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2.3 Strong solution of (a) an Itô SDEs (2.25) for a = 7, b = 2, ∆t = 2−8
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Chapter 1
Introduction

All over the world, ecosystem in shallow waters is being threatened because of pollution
and human activities such as dredging which are constantly increasing throughout the
years. This can be disastrous and have indirect and direct negative impacts on ecosystem.
The increasing importance of this issue has contributed to the global awareness of the
importance the environment to the societies. The public opinion awareness has been
fostering the need for a better understanding of how these processes behave in the
shallow waters. Numerical simulation of how particles or pollutants behave in a water
body is fundamental. This helps to locate for instance, a waste water discharge for
accurate predictions of these processes and how to optimise dredging activities in the
harbour for example. Therefore, the theoretical foundations to support the transform
and transport in water bodies are of paramount importance.

In general, a coastal zone has a number of different functions such as housing, fishing
agriculture, water supply navigation and recreation. All these functions are intercon-
nected and often are the cause of conflicting interests. Coastal zone is not limited to
just the boundary between the land and sea, but extends considerably seaward and land-
wards of the coastline. There are many socio-economic activities taking place day to day
hence the coastal study is very important. Some of the activities are human influenced
such as the need for continuous dredging of natural obstructions in the harbours which
is an economic necessity to provide passage for large container ships. But this can in
one way cause siltation and deposition of sediments to unwanted locations which might
lead to an environmental loss.

Furthermore, growing industrialisation in the coastal zone has increased the pollution
in rivers, sea and lakes. Therefore the fact that shallow waters such as that in coastal
zone is important to humankind, it is therefore necessary to carry out research that
can contribute to answering some question so as to make it sustainable. The dissolved
materials in shallow waters need to be accurately predicted, so numerical simulation
plays a vital role.

Transport of dissolved and suspended matter in shallow waters is generally described
by the advection-diffusion equations(ADEs). This type of mathematical model is in the

1



2 CHAPTER 1. INTRODUCTION

form of partial differential equations(PDEs). They describe the changes and variations
of the concentrations of pollutants or sediment transport in space and time.

On the other hand, an alternative way to describe transport processes in shallow
waters is to consider the matter consisting of a large number of particles whose move-
ment is partly random due to the small turbulence in the fluid [32, 21]. This type of
mathematical model is stochastic in nature and is in the form of stochastic differential
equations which is often known as particle model. Often Lagrangian numerical technique
solves the particle model numerically by the following tracks of particles.

The behaviour of the movement of each individual particle is simulated by decom-
posing the movement of a particle into a drift and a diffusion part [29, 51, 4, 15, 40].
The diffusion part is a noise term in which the rapidly fluctuating physical processes are
modelled by Brownian process or coloured noise processes [28, 32]. Therefore, the im-
plementation of a numerical method for the stochastic differential equations requires the
sampling of the Wiener process to approximate the white noise by means of computer
generations of pseudo-random numbers [32, 34, 35]. From the theoretical point of view
this method does not have spatial error instabilities.

For a particle model to give a better solution, a large number of samples is re-
quired. This demand considerably increase in computational costs in the transport
models. There are several ways of mitigating the problem, one way is by using adap-
tive schemes with different resolutions. Variable time step size is implemented in the
Lagrangian particle tracking so as to avoid unnecessary smaller step size. Another,
more general approach for reducing the required computer time is to use more pow-
erful computers or distributed computing to speed up the computations. The use of
cluster is there to reduce this problems at a very low cost. The parallel computing in
both hydrodynamic and transport models in shallow waters often resort to the domain
decomposition techniques [11, 14, 38, 60, 13]. However, the dynamical effects of tides
can lead to a very high load imbalances when domain decomposition is implemented.
There are ways that can be found to be useful in minimizing of load balance problem,
for example in his thesis [14] Costa used both the mixture of the so called scattered
partitioning and dynamic load balance. However, in this thesis particle decomposition
parallel approach is implemented. Regardless of the dynamics of the hydrodynamics, if
well designed, the use of particle decomposition approach can be found to be useful to
minimise load imbalances. Furthermore, the Dutch region constitutes the main real-life
application of the model. In this area, the North sea receives pollution, for example
released from the rivers such as the Rhine, Meuse and so forth. The main contributor
of pollution is the river Rhine [20]. Many studies have been conducted on pollution in
this part [28, 51, 20].

1.1 Research Objectives

This thesis intends to address two distinct areas concerning the simulations of the trans-
port of dissolved but inactive materials in the shallow waters. The first part focuses on
the modelling aspects such as
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1.1. RESEARCH OBJECTIVES 3

(I.1) Designing/formulation of the particle model for pollutants transport that corrects
the short term behaviour of the movements of the particles shortly after the deploy-
ment of the pollutants in shallow waters. The displacement of the particle shortly
after the deployment is correlated with time. But the Wiener process assumes
that the increments are independent throughout. Therefore, instead of using the
Wiener process, we correct this by using the colored noise where the velocity of the
particle is as well considered. The model is designed in such a way that eventually
it is consistent with the advection-diffusions when the time scale is larger than the
smallest time scale known as the Lagrangian time.

(I.2) To modify the particle model in part (I.1) to suite the simulation of sediment
transport in shallow waters. It is done by using probabilistic concept to include in
the particle model the modelling of the deposition and erosion processes. In this
case the noise term is modelled by using the Wiener process. This is followed by
showing the consistency of the designed particle model with the Eulerian sediment
transport model. Therefore, the simulation parameters for the particle model will
be adapted from the Eulerian transport model. Because of the relative easiness
of the numerical implementation and modification of the particle model, in this
thesis the particle model for sediment transport is implemented.

The second part focuses on parallel and distributed simulation and variable time step
size.

(II.1) The implementations of the numerical scheme of the particle model sequentially for
both pollutants and / or sediments transport in shallow waters. The inputs such
as water flow fields and depths are computed separately by the two dimensional
hydrodynamic model [49]. From the theoretical point of view it is known that
for accurate solutions of particle concentrations to be attained, a large number of
samples is required. The accuracy is inversely proportional to the square root of
the number of samples [28, 35, 2, 4]. Thus, sometimes a computer with one pro-
cessor fails. Therefore, this thesis resorts to designing a parallel implementations
of particle model so as to come up with an efficient and robust model for both
pollutants and sediment transport processes.

(II.2) In part (I.1) and (I.2) above, a fixed time step size was used in the stochastic
differential equations for the simulation of particle transport using realistic data
from the Dutch coastal waters. Nevertheless, when using fixed step size in the
stochastic differential equations, the accuracy of a numerical solution is not always
guaranteed. Fixed time step size implementations for the numerical solutions of
SDE have limitations for instance, when the SDE being solved is stiff. This will
force the use of very small time step sizes in the simulations [6, 24].

In addition, the use of fixed smaller time step sizes may become unnecessary and
might lead to high computations costs. Therefore, this thesis also designs a particle
model that uses dynamic variable time step sizes to get the accurate solution at
minimum costs. The implementation of adaptive time step sizes requires the use

3



4 CHAPTER 1. INTRODUCTION

of schemes of higher strong order of convergence [6]. Therefore, in this thesis,
two explicit strong order schemes are embedded in the implementation of dynamic
variable time step sizes. This makes it possible to compute an error efficiently
at each time step. The improvement of the higher order in stochastic schemes is
mainly for the correction of the diffusion part [34]. To achieve this, a diffusion
coefficient function that varies with the locations of the domain is introduced in
the particle model. In this thesis the diffusion coefficient function is modelled in
such a way it is constant when the particle is far from the boundary and it goes to
zero when the particle approaches the boundary. This way it is guaranteed that the
particle will not cross the boundary. Again to further speed up the computations, a
parallel version of the particle model with variable time step sizes is implemented.
The speedup and efficiency are measured on a multi-computer cluster.

This thesis uses the Lagrangian particle model approach. By designing an efficient
particle model for transport of materials in coastal waters, we hope to contribute to
solving the transport problems in shallow waters.

1.2 Outline of the thesis

Following this general introduction, chapter 2 gives a detailed account of the necessary
theory of stochastic differential equations(SDEs) which is going to be used in this re-
search. The theory of SDEs is described here and the connection between the PDEs and
the SDEs is described too.

In chapter 3, a new driving force known as coloured noise is introduced to drive the
SDEs. Unlike the classical Brownian motions which are usually used as driving forces
whose increments are independent, the coloured noise forces are correlated in time for
time scales that are very short [42, 32]. By using coloured noise forces it becomes possible
to predict accurately the spreading of a cloud of pollutants shortly after its deployment.
The developed general particle model that is driven by the coloured noise is called
Random flight model (RFM). It is eventually applied to the Wadden sea for prediction
of the dispersion of pollutants. Besides, the RFM turns out to behave the same manner
as the Brownian motions when the simulation period is long enough, therefore it is only
recommended for short term scale. The results were presented in the conference [8] and
the extended paper is submitted to the journal.

In chapter 4, the two-dimensional SDEs for simulating sediment transport is devel-
oped. We use probabilistic concepts to incorporate in the model the extra equations for
sedimentation and suspension of sediment particles. This is followed by showing that
the particle model is consistent with the well-known two dimensional Eulerian transport
model with the source and sink terms included. The fact that the particle model is
relatively easy to implement [28, 4, 56], in this chapter, the parameters from Eulerian
transport model are adapted in the numerical implementation of the particle model.

The North sea provides the real flow data that are used as inputs in the particle
transport model. These real data of water velocities and water depth are computed by

4



1.2. OUTLINE OF THE THESIS 5

the two-dimension hydrodynamic model known as WAQUA [49], are used as the input
in the particle model. This work was published in the Journal [9].

Chapter 5 specifically considers the improvement of the numerical implementation
of the particle model and deals with aspect of parallel processing in the particle model.
It is well known that when using particle models, a large number of particles is required
in order to get accurate results [21, 31, 40]. In that respect, it is required to use a large
number of particles in the simulation of sediment transport. However, the computing
time usually increases with a number of particles. Consequently the simulation effort
is slowed. Fortunately, particles are assumed to be independent of one another. This
property favours the application of parallel computing [37]. A parallel computer is a set
of processors that work cooperatively to solve a computational problem. This definition
is broad enough to include parallel supercomputers that have hundreds or thousands
of processors, networks of stations, multiple processor workstations, and embedded sys-
tems [22]. Thus, this chapter is wholly devoted to describing and implementing several
experiments of parallel simulation of sediment transport. Furthermore, the speedups, ef-
ficiency and load balance are measured on a Beowulf cluster. The results were presented
in [11], and the extended paper is submitted to the Journal of Parallel and Distributed
Computing.

Chapter 6 deals with more realistic aspects of the physical processes and introduces
the adaptive scheme that uses variable time step sizes in the particle model. The main
focus of this chapter is the derivation and efficient implementation of an adaptive scheme
for numerical integration of the underlying sets of SDEs. The size of each integration
time step near the boundary is determined using two numerical schemes, one with strong
order 1 convergence, the other of strong order 1.5, otherwise we use the aforementioned
order 1 scheme and another scheme of strong order 2. By comparing the differences, it is
possible to estimate the error and therewith the optimal step size satisfying a given error
tolerance criteria. Moreover, the algorithm is developed in such away that it allows for
a completely flexible change of the time step size while guaranteeing correct Brownian
paths. Part of the results has been presented and published in [12].

Experience has shown that parallel computing works for many real life scientific and
engineering applications. Therefore, the particle model parallel computing on multiclus-
ter is also designed in this chapter so as to reduce the computing time. The software
implementation uses the MPI library and allows for parallel processing. By making
use of internal synchronisation points it allows for snap shots and particle counts to be
made at given times, despite the inherent asynchronicity of the particles with regard to
time. Several experiments of parallel computers are carried out and the analysis of the
performances such as speedup and efficiency on a DAS2 Beowulf clusters. The SDEs
under consideration model transport of pollutants in shallow waters forced by Brownian
motion and were used in a realistic simulation carried out in the North-sea waters.

The last chapter of the thesis, Chapter 7, presents the conclusions of this research.
Furthermore, it also gives recommendation as well as directions for further research.

Most chapters in this thesis have been previously published as conference /Journal
papers. Consequently, a slight overlap between chapters, especially in the introductory

5
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sections is inevitable.
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Chapter 2
Stochastic modelling of advection-diffusion
processes

2.1 Introduction

The discussions about the deterministic models and stochastic models are succinctly
described in this chapter. The connection between the advection-diffusion equation
and the partial differential equation known as Fokker-Planck equation is discussed. By
doing so we have derived the underlying stochastic differential equations (SDEs). The
difference between the Itô and Stratonovich calculus is briefly examined as well as the
concepts of strong and weak convergence. The numerical schemes such as Euler and Heun
as well as the transformation between the Itô and Stratonovich integration approach are
discussed [42, 3, 32, 35, 34].

The numerical simulation of the transport of dissolved substances has become an
increasingly important tool. It is used for prediction of pollution in shallow waters or in
the atmospheric environment, for example. In addition, water quality management and
environmental impact assessment of engineering facilities require numerical models. In
general, the resolution of such models is based on the deterministic solution of the ADE
through the use of Eulerian models [19, 13] and Eulerian Lagrangian models [19, 13, 56].

In ADE, often an Eulerian approach is used, it can discretise the computational
domain by either dividing it in uniform or unstructured grids, the simplest versions for
this type of approach are well reported [19].

These methods do not make explicit use of stochastic concepts, which can be seen
as a disadvantage in the understanding of the underlying physical processes involving
randomness.

On the other hand, Lagrangian particle models (LPMs) have been applied to the
simulations of pollutants in both underground water [54, 47] and shallow water bodies
such as river or estuary [28, 51, 17]. One of the main advantages of the particle tracking
methods comes from the direct use of stochastic concepts, by explicitly assuming that

7



8 CHAPTER 2. STOCHASTIC MODELLING OF ADVECTION-DIFFUSION PROCESSES

the motions of a particle in a water body is a Markov process. Direct use of stochastic
concept to analyse numerical formulation can bring a physical meaning to the associated
numerical errors [14].

Stochastic differential equations (SDEs) play a paramount role in a wide range of ap-
plication areas, including biology, chemistry, epidemiology, mechanics, micro-electronics,
economics. More detail on SDEs calculus can be found in standard textbooks such
as [42, 3, 34, 41, 26].

2.2 Wiener Processes

A Wiener process can be defined as follows:

Definition 1 Wiener Process
A Wiener stochastic process W (t), t ∈ [0,∞), is said to be Gaussian with the following
properties

1. W (0) = 0

2. For 0 < t0 < t1 < t2 <, . . . < tn , the increments W (t1) −W (t0), . . . ,W (tn) −
W (tn−1) are independent.

3. For arbitrary t and ∆t > 0, W (t + ∆t) −W (t) has a Gaussian distribution with
mean 0 and variance ∆t. That is ∆W (t) ∼ N[0,∆t].

Standard Wiener process sometimes is called Brownian motion in general has the prop-
erties:

W (0) = 0, w · p · 1, E(W (t)) = 0, Var[W (t)−W (s)] = t− s, for all 0 ≤ s ≤ t

The properties E[W (t)(W (s)] = min(s, t) can be used to demonstrate the independence
of the Wiener increments. Let us assume that the time interval : 0 ≤ t0 < . . . < ti−1 <
ti < . . . tj−1 < tj . . . < tn , thus

E[(W (ti)−W (ti−1))(W (tj)−W (tj−1))] = E(W (ti)W (tj))− E(W (ti)W (tj−1))
− E(W (ti−1)W (tj)) + E(W (ti−1)W (tj−1))
= ti − ti − ti−1 + ti−1 = 0.

Where the increments (W (ti)−W (ti−1)) and (W (tj)−W (tj−1)) are independent. More
information on this concept is found in [16, 42, 3, 32].

For computation purposes, it is worthy to consider a discretised version of Wiener
motion [16], for example, where W (t) is specified at discrete t values. Hence for a fixed
time step size, we set ∆t = T

N for some positive integers N and let Wk denote W (tk)
with tk = k∆t. Thus, an initial Wiener process at t = 0 is zero, that is, W (0) = 0 with
probability 1, and condition 2 and 3 in section 2.2, tell us that

Wk = Wk−1 + ∆Wk, k = 1, 2, . . . , N,

8



2.3. WHITE NOISE 9

where the increment ∆Wk is an independent random variable of the form
√

∆tN[0, 1].
Let us do one simulation of the discretised Wiener motion over [0, 1] with N = 1000
computed. The result of a typical Brownian motion path is illustrated in Figure 2.1.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

t

W(t)

Figure 2.1: A Wiener path

2.3 White noise

White noise ξ(t) is an important example of a stochastic process which is of purely
random process. It is Gaussian, stationary process with 0 mean and constant spectral
density. It is can be interpreted as the derivative of the Wiener process, but only in
generalized sense because Wiener process is nowhere differentiable (see [3, 32, 34, 42],
for example):

ξ(t) =
dW (t)
dt

(2.1)

W (t) =
∫ t

0
ξ(s)ds.

The variance of a Wiener process satisfies Var(W (t)) = t and its mean remains at 0.
Thus, typical sample paths of the Wiener process attain larger values in magnitude as
time increases, and consequently the sample paths of the Wiener process are not of
bounded variation. Based on many engineering situations for example, one is led to
assume that ξ(t) has at least approximately, these properties

(i) t1 6= t2 ⇒ ξ(t1) and ξ(t2) are independent.

9



10 CHAPTER 2. STOCHASTIC MODELLING OF ADVECTION-DIFFUSION PROCESSES

(ii) {ξ(t)} is stationary that is the distribution {ξ(t1 + ∆t), ξ(t2 + ∆t), . . . ξ(tk + ∆t)}
does not depend on ∆t. Thus, the white noise is considered to be a stationary
Gaussian stochastic process.

(iii) E[ξ(t)] = 0 for all t.

It turns out that there does not exist any reasonable stochastic process satisfying (i) and
(ii) thus a process ξ(t) can not have continuous paths [32, 3]. Nevertheless, it is possible
to represent ξ(t) as a generalized stochastic process. Note that, the assumption (i), (ii)
and (iii) on ξ(t) suggest that W (t) has independent increments with zero mean and has
a continuous paths and it is nowhere differentiable ([3, 42]).

As in [3], for example let us consider 1-dimensional white process. White noise has
a constant spectral density f(λ) on the entire real axis. More detailed information on
this concept can be found for example in [42]. If E[ξ(s)ξ(t+ s)] = C(t) is the covariance
function of ξ(t), then, the spectral density is given:

f(λ) =
1
2π

∫ ∞

−∞
e−iλtC(t)dt =

c

2π
, ∀ λ ∈ <1. (2.2)

The positive constant c without loss of generality can take a value equals 1. Nevertheless,
the white noise does not exist in the traditional sense because equation (2.2) is compatible
only with the choice C(t) = δ(t) where δ is the Dirac’s delta function [3]. Notably, we
would have

C(0) = E[W 2(t)] =
∫ ∞

−∞
f(λ)dλ = ∞.

Since C(t) = 0 for t 6= 0 the values ξ(s) and ξ(s+ t) would be uncorrelated for arbitrary
small values of t a fact that explains the name purely random process. Because of
the independence of the values at every point, white noise is useful mathematically for
describing rapidly fluctuating random phenomena for which the correlation of the state
at time s when |t − s| is increasing becomes small very rapidly [3]. White noise ξ(t)
can be approximated by an ordinary stationary Gaussian process X(t), for example one
with covariance:

C(t) = ae−b|t|, (a > 0,b > 0),

it can be shown (see Appendix A) that such a process has a spectral density.

f(λ) =
ab

π(b2 + λ2)
.

If we now let a and b approach ∞ in such a way that a
b →

1
2 , we get

f(λ) → 1
2π
, ∀ λ ∈ <′, C(t) =


0 t 6= 0,

∞ t = 0
,

∫ ∞

−∞
C(t)dt → 1,

so that C(t) → δ(t), that is, X(t) converges to ξ(t) [3, 32, 35].

10
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2.4 Modelling

2.4.1 Particle Tracking Models

Let us denote the state of the physical system as x(t) in the following ordinary differential
equation:

dx

dt
= f(x, t), x(t0) = x(0), (2.3)

The differential equation (2.3) can be written as

dx = f(x, t)dt,→ x(t) = x(0) +
∫ t

t0

f(x(s), s)ds,

Thus x(t) = x(t|x0, t0) is a solution with initial condition x(t0) = x0. ODE becomes
SDEs when we consider the uncertainty in the model, the SDEs governs the time evolu-
tion of the process X satisfies the following equation in some sense.

dX(t)
dt

= f(X(t), t) + g(X(t), t)ξ(t), X(t0) = x0. (2.4)

The stochastic process ξ(t) models uncertainties in the underlying deterministic differ-
ential equation. The initial condition is also assumed to be a random variable and
independent of ξ(t), essentially, equation (2.4) should be a Markov. This implies that
future behaviour of the state of the systems depends only on the present state and not
on its past [3, 42].

2.4.2 Stochastic differential equations

The stochastic differential equations(SDEs) are often connected to the partial differential
equations (PDEs). The random movement and fluctuations of the displacement of the
particle are often described by the Langevin equation [3, 32]) written as a Markovian
stochastic differential equation:

d

dt
Xi(t) = fi(Xi(t), t)︸ ︷︷ ︸

deterministic

+
2∑

j=1

gi,j(Xi(t), t)ξj(t)︸ ︷︷ ︸
stochastic

, i = 1, 2. (2.5)

Where (X1, X2)T is the position of a particle, f is the drift vector and g the noise tensor.
It is now convenient to rewrite the stochastic differential equation (2.5) by the aid of
Eqn. (2.1):

dXi(t) = fi(Xi(t), t)dt+
2∑

j=1

gi,j(Xi(t), t)dWj(t), i = 1, 2. (2.6)

11
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Where the Wiener increment dWj(t) = ξj(t)dt expresses the stochastic influence of the
process [32]. The increments of Brownian motions possess these properties:

E[dWj(t)] = 0

E[dWi(t1)dWj(t2)] =


0 if i 6= j or t1 6= t2

dt1 if i = j and t1 = t2.

In one dimensional case Eqn. (2.6) can be simplified into the following stochastic differ-
ential equation, for 0 ≤ t0 ≤ t ≤ ∞.

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t), X(t0) = x0. (2.7)

Or the integral form of (2.7) can be represented as follows:

X(t) = X(t0) +
∫ t

t0

f(X(s), s)ds+
∫ t

t0

g(X(s), s)dW (s). (2.8)

To find the solution of the SDE (2.8) careful attention is required unlike in the classical
calculus. Note that the first integral on the right hand side of SDEs (2.8) is a Riemann
integral while the second integral is called stochastic integral. Therefore, approximating
the solution of SDEs (2.8) requires not only the evaluation of the Riemann integral but
also the evaluation of a stochastic integral of the type:∫ t

t0

g(X(s), s)dW (s), (2.9)

this integral can be evaluated by using an Itô or a Stratonovich concept depending on
the position of the time in which the function g(X(s), s) is evaluated. More discussion
will come shortly in Section 2.5. Where g(X(s), s) is the general stochastic process and
W (s) is the Wiener process. More detailed information on the interpretations of the
stochastic integral can be found e.g., in [25, 41, 42].

2.5 Stochastic integrals

Let us consider an approximation of the stochastic integral (2.9) by the sums:

N∑
i=1

g(X(θi), θi) [W (ti)−W (ti−1)]

converges in the mean square sense to different values of the integral (see [42], for ex-
ample), where θi ∈ [ti−1, ti].

12
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A value for the integral
∫ tF
tI W (t)dW (t) can be evaluated by approximating W (t) by

the function ψκ
n(t):

ψκ
n(t) = κW (t(n)

k ) + (1− κ)W (t(n)
k−1), t

(n)
k−1 < t < t

(n)
k

for any κ, 0 ≤ κ ≤ 1 , and the approximate of the integral by the sums:

∫ tF

tI
ψκ

n(t)dW (t) =
n∑

k=1

ψκ
n(tk−1)

[
W (t(n)

k )−W (t(n)
k−1)

]
. (2.10)

Thus the right-hand side of (2.10) can be presented in the following form:

κ

n∑
k=1

W (t(n)
k )

[
W (t(n)

k )−W (t(n)
k−1)

]
+ (1− κ)

n∑
k=1

W (t(n)
k−1)

[
W (t(n)

k )−W (t(n)
k−1)

]
.

By rearranging the terms algebraically,
n∑

k=1

W (t(n)
k−1)

[
W (t(n)

k )−W (t(n)
k−1)

]
=

1
2
W (t(n)

k )2

− 1
2
W (t(n)

0 )2 − 1
2

n∑
k=1

[
W (t(n)

k )−W (t(n)
k−1)

]2
and

n∑
k=1

W (t(n)
k )

[
W (t(n)

k )−W (t(n)
k−1)

]
=

1
2
W (t(n)

k )2

− 1
2
W (t(n)

0 )2 +
1
2

n∑
k=1

[
W (t(n)

k )−W (t(n)
k−1)

]2
.

It follows that

n∑
k=1

ψκ
n(tk−1)

[
W (t(n)

k )−W (t(n)
k−1)

]
=

1
2
W (t(n)

k )2 − 1
2
W (t(n)

0 )2

+
1
2
(2κ− 1)

n∑
k=1

[
W (t(n)

k )−W (t(n)
k−1)

]2
. (2.11)

The interval [tI, tF ] has been partitioned into n equal sub-intervals of length tF−tI
n ,

so for each k the expected valued of
[
W (t(n)

k )−W (t(n)
k−1)

]2
is t(n)

k − t
(n)
k−1 which equals

tF−tI
n . Consequently, the mean-square limit of (2.11) as δn = t

(n)
k − t

(n)
k−1 → 0,
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∫ tF

tI
W (t)dW (t) =

1
2
[
W 2(tF )−W 2(tI)

]
+ (κ− 1

2
)(tF − tI). (2.12)

Thus for any choice of κ there is a different result. In particular, if κ = 0 (which
is equivalent to θi = ti−1, the left hand side end point of the interval), the integral is
known as the Itô integral. This leads to the calculus based on Itô’s chain rule [32, 3]. On
the other hand if κ = 1

2 , θi = 1
2(ti + ti−1), then the resulting integral is the Stratonovich

integral. The Stratonovich calculus follows the same rules as for the regular Riemann-
Stieltjes calculus.

The evaluation of the Itô integral lead to the following results:∫ tF

tI
W (t)dW (t) Itô=

1
2
(
W 2(tF )−W 2(tI)

)
− 1

2
(tF − tI) (2.13)

while the following Stratonovich integral leads into

∫ tF

tI
W (t)dW (t) Str=

1
2
[
W 2(tF )−W 2(tI)

]
. (2.14)

2.5.1 Itô differential rule

Having defined an Itô integral we will now study the Itô’s differential rule. Suppose
X(t) is the unique solution of the Itô SDE (2.7). Let φ(x, t) be a scalar-valued real
function, monotone (in x) continuous for t ∈ [0, T ], x ∈ (−∞,∞) for which the derivative
∂φ
∂t ,

∂φ
∂x ,

∂2φ
∂x2 exist and are continuous. With the aid of the Taylor stochastic expansion, it

can be shown [26], that the process φ(x, t) has a SDE given by;

dφ =
∂φ

∂t
|X(t),tdt+

∂φ

∂x
|X(t),tdX(t) +

1
2
∂2φ

∂x2
|X(t),t(dX(t))2, (2.15)

where (dX(t))2 = dX(t) · dX(t) is computed based on the rules (see e.g.,[42, 3]), dt ·
dtdt · dW (t) = dW (t) · dt = 0 while (dW (t) · dW (t) = dt and with the aid of Eqn. (2.7),
we get

dφ =
∂φ

∂t
dt+

∂φ

∂x
(f(X(t), t)dt+ g(X(t), t)dW (t)) +

1
2
g2(X(t), t)

∂2φ

∂x2
dt

dφ =
(
∂φ

∂t
+ f(X(t), t)

∂φ

∂x
+

1
2
g2(X(t), t)

∂2φ

∂x2

)
dt+ g(X(t), t)

∂φ

∂x
dW (t). (2.16)

Itô’s differential rule is a direct consequence of the definition of the Itô integral. The
extension of the Itô’s differential rule into a multi-dimensional case follows similar lines,
for example in [3, 32, 42] and references therein where the proof of Itô’s differential rule
can also be found.

14



2.5. STOCHASTIC INTEGRALS 15

Let the 2-dimensional process X = (X1(t), X2(t)) have the dynamics given by the
Itô SDE (2.6). Its formula is represented by the following equation (see [5], for example):

dφ =

∂φ
∂t

+
2∑

i=1

fi
∂φ

∂xi
+

1
2

2∑
i=1

2∑
j=1

Li,j
∂2φ

∂xi∂xj

 dt+
2∑

i,j=1

gi,j
∂φ

∂xj
dWj(t), (2.17)

where Li,j = g · gT and let us define the differential operators:

A =

 2∑
i=1

fi
∂

∂xi
+

1
2

2∑
i=1

2∑
j=1

Li,j
∂2

∂xi∂xj

 (2.18)

and

A0 =
2∑

i,j=1

gi,j
∂

∂xj
. (2.19)

Consequently, the Itô’s formula for 2-dimensional case is written in this form:

dφ =
∂φ

∂t
+Aφdt+A0φdWj(t). (2.20)

2.5.2 The relation between Itô and Stratonovich stochastic differential equations

The relation between the Itô and Stratonovich SDEs are given in this section. If a
physical process on one hand is described by the Itô SDEs,

dXi(t)
Itô= fi(Xi(t), t)dt+

2∑
j=1

gi,j(Xi(t), t)dWj(t), i = 1, 2, (2.21)

then the same process can be described also with the Stratonovich equation:

dXi(t)
Str=

fi(Xi(t), t)−
1
2

2∑
k=1

2∑
j=1

gk,j(Xi(t), t)
∂gi,j(Xi(t), t)

∂xk

 dt

+
2∑

j=1

gi,j(Xi(t), t)dWj(t), i = 1, 2. (2.22)

On the other hand, if a physical process is described by the Stratonovich stochastic
differential equation:

dXi(t)
Str= fi(Xi(t), t)dt+

2∑
j=1

gi,j(Xi(t), t)dWj(t), i = 1, 2, (2.23)

15



16 CHAPTER 2. STOCHASTIC MODELLING OF ADVECTION-DIFFUSION PROCESSES

then the same process can be described also with the Itô equation: or in general,

dXi(t)
Itô=

fi(Xi(t), t) +
1
2

2∑
k=1

2∑
j=1

gk,j(Xi(t), t)
∂gi,j(Xi(t), t)

∂xk

 dt

+
2∑

j=1

gi,j(Xi(t), t)dWj(t), i = 1, 2. (2.24)

Note that as long as the function g(X(t), t) = g(t) is only time dependent both interpreta-
tions will produce the same results. From now in this thesis X(t) = X1(t), Y (t) = X2(t),
W (t) = W1(t), g = g1 and f = f1. It is essential to note that the Stratonovich formula
agrees well with the classical differential formula unlike in the Itô formula there is no
additional term ([34]). Most physics are interpreted into Stratonovich SDE while on one
hand, mathematicians prefer the Itô SDE for it is mathematically tractable, for instance
the mean of the Itô integral (2.13) is zero (see e.g., [3]).

Example 1 Let us consider the following geometric Brownian processes that is often
applied in finance as models for stochastic prices [42] such that Itô SDE is written as
follows;

dX(t) Itô= aX(t)dt+ bX(t)dW (t), Xt0 = 1, (2.25)

with the aid of Itô’s differential rule (2.16), and the function φ(x, t) = ln(x), x > 0 the
following general Itô solution can be obtained [34].

X(t) = e(a−
b2

2
)t+bW (t), X(t0) = 1,W (0) = 0,

where a, b are positive constants. While

dX(t) Str= aX(t)dt+ bX(t)dW (t), Xt0 = 1, (2.26)

by using equation (2.24), we obtain

dX(t) Itô= X(t)(a+
b2

2
)dt+ bX(t)dW (t), Xt0 = 1. (2.27)

Again now with the aid of the Itô’s differential rule (2.16), and the function φ(x, t) =
ln(x) the following general Itô solutions can be obtained( [34]).

X(t) Itô= eat+bW (t), X(t0) = 1, (2.28)

While the Stratonovich Eqn. (2.26) has the Stratonovich solution:

X(t) Str= eat+bW (t), X(t0) = 1, (2.29)

which is the same solution.

The evolution of the probability density function of the position of the particle X(t) due
to space and time is often described by the Kolmogorov forward equation.

16



2.5. STOCHASTIC INTEGRALS 17

One dimensional Kolmogorov forward equation

Assume that the solution X(t) of (2.7) has a transition density p(s, y; t, x), then p will
satisfy the Kolmogorov forward equation

∂

∂t
p(s, y; t, x) = L∗p(s, y; t, x), (t, x) ∈ (0, T )×< (2.30)

p(s, y; t, x) → δy, as t ↓ s.

where

L∗ = − ∂

∂x
[f(x, t)] +

1
2
∂2

∂x2
[g2(x, t)].

This equation is also know as the Fokker-Planck equation.

Proof of the 1-dimensional Itô Fokker-Planck equation

The one dimensional forward Kolmogorov’s equation can be derived as follows.

Proof 1 We assume that X(t) has a transition density and is a solution of the Itô 1
dimensional SDE (2.7)

dX(t) Itô= f(X(t), t)dt+ g(X(t), t)dW (t), X(t0) = x0.

Let us fix two points in time s and T with s < T . Now consider an arbitrary “test
function” .i.e. an infinite differentiable function φ(x, t) with compact support in the set
(s, T )×< [5]. From the Itô’s formula we have

φ(X(T ), T ) = φ(X(s), s) +
∫ T

s

(
∂φ

∂t
+ Lφ

)
(X(t), t)dt+∫ T

s

∂φ

∂x
(X(t), t)dW (t), (2.31)

where

L =
∂

∂x
[f(x, t)] +

1
2
∂2

∂x2
[g2(x, t)].

Applying the expectation operator Es,y[·], to Eqn. (2.31) and using the fact that, because
of the compact support, φ(x, T ) = φ(x, s) = 0, we obtain

Es,y [φ(X(T ), T )− φ(X(s), s)] = Es,y

[∫ T

s

(
∂φ

∂t
+ Lφ

)
(X(t), t)

]
dt+

Es,y

[∫ T

s

∂φ

∂x
(X(t), t)dW (t)

]
.

17
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0 = Es,y

[∫ T

s

(
∂φ

∂t
+ Lφ

)
(X(t), t)

]
dt+ 0,

thus

Es,y

[∫ T

s

(
∂φ

∂t
+ Lφ

)
(X(t), t)

]
dt = 0.

Hence, ∫ ∞

−∞

∫ T

s

(
∂

∂t
+ L

)
φ(t, x)p(s, y; t, x)dxdt = 0,

By using partial integration with respect to (t for
(

∂
∂t

)
and with respect to x for L gives∫

p(s, y, t, x)φ′(x, t)dt = −
∫
φ(x, t)

∂

∂t
[p(s, y, t, x)]dt

∫
p(s, y, t, x)f(x, t)φ′(x, t)dx = −

∫
φ(x, t)

∂

∂x
(f(x, t)p(s, y, t, x)) dx

∫
p(s, y, t, x)g2(x, t)φ′′(x, t)dx =

∫
φ(x, t)

∂2

∂x2

(
g2(x, t)p(s, y, t, x)

)
dx.

Where density function p(s, y, t, x) approaches zero x→∞ and x→ −∞ thus,

Es,y

[∫ T

s

(
∂φ

∂t
+ Lφ

)
(X(t), t)

]
dt =∫ ∞

−∞

∫ T

s
φ(x, t)

{
−∂p(s, y; t, x)

∂t
+ L∗p(s, y; t, x)

}
dxdt,

∫ ∞

−∞

∫ T

s
φ(x, t)

(
−∂
∂t

+ L∗
)
p(s, y; t, x)dxdt = 0,

where the operator L∗

(Lv)∗ = − ∂

∂x
[f(x, t)v(x, t)] +

1
2
∂2

∂x2
[g2(x, t)v(x, t)].

Since this equation holds for all test functions, the proof is completed.

The corresponding multi-dimensional Itô -FPE can be derived by following similar lines
to those of the one dimensional case.

18
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Two dimensional Kolmogorov forward equation

Assume that the solution (X1(t), X2(t)) of a two-dimensional SDE (2.6) has a transition
density p(s,y; t,x), then p will satisfy the Kolmogorov forward equation (the Fokker-
Planck equation)

∂

∂t
p(s,y; t,x) = A∗p(s,y; t,x), (t,x) ∈ (0, T )×<2 (2.32)

p(s,y; t,x) → δ(x− y), as t ↓ s.

A∗ =

− 2∑
i=1

fi(x, t)
∂

∂xi
+

1
2

2∑
i=1

2∑
j=1

Li,j(x, t)
∂2

∂xi∂xj

 . (2.33)

For the proof the reader is referred to [26, 5], for example.
To each different process with the coefficient f and L is assigned second order dif-

ferential operator. The conclusive behaviour of a diffusion process X(t) is that their
transition probability p(s, y, t, x) is, under certain assumption uniquely dictated by the
drift vector and the diffusion matrix L = g · gT. This is a surprise since, on the basis of
the Itô-SDE (2.6), the functions f and g are obtained only for the first two moments of
the p(s, y, t, x) (e.g., see [3]).

2.5.3 Advection-diffusion process

The mathematical description of the transport processes developed in this thesis will be
founded on the relationship between the advection-diffusion equations and Kolmogorov’s
forward equation known as Fokker-Planck equations(FPE)[48]. The transport of sub-
stances in shallow waters is often described by the depth averaged advection-diffusion
equation:

∂HC

∂t
= −

2∑
i=1

∂

∂xi
(UiHC) +

2∑
i=1

2∑
j=1

∂

∂xi

(
HDi,j

∂C

∂xj

)
+ S +Q, (2.34)

where H is water depth; C concentration; Ui is the flow velocity in the xi direction, Di,j

is the dispersion coefficient in xi-direction due to the component of concentration in xi

gradient-direction, S and Q are terms catering for sinks and sources. The advection-
diffusion is widely applied in a variety of engineering problems. For example with S =
Q = 0, equation (2.34) can be used for prediction of the dispersion of pollutants in
shallow waters [28, 4], for example.

In addition to Eqn. (2.34) the boundary conditions are needed. Boundaries in trans-
port models are defined by physical boundaries such as banks, shores, water level and
bed or by numerical (open) positioned at for instance tidal inlets. At closed boundary a
Neumann boundary condition is often prescribed which excludes mass transfer through
such a boundary, mathematically this is denoted by ∂C

∂n = 0, with n the normal vector to

19
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the boundary. Dirichlet boundary conditions are often imposed at for instance bottom
or open boundaries to prescribe a fixed concentration [19]. In regions far away from the
discharge location it is sometimes justified to prescribe C = 0 at open boundaries. An
equilibrium bed concentration Ce is assumed a bottom boundary condition in sediment
transport problems may be C = Ce. Initial conditions address a concentration distribu-
tion measured at initial state and account for instantaneous discharges of for instance,
waste material. More information on the initial and boundary condition can be found
in [19, 28]. In many practical situations the analytical solution of equation (2.34) cannot
be easily obtained creating the need to numerically approximate it [30, 36].

2.5.4 Consistence of particle model with the advection-diffusion equation

The position of a particle (X(t), Y (t)) at time t is assumed to be a Markov process. Thus
a 2-dimensional Itô SDEs to describe the position of a particle is given by the following
equations;

dX(t) Itô= [U + (
∂H

∂x
D)/H +

∂D

∂x
]dt+

√
2DdW1(t) (2.35)

dY (t) Itô= [V + (
∂H

∂y
D)/H +

∂D

∂y
]dt+

√
2DdW2(t). (2.36)

D(x, y) stands for a dispersion coefficient and W (t) is a Wiener process with independent
increments that are normally distributed with the zero mean and variance ∆t.

The probability density function f(x, y, t) for variation in time and space of the
positions of particles in two dimension is described by the Fokker-Planck equation. Thus,
the probability density function f(x, y, t), t ≥ t0 is determined by the following Itô
Fokker-Planck equation [28]

∂f

∂t
= − ∂

∂x
[(U + (

∂H

∂x
D)/H +

∂D

∂x
)f ]− ∂

∂y
[(V + (

∂H

∂y
D)/H +

∂D

∂y
)f ]

+
1
2
∂2

∂x2
(2Df) +

1
2
∂2

∂y2
(2Df). (2.37)

With the initial condition:

f(x, y, t0) = δ(x− x0)δ(y − y0) (2.38)

due to Itô SDE (2.44). If we relate the particle concentration to the probability density
function f :

C(x, y, t) = f(x, y, t)/H(x, y, t) (2.39)

and substitute Eqn. (2.39) into the Fokker-Planck Eqn. (2.37), the resulting equation
is called the advection-diffusion equation. It was shown in [28] that the underlay-
ing SDEs (2.35)-(2.36) is consistent with the 2-dimensional advection-diffusion equa-
tion (2.34) where S = Q = 0:
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∂(HC)
∂t

= −∂(HUC)
∂x

− ∂(HV C)
∂y

+
∂

∂x
(D

∂

∂x
CH) +

∂

∂y
(D

∂

∂y
CH). (2.40)

The coefficient of the Fokker-Planck Eqn. (2.32),.i.e., Ai and Li,j become:{
Ai = fi

Li,j = 1
2

∑2
k=1 gi,kgj,k,

(2.41)

with this relation equation (2.32) should be referred to as Itô Fokker-Planck equation.
However, the Stratonovich integration rule leads to different values of Ai and Li,j in
terms of fi and gi,j . Both rules are correct in the sense that both can be used in the
simulation processes (see e.g., [34]).

By matching the Fokker-Planck equation with the advection-diffusion equation, the
underlying particle model is shown to be consistent with the ADE. Where,

Ai = Ui +
∑2

j=1(
∂H
∂xj

Di,j)/H +
∑2

j=1
∂Di,j

∂xj

Li,j = Di,j

p = CH.

The drift and the noise components with the local flow velocity and the diffusion com-
ponent are related by using equation (2.41){

fi = Ui +
∑2

j=1(
∂H
∂xj

Di,j)/H +
∑2

j=1
∂Di,j

∂xj
1
2

∑2
k=1 gi,kgj,k = Di,j

The drift component fi consists of a contribution due to the local flow velocity and a
contribution due to a correction term [28, 4, 57, 56]. The hydrodynamic flow model
provides the inputs to the particle model. It also provides a diffusion tensor which is
isotropic in the horizontal plane, for instance. In this case the off-diagonal elements of
the diffusion tensor are set to zero while the diagonal elements equal D11 = D22 = DH .

The approximation of the numerical solutions of the SDEs (2.35)-(2.36), for example,
requires the stochastic numerical schemes. But the derivation of the stochastic schemes
can be done in several ways such as an expansion of the stochastic Taylor series or the
use of derivative free schemes [34].

2.6 Stochastic Taylor expansion and derivation of stochastic

numerical schemes

Numerical schemes can be constructed in several ways. The most common schemes that
are often implemented in the approximation of SDEs are based on the stochastic Taylor
expansion. The concept is quite similar to that of the deterministic differential equation.
The more terms of Taylor series expansion you include in the series, the higher the order
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of convergence you attain and thus more accurate scheme. Both the Stratonovich and
the Itô sense can be derived but let us consider only the expansion of the following Itô
SDE:

dX(t) Itô= f(X(t), t)dt+ g(X(t), t)dW (t), X(t0) = x0, (2.42)

with the solution such as

X(t) Itô= X(t0) +
∫ t

t0

f(X(s), s)ds+
∫ t

t0

g(X(s), s)dW (s). (2.43)

Let us assume that v is sufficiently smooth function and by the help of 1-dimensional
Itô SDE (2.42), the differential of v(X(t), t) is evaluated and leads to the following Itô’s
formula:

d[v(X(t), t)] =
∂v

∂t
|X(t),tdt+ f(X(t), t)

∂v

∂x
|X(t),tdt+

1
2
g2(X(t), t)

∂2v

∂x2
|X(t),tdt

+ g(X(t), t)
∂v

∂x
dW (t) + odt.

Consequently;

dv(X(t), t) =
[
∂v

∂t
+ f(X(t), t)

∂v

∂x
+

1
2
g2(X(t), t)

∂2v

∂x2

]
dt.

+ g(X(t), t)
∂v

∂x
dW (t) (2.44)

dv = L0vdt+ L1vdW (t),

with the following partial operators;

L0 =
∂

∂t
+ f(X(t), t)

∂

∂x
+

1
2
g2(X(t), t)

∂2

∂x2

L1 = g(X(t), t)
∂

∂x
.

By applying the differentiation rule to the function f(X(s), s) in equation (2.43), it
yields

d[f(X(s), s)] = L0fdt+ L1fdW (t),

whose solution

f(X(s), s) = f(X(t0), t0) +
∫ s

t0

L0fdz +
∫ s

t0

L1fdW (z). (2.45)
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Similarly for g(X(s), s) we get

d[g(X(s), s)] = L0gdt+ L1gdW (t),

whose solution is given by

g(X(s), s) = g(X(t0), t0) +
∫ s

t0

L0gdz +
∫ s

t0

L1gdW (z). (2.46)

By substituting equations (2.45) and (2.46) into (2.43), we get

X(t) = X(t0) +
∫ t

t0

{
f(X(t0), t0) +

∫ s

t0

L0f(X(z), z)dz +
∫ s

t0

L1f(X(z), z)dW (z)
}
ds

+
∫ t

t0

{
g(X(t0), t0) +

∫ s

t0

L0g(X(z), z)dz +
∫ s

t0

L1g(X(z), z)dW (z)
}
dW (s).

X(t) = X(t0) + f(X(t0), t0)
∫ t

t0

ds+ g(X(t0), t0)
∫ t

t0

dW (s)

+
∫ t

t0

∫ s

t0

L0fdzds+
∫ t

t0

∫ s

t0

L1fdW (z)ds

+
∫ t

t0

∫ s

t0

L0gdzdW (s) +
∫ t

t0

∫ s

t0

L1gdW (z)dW (s).

This leads to a first approximation of the form;

X(t) = X(t0) + f(X(t0), t0)[t− t0] + g(X(t0), t0)[W (t)−W (t0)]

+
∫ t

t0

∫ s

t0

L0f(X(z), z)dzds+
∫ t

t0

∫ s

t0

L1f(X(z), z)dW (z)ds

+
∫ t

t0

∫ s

t0

L0g(X(z), z)dW (z)ds+
∫ t

t0

∫ s

t0

L1g(X(z), z)dW (z)dW (s). (2.47)

X(t) = X(t0) + f(X(t0), t0)[t− t0] + g(X(t0), t0)[W (t)−W (t0)]
+ Errt1, (2.48)

X(t+ ∆t) = X(t) + f(X(t), t)∆tn + g(X(t), t)[W (t+ ∆t)−W (t)],

or with t = n∆t:

Xn+1 = Xn + f(Xn, tn)∆tn + g(Xn, tn)∆Wtn . (2.49)

This is the simplest non-trivial stochastic Taylor expansion. In this derivation we
have assumed that the coefficient functions f and g are sufficiently smooth. We again
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have applied the Itô’s rule to the higher order terms of the integrand in (2.47) to obtain
schemes with higher order of convergence. Note that the first three terms of (2.47) lead
to the stochastic Euler scheme where,

Errt1 =
∫ t

t0

∫ s

t0

L0f(X(z), z)dzds+
∫ t

t0

∫ s

t0

L1f(X(z), z)dW (z)ds

+
∫ t

t0

∫ s

t0

L0g(X(z), z)dzdW (s) +
∫ t

t0

∫ s

t0

L1g(X(z), z)dW (z)dW (s). (2.50)

Furthermore, we have analysed the next error term (with the lowest order) from equa-
tion (2.50) ∫ t

t0

∫ s

t0

L1g(X(z), z)dW (z)dW (s). (2.51)

The next higher order approximation can be obtained by applying the Itô differentiation
formula to the function L1g and get the following

d[L1g] = L0L1gdz + L1L1gdW (z), (2.52)

or in the integral form:

L1g(X(r), r) = L1g(X(t0), t0) +
∫ z

t0

L0L1gdr +
∫ z

t0

L1L1gdW (r), (2.53)

the substitution of Eqn. (2.53) into Eqn. (2.47), yields

X(t) = X(t0) + f(X(t0), t0))(t− t0) + g(X(t0), t0)[W (t)−W (t0)]

+ L1g(X(t0), t0)
∫ t

t0

∫ s

t0

dW (z)dW (s) + Errt2. (2.54)

Errt2 =
∫ t

t0

∫ s

t0

L0f(X(z), z)dzds+
∫ t

t0

∫ s

t0

L1f(X(z), z)dW (z)ds

+
∫ t

t0

∫ s

t0

L0g(X(z), z)dzdW (s) +
∫ t

t0

∫ s

t0

∫ z

t0

L0L1g(X(r), r)drdW (z)dW (s)

+
∫ t

t0

∫ s

t0

∫ z

t0

L1L1g(X(r), r)dW (r)dW (z)dW (s). (2.55)

Now let us analyze the error in the fourth term of Eqn. (2.54) as follows;∫ t

t0

∫ s

t0

L1g(X(t0), t0)dW (z)dW (s) < K4

∫ t

t0

∫ s

t0

dW (z)dW (s).
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This last error term dominates and determines the strong order of the convergence of
the Euler scheme, where K4 = L1g(X(t0), t0) is a known constant. The error in this
scheme can be analysed:

K4

∫ t

t0

(W (s)−W (t0))dW (s) = K4{
∫ t

t0

[W (s)−W (t0)]dW (s)

= K4{
∫ t

t0

W (s)dW (s)−
∫ t

t0

W (t0)dW (s)}

= K4{
W 2(t)−W 2

t0

2
− (t− t0)

2
−W (t)W (t0) +W 2

t0

=
K4

2
{W 2(t)−W 2

t0 − (t− t0)− 2W (t)W (t0) + 2W 2
t0

=
K4

2
{W 2(t)− 2W (t)W (t0) +W 2

t0 − (t− t0)}

=
K4

2
{[W (t)−W (t0)]2 − (t− t0)}

=
K4

2
[∆W 2(tn)−∆t].

Note that, the stochastic integral (2.51) has a local truncation error of O(∆t). The
increments of Wiener process are independent of each other for a time step size ∆t
regardless of their size. Due to this fact, we need to add the variances of these local
errors in order to obtain the variance of the global error instead of adding local errors for
every time step. Assuming N steps in the integration, i.e t = N∆t, we find the variance
of the global truncation error is equal to NO(∆t)2 = tO(∆t). From this we conclude
that the stochastic integral (2.51) has a global truncation error of O(∆t

1
2 ). Whereas the

Milstein scheme has O(∆t) in the strong sense for scalar equations. For vector systems
for Milstein scheme has O(∆t

1
2 ). Nevertheless, in the weak sense the Milstein scheme

has the same order of convergence as that of the Euler scheme.
The 1 dimensional Milstein scheme can be written as follows;

X(t) = X(t0) + f(X(t0), t0)∆t0 + g(X(t0), t0)∆W (t0)

+
1
2
g(X(t0), t0)

∂g

∂x

{
[W (t)−W (t0)]2 − (t− t0)

}
+ Errt2. (2.56)

Thus, the Milstein scheme for scalar stochastic differential equation which has higher
strong order than that of Euler scheme has been obtained:

Xn+1 = Xn + f(Xn, tn)∆t+ g(Xn, tn)∆Wn

+
1
2
g(Xn, tn)

∂g

∂x
[∆W 2(tn)−∆t]. (2.57)

More analysis of the error terms in Eqn. (2.55) can heuristically lead to higher order of
convergence of the numerical schemes. For example the following error term leads to;∫ t

t0

∫ s

t0

L0f(X(z), z)dzds < K1

∫ t

t0

∫ s

t0

dzds = O(∆t2),
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where K1 is a constant. This deterministic error term introduces a local error of O(∆t2)
and as a consequence, a global error of O(∆t). Next, consider the following;∫ t

t0

∫ s

t0

L1f(X(z), z)dW (z)ds < K2

∫ t

t0

∫ s

t0

dW (z)ds = O(∆(W (tn)∆t) = (∆t1.5),

∫ t

t0

∫ s

t0

L0g(X(z), z)dzdW (s) < K3

∫ t

t0

∫
t0

dW (z)ds

= O(∆t∆W (tn)) = O(∆t1.5).

Those two stochastic terms introduce a strong local error of O(∆t1.5) and as a conse-
quence, a strong global error of O(∆t).

One can keep on expanding the next multiple Itô integrals to an arbitrary higher
order. Each time, the remainder will involve the next set of multiple Itô integrals with
non-constant integrand. Some of these integrals can be solved analytically. Take the
following examples whose solutions are well known and are obtained in for example [42]:∫ t

t0

ds = t− t0∫ t

t0

∫ s

t0

dzds =
1
2
(t− t0)∫ t

t0

∫ s

t0

dW (z)dW (s) =
1
2
{[W (t)−W (t0)]2 − (t− t0)}.

However, it is not possible to derive an analytical expression for most of the stochastic
integrals. Consequently these terms also have to be evaluated numerically. Generally,
higher order numerical methods that are based on stochastic Taylor expansion are there-
fore not very useful in practice. The exception here is that in some applications based on
some specific nature of the functions f and g, terms in stochastic the Taylor expansion
may drop out, in this way, a higher-order scheme can be obtained. Having discussed
the Taylor stochastic expansion. It is now the right time to discuss various numerical
schemes in the following section.

2.7 Numerical schemes

The numerical schemes which can be used respectively for Itô and Stratonovich SDEs
are given by the equation (2.21) and (2.23). Therefore, in order to approximate the right
solution, care must be taken with the selection of the numerical scheme [35, 41, 42]. The
schemes discussed in this section can only be applied to either Itô or Stratonovich SDEs.
Because transformation rules between these two interpretations exist, the selection of
numerical scheme is unrestricted, as long as the model is given in the right interpretation,
or is transformed likewise.
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2.7.1 Euler scheme

The Euler scheme is a result of the stochastic Taylor expansion. The basic Euler
scheme for scalar SDEs is derived from the Itô stochastic differential equation (2.42)
(see Eqn. (2.49 in section 2.6) for 1 -dimension Euler scheme):

Xn+1 = Xn + f(Xn, tn)∆tn + g(Xn, tn)∆W (tn) (2.58)

If Y (t) = X2(t), the 2-dimensional Itô SDE with 2-dimensional Brownian process is
written:

Xn+1 = Xn + f(Xn, tn)∆tn + g(Xn, tn)∆W1(tn)
Yn+1 = Yn + f(Yn, tn)∆tn + g(Yn, tn)∆W2(tn).

The scheme computes discrete approximations Xn ≈ X(tn), at times tn =
∑n−1

l=0 ∆tl. In
practice it is common to use a single pre-chosen value for the step size ∆tl. The stochas-
tic Euler scheme is consistent with the Itô calculus because the noise term in (2.58)
approximates the relevant stochastic integral over [tn, tn+1] by evaluating the integrand
at lower end point, thus∫ tn+1

tn

g(X(s), s)dW (s) ≈ g(Xn, tn)∆W (tn).

As in the scalar case, the vector stochastic Euler scheme have strong convergence order
β1 = 1

2 and have weak order β2 = 1 (see e.g., [16]). The Euler scheme is applicable only
in a sense of the Itô interpretation, therefore, if we are given the Stratonovich SDEs,
first we have to transform them into their Itô equivalents.

2.7.2 Milstein Scheme

In Section 2.6, equation (2.57) is what we call the Milstein scheme. This is a more
accurate scheme in case of the scalar stochastic differential equation compared to the
Euler scheme, for example.

Xn+1 = Xn + f(Xn, tn)∆t+ g(Xn, tn)∆Wn

+
1
2
g(Xn, tn)

∂g

∂x
(∆W 2(tn)−∆t). (2.59)

Milstein scheme is O(∆t) i.e., β1 = 1 in the strong sense for scalar equations. For vector
systems it is generally only O(∆t)

1
2 , i.e., β1 = 1

2 . In the weak sense the Milstein scheme
has the same order of convergence as that of the Euler scheme. The 2-dimensional
Milstein scheme can be written as follows;

Xn+1 = Xn + f(Xn, tn)∆t+ g(Xn, tn)∆Wn +
1
2
g(Xn, tn)

∂g

∂x
(∆W 2(tn)−∆t)

Yn+1 = Yn + f(Yn, tn)∆t+ g(Yn, tn)∆Wn +
1
2
g(Yn, tn)

∂g

∂y
(∆W 2(tn)−∆t).
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Note that the partial derivative of the stochastic g must be available. Furthermore,
similar lines with minor changes can be followed in order to derive the Stratonovich
schemes.

Note that, the development of higher-order schemes based on Taylor expansions re-
quire more and more derivatives of the coefficient functions f or g. It is also necessary to
deal with multiple stochastic integrals (see section 2.6), which cannot be calculated ex-
actly anymore, and thus require numerical approximations for those integrals. However,
the alternatives is the use of derivative free explicit schemes to avoid the derivative of the
drift f and the diffusion terms. Examples of such schemes are Heun and Runge-kutta,
more of their information can be found in [35, 33, 34, 41].

2.7.3 Heun Scheme

The Heun scheme evaluates both the f and g functions at the current point as well as
at the estimated succeeding point, and the results of both functions are averaged to get
the definite rate of change. Using these rates, an improved approximation of the next
point is made.

X∗
n+1 = Xn + f(Xn, tn)∆t+ g(Xn, tn)∆W (tn)

Xn+1 = Xn +
1
2
{f(Xn, tn) + f(X∗

n+1, tn+1)}∆t+
1
2
{g(Xn, tn) + g(X∗

n+1, tn+1)}∆W (tn)

Y ∗n+1 = Yn + f(Yn, tn)∆t+ g(Yn, tn)∆W (tn)

Yn+1 = Yn +
1
2
{f(Yn, tn) + f(Y ∗n+1, tn+1)}∆t+

1
2
{g(Yn, tn) + g(Y ∗n+1, tn+1)}∆W (tn).

This scheme can only be used for SDEs formulated in the Stratonovich sense. Stratonovich
SDE use Heun scheme, it has order O((∆t)1) i.e., β = 1 in the strong sense and O((∆t)1)
i.e., β = 1 [35, 16, 50].

In the numerical methods, there are two ways of measuring accuracy, namely strong
convergence and weak convergence. Therefore, in the following section we define the two
concepts as is discussed in(e.g., [35, 16, 50, 41].

2.7.4 Strong convergence

For strong convergence, we require an instance of the stochastic process to match the
exact solution of the process which is driven by the same random function as closely as
possible.

Definition 2 Strong order of Convergence
Under suitable conditions of the SDE, for a fixed time T , the strong order of convergence
is β1 if there exist a positive constant K and a positive constant ∆ such that T = N∆t:

E{|X(T )−X(N)|} ≤ K(∆t)β1 (2.60)
= O(∆tβ1),

for all 0 < ∆t < ∆,
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where X(T ) is the exact solution and X(N) the approximated solution. The strong
concept measures the rate at which the mean of the error decays as ∆t→ 0. But when
one is interested in the distribution of the random process such as those of X(t), leads
to a less demand. This leads to the concept of the weak convergence.

2.7.5 Weak convergence

Strong convergence is often too strict, and in many cases we can attenuate our demands
and require only weak convergence. For this type of convergence it is not necessary for
the tracks to closely match the exact ones, as long as the characteristics of the stochastic
state vector remain the same as those found for the exact solution.

Definition 3 Weak order of Convergence
The weak order of convergence is β2 if there exist a positive constant K and a positive
constant ∆ such that for a fixed time T = N∆t:

|{Eh(X(T ), T )} − E{h(X(N), N)}| ≤ K(∆t)β2 (2.61)
= O(∆tβ2),

for all 0 < ∆t < ∆ and for each functions h with polynomial growth.

The errors in (2.60) and (2.61) are global discretisation errors, and the largest possible
values of β1 and β2 give the corresponding strong and weak orders, respectively, of the
scheme. The result in Figure 2.2(a)–(b) is obtained by solving the Itô SDE (2.25) for
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Figure 2.2: Strong solution of an Itô SDE (2.25) for a = 5, b = 2, ∆t = 2−8 by Euler
scheme (b) of its corresponding Stratonovich SDEs (2.26) for a = 3, b = 2, ∆t = 2−8 by

Heun scheme.
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Figure 2.3: Strong solution of (a) an Itô SDEs (2.25) for a = 7, b = 2, ∆t = 2−8 using
Euler scheme (b) of Itô SDE( 2.25) for a = 7, b = 2, ∆t = 2−8 due to the Milstein

scheme.
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Figure 2.4: (a) Results of Itô SDE (2.25) for a = 2, b = 1 due to Euler’s 0.5 strong
order (b) Strat.SDE (2.26) a = 1.5, b = 1 due to Heun 1 strong order.

a = 5, b = 2 using Euler and the Heun scheme for a = 3, b = 2 to solve the Stratonovich
SDE (2.26) respectively. Again the Itô SDE (2.25) for a = 7, b = 2, was solved by Euler
and Milstein scheme respectively see Figure 2.3(a) -(b). While in Figure 2.4 (a)-(b), we
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have computed respectively the discretised Brownian paths over[0, 1] with dt = 2−9. For
each path, Euler and Heun schemes are applied in respectively to the Itô SDE (2.25) and
Stratonovich SDE (2.26) with 5 different step size: ∆t = 2p−1dt for 1 ≤ p ≤ 5. The end
point error in sth sample paths for the pth step size is stored in Xerr(s, p) and XHerr to
form a vector of 1000× 5. The mean function is used to find the average over all sample
paths. This produces a 1 × 5 array. Hence the pth element of mean(Xerr) and that of
mean (XHerr) is an approximation to estrong

∆t = 2p−1dt. So that the power relation

log estrong
∆t = logC + q log ∆t.

By using the least square fit method for logC and q is computed and for both schemes
and the values for Euler scheme are q = 0.5384 and residue =0.0266. While the values
for the Heun scheme are q = 1.0017, residue =0.0245. Confirming that Euler scheme
has a strong order of 1

2 and Heun scheme has a strong order of 1. Thus, the choice of
the numerical scheme is emphasized here because it is an important consideration, even
apart from the order of convergence of the scheme. Sometimes it may be required to
transform the original stochastic differential into one of the other type in order to be able
to use a specific scheme so as to avoid solving numerically a different physical concept.
Any interested reader on the rigorous analysis of the accuracy of the numerical schemes
is referred to (e.g., [50, 35, 41]).

In chapter 3 we shall introduce the use of correlated noise called coloured noise to
drive the general linear stochastic differential equations and apply it in the simulation
of dispersion of pollutants in coastal waters.
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Chapter 3
Random flight model for transport of
pollutants

Overview1: For simulating the dispersion of contaminants in shallow waters, advection-
diffusion and tradition particle model(TPM) can be used. The traditional particle model
is stochastic in nature and often uses Wiener process as a driving noise. It can be
shown to be consistent with the well-known advection-diffusion equation (ADE). A short
coming of the ADE and the TPM is the fact that both models describes the dispersion
of contaminants correctly if a certain time is passed after the moment of release of a
cloud of the contaminants. In the TPM this is caused by the Wiener process which
has independent increments. Therefore, this chapter presents a random flight model in
which the increments are assumed to be exponentially correlated in time. In this way, we
model correctly the behaviour of the model shortly after the release of pollutants. The
general random flight model developed in chapter is forced by a coloured noise process
representing the short-term correlated turbulent fluid flow velocity of the particles. We
also show that for long-term simulations both the traditional particle and the random
flight models are consistent with the advection-diffusion equation. In this chapter both
TPM and RFM are applied to a real life pollution problem in the Dutch coastal waters.

3.1 Introduction

The rise of environmental awareness in recent years and the need of accurate predictions
and improvement of water quality in estuaries, rivers and coastal waters has led to sig-
nificant development in mathematical modelling of water pollution ([28, 51, 4, 2]). Of
the available methods, particle models are gaining popularity [53]. This is because they
are easy to implement, can be used for a wide range of applications [2] and because of

1This chapter was presented in a conference of Coastal waters 2005 in Algarve, Portugal and the
extended version of [10], has been submitted for publication to the Journal of Applied Mathematical
Modelling (AMM).
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the intricacies associated with the finite difference schemes used for approximating the
advection-diffusion equations are well known. While the use of particle tracking mod-
els can provide valuable information to assist in problem analysis and environmental
modelling, the comprehension of the physical processes of the underlying models remain
limited. Many particle models for dispersion presented in literatures employ Brownian
motion to simulate turbulent diffusion ([28, 21, 31]). Such models assume that particles
move according to a simple random walk and consequently have independent incre-
ment [32, 53]. It is a well-known fact however that the advection-diffusion equation does
only describe dispersion of particles in turbulent fluid flow accurately if the diffusing
cloud of contaminants has been in the flow longer than a certain Lagrangian time scale
and has spread to cover a distance that is larger in size than the largest scale of the tur-
bulent fluid flow [21]. The Lagrangian time scale (TL) is a measure of how long it takes
before a particle loses memory of its initial turbulent velocity. In reality however there
exists short term correlation in time in several hydraulic engineering problems including
coastal waters and subsurface diffusion [2]. The traditional advection-diffusion equation
is unable to correctly describe the short term correlated behaviour that is found in real
turbulent flows at sub-Lagrangian time. In this chapter an extended correlated coloured
noise process is employed as the driving force in a random flight model in order to ac-
count for diffusion (molecular) processes over short time scales when the eddy(turbulent)
diffusion is less than the molecular diffusion. The inclusion of several parameters in the
coloured noise process allows for a better match between the auto-covariance of the
model and the underlying physical processes. In addition, the random flight model is
developed in such a way that the coloured noise process approximates Brownian mo-
tion over large time periods. The advection-diffusion equation can also be improved
to account for the short term correlation behaviours. The resulting Eulerian model is
equivalent to the random flight model for small scale time. In this chapter we choose to
numerically implement the random flight model for it is much easier [4] than the numer-
ical implementation of the equivalent Eulerian transport model. Note that the random
flight model takes into account the correlation behavior of particle’s position at time
t � TL and its initial location. The correlation between the two particles is not taken
into account because we use a one-particle model [21]. One particle models describe
transport of a single particle. By performing experiments with many different particles,
one can get an ensemble mean concentration by averaging the results of all individual
particles in the experiments. The resulting average concentration value is an important
quantity for predictive purposes. The remainder of this chapter is organised as follows,
in Section 3.2 we briefly introduce the traditional particle model. Section 3.3 introduces
coloured noise processes. Explanations of the techniques for modelling dispersing pol-
lutants are outlined in Section 3.4. The general random flight model is developed in
Section 3.4.1. The analysis of spreading properties of a cloud of contaminants such as
the variance is done in section 3.5. Several numerical experiments are carried out in
Section 3.7. Finally, in Section 3.8 both the traditional particle model and the random
flight model are applied to predict the dispersion of pollutants in the Dutch coastal
waters.
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3.2 The traditional particle model for dispersion in shallow

waters

The stochastic mathematical description of a transport process is usually done in terms
of stochastic differential equations. In these equations a deterministic and a random
component together account for description of the movement of particles. The migration
and fluctuation of the position of particles in water at time t, denoted by (X(t), Y (t)),
are described by means of the following set of stochastic differential equations [28]):

dX(t) Itô=
[
U +

D

H

∂H

∂x
+
∂D

∂x

]
dt+

√
2DdW1(t), X(0) = x0 (3.1)

dY (t) Itô=
[
V +

D

H

∂H

∂y
+
∂D

∂y

]
dt+

√
2DdW2(t), Y (0) = y0. (3.2)

HereD is the dispersion coefficient inm2/s; U(x, y, t), V (x, y, t) are the averaged flow ve-
locities (m/s) in respectively x, y directions; H(x, y, t) is the total depth in m at location
(x, y), and dW (t) is a Wiener process with mean (0, 0)T and E[dW1(t)dW2(t)T] = Idt
where I is a 2×2 identity matrix [34]. Note that the drift part of the particle model (3.1)–
(3.2) is not only containing the averaged water horizontal flow velocities but also spatial
variations of the diffusion coefficient and the averaged depth. This correction term
makes sure that particles are not allowed to be accumulated in regions of low diffusivity
as demonstrated by (see e.g., [57, 31, 4]). At closed boundaries particle bending is done
by halving the time step sizes until the particle no longer crosses closed boundary. As
a result there is no loss of mass through such boundaries. The position (X(t), Y (t)) is
Markovian and the evolution of its probability density function f(x, y, t), is described
by an advection-diffusion type of the partial differential equation known as the Fokker-
Planck equation see e.g, [32].

∂f

∂t
= − ∂

∂x

([
U +

D

H

∂H

∂x
+
∂D

∂x

]
f

)
− ∂

∂y

([
V +

D

H

∂H

∂y
+
∂D

∂y

]
f

)
+

1
2
∂2

∂x2
(2Df) +

1
2
∂2

∂y2
(2Df). (3.3)

The initial spreading of a cloud of particles is very small and its distribution can be
modelled using a Dirac delta function.

f(x, y, t0) = δ(x− x0)δ(y − y0). (3.4)

This is physically a way of representing a larger concentration or number of particles
into an infinitely small space, see [21], for example. The probability density function of
particles at a certain location is an exposition of the concentration at that location [28,
21], therefore particle concentration C(x, y, t) can be related to the probability density
function f(x, y, t):

C(x, y, t) = f(x, y, t)/H(x, y, t). (3.5)
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By substituting this equation into Fokker-Planck equation (3.3), the following advection-
diffusion equation governing the concentration of a conservative pollutants can be ex-
pressed as

∂(HC)
∂t

= −∂(HUC)
∂x

− ∂(HV C)
∂y

+
∂

∂x

(
DH

∂C

∂x

)
+

∂

∂y

(
DH

∂C

∂y

)
. (3.6)

Where U and V are the flow field components in x and y directions, H is the local water
depth, D is the dispersion coefficient. An initial condition for the concentration can
subsequently be obtained by substituting Eqn. (3.4) into Eqn. (3.5). By interpreting
the Fokker-Planck equation (3.3) as an advection-diffusion equation makes the particle
model in Eqns. (3.1)–(3.2) to be consistent with the well known advection-diffusion
equation (3.6) as shown by [28].

3.3 Coloured noise processes

We introduce coloured noise forces which represent the stochastic velocities of the par-
ticles, induced by turbulent fluid flow. We assume that this turbulence is isotropic and
that the coloured noise processes are stationary and completely described by their zero
mean and Lagrangian auto covariance function.

3.3.1 The scalar exponential coloured noise process

Let the linear stochastic differential equation that models the dynamics of a stochastic
velocity of the particle be given by

du1(t) = − 1
TL
u1(t)dt+ α1dW (t). (3.7)

u1(t) = u0e
−t
TL + α1

∫ t

0
e
− (t−s)

TL dW (s) (3.8)

where u1 is the particle’s velocity, α1 > 0 is constant, and TL is a Lagrangian time scale.
For t > s it can be shown [32], that the scalar exponential coloured noise process in
Eqn. (3.8) has mean, variance and Lagrangian auto-covariance of respectively,

E[u1(t)] = u0e
−t
TL , Var[u1(t)] =

α2
1TL

2

(
1− e−

2t
TL

)
,

Cov[u1(t), u1(s)] =
α2

1TL

2
e
− |t−s|

TL . (3.9)

3.3.2 The general vector coloured noise force

The general vector form of a linear stochastic differential equation for coloured noise
processes [32, 52] is given by

du(t) = Fu(t)dt + G(t)dW(t), dv(t) = Fv(t)dt + G(t)dW(t). (3.10)
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Where u(t) and v(t) are vectors of length n, F and G are n × n respectively n ×
m matrix functions in time and {W (t); t ≥ 0} is an m-vector Wiener process with
E[dW1(t)dW2(t)T] = Q(t)dt. In this chapter we extend a special case of the Ornstein-
Uhlenbeck process [25, 52] and repeatedly integrate it to obtain the so called coloured
noise forcing along the x and y-directions:

du1(t) = − 1
TL
u1(t)dt+ α1dW (t), dv1(t) = − 1

TL
v1(t)dt+ α1dW (t)

du2(t) = − 1
TL
u2(t)dt+ 1

TL
α2u1(t)dt, dv2(t) = − 1

TL
v2(t)dt+ 1

TL
α2v1(t)dt

du3(t) = − 1
TL
u3(t)dt+ 1

TL
α3u2(t)dt, dv3(t) = − 1

TL
v3(t)dt+ 1

TL
α3v2(t)dt

du4(t) = − 1
TL
u4(t)dt+ 1

TL
α4u3(t)dt, dv4(t) = − 1

TL
v4(t)dt+ 1

TL
α4v3(t)dt

... =
...

... =
...

dun(t) = − 1
TL
un(t)dt+ 1

TL
αnun−1(t)dt, dvn(t) = − 1

TL
vn(t)dt+ 1

TL
αnvn−1(t)dt.

(3.11)

This way, a Lagrangian auto-covariance of the velocity processes is modelled more ac-
curately and it is now possible to take into account the characteristics of an isotropic
homogeneous turbulent fluid flow. The vector Langevin equation (3.11) generates a
stationary, zero-mean, correlated Gaussian process denoted by (un(t), vn(t)). The La-
grangian time scale TL indicates the time over which the process remains significantly
correlated. The linear system in Eqn. (3.11), is the same in the Itô and the Stratonovich
sense because the diffusion function is not a function of state but only of time. In or-
der to get more accurate results we integrate the stochastic differential equation that is
driven by the coloured noise processes by using Heun scheme (see e.g., [41, 51, 34]).

The main purpose of this chapter is the application of coloured noise forcing in the
dispersion of a cloud of contaminants so as to improve the short term behaviour of the
model while leaving the long term behaviour unchanged. Being the central part of the
model, it is important to study the properties of coloured noise processes in more detail.
Coloured noise is a Gaussian process and it is well known that these processes can be
completely described by their mean and covariance functions [3]. From Eqn. (3.9) also see
Figure 3.1 (a), it is easily seen that the mean approaches zero throughout and therefore
requires little attention. The covariance, however, depends not only on time but also
on the initial values of un(0) and vn(0). This immediately gives rise to the question of
how to actually choose or determine these values. Let’s consider the covariance matrix
of the stationary process u in the stochastic differential equations of the form (3.10). It
is known [32], for example that covariance function P can now be described by

dP

dt
= FP + PF T +GQGT . (3.12)

By equating dP/dt to 0, we can find the steady state covariance matrix P̄ . This matrix
can then be used to generate instances of coloured noise processes. This way of generating
instances of u vector ensures that the process is sampled at its stationary phase thus
removing any artifacts due to a certain choice of start values that would otherwise be
used. The auto-covariance is depicted in Figure 3.2. Note that the behaviour of a physical
process in this case depends on the parameters in the Lagrangian auto-covariance. Of
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course the short term diffusion behaviour is controlled by the auto-covariance function.
This provides room for the choice of parameters e.g.,α1, α2 · · · . The mean, variance and
the auto-covariance are not stationary for a finite time t but as t → ∞, they approach
the limiting stationary distribution values as shown in Figures 3.1(a), 3.1(b) and 3.2.
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Figure 3.1: (a) Shows that the mean of the coloured noise processes tends to zero, (b)
Shows that the variance of coloured noise processes started from non-stationary state

to stationary state.

3.4 Modelling dispersion of pollution processes by coloured

forcing noise

Let us consider the following stochastic differential equation,

dX(t) Itô= f(X(t), t)dt+ g(X(t), t)dW (t). (3.13)

As stated earlier, the model in Eqn. (3.13) is not physically accurate. The shortcom-
ing of these traditional particle models is caused by the fact that the driving noise in
the stochastic differential equations (3.1)–(3.2) and (3.13) are modelled as Brownian
processes and as a result, have independent increments for time periods t � TL (see
e.g., [32, 3, 2]). Rather, for t � TL it is more realistic to assume that the increments
are correlated. Therefore, for short time scales, a coloured force is applied so as to take
into consideration the short time correlation behaviour.
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Figure 3.2: The auto-covariance of coloured noise processes started from
non-stationary state for α1 = α2 = α3 = α4 = 1 and tends to zero at stationary state.

3.4.1 Random flight model

To model dispersion in shallow waters we have developed an extension of the random
flight model due to [28]. In this extension the coloured noise process is generalised to
(un(t), vn(t)) which represents the velocity of the particle at time t in respectively the
x and y directions. This way the Lagrangian auto-covariance processes can be modelled
more accurately by taking into account the characteristics of the turbulent fluid flow
for t � TL. By using the following set of equations the random flight model remains
consistent with the advection-diffusion equation (3.6) for long period simulations while
modelling accurately the short term correlation of the turbulent fluid flows. In this
application we choose n = 4:

du1(t) = − 1
TL
u1(t)dt+ α1dW (t), dv1(t) = − 1

TL
v1(t)dt+ α1dW (t)

du2(t) = − 1
TL
u2(t)dt+ 1

TL
α2u1(t)dt, dv2(t) = − 1

TL
v2(t)dt+ 1

TL
α2v1(t)dt

du3(t) = − 1
TL
u3(t)dt+ 1

TL
α3u2(t)dt, dv3(t) = − 1

TL
v3(t)dt+ 1

TL
α3v2(t)dt

du4(t) = − 1
TL
u4(t)dt+ 1

TL
α4u3(t)dt, dv4(t) = − 1

TL
v4(t)dt+ 1

TL
α4v3(t)dt,

(3.14)
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dX(t) =
[
U + σu4(t) + (∂H

∂x D)/H + ∂D
∂x

]
dt

dY (t) =
[
V + σv4(t) + (∂H

∂y D)/H + ∂D
∂y

]
dt.

(3.15)

These systems of vector equations are Markovian we shall refer to this set of equations
as the random flight model. The random flight model (3.14)–(3.15) is integrated for
many different particles. Note that at the start of the simulation all particles have
initial Gaussian velocities (u4(0), v4(0)) with zero mean and variance that agrees with
covariance matrix P̄ at a steady state.

3.5 The spreading behaviour of a cloud of contaminants

The characteristics of a spreading cloud of contaminants due to Brownian motion and
coloured noise processes are discussed in the following sections.

3.5.1 Long term behaviour of Brownian motion force

Let us, for now assume there is no drift term in Eqn. (3.13) that is, f(X(t), t) = 0, and
let

g(X(t), t) =
√

2D.

It follows that,

dX(t) Itô=
√

2DdW (t). (3.16)

By applying Theorem 1(see Appendix, 3.10) to Eqn. (3.16), it can be shown that the
variance of a cloud of contaminants grows linearly with time:

Var[X(t)] Itô= 2Dt + constant. (3.17)

3.5.2 Long term spreading behaviour of a cloud of contaminants subject to coloured
noise forcing

As discussed in Section 3.3.1 with, for example, u1(t) from Eqn. (3.8) as the coloured
noise forcing and still assuming there is no background flow, the position of a particle
at time t is given by

dX(t) = σu1(t)dt, =⇒ X(t) = X(0) + σ

∫ t

0
u1(m)dm. (3.18)

For simplicity, yet without loss of generality, let X(0) = ui(0) = 0, for i = 1, 2, · · · , n.

Now, Eqn. (3.8) leads to u1(m) = α1

∫m
0 e

− 1
TL

(m−k)
dW (k), and consequently,

X(t) Itô= σα1TL

∫ t

0
(1− e

− 1
TL

(t−k))dW (k). (3.19)
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Using Theorem 1 (see Appendix, 3.10), it can be shown that the position of a particle
at time t is normally distributed with zero mean and variance:

Var[X(t)]
t

= σ2α2
1T

2
L

[
1− 2TL

t
(1− e

−t
TL ) +

TL

2t
(1− e

−2t
TL )
]
.

Thus, a position of a particle observed over a long time span as modelled by the coloured
noise process u1(t) behaves much like the one driven by Brownian motion with variance
parameter σ2α2

1T
2
L. Hence, the dispersion coefficient is related to variance parameters

σ2α2
1T

2
L = 2D. We can clarify this by considering Eqn.(3.19), where the second part is

u1(t) itself;

X(t) = σTL [α1W (t)− u1(t)] , where u1(t) = α1

∫ t

0
e
− 1

TL
(t−k)

dW (k).

Let us now re-scale the position process in order to better observe the changes over large
time spans. Doing so, for N > 0, we get

XN (t) =
1√
N
X(Nt) = σTL

[
α1B̃(t) +

1√
N
u1(t)

]
, (3.20)

where B̃(t) = B(Nt)√
N

remains a standard Brownian motion process. For sufficiently large
N it becomes clear that Eqn. (3.20) behaves like Brownian motion:

XN (t) ≈ σα1TLB̃(t).

3.5.3 The analysis of short term spreading behaviour of a cloud of contaminants

For scalar coloured noise, it can be shown using Eqn. (3.9) that

Cov[ut+τut] = E[ut+τut] = E[vt+τvt] =
1
2
α2

1TLe
−|τ |
TL . (3.21)

Subsequent application of equation (3.21) that is,

E[uτus] =
1
2
α2

1TLe
−|τ−s|

TL ,

yields,

Var[Xt] = σ2

∫ t

0

∫ t

0

1
2
α2

1TLe
−(τ−s)

TL dτds. (3.22)

The integration of equation (3.22) can easily be solved by separately considering the
regions τ < s and τ > s, and it can be shown that

Var[Xt] = σ2α2
1T

3
L

(
t2

2T 2
L

− t3

6T 3
L

· · ·
)

=
σ2α2

1TLt
2

2
− σ2α2

1t
3

6
+ · · · . (3.23)
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Since we are interested only in the short time analysis, Eqn. (3.23) is considered only
for very small values of t in a sense that for t� TL the variance of a cloud of particles
shortly after deployment is then given by the following equation:

Var[Xt] =
1
2
σ2α2

1TLt2. (3.24)

With the constant dispersion coefficient D = 1
2σ

2α2
1T

2
L, the variance of the cloud of

particles, therefore initially grows with the square of time:

Var[X(t)] =
D
TL

t2. (3.25)

3.5.4 The general long term behaviour of a cloud of contaminants due to coloured
noise

Let us assume that there is no flow in the model and therefore have

dX(t) = σu1(t)dt −→ X(t) =
∫ t

0
σu1(s)ds, u1(s) = α1

∫ s

0
e
− 1

TL
(s−k)

dW (k),

X(t) =
(

1
TL

)0

σα1

∫ t

0

∫ t−k

0
e
− 1

TL
(s−k) (s− k)0

0!
dsdW (k), X(0) = 0.

It can then be shown that

u2(s) = 1
TL
α1α2

∫ s
0 e

− 1
TL

(s−k)(s− k)dW (k), (3.26)

where 0 < m < s < t. Since k < s, the position of a particle due to coloured noise force
Eqn. (3.26) is given by

X(t) =
(

1
TL

)1

σα1α2

∫ t

0

∫ t−k

0
e
− 1

TL
(s−k) (s− k)1

1!
dsdW (k).

In general, a position due to un(t) force is: X(t) =
∫ t
0 σun(s)ds, and it follows that

X(t) Itô=
(

1
TL

)n−1

σ

n∏
i=1

αi

∫ t

0

[∫ t−k

0
e
− 1

TL
(s−k) (s− k)n−1

(n− 1)!

]
dsdW (k). (3.27)

Careful manipulation using integration by parts of the integral within the square brackets
of Eqn. (3.27), yields

X(t) Itô= (TL)n

(
1
TL

)n−1

σ

n∏
i=1

αi

∫ t

0
[1 + ....] dW (k), for n ≥ 1. (3.28)

Finally, with the aid of Theorem 1 (see Appendix, 3.10) and also in [52], the variance
of a cloud of contaminants can be computed as described in the sections above. The
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derivation of velocity vn(t) of the particle along the y direction proceeds completely
analogously. Let us now compute the variance of the general equations for position
given by Eqn. (3.28)

Var[X(t)] = σ2 (TL)2
∏n

i=1 α
2
i

∫ t
0 [1− .....]2 dk. (3.29)

For σ > 0, αi > 0, and TL > 0, the process again behaves like a Brownian process with
variance parameters T 2

Lσ
2
∏n

i=1 α
2
i as t→∞. Thus the appropriate diffusion coefficient

from Eqn. (3.17) equals D = σ2T 2
L

Qn
i=1 α2

i
2 . This relation is important because it gives a

criterion for various choices of parameters αi, i = 1, · · · , n, TL > 0. In a simulation the
constant dispersion coefficient D is often specified whereas σ must be solved in terms of
the other parameters.

3.6 The traditional discrete particle model driven by Brow-

nian motion

Analytical solutions of stochastic differential equations do not always exist due to their
complexity and nonlinearity. Therefore, stochastic numerical integration schemes are
often applied [41, 51, 35]. An example of a numerical scheme is the Euler scheme which,
although not optimal in terms of order of convergence, it is easy to implement and
requires only O(∆t) in the weak sense [34]. Here the time interval [t0, T ] is discretised
as t0 = 0 < t1 < t2 < · · · < tn−1 < tn = T , with ∆(tk) = tk+1 − tk, ∆W (tk) =
W (tk+1)−W (tk), for k = 0, 1, · · ·n.

X̄(tk+1) = X̄(tk) +
[
U + (∂H

∂x D)/H + ∂D
∂x

]
∆(tk) +

√
2D∆W1(tk) (3.30)

Ȳ (tk+1) = Ȳ (tk) +
[
V + (∂H

∂y D)/H + ∂D
∂y

]
∆(tk) +

√
2D∆W2(tk), (3.31)

where X̄(tk+1) and Ȳ (tk+1) are the numerical approximations of theX(tk+1) and Y (tk+1)
positions respectively due to the traditional particle model. The noise increments
∆W1(tk) and ∆W2(tk) are independent and normally distributed N (0,∆(tk)) random
variables which can be generated using e.g.,pseudo-random number generators [34], for
example. The domain information consisting of flow velocities and depth is computed
using a hydrodynamic model known as WAQUA (see [49]). The flow averaged fields are
only available on grid points of a rectangularly discretised grid and therefore, interpola-
tion methods are usually used to approximate the values at other positions.

3.6.1 Boundaries

One problem with numerical integration of particle positions arises in the vicinity of
boundaries. Given the current location, (X(t), Y (t)), we may find that the new location,
(X(t+ ∆t), Y (t+ ∆t)), is on the other side of a boundary, i.e. the particle has crossed
a boundary. Depending on the type of boundary this may be physically impossible. We
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consider two types of boundaries, the first type, closed boundaries, represents boundaries
intrinsic to the domain such as banks, sea bed, and coastal lines. The second type of
boundaries are open boundaries, which arise from the modeller’s decision to artificially
limit the domain because particles are not expected to reach any further or simply
because no domain information is available at those locations. It is undesirable to have
particles cross the first type of boundary, whereas for the second type it is quite natural.
Based on this classification, we apply the following rules to particles crossing borders
during integration:

• In case an open boundary is crossed by a particle, the particle remains in the sea
but is now outside the scope of the model and is therefore removed.

• In case a closed boundary is crossed by a particle during the drift step of integra-
tion, the step taken is cancelled and the time step halved until the boundary is no
longer crossed. However, because of the halving, say n times, the integration time
is reduced to 2−n∆t, leaving a remaining (1− 2−n)∆t integration time, which, at
a constant step size, requires at least another 2n − 1 steps in order to complete
the full time-step ∆t. Note that at each of these steps it may be needed to further
reduce the step size. This further reduction applies only to the current time step,
leaving the step size of following sub-steps unaffected. This method effectively
models shear along the coastline.

• If a closed boundary is crossed during the diffusive part of integration, the step
size halving procedure described above is maintained with the modification that
in addition to the position, the white noise process is also restored to its state
prior to the invalidated integration step. The process of halving the time step and
continuing integration with the reduced step size is repeated until the full ∆t time
step has been integrated without crossing a boundary.

3.7 Numerical Experiments

Before applying both the traditional model (3.1)–(3.2) and the random flight model (3.14)–
(3.15) to a real life pollution problem. Let us consider a two dimensional channel domain
with flow field (see Figure 3.3). In order to compare the spreading behaviour of a cloud
of contaminants some experiments using both particle models were carried out. From
now onwards in this chapter we shall denote Brownian motion by BM and coloured noise
by CN.

We have released 40, 000 particles at the center point (0, 0) marked by “X” (see
Figure 3.3) also the simulation starts at time t0 = 0. The scattering of a cloud of
contaminants due to coloured noise or Brownian motions forces is followed at a specified
time steps after release. Generally a large number of particles are used [2] in numerical
simulations. The simulations parameters that have been used for simulations in this
chapter are summarised in the Table 3.1 (see Appendix 3.10). The channel domain
Figure 3.3 is mainly designed to discuss numerical problems that can be encountered
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Figure 3.3: Domain showing flow velocity and a point at which particles are released.

in particle models as is discussed in Section 3.6.1. The results in the Figures 3.4(a)-
(b), 3.5(a)-(b) and 3.6(a)-(b) and 3.7(a)-(b) respectively show the spreading of a cloud
of particles as well as a marked track particle. By using the random flight model the short
term spreading is much smaller and moves persistently but slowly when you consider the
temporal time scales t : t � TL, while it is random and faster when you use Brownian
motion. However in the long scale the spreading of a cloud has similar behaviours (see
e.g., Figure 3.5(b)). This suggests that if one is interested in the accurate modelling in
the short term behavior for t : t � TL then using the traditional particle model is not
good, in that case it is better to use the random flight model.

In this work we have considered a series of experiments in a stationary homogeneous
turbulent flow with zero mean velocity and the Lagrangian time scale as TL is introduced
in the models. We also carried out an experiment in the empty domain using random
flight model as well as the traditional particle model so as to show the differences between
the small scale fluctuations and their similarity in the long scale fluctuations. The
simulation of the spreading of a cloud of 20, 000 particles is tracked in an empty domain
and its variance is computed. We have shown that once the particles have been in the
flow longer than the time scale TL, the variance of the spreading cloud grows linearly
with time similar to the behaviour of the advection-diffusion equation. Before that time,
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(a) (b)

Figure 3.4: (a) Dispersion of a cloud of 40, 000 particles released in the idealised
channel domain by using Random flight for t < TL, (b) Dispersion of a cloud of 40,000
particles released in the idealised channel domain by using Tradition particle model for

t < TL.

the variance grows with the square of time (quadratically), creating two different zones
of diffusion when using the random flight model, (see Figure 3.8). In Section 3.5.4 we
have suggested that for t � TL we can define a turbulent mixing coefficient similar to
constant dispersion coefficient D such that D = σ2T 2

L

Q
α2

i
2 .

3.8 Application of both the traditional particle and random

flight models

For comparison purposes we have applied both models to the simulations of the transport
of pollutants in the Dutch coastal waters in and around the Wadden sea. In this chapter
we choose a grid cell size of 800m × 800m this grid cell size is sufficiently small to
model the dispersive effect of the tidal flow induced by topographic variations [61].
The interpolation methods can be employed to get data at arbitrary positions, we have
included few examples of the averaged flow field in the North sea (see Figure 3.9(a)-
(b)). The spreading of a cloud of 400, 000 particles is tracked (see Figure 3.10(a)-(b) and
Figure 3.11(a)-(b)) where a cloud of contaminants is released from a fixed grid position
and tracked by either a Brownian motion or a coloured noise force (see Table 3.1) for
the values of the simulation parameters. The tracks of a marked particle in the Wadden
sea are plotted in Figures 3.12(a)-(b) and Figures 3.13(a)-(b).
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(a) (b)

Figure 3.5: (a) Dispersion of a cloud of 40,000 particles released in the idealised
channel domain by using Random flight for t� TL, (b) Dispersion of a cloud of 40,000
particles released in the idealised channel domain by using Tradition particle model for

t� TL.

(a) (b)

Figure 3.6: (a) Tracking of a single marked particle domain by using Random flight
for t < TL, (b) Tracking of a single marked particle domain by using Tradition particle

model for t < TL.
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(a) (b)

Figure 3.7: (a) Tracking of a single marked particle by using Random flight for t� TL,
(b) Tracking of a single marked particle by using Tradition particle model for t� TL.
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Figure 3.8: Distribution of a cloud of 20,000 particles in the idealized empty domain
showing the two zones.
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(a) (b)

Figure 3.9: (a) Example of tidally averaged flow fields 3 hours after, (b) Example of
tidally averaged flow fields 6 hours after.

(a) (b)

Figure 3.10: (a) Dispersion of a cloud of 400, 000 particles released at
(x, y) = (135km, 570km) in the Wadden sea by using Random flight for t < TL, (b)
Dispersion of a cloud of 400,000 particles released at (x, y) = (135km, 570km) in the

Wadden sea by using Tradition particle model for t < TL.
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(a) (b)

Figure 3.11: (a) Dispersion of a cloud of 400, 000 particles released at
(x, y) = (135km, 570km) in the Wadden sea by using Random flight for t� TL, (b)
Dispersion of a cloud of 400,000 particles released at (x, y) = (135km, 570km) in the

Wadden sea by using Tradition particle model for t� TL.

(a) (b)

Figure 3.12: (a) Tracking of a single marked particle domain by using Random flight
for t < TL, (b) Tracking of a single marked particle by using Tradition particle model

for t < TL.
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(a) (b)

Figure 3.13: (a) Tracking of a single marked particle by using Random flight for
t� TL, (b) Tracking of a single marked particle by using Tradition particle model for

t� TL.

3.9 Conclusions

The results show that the spreading of a cloud of particle for the short time scale is
slow when it is driven by coloured noise force while it is much faster when it is driven
by Brownian motion on the same scale. Therefore, an improvement in modelling the
dispersion of pollutants on a small time scale is attained when a coloured noise force
is employed. Thus, a random flight model will provide the modeller with an enhanced
tool for the short term simulation of the pollutants by providing more flexibility to
account for correlated physical processes of diffusion in the shallow waters. However, in
this chapter a general analysis shows that a process observed over a long time spans as
modelled by the coloured noise force behaves much like a Brownian motion model with
variance parameter σ2T 2

L

∏n
i=1 α

2
i . The use of coloured noise however is more expensive

in terms of computation and therefore it is advisable to use the random flight model
for short term behaviour while adhering to the traditional particle model for long-term
simulations.

3.10 Appendix

It is well known[52], that for any continuous function we have the following theorem.

Theorem 1 Let g(x) be continuous function and {W (t), t ≥ 0} be the standard Brown-
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ian motion process. For each t > 0, there exits a random variable

F(g) =
∫ t

0
g(x)dW (x),

which is the limiting of approximating sums

Fn(g) =
2n∑

k=1

g(
k

2n
t)[B(

k

2n
t)−B(

k − 1
2n

t)],

as n → ∞. The random variable F(g) is normally distributed with mean zero and
variance

Var[F(g)] =
∫ t

0
g2(u)du,

if f(x) is another continuous function of x then F(f) and F(g) have a joint normal
distribution with covariance

E[F(f)F(g)] =
∫ t

0
f(x)g(x)dx.

Summary of the simulation parameters of particle for pollu-

tants dispersion in shallow waters

Channel Unit Value North sea Unit Value
# of steps - 8999 # of steps - 2499
∆t s 864 ∆t s 864
Particles - 40000 Particles - 400, 000
α1, α2 - α1 = 1, α2 = 0.2 α1, α2 - α1 = 1, α2 = 0.2
α3, α4 - α3 = 1.2, α4 = 2 α3, α4 - α3 = 1.2, α4 = 2
Tracks - 5 Tracks - 5
Grid offset m (−21600,−21600) grid offset m (40550, 500000)
Grid size - 105× 105 Grid size - 201× 201
Cell size m 400× 400 Grid size m 800× 800
Init. point m (0, 0) Init. point m (1.35× 105, 5.7× 105)
D m/s2 3 D m/s2 3
TL s 30000 TL s 30000

Table 3.1: The simulation parameters of the particle model for the dispersion of
pollutants in shallow waters.
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Chapter 4
The particle model for simulation of
sediment transport in coastal waters

Overview1: In this chapter we have developed a mathematical model known as a particle
model to describe transport of sediment particles in shallow waters. The additional
processes in the model such as erosion and deposition are modelled by using probabilistic
concepts. The resulting Fokker-Planck equation due to this particle model, is interpreted
into an Eulerian transport model. By so doing, the underlying particle model is shown to
be consistent with the Eulerian transport model with the deposition and erosion terms.
Eventually, we have implemented the particle model. This particle model uses real data
such as the water depths, water levels as well as the velocities of the flow fields of the
Dutch coastal waters of the North Sea. The idea was to test our particle model for the
approximation of the sea bed-level changes.

4.1 Introduction

The morphology of many shallow water areas is characterised by a complex pattern in
both space and time [46]. This behaviour is caused by the feedback among the water
motion, sediment transport and bottom changes. It is clear that the morphological
behaviour is very sensitive to changes in external conditions [59]. The change can be
caused, for example, by the rise of sea level or human activities [23, 27]. Therefore,
there is a need to simulate and predict morphological processes and their sensitivity to
changing conditions both for economic and ecological reasons.

Morphological changes in estuaries play an important role in coastal protection,
ecology, economy, water quality, dredging activities in channels and so forth. In recent
years, different morphodynamic models have been developed (see e.g. [40]). It was
demonstrated in [61] that the effects of bottom topography on tidal motions is to generate

1This chapter is a revised version of [9] published in the J. of NAMP. 8 (2004), pp. 131-138.
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residual currents and overtides, which turn out to have a large impact on the mixing
properties of such systems.

The bedform changes have a significant effect on the flow dynamics contributed by
imbalance between sediments in and out from those areas. The imbalance can easily
be disturbed by the external factors, such as extreme storm events, mean sea-level rise,
changes in tidal regime, human interferences and so on. Therefore, a better prediction
of these bedforms is required to be able to understand their sensitivity to external con-
ditions. In this chapter we have developed and described a particle-based approach to
simulate entrainment, transport, and settling of non-cohesive sediments in shallow wa-
ters. Sediment distributions are modelled as a set of particles that are tracked on an
individual basis by solving Lagrangian transport equations that account for the drift
part by the mean flow, settling, and random horizontal motions.

The rest of this chapter is organised as follows. The brief description of an Eulerian
transport model is done in Section 4.3. While the particle model for sediment trans-
port is discussed in Section 4.4. The interpretation of the partial differential equation
called Fokker-Planck equation into the well-known Eulerian transport model for sedi-
ment transport is described in Section 4.4.5. The description and discussion of the two
dimensional channel for a test case of sediment transport is carried out in Section 4.6.
The numerical implementation has been carried out in the North sea of the Dutch coastal
waters. The results are available in the application section 4.8 of this chapter.

In our work we do carry out the estimation of the change in bedforms. Nevertheless,
we do not yet recompute the flow velocities when a change in the shallow water depth
occurs.

4.2 Shallow water flow equations

In order for particle models to describe transport problems in shallow waters, the in-
puts such as water flow velocities [U(x, y, t), V (x, y, t)]T , water levels ξ, water depths
H(x, y, t) and so forth are required. In our application, the inputs are often computed
by the hydrodynamic model(WAQUA), which can solve the depth-averaged shallow wa-
ter equations or 3 dimensional shallow water [49]. The generated results in this case
are written into a matlab format that can be loaded and read in the particle model for
simulation of sediment transport. The inputs are assumed to satisfy the shallow water
equations [18]. The momentum equations are represented by the following equations:

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ g

∂ξ

∂x
− fV + g

U(U2 + V 2)
1
2

(Cz)2H
= 0 (4.1)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ g

∂ξ

∂y
+ fU + g

V (U2 + V 2)
1
2

(Cz)2H
= 0. (4.2)
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The velocity is uniform over the vertical, therefore, for that reason, the rise and fall of
free surface is given by equations of conservation of mass called the continuity equation:

∂H

∂t
+
∂(UH)
∂x

+
∂(V H)
∂y

= 0, (4.3)

where

H = h+ ξ is the total depth;
ξ is the water-level with respect to a reference;
h depth of the water with respect to a reference;
Cz bottom friction coefficient (Chezy coefficient);
g acceleration of gravity;
f Coriolis parameter.

The shallow water equations are entirely described by equations (4.1)-(4.3), provided
the closed and open boundary conditions and initial fields are given [29].

4.3 Eulerian sediment transport model

In this section we briefly introduce the Eulerian model for sediment transport. We
consider noncohesive type of sediment particle. The dynamics of the suspended particles
can be described by the well-known Eulerian transport model with the source and sink
terms included. The following Eulerian sediment transport model is similar to that
in [59], for example:

∂(HC)
∂t

+
∂(HUC)

∂x
+
∂(HV C)

∂y
− ∂

∂x
(D

∂HC

∂x
)− ∂

∂y
(D

∂HC

∂y
)

= −γHC + E(U, V ) · λs. (4.4)

Where C(x, y, t) is depth averaged concentration, γ is the deposition coefficient, E(U, V ) =
(U2 + V 2)(m2s−2) is a function of flow velocities and the term λs · E(U, V ) models ero-
sion of sediment particles. The particle pick up function is parameterized as λs ·E(U, V ),
where, λs is the erosion coefficient, it can be related to sediment properties (grain size,
grain shape). This parameterisation is motivated by the analysis of field observations
reported in [46] and reference therein. Typically, λs ≈ 3× 10−2(kgsm−4) for fine sand.
In this article λs = 0.0001(kgm−4s) is within the range reported in literature (see
e.g., [45, 15]). Note that the term γHC models the deposition of sediment and γ is
the deposition coefficient, it is reported that γ ≈ 4× 10−3s−1 [46] for fine sand.
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4.3.1 Determination of bedlevel changes by Eulerian transport model

In addition to suspension and deposition processes, the following equation is used to
determine the depth changes and therefore the change of bed-level in each grid cell i, j:

∂h

∂t
=

1
(1− po)ρs

(de − se). (4.5)

Where se = γHC stands for deposition and de = λs · E(U, V ) stands for erosion (term
responsible for suspending particles). Sea bed porosity is represented by po, ρs is the
density of sediment particles.

In this section we have constructed a simplified transport model which is derived
from the Eulerian transport model (4.4). This simple model is then made consistent
with the simplified Lagrangian particle model. In this way it becomes easy to compare
the bedlevel changes to see if they are similar. We simplified Eqn. (4.4) by assuming
that the deposition and erosion processes balance:

γCH = (U2 + V 2) · λs. (4.6)

Quite often, transport in water is defined as the product of the concentration of sediment
particles C and a velocity U or V as well the depth of water in that grid cell. Thus,
transport along x and y directions is respectively given by;

qx = UCH and qy = V CH,

where in vector form q = [qx, qy]T , using Eqn. (4.6), it follows that

q = [(U2 + V 2)U · fd, (U2 + V 2)V · fd]T , (4.7)

where fd = λs
γ stands for the drag force. This depends on the properties of a particle

for example its size or its area. Thus, in order to determine how much mass exits or
comes into a given location, it is important to consider the divergence. The divergence
determines the average rate of how much mass comes into the cell(change of mass per
second per area):

∂m

∂t
= −div(q),

(4.8)

where q = 1
T

∫ T
0 qdt, div stands for divergence. Consequently, Eqn. (4.8) represents

the rate of how much mass stays behind or leaves the cell by assuming the absence of
destruction or creation of a matter. Since we want to determine the effects of sediment
transport on the sea bedforms, the equation for the bed level is represented by;

∂h

∂t
=

1
(1− po)ρs

∂m

∂t
. (4.9)
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In the present application the determination of the bed level change using finite
difference scheme is estimated by the following equations:

∂h

∂t
= − 1

ρs(1− po)
· div(q).

For cases where flow is in one direction for example when v = 0, transport is given by
the following equation:

∂h

∂t
= − fd

ρs(1− po)
· div(U3).

With the aid of Eqn. (4.8)–(4.9), accordingly the determination of bed level changes is
now done by using the following equation:

∆h ≈ −fdT

ρs(1− po)
·
(
∂um

∂x
+
∂vm

∂y

)
. (4.10)

where um = 1
T

∫ T
0 (U2 +V 2)Udt and vm = 1

T

∫ T
0 (U2 +V 2)V dt. Next, let us now discuss

the Lagrangian particle model in the following section.

4.4 A particle model for sediment transport in shallow wa-

ters

A particle model is a description of a transport process by means of random walk models.
Random walk model is defined as the stochastic differential equation that describes the
movement of a particle that subsequently undergoes a displacement, which consists of
the drift part and a stochastic(diffusive) part [40].

4.4.1 Integration of particle movement

In this section, the following 2-dimensional stochastic differential equations is developed:

dX(t) Itô=
[
U + D

H

(
∂H
∂x

)
+ ∂D

∂x

]
dt+

√
2DdW1(t),

dY (t) Itô=
[
V + D

H

(
∂H
∂y

)
+ ∂D)

∂y

]
dt+

√
2DdW2(t),

(4.11)

where the Brownian processW1(t) andW2(t) are Gaussian [35], andD(x, y, t) is the hori-
zontal dispersion coefficient for sediment transport. Typically,D = O(10−100)m2/s [46].
Note that U(x, y) and V (x, y) are the flow velocities along the x and y direction respec-
tively given in m/s, H(x, y) is the averaged total depth plus relative water levels due to
waves, dW1(t) and dW2(t) are independent increments of Brownian motions with mean
(0, 0)T and covariance E[dW1(t)dW2(t)T] = Idt where I is an identity matrix ([3, 32]).
The simulation of sediment transport is initiated with zero number of particles.
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4.4.2 Deposition of sediment particles

We associate with each sediment particle a binary state which at any time t is given by

St =
{

1 particle is suspension
0 otherwise (particle is on sea bed).

Given a particle in suspension, we are interested in the transition of state 1 to state 0.
In a continuous form, this transition can be modelled by the following equation

dP(St = 1)
dt

= −γ · P(St = 1), where initially P(S0 = 1) = 1 (4.12)

where γ(x, y, t) is the deposition coefficient, in this chapter γ = γ(x, y, t) is constant,
P(St = 1) is the probability that the state of the particle at time t is 1. When the
particle is in the flow, its evolution is described by the following transition probability
equation in discrete form:

P(St+∆t = 1 | St = 1) = P(S0 = 1) · [1− γ ·∆t]
= [1− γ∆t]

(4.13)

During the period of the time step, (∆t), the system state (e.g. flow field and turbulence
patterns) is assumed constant. It follows that

P(St+∆t = 0 | St = 1) = 1− [P(St+∆t = 1 | St = 1)], (4.14)

is the probability that a particle will be deposited.

4.4.3 Suspension of sediment particles

Mass represents concentration of a group of particles at a certain location. A source term
is included in our particle model such that the expected number of suspended particles
(enp) in grid cell i, j at time t is given by

enp(i,j,t) =
∆x ·∆y ·∆t ·

(
U2 + V 2

)
· λs

Mp
, (4.15)

where Mp is the mass of each particle, ∆x and ∆y are the width of the grid cells along
x and y directions respectively, ∆t is the time step size, and λs is the erosion coefficient.
For each grid cell i, j we use the expected number of particles from Eqn. (4.15) to
determine the actual number of particles to be suspended. This is done by drawing a
number from a Poisson distribution function. Furthermore, the treatment of boundaries
condition is the same as that in Section 3.6.1 in chapter 3. In addition, this chapter have
also considered the pick up of sediment particles at the inflows this will be discussed in
the next section.
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4.4.4 Particle flux at open boundaries

We now consider particle flux at open boundaries. This flux is the difference between
particles flowing out of and particles flowing into the domain. The number of particles
flowing out should not be controlled as it is a natural consequence of the movement of
a particle. As soon as it crosses the open boundary it is considered gone and further
integration is no longer possible as no data outside the domain is given. For this very
reason, however, we do need to explicitly model the particles flowing in. We determine
the expected number of particles entering the domain as follows:

enp(i,j,t) =


∆y·∆t·V ·(U2+V 2)·λs

γMp
in-flow parallel to y-axis

∆x·∆t·U ·(U2+V 2)·λs

γMp
in-flow parallel to x-axis,

(4.16)

where γ is the deposition coefficient. The actual number of particles added at the domain
boundary at each iteration is obtained by drawing a value from the Poisson distribution
parameterised by the above calculated expectation value.

For each grid cell i, j we use the expected number of particles from Eqn. (4.15) to
determine the actual number of particles to be suspended by drawing a number from a
Poisson distribution function. We assume that particles are infinitely many on the sea
bed. However, the particle that is suspended is not the same as the one that is deposited.

Before implementing the particle model (4.11)-(4.16), we first required to show the
consistence between the Fokker-Planck equation and its the Eulerian transport model.
This will be described in the next Section.

4.4.5 The connection between the Fokker-Planck equation and Eulerian transport
model

In this section the relationship between the particle model and Eulerian transport model
for sediment transport is discussed in detail. Since we are interested in the particle being
in suspension, we assume that the particle at position (x, y) at time t has expectation
of their mass 〈·〉 defined by;

〈m(x, y, t)〉 = f(x, y, t) · P(St = 1). (4.17)

This is known as mass density of particles per unit area. We aim at deriving the Fokker-
Planck equation that incorporates suspension and sedimentation state of the particle.
Let D be the diffusion coefficient, P(St = 1), is the probability that particle is in suspen-
sion, (St = 1) denotes a state that a particle is in suspension and (St = 0) denotes the
state that the particle is deposited on the sea bed. The stochastic process (Xt, Yt) is a
Markov process. The probability density function of the particle position f(x, y, t) based
on the two dimensional SDEs (4.11) evolves according to the following Fokker-Planck
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equation [28].

∂f(x, y, t)
∂t

= − ∂

∂x

([
U + (

∂H

∂x
D)/H +

∂D

∂x

]
· f(x, y, t)

)
− ∂

∂y

([
V + (

∂H

∂y
D)/H +

∂D

∂y

]
· f(x, y, t)

)
+

1
2
∂2

∂x2
(f(x, y, t) · 2D) +

1
2
∂2

∂y2
(f(x, y, t) · 2D) . (4.18)

In this chapter we have extended the two dimensional pollution transport model (4.11)
which was discussed in [28]. The particle model now includes the erosion and depo-
sition terms. The next step is to derive a Fokker-Planck equation as follows, we first
differentiate equation (4.17) with respect to time t, we obtain

∂

∂t
〈m(x, y, t)〉 = P(St = 1)

∂

∂t
f(x, y, t) + f(x, y, t)

∂

∂t
P(St = 1),

next with the aid of Eqn. (4.12), it follows that,

∂

∂t
〈m(x, y, t)〉 = P(St = 1)

∂

∂t
f(x, y, t)− γf(x, y, t) · P(St = 1). (4.19)

Therefore, we also add the erosion term to Eqn. (4.19) and come up with

∂

∂t
〈m(x, y, t)〉 = P(St = 1)

∂

∂t
f(x, y, t)− γf(x, y, t) · P(St = 1) + λs · E(U, V ) (4.20)

next we multiply on both sides of Eqn. (4.18) by P(St = 1) to obtain

P(St = 1)
∂

∂t
f(x, y, t) = − ∂

∂x

([
U +

D

H

∂H

∂x
+
∂D

∂x

]
f(x, y, t) · P(St = 1)

)
− ∂

∂y

([
V +

D

H

∂H

∂y
+
∂D

∂y

]
f(x, y, t) · P(St = 1)

)
+

1
2
∂2

∂x2
(2D · f(x, y, t)P(St = 1)) +

1
2
∂2

∂y2
(2D · f(x, y, t) · P(St = 1)) . (4.21)

The substitution of Eqn. (4.21) into equation (4.20) gives the following Fokker-Planck
equation with the deposition and erosion terms.

∂〈m(x, y, t)〉
∂t

= − ∂

∂x

([
U +

D

H

∂H

∂x
+
∂D

∂x

]
· 〈m(x, y, t)〉

)
− ∂

∂y

([
V +

D

H

∂H

∂y
+
∂D

∂y

]
· 〈m(x, y, t)〉

)
+

1
2
∂2

∂x2
(2D · 〈m(x, y, t)〉) +

1
2
∂2

∂y2
(2D · 〈m(x, y, t)〉)

− γ · 〈m(x, y, t)〉+ λs · E(U, V ). (4.22)
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Therefore, the last two terms in the transport equation (4.22) stand for the deposition
and erosion terms respectively. An average mass 〈m(x, y, t)〉 per unit area (kg/m2) of a
particle is related to a particle depth averaged concentration C(x, y, t) in mass per unit
volume (kg/m3) ([57, 28]).

Since the concentration is given in kg/m3, the expected mass of a particle at position
(x, y) can be related by the concentration at that position by the following equation:

〈m(x, y, t)〉 = H(x, y, t) · C(x, y, t). (4.23)

By substituting Eqn. (4.23) into the Fokker-Planck equation (4.22) one can obtain the
Eulerian sediment transport model (4.4). Consequently, the transport equation (4.4)
which was discussed in Section 4.3, is consistent with the particle model for sediment
transport (4.11)-(4.16).

Therefore, after having constructed the particle model for sediment transport, it is
now necessary to develop the equations that cater for the bed level changes using the
particle model.

4.4.6 Determination of bedlevel changes using particle models

Comparing with a simplified form of Eqn. (4.4), where in this case we assume for the
local change in mass ∂m

∂t ≈ de − se. We also assume that the deposition and erosion
processes balance (see Section 4.3.1). The approximation of the change in mass in each
grid cell i, j in the this particle model is determined by the following equations:

∂m

∂t
=

∆Np

∆t
1

∆x∆y
Mp. (4.24)

Using equation (4.5) and the fact that ∂m
∂t ≈ de − se, the equation for the bed level

change can be derived as follows,

∂h

∂t
=

∆Np

∆t
1

ρs(1− po)∆x∆y
Mp.

Where Mp is the mass of each particle, ∆Np is the difference between deposited and
suspended particles at each iteration in each grid cell i, j, ρs = 2650kg/m3 denotes the
density of an individual grain particle and po ≈ 0.5 denotes the bed porosity [46]. Hence
the cumulated change in sea bedlevel ∆h in m for all time steps is determined by the
following equation:

∆h =
∫ T

0

∂h

∂t
dt

∆h ≈
∑ ∆Np

ρs(1− po)∆x∆y
Mp. (4.25)

More information about the effect of parameters on the sea bed level changes can be
found in [15], for example.

In the next section we shall briefly discuss the numerical approximation of our particle
model.
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4.5 Numerical approximation of the particle model

Euler scheme is used in the numerical implementation of the particle model. The scheme
is convergent in the weak sense with accuracy of order O(∆t) and it is half order ac-
curate in the strong sense. Higher order schemes for stochastic differential equations
are described in [33]. The discretisations of the hydrodynamic flow models is widely
discussed by [49], for example. The particle model (4.11)-(4.16) is discretised and uses
the following Euler scheme to approximate the numerical solutions. We discretise the
two dimensional stochastic differential equations for integrating the movement of the
particle in similar way to that as in [28] with the modifications by the inclusion of the
sedimentation and deposition parts:

X̄(tk+1) = X̄(tk) +
[
U + (

∂H

∂x
D)/H +

∂D

∂x

]
∆tk +

√
2D∆W1(tk) (4.26)

Ȳ (tk+1) = Ȳ (tk) +
[
V + (

∂H

∂y
D)/H +

∂D

∂y

]
∆tk +

√
2D∆W2(tk) (4.27)

Pk+1(St = 1) = (1− γ(x, y, t)∆k)Pk(St = 1). (4.28)

Where X̄(tk+1) and Ȳ (tk+1) are the numerical approximations of X(t) and Y (t) re-
spectively, while X̄(t0) = X(t0) = x0 and Ȳ (t0) = Y (t0) = y0 are initial locations of
a particle. In addition to Eqns. (4.26)-(4.28), we also use Eqns. (4.15)-(4.16) to make
the simulation of sediment transport complete. There are several schemes that can be
used for simulation process for instance, Euler, Heun, Milstein scheme and Runge kutta
methods. Much detailed work on numerical methods for stochastic models can be found
in (e,g., [50, 35, 41]).

Numerical schemes such as the Euler scheme often show very poor convergence be-
haviour [34]). This implies that, in order to get accurate results, small time steps are
needed thus requiring much computation. Another problem with the Euler (or any
other numerical scheme) is its undesirable behaviour in the vicinity of boundaries; a
time step that is too large may result in particles unintentionally crossing boundaries.
To tackle this problem we define two types of boundaries. Closed boundaries repre-
senting boundaries intrinsic to the domain, and open boundaries which arise from the
modeller’s decision to artificially limit the domain at that location. Besides these bound-
ary types we also define what happens if, during integration, a particle crosses one of
these two borders. More discussion is found in Section 3.6.1 of chapter 3 in this thesis.

4.6 Experiment of sediment transport in the two dimen-

sional channel

Let us design a two dimensional channel x = [−10000m, 10000m], y = [2m, 4500m] (see
Figure 4.1) with the inflows, main domain and the outflows and use it as a test case. The
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channel domain is designed in such a way that the flow is only in along the x direction,
v = 0 along y. The depths are generated by a Gaussian function, the flow field at each
time in each grid cell is generated according to the following function:

u =
h0

h
(u1 sin(ω · t) + u0) , v = 0 (4.29)

where h0 = 20[m] is an undisturbed depth below mean sea level, u0 = 0.025m/s is
the tidal mean flow, tidal amplitude u1 = 0.5[m/s]. Hence, Eqn. (4.29) generates the
flow fields such that it is possible to determine the average sediment transport [15]. It
generates u along x direction and v = 0 along y direction.

Figure 4.1: Two dimensional channel showing the inflow, main domain and outflow.

Primary input of the model

The initial field is defined as

depth = h0 + h1 · exp(−((x− 0.0).2)/(2 · (wd)2)),

where the initial amplitude of the disturbance h1 = 10.0, width of disturbance (wd) =
2000m, the tidal period T = 720 minutes. Constant for sediment transport rate K =
0.16kgs3/m6, porosity p0 = 0.5, ρ = 2600[kg/m3], density of sediment, horizontal do-
main length of x goes from −10000m to 10000m. The horizontal domain length of y
goes from 2m to 4500m.

Diffusion constant D = 10m2/s, starting time Tstart = 0s, number of seconds in a
year Tyear = 365 · 24 · 60 · 60s/year. Final time s Tstop = 100 · Tyear, M = 50 is the
number of grid points across the channel, dt = 1.0 · year is the time-step s. Tidal mean
discharge per unit width m2/s is given by q0 = h0 ·u0, tidal amplitude discharge per unit
width m2/s is given by q1 = h0 · u1. We then determine the bedforms as described in
Section 4.3.1. It is known that the divergence of transport describes the rate of the bed
level changes in each grid cell. As a matter of comparison, we compute the divergence
of transport by using the original data from the hydrodynamic model described in this
section. Note that by using a two dimensional channel, we first compute the U, V as well
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as its depth. Then compute average load transport and finally compute the divergence
using a finite difference methods. Where the divergence of the U -vector field along x
and the V -vector field along y is evaluated using central differences wherever possible
and forward or backward differences on the boundaries. This is done where the average
bedforms are estimated by using Eqn. (4.10) in Section 4.3.1. The results obtained
are eventually compared with those obtained when the estimations of the bedforms are
carried out using Eqn. (4.25) with the aid of the Lagrangian particle model discussed
in Section 4.4.6. Note that both results due to Eqn. (4.10) and Eqn. (4.25) are similar,
(see e.g Figure 4.3). The results depicted from the figures shows that there is deposition
followed by erosion (see Figure 4.2 and Figure ).
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Figure 4.2: Change of bed level in m/year for a two dimensional channel (a) is due to
the particle model, while (b) the result is computed by using the Eulerian approach.
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Figure 4.4: Cumulative local changes in depth by using data of 90 days for two
selected grid cells in the ideal two dimensional channel domain.

The Figures 4.2 and 4.3 represent the results obtained by solving the same problem by
using two approaches. Figure 4.2(a) and Figure 4.3(a) are due to a simplified particle
model with very small effect of the diffusion. On the other hand, in Figures 4.2(b)
and Figure 4.3(b) are due to a simplified Eulerian model, no diffusion is considered.
We should expected to get deposition at the retardation of the flow and erosion at the
acceleration of the flow. Resulting in the net migration of the channels in the direction
of (U3) as in [58]. The positive sign on the colorbar in the figures imply that deposition
is taking place while the negative sign implying the occurrence of erosion of sediments.
Some results, in Figure 4.4(a,b), represent the local depth change in two selected cells.
Part (a) shows a steady deposition in the grid cell at the location (x, y) = (5km, 2km)
whereas another grid cell in the location (x, y) = (−0.1km, 0.3km), part (b), there is
a steady erosion. The diffusion coefficient in the test case for the particle model is
0.00001m2/s, γ = 0.00013s−1. The parameters for the test case experiments using ideal
domain with the PM are found in table 4.1.

4.7 Transport of heavy particles in shallow water

In this section we will consider heavy particles. Heavy particles tend to attain the
equilibrium much faster than the tidal cycle. The description of the derivation of the
equations for the heavy particles have followed similar lines using the same equations as
those for the lighter particles.

∂(CH)
∂t

+
∂(HUC)

∂x
+
∂(HV C)

∂y
= Se − Sd (4.30)
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Constant Unit Value Constant Unit Value
porosity - 0.50 γ s−1 0.00013
grid offset m (−10000, 2) λs kg·s·m−4 0.001
grid size - 22× 101 D m2 · s−1 0.000010
cell size m 200× 200 δ - 0
sand density kgm−3 2650 Mp kg 3000
initial location m (1800, 400) f = λs

γ kg · s2 ·m−4 O(10−4)

Table 4.1: Parameters used by particle model for the sediment transport in the test
case

where in this case Se = λsU
k is erosion term, −Sd = γCH, is the deposition term

where λs, γ, k are constants. In addition, an equation for the change of the bedlevel is
presented:

∂h

∂t
=

1
ρs(1− po)

· (Se − Sd). (4.31)

However, the difficulty with the heavy (coarser) material is that the parameter γ becomes
larger (settling velocity) and this makes the equation (4.30) ’stiff’. The maximum allowed
time step thus becomes very small and since we want to make long simulation this is
not very convenient. Therefore, the solution is to make a first order approximation and
assume that the two source terms Se and Sd are much bigger than the right side terms
of Eqn. (4.30). Therefore, we can write equation (4.30):

δ

(
∂(CH)
∂t

+
∂(HUC)

∂x
+
∂(HV C)

∂y

)
= Se − Sd, (4.32)

now we substitute a Taylor series expansion of the depth averaged concentration CH

CH = Q = Q0 + δQ1 +O(δ2),

into Eqn. (4.32) to get the following equations such that 0-order is given by :

Se − Sd = 0, (4.33)

while the 1st order is:

∂(Q0)
∂t

+
∂(UQ0)
∂x

+
∂(V Q0)
∂y

) = −(γQ1). (4.34)

In other words, in Eqn. (4.34), we are looking for a source term (γQ1) that balances the
advective transport of the 0 -order solution. Although this is easy in finite difference

66



4.7. TRANSPORT OF HEAVY PARTICLES IN SHALLOW WATER 67

approach, however, in the particle model, Eqn. (4.34) can be approached as follows. The
best we can do so far is to solve:

∂Q

∂t
+
∂(UQ)
∂x

+
∂(V Q)
∂y

= 0, (4.35)

with (4.33) as an initial condition for every time step separately and then set

γQ1 ≈
∂Q

∂t
. (4.36)

In other words, Eqn. (4.34) should be more or less balanced. If we now omit the source
term and measures the rate of changes, these should be approximately equal. Therefore
for the heavy particles, between the beginning and end of the integration time loop
should do the following

(i) First we remove all deposited particles.

(ii) Followed by generating particles according to Eqn. (4.33)

(iii) Store net change in number of particles (concentration).

(iv) Next we do one time step integration of the particle using Eqn. (4.35).

(v) Compute differences over the previous step using (iii).

For now we have assumed that

|∂Q0

∂t
| � |γQ1|.

Note that

transport vector qx = UHC =
λs

γ
U(U2 + V 2) (4.37)

transport vector qy = V HC =
λs

γ
V (U2 + V 2), (4.38)

since λsU
2 − γCH = 0, the equation for the rate change of the bedlevel due to the

transport coarse material is given by

∂h

∂t
= −

(
∂qx
∂x

+
∂qy
∂y

)
· 1
ρs(1− po)

, (4.39)

where fd = λs
γ is the pick up function which depends into the characteristics of the

sediment/sand materials. For example in case of a mixture of larger sand of volume=l3

will have a mass=ρsl
3. While a sand of double size whose volume is 8l3 will have

mass=ρs8l3. Therefore, the two particle require different value of the drag force particle
fd. But in this chapter we assume that all particles have the same mass, l=length.
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4.8 Application and results

Having implemented and tested the particle model for sediment transport, in this sec-
tion we carry out the simulation experiments for sediment transport using real data of
the Dutch coastal waters. The Lagrangian particle model is again compared with the
Eulerian approach where a finite difference method is used. A realistic application of
the particle model (4.11)-(4.16) is implemented and applied in the shallow waters of the
Dutch coastal notably in the Wadden sea. The results for the light particles in Figure 4.5
(a) exhibits a steady change of deposition where ∆h ≈ 0.0056m/year and in Figure 4.5
(b) a steady erosion such that ∆h ≈ −0.0063m/year. We have also noticed that the
results in Figure 4.6(b) due to the Eulerian transport model is similar to the results due
to the particle model for sediment transport in Figure 4.6(a).

Furthermore we also tested another experiments for the heavy particles using the
particle model and used slightly the same simulation parameters as before. Using the
same Eqn. (4.10) and Eqn. (4.25) respectively for the Eulerian and Lagrangian approach
for the particle model. The result for the heavy particles due to the particle model in
Figure 4.7 (a) gave relatively better results and similar to that simplified Eulerian trans-
port model in Figure 4.7 (b). The parameters which were used in the implementation
of the heavy particles using the particle model are found in Table 4.2.
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Figure 4.5: Cumulative local changes in depth by using data for 90 days for light
particles in the two selected grid cells.
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( a) ( b)

Figure 4.6: Change of bed level in m/year (a) is the change computed by using the
particle model for light particle, while (b) the result is computed by using the Eulerian

approach.
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Figure 4.7: Change of bed level in m/year for 90 days, (a) is the change computed by
using the particle model for Heavy particle, while (b) is computed by using the

Eulerian approach

4.9 Discussion and conclusions

In this chapter we have developed a particle model and implemented it for sediment
transport in shallow waters of the Dutch coastal. We have also derived the Fokker-
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Constant Unit Value Constant Unit Value
porosity - 0.5 γ s−1 0.0013
grid offset km (40.55, 500) λs kg·s·m−4 0.0001
grid size - 180× 161 D m2 · s−1 10
cell size m 1000× 1000 δ - 1.7
sand density kgm−3 2650 Mp kg 10000
initial location km (135, 570) f = λs

γ kg · s2 ·m−4 O(10−4)
sedimentation prob. - 0.0112 ∆t s 3600

Table 4.2: Parameters used by the particle model for real data.

Planck equation and included the deposition and erosion terms based on the developed
particle model. Moreover, we have also shown that by interpreting the Eulerian sediment
transport as the Fokker Planck equation with the additional terms, it becomes possible
to derived the underlying particle model that is consistent with the Eulerian sediment
transport model. Furthermore, the results of sediment transport due to particle model
has been compared to that obtained by computing the transport using Eulerian model
in their simplest form. We have got some results for the changes in the bed level. We
have used our model to test the prediction of bed-level changes by using the real data
of the Dutch North sea. Therefore, at least for now we can say that we have solved
the set of mathematical equations called particle model for sediment transport. These
equations have given us reasonable results for the sea bedlevel changes. Nevertheless,
the determination of the morphological changes is a complicated process that depends
on several factors such as waves, the size of sand, mass and density. The particle model
in this case has been simplified, what we can say is that the results are reasonable. But
more factors will have to be taken into account. For instance, in the particle model
we have considered that all particles have equal mass while in reality each particle has
different mass. The flow in WAQUA was computed in curvilinear grid mesh but for our
particle model, we first transformed it into rectilinear. The set up of the parameters in
the two approaches differs a little, as such the results are slightly different in the two
approaches (see Figure 4.6(a)-(b) and Figure 4.7(a)-(b)) for the light and heavy particles
respectively.

70



Chapter 5
Parallel and distributed simulation of
sediment dynamics in shallow water using
particle decomposition approach

Overview1: This chapter describes the parallel simulation of sediment dynamics in shal-
low water. By using a Lagrangian model, the problem is transformed to one in which a
large number of independent particles must be tracked. This results in a technique that
can be parallelized with high efficiency. We develop and describe the model by present-
ing three sediment suspension methods and the corresponding issues of load balancing
among the processors. We measure the speed up, efficiency as well as load balance of all
three approaches on a Beowulf cluster.

5.1 Introduction

The simulation of sediment transport can be done by the numeric integration of a set
of stochastic differential equations augmented with erosion and deposition terms. These
simulations give rise to tracks of sediment particles along their path in time, and are
known as the Lagrangian particle approach. In this work we develop a parallel La-
grangian particle model for efficient sediment transport simulation in shallow waters.
The inputs for our particle models, such as velocity and water depth, are time depen-
dent and are computed by the 2-dimensional hydrodynamic model known as WAQUA.
It is one of the oldest and most commonly used computation models at the National
Institute for Coastal and Marine Management(RIKZ) in the Netherlands.

In this chapter we only consider a parallel particle model for transport of sediments,
the flow computation itself is not considered. The parallel computation of the flow veloc-

1This chapter [7] is a revised version of the paper submitted to the Journal of Parallel and Distributed
Computing.
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ity has been implemented by [44], and [60] using a domain decomposition approach. We
do not yet consider the two-ways coupling involving the flow and the Lagrangian parti-
cle model. Nevertheless, the depth changes are slow and happen after long simulation
time [15] unlike the dynamics of the flows. Therefore we do not frequently communicate
the depths changes. Even if we would have coupled the two, it is unlikely that it would
affect the high speedups that we have attained. But for application in real life (such as
stratification due to concentration differences) it is possible and necessary to couple the
flow and the particle model. However, there is a prototype for a two-way coupling of the
flow and particle transport models which was developed in our group [39].

In order to get accurate results from Monte Carlo simulations of sediment transport,
a large number of particles is often needed. However, the computation time in a particle
model increases linearly with the number of particles. In addition, as memory require-
ments grow this too may be a limiting factor. Using parallel processing it is possible to
both significantly reduce the simulation time as well as to alleviate memory problems.
Because the particle tracks are inherently independent of one another it is natural to
compute these in parallel [37]. It is known that parallel particle computations themselves
are quite trivial. However, the sediment transport model in this chapter has a number
of features that may lead to efficient suspension and sedimentation of particles as we
shall see later.

For optimal use of parallel machines, it is important to maintain a good load balance
as well as minimise the required communication time. For particle models two basic
decomposition methods exist; those in which each processor simulates particles only in
a predetermined or potentially adaptive region of the domain and communicates them
to the processors managing neighbouring domains. This approach is called domain
decomposition. In the second approach, particle decomposition, the particles are evenly
distributed to different groups and each group assigned to a processor. This approach
is very attractive because it requires only a minimal amount of communication and a
good load balance is achieved relatively easy. This in contrast to domain decomposition
where subdomains need to be carefully determined to evenly spread the load. In addition,
communication between processors on a parallel architecture may inhibit the potential
speed up (see e.g., [22, 43]). The disadvantage of the particle decomposition approach
is that it requires each processor to store flow data of the entire domain which can
be huge in volume. Our parallel implementation in C (see Section 5.4) is based on
particle decomposition and uses the message-passing interface (MPI) implementation for
deployment on a cluster (see also [22]). Three different approaches to particle suspension
techniques were considered (see Section 5.3.2).

This chapter is arranged as follows, we discuss the Lagrangian particle model for
sediment transport in Section 5.2 followed by the parallel processing considerations in
Section 5.3.

The three different sediment suspension approaches are discussed in Section 5.3.2.
The numerical implementation of the Lagrangian particle model is described in Sec-
tion 5.4. Sections 5.5 and 5.5.1 respectively cover the application and the results. As
a realistic case study, the parallel Lagrangian approach is applied to the Dutch coastal
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waters, notably the Wadden sea.

5.2 Sediment transport using Lagrangian particle models

The Lagrangian particle model in this chapter is slightly different from the particle model
discussed in Section 4.4.1 of chapter 4 for it also includes the effect of slope in the model.
Let the position of a sediment particle at time t along the x and y directions be denoted
by (X(t), Y (t)). The numerical integration of movement of such a particle in a flow,
taking into account the effect of sea bed slope, proceeds by the following 2-dimensional
stochastic differential equations(SDEs):

dX(t) Itô=
[
U
(
1 + sign(U)δ ∂H

∂x

)
+ D

H

(
∂H
∂x

)
+ ∂D

∂x

]
dt+

√
2DdW1(t)

dY (t) Itô=
[
V
(
1 + sign(V )δ ∂H

∂y

)
+ D

H

(
∂H
∂y

)
+ ∂D

∂y

]
dt+

√
2DdW2(t)

(5.1)

where U and V are the flow velocities in m/s along respectively the x and y direction. H
is the sum of the (interpolated) depth and the relative water levels due to waves at (x, y).
Next, dW1(t) and dW2(t) represent independent increments of (Gaussian) Brownian pro-
cesses W1(t) and W2(t), and have mean (0, 0)T and covariance E[dW1(t)dW2(t)T] = Idt
with I the identity matrix as in (see e.g., [32, 3]). More information on this concept
can be found in [35]. Finally, D(x, y, t) is the horizontal dispersion coefficient for sed-
iment transport, δ is a constant coefficient for the slope of the sea bed. Typically,
D = O(10 − 100)m2/s [46]. The effects of slope of the sea bed is incorporated in the
drift part such that the velocity of the flow is influenced by the slope. By setting δ = 0,
we can choose to omit this dependency.

The drift term consists of the flow fields as well as a correction term. This prevents
the particles from accumulating in a location with low diffusivity [57]. A common choice
for the random part is the Gaussian probability function [3, 35].

For sediment transport modelling, a number of sub-processes have to be added to
the description of pure movement to cover erosion, deposition and behaviour at the
sea bed [40]. In the remainder of this section we study these additional processes and
consider suspension, sedimentation, and in and outflow at domain boundaries.

The deposition of sediment particles uses the same equations as those in Chapter 4
Eqns. (4.12)–(4.14). The suspension of sediment particles also use similar Eqns. (4.15)–
(4.16). This is followed by a discussion about the resulting changes in bed level.

5.2.1 Determination of bed level changes using Lagrangian models

Recall that each particle represents a mass of sediment material. For Lagrangian particle
models, the approximate change in mass with respect to time, in each grid cell i, j is
determined by the following equation:

∂m

∂t
=

∆Np

∆t
1

∆x∆y
Mp. (5.2)
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Whereas the change in water depth can be done using:

∂h

∂t
=

∆Np

∆t
1

ρs(1− po)∆x∆y
Mp.

Here Mp is the mass of each particle, ∆Np is the difference between deposited and
suspended particles at each iteration. Next, from [46] we have ρs = 2650kg/m3 denoting
the density of an individual grain particle and po = 0.5 for sea bed porosity.

The cumulative change in water depth ∆h (or sea bed level −∆h) in meter all
iterations is determined by the following equation:

∆h =
∫ T

0

∂h

∂t
dt, ∆h ≈

∑ ∆Np

ρs(1− po)∆x∆y
Mp. (5.3)

Some results, plotted in Figure 5.1(a,b), represent the local depth change in two selected
cells. Part (a) shows a steady deposition in the first grid cell at the location (x, y) =
(136km, 595km) whereas in the second grid cell in the location (x, y) = (138km, 600km),
part (b), there is a steady erosion.
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Figure 5.1: Cumulative local changes in depth by using data for 90 days for two
selected grid cells.

For the implementation details of this particle model, see Section 5.4.

5.3 Parallel processing

Having discussed the particle transport model for sediment transport, we now move on to
introducing a parallel approach in order to speed up the sediment transport simulation.
Parallel processing is the simultaneous processing of different tasks by two or more
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microprocessors, as by a single computer with more than one central processing unit
or by multiple computers connected together in a network so as to form a Beowulf
cluster[22].

Terminologies encountered in parallel computations

• Speedup — Ratio of the time taken to solve a problem on a single processor to the
time required to solve the same problem on a parallel computer with p processors.

S(p) =
T1

Tp
. (5.4)

• Efficiency — Ratio of speedup and the number of processors.

E(p) =
S(p)
p

=
T1

p · Tp
. (5.5)

5.3.1 Work decomposition

In our work, the computation domain of the particle model is characterized by a grid
representing the geometry of the coastal waters and particles representing sediment [38].
There are several ways in which the computation can be divided and assigned to pro-
cesses. The most notable two of these are domain decomposition and particle division.
Domain decomposition is often applied in Eulerian hydrodynamic model such as the two
dimensional hydrodynamic model WAQUA [60]. We mention this particular model here
not only as an example but also because it is the computed velocity of water movement
generated by this program that serves as the flow data in our simulation. Note that
these data such as velocity, depth, salinity, pressure gradient and so forth, are computed
off-line and stored in files which are subsequently read in by our program.

In the Lagrangian particle simulation the amount of work is essentially proportional
to the number of particles to be tracked. The loading of flow information from files
is considerable but does not dominate the processing time. In general, the particle
distribution within the domain is non-uniform.

Below we consider the domain and particle decomposition approaches. The goal is
to find a partitioning in which the amount of computation that can be done in parallel
should be maximal while the communication should be minimal.

Domain decomposition

In domain decomposition the domain is divided into a number of sub-domains and
the work corresponding to each such sub-domain is assigned to a processor (see Fig-
ure 5.2(a)). Domain decomposition approach are relatively easy to implement and can
be used with the same data distribution over the processors as those in the hydrodynamic
model (e.g., [38]). There are also a number of notable disadvantages with domain decom-
position (more information on parallel processing concepts can be found in e.g., [43]);
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1. Differences in flow velocity and particle density make it difficult to partition the
domain in such a way that each processor handles the same amount of computation.

2. The domain may need to be re-partitioned after a number of time steps to maintain
a good load balance. It also needs to be done whenever the number of processors
used is changed.

3. Particles (as well as their tracks) have to be communicated between the processors
when particles cross the sub-domain boundary. Besides, very irregular size of the
communication requires sending both size and data. Note that the communica-
tion of the particle data is between the neighbouring processors only, but when
the subdomain becomes small (i.e. as more processors are used), the amount of
particles moving in and out a subdomain can be large, and resulting in a relative
large communication overhead.

4. Particles along with their path history have to be communicated when they enter
the domain region managed by another process. Note that processes handling
neighbouring regions need to synchronise after each step to see if particles crossed
and if so, transmit the relevant data.

Management of the deposited and suspended particles and their influence on the bed
level, or likewise base depth of the water, can be done locally since processes handled the
particles that deposited or suspended. Particles near region boundaries can fluctuate in
such a way that they need to be repeatedly communicated between the neighbouring
processes. To avoid this undesirable situation, one commonly introduces a small amount
of overlap known as ghost regions and illustrated in Figure 5.2(b) by the shaded boxes.
If the boundary of a ghost region itself is crossed, the particle will end up well within
the domain handled by the other process. In order to keep the state of the ghost regions
coherent, changes in depth within this region on one processor need to be communicated
to processes sharing that boundary region.

Particle decomposition

In this approach the number of particles is evenly divided across the available processes.
This way the workload will be balanced under the assumption that the amount of calcu-
lations for each particle is more or less equal. Only slight load imbalance due to particles
stranding or flowing out of the domain and differences in the number of particles de-
posited. Note that these processes can be considered stochastic with certain mean, so
that over longer periods of time this amount will be the same on each processor leading
to an overall stable load distribution without any need for communication. A similar
argument applies for suspension.

5.3.2 The process of sediment suspension

In this section we discuss three parallel particle suspension approaches. The relative
performance in terms of speed up and efficiency will be considered later, in Sec. 5.5.1.
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Figure 5.2: (a) Domain decomposition with different parts of the domain assigned to
different processor, (b) ghost regions for processor 1 for the same decomposition,

indicated by the shaded boxes.

Method I – Modified expectation

For each grid cell i, j, the global expectation is computed and divided by the total
number of processors to obtain the local expectation. Using this local expectation, we
drawn a number from a Poisson distribution with appropriate parameter and use this as
the number of local particles, i.e. on this processor, to be suspended in that grid cell.

i. For each grid cell i, j that is part of the defined domain, calculate the expected
number of particles to suspended by

enpi,j =
∆x ·∆y ·∆t · λs

Mp
. (5.6)

ii. Determine the local number of particles to suspend in each grid cell i, j

nLocali,j =
⌊
Poisspdf

(
enpi,j

np
· (U2 + V2)

)⌋
where Poisspdf denotes the Poisson distribution function. The Poisson distribution
was chosen because it has an unbiased mean and is memoryless.

iii. Add the given number of particles to the data structure,

Method II – Assign domain regions to processors

This method applies a rudimentary form of domain decomposition in which each proces-
sor is systematically assigned a number of grid cells. Suspension is done only for those
cells assigned to the processor, the other cells are handled by other processors. The
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method is easy to implement but the domain again needs to be decomposed with the
inherent problem of maintaining a non-biased load distribution. The global expectation
of the Poisson distribution of the grid cells i, j is determined as in the sequential ver-
sion, but used directly to determine the number of suspended particles on the current
processor. The approach can be summarised as follows.

i. Determine the number of grid cells available and assign them to processors accord-
ing to the following equation:

pij = (i+ j ·M) mod np,

with 0 ≤ i < M and 0 ≤ j < N the row and column index, M the number or rows
and N the number of columns in the cell grid. This way processors are randomly
spread over the domain and may lead to relatively good load balance.

ii. Next compute enpi,j in those grid cells allocated to processor ID using Eqn. (5.6).

iii. Determine the local number of particles to suspend in each grid cell i, j

nLocali,j =
⌊
Poisspdf(enpi,j · (U2 + V2))

⌋
.

iv. Finally add the number of particles to the data structure.

Method III – Globally synchronised

For each cell grid i, j a random number is drawn from a special, globally synchronised
random number generator according to the distribution used in the sequential program
(see Section 5.3.2). This random number, say n, represents the total number of particles
to suspend in that cell and is identical on each processor, without communication. Each
processor is initially assigned b n

npc particles. The remaining n mod np particles that
cannot be evenly distributed are circularly assigned to processors (one to each candidate
processor, see Figure 5.3). This way the number of particles is guaranteed to remain
perfectly balanced with differences of at most one.

In summary; for each grid cell i, j within the domain, compute enpi,j using Eqn. (5.6)
and perform the following steps.

i. Save the state of the current random number generator and switch to the synchro-
nised global number generator.

ii. Determine the global number of particles to suspend for this cell by drawing from
the following distribution:

nGlobali,j = b
(
Poisspdf(enpi,j · (U2 + V2))

)
c.

iii. Restore the state of the local random number generator
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n   mod np = 3

n   mod np = 4

n   mod np = 23

2

1

(Processor ID)

Figure 5.3: Assigning nk mod np particles equally among processors for three
successive cells k. For the first cell we have a remaining 3 particles to assign to 8
processors, which is indicated by the shaded blocks. For the second cell we have 4

which are assigned to processors 3–6. Finally, a remaining 2 particles are assigned to
processors 7, and 0.

iv. Determine the local number of particles to suspend for each grid cell inside the
domain

nLocali,j =
⌊

nGlobali,j
np

⌋
.

add one particle for processors p, whenever (p+np−offset) mod np < (nGlobali,j mod np).

v. Set offset := (offset + nGlobali,j) mod np.

vi. Initialise and add the particles to the data structure.

Global random number generator

In order to maintain good load balance throughout, it is important that the number
of particles suspended on each processor differs only a little and ideally be equal. By
explicitly synchronising the number of particles intended for suspension globally, it is
possible to achieve this ideal distribution. This does come at a cost however, because
of the communication overhead. By careful manipulation of the pseudo random number
generator we can draw random numbers that are the same on each processor. We
assume that uniform (pseudo) random numbers are generated according to the following
equation:

xk+1 ≡ axk + b mod c,

where a, b and c are suitable chosen constants, xk the previously drawn random number,
xk+1 is the next random number and x0 represents the initial seed value. Given this, we
proceed as follows.

Upon program initialisation we choose (i.e., based on the current time, an input
parameter or otherwise) a seed value, say s, on the root processor which is broadcast to
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all other processors. They then manipulate this number using their processor identifier
to obtain an initial local seed value (e.g. sp = s + p + 1, where p is the processor ID).
The global seed value that was broadcast however, is stored as well for global random
number generation. All we then need to do is switch between the generators, based on
these two seeds, at appropriate times. If the mathematics library of the programming
environment stores the most recently drawn random number, xk+1‘, it suffices to have one
global variable storing this number when switching between random number generators
(obviously, not until after the present value holding the current seed of the generator to
switch to has been copied). No further modifications to the standard random number
generator is needed. If, on the other hand, no such functionality is provided a wrapper
function posing as the random number generator needs to be written. This implies that
the standard generator cannot be used anymore which has the disadvantage that other
functions such as drawing from a normal distribution that rely on it have to be rewritten.
This will be especially difficult when they are provided in standard libraries that do not
offer the possibility of setting the random number generation function.

5.3.3 Sedimentation

Sedimentation itself is done on a particle basis and can therefore be perfectly done in
parallel. The only disadvantage is that we have no control over the number of particles
deposited and this can therefore differ slightly between processors. This effect is minimal
however, because of the law of big numbers in statistics. We expect, after all, to have
many particles, otherwise parallel simulation would not be needed in the first place.

5.3.4 Equilibrium determining the expected number of particles in the flow

An equilibrium of the particles can be attained when the expected number of suspended
and deposited particles are equal:

n̄t =
λs∆t

Mp(1− e−γ∆t)

∆x∆y
∑

(i,j)∈D

w +
∆x
γ

∑
(i,j)∈B

Uw +
∆y
γ

∑
(i,j)∈B

V w

 ,
where w is defined as

w = U2(x, y, t) + V2(x, y, t),

while B and D represent the set of grid cells at the boundary respectively within the
domain such that B ∩D = ∅ and B ∪D encompasses all valid grid cells. The number of
particles at equilibrium determines the amount of work to be done per time step. Most
terms in the above equation for n̄t are independent of ∆t and therefore, the expected
amount of work per iteration is O

(
∆t

1−e−γ∆t

)
. Given the fact that there are O(1/∆t)

iterations in a simulation of fixed time interval, the total amount of work is O
(

1
1−e−γ∆t

)
.

As expected, the total amount of work goes down as the step size increases.
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5.3.5 Depth update

The global effect of suspension and sedimentation on the sea bed level cannot be deter-
mined without communication, since each processor handles only a subset of all particles.
As a result, they only know about the changes in bed level resulting from particles under
their control. There are several ways in which the depth can be updated globally.

a. Communicate all deposited and suspended particles between all processor pairs (an
optimisation can be done here because we can already know the number of particles
suspended in a certain region as this is done the same on each processor). This
approach is preferable when the number of particles is smaller than the number
of grid cells. However, all-to-all communication of the deposited and suspended
particles becomes impractical when the total number of particles is large. In other
words, this way of handling particle updates does neither scale very well with
the number of particles nor with the number of processors. The advantage is
that communication does not need to be done after each iteration, unless the
morphology changes during each iteration are significantly large.

b. Locally determine the depth changes in the grid cells and collect this information.
This is another way to reduce communication by locally computing of the grid
cell depth changes and use a reduction scheme to aggregate all changes. The
accumulation of the depth changes can be done over a multiple time steps per
processor before you communicate them as there is a large difference in time scales.
This approach is preferable when the number of particles is large than the number
of grid cells.

c. Determine the depth changes in the grid cells and communicate only those grid
cells that have a change of depth. Here, the cell index along with the number of
particles deposited or suspended needs to be communicated to the other processors.

Advantages of particle decomposition

The advantages of the particle decomposition approach are:

• The particle division parallel approach is domain independent.

• No lengthy computations prior to the particle simulation are needed.

• It scales well with the number of processors used, without having to re-initialise
the domain.

• Load balance can be maintained very well when using the third approach discussed
in (Section 5.3.2); suspension can be done while maintaining a perfect load balance
without any communication by careful manipulation of the seed value used in the
(pseudo) random number generator [22].

However, the disadvantage of the particle decomposition approach is that it requires
each processor to store flow data of the entire domain which can be huge in volume.
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5.4 Implementation

The following briefly describes the implementation of the Lagrangian particle model for
sediment transport in shallow water as described in Section 5.2. The implementation
consists of a set of modules, shown in Figure 5.7, working together through predefined
interfaces, simplifying replacement of one model implementation by another. The inte-
gration module, for example, is given a set of particles, the current time, and the step
size and performs numerical integration of the SDEs governing particle movement. The
particular choice of scheme used does not affect the other modules. One can either re-
place the implementation, or pass parameters to the application which are passed to,
recognised, and removed by the integration module, prescribing the numerical scheme to
use, if implemented by the module. The latter approach of module specific parameters
can be implemented in each module and allows for a high level of flexibility, without
having to recompile the simulation. This facilitates automatic processing of simulations
with different parameters, and can be used to analyse what-if scenarios.

Hydrodynamic model

Waqua

Simulation
engine

Particle manager

Particle
initialisation

Particle
suspension

Particle
sedimentation

Statistics
repository

Domain
management

Domain
interpolation

Integration
module

results

flow
data

depth
data

config
file

Figure 5.4: An overview of the software for the parallel particle model for sediment
transport in shallow water.

5.4.1 Modules

Hydrodynamic model: The hydrodynamic model carries out the flow computation.
It is a numerical model, the time steps used by the WAQUA model were 2 minutes and
stores the results to disk at 60 minutes intervals along with the depths information in a
collection of files. We load the flow at every one hour it is not directly coupled with the
particle model. These provide all the domain information required by the simulation. In
our case, the software used is water quality model(WAQUA) [60]), a software package

82



5.4. IMPLEMENTATION 83

of the directorate General for public works and water management in the Netherlands.
Simulation engine: The simulation engine forms the core of the whole simulation. It
starts by processing the command line argument and, if needed, loading one or more
configuration files. It then triggers the initialisation of all modules and provides them
with the parameters given. After all modules are successfully initialised, it enters the
main time stepping loop. At each iteration it requests the domain module to ensure
the current data are available, does the suspension, integration and sedimentation and
instructs the statistics repository to extract all relevant data from this iteration. Finally
it requests all modules to finalise and stops the application. Throughout, the simulation
engine does all the required (parallel) error checking, and if needed, the graceful abortion
of all parallel instances.
Domain management: This module performs the loading, caching and overall man-
agement of domain data and is triggered by the simulation engine to prepare data for a
specific time, say, t. In addition it also provides interpolation of data at two consecutive
times, although this is completely hidden from all other modules and can be requested
by specifying the appropriate parameters. Upon request is provides the flow and depth
data at grid points.
Domain interpolation: The domain interpolation takes care of interpolating the data
given at grid points to flow, depth and domain information at any location. The domain
information describes whether the given location is within or outside of the domain,
whether the grid cell it is contained in is an open or closed boundary or some region
within the domain.
Particle initialisation: The purpose of this module is twofold; it generates the particles
that exist at the start of the simulation, and it initialised the data associated with each
particle, such as its weight, type, or for example history of a noise process driving the
particle.
Particle manager: Memory for particles is allocated dynamically and therefore needs
to be freed when it is no longer needed, to avoid running out of available resources. In
order to avoid repeated allocation and freeing of particles, the particle memory recycles
them and allocates new ones only if no recycled particles are available.
Integration: Provided with a list of particles, the current time and the duration of the
time interval the integration module numerically applies the SDEs governing particle
movement on the particles.
Particle suspension: At each iteration, this module determines how many particles to
suspend in each grid cell. This is done according to the description given in chapter 4
Sec. 4.4.3. The particles are then created and initialised (with random location within
the cell) and returned to the statistics engine.
Particle sedimentation: After integration, this module is given a list of all local
particles and it determines which of those particles are subject to sedimentation (see
chapter 4 Sec. 4.4.2). As such, the list is split into one of particles to keep and one of
the particles to be deposited.
Statistics repository: The statistics repository collects information about, amongst
others; the number of particles in the flow at each iteration, the particle tracks, and the
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amount of sedimentation and suspension in cells, The information is globally synchro-
nised at the ending of the program and output to a data file.

5.5 Application

In this section, the Lagrangian particle model designed for the simulation of sediment
transport is applied to the Dutch coastal waters in the Wadden sea (see Figure 5.7).
The parallel processing experiments are carried out on a distributed memory parallel
architecture called DAS-2 [1]. It is a 200-node wide-area distributed system spread out
over five clusters throughout the Netherlands with a total of 400 processors. The system
was built by IBM and runs on RedHat Linux. It is funded by NWO (the Netherlands
organization for scientific research) and the participating five universities. Each node
contains:

• Two 1-Ghz Pentium-IIIs of at least 1 GB RAM on each node.

• A Myrinet interface card connected with a high-level 3 switch.

• A Fast Ethernet interface (on-board).

The nodes within a local cluster are connected by a Myrinet-2000 network. It is used
as a high-speed interconnection, mapped into user-space. In addition, Fast Ethernet is
used as OS network (file transport). A Myrinet-2000 is a switched network, capable
of full-duplex data rates up to 2+2 Gbits/s and has low latencies in range of a few
micro-seconds.

5.5.1 Experimental results

In this section we carry out a number of experiments using realistic input data of the
Wadden sea for the simulation of the sediment transport. The domain of grid size was
201× 225 where each grid cell has ∆x = 800m and ∆y = 800m. Many other simulation
parameters are summarised in Table 5.1. In this article we have only used DAS-2 cluster
based at the Delft University of Technology which has 32 nodes. The experiments have
been carried out using one CPU for each node. For each processor we measure both the
simulation and the total execution time. The speedup, efficiency and load balance for
different suspension methods are measured using the minimum total execution times and
their results are presented in Figure 5.5. The total number of particles in each processor
summed over the iterations when 25 processors were used is shown in Figure 5.5(a). The
difference between maximum and the minimum number of particles among the processors
is determined at every iteration for each suspension methods (see Figure 5.5(b)). From
Figure 5.5(b) it can be noticed that the suspension due to method III has relatively good
load balance at every iteration. The load distribution in all three approaches at every
iteration is almost the same (see Figure 5.5(c)). In addition, Figure 5.6(a) shows the
parallel speedups achieved by the three methods. It can be seen that they are all close
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Figure 5.5: (a) The total number of particles in each processor summed over all the
iterations for each approach (b)The difference between the maximum and the minimum
number of particles among the processors at every iteration for each approach;(c) The

maximum number of particles in a processor at every iteration for each approach.

to the ideal linear speedup. Especially method II attained a very good speed up even
for a large number of processors. Figure 5.6(b) shows the efficiency of the 3 methods.
It is known that for morphodynamics processes, water flows play an important role
which causes erosion and deposition of sediments resulting into bathymetrical changes.
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Figure 5.6: (a) Parallel speedups obtained by the three sediment suspension methods
(b) Efficiency of the three methods.

The simulation time scales can be categorised as long simulation time scale known as
morphodynamic time scale, varies in (weeks, months or years. The second is known
as a tidal time which varies in minutes, hours (see [15]), for example. In this chapter
for practical purposes we use only data for 90 days which are stored on the disk. The
experiment for bed level change in Figure 5.7 (a)–(c) was carried out using the same
simulation parameters as those in the Table 5.1. Except that the mass of each particle
Mp is now set to 10, 000kg, the probability of sedimentation = 0.1062, ∆t = 864s and
the number of iterations = 8999 for 90 days.

5.6 Discussion and conclusions

In this chapter we developed a parallel Lagrangian particle model and applied it to the
real life. The results look promising with good speed up for all three approaches. We have
implemented three different suspension approaches in which the technique of globally
synchronising random number generators has been introduced in the third approach.
Computational experiments have been carried out and the parallel performances of the
three methods have been measured. For instance method III has a very good load
balance while methods I and II, seem to have relative a higher speed up than Method
III. This is contributed by the fact that in method III random numbers are generated
with larger expectation in all grid cells while method II selects only some grid cells and
assign them to the available processors. Moreover, when you look at the balance of load
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(a) Day 0 (b) Day 40

(c) Day 80

Figure 5.7: Sedimentation in the Dutch North sea in m over 80 days. The effect is
most pronounced in the regions between the islands.

distribution, the method III clearly excels the two other approaches see Figure 5.5(a)–
(b). Suspension process using method III leads to perfect load balance. However, the
gain in method III by better load balance is offset by the more expensive suspension costs
made in all grid cells. Nevertheless, the good speed up obtained in all three methods
is due to the fact that unlike in the domain decomposition, communication is greatly
reduced in the particle decomposition approach. There is no need to keep track of
particles across the boundaries and to send to other processors. From the results of the
studies we recommend the use of method II because it is the most efficient approach in
the sediment transport model.
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5.7 Summary of the simulation parameters

Constant Unit Value Constant Unit Value
iteration - 1999 ∆t s 86.4
porosity - 0.40 γ s−1 0.00013
grid offset km (40.55, 500) λs kg·s·m−4 0.0001
grid size - 201× 225 D m2 · s−1 3
cell size m 800× 800 δ - 1.7
sand density kgm−3 2650 Mp kg 500
initial location km (135, 570) f = λs

γ kg · s2 ·m−4 O(10−4)
sedimentation prob. - 0.0112

Table 5.1: Simulation parameters of the parallel particle model for the sediment
transport model.
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Chapter 6
Variable time stepping in the parallel
particle models for transport problems in
shallow water

Overview1: The SDEs under consideration are often called particle models(PMs). PMs
in this chapter models the simulation of transport of pollutants in shallow waters. The
main focus of this chapter is the derivation and efficient implementation of an adaptive
scheme for numerical integration of the SDEs in this chapter. The error determination
at each integration time step near the boundary when the error of the scheme is dom-
inated by the diffusion term is done by a pair of numerical schemes with strong order
of convergence 1 and with strong order 1.5. When the error of the scheme is dominated
by the deterministic drift term, we use the aforementioned order 1 scheme and another
scheme of strong order 2. Based on the performance of the pair of schemes an optimal
step size for a given error tolerance is estimated. Moreover, the algorithm is developed
in such a way that it allows for a completely flexible change of the time step size while
guaranteeing correct Brownian paths. The software implementation uses the MPI library
and allows for parallel processing. By making use of internal synchronisation points it
allows for snapshots and particle counts to be made at given times, despite the inherent
asynchronicity of the particles with regard to time.

6.1 Introduction

Fixed step size implementations of numerical methods in traditional particle models have
limitations. Moreover, the use of fixed small step sizes in the numerical approximation
of SDEs may become unnecessary in case the error is very small and large time steps are

1Part of this chapter [12] has appeared in the proceedings of the Eighth International Conference on
Modelling, Monitoring and Management of Water Pollution 4-6 September 2006 Bologna, Italy. The
extension is submitted to the Journal of Parallel and Distributed Computing(JPDC).
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needed. In this chapter, we have developed two pairs of adaptive schemes for pollutant
transport in shallow waters, in each pair there is a scheme with lower and another with
higher order. By evaluating the performances of the schemes it has been possible to
decide whether higher orders or small time steps are necessary. We have developed
three schemes for transport of pollutants namely an explicit order 1 strong scheme, an
explicit order 1.5 strong scheme and an explicit order 2 strong scheme. In the shallow
waters, the displacement of a pollutant is contributed by the drift and diffusion terms.

Therefore, when the error of the scheme is dominated by diffusion term in areas
such as near the boundary, we use a pair of schemes consisting of an explicit order 1
strong scheme and an explicit order 1.5 strong scheme. While when it is dominated by
the drift term both schemes become of order 1 strong. Consequently it is necessary to
concentrate on the drift term because the effects of the diffusion term on the error of
the scheme is hardly there. Therefore, we have been forced to look for a scheme with
higher order strong. Hence, in regions where the error of the scheme is dominated by
the drift term, we use an explicit order 1 strong scheme and an explicit order 2 strong
scheme to evaluate the error. But we have developed the explicit order 2 strong scheme
for transport of pollutants in the shallow waters in such a way that it concentrates on
the error due to the deterministic drift. But it approximates the diffusion term in a
very simple manner by using additive noise in the diffusion term (that is, the diffusion
coefficient does not depend on space).

Thus, in the simulation of pollutant transport in shallow waters using SDEs, for
example, smaller step sizes are needed to stably integrate in highly irregular areas. In
such situations, it is advantageous to employ an adaptive scheme in the particle model.
In their works [24, 6] introduced a variable time stepping procedure for the pathwise
(strong) numerical integration of a system of SDEs.

The concept of adaptive schemes by mesh refining in Eulerian methods have been
used in [55]. Particle models do not suffer from numerical diffusion in the source
points [28, 4]. However, the use of an adaptive scheme may lead to high computa-
tional cost due to small step sizes or the large number of particles [35]. Fortunately
particles are independent from one another, thus allow efficient use of parallel process-
ing. Therefore, in this chapter we also implement parallel processing so as to speed up
the computation.

This chapter is organised as follows, the general governing set of SDEs for transport
of pollutants in shallow water is discussed in Section 6.2. The concept of the higher
order strong adaptive schemes for transport problems in shallow water as well their
implementations is discussed in Section 6.3. The procedure for determining the variable
step sizes is described in section 6.3.4. The adaptive parallel implementation is described
in section 6.4. The results appear in the Section 6.6.1. The concluding remarks are given
in the Section 6.7.
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6.2 The particle model for pollution transport

The displacement of pollutants in shallow waters is described by:

dXt
Itô=
[
U + DXX(x,y)

H (∂H
∂x ) + ∂DXX(x,y)

∂x

]
dt+

√
2DXX(x, y)dW x

n

dYt
Itô=
[
V + DY Y (x,y)

H (∂H
∂y ) + ∂DY Y (x,y)

∂y

]
dt+

√
2DY Y (x, y)dW y

n

(6.1)

(Xt, Yt) is the position of a particle, (U, V )T is flow velocities and H is the total water
depth. Wiener processes W x

n (t) and W y
n (t) are Gaussian [35].

In this chapter have modelled the dispersion process in shallow waters by design-
ing the following dispersion functions where DXX(x, y), DY Y (x, y) are the horizontal
dispersion coefficient functions in the x and y direction respectively. We assume that,
DXY (x, y) = DY X(x, y) = 0 in the dispersion tensor and that

DXX(x, y) =
D11

1 + e−(((x−xb)2+(y−yb)2)−K2)
×{

1 +
(
[1 + eK

2
] cos(α)− 1

)
e−((x−xb)

2+(y−yb)
2)
}

(6.2)

DY Y (x, y) =
D22

1 + e−(((x−xb)2+(y−yb)2)−K2)
×{

1 +
(
[1 + eK

2
] sin(α)− 1

)
e−((x−xb)

2+(y−yb)
2)
}
. (6.3)

The diffusion functions are designed in such a way DXX(x, y) and DY Y (x, y) model
the dispersion as realistic as possible. For instance the dispersion decreases near the
boundary and no particle will cross the physical boundary. Where D11 and D22 are the
horizontal dispersion parameters, eT1 c = ‖e1‖‖c‖ cos(α), sin(α) = |c2|√

c21+c22
, with ek the

kth column from the identity matrix, c = (c1, c2)T. Finally, α is the assumed to be the
angle between the boundary and x or y direction. Where c is a direction vector a long
the side of a given boundary cell, (xb, yb) is intersection point on the boundary between
the line from (x, y) perpendicular to the boundary. K ≥ 0 is a parameter modelling the
decrease of diffusion coefficient near the boundary.

6.3 Higher order strong adaptive scheme for pollution trans-

port using SDEs

In this chapter we make use of the strong convergence in determining the error at each
step. The concept of adaptive scheme in the SDEs has been extensively dealt with
and published before by (e.g., [24, 6]). Therefore our contribution in this thesis to
the adaptive schemes is that we have applied the adaptive concept for the SDEs to
the shallow water problems. The transport of pollutants is contributed by the drift and
diffusion term in the transport model. We use the Lagrangian particle-tracking approach
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in shallow waters. Moreover, in this chapter we have designed the diffusion coefficient
which varies with space as it has been described in Section 6.2.

Therefore, in order to determine the error at each step, we have developed pairs of
explicit higher strong numerical schemes for SDEs in shallow waters which avoid the
use of derivatives of the drift and diffusion terms. And we use the pair of schemes to
estimate the error of the schemes at each step. To achieve this procedure, we have
developed three numerical schemes for transport of pollutant in shallow waters namely
an explicit order 1 strong scheme, an explicit order 1.5 strong scheme and an explicit
order 2 strong scheme [34]. When the particle is near boundary regions, in this case the
error of the schemes is dominated by the diffusion term. In this case the error of the
numerical scheme is mostly related to the gradient(slope) of the dispersion coefficient in
that term. Therefore, to determine the error in this case we use two schemes one with an
explicit order 1 strong and the explicit order 1.5 strong scheme. But in the region away
from the boundary when the diffusion is not space dependent, the effects of diffusion
term on the numerical error is hardly there. Consequently, the explicit order 1.5 strong
becomes of order 1 strong, and hence both numerical schemes become of 1 order strong.
In such regions the error of the schemes is dominated by the drift term. Therefore, at
this point we need a numerical scheme with higher strong order such as explicit order 2
strong scheme. Therefore, in this case we have used a pair of schemes with an explicit
strong order 1 and an explicit order 2 strong. Based on the performance of the pair of
schemes we have been able to determine the error at each step. The error information
at each step has been used to determine an optimal time step size for adaptive schemes
in the Lagrangian particle tracking.

6.3.1 An explicit Order 1 Strong Scheme

In this section we have developed the following an explicit order 1 strong Scheme for
transport of pollutants in shallow waters. This scheme avoids the use of the derivatives
of various order of the drift and diffusion coefficient. Here we only give a brief overview
of the schemes, an interested reader is referred to (e.g., [35, 34]). Now let us consider
the following scheme:

Xn+1
Itô= Xn +

[
U +

DXX(Xn, Yn)
H

∂H

∂x
+
∂DXX(Xn, Yn)

∂x

]
∆tn

+
∆(W x

n )2 −∆tn
2
√

∆tn

[√
2DXX(X∗+1

n+1, Y
∗+1
n+1 )−

√
2DXX(Xn, Yn)

]
+

√
2DXX(Xn, Yn)∆W x

n . (6.4)

The expression for Yn+1 is similar to the above equation, with the first r.h.s. term Xn

replaced by Yn, all DXX(·, ·) terms by DY Y (·, ·), the superscripts x modified to y. Where
∆W x

n = W x(tn+1)−W x(tn) is an independent increment of Wiener processes in the time
interval [tn, tn+1], n = 0, 1, · · · .

X∗+1
n+1 = Xn + a1(Xn, Yn)∆tn +

√
2DXX(Xn, Yn)∆tn.
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Similarly for Y ∗+1
n+1 along y direction. A drift function a1 is given below:

a1(Xn, Yn) =
[
U +

DXX(Xn, Yn)
H

(
∂H

∂x

)
+
∂DXX(Xn, Yn)

∂x

]
, (6.5)

likewise for a2 along y direction:

a2(Xn, Yn) =
[
V +

DY Y (Xn, Yn)
H

(
∂H

∂y

)
+
∂DY Y (Xn, Yn)

∂y

]
. (6.6)

6.3.2 An explicit Order 1.5 Strong Scheme

As for an explicit order 1 strong scheme, here we also derive derivative free scheme of
order 1.5 according to [34]. Therefore, we have developed the following scheme for the
transport of pollutant in shallow waters:

Xn+1
Itô= Xn +

{
a1+

n (X∗+z
n+1, Y

∗+z
n+1 )− a1−

n (X∗−z
n+1, Y

∗−z
n+1 )

}
× ∆tn

4

(
Rx

n,1 +
1√
3
Rx

n,2

)
+

∆tn
4
{
a1+

n (X∗+z
n+1, Y

∗+z
n+1 ) + a1−

n (X∗−z
n+1, Y

∗−z
n+1 )

}
+
√

2DXX(Xn, Yn)∆W x
n

+
1

4
√

∆t

{√
2DXX(X∗+z

n+1, Y
∗+z
n+1 )−

√
2DXX(X∗−z

n+1, Y
∗−z
n+1 )

}
[(∆W x

n )2 −∆tn]

+
{√

2DXX(X∗+z
n+1, Y

∗+z
n+1 )− 2

√
2DXX(Xn, Yn) +

√
2DXX(X∗−z

n+1, Y
∗−z
n+1 )

}
×{

∆W x
n −

1
2

(
Rx

n,1 +
1√
3
Rx

n,2

)√
∆tn

}
+

[√
2DXX(X∗+φ

n+1 , Y
∗+φ
n+1 )−

√
2DXX(X∗−φ

n+1 , Y
∗−φ
n+1 )−

√
2DXX(X∗+z

n+1, Y
∗+z
n+1 )

+
√

2DXX(X∗−z
n+1, Y

∗−z
n+1 )

]
× 1

4∆t

{
1
3
(∆W x

n )2 −∆tn

}
∆W x

n . (6.7)

The expression for Yn+1 is similar to the above equation, with the first r.h.s. term Xn

replaced by Yn, all DXX(·, ·) terms by DY Y (·, ·), the superscripts x modified to y for
W and R, and similarly the 1+ and 1− superscripts for a to 2+ and 2−. Using the
shorthand notation of ⊕ for either + or −, the following supporting vectors (used in
equation 6.7) are defined

X∗⊕z
n+1 = Xn +

1
2
a1

n(Xn, Yn)∆tn ⊕
√

2DXX(Xn, Yn)∆tn

X∗⊕φ
n+1 = X∗⊕z

n+1 ⊕
√

2DXX(X∗+z
n+1, Y

∗+z
n+1 )∆tn.

The expressions for Y ∗+z
n+1 , Y ∗−z

n+1 , Y ∗+φ
n+1 , and Y ∗−φ

n+1 are again similar, with the X in the
first r.h.s. term replaced to Y , a1

n replaced by a2
n and DXX by DY Y . Consequently,

using Eqn. 6.5 we get,

a1+
(
X∗+z

n+1, Y
∗+z
n+1

)
=
[
U +

DXX(X∗+z
n+1,Y ∗+z

n+1 )

H
∂H
∂x +

∂DXX(X∗+z
n+1,Y ∗+z

n+1 )

∂x

]
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a1− (X∗−z
n+1, Y

∗−z
n+1

)
=
[
U +

DXX(X∗−z
n+1,Y ∗−z

n+1 )

H
∂H
∂x +

∂DXX(X∗−z
n+1,Y ∗−z

n+1 )

∂x

]
,

likewise for a2+
(
X∗+z

n+1, Y
∗+z
n+1

)
and a2− (X∗−z

n+1, Y
∗−z
n+1

)
.

Where the DXX(·, ·), DY Y (·, ·) approach zero toward the boundary and remain constant
away from the boundary. Hence, the effects of the dispersion coefficient becomes small.
Thus, we are confronted with the situation where the deterministic drift dominates the
error of the scheme. As it has been discussed earlier, in this case, we need a pair of
schemes of order 1 and higher strong order 2 of convergence, for example.

6.3.3 An explicit Order 2 Strong Scheme

The derivation of an explicit order 1 strong scheme and the scheme of order 1.5 which
are derivative free is done by replacing the derivative with the finite difference [34]. This
technique works well for low order explicit schemes, otherwise it results into complicated
formulae as the order keeps increasing. Nevertheless, according to [34], in this chapter
we have taken some advantage of the structure of the SDEs to avoid difficulties and
complicated equations. Therefore, we assume that the SDEs has an additive noise, that
is, the diffusion coefficient is not space dependent. In this way, it has been possible
to develop a relatively simple explicit higher order scheme for transport of pollutant
is shallow waters. Moreover the Itô and Stratonovich concepts coincides for additive
noise. However, we have chosen to use Stratonovich concept in the explicit order 2
strong scheme for the additive noise to enable us discuss the Stratonovich concepts as
well. Therefore, the following an explicit order 2 strong scheme has been developed:

Xn+1
Strat= Xn +

1
2
{
a1
(
X+

n+1, Y
+
n+1

)
+ a1

(
X−

n+1, Y
−
n+1

)}
∆tn

+
1

∆tn

{√
2DXX(tn+1)−

√
2DXX(tn)

}
{∆W x

n ∆tn −∆Mx
n}

+
√

2DXX(Xn, Yn)∆W x
n (6.8)

Yn+1
Strat= Yn +

1
2
{
a2
(
X+

n+1, Y
+
n+1

)
+ a2

(
X−

n+1, Y
−
n+1

)}
∆tn

+
1

∆tn

{√
2DY Y (tn+1)−

√
2DY Y (tn)

}
× {∆W y

n∆tn −∆My
n}

+
√

2DY Y (Xn, Yn)∆W y
n . (6.9)

Here DXX(t) = D11 and DY Y (t) = D22 are constants, so that the second line of the
above two equations reduces to zero.

94



6.3. HIGHER ORDER STRONG ADAPTIVE SCHEME FOR POLLUTION TRANSPORT USING SDES 95

The supporting vectors are defined by

X⊕
n+1 = Xn +

1
2
a1(Xn, Yn)∆tn

+
1

∆tn

√
2DXX(Xn, Yn)

{
∆Mx

n ⊕
√

2Jx,p
(1,1,0)∆tn − (∆Mx

n )2
}

(6.10)

Y ⊕n+1 = Yn +
1
2
a2(Xn, Yn)∆tn

+
1

∆tn

√
2DY Y (Xn, Yn)

{
∆My

n ⊕
√

2Jy,p
(1,1,0)∆tn − (∆My

n)2
}
, (6.11)

where ⊕ the plus or minus operator. The definition of a1(X,Y ) is obtained by using
Itô-Stratonovich transformation [35] of Eqn (6.5), yielding

a1(X,Y ) =
[
U +

DXX(X,Y )
H

(
∂H

∂x

)
+

1
2
∂DXX(X,Y )

∂x

]
.

a2(X,Y ) =
[
V +

DY Y (X,Y )
H

(
∂H

∂y

)
+

1
2
∂DY Y (X,Y )

∂y

]
.

Higher order schemes such as that of order 2, require the approximation of multiple
higher Stratonovich stochastic integral (Jp

(1,1,0)) (see Eqn. 6.12).
However, these cannot always be expressed in terms of simpler stochastic integrals,

especially when the Wiener process is multi-dimensional. Using a method for multi-
ple Stratonovich based on Karhunen-Loève or random Fourier series expansion of the
Wiener process (for details, see [35]) we can nevertheless approximate the integrals.
This introduces a Brownian bridge into our model, a process fully described in [35]. The
Brownian bridge is a restricted Wiener process (hence also referred to as the “tied down”
Wiener process) that passes through known points at t = 0 and t = T and is given by{
Wt − t

TWT , 0 ≤ t ≤ T
}
. This can be done by generating an unconstrained (standard)

Wiener process which is then linearly scaled in order to meet the required end points.
A sample path of a Brownian bridge which is tied down to zero at beginning and at the
end points is shown in Figure 6.1.

Following Karhunen-Loève see [35] we define the random variables ax
r and bxr by

ax
r =

2
∆t

∫ ∆t

0

(
W x

s −
s

∆t
W x

∆t

)
cos
(

2rπs
∆t

)
ds

and bxr =
2

∆t

∫ ∆t

0

(
W x

s −
s

∆t
W x

∆t

)
sin
(

2rπs
∆t

)
ds, r = 1, 2, . . .

and likewise ay
r and byr , obtained by replacing the x superscripts by y. (In the remainder

of this section we will silently assume this convention, unless otherwise specified). It is
known that, for r ≥ 1 these variables have an N

[
0, ∆t

2π2r2

]
distribution(see appendix B).

They are differentiable samples paths on the interval [0, T ].

95



96
CHAPTER 6. VARIABLE TIME STEPPING IN THE PARALLEL PARTICLE MODELS FOR

TRANSPORT PROBLEMS IN SHALLOW WATER

Figure 6.1: A sample path of Brownian bridge.

Let ζx
r , ξ

x, ζy
r , ξy, ηx

r , η
y
r , φx

p , and φx
p denote independent random variables [35], for

r = 1, 2, . . . and p = 1, 2, . . .:

ξx = 1√
∆t
W x

∆t ζx
r =

√
2

∆tπra
x
r ηx

r =
√

2
∆tπrb

x
r

µx
p = 1√

∆tρp

∑∞
r=p+1 a

x
r φx

p = 1√
∆tβp

∑∞
r=p+1

1
r b

x
r

µy
p = 1√

∆tρp

∑∞
r=p+1 a

y
r φy

p = 1√
∆tβp

∑∞
r=p+1

1
r b

y
r .

Variance of µ̂x
p =

√
∆tρpµ

x
p can be computed by noting that the variance of ax

r is given
by var[ax

r ] = ∆t/(2π2r2) (see appendix B), and that the variance of two independent
Gaussian variables equals the sum of variances and with the fact that

∑∞
r=1 1/r2 = π2/6

and
∑∞

r=1 1/r4 = π4/90.

ax
0 = − 1

π

√
2∆t

p∑
r=1

1
r
ζx
r − 2

√
∆t · ρpµ

x
p , ρp =

1
12
− 1

2π2

p∑
r=1

1
r2
.

Using the definition of ax
r , a

y
r , and for each component and r = 1, . . . , p with p = 1, 2, . . .,

where p is the truncation index in the approximation of multiple integrals. We then
define

Bx =

√
∆t
2

p∑
r=1

1
r2
ηx

r +
√

∆tβpφ
x
p , βp =

π2

180
− 1

2π2

p∑
r=1

1
r4
.
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Furthermore, we have

∆Mx
n = 1

2∆t
[√

∆tξx + ax
0

]
Cp

x,x = − 1
2π2

∑p
r,l=1r 6=l

r
r2−l2

{
1
l ζ

x
r ζ

x
l −

l
rη

x
r η

x
l

}
and similar for ∆My

n and Cp
y,y and with superscripts changed from x to y. Using these

random variables it turns out after lengthy computations that we can approximate a
multiple integral as follows

Jx,p
(1,1,0) = 1

6(∆t)2(ξx)2 + 1
4∆t(ax

0)2 − 1
2π (∆t)

3
2 ξxBx

+ 1
4(∆t)

3
2ax

0ξ
x − (∆t)2Cp

x,x,
(6.12)

Jy,p
(1,1,0) = 1

6(∆t)2(ξy)2 + 1
4∆t(ay

0)
2 − 1

2π (∆t)
3
2 ξyBy

+ 1
4(∆t)

3
2ay

0ξ
y − (∆t)2Cp

y,y,
(6.13)

Jx,p
(1,1,0) is an approximation of Jx

(1,1,0) and it is known [35] that Jx
(1,1,0) ≥

(∆Mx)2

2∆tn
always.

If it turns out Jx,p
(1,1,0) <

(∆Mx)2

2∆tn
, we take ∆Mx as the better approximation for J(1,1,0)

(see Appendix B.1). Similarly for Jy,p
(1,1,0) and finally the evaluations of Eqns (6.8)-(6.9)

can take place.

6.3.4 Determination of variable time step sizes

By approximating the error of the scheme at each step we use a pair of scheme as
explained in Section 6.3. Therefore, let us assume that (X̂n+1, Ŷn+1) is the approximated
solution obtained from the SDEs (6.1) by using the explicit order 1 strong scheme (6.4).
We also use the explicit order 1.5 strong scheme (6.7) when the same particle is tracked
in the near boundary regions. The approximated solution due to the explicit order 1.5
strong scheme is denoted by (Xrefn+1

, Yrefn+1
). But when the particle is away from

the boundary, the error of the scheme is dominated by the drift term. Therefore, in
this case we use explicit order 1 strong scheme (6.4) and the explicit order 2 strong
scheme (6.8)- (6.9) to determine the error at each step. Again (Xrefn+1

, Yrefn+1
) becomes

the approximated solution due to the explicit order 2 strong scheme. Therefore, we have
chosen to represent an approximated solution of the SDEs due to higher order strong
scheme by (Xrefn+1

, Yrefn+1
). This solution is due to a reference scheme that is the

scheme with a higher order strong in the pair. In both cases it is the reference scheme
which is used to advance the numerical computation in the next time step.

Therefore, (X̂n+1, Ŷn+1) and (Xrefn+1
, Yrefn+1

) is used to estimate absolute error [6].
Let toli be the tolerance accepted for the ith component then an error estimate of order
q + 1

2 in two-dimensional adaptive particle model is:

error =

√√√√1
2

(
|
Xrefn+1,1

− X̂1n+1,1

tol1
|+ |

Yrefn+1,2
− Ŷ1n+1,2

tol2
|

)
, (6.14)
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where q is considered to be either order ô or order o. Therefore, it is desirable that
Xrefn+1,1

−X̂n+1,1 ≈ tol1 and Yrefn+1,2
−Ŷn+1,2 ≈ tol2, the step just completed is rejected

if error > 1 otherwise we compute an optimal step size (∆t)opt = ∆told

(
1

error

) 1
2 until

the desired accuracy is attained. For efficient implementation of an adaptive scheme
using a variable step size strategy, an optimal step size can be decreased by any safety
factor for example 0.8 to avoid oscillatory behaviour in the step size so that it does not
increase or decrease too quickly [6]:

(∆t)new = ∆told ∗min

(
facmx,max

[
facmn, fac ∗

(
1

error

) 1
2

])
(6.15)

where facmx and facmn are the maximal and minimal step size scaling factors allowed,
respectively for the problems being solved [6]. Variable step size implementation has
a possibility of step size acceleration using Eqn. (6.15). This arises when a step fails,
possibly due to extreme random sample, in this chapter, we avoid uncontrolled jumps
in the step size such that the final step length is given by

∆tn = max ((∆t)new, 0.9 ∗∆tn−1) .

6.4 Variable time stepping implementation in SDEs

The implementation of adaptive scheme differs substantially from the one with a fixed
step size in that it is no longer possible to have a single major loop governing the time
by taking a single step of fixed size [37]. Instead, the current time differs between
the particles and, in addition to the coordinates, each particle now needs a local time
associated with. This concept of local time introduces a wide level of asynchronicity into
the model, making it hard to define a major loop in the traditional way. Additionally,
this lack of synchronous time complicates taking a snapshot of the particle locations at a
given time. One option would be to record the last position before and the first after the
time at which to generate this data and then use some form of interpolation to estimate
the location at that time. However, besides having to perform checks at each integration
step and keeping track of the most recent locations, this also lessens the accuracy of the
results.

To overcome these difficulties introduced an event mechanism which defines certain
synchronisation points. The implementation consists of a number of different modules
(see Figure 6.2), each taking care of a certain function within the program. There are
for example a statistics module, which takes care of gathering all the information we
need during the simulation, a domain module whose function it is to load and manage
the flow data at different times and an integration module which does the integration.
Now, each module provides the central engine with a list of desired events consisting of
the time(s) at which they should occur, a type and possible some additional data. The
engine sorts these events in increasing activation time and then sequentially considers
the next event to happen (similar to the time stepping look in the fixed step size model).
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It then invokes the integration module with the present time and the time to integrate to.
The integration routine will then perform the integration and is completely free to decide
how this time interval is integrated. It will ensure however that each particle is exactly
integrated up to the desired ending time, coinciding with the event, unless of course
the particle flows out of the domain before that. This way, the result of the integration
call is a set of particles, with their location at exactly the time of the event. (To be
more precise, the integration routine is given a single particle at a time and returns the
trajectory the particle followed during the time spanned by the integration). Coming
back to the events themselves, the statistics module for example generates snapshot
events, the domain module provides reload flow data events and the integration module
could generate events at regular times to limit the interval time span. When the total
integration time is large, one could imagine that creating all these events at the start of
the simulation would be too costly in terms of memory (and perhaps sorting). Therefore
each module provides event generators, rather than individual events. All the generators
have to do is provide the time of the first event due allowing them to be sorted. When
the given time is reached the generator is asked to issue that event. If there is any event
left it is sorted again according to the time of the next event it provides. This way the
events are handled in the correct order as if they were all generated a priori. The main
program itself also generates an event telling the main loop to stop at the desired time.

The particle model lends itself extremely well for parallel processing, since the par-
ticles do not interact with one another and can therefore be considered on an individual
basis. By dividing the particles, instead of the domain, across the processors we take
full advantage of this.

6.5 Schematic summary of the adaptive particle model

The following briefly describes the summary of the adaptive particle model in diagram
for transport problems in shallow water as described in Section 6.4. The implementation
consists of a set of modules, shown in Figure 6.2, working together through predefined
interfaces, simplifying replacement of one model implementation by another. For ex-
ample, the choice of a particular integrating scheme to use does not affect the other
modules.

1. Hydrodynamic model e.g WAQUA: Determines the flow and depth data.

2. Particle manager: Recycles the data structure associated with a particle (this avoid
having to repeatedly allocate and free memory for them).

3. Particle source.

• Generates the state of the initial particles (if any).

• Generates particles flowing in from the open domain boundaries.

4. Statistics repository is responsible for gathering and maintaining information about
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Figure 6.2: An overview of the software for the parallel adaptive particle model for
pollution dispersion in shallow water.

• the number of particles in the flow at each iteration,

• the particle tracks,

• Synchronise this information prior to ending the program,

• Output to one (Matlab) file,

• etc.

5. Domain module

• Triggered by the events to prepare data at a required time t.

• Loads and caches the data for the file including that time.

• Provides raw information of flow and depths at grid points.

• Interpolates the data to any given position.

• Provides information about whether a particle is inside the domain or outside.

6. Integration module

• Integrates the equations governing particle movement for a given particle up
to a certain point time t.

• Is free to determine the best time steps.

6.6 Experiments of adaptive particle model parallel process-

ing

In this section, the experiments to predict the dispersion of pollutants are carried out
on a distributed memory parallel architecture called DAS-2 [1]. It is a 200-node system
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with a total of 400 -processors wide-area distributed system. More details about DAS2
can be found in [1].

To carry out the experiments, we started by doing the simulation by using a single
processor. Where a given number of 2000 particles was released in a fixed initial location
and tracked. The next step for the experiments involved 100000 particles in parallel
processing where we used up to 30 processors to measure the speedup. The experiments
were first done by using a test case domain followed by the realistic application of the
model in the Dutch coastal waters.

6.6.1 Results of the test case

This section discusses the results obtained from the test case. The results in Figure 6.3
(a)-(c) were computed by using one processor in the ideal domain composed of the river,
the lake and two islands as well as outflows. In these experiments 2000 particles were
initially released at the point (−20000m,−1800m). The result in Figure 6.3 (b) shows
that the integration time step sizes for this particular tracked particle vary depending
on the nature of the region. The variable dt varies as the particle is tracked along x
direction. It appears that the value of dt is small when the particle approaching to the
boundaries of the two islands. This is because the error of the scheme at that regions is
dominated by the diffusion term mainly by gradient of the diffusion. Therefore, small dt
is needed to integrate the particle over there. But we have seen that the value of dt for
this track is about twice the minimum dt when the particle is away from the boundary,
the error of the scheme is dominated by the drift term.

In order to speed up the computation of the adaptive scheme, the parallel processing
was implemented. The experiments to measure the total simulation time was measured
on the Beowulf cluster called DAS2. In these experiments we initially released 100, 000
particles.

These particles were tracked by using Lagrangian approach through parallel com-
puting where up to 30 processors were used. The measured speedup attained for a fixed
problem was 29.3810 which is quite good (see Figure 6.3 (d)).

Where the grid size 105 × 105, tol1 = tol2 = 12, minimum ∆t=0.0001s, initial
∆t = 0.1s, p = 10, D11 = D22 = 10m2/s, initial point (x0, y0) = (−20000m,−1800m),
∆x = ∆y = 400m, H(x, y) = 10m assumed constant for now. fac = 0.8, facmin = 0.6 ,
facmax = 1.1, K = 1m. Radius =3, stands for the number of grid rings surrounding the
threshold point at each side. Snap shot is taken at every 5 (see minutes Figure 6.3(c)),
eventually particles flow out. Boundary threshold distance= 1000m is the point where
the two schemes of order 1.5 and order 2 exchange, 30 Brownian bridge steps have been
used in this experiment.

6.6.2 Results from the application of the model to the real data

In this section the adaptive particle model for the pollutants dispersion used the real
data of the flow field and water depths. Initially 500 particles were released at the fixed
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Figure 6.3: Simulation results (a) flow fields (b) Variations of step sizes long the
domain (c) Snap shot of particles’ position at every 5 minutes (d) Speed up measured

on a Beowulf cluster.
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point (135000, 570000). The grid offset = (40550m, 500000m), grid size = 201×225, cell
size = 800m×800m, Diffusion Coefficient D = 3m2 ·s−1. But one processor was used for
the experiments whose results are shown in Figure 6.5 (a)-(c) and Figure 6.6(a)- (d). The
results in Figure 6.5 (a,b) show that the integration time step sizes for selected tracked
particle vary depending on the nature of the region. Figure 6.5 (a) shows variable step
sizes of a tracked particle along x direction while Figure 6.5 (b) shows variable time step
sizes of the same tracked particle over all iterations in using realistic data. The results
of the snap shot for positions of the particles taken at an interval of 20000s are shown
in Figure 6.6(a)- (d).

The averaged variable dt = 0.6971s, 0.6474s, 0.5677s, 0.6193s, 0.6858s, for 5 tracks.
For each of the 5 tracks using fixed time step, the averaged dt = 0.01s. The data such as
x, y, dt etc were written to the file over the number of samples for successful steps and
after each integration step, a new location was added to the track list. The table 6.1
summarizes the results. By looking at the results in table 6.1, for sure we conclude that

Fixed dt values Variable dt values
# of steps 73797 # of steps 1376
dt minimum 0.01s dt minimum 0.01s
average dt 0.01s average dt 0.6971
Total sim. t 523.933567s Total sim. t 1.099058s
seed number 100 seed number 100
# of tracks 5 # of tracks 5

Table 6.1: Summary of the simulation data using fixed dt and variable dt in the
shallow waters using the Lagrangian approach

the use of the variable dt leads to low computation costs. More number of steps are
needed for fixed but small dt (see Figure 6.4(a,b)).

For parallel computing we first used 400, 000 where the speedup and efficiency were
measured by using up 25 processors. The speedup of 24.8975 was obtained, this was
quite super linear (see Figure 6.5(c)). The result in Figure 6.5 (c) suggests that for large
enough numbers of particles and long enough simulation times, the stochastic nature of
the model furthermore automatically guarantees that a good overall load balance over
the processors is maintained, even though at given times some processors may be busier
than others. Another experiment was carried out but with 20000 particles, the speedup
of 24.5555 was attained (see Figure 6.5(d)). The two cases show that the speedup scales
very good, though in the second case it is a bit smaller. However, for a fixed problem
the communication overhead grows linearly with the number of processors.
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Figure 6.6: (a) Snapshot taken after 0 second (b) Snapshot taken after 20000 seconds
(c) Snapshot taken after 40000 seconds (d) Snapshot taken after 60000 seconds
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6.7 Concluding remarks

In this chapter an adaptive scheme for the parallel simulation of pollutant transport in
shallow waters using SDEs has been implemented. We have seen that smaller step sizes
are needed to stably integrate in highly irregular areas and vice versa (see Figure 6.3(b),
for the test case and Figure 6.5(a)-(b) for a more realistic case. In the adaptive particle
model it is also possible to synchronise points in time. In this way it has been possible
to take the snap shot of the position of particles at various time in the Dutch coastal
waters (see Figure 6.6). Good speed up has been obtained despite the fact that each
particle has different dt, the use of large number of particles averages the randomness.
Furthermore, we have seen that the required computing time is not only reduced by the
use of parallel computers, but also the use of variable dt in the particle model.
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Chapter 7
General conclusion and recommendations

7.1 General conclusions

In this thesis we have developed and presented an efficient particle model for modelling
of transport problems in shallow waters. This particle model is based on the two di-
mensional stochastic differential equations. It calculates the displacement as the sum
of a drift deterministic component and a random Markovian component. The random
part models the uncertainty by using the Wiener or coloured noise processes. The tra-
ditional particle models usually are driven by Wiener process. But the Wiener process
has independent increments and it fails to consider accurately the short term spreading
behaviour, that is for t << TL. In order to take into account correctly the short term
spreading of pollutants, we have used a correlated process known as the coloured noise as
the driving force in the random flight model in chapter 3 instead. The results show that
when using coloured noise, we have two zones of dispersion, one zone with the variance
of the spreading of a cloud of particles growing quadratically with time for t� TL and
the second zone with the variance of the spreading of particles growing linearly with the
time for t� TL. A random flight model will provide the modeller with an enhanced tool
for the short term simulation of the pollutants by providing more flexibility to account
for correlated physical processes of diffusion in the shallow waters for t << TL.

Furthermore, in chapter 4 we have modified the particle model which was developed
by Heemink in [28] for pollution dispersion in coastal waters. Part of the research here
was to modify that particle model and develop a particle model for sediment transport
in shallow water. This was achieved by adding extra equations for the erosion and
deposition terms using probabilistic concepts. The developed model was also applied
in the Dutch coastal waters to simulate sediment transport. The results which we have
obtained depict that sedimentation processes are active in the channels and shallow
water but not in the deep water. This may have been contributed by the fact that there
is a strong flow in shallower regions.

It is well known that, in order to get accurate results from Monte Carlo simulations
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of pollution dispersion or sediment transport using particle models, a large number of
particle is needed. Consequently, the computation time in a particle model increases
linearly with the number of particles. On the other hand, as memory requirements grow
this too may be a limiting factor. A nice characteristic of the particle model is that
particle tracks are inherently independent of one another, and is possible to compute
these in parallel [37]. In chapter 5 we have used a parallel processing approach where
particles were divided into groups almost equally and assigned to each processor in the
particle model. By doing so it is possible to significantly reduce the simulation time as
well as to alleviate memory problems and consequently good speedup has been attained
by running our experiments on a Beowulf clusters known as DAS2.

It is known that particle-based approaches are generally trivially parallelisable be-
cause they are independent of each other. Therefore, allows each domain to maintain
a relatively good load balance since the particles could be freely distributed among the
different processors in the system. Therefore, from the point of view of parallel comput-
ing the implementation of a parallel simulation of particle transport alone may not be
considered significant enough. Nevertheless, the problems of the simulation of sediment
transport studied, have a number of appealing features for parallel computing:

• efficient generation and elimination of particles in the domain due to erosion and
deposition is required.

• handling of large amounts of the flow data e.g., n months × 24 samples per day
for each grid point require an efficient particle model.

In general, the implementation of the particle model often uses fixed step sizes for
Lagrangian particle-tracking down the stream in the domain. But using fixed time step
sizes can lead to unnecessary higher computational costs. Therefore, in chapter 6 we
have introduced the variable time step sizes in our particle model. To achieve this we
have devised a criteria of error computations for handling the error at each step and use
this information to determine the optimal step size. This has been achieved efficiently
by using a pair of schemes with higher strong order. Furthermore, we also designed
the diffusion coefficient functions that are spatially varying. After testing the adaptive
scheme in an ideal domain, eventually, we have implemented it for the variable step sizes
for the real life modelling of pollutants dispersion in Dutch coastal waters. The results
show that for Lagrangian particle-tracking in shallow water it is vital to use the variable
time step sizes. Smaller step sizes were observed when tracking a particle in an irregular
region of the domain.

One major problem in the adaptive scheme could be how to synchronise the integra-
tion time of the particles. But we have designed an adaptive scheme in such a way that
it is possible at certain time to synchronise the integration time of all particles. Conse-
quently, the taking of snapshots and particle counts at given times have been possible,
despite of the inherent asynchronicity of the particles with regard to time.

110



7.2. RECOMMENDATIONS 111

7.2 Recommendations

There are a number of interesting topics yet to be done. In the future, there should be a
fully implementation of the adaptive scheme in the three dimensional particle model for
transport problems in shallow waters. For sediment transport a fully three dimensional
particle model should be used. Moreover, the three dimensional particle model for
sediment transport should be coupled with the flow model to enable the simulation
of the depth changes in a long time simulation. That is of course the best way but
very expensive in terms of computing time. Nevertheless, the depth changes take place
slowly, therefore we recommend not to determine/communicate the depth changes at
every iteration but accumulate the depth changes and communicated them after each
certain period interval of relatively long time . Of course the level of coarseness (intervals)
in the depth updates determines the overall accuracy.
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Appendix A
As in [3], for example let us consider 1-dimensional white process. White noise has a
constant spectral density f(λ) on the entire real axis. More detailed information on this
concept can be found for example in [42]. If E[ξ(s)ξ(t + s)] = C(t) is the covariance
function of ξ(t), then, the spectral density is given:

f(λ) =
1
2π

∫ ∞

−∞
e−iλtC(t)dt =

c

2π
, ∀ λ ∈ <1.

The positive constant c without loss of generality can take a value equals 1. White noise
ξ(t) can be approximated by an ordinary stationary Gaussian process X(t), for example
one with covariance:

C(t) = ae−b|t|, (a > 0,b > 0),

it can be shown that such a process has a spectral density.

f(λ) =
ab

π(b2 + λ2)
.
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f(λ) =
1
2π

∫ ∞

−∞
e−iλtC(t)dt

=
a

2π

∫ ∞

−∞
e−b|t|e−iλtdt

=
a

2π

∫ ∞

−∞
e−b|t| [cos(λt)− i sin(λt)] dt

=
a

2π

∫ ∞

−∞
e−b|t| cos(λt)dt︸ ︷︷ ︸

even

− a

2π

∫ ∞

−∞
ie−b|t| sin(λ)dt︸ ︷︷ ︸

odd

=
2a
2π

∫ ∞

0
e−bt cos(λt)dt

=
a

π

∫ ∞

0
e−bt cos(λt)dt

=
a

π

[
−b

b2 + λ2
e−bt cos(λt) +

λ

b2 + λ2
e−bt sin(λt)

]∞
0

=
a

π

[
−b

b2 + λ2
e−bt cos(λt)

]∞
0

=
a

π

[
0 +

b

b2 + λ2

]
f(λ) =

ab

π(b2 + λ2)
. (A.1)

If we now let a and b approach ∞ in such a way that a
b →

1
2 , we get

f(λ) → 1
2π

∀ λ ∈ <′, C(t) =


0 t 6= 0,

∞ t = 0
,

∫ ∞

−∞
C(t)dt → 1,

so that C(t) → δ(t), that is, X(t) converges in a certain sense to ξ(t) [3, 32, 35].
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Appendix B
Following Karhunen-Loève see [35], we define the random variables ax

r and bxr by

ax
r =

2
∆t

∫ ∆t

0

(
W x

s −
s

∆t
W x

∆t

)
cos
(

2rπs
∆t

)
ds (B.1)

and bxr =
2

∆t

∫ ∆t

0

(
W x

s −
s

∆t
W x

∆t

)
sin
(

2rπs
∆t

)
ds, r = 1, 2, . . . (B.2)

It is known that, for r ≥ 1 these variables have an N
[
0, ∆t

2π2r2

]
distribution. They are

differentiable samples paths on the interval [0, T ]. In this section we have derived the
variance of the random variables ax

r , the variances of the remaining random variables
can follow similar lines. Recall that

(∫ 1

0
f(x)dx

)2

=
∫ 1

0

∫ 1

0
f(x)f(y)dxdy (B.3)

Let us consider the variance of Eqn. B.1, it follows that

E

{(
2

∆t

∫ ∆t

0

(
Ws −

s

∆t
W∆t

)
cos
(

2rπs
∆t

)
ds

)2
}

=

4
(∆t)2

∫ ∆t

0

∫ ∆t

0
E
[(
Ws1 −

s1
∆t

W∆t

)(
Ws2 −

s2
∆t

W∆t

)]
cos
(

2rπs1
∆t

)
cos
(

2rπs2
∆t

)
×

ds1ds2

Now let us first consider the expression in the square brackets for s1 < s2 Recall that

Cov (X,Y ) = E[XY ]− E[X]E[Y]
= E[XY ]

but E[X]E[Y ] = 0, therefore, in our case.

Cov
(
Ws1 −

s1
∆t

W∆t,Ws2 −
s2
∆t

W∆t

)
=

Cov (Ws1 ,Ws2)− Cov
(
Ws1 ,

s2
∆t

W∆t

)
− Cov

( s1
∆t

W∆t,Ws2

)
+ Cov

( s1
∆t

W∆t,
s2
∆t

W∆t

)
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= Cov (Ws1 ,Ws2)−
s2
∆t

Cov (Ws1 ,W∆t)−
s1
∆t

Cov (W∆t,Ws2) +
s1
∆t

s2
∆t

Cov (W∆t,W∆t)

= s1 −
s2s1
∆t

− s1s2
∆t

+
s1s2
∆t

= s1 −
s2s1
∆t

= min(s1, s2)−
s2s1
∆t

.

Using Eqn. (B.4) we get the following

4
(∆t)2

{∫ ∆t

0

∫ ∆t

0

[
min(s1, s2)−

s2s1
∆t

]
cos
(

2rπs1
∆t

)
cos
(

2rπs2
∆t

)}
ds1ds2. (B.4)

Change the variable of integration such that x1 = s1
∆t and x2 = s2

∆t so Eqn. (B.4) becomes

4∆t
{∫ 1

0

[∫ 1

0
[min(x1, x2)− x1x2] cos (2rπx1) cos (2rπx2) dx1

]
dx2

}
. (B.5)

Now if we let x1 < x2 we get

4∆t
∫ 1

0

∫ x2

0
(x1 − x1x2) cos (2rπx1) dx1︸ ︷︷ ︸

x1<x2

+
∫ 1

x2

(x2 − x1x2) cos (2rπx1) dx1︸ ︷︷ ︸
x1>x2

×
cos (2rπx2) dx2. (B.6)

Let us now consider the inner integral:∫ x2

0
x1 cos (2rπx1) dx1 −

∫ x2

0
x1x2 cos (2rπx1) dx1+∫ 1

x2

x2 cos (2rπx1) dx1 −
∫ 1

x2

x1x2 cos (2rπx1) dx1. (B.7)

Thus Eqn. (B.6) is integrated by using integration by parts of trigonometric function.
We start with : ∫ x2

0
x1 cos (2rπx1) dx1 (B.8)

Let us choose u = x1 and dv = cos (2rπx1) dx1 Thus v = 1
2rπ sin (2rπx1), hence[ x1

2rπ
sin (2rπx1)

]x2

0
+
[

1
4r2π2

cos (2rπx1)
]x2

0

=[
x2

2rπ
sin (2rπx2) +

1
4r2π2

cos (2rπx1)−
1

4r2π2

]
. (B.9)

Again we consider the third term:
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∫ 1

x2

x2 cos (2rπx1) dx1 = x2

∫ 1

x2

cos (2rπx1) dx1 =
[ x2

2rπ
sin (2rπx1)

]1
x2

=
[ x2

2rπ
sin (2rπ)− x2

2rπ
sin (2rπx2)

]
=

[
− x2

2rπ
sin (2rπx2)

]
. (B.10)

Note that sin (2rπ) = 0, r = 0, 1, 2, . . ..
Thus if we add Eqn (B.9) and (B.10) we get∫ x2

0
x1 cos (2rπx1) dx1 + x2

∫ 1

x2

cos (2rπx1) dx1 =
[

1
4r2π2

cos (2rπx1)−
1

4r2π2

]
.(B.11)

Next we consider the second term:

x2

∫ x2

0
x1 cos (2rπx1) dx1 = x2

{[ x1

2rπ
sin (2rπx1)

]x2

0
+
[

1
4r2π2

cos (2rπx1)
]x2

0

}
=

[x2x2

2rπ
sin (2rπx2) +

x2

4r2π2
cos (2rπx2)−

x2

4r2π2

]
.(B.12)

Thus∫ x2

0
x1 cos (2rπx1) dx1 + x2

∫ 1

x2

cos (2rπx1) dx1 − x2

∫ x2

0
x1 cos (2rπx1) dx1 =[

1
4r2π2

cos (2rπx1)−
1

4r2π2
− x2x2

2rπ
sin (2rπx2)−

x2

4r2π2
cos (2rπx2) +

x2

4r2π2

]
(B.13)

Finally we consider the fourth integral:

x2

∫ 1

x2

x1 cos (2rπx1) dx1

x2

∫ 1

x2

x1 cos (2rπx1) dx1 = x2

{[ x1

2rπ
sin (2rπx1)

]1
x2

+
[

1
4r2π2

cos (2rπx1)
]1

x2

}
=

x2

2rπ
sin (2rπ)− x2x2

2rπ
sin (2rπx2) +

x2

4r2π2
cos (2rπ)− x2

4r2π2
cos (2rπx2) (B.14)

Finally we take the results for all integrals in the square bracket of Eqn. (B.5):

∫ x2

0
x1 cos (2rπx1) dx1 − x2

∫ x2

0
x1 cos (2rπx1) dx1 + x2

∫ 1

x2

cos (2rπx1) dx1

+ x2

∫ 1

x2

x1 cos (2rπx1) dx1 (B.15)
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1
4r2π2

cos (2rπx2)−
1

4r2π2
− x2x2

2rπ
sin (2rπx2)−

x2

4r2π2
cos (2rπx2) +

x2

4r2π2

− x2

2rπ
sin (2rπ) +

x2x2

2rπ
sin (2rπx2)−

x2

4r2π2
cos (2rπ) +

x2

4r2π2
cos (2rπx2) (B.16)

cos (2rπ) = 1, r = 0, 1, 2 . . . . Finally equation (B.16) becomes

1
4r2π2

cos (2rπx2)−
1

4r2π2
. (B.17)

Next we put Eqn (B.17) into the integral (B.6) and obtain

4∆t
∫ 1

0

[
1

4r2π2
cos (2rπx2)−

1
4r2π2

]
cos (2rπx2) dx2 (B.18)

∆t
r2π2

∫ 1

0
cos2 (2rπx2) dx2 −

∆t
r2π2

∫ 1

0
cos (2rπx2) dx2 (B.19)

we now use double/half angle formula.
where

cos2 (2rπx2) =
1
2

[cos (4rπx2) + 1]

Thus we have

∆t
r2π2

∫ 1

0

1
2

(cos (4rπx2) + 1) dx2 −
∆t
r2π2

∫ 1

0
cos (2rπx2) dx2 (B.20)

∆t
2r2π2

∫ 1

0
cos (4rπx2) dx2 +

∆t
2r2π2

∫ 1

0
dx2 +

∆t
r2π2

∫ 1

0
cos (2rπx2) dx2 (B.21)

∆t
2r2π2

∫ 1

0
dx2 +

∆t
2r2π2

∫ 1

0
cos (4rπx2) dx2 +

∆t
r2π2

∫ 1

0
cos (2rπx2) dx2 (B.22)

=
∆t

2r2π2
+ 0 + 0. (B.23)

Therefore

Var[ar] =
(

2
∆t

)2

E

{(∫ ∆t

0

(
Ws −

s

∆t
W∆t

)
cos
(

2rπs
∆t

)
ds

)2
}

=
∆t

2r2π2
� (B.24)
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B.1 Approximation of the multiple stratonovich integral J(1,1,0)

Jx,p
(1,1,0) is an approximation of the integral Jx

(1,1,0) and it is known [35] that Jx
(1,1,0) ≥

(∆Mx)2

2∆tn
always, where p is an integration index. If it turns out Jx,p

(1,1,0) <
(∆Mx)2

2∆tn
, we take

∆Mx as the better approximation for J(1,1,0). Therefore, the derivation can be done as
follows: By the Cauchy Schwartz inequality.

|〈x, y〉|2 ≤

(∑
i

xi

)(∑
i

yi

)

∫ ∆t

0
Ws · 1ds ≤

∫ ∆t

0
W 2

s ds

∫ ∆t

0
1ds.

This can be proved by considering the follows where c is a constant:∫ ∆t

0
(Ws + c · 1)2 ds = c2

∫ ∆t

0
12ds+ 2c

∫ ∆t

0
W · 1ds+

∫ ∆t

0
W 2

s ds ≥ 0

= 4
(∫ ∆t

0
Ws · 1ds

)2

− 4
∫ ∆t

0
12ds

∫ ∆t

0
W 2

s ds ≤ 0

From the Kloeden book [34] we notice that

2J(1,1,0)∆t =
∫ ∆t

0
W 2

s ds

where

∆Z = ∆M =
∫ ∆t

0
Wsds ∼ N

[
0,

1
2
∆t
]
.

In the implementation we have simply taken

max
(
2Jp

(1,1,0)∆t, (∆Z)2
)
.

Since Jp
(1,1,0) is an approximation for J(1,1,0), theoretically by the Cauchy Schwartz in-

equality we know that

J1,1,0) ≥
(∆Z)2

2∆t
always

if it turns out that

Jp
1,1,0) <

(∆Z)2

2∆t
,

then we take ∆Z as the better approximation for J(1,1,0).
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Summary

This thesis presents the results of a study of the application of two dimensional particle
models for simulating the pollutants and sediment transport in shallow waters. In order
to achieve an improved understanding of complex environmental systems, a high perfor-
mance computing model is vital for the Lagrangian particle technique. The research in
this thesis was first to improve the existing particle model to describe correctly the short
term spreading behaviour of a cloud of pollutants in shallow water. Secondly, to develop
a high performance particle model for sediment transport. The transported materials in
shallow waters are assumed to be dissolved but inactive suspended materials.

The movement of a particle comprises a drift (advective) component and a diffu-
sive(dispersive) component. In numerical modelling the diffusive component of the dis-
placement of a particle at each time step is often implemented by adding random driving
noise with an appropriate standard deviation. The driving force in the particle model
is often known as Wiener process. It is known that particle methods describe the dis-
persion of cloud of particles in turbulent fluid flow accurately if that cloud has been in
the flow much longer than a certain Lagrangian time (TL). The Lagrangian time scale
is a measure of how long the particle takes to lose memory of its initial turbulent ve-
locity. Existing particle models are generally unable to accurately model the dispersion
process of a cloud of pollutants from time 0 to TL. In order to solve this problem, we
have developed a particle model called the random flight model which uses a correlated
process known as coloured noise as a driving force. In this model the increments of the
coloured noise are correlated in time for t� TL. Thus, in the beginning the movements
(increments) of a particle depends not only on the flow velocity but also the velocity of
the particle. In this way we have been able to take into account the correlation behaviour
of dispersion of a cloud of pollutants shortly after its deployment for t� TL.

The ultimate goal of this thesis was to develop an efficient particle model for sediment
transport in shallow water. To this end we have modified the existing particle model
which was developed for the prediction of pollutants dispersion in coastal water. We
have introduced in the particle model extra equations for the erosion/suspension using a
probabilistic concepts (the Poisson distribution function) to determine the actual number
of particles which are suspended in each grid cell. The settling/deposition is modelled
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by using an exponential decaying ordinary differential equation.
Furthermore, we have also derived the two dimensional modified Fokker-Planck equa-

tion in relation to the developed particle model for sediment transport. This has been
done by adding the two extra terms for erosion and deposition. The Fokker-Planck equa-
tion describes the evolution of the probability density of particles with time and space.
The probability that a particle ends up in a certain location is of course a description of
the concentration in that location.

Particle models can be used to calculate/predict the concentration of pollutants.
However, for a long simulation period in which case the particles are spread over a
large area, many particles are needed to obtain the accurate results. Consequently, the
problems of high computational costs plus memory problem can go beyond the capacity
of a singel sequential computer. We have addressed this problem by developing a parallel
particle model which can be used on a parallel computer and/or a cluster of PCs.

In order to improve the efficiency and computing speed, we have considered, the use of
variable integration time step sizes instead of fixed time step. The use of fixed time step
sizes in the numerical methods in particle models have limitations when, for example,
the SDEs being solved are stiff as this forces the step size to be very small. Fixed
small step sizes in the numerical approximation of SDEs may introduce unnecessary
huge computational cost. An adaptive scheme has been developed in our particle model
with variable time step sizes. In this advanced scheme during the simulation an optimal
step size for a given error tolerance is estimated. The adaptive scheme has been applied
in the Dutch coastal water to simulate the transport of pollutants. The results show
that the smaller step sizes are needed to stably integrate the movement of a particle in
highly irregular regions. The adaptive scheme is also fully incorporated into the parallel
implementation of the particel model.
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Samenvatting

In dit proefschrift worden de resultaten van het onderzoek naar deeltjesmodellen voor
de simulatie van het transport van verontreinigingen en sediment in ondiepe wateren
beschreven. Om grootschalige complexe milieu systemen beter te kunnen begrijpen
is het toepassen van high performance computing technieken bij de simulatie van La-
grangiaanse modellen van groot belang. Het onderzoek richt zich in de eerste instantie
tot het verbeteren van de bestaande deeltjesmodellen om het korte termijngedrag van de
verspreiding van een wolk van verontreinigingen in ondiep water nauwkeuriger te beschri-
jven.Vervolgens wordt een parallel deeltjesmodel voor sediment transport ontwikkeld.

De verplaatsing van een deeltje kan worden verdeeld in twee componenten: een
advective component en een diffusive component. Bij het numeriek modelleren van de
verplaatsing van een deeltje wordt de diffusive component vaak geimplementeerd door
een random getal met een overeenkomstige standaard afwijking. Dit random proces in
het deeltjesmodel wordt het Wiener proces genoemd. Het is bekend dat deeltjesmodellen
de dispersie van een deeltjeswolk in turbulente stroming nauwkeurig beschrijven als de
deeltjeswolk al langer dan een bepaald Lagrangiaanse tijd (TL) in het water is. De
Lagrangiaanse tijdschaal is een maat voor de tijd die deeltjes nodig hebben om hun
geheugen’ van de initiële turbulente snelheid te verliezen.

Bestaande deeltjesmodellen kunnen in het algemeen het dispersie proces van een wolk
van verontreinigingen van tijd 0 tot TL niet nauwkeurig beschrijven. Om dit probleem
op te lossen hebben we een zogenaamde random flight model ontwikkeld dat de beweging
van de deeltjes als een gecorreleerd proces (de gekleurde ruis) modelleerd. In dit model
zijn de random veranderingen van de gekleurde ruis voor t � TL gecorreleerd. Dus de
verplaatsing van een deeltje hangt niet alleen van de stromingsnelheid af, maar ook van
de snelheid van het deeltje. Op deze manier kan het bekende fysische verschijnsel van
de dispersie van een deeltjeswolk in de begintijd beter worden gemodelleerd.

Het uiteindelijke doel van dit promotieonderzoek is het ontwikkelen van een efficiënt
deeltjesmodel voor sediment transport in ondiep water. Om dit te bereiken hebben we
het bestaande deeltjesmodel voor de voorspelling van de dispersie van verontreinigingen
in kustwateren aangepast. We hebben daarvoor de vergelijkingen voor de beschrijving
van erosie/suspensie aan het bestaande deeltjesmodel toegevoegd. Het actuele aantal
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zwevende’ deeltjes in iedere grid cel wordt door middel van een Poisson distributiefunctie
bepaald. Het proces van sedimentatie wordt gemodelleerd met een differentiaalvergeli-
jking die een proces met exponentieel uitdemping beschrijft.

We hebben ook de twee dimensionale aangepaste Fokker-Planck vergelijkingen met
betrekking tot het deeltjesmodel voor sediment transport afgeleid. Dit wordt gedaan met
de toevoeging van de twee termen: erosie en sedimentatie. De Fokker-Planck vergeli-
jking beschrijft de evolutie van de kansdichtheid van deeltjes als functie van tijd en
ruimte. De kans dat een deeltje zich in een bepaalde locatie bevindt, kan naar een
concentratiewaarde in die locatie worden vertaald.

Deeltjesmodellen kunnen worden gebruikt voor het berekenen/voorspellen van de
concentratie van bepaalde verontreinigingen. In een simulatie voor een lange periode
waar de deeltjes over een groot oppervlak zijn verspreid, moeten er heel veel deeltjes in
het model worden doorgerekend om een nauwkeurig resultaat te krijgen. Zo’n situatie
vraagt heel veel rekentijd en geheugen. We hebben daarom ook een parallel deeltjesmodel
voor parallelle computers of cluster van PCs ontwikkeld om dit probleem op te lossen.

Om de efficiëncy en rekensnelheid te verhogen is ook het gebruik van variabele in-
tegratie tijdstappen in plaats van een constante tijdstap bestudeerd. Het gebruik van
een constante tijdstap in numerieke methoden bij deeltjesmodellen heeft beperkingen.
Bijvoorbeeld, wanneer de SDEs stijf zijn, moet een zeer kleine integratie tijdstap worden
gebruikt. Het gebruik van een constante kleine tijdstap in de numerieke integratie van
SDEs leidt tot onnodig grote rekenkosten. We hebben daarom een adaptief schema met
variabele tijdstappen ontwikkeld voor het deeltjesmodel. In dit geavanceerde schema
wordt tijdens de simulatie eerst een optimale tijdstap geschat bij een gegeven fout tol-
erantie. Het adaptieve schema is toegepast op de simulaties van het transport van
verontreinigingen langs de Nederlandse kust. De resultaten laten zien dat kleine tijd-
stappen nodig zijn voor een stabiele integratie bij de berekening van de verplaatsing van
de deeltjes in onregelmatige gebieden. Het adaptieve schema is ook volledig ingevoerd
in de parallelle implementatie van het deeltjesmodel.
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