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Abstract

In this thesis the differences in performance scores of experts in the Classical Model for structured
expert judgement are analyzed. The underlying assumption in the Classical Model is that variance in
performances of experts in a panel is at least partly resultant of the expert’s ability to quantify uncer-
tainty. This assumption is tested against the so called Random Expert Hypothesis, that states that
these differences are solely resultant of random fluctuations. At the five percent significance level it is
concluded that the variation in the combined score of experts cannot exclusively be explained by ran-
dom fluctuations. When the assumption is tested individually for three different subject fields, health,
policy and science, the Random Expert Hypothesis cannot be rejected for both health and policy related
studies. Lastly it is shown that the variation in performances between the best and worst expert in a
panel strongly correlates with the performance of the best expert against random panels. This indicates
that the aggregation of experts according to the scoring rule in the Classical Model may primarily work
to diminish the influence of low performing experts.

iii





Contents

1 Introduction 1

2 Structured expert judgement 3

2.1 Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Classical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Scoring rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Calibration score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.3 Information score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.4 Combined score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.5 Decision maker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Random Expert Hypothesis 7

3.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 Binomial test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.2 Sum test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4.1 Code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5.1 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

v



vi Contents

4 Random Expert Hypothesis expansion 13

4.1 Random Expert Hypothesis for health, policy and science related studies . . . . . . . . . 13

4.1.1 Test results health studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.2 Test results policy studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.3 Test results science studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Variance of percentile scores and the number of quantiles. . . . . . . . . . . . . . . . . . 16

4.3 Variance of percentile scores and the number of seed variables . . . . . . . . . . . . . . 17

4.4 Variance of percentile scores and the number of experts . . . . . . . . . . . . . . . . . . 19

4.5 Variance of percentile scores and the worst performing expert . . . . . . . . . . . . . . . 20

4.5.1 Minimal scores and variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Discussion 23

A Technical appendix 25

A.1 Kendall rank correlation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.1.1 Concordant and discordant pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.1.2 Kendall’s 𝜏𝑏 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.1.3 Correlation testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.2 Spearman’s rank correlation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.2.1 Correlation testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

B Data 29

C Python code 31

C.1 Run code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

C.2 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

D R code 35

References 37



1
Introduction

The more we learn about our world, the more we realize how many things are uncertain in our increas-
ingly complex world. Everyday, people have to make decisions where uncertainty plays a role. Be that
because the mechanics behind a problem are not fully understood, or because obtaining the definite
answers takes too much time or resources. In such cases, people can resort to people deemed experts
in a given field or subject. These experts can help making assessments of uncertain quantities, which
can then be used in the decision making process.

Whilst at first glance this may not seem like an exact science, one can give a mathematical founda-
tion to the processing of the assessments of the experts. This is called structured expert judgement.

Structured expert judgement is a relatively new field in mathematics. It concerns itself with the
aggregation of the assessments of different experts. One wants to do this in a way such that a mean-
ingful answer is obtained which can facilitate the decision making process. One of the main methods of
structured expert judgement is known as the Classical Model [3]. This model employs a scoring rule to
score the performances of different experts and weight their assessments accordingly. An underlying
assumption in the Classical Model is that the performance scores experts achieve on the calibration
questions, or seed variables, are a predictor of the performances of the experts on the variable(s) of
interest. That is to say that the variances between performances are at least partly non-random. The
hypothesis that the variances between performances is resultant of random fluctuations is known as
the Random Expert Hypothesis

In this thesis the Random Expert Hypothesis will be tested against the underlying assumption of the
Classical Model that the performance scores of the experts are predictors of the performance on the
variable(s) of interest. This will be done in order to validate if aggregation of experts in the Classical
Model is tenable. In Chapter 2 the theory behind structured expert judgement and the Classical Model
will be further elaborated on. After which in Chapter 3 the Random Expert Hypothesis will be explained
and tested. This will be done by comparing themaximum score of an expert in a study with themaximum
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2 1. Introduction

score in a random panel. Lastly in Chapter 4 the Random Expert Hypothesis will be further elaborated
on in more specific cases. So will it be checked if similar results follow for specific fields of study and
certain characteristics of the study. The results will be discussed in Chapter 5.



2
Structured expert judgement

In the ever increasingly complex world, the need for the quantification of uncertainty grows. To make
complex decisions, concerning for example the risk of an volcano eruption, the probabilities of failure in
a nuclear power plant or the impact of human errors in air traffic control, one can turn to people deemed
experts and ask for their opinion. The assessments of these experts can then be used to aid in the
decision making process.

These experts can be asked to give their assessment of a given problem, a variable, in the form of
different quantiles. For example, the experts can be inquired to give a 5, 50 and 95 percent quantile.
The aggregation of the these different assessments amounts to structured expert judgement. The pro-
cess by which the experts provide their assessments, their assessments are evaluated and aggregated
and evaluated using objective measures is known as structured expert judgement.

2.1. Elicitation
To apply structured expert judgement, one first needs assessments of experts. The assessments are
donewith the use of confidence intervals, in the form of quantiles. Experts are asked to give a certain set
of quantiles for each variable, or question. Those quantiles correspond with the subjective probability
that the true value is equal to or less than the value specified by the expert. In most cases, three
different quantiles are used. Those quantiles are the 5, 50 and 95 percent quantiles. In other words,
experts are asked to give a 90 percent confidence interval, along with a best guess. They believe that
there is a five percent probability of the realization being equal to or less than the 5 percent quantile,
an equal probability of the realization being either smaller or larger than the 50 percent quantile and a
5 percent probability of the realization being larger than the 95 percent quantile. One can however use
any set of quantiles that one sees fit for the problem.

3



4 2. Structured expert judgement

2.2. Classical Model
Elicitation of experts can be done with only one expert. However, it is advised that multiple experts are
gathered to assess the problem at hand. How one then combines the varying assessment of different
experts can differ. In this thesis the Classical Model will be employed [1]. This model was developed
by Roger M. Cooke at the Delft University of Technology and uses a scoring rule to aggregate the
assessments of various experts. The scoring rule aims to evaluate the assessments of a given experts
[3]. To do this, in the elicitation process, the experts are not only asked to assess the variable(s) of
interest. Additionally they are asked to assess some seed variables, also called calibration variables or
questions. Those variables of course ought to be from the same field as the variable(s) of interest. The
realizations of those seed variables are to be unknown to the experts. However, they are needed for
the evaluation of the expert’s assessment. Most often variables are chosen from unpublished studies,
or variables which are unknown at the time of elicitation, but become known during the time frame of
the elicitation process. These realizations can then be used to score the various experts.

2.2.1. Scoring rules

The scoring rule in the Classical Model consists of two components. The first component, the calibra-
tion score, is a measure for the statistical accuracy of an expert. Whilst the second component, the
information score, is a measure of information an expert gives, or how well he is able to concentrate
the probability mass in a small interval.

2.2.2. Calibration score

The calibration score is calculated over the whole set of seed variables in a given study. For this, one
needs a so called probability vector p. The entries of this probability vector are determined by the
probability bins determined by the set of quantiles. Take for example the case where experts are asked
to assess the 5, 50 and 95 percent quantiles of the variables. This gives four probability bins, the first
and the last of size 0.05, and the middle two of size 0.45. Thus the probability vector becomes p =
(0.05, 0.45, 0.45, 0.05). The realization of a given seed variable falls within one of those four bins,
depending on the assessment of the expert. Over the set of seed variables, one can count the amount
of realizations falling in any given bin of a certain expert. Say, if the realization lies between the 50
and 95 percent quantile, the realization falls into the third bin. Counting the amount of realizations per
bin over the seed variables and dividing the number with the total number of seed variables yields the
empirical probability vector s. Where each entry corresponds to the proportion of the realizations falling
in a specific bin. Using s and p, one can calculate the Kullback-Leibler divergence 𝐼(s,p) of s and p,
also called the relative entropy. The Kullback-Leibler divergence is defined as follows:

𝐼(s,p) =
𝑛

∑
𝑖=1
𝑠𝑖 ⋅ ln

𝑠𝑖
𝑝𝑖
,

where 𝑛 is the number of probability bins.



2.2. Classical Model 5

It can be shown that

2 ⋅ 𝑚 ⋅ 𝐼(s,p),

where 𝑚 is the number of seed variables, asymptotically follows a Chi-squared distribution with 𝑛− 1
degrees of freedom [4]. Following from this result we define the calibration score of expert 𝑒 in the
following way:

𝐶𝑎𝑙(𝑒) = 1 − 𝐹(2 ⋅ 𝑚 ⋅ 𝐼(s,p)),

where 𝐹 is the cumulative distribution function of a Χ2𝑛−1 distribution. Note that the calibration score
can be any value between zero and one, where the higher the score, the better the expert is deemed
to be on the aspect of statistical accuracy.

2.2.3. Information score

Contrary to the calibration score, the information score is calculated separately for each seed variable,
after which the average is calculated.

To calculate the information score, first the intrinsic range needs to be defined. The intrinsic range
is a range in which the value of a given variable may realistically lie. Sometimes there are clear bounds
for such a range. If a variable for example concerns a percentage, one knows that the value has to
be at least 0 and at most 100, and this can than be taken as intrinsic range. However, many times
their is not such a clear range in which the variable may lie. In that case the intrinsic range is often
derived from the assessments of the experts and the realization. For any given variable, one takes
the minimum value between all assessments of the lowest quantile by the expert and the realization.
This is the lower bound denoted by 𝐿. Similarly, for the upper bound, one takes the maximum value
between all experts’ assessments and the realization for the given seed variable. This is denoted by 𝑈.
Then an overshoot 𝑘 is added on both sides of the range defined by 𝐿 and 𝑈. Typically this overshoot
is chosen to be 10 percent of the length of the interval [𝐿, 𝑈]. Which gives the following intrinsic range:

[𝐿∗, 𝑈∗] = [𝐿 − 𝑘(𝑈 − 𝐿), 𝑈 + 𝑘(𝑈 − 𝐿)].

Now let q𝑒𝑗 be the vector with entries the quantile assessments of an expert 𝑒 for seed variable 𝑗. Now
the information score for expert 𝑒 for seed variable 𝑗, denoted by 𝐼𝑗(𝑒), is calculated as follows:

𝐼𝑗(𝑒) = 𝑝1 ⋅ ln
𝑝1

𝑞𝑒𝑗1 − 𝐿∗
+ 𝑝𝑛 ⋅ ln

𝑝𝑛
𝑈∗ − 𝑞𝑒𝑗𝑛

+ ln (𝑈∗ − 𝐿∗) +
𝑛−1

∑
𝑖=2

𝑝𝑖 ⋅ ln
𝑝𝑖

𝑞𝑒𝑗𝑖 − 𝑞𝑒𝑗𝑖−1
,

Where p is again the probability vector. So the information score for expert 𝑒 becomes:

𝐼𝑛𝑓(𝑒) =
𝑚

∑
𝑖=1

𝐼𝑖(𝑒)
𝑚

where again 𝑚 is the number of seed variables. Also, the information score is a non-negative value,
where again the higher the score, the better the expert is believed to be at the ability of concentrating
probability mass in a small interval.
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2.2.4. Combined score

Both statistical accuracy and informativeness are important in the assessment of experts. Without
statistical accuracy, the judgement of an expert is of little value. On the other hand, an expert can
increase the probability of realizations falling into one of his central bins by increasing the size of said
bins. But it should be obvious that needlessly increasing the bins only to improve ones statistical
accuracy is to be discouraged. Therefore the Classical Model uses both the calibration score and the
information score to evaluate the experts’ assessments. To combine the scores, the calibration score
is simply multiplied with the information score to obtain the combined score:

𝐶𝑆(𝑒) = 𝐶𝑎𝑙(𝑒) ⋅ 𝐼𝑛𝑓(𝑒).

It is important to note, that generally speaking, the statistical accuracy of an expert is deemed more
important than the informativeness. This coincides with the fact that the calibration score is a ’quick’
function, its value decreases rapidly when more realizations fall outside of the quantiles specified by the
expert. So experts are mainly scored on their statistical accuracy, but in cases where those are similar,
the information score gives a higher score to the expert that managed to capture a similar amount of
realizations on a smaller interval.

In the Classical Model the combined score is used to weight the assessments from the experts on
the variable(s) of interest. The weights of the experts are proportional to their combined scores. The
weight of expert 𝑒𝑘 is defined as follows:

𝑤(𝑒𝑘) =
𝐶𝑆(𝑒𝑘)

∑𝑙𝑖=1 𝐶𝑆(𝑒𝑖)
,

where 𝑙 is the number of experts in the study.

2.2.5. Decision maker

The assessments of the expert can be aggregated in a decisionmaker. The quantiles given by an expert
for a certain variable in combination with the intrinsic range of that variable give rise to a probability
density function 𝑓 and cumulative distribution function 𝐹. In the Classical Model, a minimal information
distribution is used. Thus the probability mass between to quantile assessments of an expert are
uniformly distributed. The probability mass in the outer two quantiles are uniformly distributed over the
length of the intrinsic range till below or above the respective quantile assessment. The probability
distribution of the decision maker for a certain variable is then constructed by summing the distribution
functions of the experts multiplied with their respective weights, as defined in Subsection 2.2.4.



3
Random Expert Hypothesis

The Classical Model assigns different weights to different experts, depending on the performance of
the experts on the seed variables. It takes into account the statistical accuracy of the experts, and
combines that with the information score, the ability of an expert to concentrate the uncertainty in a
small interval with high probability. The underlying assumption in the Classical Model is thus that the
variance between experts’ performance is at least partly resultant of actual differences in the experts’
abilities, and not solely due to random fluctuations.

The RandomExpert Hypothesis challenges this underlying assumption. It states that the differences
in performance on the seed variables by experts is solely the consequence of random fluctuations. In
other words, the actual experts can be seen as arbitrary picks from the set of all hypothetical experts
that can be formed with the answers to the calibration questions of the actual experts. This would
mean that correct method of aggregating experts’ assessments is one of equal weighting, where every
expert’s assessments gets the same weight.

The Random Expert Hypothesis has already been challenged by Marti, Mazzuchi and Cooke [6].
They concluded that the Random Expert Hypothesis, and thus the equal weighting approach, is ex-
tremely unlikely. They had drawn there conclusions from a data set of 44 structured expert judgement
studies and evaluating the statistical accuracy, or the calibration score, for different experts. Whilst
it is important that experts are statistically accurate, it is easy to increase ones statistical accuracy
by increasing the length of the different quantiles in the assessments. Therefore, in this chapter the
Random Expert Hypothesis is tested with the aid of the combined score, to see if the variance in the
performance of experts can be explained solely due to chance.

7



8 3. Random Expert Hypothesis

3.1. Hypothesis
To test if differences between experts could be explained by something other than random variation, a
statistical analysis of expert elicitation data was performed. If the variation between experts is solely
the result of random fluctuation, then the best expert in the actual panel should not perform any better
or worse than the best expert in a scrambled panel. This led to the following null hypothesis:

𝐻0: The actual expert panel is arbitrarily picked from the set containing all possible scram-

bled panels.

This hypothesis was tested against the alternative hypothesis:

𝐻1: The actual expert panel is not arbitrarily picked from the set containing all possible

scrambled panels.

Here both best expert and scrambled panel should be defined. The best expert in a panel is the expert
which achieves the highest combined score as discussed in Subsection 2.2.4. A scrambled panel is
a panel where the experts’ assessments on different seed variables are randomly reassigned. For
example, suppose the original panel has three experts A, B and C. All of which have assessed three
seed variables on three quantiles, as shown in Table 3.1.

Table 3.1: Example panel

Expert Seed 1 Seed 2 Seed 3

A (3, 6, 9) (13, 45, 70) (0.2, 0.5, 0.9)
B (4, 7.5, 9) (16, 44, 64) (0.1, 0.45, 0.8)
C (2, 5, 8) (10, 50, 80) (0.3 , 0.6, 1.0)

When the panel is scrambled, the assessments for each seed variable are reordered, to get three
random, or hypothetical experts A’, B’ and C’. For example, the scrambled panel could be as in Ta-
ble 3.2.

Table 3.2: Example scrambled panel

Expert Seed 1 Seed 2 Seed 3

A’ (4, 7.5, 9) (16, 44, 64) (0.3, 0.6, 1.0)
B’ (2, 5, 8) (13, 45, 70) (0.2, 0.5, 0.9)
C’ (3, 6, 9) (10, 50, 80) (0.1 , 0.45, 0.8)

3.2. Data
For this project, the data from 50 different studies have been used in which expert elicitation was used.
The data set includes six studies which were not yet available at the time of the research by Marti et al.
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[6]. The data was retrieved from the site of Roger M. Cooke [2]. Each study has a number of different
experts, each of which has made assessments for a range of different seed variables, along with the
variable(s) of interest. Furthermore, the realizations of the seed variables are also included. For this
study only the seed variables and their realizations are of interest. An overview of the different studies
with their respective number of experts, seed variables and quantiles can be found in Appendix B.

3.3. Methodology
Saying that the actual panel is arbitrarily picked from the set of all possible scrambled panels, and thus
that the best expert in the actual panel is not expected to perform any better or worse than the best
expert in a scrambled panel, does not mean that one expects to see the exact same score for both.
The same fluctuations seen between experts were also expected between the best experts in either
the actual panel and a scrambled panel, or two scrambled panels.

So instead for 1,000 scrambled panel the best expert have been calculated. Grouping all those
scores gives a range in which the actual best expert was expected to lie. Under the null hypothesis,
the percentile in which the actual expert lies in the approximated range of performances scores is
an arbitrary pick from a uniform distribution on the interval [0,1]. Repeating this process for multiple
studies, read different panels, allows one to make an assertion on the probability that the observed
results are realized under the assumption that the null hypothesis is true. This has been tested with
two different statistical tests, where a significance level of five percent has been used.

3.3.1. Binomial test

First of all, the binomial test has been applied to calculate the probability of the observed results under
the null hypothesis. This is the same test as used by Marti et al. [6]. This test only considered if the
actual best expert performs better or worse in comparison with the scrambled panels’ best expert. If
the actual best expert’s score is in the 50th percentile or below, this was considered to be a fail. If the
actual best expert’s score was above the 50th percentile, this was considered to be a success. Then
the probability of the observed number of successes over 50 studies were calculated with the binomial
distribution

𝑃𝑟(𝑋 = 𝑘) = (𝑛𝑘)𝑝
𝑘(1 − 𝑝)𝑛−𝑘 .

Under the null hypothesis, both a fail and a success were equally like, and thus both have a probability
of 0.5. Therefore the probability of 𝑘 successes could also be written as

𝑃𝑟(𝑋 = 𝑘) = (𝑛𝑘)0.5
𝑛 .

Thus the probability that one sees at least 𝑘 successes is

𝑃𝑟(𝑥 ≥ 𝑘) =
𝑛

∑
𝑖=𝑘
(𝑛𝑖 )0.5

𝑛

Note that the null hypothesis in combination with the alternative hypothesis is two-tailed. So if the null
hypothesis were to be rejected with a significance level of five percent, it were to be rejected when the
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probability of at most 𝑘 observed successes is less then 0.025, or the probability of at least 𝑘 successes
is greater than 0.975.

3.3.2. Sum test

The binomial test does not consider the deviance of the actual experts from the median. An expert who
ends up at the 98th percentile is considered the same as an expert who ends up at the 52th percentile.
Hence the hypothesis was simultaneously tested by the sum test. The sum test uses the fact that
the sum of independent random variables has an asymptotic normal distribution by the Central Limit
Theorem. The sum of 𝑛 uniformly distributed variables on the interval [0,1] is thus normally distributed
with mean 𝑛⋅0.5 and standard deviation √𝑛/12. One can then take the value obtained from summing
the percentile scores of the actual best experts over all the studies and calculate the probability of
normally distributed variable obtaining a value at least as extreme as this sum of percentile scores,
where the normally distributed variable has mean and variance as described. Hence a table of the
normal distribution could be used to calculate when the sum of the percentile scores is in the lower or
upper 2.5th percentile.

3.4. Code
This study has been carried out in Python with help of the Anduryl package [8]. Anduryl is a library
which has function implementations to import structured expert judgement data and carry out different
calculations on this data, like calculating the combined score as described in Subsection 2.2.4. All code
can be found in Appendix C. The structure of the code will be briefly elaborated.

3.4.1. Code structure

The data has first been imported from the respective folders. The data for each study consisted of two
files: a .dtt file, which contains the experts assessments for all the variables, and a .rls file, which
contained the realizations for the different seed variables. Then the data has been evaluated per study.
The assessments from the expert have been extracted and scrambled. After which the scores for each
scrambled expert was calculated. The score of the best expert has been recorded. This process was
repeated 1,000 times for each study. Per study, this gave a list of 1,000 hypothetical best expert scores.
This list has been sorted. This allowed one to find the index of the actual expert in the range of scores
of the scrambled best experts. Dividing this index by 1,000 gave the percentile in which the score of
the actual expert lies. So this yielded a list with the percentiles of the actual best expert for each study.
Thereafter the binomial test and the sum test have been easily carried out.

3.5. Results
For every study, the percentiles in which the scores of the actual best experts lay when compared with
the scores of the scrambled best experts have been documented. These percentiles can be found in
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Table 3.3.

Table 3.3: Percentiles of the best expert for each study

Study Percentile

Arkansas 0.469
Arsenic D-R 0.719
ATCEP Error 0.844
BFIQ 0.655
biol_agents 0.707
Brexit food 0.735
CDC_all 0.865
CDC_ROI 0.885
CoveringKids 0.857
CREATE 0.063
CWD 0.603
Daniela 0.807
dcpn_fistula 0.190
eBBP 0.907
EffusiveErupt 0.605
Erie Carps 0.441
FCEP Error 0.759
Florida 0.438
France 1.00
Gerstenberger 0.308
GL-NIS 0.931
Goodheart 0.827
Hemophilia 0.797
IceSheet2012 0.847
ICE_US+EU_June 22 2018 0.576

Study Percentile

Illinois 0.750
Italy 0.630
IQEarnings 0.049
Liander 0.162
Nebraska 0.840
obesity_ms 0.921
p6r 0.316
PHAC 2009 T4 0.197
PoliticalViolence_March17_CW 0.995
puig-gdp 0.911
puig-oil 0.988
Raveem 0.886
SanDiego 0.764
Sheep Scab 0.943
Spain 0.502
SPEED 0.954
Tadini_Clermont_anon 0.731
Tadini_Quito_anon 0.914
TdC 1.00
tobacco 0.691
Topaz 0.927
UK 0.394
umd_nremoval 0.975
USGSfinal 0.767
Washington 0.022

3.5.1. Test results

The number of percentiles found in Table 3.3 which lie above 0.50 is 38. So there are 38 out of 50
successes. Calculating the probability under the null hypothesis, gave a probability of 1.53⋅10-4, or
0.0153 percent. This was a probability well below the threshold of 2.5 percent needed to reject the null
hypothesis.

For the sum test, the sum of the percentile scores needed to be calculated. It turned out to be 34.1.
This needed to be compared to a normal distribution with mean 50⋅0.5 = 25 and standard deviation
√50/12. It turned out that the probability of a random variable with such distribution attaining a value of
at least 34.1, is 4.14⋅10-6, or 0.000414 percent. This was an even more extraordinary small probability
well below the 2.5 percent threshold.
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Given that both tests rejected the null hypothesis with a significance level of five percent, the null
hypothesis could be rejected. Therefore, it can be stated that the variance between experts can not
solely be explained by random fluctuations, confirming the conclusions drawn by Marti et al. [6].



4
Random Expert Hypothesis expansion

In Chapter 3 it has been shown that the variance between expert performances could not solely be
explained by random fluctuations. However, not every study is the same. Studies can differ in the
amount of experts, the amount of seed variables, the number of quantiles needed to be specified and
of course the field of study.

In this chapter, the Random Expert Hypothesis will be investigated further by limiting the set of
studies to a specific field. Furthermore, the correlations between different characteristics of the studies,
like the amount of experts, and the percentile score of the actual best expert are studied.

4.1. Random Expert Hypothesis for health, policy and science re-
lated studies

Whilst the Random Expert Hypothesis was rejected for general cases in Chapter 3, this does not nec-
essarily mean anything for individual studies. Whilst it does not make sense to test this for individual
studies, it could be further specified to provide more insight in the underlying mechanisms of the vari-
ance in performances between experts. Therefore the set of studies has been split up according to the
field of specialization to test if the same conclusions can be reached for more specific studies.

The studies can be grouped in three different fields of expertise, namely studies on health, policy or
science related subjects. In Table 4.1 the grouping can be found. Then the Random Expert Hypothesis
can be tested for each field of expertise. Remember the null hypothesis from Chapter 3:

𝐻0: The actual expert panel is arbitrarily picked from the set containing all possible scram-

bled panels.

13
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This hypothesis will be tested against the alternative hypothesis:

𝐻1: The actual expert panel is not arbitrarily picked from the set containing all possible

scrambled panels.

So the hypothesis did not change from the earlier hypothesis, and thus again the scores of the best
experts are tested. Therefore, the percentile scores for the actual experts, as found in Table 3.3, could
be used to test the hypothesis.

Table 4.1: Grouping of the different studies

Health Policy Science

BFIQ Arkansas Arsenic D-R
biol_agents Brexit food ATCEP Error
CDC_all CDC_ROI Daniela
CWD CoveringKids EffusiveErupt
dcpn_fistula CREATE Erie Carps
eBBP Florida FCEP Error
France Illinois Gerstenberger
Hemophilia IQEarnings GL-NIS
Italy Nebraska Goodheart
p6r obesity_ms ICE_US+EU_June 22 2018
PHAC PoliticalViolence_March17_CW IceSheet2012
SanDiego Raveem Liander
Sheep Scab tobacco puig-gdp
Spain Washington puig-oil
UK SPEED

Tadini_Clermont_anon
Tadini_Quito_anon
TdC
Topaz
umd_nremoval
USGSfinal

4.1.1. Test results health studies

As can be seen in Table 4.1, there are fifteen different studies which are health related. Of those
studies, as can be checked with Table 3.3, eleven had their actual expert score in the top half of the
percentiles. The probability of eleven successes out of fifteen under the null hypothesis was 0.0592
when calculated using the binomial test, or 5.92 percent. Therefore the null hypothesis could not be
rejected according to the sum test.

The sum of the percentiles of all health related studies is 9.47. For the sum test this number had to
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be compared to a normal distribution with mean is 15 ⋅ 0.5 = 7.5 and a standard deviation of √15/12.
This gave a probability of 0.0390, or 3.90 percent. Thus both test failed to reject the null hypothesis,
hence one cannot conclude that the variation between the performances of experts in health related
studies is not down due to random fluctuations.

4.1.2. Test results policy studies

In the data set there are fourteen different studies which regard policy, those can be found in Table 4.1.
In nine of those studies, the actual best expert scored in the upper fifty percentiles. According to
the binomial test, the probability of nine experts scoring in the upper fifty percentiles under the null
hypothesis was 0.212, or 21.2 percent. Clearly this probability is too high to reject the null hypothesis.

If the percentile scores of the best expert in policy related studies are summed, this yields 8.60. To
apply the sum test this value was to be compared with a normal distribution with a mean of 14 ⋅ 0.5 =
7, and a standard deviation of √14/12. This gave a probability of 0.0693, or 6.93 percent. Again both
tests failed to reject the null hypothesis. Thus as with health related studies, the variation between
experts need not to be explained by anything other than random fluctuations.

4.1.3. Test results science studies

The number of studies in the field of science in the data set is slightly larger, namely twenty-one. Of
those studies, the actual best expert’s percentile score was higher than 0.5 eighteen times. By the
binomial test, the probability of eighteen successes out of twenty-one trials with probability 0.5 was a
mere 7.45 ⋅ 10-4, or 0.0745 percent. Which was well below the threshold to reject the null hypothesis.

The percentiles of the best experts summed together produces 16.0. Comparing this with a normal
distribution with mean 21 ⋅ 0.5 = 10.5 and standard deviation √21/12 gives a probability of a value
being at least as large as 16.0 under the null hypothesis of 1.61 ⋅ 10-5, or 0.00161 percent. Thus for
studies in the field of science, the null hypothesis could be rejected. Hence the variation between the
performances of experts in science related studies cannot solely be explained by random fluctuations.

An overview of all the different p-values for the three different fields of expertise can be found in
Table 4.2.

Table 4.2: P-values for both binomial and sum test for each field of specialization

Test Health Policy Science

Binomial 0.0592 0.212 7.45e-4
Sum 0.0390 .0693 1.61e-5
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4.2. Variance of percentile scores and the number of quantiles
Whilst the format of the different structured expert judgement studies is the same, there are some
factors on which they can differ. One of those factors is the number of quantiles in which the experts
have to give their assessment. In the data set there are two different number of quantiles being used,
three and five. The experts who have to assess three quantiles, give their assessment for the 5, 50 and
95 percent probabilities. When five quantiles are assessed, those correspond to the 5, 25, 50, 75 and
95 percent probabilities. One could expect that, if there are significant differences between experts’
performances which are not down to random fluctuations, that those differences will be more clear if
the experts have to give more assessments.

Since there are only two different numbers of quantiles, one has to be mindful about how to check
for a correlation. From a visual inspection there is little to go off on, see Figure 4.1. It could be checked
with the sum test if the percentile scores obtained when experts have to assess five quantiles are higher
than when they have to assess three quantiles. But a more intuitive method is the calculation of the
so called 𝜙 coefficient, also known as the mean square contingency coefficient. It is a measure for
the correlation between two binary variables. The data of the studies can be interpreted as two binary
variables. For the first variable, the two options are quite clear, one class has three quantiles, whilst the
other class has five quantiles. For the second variable, one has to split the percentile scores. This has
been done at the 0.5 mark, so the studies in which the actual best expert scored less or equal to the
50th percentile were in the first class, whilst the studies where the best experts had a percentile score
above 50 were in the second class. This gave rise to four different groups.

Table 4.3: Binary groups of number of quantiles and percentile scores

≤ 50 > 50 Total

3 6 27 33
5 6 11 17

Total 12 38 50

𝑌 = 0 𝑌 = 1 Total

𝑋 = 0 𝑎 𝑏 𝑒
𝑋 = 1 𝑐 𝑑 𝑓

Total 𝑔 ℎ 𝑛

The number of studies in each group is shown in Table 4.3, along with a table for arbitrary groups.
The formula for the 𝜙 coefficient is as follows:

𝜙 = 𝑎𝑑 − 𝑏𝑐
√𝑒𝑓𝑔ℎ

,

where each letter corresponds to the number of studies in each group as shown in Table 4.3. Evaluating
this formula led to 𝜙 = -0.190. This could be interpreted as a weak correlation [10]. More notable, the
weak correlation was a negative correlation, instead of the expected positive correlation. Therefore a
greater number of quantiles assessed does not seem to exacerbate differences in performance of the
experts.
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Figure 4.1: Scatter plot of the number of quantiles against the percentile score of the best expert

4.3. Variance of percentile scores and the number of seed vari-
ables

Another factor which differs from study to study, is the number of seed variables the experts have to
assess and that they will be scored on. In the studies in the data set, the number of seed variables
ranges from 7 up to 21. If there are significant differences between the performances of experts not
down to random fluctuations, those differences were expected to be more clear when the experts have
to assess more seed variables. Assessing more seed variables would diminish the influence of ran-
dom fluctuations on the variance between combined scores. This should lead to the actual best expert
attaining a higher percentile score in comparison with the scrambled panels. To check for such correla-
tion, multiple methods can be used. In this thesis primarily the Kendall rank correlation coefficient, also
called Kendall’s 𝜏𝑏 [5], was used, together with Spearman’s rank correlation coefficient, or Spearman’s
𝜌 [9]. An explanation of both coefficient and their correlation can be found in Appendix A.

When checking for one-sided correlations with Kendall’s rank correlation coefficient, one implicitly
tests the null hypothesis

𝐻0: The Kendall 𝜏𝑏 ≤ 0
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Figure 4.2: Scatter plot of the number of seed variables against the percentile score of the best expert

against

𝐻1: The Kendall 𝜏𝑏 > 0.

A similar hypothesis is tested when employing Spearman’s 𝜌. In other words, the null hypothesis is
that there is no positive correlation between the number of seed variables and the percentile scores
of the actual best expert, whilst the alternative hypothesis states that there is indeed such a positive
correlation.

In Figure 4.2 the plot of the data points is displayed.

Visually it was not immediately clear if there is a significant positive correlation between the amount
of seed variables and the percentile score of the best expert. However, the Kendall 𝜏𝑏 was calculated to
be 0.26, with a p-value of 0.000605. Similarly, Spearman’s 𝜌 was estimated to be 0.35, with a p-value
of 0.00604. Thus there is indeed a positive correlation and the null hypothesis could be rejected at the
five percent significance level.
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Figure 4.3: Scatter plot of the number of experts against the percentile score of the best expert

4.4. Variance of percentile scores and the number of experts
The different studies also differ in the amount of experts that they selected to for expert elicitation. The
number of experts selected in the studies ranges from 4 experts to 48. Similar as with the number
of seed variables, the differences in expert performance which are not down to randomness were
expected to get clearer when a greater number of experts are considered. This hypothesis has again
be checked with Kendall’s and Spearman’s rank correlation coefficient. In Figure 4.3 the different data
points of the fifty studies are shown.

Once again a visual inspection showed little sign of a significant monotonic correlation between
the number of experts considered and the performance of the best expert against scrambled panels.
The Kendall 𝜏𝑏 was calculated to be only 0.083, so barely a positive correlation, Furthermore, the p-
value was 0.205, thus the result is not significant. With Spearman’s correlation coefficient the story
was similar, it had a value of 0.13, a bit higher than the Kendall 𝜏𝑏, but with a p-value of 0.190 also
this results is not statistically significant. Thus, contrary to the number of seed variables, the number of
experts seems not to have any significant correlation with the performances of the best experts against
the scrambled panels.
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Figure 4.4: Scatter plot of the difference between the maximal and minimal score of the actual experts against the percentile
score of the best expert

4.5. Variance of percentile scores and the worst performing expert
When the panels are scrambled, the assessments of experts are mixed together. So if one expert has
scored poorly, his performance should impact the score of all experts in the scrambled panels for the
worse, where the evaluation of experts is still done with the combined score. Therefore it was theorized
that the actual best expert achieves higher percentile scores in panels where the worst performing
expert has a lower score, especially when the best expert score is on the higher end. In other words,
the larger the difference between the scores of the worst and best performing expert (the minimal and
maximal scores) the higher the percentile score of the best performing experts was expected to be
against the scrambled panels. In Figure 4.4 one can see the difference between the maximal and
minimal score against the percentile score of the best expert.

Calculating the Kendall rank correlation coefficient gave a 𝜏𝑏 of 0.22 with a p-value of 0.0136. Spear-
man’s rank correlation coefficient gave an even higher 0.315, with a similar p-value of 0.0130. Therefore
the null hypothesis has been rejected and it can be stated that there is in fact a significant positive cor-
relation between the difference in performance of the best and worst scoring experts and the percentile
scores of the best expert.
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4.5.1. Minimal scores and variance

This strong correlation raised the question if it is possible to find an even stronger correlation with
similar statistics. The variance between the worst and best scoring expert could be simplified by only
taking the minimal score, instead of the difference between the best and worst performing experts. Or
one could account not only for the variance between the best and worst scoring experts, but for the
general variance between the scores of different experts. In the first case one would expect a negative
correlation between the minimal score in a panel and the percentile score of the best expert. In the
latter case one would expect that a greater variance between experts correlates positively with the
percentile score of the best expert. In Table 4.4 one can see the different rank coefficients for both
variables along with their p-values.

Table 4.4: Rank correlation coefficients for both the minimal score and the variance against the percentile score of the best expert

Variable Kendall’s 𝜏𝑏 p-value Spearman’s 𝜌 p-value

Minimal score -0.36 0.000133 -0.50 9.64e-05
Variance 0.21 0.0142 0.30 0.0166

From Table 4.4 it is clear that both the minimal score as well as the variance between scores corre-
late significantly with the percentile score of the best expert. Both the estimates for the coefficients, and
the p-values for the correlation between the variance between scores and the percentile score were
extremely similar to the values obtained for the correlation between the difference of the maximal and
minimal scores and the percentile score. Furthermore, the correlation between the lowest score among
experts and the percentile score of the best expert was even stronger. Thus the minimal score seems
to be the best predictor out of the three for the performance of the best expert against the scrambled
panels.





5
Discussion

The aim of this thesis was to test the underlying assumption of the Classical Model against the Ran-
dom Expert Hypothesis. As shown in Chapter 3 the null hypothesis, the actual expert panel is arbitrarily
picked from the set containing all possible scrambled panels, can be rejected at the five percent sig-
nificance level by both the binomial test and the sum test. Hence the variance between the combined
scores of experts in a panel is not solely the consequence of random fluctuations. Thus the underlying
assumption of the Classical Model, that the variance between experts is at least partly down to differ-
ences in the experts ability, holds and therefore the aggregation of the experts’ assessments based on
the scoring rule is justified. This was in line with earlier conclusions of performance weighting versus
equal weighting drawn by Marti, Mazzuchi and Cooke [6].

This is however a general conclusion for the studies as a whole. As seen in Section 4.1 and Ta-
ble 4.2, this conclusion cannot be reached for all different fields in which the studies have been per-
formed. Solely for studies in the field of science the null hypothesis could be rejected at the five per-
cent significance level. It should be stressed however, that this is no indication of the quality of the
performances of experts in different fields. Merely, it has been shown that the differences between
the combined scores of experts in science related studies were significant enough to conclude that it
cannot be down exclusively due to randomness. It could be that experts in health and policies related
studies are simply more equal in ability. Another explanation may be that the sample sizes for health
and policy related studies were just too small to get significant results, since there were 15 health and
14 policy related studies, against 21 science related studies. Which may not seem like a huge differ-
ent at first glance, but there are fifty percent more data points for science than for policy. Therefore it
would be interesting to see if the Random Expert Hypothesis can be rejected when a greater sample
is considered.

Some further explorations were made in Chapter 4 to gain better insights in the variances in per-
formances between experts and when they become clear. This was done by testing for correlations

23
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between different characteristics of the studies against the percentile scores of the best expert in the
studies. There was deemed to be no significant correlation between the number of quantiles the as-
sessments were specified in against the percentile score of the best expert. A similar conclusion was
reached for the correlation between the number of experts in a study and the percentile score of the
best expert. However, there was a significant positive correlation between the number of seed variables
on which the experts were evaluated and the performance of the best expert against the scrambled
panels. Furthermore, there were also significant correlations between various metrics for the variance
in scores between experts and the percentile score of the best expert. Most notably was the nega-
tive correlation between the score of the worst performing expert against the percentile score. Which
seems to indicate that the scoring rule may not necessarily be as important to increase the influence
of the best expert as it is to negate the impact of the worst expert on the aggregation of assessments.

As stated before, the Random Expert Hypothesis and the underlying assumption of the Classical
Model only concerns the variances in performances according to the scoring rule of the Classical Model
of the different experts in a panel. It does not offer any insight in the quality of the assessments, as their
assessments are only compared with the assessments of other experts in the panel and not evaluated
on how accurate their assessments are in general. To gain a better understanding of the differences
in performances of experts in various studies, the Random Expert Hypothesis should be tested again
for different fields of specialization, but with a larger data set. Another interesting question for future
research would be to extend on the correlation between the worst performing expert and the percentile
score of the best performing experts, to see if the same conclusion can be reached once one corrects
for, or removes, low performing experts from the panel.



A
Technical appendix

A.1. Kendall rank correlation coefficient
The Kendall rank correlation coefficient, also called Kendall’s 𝜏, is a statistical measure of rank correla-
tion between two variables. This is to say, it measure the dependence between two variables, only not
by the actual value of those variables, but by the order, or rank, of those values. The Kendall correlation
coefficient takes values between -1 and 1. This happens when there exists a strictly monotone function
mapping one variable onto the other. A stronger correlation will lead to Kendall’s 𝜏 being closer to -1
if the correlation is negative, and 1 if the correlation is positive. Whilst the absence of any correlation
will lead to a value of zero.

There are multiple variants of Kendall’s 𝜏. Here Kendall’s 𝜏𝑏 will be discussed, which makes adjust-
ments for ties in rank within the data. For the calculation of the Kendall 𝜏𝑏, concordant and discordant
pairs need to be defined.

A.1.1. Concordant and discordant pairs

Suppose (𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛) is set of observations of random variables 𝑋 and 𝑌. Then any pair of two
observation for which it holds that either 𝑥𝑖 > 𝑦𝑖 and 𝑥𝑗 > 𝑦𝑗 or 𝑥𝑖 < 𝑦𝑖 and 𝑥𝑗 < 𝑦𝑗 is said to be
concordant. Conversely, if 𝑥𝑖 > 𝑦𝑖 and 𝑥𝑗 < 𝑦𝑗 or 𝑥𝑖 < 𝑦𝑖 and 𝑥𝑗 > 𝑦𝑗, the pair is said to be discordant.
When one of the values is tied, the pair is neither concordant or discordant.

25
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A.1.2. Kendall’s 𝜏𝑏
Let (𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛) be a set of observations of 𝑋 and 𝑌, two random variables. Then the Kendall 𝜏𝑏
coefficient is defined as follows:

𝜏𝑏 =
𝑛𝑐 − 𝑛𝑑

√(𝑛0 − 𝑛1)(𝑛0 − 𝑛2)
,

where

𝑛0 = 𝑛(𝑛 − 1)/2

𝑛1 =∑
𝑖
𝑡𝑖(𝑡𝑖 − 1)/2

𝑛2 =∑
𝑗
𝑢𝑗(𝑢𝑗 − 1)/2

𝑛𝑐 = Number of concordant pairs

𝑛𝑑 = Number of discordant pairs

𝑡𝑖 = Number of tied values in the group of ties 𝑖 for the first variable
𝑢𝑗 = Number of tied values in the group of ties 𝑗 for the second variable.

A.1.3. Correlation testing

To see if two variables are correlated, one can calculate the value for the Kendall 𝜏𝑏 coefficient and
check its significance. The correlation can be tested either one-sided or two-sided. In the first case,
one tests the null hypothesis that 𝜏𝑏 ≤ 0 or 𝜏𝑏 ≥ 0 against the alternative hypothesis that 𝜏𝑏 > 0 or
𝜏𝑏 < 0 respectively. In the second case, one test the null hypothesis that 𝜏𝑏 = 0 against the alternative
hypothesis that 𝜏𝑏 ≠ 0.

For the calculation of 𝜏𝑏 and the p-value, R will be used. When the variables checked for correlation
have fifty or more observations, as is the case for the data used in this thesis, 𝜏𝑏 is scaled so it is
asymptotically standard normal distributed. It is scaled as follows:

𝑧 = 3𝜏𝑏√𝑛(𝑛 − 1)
√2(2𝑛 + 5)

.

In R using the function cor.test() this 𝑧 is then compared with a standard normal distribution to
calculate the p-value.

A.2. Spearman’s rank correlation coefficient
Spearman’s rank correlation coefficient, also called Spearman’s 𝜌 and denoted by 𝑟𝑠, is a statistical
measure of rank correlation. This is to say, it measures the dependence between two variables, only
not by the actual values of those variables, but by the order, or relative position, of those values.
Spearman’s correlation coefficient, takes values between -1 and 1. A value of -1 or 1 is also called a
perfect Spearman correlation. This happens when there exists a strictly monotone function mapping
one variable onto the other. A stronger correlation will lead to Spearman’s correlation coefficient being
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closer to either -1 or 1, depending on whether the relation is decreasing or increasing. Whilst the
absence of any correlation will lead to a value of zero.

Spearman’s rank correlation coefficient 𝑟𝑠 is calculated with the same formula as the Pearson cor-
relation coefficient. Only the variables 𝑋 and 𝑌 are replaced with the ranks 𝑅(𝑋), 𝑅(𝑌). Hence the
formula is as follows:

𝑟𝑠 = 𝜌𝑅(𝑋),𝑅(𝑌) =
Cov(𝑅(𝑋), 𝑅(𝑌))
𝜎𝑅(𝑋)𝜎𝑅(𝑌)

.

If all 𝑛 observations are distinct, i.e. no two observations have the same value, then this formula
simplifies to

𝑟𝑠 = 1 −
6∑𝑖 𝑅(𝑋𝑖) − 𝑅(𝑌𝑖)

𝑛(𝑛2 − 1) .

A.2.1. Correlation testing

To check the correlation between two variables, one can calculate the value for Spearman’s 𝜌 and
its p-value, which can be either done one-sided or two-sided. So in the first case, one test the null
hypothesis that 𝑟𝑠 ≤ 0 or 𝑟𝑠 ≥ 0 against the alternative hypothesis that 𝑟𝑠 > 0 or 𝑟𝑠 < 0 respectively.

For the calculation of the p-value, 𝑟𝑠 can be used to calculate the test statistic

𝑡 = 𝑟𝑠√
𝑛 − 2
1 − 𝑟2𝑠

where 𝑛 is the number of observations. This 𝑡 is asymptotically 𝑡𝑛−2 distributed [7]. In R this test statistic
is used in the function cor.test() with the option exact = FALSE.





B
Data

Name of study Number of experts Number of seed variables Number of quantiles

Arkansas 4 10 5
Arsenic D-R 9 10 3
ATCEP Error 5 10 3
BFIQ 7 11 5
biol_agents 12 12 3
brexit food 10 10 3
CDC_all 48 14 3
CDC_ROI 20 10 5
CoveringKids 5 10 5
CREATE 7 10 3
CWD 14 10 3
Daniela 4 7 3
dcpn_fistula 8 10 5
eBBP 14 15 3
EffusiveErupt 14 8 3
Erie Carps 10 15 3
FCEP Error 5 8 3
Florida 7 10 5
France 5 10 5
Gerstenberger 12 14 3
GL-NIS 9 13 3
Goodheart 6 10 3
Hemophilia 18 8 3
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Name of study Number of experts Number of seed variables Number of quantiles

ICE_US+EU_June 22 2018 20 16 3
IceSheet2012 10 11 3
Illinois 5 10 5
IQEarnings 8 11 5
Italy 4 10 5
Liander 11 10 3
Nebraska 4 10 5
obesity_ms 4 10 5
p6r 21 14 3
PHAC 10 13 3
PoliticalViolence_March17_CW 16 21 3
puig-gdp 9 13 3
puig-oil 6 20 3
Raveem 9 16 3
SanDiego 8 10 5
Sheep Scab 14 15 3
Spain 5 10 5
SPEED 14 16 3
Tadini_Clermont_anon 12 13 3
Tadini_Quito_anon 8 13 3
TdC 18 17 3
tobacco 7 10 5
Topaz 21 16 3
UK 6 10 5
umd_nremoval 9 11 3
USGSfinal 32 18 3
Washington 5 10 5



C
Python code

C.1. Run code
1 import REHsource as reh

2 from scipy.stats import binomtest

3

4 # For colored printing

5 cyel = ’\33[93m’

6 cblu = ’\33[94m’

7 cend = ’\33[0m’

8

9

10 # Print start run

11 print(cblu + ’---------------- New run ---------------’ + cend)

12

13

14 folderpaths = [’folder’]

15 results = reh.REH(folderpaths, 1000, .1, 0, 1)

16

17 # Count number of percentile scores above 0.5

18 a = 0

19 for i in range(len(results)):

20 if results[i][0] > 0.5:

21 a += 1

22

23 bin = binomtest(a, len(results), 0.5, ’greater’)

24

25 # Save percentile scores per stuy in a .txt file, one line per study, scores seperated from

study name with ;

26 text = open(’percentilescores.txt’, ’w’)

27 for r in results:

28 text.write(str(r[0]) + ’; ’ + r[1] +’\n’)

29

31



32 C. Python code

30 text.close()

C.2. Source code
1

2 # Initializing imports

3 import sys

4 import os

5 sys.path.append(’path_to_anduryl’)

6 import anduryl

7 import numpy as np

8 from random import shuffle

9

10

11 # Takes a project and calculates the combined scores for the experts, then returns the

highest score

12 def best_expert(project: anduryl.Project, overshoot: float, alpha: float, calpower: float):

13 project.experts.calculate_weights(overshoot, alpha, calpower)

14 return np.amax(project.experts.weights)

15

16

17 # Takes a path to a folder and extracts all .dtt files from that folder and puts their

filenames with location in a list

18 def import_studieslist(folderpath: str):

19 results = []

20 for i in os.listdir(folderpath):

21 # Check if file is in .dtt format (Excalibur)

22 if i.endswith(’.dtt’):

23 # Append path + file name without extension

24 results.append(folderpath + ’/’ + os.path.splitext(i)[0])

25 return results

26

27

28 # Given a filename and location, it creates an Anduryl project from that file

29 def init_project(filepath: str):

30 project = anduryl.Project()

31 project.io.load_excalibur(f’{filepath}.dtt’, f’{filepath}.rls’)

32 return project

33

34

35 # Reshapes the assessments array and realizations array to only include the seed questions

36 def purge_target(project: anduryl.Project):

37

38 # Obtain indices for seed variables

39 idx = project.items.get_idx(’seed’)

40

41 # Redefines the assessments and realizations array to only contain the seed variables

42 project.assessments.array = project.assessments.array[:, :, idx]

43 project.items.realizations = project.items.realizations[idx]

44 return project

45

46
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47 # Takes an Anduryl project, scrambles the assessments per question

48 def randomization(project: anduryl.Project):

49

50 # Initialize the function

51 orig_assessment = project.assessments.get_array(’both’)

52 nexperts = np.size(orig_assessment, 0)

53 nquantiles = np.size(orig_assessment, 1)

54 nquestions = np.size(orig_assessment, 2)

55 orderlist = [i for i in range(nexperts)]

56

57 # Create array for the randomized answers

58 new_assessment = np.zeros((nexperts, nquantiles, nquestions))

59

60 # Randomization: loop over the questions and randomize per question

61 for i in range(nquestions):

62 shuffle(orderlist)

63 for j in range(nexperts):

64 new_answer = orderlist[j]

65 for k in range(nquantiles):

66 new_assessment[j, k, i] = np.copy(orig_assessment[new_answer, k, i])

67

68 # Rewrite assessments in project to scrambled assessments

69 project.assessments.array = new_assessment

70 return project

71

72 # Takes a list of folderpaths, extracts all excalibur files and scrambles each project N

times, whilst recording the best expert score in the scrambled panels.

73 # Uses these scores to determine the percentile in which the orginal project’s best expert

lies compared to the scrambled projects’ best experts.

74 def REH(folderpaths: list, N: int, overshoot: float, alpha: float, calpower: float):

75

76 # Create a list with all the study paths

77 studieslist = []

78 for folder in folderpaths:

79 studieslist += import_studieslist(folder)

80

81 overall_results = []

82

83 # Repeat for each study

84 for studypath in studieslist:

85

86 # Initialize Anduryl project, remove expert with unanswered ’seed’ questions, and

initialize results list

87 print(studypath)

88 tproject = init_project(studypath)

89 project = remove_incomplete_expert(tproject)

90 actual_best = best_expert(project, overshoot, alpha, calpower)

91 results = np.zeros(N)

92

93 # Carry out N randomizations, record the results

94 for i in range(N):

95 rproject = randomization(project)

96 rres = best_expert(rproject, overshoot, alpha, calpower)

97 results[i] = rres
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98

99 # Sort the results, then find the index of the original expert to calculate its

percentile

100 results.sort()

101 a = np.searchsorted(results, actual_best)

102 percentile = a/N

103

104 # Record percentile

105 overall_results.append([percentile, studypath])

106

107 return overall_results

108

109

110 # Removes expert which has not assessed all seed variables

111 def remove_incomplete_expert(project: anduryl.Project):

112

113 # Get experts ids and initialize set for experts to be removed

114 ids = project.experts.get_exp(’both’)

115 removeset = set()

116

117 # For each expert, check all seed questions, break if an unanswered question is found and

add to removeset

118 for exp in project.experts.get_idx(’actual’):

119 for q in project.items.get_idx(’seed’, where=True):

120 if np.isnan(project.assessments.array[exp, 0, q]):

121 removeset.add(ids[exp])

122 break

123

124 # Remove experts which have not assessed every seed variable

125 for exp in removeset:

126 project.experts.remove_expert(exp)

127

128 return project



D
R code

1 library(ggplot2)

2 library(psych)

3

4

5 # Loading the data

6 SEJdata <- read.csv2(”file.csv”)

7

8 # Section 4.2.

9 ggplot(SEJdata, aes(x = Nquantiles, y = REHpercent)) +

10 geom_point() +

11 labs(x = ’Number of quantiles’, y = ’Percentile score best expert’ )

12

13 phidata <- matrix(c(6,6,27,11), nrow = 2)

14 phi(phidata)

15

16

17 # Section 4.3.

18

19 ggplot(SEJdata, aes(x = Nseed, y = REHpercent)) +

20 geom_point() +

21 labs(x = ’Number of seed variables’, y = ’Percentile score best expert’ )

22

23 cor.test(SEJdata$Nseed, SEJdata$REHpercent, method = ’kendall’, alternative = ’greater’)

24 cor.test(SEJdata$Nseed, SEJdata$REHpercent, method = ’spearman’, alternative = ’greater’,

exact = F)

25

26 # Section 4.4.

27

28 ggplot(SEJdata, aes(x = Nexperts, y = REHpercent)) +

29 geom_point() +

30 labs(x = ’Number of experts’, y = ’Percentile score best expert’ )

31

32 cor.test(SEJdata$Nexperts, SEJdata$REHpercent, method = ’kendall’, alternative = ’greater’)

35



36 D. R code

33 cor.test(SEJdata$Nexperts, SEJdata$REHpercent, method = ’spearman’, alternative = ’greater’,

exact = F)

34

35 # Section 4.5

36

37 ggplot(SEJdata, aes(x = Difminmax, y = REHpercent)) +

38 geom_point() +

39 labs(x = ’Difference between maximal and minimal score’, y = ’Percentile score best expert’

)

40

41

42 cor.test(SEJdata$Difminmax, SEJdata$REHpercent, method = ’kendall’, alternative = ’greater’)

43 cor.test(SEJdata$Difminmax, SEJdata$REHpercent, method = ’spearman’, alternative = ’greater’,

exact = F)

44

45 cor.test(SEJdata$Min, SEJdata$REHpercent, method = ’kendall’, alternative = ’less’)

46 cor.test(SEJdata$Min, SEJdata$REHpercent, method = ’spearman’, alternative = ’less’, exact =

F)

47

48 cor.test(SEJdata$Variance, SEJdata$REHpercent, method = ’kendall’, alternative = ’greater’)

49 cor.test(SEJdata$Variance, SEJdata$REHpercent, method = ’spearman’, alternative = ’greater’,

exact = F)
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