entropy of the string into the one-round entropy.

We are now interested in estimate the length of a secure key as established in Theo-
rem 5.4.3, which is given by

H↑
2 (An

1 |X n
1 Y n

1 T n
1 EOEC )ρ|Ω̂ . (5.66)

As in 5.5.2 we now present the steps that lead to the proof of Theorem 5.2.5.

STEP 1: ACCOUNTING FOR THE LEAKAGE IN THE ERROR CORRECTION.
Using Property 5.5.1(5), we have

H↑
2 (An

1 |X n
1 Y n

1 T n
1 EOEC )ρ|Ω̂ ≥ H↑

2 (An
1 |X n

1 Y n
1 T n

1 E)ρ|Ω̂ − leakEC , (5.67)

where leakEC = rank(ρOEC ) represents the minimum amount of classical information
that needs to be communicated from Alice to Bob in order to perform error correction.

Now the error correction leakage leakEC is the same as derived in Equation (5.58).

STEP 2: BREAKING THE ENTROPY INTO SINGLE ROUNDS.
We first use Property 5.5.1(5) in order to express the entropy of the state conditioned on
the event Ω̂ in terms of the entropy of the unconditioned state

H↑
2 (An

1 |X n
1 Y n

1 T n
1 E)ρ|Ω̂ ≥ H↑

2 (An
1 |X n

1 Y n
1 T n

1 E)ρ −2log

(
1

pΩ̂

)
. (5.68)

We can now make use the additivity property of 2-Réyni entropy, Lemma 5.4.7, in
order to bound H↑

2 (An
1 |X n

1 Y n
1 T n

1 E)ρ . The assumption of collective attacks implies that
the state under consideration has the tensor product form and therefore

H↑
2 (An

1 |X n
1 Y n

1 T n
1 E)ρ ≥ n H2(A|X Y T E)ρ , (5.69)

where now the single round entropy in consideration is the conditional collision entropy.

STEP 3: ESTIMATING THE ONE-ROUND ENTROPY.
Now it only remains to lower bound H2(A|X Y T E)ρ . Theorem 5.4.10 shows that a tight
lower bound for the conditional collision entropy as a function of the violation S coin-
cides with the previously derived conditional min-entropy[107], eq.(5.31). Therefore, for
a state ρ that wins the CHSH game with probability ω

H2(A|X Y T E)ρ ≥− log

(
1

2
+ 1

2

√
16ω(1−ω)−2

)
. (5.70)

Now, either the expected winning probability of the system under consideration is
smaller thanωexp −δest −δcon , in which case the protocol aborts with probability higher
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than 1−(εcon +εEC ), or pΩ̂ > εcon +εEC which implies that the system has winning prob-
ability larger than ωexp −δest −δcon , and

H2(A|X Y T E)ρ ≥ (5.71)

− log

(
1

2
+ 1

2

√
16(ωexp −δest −δcon)(1− (ωexp −δest −δcon))−2

)
.

In conclusion we have that, either Protocol 5.2.3 aborts with probability higher than
1−(εcon+εEC ), or the probability of not aborting is greater than (εcon+εEC ) and a (2εEC +
εPA)-correct-and-secret key is generated of size:

l ≥ n
[
− log

(
1

2
+ 1

2

√
16(ωexp −δest −δcon)(1− (ωexp −δest −δcon))−2

)
− (1−γ)h(Q)−γh(ωexp )

]
(5.72)

−p
n

(
4log

(
2
p

2+1
)√

log
8

ε′2EC

)

− log

(
8

ε′2EC

+ 2

2−ε′EC

)
(5.73)

− log

(
1

εEC

)
−2log

(
1

2εPA

)
−2log

(
1

εcon +εEC

)
.

This establishes Theorem 5.2.5.

PROOF OF THEOREM 5.2.2
In this section we present the proof of Theorem 5.2.2, which establishes the size of a
secure key that can be extracted from Protocol 5.2.1 for general coherent attacks. We
follow closely the proof developed in [1, 41].

In Protocol 5.2.1, the number of rounds is not fixed. Instead, Protocol 5.2.1 has a
fixed number of blocks m, such that the maximum number of rounds inside a block is

set to smax =
⌈

1
γ

⌉
. This is a technicality introduced in [1, 41] in order to get a better pre-

factor for the overhead terms that scale with
p

n. For each block j Alice and Bob run
the protocol until they have a test round or they reach the maximum number of rounds
smax. At each round ji Alice and Bob choose a random bit T ji , such that P (T ji = 1) = γ,
which determines whether they are going to test the CHSH inequality or make a key
generation round. They repeat the process until they obtain T ji = 1 or i = smax. With
these constraints the expected number of rounds in a block is given by

s̄ = 1− (1−γ)

⌈
1
γ

⌉
γ

, (5.74)

and the expected number of rounds is

n = ms̄. (5.75)

For details on the derivation of equations (5.74) and (5.75) see Ref. [41, Appendix B]
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We now proceed to derive the key rates against a general coherent attack. In order to
calculate the size of the key we need to estimate

H
εs

p(Ω)

min (~Am
1 |~X m

1
~Y m

1
~T m

1 EO)ρ|Ω̂ . (5.76)

Now ~Am
1 denotes the total string of bits, expected to be of size n, and ~Ai denotes the

string of outputs generated in the block i , and similarly for the other variables. In the

following, we proceed step by step in order to lower bound H
εs

p(Ω)

min (~Am
1 |~X m

1
~Y m

1
~T m

1 EO)ρ|Ω̂
and we detail the changes introduced to the original analysis [1, 41].

STEP 1: ACCOUNTING FOR THE LEAKAGE IN THE ERROR CORRECTION.
Similar to the proof of Protocol 5.2.3, we have that

H
εs

p(Ω)

min (~Am
1 |~X m

1
~Y m

1
~T m

1 EO)ρ|Ω̂ ≥ H
εs

p(Ω)

min (~Am
1 |~X m

1
~Y m

1
~T m

1 E)ρ|Ω̂ − leakEC , (5.77)

and

leakEC ≤ H
ε′EC
0 (~Am

1 |~B m
1
~X m

1
~Y m

1
~T m

1 )+ log

(
1

εEC

)
(5.78)

≤ H
ε′EC

2
max (~Am

1 |~B m
1
~X m

1
~Y m

1
~T m

1 ) (5.79)

+ log

(
8

ε′EC
2 + 2

(2−ε′EC )

)
+ log

(
1

εEC

)
.

However, now we need to take into account for the fact that the number of rounds in the
protocol is not fixed. Following the steps of Ref. [41], we first note that the number of
rounds N obtained in an implementation of the Protocol 5.2.1 satisfies:

P [N ≥ n + t ] ≤ exp

(
− 2t 2γ2

m(1−γ)2

)
:= εt , (5.80)

where n = ms̄ is the expected number of rounds and t =
√
−m(1−γ)2 logεt

2γ2 . Moreover, by

the definition of smooth max-entropy one have that

Hε
max(~Am

1 |~B m
1
~X m

1
~Y m

1
~T m

1 N ) ≤ H
ε−pεt
max (~Am

1 |~B m
1
~X m

1
~Y m

1
~T m

1 N ≤ n + t ). (5.81)

Note that N can be included in the entropy since it is completely determined by ~T m
1 .

Now applying the asymptotic equipartition property, Theorem 5.4.6, to the maximal
length N = n + t we have

leakEC ≤ (n̄ + t ) · [(1−γ)h(Q)+γh(ωexp )
]

+
p

n̄ + t ν2 + log

(
8

ε′EC
2 + 2

(2−ε′EC )

)
+ log

(
1

εEC

)
,
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where ν2 = 4log
(
2
p

2+1
)√

2log

(
8(

ε′EC−2
p
εt

)2

)
and εt is a free parameter to be optimised.

If the error correction protocol does not abort, then

P (K A 6= KB ) ≤ εEC . (5.82)

And the completeness of the error correction protocol (i.e., the probability of not abort-
ing in an honest IID implementation) is given by εc

EC = ε′EC +εEC .

STEP 2: CHAIN RULE.
In Protocol 5.2.1, a statistical test is performed on the variable Ci which accounts for the
condition of winning the CHSH game being satisfied or not. In order to use the Entropy
Accumulation Theorem, we need to be able to infer the value of this variable Ci from the
variables that appear in the smooth min-entropy we are calculating.

Here we choose to use a chain rule, relation (5.44), with the variable Ci itself, as op-
posed to using the variable Bi as is done in [41]. The reason is that the dimension of the
variable Ci is smaller than Bi , as for each block the variable Ci assumes one out of three
values. This leads to a slight improvement in rates achieved in the finite regime:

H
εs

p(Ω)

min (~Am
1 |~X m

1
~Y m

1
~T m

1 E)ρ|Ω̂ ≥ H
εs

4p(Ω)

min (~Am
1 C m

1 |~X m
1
~Y m

1
~T m

1 E)ρ|Ω̂

−H
εs

4p(Ω)
max (C m

1 |~Am
1
~X m

1
~Y m

1
~T m

1 E)ρ|Ω̂ (5.83)

−3log

(
1−

√
1−

(
εs

4p(Ω)

)2
)

≥ H
εs

4p(Ω)

min (~Am
1 C m

1 |~X m
1
~Y m

1
~T m

1 E)ρ|Ω̂

−H
εs

4p(Ω)
max (C m

1 |~T m
1 E)ρ|Ω̂ (5.84)

−3log

1−
√

1−
(

εs

4(εE A +εEC )

)2
 .

In inequality (5.84) we use the fact that p(Ω) ≥ (εE A + εEC ) and that removing the con-
ditioning on classical variables can only increase the entropy, which can be seen as a
particular case of data processing, Property 5.5.1(1).

STEP 3: UPPER BOUND ON H
εs

4p(Ω)
max (C m

1 |~T m
1 E)ρ|Ω̂ .

We can use the Entropy Accumulation Theorem to upper bound H
εs

4p(Ω)
max (C m

1 |~T m
1 E)ρ|Ω̂ .

In order to do that we only have to find a max-tradeoff function for a protocol with m
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rounds. We have that for any distribution ~p = (p(1), p(0), p(⊥)) of the variable C :

H(Ci |~Ti E)ρ|Ω̂ = p(~Ti =~0)H(Ci |~Ti =~0E)ρ|Ω̂ (5.85)

+p(~Ti 6=~0)H(Ci |~Ti 6=~0E)ρ|Ω̂

= p(~Ti 6=~0)H(Ci |~Ti 6=~0E)ρ|Ω̂ (5.86)

≤ h

(
p(1)

1−p(⊥)

)
= h

(
p(1)

1− (1−γ)smax

)
= h(ω), (5.87)

where in (5.86) we use the fact that H(Ci |~Ti =~0E) = 0, and in (5.87) we use that p(~Ti 6=
~0) ≤ 1 and that p(1)

1−(1−γ)smax ≡ω. Note that h(·) is a concave function.

Now we can take fmax = h(ωexp − δest ) and ‖∇ fmax‖∞ = 1
1−(1−γ)smax × ∂h

∂ω

∣∣∣
ωexp−δest

,

where ωexp is the expected winning probability of the CHSH game in an honest imple-
mentation and δest accounts for the statistical confidence interval of the experiment.
Using the Entropy Accumulation Theorem, Theorem 5.4.8, we have

H
εs

4p(Ω)
max (C m

1 |~T m
1 E)ρ|Ω̂ ≤ m h(ωexp −δest )+p

mν1 (5.88)

where

ν1 = 2

(
log7+

⌈ |h′(ωexp +δest )|
1− (1−γ)smax

⌉)√
1−2logεs , (5.89)

and h′ represents the derivative of the binary entropy function, ∂h(ω)
∂ω .

STEP 4: LOWER BOUND ON H
εs

p(Ω)

mi n (~Am
1 C m

1 |~X m
1
~Y m

1
~T m

1 E)ρ|Ω̂ .

Finally, we apply the Entropy Accumulation Theorem to lower bound the term H
εs

p(Ω)

mi n (~Am
1 C m

1 |~X m
1
~Y m

1
~T m

1 E)ρ|Ω̂ .
Therefore we need to find a min-tradeoff function such that

fmin(~q) ≤ inf
σR j−1E :M j (σ)C j =~q

H(~A j C j |~X j ~Y j ~T j E)M j (σ) (5.90)

Note that the length of each block is variable. However, we can consider that all the
blocks have size smax and set all the variables to ⊥ for the rounds which are not per-
formed.

First note that

H(~A j C j |~X j ~Y j ~T j E) ≥ H(~A j |~X j ~Y j ~T j E). (5.91)

And from now on, we follow the same steps as Ref. [41].
Using the chain-rule for Von Neuman, Property 5.5.1(5), entropy we have

H(~A j |~X j ~Y j ~T j E) =
smax∑
i=1

H(A j ,i |~X j ~Y j ~T j E A j
i−1
1 ). (5.92)
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and for every i ∈ [smax],

H(A j ,i |~X j ~Y j ~T j E A j
i−1
1 ) =

= p(T j
i−1
1 =~0)H(A j ,i |~X j ~Y j E A j

i−1
1 T j

smax
i ,T j

i−1
1 =~0) (5.93)

+p(T j
i−1
1 6=~0)H(A j ,i |~X j ~Y j E A j

i−1
1 T j

smax
i ,T j

i−1
1 6=~0)

= (1−γ)(i−1)H(A j ,i |~X j ~Y j E A j
i−1
1 T j

smax
i ,T j

i−1
1 =~0), (5.94)

where we used the fact that H(A j ,i |~X j ~Y j E A j
i−1
1 T j

smax
i ,T j

i−1
1 6=~0) = 0. Therefore

H(~A j |~X j ~Y j ~T j E) = (5.95)
smax∑
i=1

(1−γ)(i−1)H(A j ,i |~X j ~Y j E A j
i−1
1 T j

smax
i ,T j

i−1
1 =~0).

Each term H(A j ,i |~X j ~Y j E A j
i−1
1 T j

smax
i ,T j

i−1
1 =~0) can be seen as the entropy of a single

round. An expression for the entropy of a single round was derived for collective attacks
in [16]. This gives us:

H(~A j C j |~X j ~Y j ~T j E) = (5.96)
smax∑
i=1

(1−γ)(i−1)
[

1−h

(
1

2
+ 1

2

√
16ωi (ωi −1)+3

)]

such that

p(1) =
smax∑
i=1

γ(1−γ)(i−1)ωi . (5.97)

Now, in [41] it is proved that the minimum of (5.96) is achieved for

ω∗
i = p(1)

1− (1−γ)smax
∀i , (5.98)

and therefore we have a min-tradeoff function:

g (~p) = s

[
1−h

(
1
2 + 1

2

√
16 p(1)

1−(1−γ)smax

(
p(1)

1−(1−γ)smax −1
)
+3

)]
; (5.99)

for p(1)
1−(1−γ)smax ∈

[
3
4 , 2+p2

4

]
.

Note that as p(1) → ((1−(1−γ)smax ) 2+p2
4 , the gradient of g (~p) tends to infinity, which

compromises the
p

n term that depends on the norm of the gradient of f . Since g (~p) is
a convex function, the tangent line in any point ~pt is a lower bound to g (~p). Therefore,
as in [1, 41], we take the min-tradeoff function to be a tangent g in a point ~pt to be
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optimized1:

Fmin(p, pt ) = d

d p(1)
g (p)

∣∣∣
p̃t

·p(1)+
(

g (pt )− d

d p(1)
g (p)

∣∣∣
pt

·pt (1)

)
. (5.100)

Then we have

H
εs

4p(Ω)

mi n (~Am
1 C m

1 |~X m
1
~Y m

1
~T m

1 E)ρ|Ω̂ > m ·ηopt = n̄

s̄
·ηopt , (5.101)

where

ηopt = max
3
4 <

p̃t (1)
1−(1−γ)smax < 2+p2

4

[
Fmin(p̃, p̃t )− 1p

m
ν3

]
, (5.102)

such that

ν3 = 2

(
log

(
1+2 ·2smax 3

)+⌈
d

d p(1)
g (p̃)

∣∣
pt

⌉)√
1−2logεs . (5.103)

Finally, the length of a secure key that can be extracted is given by

l ≥ n̄

s̄
ηopt − n̄

s̄
h(ωexp −δest )−

√
n̄

s̄
ν1

− (n̄ + t ) · [(1−γ)h(Q)+γh(ωexp )
]

(5.104)

−
p

n̄ + t ν2 − log

(
8

ε′EC
2 + 2

(2−ε′EC )

)
− log

(
1

εEC

)

−3log

(
1−

√
1−

(εs

4

)2
)
−2log

(
1

2εPA

)
.

5.5.3. PROOF OF THEOREM 5.4.10
Theorem 5.4.10. There exist a state ρ∗

AB and measurements for Alice and Bob such that,
ρ∗

AB achieves violation S and the collision entropy of Alice’s output A conditioned on Eve’s
quantum information E is

H2(A|E)ρ∗ =− log

1

2
+ 1

2

√
2− S2

4

 . (5.105)

Proof. The proof consists in exhibiting a state ρ∗
AB and measurements for Alice and Bob

such that the lower bound given by eq.(5.31) is saturated. Our derivation is based on the

1In [1, 41] the authors consider the following min-tradeoff function

fmin(~p) =
{

g (~p) if pt (1) > p(1)

Fmin(~p,~pt ) = if pt (1) ≤ p(1)
.

We remark that, since the gradient of g (~p) is an increasing function of p(1), the optimum value for ηopt is
always achieved for pt (1) ≤ p(1).
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techniques presented in Ref. [16], which led to a tight lower bound for the conditional
von-Neumann entropy.

Let us consider that Alice and Bob share a Bell diagonal state ρAB

ρAB =λ00Φ00 +λ01Φ01 +λ10Φ10 +λ11Φ11 (5.106)

where Φi j = |Φi j 〉〈Φi j | and |Φi j 〉 = I ⊗ X i Z j
(

1p
2

(|00〉+ |11〉)
)
. We first prove the follow-

ing result:

Lemma 5.5.4. For a Bell-diagonal state where Alice performs a measurement in the Z -
basis we have that

H2(A|X Y E)ρ ≥− log

(
1

2
+

√
λ00λ01 +

√
λ11λ10

)
. (5.107)

Proof. Given a Bell diagonal state ρAB (λ00,λ01,λ10,λ11), a purification |Ψ〉ABE of this
state is given by

|Ψ〉ABE =
√
λ00|Φ00〉AB |e1〉E +

√
λ01|Φ01〉AB |e2〉E (5.108)

+
√
λ10|Φ10〉AB |e3〉E +

√
λ11|Φ11〉AB |e4〉E .

After Alice measures in the Z basis we have

ρAE = 1

2
|0〉〈0|⊗ρE |0 + 1

2
|1〉〈1|⊗ρE |1 (5.109)

where

ρE |0 = |ψ1〉〈ψ1 |+ |ψ2〉〈ψ2 | and ρE |1 = |ψ3〉〈ψ3 |+ |ψ4〉〈ψ4 |, (5.110)

with non-normalized states

|ψ1〉 =
(√

λ00|e1〉+
√
λ01|e2〉

)
,

|ψ2〉 =
(√

λ10|e3〉+
√
λ11|e4〉

)
,

|ψ3〉 =
(√

λ10|e3〉−
√
λ11|e4〉

)
,

|ψ4〉 =
(√

λ00|e1〉−
√
λ01|e2〉

)
.

The collision entropy of a cq-state ρAE is given by

H2(A|E)ρ =− logtr
(
ρ−1/2

E ρAEρ
−1/2
E ρAE

)
, (5.111)

which, evaluated for the state (5.109) gives

H2(A|E)ρ =− log

(
1

2
+

(√
λ00

√
λ01 +

√
λ10

√
λ11

))
.
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Now let us consider a Bell diagonal state ρ∗
AB such that

λ00 =R cosθ, λ01 = R sinθ, λ10 =λ11 = 0, (5.112)

s.t. cosθ+ sinθ = 1

R

which can hold for R > 1p
2

. This choice is inspired by the optimal strategy that maximizes

the conditional von Neumann entropy as shown in [16].
For these parameters we have that

H2(A|X Y E)ρ∗ ≥− log

(
1

2
+R

√
1

2

(
1

R2 −1

))
(5.113)

Finally, we know from [124] that for a state ρAB (λ00,λ01,λ10,λ11), the maximal viola-
tion Smax of the CHSH inequality is given by

Smax = max
{

2
p

2
√

(λ00 −λ11)2 + (λ01 −λ10)2, (5.114)

2
p

2
√

(λ00 −λ10)2 + (λ01 −λ11)2
}

and that this violation can be achieved with one of Alice’s measurement being in the Z
basis.

Therefore, for the state ρ∗
AB , specified by (5.112), and Alice and Bob performing the

measurements that gives the maximum violation achievable for the CHSH inequality, we
have that S = 2

p
2R. This implies

H2(A|X Y E)ρ∗ =− log

(
1

2
+ 1

2

√
2− S

4

)
. (5.115)
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6
OBLIVIOUS-TRANSFER IS HARDER

THAN BIT-COMMITMENT IN

REALISTIC MEASUREMENT-DEVICE

INDEPENDENT SETTINGS

Jérémy RIBEIRO, Stephanie WEHNER

Among the most studied tasks in Quantum Cryptography one can find Bit Commitment
(BC) and Oblivious Transfer (OT), two central cryptographic primitives. In this chapter
we propose for the first time protocols for these tasks in the measurement-device indepen-
dent (MDI) settings and analyze their security. We analyze two different cases: first we
assume the parties have access to perfect single photon sources (but still experience noise
and losses), and second we assume that they only have imperfect single photon sources.
In the first case, we propose a protocol for both BC and OT and prove their security in the
Noisy Quantum Storage model. Interestingly, in the case where honest parties do not have
access to perfect single photon sources, we find that BC is still possible, but that it is “more
difficult” to get a secure protocol for OT: We show that there is a whole class of protocols
that cannot be secure. All our security analyzes are done in the finite round regime.
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6. OBLIVIOUS-TRANSFER IS HARDER THAN BIT-COMMITMENT IN REALISTIC

MEASUREMENT-DEVICE INDEPENDENT SETTINGS

6.1. INTRODUCTION

Following the idea of device-independence we have proven in Chapter 3 security of Bit
Commitment (BC) and Oblivious Transfer (OT) in the bounded/noisy quantum storage
model in device-independent settings (see also [1]). However it is important to note
that, in chapter 3, we assume that, even if the devices may behave in an arbitrary way,
they do so in the same fashion in every use of the devices independently of the past.
In other words we assume that the devices are memoryless. Other protocols [2, 3] are
secure against a more powerful adversary but require different settings where they only
achieve an imperfect bit commitment scheme. In general it is quite hard to prove device-
independent security of protocols. In particular there is no known security proof for
device-independent OT and BC in the settings presented in Refs. [1, 4] without the mem-
oryless assumption. Experimental implementations of device-independent protocols
are also a lot more demanding as discussed in Chapter 5 for quantum key distribution.
In fact it is so demanding that, while many quantum key distribution and some (quan-
tum) BC protocols have been implemented, there has not been any device-independent
implementation of these protocols so far, not even assuming that the devices are mem-
oryless.

These difficulties together with the fact that many physical attacks on the non-device-
independent protocols [5, 6] are tampering with the measurement devices and not with
the photon sources (or quantum state sources), has led Refs.[7] to introduce a weaker but
more practical notion of device-independence called measurement-device-independence
(MDI). Here only the measurement devices are treated as black boxes, not the photon
sources that are still trusted. Since then many measurement-device-independent pro-
tocols have been implemented [8–12]. Typically, in a measurement-device-independent
protocol, all the measurement devices are in a “measurement station” in between the
parties (see Fig. 6.1). The parties will send BB84 type states to the measurement sta-
tion which will perform a joint Bell measurement on the incoming qubits. As there is no
assumption on the measurement devices located in the measurement station, we will
always assume that the dishonest party can control the station (see Fig. 6.2a6.2b). This
situation is different from MDI Quantum Key Distribution (QKD), where the dishonest
party is always a third party who only controls the measurement station, but never Alice
or Bob sources. In particular, in QKD, Alice and Bob can always trust each other, which
is not the case for BC or OT.

However, the work on measurement-device-independence is focused on QKD [7–
11], and as far as we know there is no proposed protocol for BC or OT in the measurement-
device-independent settings. In this work we present protocols for BC and OT and an-
alyze their security. Importantly, all our security proofs hold in the finite rounds regime
and can be implemented with current state-of-the-art quantum technologies. We first
analyze the situation where the honest parties have perfect single photon sources. In-
terestingly, in the case where honest parties do not have access to perfect single photon
sources, we find that BC is still possible, but that it is “more difficult” to get a secure pro-
tocol for OT: We show that there is a whole class of protocols that cannot be secure. We
present in the next section a detailed overview of our results.
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6.2. RESULTS
In this section, we will present the results of our work. Formal statements and their
proofs will be given in the Methods Section.

• We start by presenting the MDI protocols for OT and BC for the case where the
honest parties have access to perfect single photon sources.

• Then we present and analyze the security of a protocol for BC where the honest
parties only have imperfect single photon sources, i.e. multiphoton emissions are
possible.

• Finally we show that there is a family of protocols that cannot be secure for OT in
MDI settings when the honest parties are using imperfect single photon sources.

6.2.1. BIT COMMITMENT (BC) WITH PERFECT SINGLE PHOTON SOURCES

Before stating our result we briefly and informally remind the reader of the definition
of a secure BC protocol. In this chapter we use a variant of bit commitment in which a
random string is produced in the commit phase. In the open phase the party can only
reveal this string. For more details see Chapter 2.

Definition 6.2.1 (Randomized String Commitment (informal)).
A protocol implements an (l ,ε)-Randomized String Commitment if it satisfies the follow-
ing three conditions:

Correctness If both Alice and Bob are honest, the protocol outputs a classical state ρC l
1C l

1F

such that ρC l
1F is ε-close to τC l

1
⊗|accept〉〈accept |F , where τC l

1
:= 1

2l is maximally

mixed and C l
1 is an l-bit-string.

Security for Bob If Bob is honest there exists a string C l
1 after the Commit phase, such

that the probability that Alice opens to another string C l
1
′ 6= C l

1, and Bob accepts is
smaller than ε.

Alice Bob

Measurement
Station

|Ψ〉 |Ψ′〉

Figure 6.1: Schematic of a MDI protocol.
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Alice Bob

Measurement
Station

(a) Schematic of an MDI protocol with dis-
honest Alice. Alice has control over the
measurement station, therefore we will treat
Alice and the measurement station as one
party.

Alice Bob

Measurement
Station

(b) Schematic of an MDI protocol with dis-
honest Bob. Bob has control over the mea-
surement station, therefore we will treat Bob
and the measurement station as one
party.

Figure 6.2: Schematic MDI protocol with dishonest Alice or dishonest Bob.

Security for Alice If Alice is honest, then after the Commit phase and before the Open
phase Bob is “ε-ignorant” about the string C l

1 that Alice has received during the
Commit phase.

In this Chapter we show that the protocol below implements a secure String Com-
mitment scheme.

Theorem (Security of Protocol 6.2.2 (Informal)). When honest players have access to per-
fect single photon sources, and if the dishonest party is assumed to hold a quantum mem-
ory that can store a quantum state of at most D qubits, Protocol 6.2.2 implements an
(l ,3ε)−Randomized String Commitment according to the above definition. In particular

it does so using Ω
(

l+2log(1/2ε)+ln(ε−1)
λ−h(δ)

)
many rounds of quantum communication, where

λ := f (−D/n)−1/n (f is defined in eq. (6.1)), and δ = 2eerr +2α2, with eerr being the ex-
pected error rate between Alice’s and Bob’s strings (see step 3. of the Open phase of Protocol
6.2.5), n is the number of rounds of the protocol in which the measurement station has
clicked, and α2 is a term that accounts for statistical fluctuations α2 =O (n−1/2).

The reader can find a formal version of this theorem in the Methods Section together
with its proof, see Theorem 6.4.4. Intuitively – in the MDI settings with perfect single
photon sources – the only difference for the security analysis as compare to the analy-
sis of the protocols presented in Refs. [13, 14] is that honest Bob sends information to
malicious Alice. However since we are guarantied (by assumption) that Bob sends BB84
states on single photons, we can use a purification argument in order to reduce the MDI
situation to the one of Refs. [13, 14] (see Figure 6.5) where only Alice sends information
to Bob.

We present below a protocol for Randomized String Commitment adapted from [13]
to the measurement-device-independent case. In this protocol Alice and Bob will start
with a preparation phase in which they send n states randomly chosen from the set
{|0〉, |1〉, |+〉, |−〉} to the measurement station which will perform a Bell measurement on
these qubits and broadcast the outcome. For the rounds in which Alice and Bob have
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used the same basis to encode their states, the Bell measurement outcome tells Bob
whether he has encoded the same bit as Alice in his qubit or the opposite bit. If they
have used a different basis then the Bell measurement outcome does not give any in-
formation on their correlation. In order to force any dishonest party to store quantum
information, both parties will wait a certain time ∆t before Alice reveals to Bob which
bases she has used to prepare her qubits. This allows Bob to compute the set of rounds
I ⊆ [n] where they have used the same bases. Bob will discard the rounds that do not
belong to I . From there, they will only use classical communication to extract a random
committed string C l

1 in the Commit phase, and to reveal this string in the Open phase.
For the following protocol, we will use a randomly generated [n,k,d ]-linear code

C ⊆ {0,1}n with fixed rate R := k/n to describe Protocol 6.2.2 and to analyze its secu-
rity. This does not affect the efficiency of the protocol since the honest parties do not
need to decode: We only need to use this code to impose that two strings with the same
syndrome have Hamming distance at least d . We denote Syn : {0,1}n 7→ {0,1}n−k for the
function that outputs the parity-check syndrome of the code C . In this protocol we use

the two following shorthand notations α1 :=
√

lnε−1

2n , α2 :=
√

lnε−1

2(1/2−α1)n . Let f (·) be the
function defined as follows.

f (x) :=
{

x if x ≥ 1/2

g−1(x) if x < 1/2,
(6.1)

where g (x) := h(x)+x −1 and h(x) :=−x log(x)− (1−x) log(1−x) is the binary entropy.

Protocol 6.2.2 (Randomized String Commitment).
Inputs: security parameter ε > 0, length of the committed string l > 0, bound on the
size of the adversary’s quantum memory D, eerr is the expected error rate that should
be observed between Alice’s an Bob strings XI and X̂I (see below).

Preparation phase

Choose the number n of rounds that click, such that n ≥ l+2log(1/2ε)+ln(ε−1)
λ−h(δ) ,

where λ := f (−D/n)−1/n, and δ= 2eerr +2α2.

1. For round i (until the number of rounds in which the measurement sta-
tion has clicked is higher than n):

• Alice chooses Xi ∈R {0,1} and Θi ∈R {0,1} uniformly at random,
and prepares and sends the state |Xi 〉Θi (where |0〉0 := |0〉, |1〉0 :=
|1〉, |0〉1 := |+〉, |1〉1 := |−〉) to the measurement station.

• Bob chooses X̂i ∈R {0,1} and Θ̂i ∈R {0,1} uniformly at random
and prepares and sends the state | X̂i 〉Θ̂i

(where |0〉0 := |0〉, |1〉0 :=
|1〉, |0〉1 := |+〉, |1〉1 := |−〉) to the measurement station.

• The measurement station performs a Bell measurement on the two
states it receives, and broadcasts the outcome, or whether the mea-
surement failed. Depending on the outcome, Bob chooses whether he
should flip his bit or not.



6

172
6. OBLIVIOUS-TRANSFER IS HARDER THAN BIT-COMMITMENT IN REALISTIC

MEASUREMENT-DEVICE INDEPENDENT SETTINGS

2. Alice and Bob discard all the rounds where a failure has been announced.
Let’s call n the remaining number of rounds. Alice has strings X n

1 and Θn
1

∈ {0,1}n , and Bob has strings X̂ n
1 and Θ̂n

1 ∈ {0,1}n .

3. Both parties wait for a time ∆t .

4. Alice sendsΘn
1 over to Bob.

5. Bob computes the set I ⊆ [n] of rounds i where Θi = Θ̂i . Bob discards all
the rounds j ∉I . Let’s then call X̂I the string formed by all the remaining
bits X̂i with i ∈I .

Note that when there is no noise we have that ∀i ∈I Xi = X̂i . In practice
there are always errors: We will call eerr the expected error rate between
Xi and X̂i (for i ∈ I ), in other words eerr is the expected fraction of error
between XI and X̂I .

Commit Phase

1. Bob checks whether m := |I | ≥ 1/2 ·n −α1. If it is not the case Bob aborts
the protocol.

2. Alice chooses a random [n,k,d ]-linear code C (for fixed n and k) and
computes w = Syn(X n

1 ) and sends it to Bob.

3. Alice picks a random 2-universal hash function r ∈R R and sends it to
Bob.

4. Alice outputs C l
1 := Ext(X n

1 ,r ) where Ext(·, ·) is a randomness extractor
from the 2-universal family of functions.

Open phase

1. Alice sends X n
1 to Bob.

2. Bob computes its syndrome and checks if it agrees with w he received from
Alice in the Commit phase. If they disagree Bob aborts the protocol.

3. Bob checks that the number of rounds i ∈ I where X n
1 and X̂I do not

agree lies in the interval ]eerr−α2,eerr+α2[. If not, Bob aborts the protocol,
otherwise Bob accepts, and he outputs C l

1 := Ext(X n
1 ,r ) where Ext(·, ·) is a

randomness extractor from the 2-universal family of function.

In order to satisfy the security definition for Randomized String Commitment, when
the protocol aborts, the honest parties will continue the protocol as if they were not
aborting – in particular they do not announce the abort event until the end of the
protocol – and in the end honest Bob always rejects the commitment and output a
uniformly random value to C̃ l

1, and honest Alice outputs a uniformly random value
for C l

1.
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6.2.2. OBLIVIOUS TRANSFER (OT) WITH PERFECT SINGLE PHOTON SOURCES
Before stating our result we briefly and informally remind the reader of the definition we
use for a secure OT protocol. Here we will use a randomized variantion of OT in which
strings are transfered. For more details see Chapter 2.

Definition 6.2.3 (Randomized String Transfer (informal)). A protocol implements an (l ,ε)-
Randomized 1-out-2 Oblivious String Transfer if it satisfies the following three conditions:

Correctness If Alice and Bob are honest the protocol’s output state ρ(S0,S1),(SC ,C ) is such
that the reduced state ρS0,S1,C is ε-close to τS0 ⊗τS1 ⊗τC , where τR denotes the max-
imally mixed state on register R, and S0,S1 are two l -bit-strings.

Security for Alice (hiding) If Alice is honest, then Alice should get two l -bit-strings S0 and
S1 such that there exists a binary random variable C̃ such that Bob is “ε-ignorant”
about the bit string S1−C̃ . We say that the protocol is ε−hiding.

Security for Bob (binding) If Bob is honest then he should receive a random bit C and an
l-bit-string ŜC , such that Alice is “ε-ignorant” about C . We say that the protocol is
ε−binding.

In this work we show that Protocol 6.2.4 presented below implements a secure Ran-
domized Oblivious Transfer.

Theorem (Randomized 1-out-2 OT (Informal)). When honest parties have access to per-
fect single photon sources, Protocol 6.2.4 implements an (l ,ε)-Randomized 1-out-2 Obliv-
ious String Transfer according to the above definition in the Bounded Quantum Storage
Model. In particular it does so using a linear (in the length l of Alice’s strings |S0| = |S1| = l )
number of rounds of quantum communication. More precisely, the number n of quan-

tum communication rounds must satisfy n ≥ 2 l+D+1−2log(1−
p

1−ε2)
λ−h(eerr)−O (n−1/2)

, where eerr is the ex-

pected error rate between Alice’s and Bob’s measurement outcome in Protocol 6.2.4, and

λ := 1/2−δ′ with δ′ = (2− log(
√

(32lnε−1)/n))
√

(32lnε−1)/n

The reader can find a formal version of this theorem in the Methods Section together
with its proof, see Theorem 6.4.9. Intuitively – in the MDI settings with perfect single
photon source – using a purification argument on the states sent by Bob, we can essen-
tially reduce the security proof of our protocol to the security proofs of the trusted device
protocol presented in Ref. [13] in which all devices are trusted. However we need to be
careful because we also want to take into account noise which has not been done in
Ref. [13].

The protocol presented below is also adapted from [13]. For the following Protocol,

let α1 :=
√

lnε−1

2n be a term accounting for statistical fluctuations.

Protocol 6.2.4 (Randomized 1-out-2 OT).
Inputs: security parameter ε > 0, the length l of the strings Alice receives, the bound
(expressed in qubits) on the adversaries memory D, expected error rate eerr between
Alice’s and Bob’s strings XI and X̂I defined below.
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Preparation phase They first choose the number of rounds n in which the station

clicks, such that n ≥ 2 l+D+1−2log(1−
p

1−ε2)
λ−h(eerr)−O (n−1/2)

. Then Alice and Bob do the same as

in the preparation phase of Protocol 6.2.2. At this point Alice has a string X n
1 ,

and Bob has a string X̂I and the set I ⊆ [n].

Post Processing

1. Bob checks whether |I | ≥ (1/2−α1)n =: m. If this is the case he randomly
truncates I such that |I | = m. Otherwise he aborts.

2. Bob picks a random subset of I c of size m called IBad. Bob chooses a bit
C uniformly at random. He then renames (I ,IBad) into (IC , I1−C ). Bob
sends (I0, I1) to Alice.

3. Alice sends Bob error correction information for the strings X I0 and X I1 .

4. Bob uses the error correction information O to correct his string X̂I .

5. Alice chooses two 2-universal hash functions r0,r1 ∈R R uniformly at ran-
dom and sends them to Bob.

6. Alice outputs (S0,S1) := (
Ext(X I0 ,r0),Ext(X I1 ,r1)

)
, and Bob outputs

(ŜC ,C ) := (
Ext(X IC ,rC ),C

)
.

In order to satisfy the security definition for OT, when an honest party aborts the pro-
tocol, the aborting party will continue the protocol as if they were not aborting – in
particular, they do not announce the abort event until the end of the protocol – except
that in the end, when the abort event is announced all honest parties assign to their
outputs uniformly random values.

6.2.3. BIT COMMITMENT WITH IMPERFECT SINGLE PHOTON SOURCES

In this section we present a protocol that implements String Commitment when the hon-
est parties do not have access to perfect single photon sources (Protocol 6.2.5), and we
state the security of this protocol in the Noisy Quantum Storage Model. In this situation,
the multiphoton emissions can leak – to dishonest Alice – information about the bases
Bob used in his encoding. As a consequence, malicious Alice could take advantage of
that by selectively announcing all single photon emissions as “lost”, and keep only the
rounds where she has information on the bases used by Bob. Malicious Bob can do the
same to get some advantage over honest Alice. To prevent this, and make sure that most
of the rounds that are kept in the end correspond to single photon emission rounds we
will use the decoy states technique [15] similar to [16]. This will allow the honest party to
estimate an upper-bound on the number of rounds that are kept in the end and which
correspond to multiphoton emissions.

Examples of photon sources are lasers. They produce coherent states that can be
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written in the Fock basis as follows:

|α〉 = e−
|α|2

2

∞∑
n=0

αn

p
n!

|n〉, (6.2)

where |n〉 is the photon number eigenstate associated to photon number n, and α ∈ C.
The intensity is the average number of photons of such a state, and is given by |α|2. As in
some MDI QKD experiments [7, 8, 10] one can use a randomized phase coherent state
in order to turn the laser into an imperfect single photon source. A randomized phase
coherent state is a coherent state where α = r e iφ with r > 0 and where φ is chosen uni-
formly at random in [0,2π[. To anyone that does not know which phase has been picked,

this state is equivalent to the mixed state ρ|α|2 =
∑∞

n=0 e−|α|
2 |α|2n

n! |n〉〈n |. When one wants
to produce single photons, one can use an attenuated laser that produces states with a
low average number of photon, i.e. with small |α|2. For example for |α|2 = 0.1, the state
ρ|α|2 is essentially a mixture of |0〉〈0| with probability ≈ 0.905, |1〉〈1| with probability
p1 ≈ 0.0905, and multiphoton emissions with probability p≥2 ≈ 0.0045, which gives a
fraction of ≈ 5% of multiphoton emissions conditioned on emitting at least one photon,
which means that the source mostly (95% of non 0 emissions) emits single photons and
and emits a small amount of multiphoton states (about 5% of non 0 photon emissions).
In a protocol like MDI BC we encode the state in some degree of freedom like polariza-
tion. This is a problem for the rounds where multiple photons have been emitted. When
only one photon is emitted the possible states Bob can encode are {|0〉, |1〉, |+〉, |−〉}, and
therefore the state sent from Bob to Alice conditioned on a choice of basis, θ = 0 or θ = 1
are ρ|θ=0 = 1/2(|0〉〈0| + |1〉〈1|) = 1/2 = 1/2(|+〉〈+|+ |−〉〈−|) = ρ|θ=1, meaning that Alice
cannot guess which basis Bob has used to encode his state. On the contrary, if for ex-
ample two photons have been emitted the states are ρ|θ=0 = 1/2(|00〉〈00| + |11〉〈11|) 6=
1/2(| ++〉〈++ |+ | −−〉〈−− |) = ρ|θ=1 meaning that Alice can guess the basis used with
non 0 advantage. This is a problem since security against dishonest Alice rely on her
being ignorant about Bob’s basis information. In particular we want to avoid the case
where dishonest Alice measures the photon number of the incoming state from Bob,
and chooses to announce failure only if she receives single photon. This is why we use
decoy states: They will allow us to estimate how many single photon rounds have been
reported as failure.

For BC in the case where honest parties use imperfect single photon sources, Proto-
col 6.2.5 can be used. The main difference as compare to Protocol 6.2.2 is the use of q ad-
ditional decoy states in the “preparation phase”. Alice (Bob) can use different intensities1

for the state she (he) sends. Among these intensities one will correspond to the “signal”
state and will be denoted as (bs ), while the others will be the “decoy” states with intensi-
ties a ∈ {ad1 . . . adq } (b ∈ {bd1 . . .bdq }). In Protocol 6.2.5 we will call n A

1 +n A
≥2 (nB

1 +nB
≥2) the

number of rounds where Alice (Bob) has used a “signal” state – i.e. a state with intensity
as (bs ) – and where the measurement station reported the measurement as successful.
n A

1 (nB
1 ) is the number of these states where Alice (Bob) has sent 1 photon, and n A

≥2 (nB
≥2)

1We remind the reader that intensities correspond to the mean number of photons produced by the source.
For a (randomized phase) coherent state the intensity is given by |α|2. In many practical cases the intensity
of the source can be chosen.
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is the number of these rounds where Alice (Bob) has sent ≥ 2 photons. Note that at the
end of Step 1 of the “preparation phase”, and because we do not consider dark counts
in this chapter, Alice (Bob) knows the value of n A

1 +n A
≥2 (nB

1 +nB
≥2). However even if she

(he) knows the sum n A
1 +n A

≥2 (nB
1 +nB

≥2), she (he) does not know the individual terms n A
1

(n A
1 ) and n A

≥2 (nB
≥2) of this sum. Alice (Bob) will only be able to estimate a lower-bound

L A1 (LB1) on n A
1 (nB

1 ) by using the decoy states. Since n A
1 +n A

≥2 (nB
1 +nB

≥2) is known to
Alice (Bob), this lower-bound gives automatically an upper-bound UA2 = n A

1 +n A
≥2 −L A1

(UB2 = nB
1 +nB

≥2 −LB1) on n A
≥2 (nB

≥2).

In the following we will write pa (pb) for the probability that Alice (Bob) prepares a
signal of intensity a ∈ {as , ad1 . . . adq } (b ∈ {bas ,bd1 . . .bdq }). When the identity of the emit-
ter is not determined, the intensity will be denoted i (meaning that i = a is the emitter is
Alice or i = b is the emitter is Bob). The probability that an emitter emits k photons will
be denoted pk (e.g. if k = 1 then we will write p1 etc.). The probability that the emitter
emits more than k photons will be denoted p≥k (e.g. p≥2). We will also mix the two above
notations when talking about conditional events. For example, the probability that Alice
emits 2 photons conditioned on choosing signal intensity a will be denoted p2|a .

In this chapter we show that Protocol 6.2.5 below is secure, in particular we show the
following.

Theorem (Multiphoton emission round number estimation (Informal)). Using q possi-
ble intensities for the decoy states, it is possible for the honest party H ∈ {Ali ce,Bob} to
estimate a lower-bound LH1 on the number of rounds – among the ones that are not dis-
carded at the end of the preparation phase – in which his source has emitted a single pho-
ton. We give an analytical expression for LH1 when q = 2 in the formal version of theorem:
Theorem 6.4.13. Equivalently the honest party can estimate an upperbound UH2 on the
number of rounds – among the ones that are not discarded at the end of the preparation
phase – in which his source has emitted multiple photons.

A formal statement can be found in the Methods Section: Theorem 6.4.13. Its proof
is given in Technical Details Section 6.5.2. The above theorem is an essential ingredient
to prove the following security theorem.

Theorem (Security of Protocol 6.2.5 (Informal)). If the adversary holds a quantum mem-
ory that cannot store more than D qubits, Protocol 6.2.5 implements an
(l ,ε)−Randomized 1-out-2 Oblivious String Transfer as defined in Definition 6.2.1. In par-
ticular it does so using a number N of quantum communication rounds that is linear in

the length l of the strings S0 and S1. More precisely N must satisfy (p −
√

ln(ε−1)/2N ) N ≥
n? where n? is smallest integer solution to n ≥ l+2log(1/2ε)+ln(ε−1)

λ−h(δ) , where p is the proba-
bility that any given round i ∈ [N ] is not discarded in the preparation phase when both
parties are honest, λ := f (−D/n)− (γ+αA

4 )−1/n with n being the length of honest Alice’s
string X n

1 produced at the end of the “preparation phase”, and δ is a function of the ex-
pected error rate eerr between Alice’s and Bob’s measurement outcome of the “preparation
phase”. The exact expression of δ is given in the formal version of this theorem: Theorem
6.4.12.
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A formal version of this theorem together with its proof are given in the Methods
Section: Theorem 6.4.12.

In Protocol 6.2.5 and its security analysis we will use the following notations: ε ∈
]0,1[, and fas , fbs ∈ [0,1] are fractions defined in Step 2 of Protocol 6.2.5. α1,α2 are the
same as in Section 6.2.1. As for α1,α2 the terms βA ,βB ,αA

4 ,αB
4 account for statistical

fluctuation. They all are O (1/
p

N ) where N is the number of rounds of the protocol.
Their exact expressions are given in Theorem 6.4.12. As in Protocol 6.2.2 C is an random
[n,k,d ]-linear code and Syn : {0,1}n 7→ {0,1}n−k is the function that outputs the parity-
check syndrome of code C .

In order to satisfy the security definition for Randomized String Commitment (Def. 6.2.1),
when the protocol aborts, the honest parties will continue the protocol as if they were not
aborting – in particular they do not announce the abort event until the end of the proto-
col – and in the end honest Bob always rejects the commitment and assigns a uniformly
random value to his output C̃ l

1, and honest Alice assigns a uniformly random value to
her output C l

1.

Protocol 6.2.5 (Randomized String Commitment with decoy states).
Inputs: The security parameter ε> 0, the parameter γ ∈ [0,1/2] that essentially mea-
sures how good the single photon sources are, the length l of the string that will be
produced by the protocol, the maximum size (expressed in qubits) of the adversary’s
quantum memory D, the expected error rate eerr between Alice’s and Bob’s string XI

and X̂I , the probability distributions (pas , pad1
, . . . , padq

) and (pbs , pb1 , . . . , pbq ) that
Alice and Bob use intensities {as , ad1 , . . . , adq } and {bs ,bd1 , . . . ,bdq } respectively.

Preparation phase
Alice and Bob agree on a number N of rounds. N must satisfy (p −√

ln(ε−1)/2N ) N ≥ n∗, where n∗ the smallest positive integer solution to the in-
equality eq. (6.26), and where p is the probability that any given round i ∈ [N ]
is not discarded in the preparation phase when both parties are honest.

1. For round i ∈ [N ]:

• Alice chooses Xi ∈R {0,1} and Θi ∈R {0,1} uniformly at random, and
chooses intensity a ∈ {as , ad1 . . . adq } with some probability distribu-
tion pa . Alice prepares a quantum signal of intensity a, encoding Xi

in the basisΘi , and sends it over to the measurement station.
• Bob chooses X̂i ∈R {0,1} and Θ̂i ∈R {0,1} uniformly at random, and

chooses intensity b ∈ {bs ,bd1 . . .bdq } with some probability distribu-

tion pb . Bob prepares a quantum signal of intensity b, encoding X̂i

in the basis Θ̂i , and sends it over to the measurement station.
• The measurement station performs a Bell measurement on the two

states it receives, and publicly reveals the outcome, or whether the
measurement failed.

2. Alice and Bob publicly announce the intensities they have used for all the
rounds i ∈ [N ] (the order in which this is announced is not important). Al-
ice checks that among the rounds where she has used intensity as and the
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measurement succeeded, the fraction fbs of rounds where Bob has used
intensity bs is higher than pbs −βA . Bob checks that among the rounds
where he has used intensity bs and the measurement succeeded, the frac-
tion fas of rounds where Alice has used intensity as is higher than pas −βB .
If this is not the case, Alice or Bob abort the protocol.

3. Using the decoy states Alice estimates a lower-bound L A1 for n A
1 (this is

given by Lemma 6.4.13), the number of rounds where the Bell measure-
ment has not been announced as a failure and where Alice emitted 1 pho-
ton with intensity as . If UA2

fbs (n A
1 +n A

≥2)
≥ γ+αA

4 Alice aborts the protocol.

4. Using the decoy states Bob estimates a lower-bound for nB
1 (this is given

by Lemma 6.4.13), the number of rounds where the Bell measurement has
not been announced as a failure and where Bob emitted 1 photon with
intensity bs . If UB2

fas (nB
1 +nB

≥2)
≥ γ+αB

4 Bob aborts the protocol.

5. Alice and Bob discard all the rounds where a failure has been announced,
and where the intensities used by Alice and Bob are not as and bs . Let’s
call the remaining number of rounds n. Alice has strings X n

1 and Θn
1 ∈

{0,1}n , and Bob has strings X̂ n
1 and Θ̂n

1 ∈ {0,1}n . Note that n = fbs × (n A
1 +

n A
≥2) = fas × (nB

1 +nB
≥2). Alice and Bob check that n ≥ l+2log(1/2ε)+ln(ε−1)

λ−h(δ) ,
and otherwise abort the protocol.

6. Both parties wait for a time ∆t .

7. Alice sendsΘn
1 over to Bob.

8. Bob computes the set I ⊆ [n] of rounds i where Θi = Θ̂i . Bob discards all
the rounds j ∉I . Let’s then call X̂I the string formed by all the remaining
bits X̂i with i ∈I .

Note that when there is no noise we have that ∀i ∈I Xi = X̂i . In practice
there are always errors: We will call eerr the expected errors rate between
Xi and X̂i (for i ∈I ).

Commit Phase

1. Bob checks whether m := |I | ∈ [1/2 ·n −α1,1/2 ·n +α1]. If this is not the
case Bob aborts.

2. Alice chooses a random [n,k,d ]-linear code C (for fixed n and k) and
computes w = Syn(X n

1 ) and sends it to Bob.

3. Alice picks a random 2-universal hash function r ∈R R and sends it to
Bob.

4. Alice outputs C l
1 := Ext(X n

1 ,r ) where Ext(·, ·) is a randomness extractor
from the 2-universal family of function.

Open phase
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1. Alice sends X n
1 to Bob.

2. Bob computes its syndrome and checks if it agrees with w he received from
Alice in the Commit phase. If they disagree Bob aborts.

3. Bob checks that the number of rounds i ∈ I where X n
1 and X̂I do not

agree lies in the interval ]eerr −α2,eerr +α2[. If not, Bob aborts the proto-
col, otherwise he outputs C l

1 := Ext(X n
1 ,r ) where Ext(·, ·) is a randomness

extractor from the 2-universal family of function.

We require that (p −
√

ln(ε−1)/2N ) N ≥ n?, for n? statisfaying n ≥ l+2log(1/2ε)+ln(ε−1)
λ−h(δ)

only to make sure there are enough rounds to produce l−bits final strings in a secure
way. p is the probability that a round is not discarded in the honest scenario, and it can
be expressed a function of the experimental parameters: The round won’t be discarded if
both players sent a signal state for this round, which happens with probability pas ×pbs ,
and if the measurement station did not reported this round as failure which happens
with probability 1−pfail|asbs , so p = pas ×pbs × (1−pfail|asbs ).

6.2.4. OT WITH AN IMPERFECT SINGLE PHOTON SOURCES
In this section we will prove that MDI Oblivious Transfer is “not easy” in practical set-
tings. Indeed in practice photon sources are not perfect i.e. they have some probability
p≥2 to emit more than one photon. If now one considers a protocol containing a prepa-
ration phase similar to the one of Protocol 6.2.4, but where now Bob has an imperfect
single photon source, it becomes possible for a malicious Alice to deduce from the states
she receives from Bob, some of the bases Θi that have been used in Bob’s encoding. As
we will explain below this is due to the fact that when more than one photon are emitted
by Bob’s source, a dishonest Alice can distinguish states encoded in the standard and the
Hadamard basis, which is not possible to do when a single photon is emitted. This is a
leakage of information that has heavy consequences on the feasibility of an OT protocol
as explained below.

We will illustrate how this leakage of information can break security of a protocol,
by describing what happens to Protocol 6.2.4 when Alice is malicious and Bob holds an
imperfect single photon source. After this we will generalize the reasoning.

Dishonest Alice’s end goal is to guess correctly the value of bit C that Bob will get at
the end of the protocol. Moreover, Alice being malicious implies that Alice has full con-
trol over the measurement station, and therefore everything Bob sends to the measure-
ment station can be considered in Alice’s possession. Let us now start with the prepa-
ration phase of Protocol 6.2.4. In this phase of the protocol, Bob sends BB84 states2

to the measurement station, or equivalently to dishonest Alice. But contrary to section
6.2.2 Bob now holds an imperfect single photon source. This means that in some of the
rounds, more than one photon are sent to Alice. This becomes a problem because if, for

2|Xi 〉Θi
which correspond to encoding in the basis Θ̂i , where Θ̂i = 0 corresponds to the standard basis and

Θ̂i = 1 corresponds to the Hadamard basis
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example, the source has emitted two photons, then the state Alice receives conditioned
on Bob preparing it in the standard basis is 1/2(|00〉〈00|+|11〉〈11|), while if we condition
the state on being prepared in the Hadammard basis it is 1/2(| ++〉〈++ |+ | −−〉〈−− |).
These two states are not the equal, and therefore Alice can use these states to guess the
basisΘi that Bob has used to encode the state. When a single photon is used this is not a
problem since 1/2(|0〉〈0|+ |1〉〈1|) =1/2 = 1/2(|+〉〈+|+ |−〉〈−|): the two cases – Bob pre-
pares the state in the standard or the Hadamard basis – are perfectly indistinguishable.
Moreover, the more photons are emitted by the source, the easier it is for Alice to guess
correctly which basis Bob has used. To be conservative, for each round in which multi-
ple photons have been emitted we will consider that malicious Alice knows exactly Bob’s
choice of basis Θ̂i .

At the end of the preparation phase malicious Alice sends a string Θn
1

3 to Bob. Bob
uses the string Θn

1 he received from Alice and his own choice of bases described by the
string Θ̂n

1 to compute the set I := {i ∈ [n] :Θi = Θ̂i }, which is the set of rounds in which
Bob’s choice of bases matches the value of the bit malicious Alice has sent to him, and
where n denotes the total number of rounds. He also erases all the bits X̂i he has used
to encode the states he has sent to the station for all i such that i 6∈ I . At this point
Bob holds the set I and the string X̂I which is formed by all the bits X̂i he has used in
the round i ∈ I . Remember that Malicious Alice knows the value of Θ̂i in some of the
rounds, and therefore knows whether these rounds correspond to rounds in I or not.
We call IG the set of rounds for which Alice knows that they are in I and IB the set of
rounds for which she knows that they are not in I . The choice bit C that has to be created
by the protocol is chosen uniformly at random by Bob. He then uses this bit C to rename
the sets (I ,I c ) – where I c denotes the complement of I – into (IC , I1−C ), where C takes
value in {0,1}. In other words, if Bob chooses C = 0 then (I ,I c ) is renamed into (I0, I1),
and if he chooses C = 1, (I ,I c ) is renamed into (I1, I0).

After the preparation phase, Bob sends (I0, I1) to (malicious) Alice. Revealing these
two sets to Alice does not reveal in itself the value of bit C . However, there has been a
leakage of information in the preparation phase, and from this leakage Alice knows the
set IG and IB defined above, she can compare this two sets IG and IB with the sets I0

and I1 she has received from Bob. But by definition of IG we must have IG ⊂I = IC and
IG ∩I c =;. Therefore she can get the value of C : if IG ⊂ I0 then C = 0, and if IG ⊂ I1 then
C = 1. Therefore Protocol 6.2.4 is not secure if Bob holds an imperfect single photon
source.

In the following we will generalize the settings to show that the argument presented
above holds for more general protocols than Protocol 6.2.4. To do so we will abstract the
structure of the protocol, as well as the meaning of the registers (e.g. the registers IG and
IB )we use in the attack. The notation will stay very similar to what we have presented
above, and the main intuition behind the attack remains the same. Our impossibility
result holds for any protocol satisfying Assumption 6.2.6.

The statement we will make is expressed in in terms of asymptotic security, i.e. we
will say that Alice can cheat if she has a non-negligible advantage in guessing Bob’s bit C

3The way Alice chooses the value for Θn
1 has no importance, and we will therefore consider Θn

1 as a fully ran-
dom string in this argument.
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(see Theorem 6.4.20 below). A function is said to be “negligible” (in some variable n) if it
is smaller than 1/na (for any a > 0 and for n large enough). Similarly we will say that a
probability p is overwhelming if 1−p is negligible.

In order to generalize the attack on Protocol 6.2.4 we have seen above, we work in a
model (see Fig. 6.3) where Alice and Bob have already run a quantum phase of a protocol,
that has given registers X n

1 to honest Alice and XI ,I to Bob. X n
1 is a bit string and XI is

a substring of X n
1 whose bits are the ones corresponding the set of indices I ⊆ [n]. One

can typically think of a “quantum phase” as being the preparation phase of Protocols
6.2.4 & 6.2.5 for example.

If Alice is dishonest we assume that she has recorded – during this quantum phase –
information leaked by the imperfection of Bob’s source. We model this leakage of infor-
mation by giving dishonest Alice two extra registers (IG , IB ) that correspond to two sets
of indices correlated with I . When Bob is dishonest we simply assume that he holds
the cq-registers KQ such that his min-entropy on Alice’s string X n

1 is smaller than honest
Bob’s one. Since we work in the bounded storage model we assume logdimQ ≤ D .

After this quantum phase of the protocol, we assume that Alice and Bob run a classi-
cal post-processing. One such post-processing is the post-processing of Protocol 6.2.4.
When a party is dishonest we assume he will in fact be semi-honest during the post pro-
cessing, meaning that he will run the post-processing honestly but record all the infor-
mation he has received or sent. We prove that if such a protocol is correct and secure
against dishonest Bob, then Protocol 6.2.7 gives dishonest Alice a (semi-honest) strat-
egy to use her extra input registers (IG , IB ) she got from the quantum phase and all the
communication she recorded during the post-processing in order to guess honest Bob’s
output bit C with non-negligible advantage.

We will describe the set of messages going from Bob to Alice by the random variable
MB A . The messages from Alice to Bob will be described by the random variable MAB .
The random variable composed of these two variables will be called M . In other words
M := (MAB , MB A).

The output of honest Alice is (S0,S1) := ( f0(X n
1 , M), f1(X n

1 , M)) ∈ {0,1}× {0,1}, where
f0 and f1 are two functions determined by the protocol. Tipically, these functions are
the composition of error correction with a randomness extractor. The output of honest
Bob is (C ,SC ) := (g (XI ,I , M), g̃ (XI ,I , M)), where g and g̃ are two other functions de-
termined be the protocol. These four functions model the operations that honest Alice
and Bob have to perform according to the protocol they are running.

We construct an attack where Alice is semi-honest (or equivalently “honest but curi-
ous”), that is, she will execute the post-processing part of the protocol honestly but keep
all the information that she has exchanged with Bob so that she can in the end compute
whatever she is interested in, which in this case is C . Our result holds under two assump-
tions stated below. This restricts the applicability of our theorem. However, we argue in
the Discussion Section that these assumptions should still be sufficiently general for any
practical purpose.

Assumptions 6.2.6 (Informal). In order to prove the theorem below we need two assump-
tions.

1. The messages sent between Alice and Bob during the post-processing contain infor-
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Some quantum protocol
with imperfect photon source
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Figure 6.3: Schematic view of the classical post-processing between (dishonest) Alice and (dishonest) Bob.
Before the post-processing Alice and Bob have run an unspecified quantum protocol which gave them their
inputs: X n

1 +(IG , IB ) for (dishonest) Alice, and (XI ,I ),or KQ for (dishonest) Bob.
When Alice is dishonest, we will consider that she is “honest but curious” at the post-processing level, meaning
that Alice will run the post-processing honestly with Bob, but she will record all communication MAB , MB A
and use them at the end together with her extra-input (IG , IB ), to extract more information than what she
should get out of the protocol. To do so she will use the strategy described in Protocol 6.2.7

mation about the pair of sets set (I0, I1)4 of bits of X n
1 on which function f0 and f1

depend, but without revealing the value of Bob’s bit C . Alice can compute these sets
thanks to a function F .

2. There is a non-negligible probability that,
the intersection between the set IG ∪ IB and I0\I1 is not empty

and

the intersection between the set IG ∪ IB and I1\I0 is not empty.

If we define κ being the minimum length of the two intersections above, we can
rephrase this condition by saying that, there is a non-negligible probability that κ≥
1.

The sets IG , IB are the sets dishonest Alice gets from the leakage of the quantum part of the
protocol. The sets I0, I1 are the sets correlated to set I and bit C that do not reveal value
of bit C as long as I is completely unknown from Alice. Of course since dishonest Alice
has extra information IG , IB correlated to I , Alice is not ignorant about I : She therefore

4Remember that in Protocol 6.2.4 sets (I0, I1) correspond to the renaming of the sets (I ,I c ) that bob sends to
Alice
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has some information about the bit C , which as we will see allows her to cheat. The reader
can find a more formal version of these assumptions in the Methods Section: Assumption
6.4.19.

Theorem (Dishonest Alice cheating (Informal)). If a quantum protocol between Alice and
Bob that implements OT is such that it leaks some information (IG , IB ) to dishonest Alice in
the quantum phase (before the classical post-processing), and if this protocol is correct and
secure against dishonest Bob, then there exists a strategy for dishonest Alice that allows her
to cheat, i.e. she can guess Bob’s bit C with non-negligible advantage. This strategy runs as
follows: Dishonest Alice runs honestly the post processing phase with Bob, but records all
messages sent and received during this post-processing. At the end of the post-processing
she will use all this messages together with her extra information (IG , IB ) in order to locally
run the procedure described in Protocol 6.2.7. This procedure outputs her guess for Bob’s
bit C .

The reader can find a formal version of this theorem in the Methods Section, together
with its proof: Theorem 6.4.20.

We recall that when Alice is dishonest she holds some extra set IG (and IB ), which
in a protocol like Protocol 6.2.4 would typically correspond to the multiphoton rounds
where dishonest Alice has inferred that Bob has used the same basis as she did (or a
different basis for IB ). So at the end of the post-processing she will execute the strategy
detailed in Protocol 6.2.7, where she starts by computing the two sets I0 and I1. She will
then choose uniformly at random – thanks to random bit r – whether she later wants to
sample at random an index in S0 := I0\I1 ∩ (IG ∪ IB ) or in S1 := I1\I0 ∩ (IG ∪ IB ). At this
point Alice samples uniformly at random an index in Sr , and checks whether this round
is in IG or in IB . If it is in IG then Alice’s guess for Bob’s bit C will be r , and otherwise she
guesses 1− r . More formally Alice proceeds as follows.

Protocol 6.2.7 (Dishonest Alice’s strategy).
Inputs: xn

1 ,m, IG , IB .
Outputs: b.

• Alice computes (I0, I1) = F (xn
1 ,m).

• Alice checks that I0\I1 ∩ (IG ∪ IB ) 6= ; and I1\I0 ∩ (IG ∪ IB ) 6= ;. If this is not
the case Alice outputs b ∈R {0,1} uniformly at random, otherwise she continues
with the protocol.

• Alice sample a bit r uniformly at random.

• Alice chooses an index ir ∈ Ir \I1−r ∩ (IG ∪ IB ) uniformly at random.

• Alice checks whether ir ∈ IG or ir ∈ IB . If ir ∈ IG then Alice outputs b = r and
she outputs b = 1− r otherwise.
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Alice’s output bit b represents Alice’s guess for the bit C that honest Bob got from the
protocol.

Intuitively the sets I0, I1 carry information about the correlations Alice and Bob share
at the beginning of the post-processing, but not about Bob’s final output C . In particular
these sets say that if their initial (honest) inputs are such that Bob knows the bits of X n

1
on positions given by I0 then C = 0, and if he initially knows the bits of X n

1 on positions
given by I1 then C = 1. However since honest Alice does not know which bits of X n

1
Bob knows (she is ignorant about I ), it does not say anything about the actual value of
Bob’s output C . Dishonest Alice however gets extra inputs (IG , IB ) that precisely gives her
information about which are the bits Bob knows. As a consequence by cross-referencing
these two pieces of information dishonest Alice can get some advantage in guessing bit
C .

6.3. DISCUSSION
In the previous section we show that all protocols that satisfy the two assumptions given
in Assumptions 6.2.6 (or more formally Assumption 6.4.19) cannot be secure against dis-
honest Alice. We believe that the class of protocols that satisfy these conditions is general
enough to encompass most (if not all) of the protocols that are currently implementable
with current technology. In this section we argue in this direction.

We first point out that it should not be possible to get a fully general impossibility the-
orem, since we have shown that when having a sufficiently good single photon source it
is possible to devise a secure protocol (see Theorem 6.4.9). As a consequence one can
only prove statements about more restrictive classes of protocols. This is what we have
done in the previous section. However we have analyzed these protocols under Assump-
tions 6.2.6, and it is not clear how restrictive Assumptions 6.2.6 are. In the following, we
argue that most practical protocols will satisfy these assumptions.

First, let us spell out some of the implicit assumptions made for our theorem that
necessarily limit the range of its applicability. In the model we use (see Fig. 6.3), it is
clear that the classical post-processing operated by Alice and Bob runs on bit strings
(X n

1 , XI , . . .) and of sets of indices “I , . . .”, however we think that the reasoning used for
our theorem can be extended to more general inputs. In this model, we also only start
by looking at the attack directly at a post-processing part of the protocols. This is con-
venient since it allows our theorem to be valid for various quantum implementations
that could have run before the post-processing. Of course this assumes that the proto-
cols end with a fully classical post-processing phase. As a consequence our proof only
applies for such protocols. However, even though these implicit assumptions limit the
applicability of our theorem, we believe that this is enough for any practical implemen-
tation.

Let us now go to the core of our assumptions, i.e. let us look at conditions given in
Assumptions 6.2.6. The first assumption is, informally, that there exists a way for dis-
honest Alice to compute, from X n

1 and M , sets of indices (I0, I1) that correspond to the
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Figure 6.4: Schematic representation of the “Feasibility” of OT and BC depending on the resources/model
used in the protocol. In the first column neither BC nor OT are possible, but since OT can be used in order to
get BC but not the comtrary, OT is somewhat a harder problem, which is why it is below BC. When quantum
communication are possible then OT and BC are equivalent (represented at the same level) but still impossible.
In the third column we add the Bounded Storage assumption, which makes both protocol possible. They are
still equivalent. In the last column we add that quantum communication between the parties are made in
the MDI settings, and we assume that the parties do not have perfect single photon source. In this case BC is
possible (see Theorem 6.4.12) but OT is not (see Theorem 6.4.20).
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positions in the string X n
1 where the functions f0 and f1 are dependent on the value of

the bits located at these positions.
The second assumption can be reformulated as follows. If, for a fraction of rounds,

some information is leaked then there is a non-negligible probability that κ≥ 1 (see As-
sumptions 6.2.6).

We now argue that these two condition are not very restrictive.

- Indeed we conjecture that the first assumption should always hold: In order for
the protocol to be correct, intuitively the set of messages exchanged in the pro-
tocol represented by the random variable M should contain the information that
“tells” the functions f0 and f1 how they should act on the bits of X n

1 , and on which
of these bits they should operate. This suggests that Alice can also retrieve this in-
formation, i.e. compute (I0, I1). We do not give a formal proof of this statement,
that is why it is taken as an assumption. In a protocol like Protocol 6.2.4 it is clear
that this condition is satisfied since Bob explicitly sends the pair (I0, I1) to Alice.

- If the second assumption was not satisfied then – at least intuitively – Bob is able
to know (with overwhelming probability) which rounds leak information (multi-
photon emission rounds) and therefore choose the sets I0 and I1 (or sufficiently
influence the protocol) such that κ = 0. But then Bob could effectively get an al-
most perfect (except with negligible probability) single photon source, by prevent-
ing any multiphoton emission from leaving his lab. In a protocol like the ones we
have presented in the previous sections, Bob does not know in which rounds his
source has emitted multiple photons, therefore there will be in the end with very
high probability multiphoton rounds that are kept.

For these reasons we believe that our impossibility result applies to most (if not all) cur-
rently implementable OT protocols.

In the presence of quantum communication, it is known that OT and BC are equiv-
alent [17, 18], meaning that from one of these tasks one can build a secure protocol for
the other. However the construction used, implicitly assumes a trusted device setting,
and as a consequence this construction does not necessarily prove equivalence between
OT and BC in MDI settings. Since we prove earlier in this chapter that BC is secure (in
the bounded/noisy quantum storage model), if our impossibility result for OT general-
izes, MDI settings (without a single photon source), it would be the first quantum setting
where one can prove security for BC but not for OT with the same adversarial model (see
Fig. 6.4), i.e. it would be a quantum setting in which OT and BC are not equivalent.

6.4. METHODS
In this section we present and prove security statement for the protocols presented in
the results sections. We start by stating theorems and lemmas that will be useful in our
proofs. Then we proof security for BC and OT when the honest players have perfect
photon sources. We continue by giving the security proof for BC when the honest parties
only have imperfect single photon sources. We finally prove that a class of protocols
cannot be secure for OT when using imperfect single photon sources.
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Remark 6.4.1. For simplicity, all our statements and proofs are expressed in the Bounded
Storage model, but can easily be extended to the Noisy Storage Model as explained in Chap-
ter 2.

6.4.1. USEFUL LEMMAS AND THEOREMS
Here, we give useful theorems that we will use as tools for our proofs.

Using the ideas from [13, 14] we will use random codes to prove the security of Bit
Commitment. We give here one useful property of these random codes, which can be
viewed as a tradeoff between the minimal distance d of the code and its rate R.

Theorem 6.4.2 ([19]). For a randomly generated [n,k,d ] binary linear code with rate R :=
k/n, the minimum distance d satisfies,

Pr(d ≤ δn) ≤ 2(R−Cδ)n , for 0 ≤ δ≤ 1, (6.3)

where Cδ := 1−h(δ) and h(x) :=−x log(x)− (1−x) log(1−x) is the binary entropy.

The following min-entropy splitting lemma intuitively states that for a classical dis-
tribution PX0 X1 Z , if the min-entropy (conditioned on Z ) on (X0, X1) is large then it must
be the case that the random variable X1−C has high min-entropy too, where C is a binary
random variable.

Lemma 6.4.3 (Min-entropy splitting [20, 21]). Let X0, X1, Z be three random variables
with distribution PX0 X1 Z . Let 1 > ε> 0. If

Hε
min(X0X1|Z ) ≥ K , (6.4)

then there exists a binary random variable C such that,

H 4ε
min(X1−C |C Z ) ≥ K /2−1+2log(1−

√
1−ε2). (6.5)

6.4.2. BIT COMMITMENT (BC) WITH PERFECT SINGLE PHOTON SOURCES
In this section we present the security proof for Protocol 6.2.2 which implements BC
when honest parties have perfect single photon sources. In particular we prove Theorem
6.4.4 below. The security proof is mostly the same as in [13, 14], the only differences are
that in our Protocol 6.2.2 we are guaranteed that the sources emit single photons, so we
do not need to care about multiphoton emissions, and that because we want the security
to hold even in the presence of noise, we adapt the simulator argument of [13]. More over
we use a more recent lower bound [22] on the min-entropy.

Theorem 6.4.4 (Security of Protocol 6.2.2). Let ε> 0 be a security parameter, eerr ∈ [0,1/2[
is the expected error rate of the protocol, and let l ∈ N, l > 0 be the length of the string
we want to commit. Let us call n the number of quantum communication rounds in

which the measurement station has clicked in Protocol 6.2.2, and let α2 :=
√

lnε−1

2(1/2−α1)n ,

α1 :=
√

lnε−1

2n which account for statistical fluctuations. Let Q be dishonest Bob’s quantum
register, K his classical register, and D be such that logdim(Q) ≤ D. Let C be a randomly
generated-[n,k,d ] linear code with fixed n and k and rate R := k/n. We choose the rate of
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code C to be R = ln(ε)/n +1−h(δ), where δ := 2eerr +2α2. Let λ := f (−D/n)−1/n be a
lowerbound on the ε-smooth min-entropy rate of honest Alice’s string X n

1 conditioned on
(malicious) Bobs information KQ, where f is defined in eq. (6.7).

If

n ≥ l +2log(1/2ε)+ ln(ε−1)

λ−h(δ)
, (6.6)

then Protocol 6.2.2 implements a (l ,3ε)−Randomized String Commitment.

Proof. When the two parties are honest and conditioned on not aborting, one can check
that the protocol is correct. When the two parties are honest, they can abort in two
places. Either they abort in the frst step of the Commit phase or in the third phase of
the Open phase. In the first case Bob aborts if |I < 1/2n −α1|. By the definition of α1

and Hoeffding inequality, this happens with probabolity at most ε. Similarility in step 3
of the Open phase Bob aborts the protocol if he observe an error rate that does not lie in
the interval [eerr −α2,eerr +α2], which by Hoeffding inequality happens with probability
at most 2ε. Putting this two potential abort events together, the honest parties have a
probability at most 3ε to abort, which proves correctness.
Lemma 6.4.6 proves that Protocol 6.2.2 is 3ε-hiding.
Lemma 6.4.8 together with Theorem 6.4.2 show that Protocol 6.2.2 is 2ε−binding.

In the following with will prove Lemmas 6.4.6 and 6.4.8, which state security for hon-
est Alice and for honest Bob respectively.

Security for Alice: When Bob is dishonest we will assume that he controls the mea-
surement station, therefore we treat the measurement station and Bob as one single
party (Fig. 6.2b). Note that this reduces to the trusted device scenario in which Bob is
dishonest [13, 14, 22]. As a consequence several results from Refs. [14, 22] can be reused
here.

In fact, the situation in this section is even simpler in the sense that we consider that
the honest party (Alice) has access to a perfect single photon source. This, together with
the fact that we use a lower bound [22] on the min-entropy that does not depends on
the specifics of the state but only on the structure of Alice’s measurements, prevents Bob
from gaining any advantage by (selectively) discarding rounds. We discuss this in more
details in Technical Details Section 6.5.1.

Let f (·) be the following function.

f (x) :=
{

x if x ≥ 1/2

g−1(x) if x < 1/2,
(6.7)

where g (x) := h(x)+x −1 and h(x) :=−x log(x)− (1−x) log(1−x) is the binary entropy.

Lemma 6.4.5 (from [22]). Let ε ≥ 0. If Alice is honest, and Bob has a bounded quan-
tum memory Q (his quantum register Q has dimension at most 2D ) then at the end of the
preparation phase, the smooth min-entropy of Bob on Alice string is

Hε
min(X n

1 |QK )ρ ≥λn, (6.8)

where λ= f (−D/n)−1/n − log(2/ε2)/n, and K is Bob’s classical register.
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Since in the protocol Alice sends the syndrome of her string X n
1 to Bob, we need this

syndrome to be sufficiently small in order to keep the entropy relatively high so that the
protocol is secure against dishonest Bob. On the other hand, we need the distance of the
code to be sufficiently large in order to tolerate errors that might occur between honest
Alice and honest Bob. As in Ref. [14] we use a random code: They have sufficiently small
syndrome with high distance for our purpose, and since the honest party are not using
any decoding we do not need an efficiently decodable code.

Lemma 6.4.6 (Security against Dishonest Bob, similar as in Ref. [14]). Let ε ∈]0,1[. Let Q
be Bob’s quantum memory such that logdim(Q) ≤ D. Let C be a random [n,k,d ]-linear
code with rate R := k/n. If n satisfyies

λ−1+R > 0

and,

n ≥ l+2log(1/2ε)
λ−1+R .

(6.9)

If Alice is honest, then the protocol is 3ε-hiding.

Proof. Using Lemma 6.4.5 we obtain that after the Commit phase, Bob’s entropy on Al-
ice’s string X n

1 is,

Hε
min(X n

1 |QK Syn(X n
1 ))ρ ≥ (λ−1+R)n, (6.10)

where R is the rate of the code C , i.e., and the length of the syndrome being n − k =
(1−R)n. This together with the leftover hash Lemma 2.3.6 leads us to

ρC l
1,QK Syn(X n

1 ) ≈ε′ τC l
1
⊗ρQK Syn(X n

1 ), (6.11)

where τC l
1

is the maximally mixed state on C l
1, and

ε′ = 2ε+ 1

2
2−

1
2 (Hε

min(X n
1 |QK Syn(X n

1 ))−l ). (6.12)

If λ−1+R > 0, then by choosing n sufficiently large we can have ε′ ≤ 3ε, meaning that
Protocol 6.2.2 is 3ε-hiding.

Security for Bob:
Figure 6.5 tells us that the protocol where it is dishonest Alice that sends half of an

EPR pair to Bob produces the exact same state as Protocol 6.2.2 when Alice is dishonest.
We can therefore adapt the analysis of [13] to the presence of noise, which leads us to the
following lemma.

Lemma 6.4.7 (Similar to Theorem III.5 of [13]). If Bob is honest, then at the end of the
preparation phase, there exists an ideal state σAX̄ n

1 I between (dishonest) Alice and Bob

such that:

• σAX̄ n
1 I =σAX̄ n

1
⊗τI

• ρAB =σA(X̄I I ),
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Alice Bob
BB84 ⇐⇒ Alice Bob

EPR

m

Alice Bob
EPR

Figure 6.5: When honest Bob has access to a single photon source and Alice is dishonest, the three situations
depicted are equivalent: In the first Bob chooses the bases Θ̂n

1 and X̂ n
1 uniformly at random, and sends a BB84

type state, as described in Protocol 6.2.2. The second picture depicts the equivalent scenario where he sends
half of an EPR pair to Alice, and gets X̂ and Θ̂ by measuring the other half. This scenario itself is equivalent to
the last where it is (dishonest) Alice that sends half of the EPR pair. If some noise acts on the qubit sent by Bob
to Alice in the first scenario, this can be seen as Alice applying a “noise map” on the half of the EPR pair she
keeps before applying a measurement in the third scenario. In this virtual scenario, the other half of the EPR
pair is assumed to be sent (measured) to (by) Bob without any noise.

where τI is the maximally mixed state on I , ρAB is the real state produced by the pro-
tocol between (dishonest) Alice and Bob, and where the registers (A,B) are identified with
(A, X̄I I ).

Proof (Sketch). We will place ourselves in the virtual scenario of Figure 6.5 where Alice
sends the states to Bob. Here, contrary to [13] we want to take care of the noise that
might affect the quantum signal and measurements, therefore the simulator introduced
in Ref. [13] has to be slightly modified.

In order to prove the existence of an ideal state σ, in Ref. [13] the authors introduce
a virtual protocol where a simulator lies between dishonest Alice and honest Bob. This
simulator will measure the states sent from Alice to Bob, thus creating the register X̄ n

1
and then send an “honest” state to Bob. Then they show that the ideal state σ created by
this virtual protocol satisfies the two relations of Lemma 6.4.7 with the real state ρ of the
real protocol.

In our case Fig. 6.5 tells us that the noise will only be on the half of the EPR pair kept
by Alice, and that the qubit sent to Bob is not affected by any noise. Therefore if the sim-
ulator measures it and reencodes it honestly (and without noise) a qubit corresponding
to its outcome and choice of measurement basis, the two relations of this lemma will be
satisfied.

From here on, reusing the argument in Refs. [13, 14] we get the final statement for
Bob’s security.

Lemma 6.4.8. Let ε> 0. Let C be an [n,k,d ]-code with minimum distance d that satisfies,

d ≥ 2(eerr +2α2)n ∼
n→∞ 2eerrn, (6.13)



6.4. METHODS

6

191

with α2 :=
√

lnε−1

2(1/2−α1)n , α1 :=
√

lnε−1

2n , then Protocol 6.2.2 either aborts before the open
phase or is ε-binding according to definition 6.5.3. Note that the protocol specifies what
the honest parties have to do when aborting. What they do during an abort event enforces
security definition 6.5.3 to be also satisfied when the protocol aborts.

Proof. We again follow the reasoning from [13, 14]. According to Lemma 6.4.7 there
exists a random variable X̄ n

1 , such that Bob knows X̄I and I . Now if Alice wants to
cheat she needs to send to Bob a string X n

1 6= X̄ n
1 such that Syn(X n

1 ) = w which implies
that dH (X̄ n

1 , X n
1 ) ≥ d/2 (see [13, Lemma IV.4]), where dH (·) is the hamming distance.

Therefore Alice has to flip at least d/2 bits from X̄ n
1 in such a way that dH (X̄I , XI ) ≤

(eerr +α2)m. However Alice is ignorant about which bits Bob knows. As a consequence
the situation is equivalent to where I is chosen after that Alice has chosen which bits
she wanted to flip. This is a sampling problem, which means that we can use Hoeffding’s
inequality [23] to estimate the number W of bits in I that Alice will flip:

Pr
(
W ≤ m(d/2n −α2)

)≤ exp(−mα2
2) ≤ exp

−m

√
lnε−1

2m

2=: ε. (6.14)

Therefore if,

d ≥ 2(eerr +2α2)n (6.15)

⇒ m(d/2n −α2) ≥ (eerr +α2)m (6.16)

then by using eqs. (6.14) and (6.16) we get Pr(W < (eerr +α2)m) ≤ ε meaning that Alice’s
attempt in cheating is detected (and Bob will not accept) with probability ≥ 1−ε.

6.4.3. OBLIVIOUS TRANSFER (OT) WITH PERFECT SINGLE PHOTON SOURCES
In this section we present and prove Theorem 6.4.9 stating security for Protocol 6.2.4
which implements a Randomized Oblivious String Transfer when the honest parties have
access to single photon sources. The security proof closely follows the security proofs
from [13, 24]. Indeed the main difference in our case is simply to show that security of
our protocol can be reduced to the security of [24]. This is the case because when Bob is
dihonest, he controls the measurement station so we are in a situation where Alice sends
BB84 states to dishonest Bob, and security from [24] in this case. When Alice is dishonest
we use the fact that sources emit single photons together with a purification argument
in order to reduce the security of our protocol to the one of [24].

Theorem 6.4.9. Let ε > 0 and let l = |S0| = |S1|, and α1 :=
√

lnε−1

2n . If the number of n of
quantum communication rounds in which the measurement station has clicked satisfies
condition (6.17), the Protocol 6.2.4 implements an 1-out-2 Randomized (l ,8ε)−Oblivious
String Transfer (see Def. 6.5.4).

Proof. Let’s first check correctness with honest Alice and honest Bob. Note that condi-
tioned on not aborting the protocol is ε−correct. Indeed the only case where the protocol
is not correct conditionned on not aborting is when the error correction procedure fails
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to correct Bob’s string which happens with probability at most ε. We then prove that
when both parties are honest, the protocol aborts with probability at most 2ε. Indeed
an abort event happens either if |I | < m which happens with probability at most ε, or
if the error correction procedure aborts which happens with probability at most ε. As a
consequence the protocol aborts with probability at most 2ε, and since conditioned on
not aborting it is ε−correct, it implies that overall the protocol is 3ε−correct.
According to Lemma 6.4.10, the protocol is 8ε−secure for honest Alice.
According to Lemma 6.4.11, the protocol is (ε= 0)−secure for honest Bob.

In the following we state and prove Lemmas 6.4.10 and 6.4.11 which state security for
honest Alice and for Honest Bob respectively.

Security for Alice: Since the preparation phase of Protocols 6.2.2 and 6.2.4 are the
same, we will use similar bounds as in Lemma 6.4.5 [13] to lower bound the entropy
on X n

1 . However we will not use the exact same bounds because we afterwards want to
use the min-entropy splitting lemma that is valid only on purely classical states. As a
consequence we will first use a chain rule (Theorem 2.3.9) to get rid of Bob’s quantum
memory and then lower bound the entropy.

Lemma 6.4.10. Let Bob be dishonest with a bounded quantum memory denoted Q such
that logdim(Q) ≤ D for some D. Let l := |S0| = |S1| be the length of the two strings S0 and
S1. If

n ≥ 2
l +D +1−2log(1−

p
1−ε2)

λ− leakO −2α1
(6.17)

where leakO := |O| is the size of the error correction information Alice sends to Bob, then

Protocol 6.2.4 is 8ε-secure for Alice, withλ= 1/2−2δ′, δ′ = (
2−log(

√
(32lnε−1)/n)

)√
(32lnε−1)/n

[13, eq. (19)].

Proof. Protocol 6.2.4 is designed in such a way that it is sufficient to prove that there
exists a binary random variable C such that the entropy Hε

min(X I1−C |KQCO) at the end
of the preparation phase is sufficiently high. Indeed after the preparation phase Alice
and Bob will use a randomness extractor on X I0 and on X I1 , meaning that if the above
mentioned entropy is high enough then Bob will be ignorant of at least one of the two
“extracted” strings, which is what we want from the security definition. In order to bound
this entropy, we will start by bounding Hε

min(X I0 X I1 |KO) where the quantum register Q
is not used, and we will reintroduce it later using a min-entropy chain rule (Theorem
2.3.9).

Note that X n
1 = XI XIBad Xremaining = X I0 X I1 Xremaining. By definition of I and IBad,

we have that |Xremaining| = n −2m = 2α1n. Therefore

Hε
min(X I0 X I1 |KO) = Hε

min(XI XIBad |KO) ≥ Hε
min(X n

1 |KO)−2α1n. (6.18)

By using the previous bound together with the min-entropy splitting lemma (Lemma
6.4.3), we get that there exists a binary random variable C such that,

H 4ε
min(X I1−C |KOC ) ≥ (Hε

min(X n
1 |KO)−2α1n)/2−1+2log(1−

√
1−ε2). (6.19)
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Using the min-entropy chain rule (Theorem 2.3.9) on the register Q (|Q| ≤ D) and com-
bining it with eq. (6.19) we conclude that

H 4ε
min(X I1−C |KCOQ) ≥ H 4ε

min(X I1−C |KOC )−|Q| (6.20)

≥ (Hε
min(X n

1 |KO)−2α1n)/2−1+2log(1−
√

1−ε2)−D, (6.21)

where C is defined by the use of the min-entropy splitting lemma in eq. (6.19).
We will now again use the chain rule (Theorem 2.3.9) to get rid of the register O, and

we will call leakO := |O| the maximum leakage due to error correction, and we get

Hε
min(X n

1 |KO) ≥ Hε
min(X n

1 |K )− leakO . (6.22)

inserting this into the previous inequality gives,

H 4ε
min(X I1−C |KCOQ) ≥ (Hε

min(X n
1 |K )− leakO −2α1n)/2−1+2log(1−

√
1−ε2)−D.

(6.23)

The amount of error correction information leakO sent during the protocol can be pre-
determined by considering the necessary amount of error correction information the
parties need when they are both honest, i.e. when both parties (and the measurement
station) act in an identically and independently distributed (IID) and trusted manner,
and where all the errors come from an i.d.d. noise – an “honest noise”. Indeed if the
parties are honest – and if leakO is sufficiently large – they will be able to correct their
string with probability (≥ 1− ε), making the protocol correct. If Bob is not honest, since
the amount of error correction information is fixed, then the leakage of information is
also fixed no matter what strategy he uses. The question is now, how large is “sufficiently
large” to allow honest Alice and Bob to correct their string with high probability? This
question has been answered in Refs.[25, 26] where it is shown that one can take

leakO = Hε
max(X I0 |X̂ I0C = 0)ρhonest+Hε

max(X I1 |X̂ I1C = 1)ρhonest = 2Hε
max(X I0 |X̂ I0C = 0)ρhonest ,

where the entropies are evaluated on the state ρhonest produced by the protocol when
both parties are honest.

One can then lower-bound Hε
min(X n

1 |K ) using [13, eq. (19)] (see also [27]),

Hε
min(X n

1 |K ) ≥λn,

with λ = 1/2− 2δ, δ = (
2− log(

√
(32lnε−1)/n)

)√
(32lnε−1)/n. Since Hε

max(X I0 |X̂ I0C =
0)ρhonest is evaluated on honest i.i.d parties we can upper-bound the max-entropy us-
ing the equipartition Theorem [28], getting 2Hε

max(X I0 |X̂ I0C = 0)ρhonest ≤ 2h(eerr)n/2+
O (

p
n) = h(eerr)n+O (

p
n) where eerr is the error rate between Alice’s string X I0 and Bob’s

string X̂ I0 .
Using (6.23) and the fact that S1−C := Ext(X I1−C ,r1−C ) we can invoke the leftover hash

lemma 2.3.6 to get that,

ρSC QS1−C ≈8ε σSC QC ⊗τS1−C , (6.24)

where τS1−C denotes the maximally mixed state on S1−C .
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Security for Bob: Once again the preparation phase is the same as for Protocol 6.2.2,
therefore we also use Lemma 6.4.7 to show that the protocol is secure for Bob. Intuitively
this is true because at the end of the preparation phase, Alice is ignorant about I , and
after that no information about C is leaked.

Lemma 6.4.11. If Bob is honest, then Protocol 6.2.4 satisfies the security definition for Bob.

Proof (Informal). Since the ideal state satisfies σAX̄ n
1 I =σAX̄ n

1
⊗τI and that the only in-

formation sent from Bob to Alice is (I0, I1), there is no leakage on the value of C , therefore
Alice remains ignorant about C . In other words the state σA′S0S1C created by applying
Protocol 6.2.4 (with dishonest Alice) on the ideal state σAX̄ n

1 I , satisfies the condition
σA′S0S1C =σA′S0S1 ⊗τC .

Also since from Lemma 6.4.7 σA(XI I ) = ρA(XI I ) and that the same operations are
applied in the ideal and real scenario (on the registers AXI I ) we get that σA′SC C =
ρA′SC C .

6.4.4. BIT COMMITMENT WITH AN IMPERFECT SINGLE PHOTON SOURCES

In this section we present security proof for Protocol 6.2.5 which implements String
Commitment when honest parties have imperfect single photon sources. In particu-
lar we prove Theorem 6.4.12 below. The proof is essentially the same as for Theorem
6.4.4, but of course since we are now dealing with imperfect single photon sources, we
need to be more careful the rounds where the honest party sends multiple photons. In-
deed in this case the malicious party could try to selectively discard the rounds where he
receives less information, typically the single photon rounds, and only keep the rounds
that might leak some information, the multiphoton rounds. To prevent that we add de-
coy states in the preparation phase, which will allow the honest party to check how many
multiphoton rounds are kept at the end of the preparation phase as compare to the sin-
gle photon rounds. If to many multiphoton rounds are kept at the end of the preparation
phase, the honest party aborts the protocol.

Theorem 6.4.12. Let ε,ε, ε̂,ε1 be as defined in Lemma 6.4.13, and let γ,eerr ∈ [0,1/2[. The
values of the parameters γ and eerr can be chosen by estimating the parameters honest
devices. Let N be the total number of quantum communication rounds of the prepa-
ration phase of Protocol 6.2.5, let nH

k be the number of these rounds in which party H’s
source (H ∈ {Alice,Bob}) has produced k photons and in which the measurement station
has clicked, and let n be the number of communication rounds that are not discarded at

the end of the preparation phase. Let α2 :=
√

lnε−1

2(1/2−α1)n , α1 :=
√

lnε−1

2n , α′′
1 :=

√
lnε−1

2(1−γ−αB
4 )n

,
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α′
1 := min

[
1/2;

α1+(1−γ−αB
4 )α′′

1

γ+αB
4

]
, α3 :=

√
lnε−1

2n
[

1/2−α′′
1−(1/2+α′

1)(γ+αB
4 )

] . Let

βA :=
√

ln(1/ε)/(2(n A
1 +n A

≥2)), we will assume that βA ≤ pbs /2,

βB :=
√

ln(1/ε)/(2(nB
1 +nB

≥2)), we will assume that βB ≤ pas /2,

αA
4 := (2/pbs +1/ fbs )βA ,

αB
4 := (2/pas +1/ fas )βB .

Let C be a randomly generated [n,k,d ] (with fixed n and k) linear code with rate R := k/n.
We choose this code such that the rate R = ln(ε)/n + 1 − h(δ), where

δ := 2

[
(1/2+α′

1)(γ+αB
4 )+α3 + (eerr+α2)(1/2+α1)

(1/2−α′
1)(1−γ−αB

4 )

]
. Let Q be Bob’s quantum register, and

let D be such that logdim(Q) ≤ D. Let λ := f (−D/n)− (γ+αA
4 )− 1/n lower-bound the

ε-smooth min-entropy rate (Hε
min(X n

1 |QK )ρ)/n except with probability 16(ε+ε+ ε̂)+8ε1 ,
where f is defined in eq. (6.33).
If the single photon sources used by honest parties are sufficiently good, i.e.

p≥2|as /(1−p0|as ) ≤ pbsγ,

and

p≥2|bs /(1−p0|bs ) ≤ pasγ,

(6.25)

and if (p −
√

ln(ε−1)/2N ) N ≥ n∗, where n∗ the smallest positive integer solution to the
following inequality5,

n ≥ l +2log(1/2ε)+ ln(ε−1)

λ−h(δ)
, (6.26)

and where p is the probability that a round i ∈ [N ] is not discarded in the preparation
phase when both parties are honest, then Protocol 6.2.5 implements a

(
l ,9ε+32(ε+ε+ε̂)+

16ε1
)−1-out-2-Randomized String Commitment.

Proof. Let’s start with correctness. First of all note that conditioned on not aborting the
protocol is correct. We now show that when both parties are honest the protocols aborts
with probability smaller than 9ε+32(ε+ε+ ε̂)+16ε1, which implies that the protocol is
(9ε+32(ε+ε+ ε̂)+16ε1)−correct. Using Hoeffding inequality it is easy to check that the
honest parties will abort with probability at most 2ε at step 2 of the preparation phase.

If the two parties are honest with sources such that p≥2|as /(1−p0|as ) ≤ pbsγ (for Alice)
and p≥2|bs /(1−p0|bs ) ≤ pasγ (for Bob), then the probability to abort at step 3 is at most
ε+16(ε+ε+ ε̂)+8ε1 and at most ε+16(ε+ε+ ε̂)+8ε1 at step 4. Indeed in step 3, using

Hoeffding inequality one can check that with probability at most ε, we have
n A
≥2

n A
1 +n A

≥2
≤

pbsγ+βA . By dividing the expression by fbs and using that conditioned on not aborting

in the previous steps fbs ≥ pbs −βA we get
n A
≥2

fbs (n A
1 +n A

≥2)
≤ pbs

pbs −βa + 1/ fbsβ
A . Using that

5Remember that the parameters like λ, δ etc. depend on n
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except with probability 16(ε+ε+ ε̂)+8ε1 we have UA2 ≥ n A
≥2 and that for 1/pbsβ

A ≤ 1/2
we have 1/(1−1/pbsβ

A) ≤ 1+2/pbsβ
A we get the desired result. An analog proof holds

for step 4. Again by Hoeffding inequality, there is a probability at most ε to abort at step
5.

Using again Hoeffding inequality one can check that Bob will abort the protocol with
probability at most 2ε at step 1 of the Commit phase and with probability at most 2ε at
phase 3 of the open phase. Over all the protocol aborts with probability at most 9ε+
32(ε+ε+ ε̂)+16ε1.
Security for honest Alice is given in Lemma 6.4.15. Security for honest Bob is given in
Lemma 6.4.17.

Before proving security for honest Alice (Lemma 6.4.15) and for honest Bob (Lemma
6.4.17), we need to prove that the honest party H ∈ {Ali ce,Bob} can always find a lower-
bound LH1 on nH

1 , the number rounds where H has emitted a single photon and has
sent a “signal” state. This is what the following lemma shows. You can find its proof in
Technical Details Section 6.5.2.

Lemma 6.4.13. Let xi
o,θ be the “observed” number of rounds where H has prepared a

signal of intensity i in the basis θ and where the measurement station (or the dishonest
party) reported outcome o 6=failure. Let ε,ε1 > 0, and ε, ε̂ such that ∀(o,θ), (2ε−1)1/ζo,θ,L ≤
exp(3/(4

p
2))2 and (ε̂−1)1/ζo,θ,L < exp(1/3), with ζo,θ,L := xi

o,θ −
√∑

i xi
o,θ/2 ln(1/ε). Let

∆i ,o,θ := g (xi
o,θ ,ε4/16), ∆̂i ,o,θ := g (xi

o,θ , ε̂3/2), and g (x, y) :=
√

2x ln(y−1). Then if q = 2
(q is the number of decoy states used during the protocol i.e. i ∈ {is , id1 , id2 }) we have,

nH
1 ≥ LH1 :=∑

o,θ

[
pis |k=1 |S1,o,θ|min − g (pis |k=1 |S1,o,θ|min,ε1)

]
(6.27)

except with probability 16(ε+ε+ ε̂)+8ε1, where |S1,o,θ|min is given by,

|S1,o,θ|min := min(V1,V2,V3,V4), (6.28)

with

V1 =
pid1 |k≥2(x

id2
o,θ +∆id2 ,o,θ)−pid2 |k≥2(x

id1
o,θ +∆id1 ,o,θ)

pid1 |k=1pid2 |k≥2 −pid1 |k≥2pid2 |k=1
(6.29)

V2 =
pid1 |k≥2(x

id2
o,θ − ∆̂id2 ,o,θ)−pid2 |k≥2(x

id1
o,θ +∆id1 ,o,θ)

pid1 |k=1pid2 |k≥2 −pid1 |k≥2pid2 |k=1
(6.30)

V3 =
pid1 |k≥2(x

id2
o,θ +∆id2 ,o,θ)−pid2 |k≥2(x

id1
o,θ − ∆̂id1 ,o,θ)

pid1 |k=1pid2 |k≥2 −pid1 |k≥2pid2 |k=1
(6.31)

V4 =
pid1 |k≥2(x

id2
o,θ − ∆̂id2 ,o,θ)−pid2 |k≥2(x

id1
o,θ − ∆̂id1 ,o,θ)

pid1 |k=1pid2 |k≥2 −pid1 |k≥2pid2 |k=1
. (6.32)

One can compute tighter bounds using more decoy states (i.e. for q > 2). For more
details see Technical Details Section 6.5.2.
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For simplicity we will, in the following, continue the security analysis for the case
where q = 2. The above lemma will allow us to prove the following security lemmas:
Lemma 6.4.15 proves security for honest Alice, and Lemma 6.4.17 proves security for
honest Bob.

Security for Alice: When Alice is honest almost nothing changes except that Bob’s
entropy about Alice’s string is smaller by roughly γn bits. As a consequence lemma 6.4.5
has to be changed.

Let f (·) be the following function.

f (x) :=
{

x if x ≥ 1/2

g−1(x) if x < 1/2,
(6.33)

where g (x) := h(x)+x −1 and h(x) :=−x log(x)− (1−x) log(1−x) is the binary entropy.

Lemma 6.4.14. Let ε,ε, ε̂,ε1 be as defined in lemma 6.4.13. If Alice is honest (but uses a
non-perfect photon source), and Bob has a bounded quantum memory Q (his quantum
register Q has dimension at most D) then at the end of the preparation phase, and if Alice
did not abort, the smooth min-entropy of Bob on Alice string is,

Hε
min(X n

1 |QK )ρ ≥λn (6.34)

with probability higher than 1−16(ε+ε+ ε̂)−8ε1, where λ := f (−D/n)− (γ+αA
4 )−1/n

[22], and K is Bob’s classical register.

Here we have used that – as proven in Theorem 6.4.13 – with probability higher than
1−16(ε+ε+ ε̂)−8ε1 dishonest Bob gets at most (γ+αA

4 )n extra bits of information due
to the leakage information on the bases used by Alice.

We can then reuse Lemma 6.4.6 with the only difference that we have to include
the probability that Alice emits 2 or more photons in more than (γ+αA

4 )n “non-failure”
rounds.

Lemma 6.4.15 (Security against Dishonest Bob). Let ε,ε, ε̂,ε1 be as defined in Lemma
6.4.13. Let Q be Bob’s quantum memory such that dim(Q) ≤ D, and the rate R of the code
C be such that,

n ≥ l +2log(1/2ε)

λ−1+R
. (6.35)

If Alice is honest, then Protocol 6.2.5 (with q = 2) either aborts or is [3ε+16(ε+ε+ε̂)+8ε1]-
hiding. Note that when the honest Alice aborts she is required to output uniformly random
strings, so that the security definition 6.5.3 is also satisfied when the protocol aborts. In fact
when aborting the ideal and the real state are equal.

Proof. The proof is exactly the same as in Lemma 6.4.6, except that we add 16(ε+ε+ ε̂)+
8ε1 to the failure probability, which corresponds to the probability that there are more
than (γ+αA

4 )n rounds where at least 2 photons have been emitted (see Theroem 6.4.13),
and where λ has value given by Lemma 6.4.14.
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Security for Bob:
We will start by stating a lemma similar to Lemma 6.4.7, adapted to the case of an

imperfect single photon source.

Lemma 6.4.16. When Bob is honest, at the end of the preparation phase, there exist a state
σX̄ n

1 AI such that

• σX̄ n
1 AI =σAX̄ n

1 I ′ ⊗τI ′′

• ρAB =σA(X̄I I ),

where τ denotes the maximally mixed state, I ′ is the register encoding the set of rounds
where Alice got extra information from the emission of multiple photons, and I ′′ is the
register encoding the set of rounds in I where Alice did not get any information. Formally
the registers I ′ and I ′′ are such that I ′ ⊗ I ′′ = I . ρAB is the real state produced by the
protocol between (dishonest) Alice and Bob, and where the registers (A,B) are identified
with (A, X̄I I ).

In the following we will use the same reasoning as in Lemma 6.4.8, adapting it to the
case where the multiphoton emissions are possible.

Intuitively when Bob is honest but uses a non-perfect single photon source dishonest
Alice basically knows, for a fraction γ of the rounds, whether they belong to I or not.
Using similar notations as in Lemma 6.4.8, this knowledge will help dishonest Alice when
she will have to flip d/2 bits from X̄ n

1 . Indeed she can flip the≈ (γ/2)n bits that she knows
not to be in I . For the ≈ d/2− (γ/2)n remaining bits, she will flip bits that are not the
≈ (γ/2)n she knows to be in I .

Lemma 6.4.17. Let ε,ε, ε̂,ε1 be as defined in Lemma 6.4.13. Let α1,α2 be the same as in

Lemma 6.4.8, and αB
4 as defined in Protocol 6.2.5. Let α′′

1 :=
√

lnε−1

2(1−γ−αB
4 )n

,

α′
1 := min

[
1/2;

α1+(1−γ−αB
4 )α′′

1

γ+αB
4

]
, α3 :=

√
lnε−1

2n
[

1/2−α′′
1−(1/2+α′

1)(γ+αB
4 )

] . Let C be an [n,k,d ]-

code with minimum distance d that satisfies,

d ≥ 2

[
(1/2+α′

1)(γ+αB
4 )+α3 + (eerr +α2)(1/2+α1)

(1/2−α′
1)(1−γ−αB

4 )

]
n ∼

n→∞

(
γ+ 2eerr

1−γ
)

n. (6.36)

Then when Bob is honest, Protocol 6.2.2 either aborts or is [ε+16(ε+ε+ ε̂)+8ε1]-binding
according to definition 6.5.3. Since when honest Bob aborts he is requied to reject the
opening and output a random string C̃ l

1, the security definition is automatically satisfied
when honest Bob aborts the protocol.

Proof (Sketch). From Lemma 6.4.13 we know that except with probability 16(ε+ε+ ε̂)+
8ε1, dishonest Alice gets information on at most (γ+αB

4 )n bits.
Except with probability ε, at most a fraction (1/2+α′

1) of them are not in I , so Alice
can flip them without Bob being able to detect this. We can compute this fraction by
noticing that on rounds where 1 photon has been emitted (there are at leat (1−γ−αB

4 )n
of them), the probability of each of these rounds to be in I is 1/2 and is independent
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of Alice’s information. Therefore, by Hoeffding inequality, the number of these rounds
being in I should be ≤ 1/2+α′′

1 , except with probability ε. Moreover, if the protocol does
not abort then the total number of rounds in I is m ≤ (1/2+α1)n. Combining this with
the fact that 1/2+α′

1 ≤ 1 gives the expression for α′
1.

At least d/2− (1/2+α′
1)(γ+αB

4 )n bits remains for Alice to flip. However she knows
that she should flip these remaining bits on the position on which she did not get any
information during the preparation phase. There are ≥ (1 − γ−αB

4 )n such positions.
Therefore Alice’s choice of bit flip is equivalent to uniformly sampling without replace-
ment d/2− (1/2+α′

1)(γ+αB
4 )n positions out of ≥ (1−γ−αB

4 )n to estimate the number
W of bits that Alice chooses to flip while being in a position in the set I . As for Lemma
6.4.8 this is equivalent to first fixing Alice’s bit flip and then choosing the position that
are in I among the (1−γ−αB

4 )n available positions. Using Hoeffding inequality we get
that,

Pr
(
W < n

[
1/2−α′′

1 − (1/2+α′
1)(γ+αB

4 )
]
(d/2n − (1/2+α′

1)(γ+αB
4 )−α3)

)
(6.37)

≤ exp
(−2n

[
1/2−α′′

1 − (1/2+α′
1)(γ+αB

4 )
]
α2

3

)= ε. (6.38)

Now if

d ≥ 2

[
(1/2+α′

1)(γ+αB
4 )+α3 + (eerr +α2)(1/2+α1)

(1/2−α′
1)(1−γ−αB

4 )

]
n, (6.39)

then with probability ≥ 1−ε−16(ε+ε+ ε̂)−8ε1,

W ≥ n
[
1/2−α′′

1 − (1/2+α′
1)(γ+αB

4 )
]
(d/2n − (1/2+α′

1)(γ+αB
4 )−α3) (6.40)

≥ (eerr +α2)(1/2+α1)n ≥ (eerr +α2)m. (6.41)

This means that if eq. (6.39) is satisfied there is a probability at most ε+16(ε+ε+ ε̂)+8ε1

that Alice can cheat and make Bob accept.

6.4.5. OT WITH AN IMPERFECT SINGLE PHOTON SOURCE
In this section we state more formally our impossibility result for a secure Oblivious
Transfer protocol. In particular we show that if a protocol satisfy Assumption 6.4.19,
then Protocol 6.2.7 allows dishonest Alice to cheat.

INFORMAL DESCRIPTION OF THE SETTINGS

We recall that dishonest Alice’s goal is to guess correctly the bit C that is given to honest
Bob by the protocol (the protocol gives him an random bit C and a bit string SC ). In
section 6.2.4 we already give a simple example on how an attack could work on a protocol
like Protocol 6.2.4. Here we explain informally what is the general form of the protocols
to which our impossibility result applies. In the next section we will make this setup
definition more precise. Our impossibility result applies to protocols of the following
form.

First phase In a first phase, called the quantum phase, Alice and Bob can used classical
and quantum communication. This phase outputs string X n

1 to Alice and a string
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XI and set of indices I to Bob, where XI is a string formed by the bits of the string
X n

1 that are placed at indices in I . In order to model the leakage of information
due to the multiphoton emissions (see section 6.2.4) we assume that Alice receives
two extra sets of indices IG and IB . This two sets are correlated to the set I . In
particular we will consider elements of IG are more likely to belong to I than ele-
ments in IB . In the simple example of Section 6.2.4, dishonest Alice could compute
these sets from the leakage information concerning the bases Bob has used in this
phase. Moreover, in this specific example we had that IG ⊆I and IG ⊆I c , where
I c is the complement of I .

Second phase The second phase of the protocol is purely classical, that is they only send
classical messages. Alice and Bob should use the data they got from the first phase
in order to compute the desired strings (S0,S1) and bit C that the OT protocol
should produce (see Definition 6.2.3).

Note that we don’t specify the specific form for the first phase, we simply require that
it outputs the strings X n

1 , XI and the set I with some probability distribution, as well as
the extra sets IG and IB when Alice is dishonest. The strategy we use to break security of
MDI OT protocols is a semi-honest strategy. This means that Alice will essentially run the
protocol honestly6 but record all the information from the communication between her
and Bob. In particular, in the quantum phase Alice extracts – from the quantum signal
Bob sends to the measurement station – information about set IG and IB before applying
the measurement that the station should normally apply. Of course our attack rely on the
fact that the set IG and IB are sufficiently large so that Alice gets enough statistics to have
a good guess of Bob’s bit C . In other word we need that Bob’s photon source leaks enough
information. This is captured in the second equation of eq. (6.42) in Assumptions 6.4.19.

After this quantum phase, we assume that Alice and Bob can post process the data
they received from the quantum phase, by using purely classical communication. Since
we assume that dishonest Alice is semi-honest, we will assume that she runs the post-
processing honestly but records all the information she receives from, or sends to Bob.

In the post-processing of Protocol 6.2.4 Bob chooses uniformly at random the bit C ,
and then renames the sets I and I c into I0 and I1 in such a way that I = IC . Bob then
sends (I0, I1) to Alice. The information (I0, I1) sent by Bob to Alice, should not by itself
reveal bit C . But because Alice holds the extra sets IG and IB , she can determine which
set from (I0, I1) corresponds to set I , and therefore she learns the value of bit C . In the
general settings, we will simply assume that from all the information Alice has she can
compute two sets I0 and I1 such that IC ⊆ I and I1−C 6⊆I . This is the second assumption
in Assumptions 6.4.19.

In the following sections, we describe in details how we generalize this idea of attack
to a more general settings.

SETTINGS DEFINITION

In this section we defined the settings in which our theorem holds. Theorem 6.4.20,
states that any protocol that has the form we describe below, and that is correct, and

6She still has full control over the measurement station. In particular everything that Bob sends to the mea-
surement station is considered to be in dishonest Alice’s possession.
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secure against Bob, can be attacked by dishonest Alice. That is, it is always possible for
Alice to correctly guess Bob’ bit C with sufficiently high probability. Dishonest Alice’s
cheating strategy in is given in Protocol 6.2.5.

In this section, all the random variables mentioned in Section 6.4.5,
X n

1 ,I , I0, I1,C , . . . will be redefined in a more abstract manner
In order to prove our result we will forget about the quantum part of the OT protocol,

and start directly in a scenario, in which Alice and Bob share from the start the type
of correlation they would have had by running a preparation phase similar to Protocol
6.2.4.

In particular we will assume that the Preparation phase gives the following to Alice
and Bob:

Honest Alice Alice gets a random bit string X n
1 with probability distribution PX n

1
.

Honest Bob Bob gets a random subset I ⊆ [n] with probability distribution PI , and the
string XI , whose bits are the bits of X n

1 that are indexed by i ∈I .

When one of the parties is dishonest we will assume they have the following additional
information as input:

Dishonest Alice Dishonest Alice gets the same X n
1 as when she was honest, plus the sets

IG , IB ⊆ [n], which are sets of indices satisfying the following:
IG ∩ IB =; and |IG ∪ IB | = γn for some γ ∈]0,1[.
∀i ∈ IG ∪ IB

- If i ∈I then i ∈ IG with probability 1/2(1+µ) or i ∈ IB with probability 1/2(1−
µ).

- If i ∉I then i ∈ IG with probability 1/2(1−µ) or i ∈ IB with probability 1/2(1+
µ).

γ represents the faction of rounds in which more than two photons have been
emitted (we should have γ≈ p≥2/(1−p0), the probability that more than two pho-
tons are emitted when at least one is emitted). µ ∈]0,1] models Alice’s probability
of guessing Bob’s basis conditioned on receiving several photons from Bob.

Note that this definition can be seen as first giving IG ∪ IB to Alice and then giving
her IG and IB through the probabilistic process described above.

Dishonest Bob When Bob is dishonest we will assume that he holds a classical register

K and a quantum register Q such that his min-entropy rate
Hmin(X n

1 |KQ)
n is smaller

than the one of honest Bob.

Let MB A be the random variable that describes the set of the messages sent from Bob
to Alice, and MAB be the random variable that describes the messages sent from Alice to
Bob. The random variable composed of these two variables will be called M , in other
words M := (MAB , MB A).

The output of honest Alice is (S0,S1) := ( f0(X n
1 , M), f1(X n

1 , M)) ∈ {0,1}l × {0,1}l , where
f0 and f1 are two functions. The output of honest Bob is (C ,SC ) :=
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(g (XI ,I , M), g̃ (XI ,I , M)), where g and g̃ are two other functions. These four func-
tions model the operations that honest Alice and Bob have to perform according to the
protocol they are running.

Before estimating Alice’s cheating probability (see Theorem 6.4.20), we will need the
following definition.

Definition 6.4.18. Let J ⊆ [n] be a set of indices. Let f0, f1 be the functions defined above.
We will say that J stabilises a function fa (a ∈ {0,1}) with respect to (w.r.t.) random string
X n

1 and random variable M when the value (xn
1 ,m) of random variable (X n

1 , M) is such
that J stabilises fa w.r.t. xn

1 and m. We will say that J stabilises the function fa w.r.t. xn
1

and m if x J c 7→ fa((x J c , x J ),m) is constant for all x J c s.t. Pr
(
(X n

1 , M) = ((x J c , x J ),m)
) 6=

0, where (x J c , x J ) denotes the string composed of the bits x J of and x J c at the positions
corresponding to the sets J and J c .

Intuitively this definition captures the notion of a function f depending only on the
values of the bits of X n

1 at positions indexed by the set J ⊆ [n].

ASSUMPTIONS AND MAIN THEOREM

In this section we state the assumptions we make to prove our theorem and prove Theo-
rem 6.4.20. Since we assume Alice is semi-honest her cheating strategy consists in mak-
ing her guess on Bob’s bit C using all the information she has collected during the proto-
col. Therefore we can consider that her cheating strategy is an algorithm she runs at the
end of the protocol on all her data. The cheating strategy we use is described in Protocol
6.2.7. The basic idea of the protocol is the following. At the end of the protocol Alice
has the two sets I0 and I1 that are correlated to bit C and set I in the following way. If
C = 0 then I0 ⊆ I and I1 6⊆ I . If C = 1 the situation is reversed (see previous section)7.
In themselves, these sets do not reveal the value of bit C since Alice should not know
anything about set I . However, since there has been information leakage during the
protocol, she does know something about set I . She knows that indices in IG are more
likely to belong to I than the ones in IB , and this allows her to guess with some proba-
bility which set I0 or I1 is a subset of I , and therefore it allows her to guess the value of
bit C . Let us state more precisely the assumptions we use to prove Theorem 6.4.20.

LetPF be the following statement: “∃F (·, ·) such that F (X n
1 , M) =: (I0, I1) where I0, I1 ⊆

[n] are such that IC stabilizes fC but not f1−C (w.r.t. (X n
1 , M)), and I1−C stabilizes f1−C but

not fC (w.r.t. (X n
1 , M))”, where C := g (X n

1 ,I , M).”

If PF is true then one can define α ∈]0,1] such that |I1−C \IC ∩ (IG ∪ IB )∩I | = (1−
α)|I1−C \IC ∩(IG ∪ IB )|, i.e. α is the fraction of rounds in I1−C \IC ∩(IG ∪ IB ) that are not in
I .

Assumptions 6.4.19. Let I0, I1,C , M , X n
1 ,I , IG , IB ,α, and µ be as defined above. Let δ ∈

]0,1/2]. Let κ := min
(∣∣I0\I1∩(IG ∪ IB )

∣∣; ∣∣I1\I0∩(IG ∪ IB )
∣∣). LetΩκ be the event: “κ≥ 1”. We

7They have to be correlated to C in this way for the OT protocol to be correct, and secure against dishonest
Bob.
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assume in Theorem 6.4.20 that:
PF is true,

Pr(Ωκ) is non-negligible in n,
(6.42)

Now we can state and prove our theorem that shows that Protocol 6.2.7 is a strategy
that allows dishonest Alice to to cheat.

Theorem 6.4.20. Let I0, I1,C , M , X n
1 ,I , IG , IB ,α, andµ be as defined above. Letδ ∈]0,1/2].

Let κ := min
(∣∣I0\I1 ∩ (IG ∪ IB )

∣∣; ∣∣I1\I0 ∩ (IG ∪ IB )
∣∣). Let Ωκ be the event: “κ≥ 1”. Let Pguess

be the maximum probability that Alice correctly guesses Bob’s bit C .
If Assumptions 6.4.19 are satisfied by the protocol run between Alice and Bob, and

if this protocol is correct, and secure against dishonest Bob, then dishonest Alice’s strategy
presented in Protocol 6.2.7 allows Alice to guess C with probaility Pguess = 1/2+adv, where
adv satisfies

adv ≥ Pr
(
Ωκ

)
×αµ. (6.43)

We can also prove that α≥ 1/n, which is not negligible in n.

Proof. In order to prove the theorem we will lower bound Alice’s guessing probability
Pguess, for a protocol satisfying Assumptions 6.4.19. In particular we want to show that
Pguess is larger than 1/2 by a non-negligible amount. Before doing that let us spell out
important consequences of a protocol being correct and secure against Bob.

Because we assume that PF is true, the sets (I0, I1) := F (X n
1 , M) are well defined. In

order to get correctness we should have that IC ⊆ I , and for having security against Bob it
is necessary that I1−C * I , where C is the bit held by honest Bob that Alice tries to guess.
Let us call b the bit that corresponds to dishonest Alice’s guess of Bob’s bit C . We can
then write,

Pguess = Pr(b =C ) = Pr(Ωκ)Pr(b =C |Ωκ)+ (1−Pr(Ωκ))Pr(b =C |¬Ωκ), (6.44)

≥ Pr(Ωκ)Pr(b =C |Ωκ)+ (1−Pr(Ωκ))1/2. (6.45)

From Assumptions 6.4.19 we have that Pr(Ωκ) is not negligible. Intuitively, saying
that Pr(Ωκ) is not negligible ensures that there has been information leakage during the
quantum phase of the protocol. If Pr(Ωκ) were negligible we already know by Theorem
6.4.9 that a protocol like Protocol 6.2.4 would be secure. As a consequence, we will focus
on computing Pr(b =C |Ωκ).

In Protocol 6.2.7, Alice chose uniformly at random an index ir ∈ Ir |I1−r ∩(IG ∪IB ) and
check whether ir ends up in IG or IB . The idea is that if r =C the probability that ir ends
up in IG is slightly higher than the one of ending up in IB . If r = 1−C it biased towards
ending up in IB . Therefore if she outputs b = r when ir ∈ IG , and outputs b = 1− r if
ir ∈ IB she will have a probability of guessing correctly bit C slightly higher than 1/2,
which is what we are trying to prove.
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Note that the event Ωκ depends on the “value” of the set IG ∪ IB , but is completely
independent on how IG ∪ IB is partitioned into the sets IG and IB . In particular the prob-
ability for a round in IG ∪ IB to be in IG is independent ofΩκ.

Let us now write Alice’s guessing probability conditioned on Ωκ, with r and ir as
defined by Protocol 6.2.7:

Pguess|Ωκ = Pr(b =C |Ωκ) (6.46)

= Pr(r =C |Ωκ)Pr(ir ∈ IG |r =C ,Ωκ)+Pr(r = 1−C |Ωκ)Pr(ir ∈ IB |r = 1−C ,Ωκ),
(6.47)

where r is a uniformly random bit chosen by Alice in Protocol 6.2.7. As a consequence,
Pr(r = C |Ωκ) = Pr(r = 1−C |Ωκ) = 1/2. From the definition of IG and IB , and their inde-
pendence fromΩκ we get that,

Pr(ir ∈ IG |r =C ,Ωκ) = Pr(ir ∈ IG |r =C ) = 1/2(1+µ), (6.48)

Pr(ir ∈ IB |r = 1−C ,Ωκ) = Pr(ir ∈ IB |r = 1−C ) = 1−1/2α(1−µ)−1/2(1−α)(1+µ).
(6.49)

Plugging this into the expression for Pguess|Ωκ we get that:

Pguess|Ωκ = 1/2
(
1/2(1+µ)+1−1/2α(1−µ)−1/2(1−α)(1+µ)

)= 1/2(1+αµ). (6.50)

As expected the probability that Alice correctly guesses the value of bit C is a bit higher
than 1/2.

Combining this with the fact thatκ≥ 1 is true with probability Pr(Ωκ) leads to eq. (6.43).
That is, Alice’s overall probability of guessing correctly bit C is still slighly higher than 1/2,
namely is is higher than,

1/2+Pr(Ωκ)×αµ.

As we stated earlier I1−C *I , meaning that at least one index in I1−C is not in I , and
since I1−C \IC ∩ (IG ∪ IB ) cannot be larger than the total length of the string X n

1 (which is
obviously n), we must have α≥ 1/n.

6.5. TECHNICAL DETAILS

6.5.1. WHY DOESN’T DISHONEST BOB GET ANY ADVANTAGE BY SELECTIVELY

DISCARDING ROUNDS WHEN ALICE USES A PERFECT SINGLE PHO-
TON SOURCE?

In this section we explain why for our proof we can consider that we can simply evaluate
the min-entropy bound of Lemma 6.4.5 as if Bob were honest in choosing which rounds
he announces to be lost. In other words we explain why dishonest Bob can’t get any
advantage by selectively discarding rounds.

In Protocol 6.2.2, Alice sends n′ BB84 states to Bob using a perfect single photon
source. This, by purification of the states she sends, is equivalent as to Alice preparing
n′ EPR pairs, and sending half of each pairs to dishonest Bob, and randomly measuring
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her halfs of EPR pairs in the X or Z basis. This allows us to delay Alice’s measurements
to the end of the preparation phase.

The bound we use for the min-entropy is independent of the details of the state. In-
deed the bound works as follows. For any state ρAn E (for some n ∈N), if Alice’s measure-
ments (modeled by the CPTP map MAn

1 7→X n
1

) on the systems An
1 (outputting bit string

X n
1 ) satisfy some condition (that is indeed satisfied when Alice randomly measures in

the X or Z basis [22]), then Hε
min(X n

1 |E)M (ρ) ≥ B(Hmin(An
1 |E)ρ/n) ·n, where B(·) is some

function that bounds the min-entropy rate.

Since the bounds applies to any state, one can then choose ρAn
1 E to be the state of the

protocol after that Bob (holding register E = KQ, where K is classical and Q is the quan-
tum state in his memory) has stored quantum information and after he has announced
which rounds are kept and which are not, but before Alice has measured. Using the
bounded storage assumption (logdim(Q) ≤ D) we can bound Hmin(An

1 |E)ρ ≥ −D . This
leads us to Hε

min(X n
1 |E)M (ρ) ≥ B(−D/n)·n as stated in Lemma 6.4.5. Note that this bound

is evaluated on the state conditioned on Bob keeping some particular rounds, but the
bound does not depend on the strategy he uses for choosing which rounds he keeps and
which he discards.

For Protocol 6.2.4 the same reasoning apply. Indeed even though we use a different
bound, the bound we use is also independent of the details states on which the entropy
is evaluated.

6.5.2. PROOF OF LEMMA 6.4.13
In this section we will explain how the honest party H ∈ {A,B} can use the decoy states
in order to estimate a lower-bound LH1 on nH

1 . To do so we will use techniques inspired
by [29]. In the following we will detail the analysis considering that Alice is honest. The
case when Bob is honest follows the same structure.

First we can observe that Protocol 6.2.5 is equivalent to a virtual protocol where Alice
first chooses the number k of photons she is sending according to a probability distri-
bution pk , and the encoding basis with probability pθ, and only after the station reveals
the measurement outcome o she chooses the signal intensity a ∈ {as , ad1 . . . adq } accord-
ing to probability distribution pa|k (this choice in independent from θ and outcome o).
The probability distribution pk and pa|k in the virtual protocol can be deduced from the
distribution pa , and pk|a of Protocol 6.2.5 via Bayes’ rule.

As a consequence for any set S A
k,o,θ of rounds where Alice has emitted k photons en-

coded in the basis θ (θ = 0 for the standard basis, and θ = 1 for the Hadamard basis) and
the measurement station (or dishonest Bob) reported measurement outcome o (with
o 6= failure), each subset of S A

k,o,θ corresponding to intensity a can be seen as a random

sample of S A
k,o,θ. Therefore we can use (classical) random sampling theory to estimate

L A1, like Chernoff’s bound for example. In particular we will use the following lemma
proven in Ref. [29],

Lemma 6.5.1. Let X1, . . . , Xn be n independent Bernoulli random variables such that
Pr(Xi = 1) = pi , and let X :=∑

i Xi and ζ := E(X ) =∑
i pi . Let x be the observed outcome of

X for a certain trial and Γ := x −p
n/2ln(1/ε) for a certain ε > 0. If ε, ε̂ > 0 are such that
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(2ε−1)1/ζL ≤ exp(3/(4
p

2))2 and (ε̂−1)1/ζL < exp(1/3) then x satisfies,

x = ζ+δ, (6.51)

except with probability ε+ ε+ ε̂, where δ ∈ [−∆,∆̂], with ∆ := g (x,ε4/16), ∆̂ := g (x, ε̂3/2)
and g (x, y) :=

√
2x ln(y−1). Here ε(ε̂) denotes the probability that x < ζ−∆ (x > ζ+ ∆̂).

This lemma is a variation of the Chernoff’s bound, where the bounds on the fluctu-
ations ∆(∆̂) do not depend on the expectation value ζ := E(X ) of the random variable X ,
but only on the observed value x of X (and the epsilons).

Let S A
k,o,θ be the set of rounds as defined above, and let X a

i |k,o,θ be 1 if the i th element

of S A
k,o,θ corresponds to an emission of a state (from honest Alice) with intensity a, and 0

otherwise. Let

X a
o,θ =

∑
k

|S A
k,o,θ |∑
i=1

X A
i |o,k,θ, (6.52)

with ζa
o,θ := E(X a

o,θ) = ∑
k pa|k |S A

k,o,θ|. Let xa
o,θ be an observed outcome of X a

θ,o . Then

applying Lemma 6.5.1 we have that for some (2ε−1)1/Γa
o,θ ≤ exp(3/(4

p
2))2, (ε̂−1)1/Γa

o,θ <
exp(1/3) with

Γa
o,θ = xa

o,θ−
√∑

a
xa

o,θ/2ln(1/ε), (6.53)

the following must be satisfied:

xa
o,θ =

∑
k

pa|k |S A
k,o,θ|+δa,o,θ, (6.54)

except with probability ε+ε+ ε̂, where δa,o,θ ∈ [∆a,o,θ,∆̂a,o,θ], with ∆a,o,θ = g (xa
o,θ ,ε4/16)

and ∆̂a,o,θ = g (xa
o,θ , ε̂3/2).

Since n A
1 = ∑

o,θ n A
1|o,θ it is enough to find a lower bound on n A

1|o,θ for all values of

(o,θ) in order to find a lower bound L A1 on n A
1 . Then using concentration bounds one

can write that for each value of (o,θ)

n A
1|o,θ ≥ pas |k=1|S A

1,o,θ|− g (pas |k=1|S A
1,o,θ|,ε1), (6.55)

except with probability ε1. For a fixed value of (o,θ) one can find a lower-bound on |S A
1,o,θ|

by minimizing |S A
1,o,θ| under the constraints given by eq. (6.54). This can be solved by

using linear programming [30], or we can use a simplified version of this reasoning to
find analytical (but looser) bounds. This is what we will be doing in the following section.

SIMPLE ANALYTICAL BOUND

In this section we propose to find a simple analytical bound on n A
1 , using the reasoning

and methods of the previous section. To do so we will minimize |S A
1,o,θ| for a fixed value
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for (o,θ). Moreover we will restrict ourselves to the use of only 2 decoy states and one
signal state, i.e. a ∈ {as , ad1 , ad2 }.

In the previous section we have split the rounds into many sets Sk,o,θ (1 set for each
value of k). Here we split the round into two sets S A

1,o,θ and S A
≥2,o,θ .

With this in mind we can rewrite equation (6.54) as the following system of inequali-
ties, 

x
ad1
o,θ +∆ad1 ,o,θ ≥ pad1 |k=1 · |S A

1,o,θ|+pad1 |k≥2 · |S A
≥2,o,θ|

x
ad1
o,θ − ∆̂ad1 ,o,θ ≤ pad1 |k=1 · |S A

1,o,θ|+pad1 |k≥2 · |S A
≥2,o,θ|

x
ad2
o,θ +∆ad2 ,o,θ ≥ pad2 |k=1 · |S A

1,o,θ|+pad2 |k≥2 · |S A
≥2,o,θ|

x
ad2
o,θ − ∆̂ad2 ,o,θ ≤ pad2 |k=1 · |S A

1,o,θ|+pad2 |k≥2 · |S A
≥2,o,θ|

(6.56)

Each of the four inequalities represents half a space delimited by a straight line in
R2. The two first inequalities define a region delimited by two parallel lines, and the
two last inequalities define another region delimited by two other parallel lines. The set
of four inequalities is then the intersection of these two regions, see Fig. 6.6. Since we
are optimizing a linear function with linear constraints the minimum is reached for one
of the extreme points of this region. Each of these points corresponds to the solution
of the system of equations formed by two of the inequalities from (6.56) (one for decoy
state 1 and one for decoy state 2) by changing symbols ≤,≥ into =. Since there are two
equations for each decoy state, the number of extreme points must be 4. They can be
found analytically by solving this system of equations. In the end the lower-bound L A1

is given by,

L A1 =
∑
o,θ

[
pas |k=1 |S1,o,θ|min − g (pas |k=1 |S1,o,θ|min,ε1)

]
, (6.57)

where |S1,o,θ|min is given by,

|S1,o,θ|min = min(V1,V2,V3,V4), (6.58)

with

V1 =
pad1 |k≥2(x

ad2
o,θ +∆ad2 ,o,θ)−pad2 |k≥2(x

ad1
o,θ +∆ad1 ,o,θ)

pad1 |k=1pad2 |k≥2 −pad1 |k≥2pad2 |k=1
(6.59)

V2 =
pad1 |k≥2(x

ad2
o,θ − ∆̂ad2 ,o,θ)−pad2 |k≥2(x

ad1
o,θ +∆ad1 ,o,θ)

pad1 |k=1pad2 |k≥2 −pad1 |k≥2pad2 |k=1
(6.60)

V3 =
pad1 |k≥2(x

ad2
o,θ +∆ad2 ,o,θ)−pad2 |k≥2(x

ad1
o,θ − ∆̂ad1 ,o,θ)

pad1 |k=1pad2 |k≥2 −pad1 |k≥2pad2 |k=1
(6.61)

V4 =
pad1 |k≥2(x

ad2
o,θ − ∆̂ad2 ,o,θ)−pad2 |k≥2(x

ad1
o,θ − ∆̂ad1 ,o,θ)

pad1 |k=1pad2 |k≥2 −pad1 |k≥2pad2 |k=1
. (6.62)
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|S A
1,o,θ|

|S A
≥2,o,θ|

p1

p2

p3 p4

Figure 6.6: Each of the line is defined by one of the four inequalities in (6.56). The red region is the set of
points that satisfies the four linear constraints from (6.56). Since we are optimizing a linear function with
linear constraints, by linear programming we know that the optimum is reached for one of the four extreme
points p1, p2, p3, p4, which are at the intersection of the lines. In the particular case of this figure min |S A

1,o,θ |
is reached in p3.
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6.5.3. FORMAL SECURITY DEFINITIONS FOR OT AND BC
In this section you can find the formal definitions for Randomized String Commitment
and for Randomized 1-out-2 (l ,ε)-Oblivious String Transfer. These definitions come di-
rectly from Refs. [13].

Remark 6.5.2 (on the abort events). The careful reader will see that the definitions below
do not mention any abort event. In fact our protocols specify the action a party has to
take when he wants to abort. In particular we ask the aborting party to output uniformly
random outcomes, so that even when aborting the security definitions are satisfied.

Definition 6.5.3 (Randomized String Commitment). Let τR denote the maximally mixed
state on a register R.

An (l ,ε)-Randomized String commitment scheme is a protocol between Alice and Bob
that satisfies the following three properties.

Correctness When both parties are honest, then there exists a state σC l
1C l

1F , called the

ideal state that is defined as:

• σC l
1F := τC l

1
⊗|accept〉〈accept |F ,

• The real state produced by the protocolρC l
1C̃ l

1F is ε-close to the ideal stateσC l
1C l

1F ,

ρC l
1C̃ l

1F ≈ε σC l
1C l

1F .

Security for Alice (against dishonest Bob) When Alice is honest, Bob is ignorant about
C l

1 before the Open phase:

ρC l
1B ≈ε τC l

1
⊗ρB .

The protocol is then said to be ε-hidding.

Security for Bob (against dishonest Alice) After the Commit phase and before the Open
phase, there exists an ideal state σC l

1 AB such that for any Open algorithm, describe

by the CPTP maps OA B , in which Bob is honest, we have:

• Bob almost never accepts C̃ l
1 6=C l

1:
for (1C l

1
⊗OAB )(σC l

1 AB ) we have Pr(C̃ l
1 6=C l

1and F = accept ) ≤ ε.

• The real state produced by the commitment phase is close to the ideal state:

ρAB ≈ε σAB .

The protocol is then said to be ε-binding.

Definition 6.5.4 (Randomized 1-out-2 (l ,ε)-Oblivious String Transfer (OST)).
Let τR denote the maximally mixed state on register R.

A fully randomized 1-out-2 (l ,ε)-Oblivious String Transfer scheme is a protocol be-
tween two parties, Alice and Bob, that satisfies the following three conditions.
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Correctness If both parties are honest there exists an ideal state σS0S1C SC , where S1,S1 ∈
{0,1}l and C ∈ {0,1}, such that:

• The distribution over S0,S1 and C is uniform:

σS0S1C = τS0 ⊗τS1 ⊗τC (6.63)

• The real state ρ produced by the protocol is ε-close to the ideal state:

ρS0S1C ŜC
≈ε σS0S1C SC (6.64)

Security for Bob If Bob is honest, there exists an ideal state σAS0S1C such that:

• Alice is ignorant about C :

σAS0S1C =σAS0S1 ⊗τC . (6.65)

• The real state ρ produced by the protocol is close to the ideal state:

ρAC ŜC
≈ε σAC SC (6.66)

Security for Alice If Alice is honest, there exists an ideal state σS0S1BC such that:

• Bob is ignorant about S1−C :

σS0S1BC =σSC BC ⊗τS1−C . (6.67)

• The real state ρ is close to the ideal state:

ρS0S1B ≈ε σS0S1B . (6.68)
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CONCLUSION

This is a concluding chapter summarizing the scientific and technical of this thesis. We
also provide an outlook of the possible future research.
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7.1. SUMMARY OF RESULTS
In this thesis we have proven security in the of different protocols in various flavours of
the device-independent settings, with a specific focus on two-party cryptography proto-
cols and key distribution/agreement protocols.

• We have improved security of device independent (DI) two-party cryptography in
the IID settings, by using a completely different proof techniques as compare to
previously known results. In particular, our results shows that an adversary needs
at least twice as quantum much memory in order to cheat as compare to what
previous results showed. This statement can be reversed as follows. For the same
security (against the same adversary) our proof shows that one needs to run the
protocol with half as many rounds as compare to previous results.

• We have propose a new protocol for DI Conference Key Agreement and proved
its security. This new protocols reduces communication complexity of protocols
based on multiple use of DI Quantum Key Distribution protocols by the use of
GHZ states instead of Bell pairs. We compare the key rate of the two approaches.
In some network architecture our mixing the two approach can be beneficial in
terms of key rate, and in terms of the quantum resources available in a network.

• We have optimized the key rate of existing DI Quantum Key Distribution protocols,
and compare the key rate such a protocol can achieve when one assume the de-
vices to be IID as compare to the full general case. We also “benchmark” different
experiment platforms on which a DI Quantum Key Distribution experiment could
be performed, and see how far each of these platforms is to allow the realization of
such experiment.

• We have explored two-party cryptography in the Measurement-Device Indepen-
dent (MDI) settings. In particular we proposed protocols for Bit Commitment and
Oblivious Transfer and proved their security when the party use a perfect single
photon source. Surprisingly we find that, when the single photon source is not
perfect, some class of protocol for Oblivious Transfer cannot be secure in the MDI
settings. One of the main interest of working in the MDI scenario compare to the
full DI scenario, is that usually protocols in the former scenario are more efficient
than in the latter, while providing with good security guarantees in practice.

We hope that we have contributed to close the gap between theoretical security state-
ments and practical security for all the protocols based on the cryptographic primitives
mentioned in this thesis.

7.2. OUTLOOK
In this section we will discuss some possible extension of the work performed in this
thesis.

• Can the impossibility result proven in Chapter 6 be generalized? Answering this
question would be a direct extension of the work presented in Chapter 6. If the
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answer to this question is yes, then one can ask how general this impossibility
can be? These questions have obvious practical implication, but they also have
more fundamental implications. Indeed in the quantum realm, Bit Commitment
and Oblivious Transfer are known to be equivalent [1] in opposition to classical
realm in which they are not. If this impossibility result can indeed be generalized,
it shows that there is something fundamentally different between the MDI setting
and the trusted settings.

• Can we improve further the lower bounds on the size of the memory required
for an adversary to cheat in a DI two-party cryptography protocol? Previous re-
sult showed (under the IID-Assumption) that there is a DI two party cryptography
protocol secure against an adversary holding at most q ≤ 0.22n qubits of memory
(where n is the number of qubits sent in the protocol). In Chapter 3 we improve
this and show that the same protocol is in fact secure as long as the adversary holds
at most q ≤ 0.45n qubits of memory. However we do not reach yet the bounds of
the trusted device scenario in which it has been proven that analogous protocols
are secure as long as the adversary holds at most q ≤ n −O (log(n)) [2]. Closing the
gap between the bounds proven in the DI scenario and the bounds proven in the
trusted device scenario would make DI protocols more efficient.

• Explore composability of DI two-party cryptography protocols. The security def-
initions we have used in this thesis do not necessarily guarantee security in all con-
texts in which one may wish to use these protocols. Some work in this direction
have been made [3], however these proofs only apply to the trusted device model.
It is not clear how these composability results can generalize to the DI model. In
particular it is known that even for QKD, usual composability results are invalid in
the DI model [4] when the devices are re-used in an other protocol.

• Use computational assumption in combination with the Noisy Quantum Stor-
age Model in order to improve security of two-party cryptography. Computa-
tional assumption often have the problem that, if the adversary get extra compu-
tational power after the execution of the protocol, it can then break security of this
protocol. The Noisy Quantum Storage Model solves this problem. The security for
two party cryptography in this model is everlasting, meaning that if the memory
assumption were true during the execution of the protocol then no gain in power
after the execution will ever allow the adversary to break security. However one
might asks whether in the far future the Noisy Quantum Storage Model will still be
valid. Indeed if in the future quantum memory becomes cheap and reliable one
would expect an adversary to hold a very big and good memory. If one wants to
enforce security in this scenario then the communication complexity of the proto-
col would make them very inefficient. One way of addressing this question might
be to combine the Noisy Quantum Storage Model with computational assump-
tions. The computational assumption would protect the protocol for a sufficiently
long time ∆t , for example one or two years, after what we consider that the state
stored in the adversary’s memory has decohered. This would force the adversary
to store a state for a long time, while the computational assumption only need to
hold for this times∆t . Very few results have been established in that direction, but
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we can still mention [1] in which it is proven that quantum protocol for two party
cryptography can be realised under some computational assumption.

REFERENCES
[1] I. Damgård, S. Fehr, C. Lunemann, L. Salvail, and C. Schaffner, Annual International

Cryptology Conference (2009) pp. 408–427.

[2] F. Dupuis, O. Fawzi, and S. Wehner, Entanglement sampling and applications, IEEE
Transactions on Information Theory 61, 1093 (2015).

[3] D. Unruh, Advances in Cryptology – EUROCRYPT 2011, edited by K. G. Paterson
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2011) pp. 467–486.

[4] J. Barrett, R. Colbeck, and A. Kent, Memory attacks on device-independent quantum
cryptography, Phys. Rev. Lett. 110, 010503 (2013).

http://dx.doi.org/10.1109/TIT.2014.2371464
http://dx.doi.org/10.1109/TIT.2014.2371464
http://dx.doi.org/10.1103/PhysRevLett.110.010503

	Curriculum Vitæ
	List of Publications
	Summary
	Samenvatting
	Introduction
	Challenges of Device-Independence
	Chapter Overview
	titleReferences

	Preliminaries
	Discrete Probability Theory
	Discrete Probability Spaces
	Random Variables

	Basics of Quantum Information Theory
	Hilbert Spaces, and Linear Operators
	Quantum Systems and Quantum States
	Evolution of Quantum Systems and Quantum Measurements
	Norms and Distance Measures
	Non Locality and CHSH inequality

	Entropies
	Min- and Max-Entropy
	Some Additional Properties
	Entropy Accumulation Theorem (EAT)

	Cryptography
	Device Independence (DI)
	Key Distribution/Agreement
	Two-party cryptography
	Position Verification (PV)

	titleReferences

	Device-independence for Two-Party Cryptography and position verification with memoryless devices
	Introduction
	Weak String Erasure
	Position Verification
	Methods

	Device-Independent Guessing Game
	Preliminaries
	Guessing games and results

	Applications
	Device-Independent Weak String Erasure
	Device-Independent Position Verification

	Conclusion
	Technical Details
	Technical Lemma
	Proof of the Key Lemma
	Cheating Strategy using unlimited quantum channels

	titleReferences

	Fully device-independent Conference Key Agreement
	Introduction
	Results
	Preliminaries

	From self-testing to Device-Independent Conference Key Agreement
	From CHSH inequality to ``Parity-CHSH'' inequality.
	Device-Independent Conference Key Agreement

	Asymptotic key rate analysis
	Conclusion
	titleReferences

	Towards a realization of device-independent quantum key distribution
	Introduction
	Quantum key distribution
	The device-independent scenario
	Device-independent quantum key distribution protocols
	Security proof of DIQKD
	Experimental DIQKD

	Results
	Key Rates
	Comparison of key rates for depolarizing noise model
	The state-of-the-art experimental DIQKD

	Discussion
	Methods
	Notation and definitions
	Security of DIQKD
	Security analysis

	Technical Details
	Definitions
	Security proof
	Proof of Theorem 5.4.10

	titleReferences

	Oblivious-Transfer is harder than Bit-Commitment in realistic Measurement-Device Independent settings
	Introduction
	Results
	Bit Commitment (BC) with perfect single photon sources
	Oblivious Transfer (OT) with perfect single photon sources
	Bit Commitment with imperfect single photon sources
	OT with an imperfect single photon sources

	Discussion
	Methods
	Useful Lemmas and Theorems
	Bit Commitment (BC) with perfect single photon sources
	Oblivious Transfer (OT) with perfect single photon sources
	Bit Commitment with an imperfect single photon sources
	OT with an imperfect single photon source

	Technical Details
	Why doesn't dishonest Bob get any advantage by selectively discarding rounds when Alice uses a perfect single photon source?
	Proof of Lemma 6.4.13
	Formal Security Definitions for OT and BC

	titleReferences

	Conclusion
	Summary of Results
	Outlook
	titleReferences


