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1
Abstract

Perception is a fundamental component of autonomous and self-driving vehicles, with reliable object
detection and understanding of the environment being critical for safe operation. While lidar and cam-
era based systems are widely used, radar remains a promising option due to its robustness in poor
weather conditions and ability to directly measure the radial velocity of objects via the Doppler effect.
However, radar’s sparse data and resulting limitations have constrained its potential.

This thesis investigates the use of dual automotive radar setups to mitigate these limitations, and
use the specific advantages of such a setup to improve full velocity vector estimation methods. A novel
algorithm is proposed to achieve more accurate velocity estimation in non-ideal, real world conditions.
The work further explores how improved velocity estimation can be used to improve classification per-
formance using graph neural networks. Here it was found that including velocity information via a
ground truth method did increase classification performance significantly, though the same result could
not be obtained via the previously mentioned velocity estimation method. To support evaluation, a
simplified simulation environment and ground truth velocity data for the RadarScenes dataset are de-
veloped.

This research aims to close the performance gap between radar and other more data-dense sen-
sors, offering a robust and more cost effective alternative, especially in conditions where optical sys-
tems under perform.
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2
Introduction

In the search for more intelligent and autonomous vehicles, perception is one of the key areas of atten-
tion. To safely navigate in every day environments, autonomous vehicles need to be able to interpret
and understand their surroundings. This includes detecting pedestrians, humans, cars, trucks and all
other forms of static and dynamic obstacles This needs to be done with high accuracy, since failure
often leads to physical harm. This perception serves as the basis for higher-level tasks such a path
planning, motion planning, and control. Therefore the design choices made in the perception system
of autonomous vehicles plays a critical role in the safety and robustness of autonomous vehicles.

Typically an autonomous vehicle relies on a combination of sensors to gather information about the
environment. Usually, camera systems, lidar (light detection and ranging), and radar (radio detection
and ranging) are the most commonly used. Each sensor type has distinct advantages and limitations,
therefore a combination of sensors is often times used to get the best performance under varying con-
ditions.

Cameras offer high-resolution images and provide the same information as a human can see with
their eyes. However, they are susceptible to bad lighting conditions and can be negatively affected
by factors such as glare, darkness, and weather like fog or rain. Lidar, on the other hand provides
dense 3D spatial information in the form of a point cloud. It gathers this information by emitting laser
pulses in varying directions and measuring the time for the pulse to return. This way the sensor can
map the environment with a high 3D resolution. Despite the advantages, lidar has limitations in terms
of high cost and susceptibility to bad weather conditions. This is because, just like camera systems,
lidar makes use of the (near) visible light spectrum.

Finally we arrive at radar systems, which use radio waves to measure range and relative velocity.
Due to the different frequencies at which this sensor operates, and the additional velocity information
that can be gathered, this system is an interesting choice for autonomous vehicles. Radar is, in contrary
to camera and lidar systems, not significantly affected by lighting conditions or other external factors
like fog or rain [1][2]. This allows for reliable operation both day and night. In addition, the ability to
directly measure the velocity of an object can considerably contribute to the performance of higher-level
perception tasks. Contrary to lidar systems which usually create high-density point clouds, data from
radar systems conventionally is much more sparse than data from lidar systems.

In recent years, the performance of automotive radar systems has improved significantly, with the
development of high-resolution radars and even 4D radar systems that can also measure elevation
in addition to range, azimuth and velocity [3]. These improvements have reduced the sparsity gap
between radar and lidar, allowing radar to play a larger role in modern autonomous perception sys-
tems. Nonetheless, challenges remain. Radar still produces relatively sparse data compared to lidar.
Moreover, conventional radar systems measure only the radial component of velocity, which limits their
ability to fully perceive the entire environment without integration of other sensors.

3
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To overcome some of these limitations, this thesis explores the use of a dual radar setup in automo-
tive applications. Making use of two radar sensors in a (fully) overlapping configuration can significantly
decrease the sparsity gap. Having two sensors doubles the data rate, which translates to denser target
information [4]. Additionally, a dual radar system has the potential to measure the full relative velocity
of objects instantaneously, including both radial and tangential components[5]. This capability is par-
ticularly valuable for time critical systems, such as collision avoidance and adaptive cruise control [6].

Beyond safety related applications, richer radar data can also contribute in other parts of the per-
ception. For instance, improved velocity estimation can enhance object tracking algorithms, support
better classification of road users, and assist in more accurate ego-motion estimation. By lowering the
performance gap between radar and lidar, dual radar configurations may offer a cost-effective and ro-
bust solution for certain perception tasks, particularly in conditions where optical sensors under perform.

2.1. Problem Definition
While velocity estimation using radar systems has been studied extensively [7][8][9], most of this work
focuses on (radial) velocity measurements from a single radar. Full velocity vector estimation, espe-
cially using dual radar, remains relatively unexplored. The limited research that does exist typically
uses controlled conditions not representative for real-world use [10]. This includes having targets that
are very close by, or without any other moving objects in the scene. However, in practice many targets
are small, far away, or close to other targets making separation difficult. In addition to this, the real
world data is often contains a lot of noise and outliers, something that these algorithms are particularly
vulnerable to.

The lack of robust solutions for estimating velocity vectors creates a gap, in particular since modern
automotive systems depend increasingly on accurate understanding of the environments around them.
This thesis addresses this gap by introducing a novel algorithm designed with dual automotive radar in
non-ideal conditions in mind. Going beyond the problem of velocity vector estimation alone, this work
also investigates the effects of velocity vector estimation on classification performance. This area in
particular has received little attention in past academic works.

2.2. Research Questions
This thesis will focus on full velocity vector estimation and its application to classification tasks. This
question is subdivided into the following research questions:

• What are the failure cases of current full velocity vector estimation methods?

• How can a dual radar setup be used to improve full velocity vector estimation?

• How can full velocity vector estimation be used to improve classification tasks?

Each of these questions will be investigated and subsequently answered.

2.3. Nomenclature
Between different fields of research different nomenclature is often used for the same or similar con-
cepts. For the sake of consistency, below an overview of some key terms and what they mean in this
context is given.

Starting with the definition of a target. A target can be described as an object of interest. This
changes depending on the type of perception task. For example, when designing a pedestrian de-
tection system, trees are objects but not targets. When doing ego-motion estimation, trees are targets
since they provide valuable information about the static environment. Any object can have Characteris-
tic reflections. This is a reflection that generates notable Doppler velocities and/or a high RCS value by
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reflecting off an object’s feature like a license plate or wheels. These features can also be not directly
visible, like wheel houses on the opposite side of a vehicle. These features can be very beneficial to
classify and to segment radar targets [11].

Moving on to how objects are perceived by an autonomous system, we arrive at the definition of
detection. This is the problem of determining if there is a target within a specified area. A single point
in the radar point cloud can be referred to as a detection, since it indicates the presence of a target.
Clustering is then the process of assigning labels of the same kind to each point in a point cloud belong-
ing to the same object. This is then finally followed by Classification, this is the process of determining
what class the target belongs to after detecting the it’s presence.

For an autonomous system to be able to perceive its environment, it needs a sensor system. A
dual radar system will be used for the purpose of this thesis. The term dual radar is used to describe
a system of two of the same radars working together. These radars are physically separated, usually
by the width of the car. Despite the distance between them, they purposefully have overlapping fields-
of-view, allowing both radars to detect the same objects. In this case the radars are also front-facing,
allowing them to obtain the most relevant information.

In Figure 2.1 the difference between a single radar and dual radar in the context of this thesis are
visualized.

Figure 2.1: Illustration of detections from a single radar compared to detections from a dual radar setup.

In the context of automotive radar systems, it is also important to understand the different types of
motion. In this thesis various types of velocity are used, each describing movement from a different
perspective. To prevent confusing the reader in later sections, this section introduces and explains the
different velocity definitions, which are also visualized in Figure 2.2.
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The first concept that needs explaining is that of full velocity. This refers to the 2D vector describing
its velocity in an earth-fixed cartesian space. This can be in relation to different perspectives, which is
what will be addressed next.

Absolute velocity is defined as the full velocity of an object relative to the static environment. This
means all motion is observed from to point-of-view of the world, independent of any moving objects.

In contrast, relative velocity describes the full velocity vector between two objects from the perspec-
tive of the radar. This relative velocity is what the radar sensor typically measures. Without knowing
the vehicles own motion, it is impossible to convert the relative velocity to the absolute velocity.

This vehicles own velocity is also known as the ego-velocity. This is the absolute velocity of the
vehicle on which the radar is mounted. As mentioned, this velocity is crucial in converting relative to
absolute velocities.

All these variants of the full velocity are not directly measurable by the radar system, a quantity that
can be directly measured is the radial velocity. This is the component of the relative velocity in the
direction of the radar system. It is determined by measuring the frequency shift in the returning radar
signal caused by the velocity of the target, this is also known as the Doppler effect.

The velocity perpendicular to the radial velocity is called the tangential velocity. From a single view
point, this velocity is not directly measurable. This is the case because by definition this velocity has
no component in the direction of the radar system.

Another useful velocity is the lateral velocity. This velocity is perpendicular to the ego-velocity and
can be helpful in describing objects that move across the field-of-view of the observing vehicle.

Up till this point, all described velocities have been translational. In some scenario’s, it is also nec-
essary to consider an objects rotational velocity. It describes the motion around an objects own center
axis.

Finally, throughout this thesis the concept of ground truth velocity will be used. This refers to any
velocity of which its exact value is already known, and can be used to compare to other measured or
calculated velocities. Usually these ground truth values are obtained via direct measurement of wheel
speed, or tracking systems like GNSS.

A visual explanation of each type of velocity mentioned above is given in Figure 2.2.

Figure 2.2: Image illustrating the different velocities. (A) Ego-velocity, (B) Absolute velocity, (C) Relative velocity, (D) Radial
velocity, (E) Tangential velocity, (F) Rotational velocity (G) Lateral velocity
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2.4. Thesis structure
To guide the reader through this document more efficiently, the contents of this thesis will be briefly
discussed. Chapter 3 will discuss academic works related to the topics of velocity estimation and
classification using automotive radar systems. After this, a novel velocity estimation method will be
introduced, which will be tested in the experiments chapter. These tests involve both performance in
velocity estimation, and the effectiveness of using this velocity estimation in classification tasks. At the
end, the conclusion of this work will be given, and a direction for future work will be proposed.





3
Related Work

To create a starting point for this thesis and provide the reader with more background information, this
chapter reviews relevant prior work in the field of automotive radar systems. Doing so is important for
several reasons: it provides insights into existing methods, shows the limitations, and therefore iden-
tifies the gaps and open challenges that are still to be solved. This allows the research to be more
efficiently directed to areas of importance.

To better understand the problem and to create a baseline approach, three key components that
are required to answer the research questions will be highlighted:

• Velocity estimation methods
• Target classification methods
• Dataset for training and testing

At the end of this chapter, a suitable option will be chosen from each of these components to be
used as a starting point for this thesis.

3.1. Velocity Estimation
Data from the radars first has to be clustered in order to be used for higher-level tasks like classification
and tracking. In [12], [13] and [14] the DBSCAN [15] algorithm is proposed for initial clustering. This
algorithm clusters points based on the location of the detection, combined with the radial velocity and
the timestamp. It is also suggested to include a range-depended value for the minimal amount of points
needed to form a cluster to account for the increased sparsity of data points with range.

In [14] another step is added to the clustering process after the initial clustering as described above.
As a second step, clusters with two members being closer than some threshold are evaluated as pos-
sibly being the same object. For each of the clusters the full velocity is calculated as described in [10].
In short, the radar detections lead to a over-determined linear system of equations. Solving this system
will yield the true relative velocity vector. After this the velocity vectors are compared in both magnitude
and direction. If the error of these two variables is below some threshold, the clusters are merged. It
is also mentioned that this second step could “noticeably benefit” from a better real velocity estimation
based on a radars with overlapping fields of view.

This method assumes that all points on the target move with the same velocity. This implies the
target is small, or when the target is large, it is rigid and the rotational velocity of the target is small
enough so it does not significantly change the measured radial velocity of each data point.

In [10] it is stated that a combination of multiple radars could significantly improve the accuracy of
rotational velocity measurements. This method is based on a stationary dual radar setup, whereas in
the assumed situation in this thesis the radars are mounted on a moving vehicle.

9
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As an expansion the velocity vector estimation mentioned above, the paper [16] proposes a method
to instantaneously measure the angular velocity in addition to the translational velocity. This method is
based on exploiting the characteristics of the velocity profile of a moving vehicle as described in [10].
An illustration of a velocity profile is given below:

Figure 3.1: Velocity profile of a linear moving vehicle (blue vector). For each observation the radial velocity component is
measured by the radar sensor (green vector). Considering one radial cell the velocity describes a cosine (green curve), for a
crossing car (left) and a car heading towards the sensor (right). From [10].

Like for the previous method, this paper describes solving an over-determined system of equations.
Instead of solving for the full velocity directly, it is assumed the target is rotating around an instanta-
neous center of rotation (ICR). This leads to a system with three unknowns, the x and y position of
the ICR plus the orientation of the vehicle, also meaning now a minimum of three measurements on a
single target are required to solve the equation. This system is then solved using Orthogonal Distance
Regression to prevent bias due to errors-in-variables. In simulations this method provides better per-
formance over typical (weighted) least-squares solvers [9].

In Figure 3.2 the advantage of stereo vision again becomes clear. By having physically separated
radars the total azimuth area of the velocity profile is increased, resulting in more reliable estimations
of velocity profile properties [10].
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Figure 3.2: Fusion of two radar sensors, resulting in an extended total azimuth area of the velocity profile (different aspect
angles). From [10].

Though the addition of the targets angular velocity would provide valuable information, the applica-
tion of this method would be impractical in some use cases. The paper assumes a situation of a car
at 15m distance, with 20 measurements on the vehicle for each radar. Upon inspection of for example
the Radar Scenes dataset [17], it quickly becomes clear that these assumptions do not hold in a lot
of the situations where the target is far away. Also, this method does not account for other types of
targets like cyclists and pedestrians.

To increase the robustness of the aforementioned velocity estimation methods, in [8] [9], and [7]
outlier filtering is done by applying the RANSAC [18] to the velocity profile. This method iteratively tries
different combinations of points from the cluster, and decides which points create the best fit according
to some loss function. These points are then marked as inliers. Applying this outlier detection method
before using the over-determined system of equations to solve for the velocity results in a more accu-
rate velocity estimation and makes it more robust to errors made during clustering.

By having multiple viewpoints and more detections on a target, a larger and more varied amount of
data is available for relative- and rotational velocity extraction. The resulting, more accurate, estimated
velocity can then be used to improve clustering, which in turn could be used to improve other perception
tasks like classification and object tracking.

Even though the advantages of having a dual radar become clear from literature, very little work
has been done quantifying the results. For the work that has been done, it has mostly been generated
in ideal and controlled conditions. This leaves a gap that can be addressed in this thesis.

3.2. Target Classification
Now that velocity estimation methods have been discussed, this section will go into detail about various
classification options. One thing to consider when judging the suitability of the models for use in this
thesis, is the possibility of integrating full velocity vector information into the model. Depending on how
the model function and how it is trained, this might not always be trivial to do.
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3.2.1. PointNet
The most prevalent method for object classification nowadays is the use of neural networks. One ex-
ample of a neural network that is commonly used is PointNet [19]. PointNet is a Deep Learning based
3D classification and segmentation model. In this case, the segmentation model is an extension to the
classification network. When released, PointNet provided state-of-the-art performance when tested on
the ShapeNet dataset [20] in 2017. In the years after, multiple papers have been published improving
PointNet or using it as a building block for new methods [21][22][23]. In [13] a comparison between
multiple PointNet based and other (hybrid) deep learning methods is made. Hybrid models are a com-
bination of multiple smaller models of different types, i.e. machine learning, deep learning, or classical
methods.
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Figure 3.3: Schematic method overview. Five main architectures are compared in this article: a utilizes a clustering algorithm
followed by a recurrent neural network classifier. b makes the classification first via semantic segmentation and uses the extra
information as additional input to a clusterer. c comprises an image-based object detector made accessible for point clouds
via a grid mapping approach. d omits the grid mapping stage by using an object detector optimized for point clouds. Finally, e
combines the first two methods in order to utilize the advantages of both architectures. All methods use the same point cloud
as input. Due to space constraints, the point cloud are only displayed for the PointPillars [24] method in d. Dependent on the
different methods, cluster formations of boxes are returned as object predictions. From [13].

3.2.2. YOLO
From this comparison, it is concluded a You Only Look Once (YOLO) v3[25] approach performs best
closely followed by a PointNet++ [21], DBSCAN [15] and LSTM [26] combined model. In the compari-
son made in [13] multiple occasions of improvements with modular models are mentioned. This creates
opportunities for dual radar, since dual radar can contribute to better performance multiple steps of the
modular models. It should also be noted that since the release of [13] newer versions of the YOLO
model have been released, with the latest being version 9 [27]
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3.2.3. Pointillism
In [28] another neural network is proposed that is specifically trained on sparse (dual) radar data. In
contrast to the previously mentioned methods, this network is not a classifier but instead is trained
to create oriented bounding boxes around objects from a single class, in this case cars. By making
use of the dual radar setup, errors in orientation estimation can be significantly reduced. In Figure 3.4
ambiguity in simulated results from different orientations is shown compared to the distance between
radars. From Figure 3.5 it becomes clear the optimal radar separation distance is somewhere between
1.5 and 2 meters. Note that this simulation was performed at a maximum distance of 10 meters, and
results will be different depending on the type of radar that is used.

Figure 3.4: Wireless Insite simulations: Point clouds with single radar or smaller separation could lead to ambiguity in pose of
the car which gets eliminated by increasing radar separation. Orange and blue points are from 2 different radars. From [28].

Figure 3.5: Comparison of average error in radian between single and multiple radars. For a separation greater than 1.5m, the
performance improves. From [28].

This paper further elaborates on the fusion of the data from the individual radars. Instead of simply
merging the radar data, the observation that false alarms are independent of each other in space is
leveraged. To filter the data, a space-time coherence framework is used, resulting in a representation of
Cross Potential Point Clouds. This representation includes a soft probability value of the points coming
from an actual object.
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Furthermore, in [29] it is stated that having Doppler features from multiple viewing angles results in
a significant gain for classification. This is particularly true for low Doppler frequencies and cases with
high intraclass variation.

3.2.4. RadarGNN
RadarGNN is a Graph Neural Network that is trained specifically for processing radar data. It does this
by first converting the radar point cloud into a graph using a K-Nearest Neighbors algorithm. This graph
is then fed into a neural network, which detects and classifies objects in the data. The full architecture
can be seen in Figure 3.6.

Figure 3.6

This project makes use of the RadarScenes [17] dataset, which will be discussed later in this chap-
ter. It also combines radar frames over a small amount of time, this way the neural net has more
information to work with. It also provides a way to combine information from multiple unsynchronised
radars.

Although RadarGNN effectively makes use of spatial and Doppler information, it does not make use
of any advantages that a dual radar setup might offer even when such a setup is readily available in
the RadarScenes dataset. This provides an ideal opportunity for this thesis.

3.2.5. Summary
Hybrid classification methods provide performance close to purely deep learning based methods. Dual
radar can benefit these hybrid methods, since dual radar can increase performance of multiple steps
in the classification pipeline:

• Better data filtering by making use of Cross Potential Point Clouds.
• Using better true relative velocity estimation to improve clustering.
• Increasing classifier performance by providing more “characteristic” reflections.
• Better bounding box (orientation) estimation due to multiple viewpoints.

3.3. Datasets
In this section the different datasets that are available for dual radar purposes are discussed. Firstly,
different datasets parameters are discussed. Next, a number of different datasets will be presented.
For the datasets which are currently available, the data will be explored.

3.3.1. Radar Specifications
As a first step it is important to understand radar data and its different parameters. These parameters
can be divided into three separate categories: radar specifications, radar configuration, and dataset
parameters.

• Range [m]
• Framerate [Hz]
• Resolution in range, angle, and velocity [m,degree,km/h]
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• Doppler [yes,no]
• Elevation [yes,no]
• Pre-CFAR [yes,no]

Though not a hard cut-off, range is indicated in meters and can be roughly separated into the follow-
ing brackets: long-range (<250 m), middle-range (<180 m), short-range (<50 m), and ultra-short-range
(<25 m).

In theory the resolution is the minimum distance, angle, or velocity between which targets can still be
separated. By using i.e. cooperative radars, multi-chip cascaded Multiple-input multiple-output (MIMO)
radar or a spinning radar it is possible to increase the (angular) resolution. This has as added benefit
that by multiple radars more data is generated. This results in less sparse data, and a higher detection
chance of detecting targets further away.

If Doppler data is available this means the radial velocity measurement is included in the data.

Some modern radars also include elevation data in the form of a measured angle. The inclusion of
this data can also be indicated as “4D” data: range, horizontal angle (azimuth), radial velocity, vertical
angle (elevation).

3.3.2. Radar Setup
• Number of radars [-]
• Overlapping fields of view [yes/no]
• Physical separation between radars [yes/no]

Lastly, dataset parameters in the form of types of scenarios, annotations and other sensors were
looked at. These are summarized in Table 3.1.

3.3.3. Dataset Parameters
• Scenarios [Urban/highway/parking lot etc.]
• Target types [trucks/cars/bicycles/pedestrians etc.]
• Weather [clear/rain/fog etc.]
• Size [number of scenarios/time in hours]
• Annotations [2D/3D/point-wise etc.]
• Other sensors [Lidar, (stereo)camera, IMU, GNSS etc.]

For the purpose of this thesis, only datasets with more than one radar (of the same type), with
(partially) overlapping fields of view and physical separation for automotive purposes are considered.
For each of the datasets found, a full table with parameters will be given.

3.3.4. Search for Datasets
When researching radar related datasets is it hard to miss the “awesome radar perception” github page
and the accompanying paper “Towards Deep Radar Perception for Autonomous Driving: Datasets,
Methods, andChallenges” [3]. This webpage and paper provide an elaborate overview of radar datasets,
see Figure 3.7, and is frequently updated.

The automotive datasets are separated into three different categories:

• Conventional Radar Datasets for Autonomous Driving
• Pre-CFAR Datasets for Detection
• 4D Radar Datasets
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Figure 3.7: Task: D, T, L, and S stand for detection, tracking, localisation, and segmentation; Type: LR, HR, SP, and SAR stand
for low-resolution, high-resolution, spinning, and SAR; Range: SV, LR, MR, SR, and USR stand for surrounding view, long-range
(<250 m), middle-range (<180 m), short-range (<50 m), and ultra-short-range (<25 m); Other Sensors: C, Cd, L, and O stand for
camera, RGBD camera, Lidar, and odometry; Scenarios: U, S, H, P, T, R, and I stand for urban (city), suburban, highway, parking
lot, tunnel, race track, and indoors; Size: L, M, and S stand for large, medium, and small; Weather stands for adverse weather;
Label: 2D, 3D, T, Pw, Po, Ps, and M stand for 2D bounding box, 3D bounding box, track ID, pointwise detection, object-level
point, pose, and segmentation mask.

From this table it becomes clear very few datasets have multiple radars. Even if they do, most of
them do not have overlapping fields of view or have no physical separation. Also, none of the available
datasets make use of a coherent radar network. This means a mechanism like the “cross-potential
point cloud” algorithm from Pointillism[28] or combining multiple frames like in RadarGNN[30] has to
be implemented to combine the data from the unsynchronised radars.

The lack of multiple-radar datasets enforces the idea that dual radar is a relatively unexplored
area within the automotive industry. There are three datasets that fulfill the dual radar requirement,
RadarScenes [17], Pointillism [28] and the recently released Bosch Street Dataset [31]. All of which
will be discussed further in the section below.

In addition, the ColoRadar [32] and Endeavour [33] datasets will be briefly looked at. Though these
do not fulfill the requirements stated earlier in this section, they have unique characteristics which might
bring valuable inspiration.
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3.3.5. RadarScenes
As described in [17], this dataset consists of measurements from four different radars. Where each
radar has a field-of-view of approximately 60 degrees. The radars are configured according to Figure
3.8. Due to field of view being somewhat narrow, a large area in front of the car exists which is not
covered by both front facing radars. This could potentially cause difficulties when dealing with targets
or obstacles close to the vehicle. Full specifications are given in Table 3.1.

Figure 3.8: Radar set-up in RadarScenes. Note that even though some radars overlap, there is only physical separation between
radars two and three.

From this Figure it becomes clear there is only physical separation between radars number two and
three.

Looking at the data, we see the following information available for each frame:

• 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝: in micro seconds relative to some arbitrary origin
• 𝑠𝑒𝑛𝑠𝑜𝑟_𝑖𝑑: integer value, id of the sensor that recorded the detection
• 𝑟𝑎𝑛𝑔𝑒_𝑠𝑐: in meters, radial distance to the detection, sensor coordinate system
• 𝑎𝑧𝑖𝑚𝑢𝑡ℎ_𝑠𝑐: in radians, azimuth angle to the detection, sensor coordinate system
• 𝑟𝑐𝑠: in dBsm, radar cross section (RCS value) of the detection
• 𝑣𝑟: in m/s. Radial velocity measured for this detection
• 𝑣𝑟_𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑: in m/s, radial velocity for this detection but compensated for the ego-motion
• 𝑥_𝑐𝑐 and 𝑦_𝑐𝑐: in m, position of the detection in the car-coordinate system (origin is at the center
of the rear-axle)

• 𝑥_𝑠𝑒𝑞 and 𝑦_𝑠𝑒𝑞: in m, position of the detection in the global sequence-coordinate system (origin
is at arbitrary start point)

• 𝑢𝑢𝑖𝑑: unique identifier for the detection. Can be used for association with predicted labels and
for debugging

• 𝑡𝑟𝑎𝑐𝑘_𝑖𝑑: id of the dynamic object this detection belongs to. Empty, if it does not belong to any.
• 𝑙𝑎𝑏𝑒𝑙_𝑖𝑑: semantic class id of the object to which this detection belongs. passenger cars (0),
large vehicles (like agricultural or construction vehicles) (1), trucks (2), busses (3), trains (4),
bicycles (5), motorized two-wheeler (6), pedestrians (7), groups of pedestrian (8), animals (9), all
other dynamic objects encountered while driving (10), and the static environment (11)
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Each frame is given per radar, where the frames are not perfectly synchronised. That is, there is a
slight time difference in frames between the different radars. In Figure 3.9 the point clouds from all four
radars are plotted for a given frame. In Figure 3.10 the corresponding camera image can be seen.

Figure 3.9: Radar frame from the RadarScenes dataset[17] with different color for each radar. Each dot represents a detection,
other parameters like magnitude and Doppler velocity are not plotted.

Figure 3.10: RadarScenes camera image corresponding to the radar frame in Figure 3.9.

3.3.6. Pointillism
The Pointillism dataset [28] provides data that is pre-processed by a novel “cross-potential point cloud”
algorithm. This algorithm relies on the observation that noise and ghost detections are independent
between radars if the radars are placed in (sufficiently) separated physical locations. By matching ob-
servations in time and space it is possible to separate noise from actual reflections from the target,
leaving a near noiseless point cloud as a result. An example of such a point cloud is given in 3.11. This
example is taken from the Pointillism dataset. As can be seen in the same image, 3D bounding boxes
are also provided. These are generated by a deep learning architecture called RP-net [34], which is
specifically trained to handle sparsity in radar point clouds.
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Figure 3.11: Radar frame from the Pointillism dataset. Each dot represents a detection, other parameters like magnitude and
Doppler velocity are not plotted. The red rectangle indicates the estimated oriented bounding box predicted by RP-net.

Each detection in the radar data contains the following information:

• 𝑃𝑜𝑖𝑛𝑡_𝑖𝑑
• 𝑋
• 𝑌
• 𝑍
• 𝑅𝑎𝑛𝑔𝑒
• 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
• 𝐷𝑜𝑝𝑝𝑙𝑒𝑟_𝑏𝑖𝑛
• 𝐵𝑒𝑎𝑟𝑖𝑛𝑔
• 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

In addition to radar, Lidar and camera data is also available for each scene. Examples for Lidar and
camera can be seen respectively in Figure 3.12 and 3.13.
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Figure 3.12: Example 3D plotted frame from the Lidar data included in the Pointillism dataset.

Figure 3.13: Example camera image from the Pointillism dataset.

3.3.7. Endeavour Radar Dataset
The Endeavour dataset [33] consists of data from five ARS430 radars, which can be used in both wide
and narrow field-of-view modes, four Lidar sensors, and GNSS data. The radar configuration can be
seen in 3.14.
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Figure 3.14: Radar configuration in the Endeavour Radar Dataset.

From the configuration it becomes clear there are no front-facing overlapping radars. On the sides
of the vehicle there are wide field-of-view radars with large physical separation. This could be an
advantage compared to the other previously discussed datasets, since any positive effect of having a
dual radar setup will be amplified.

3.3.8. Bosch Street Dataset
The Bosch Street Dataset [31] was released in June of 2024, and is thus the newest dataset of the
ones considered. It is also by far the largest dataset in terms of numbers of scenes and total time. It
has nine 4D radars with 360 degree coverage around the vehicle, most of which is covered by at least
two radars. The full radar setup can be seen below in Figure 3.15.

Figure 3.15: Bird’s eye view of the sensor setup. (a) shows the cameras and (b) shows the Lidars and the radars. The sensors
are depicted by means of of their local coordinate frames. Vehicle not to scale. From [31].

As of the writing of this thesis the Bosch Street Dataset is not publicly available, therefore it has not
been possible to do any further data exploration.

3.3.9. Summary
In this section, four different datasets are discussed. Each of these datasets has unique characteristics
that make them worth considering. However, current datasets have limitations such as only partially
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overlapping fields-of-view, and no ground truth velocity information being available. In the end, only two
are suitable for use in this thesis. These being the RadarScenes and Pointillism dataset. This is due
to the Endeavour dataset not having two front-facing radars, and the Bosch dataset being unavailable
for public use. The lack of ground truth velocity information will be handled later in this thesis.

3.4. Summary and Contributions
Despite improvements in radar based perception, gaps remain in the field of full velocity vector es-
timation and the use of dual radar in general. Existing methods often assume high quality data, or
do not make use of the specific advantages of a dual radar setup. As a result, higher level percep-
tion tasks like classification also do not make full use of the motion information that is available. This
thesis decreases this academic gap by introducing a novel full velocity vector estimation algorithm that
was designed with dual radar in mind, and integrating the motion information into a classification model.

Starting initially as a way to validate the contributions above, a (simplified) simulation environment
and ground truth velocity estimation for the RadarScenes dataset are also included in chapter 3 of this
thesis.

3.5. Baseline Selection
As mentioned in the beginning of this chapter, a baseline method will have to be chosen to use as a
start of the research. This method consists of three components:

• Velocity extraction
• Target classification
• Dataset

The goal of this baseline is to provide a starting point for the thesis from where dual radar based
algorithms and approaches can be implemented and tested. Some considerations in this decision
making process are ease of implementation, knowledge and support available, and academic poten-
tial. these factors taken into account, the RadarGNN [30] project was deemed the most suitable starting
point. RadarGNN has support for the RadarScenes dataset, for which there is plenty of knowledge and
support available within the MS3 group. Also, it claims state-of-the-art performance, any improve-
ments made would thus be academically relevant. In this method, full velocity vector estimation will
be implemented to see how this affects the classifying performance of the model. For the sake of
simplicity, rotational velocity will not be considered. For a direct comparison to literature, the overde-
termined system of equations method combined with RANSAC filtering will be used as a reference [10].

Having identified the gaps in existing velocity estimation and classification methods, and having
selected a suitable baseline approach, the chapter 4 will contain the methodology of this thesis.
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Methodology

Where the last chapter went into detail about the current state of research, this chapter will continue
by describing the process and the methods used to build on that research. The purpose of this is to
identify what experiments have to be done, and to create a basis in terms of analysis and mathematical
support. The chapter begins by describing the current methods and its failure cases. To support the
findings, a simulation environment will be developed that can be used for testing and experimentation.
Next a novel algorithm will be introduced, followed by its mathematical proof.

4.1. Problem Formulation
Conventional automotive radar systems provide only radial velocity information, which is not sufficient
to fully understand an objects motion without additional assumptions or information from other sensors.
Existing full velocity vector estimation methods, such as using a velocity profile together with RANSAC
to filter outliers, perform well in ideal conditions but fail in situations with heavy measurement noise or
high outlier ratios.

Below the problem is formulated in a more precise manner:

How can the full velocity vector be accurately estimated under noisy, real-world conditions?

In the solving of this problem, the following challenges are identified:

• Dealing with sparse point clouds and limited angular information for target that are far away.

• How to make the estimation robust to outliers.

• Obtaining the velocities for all targets in the scene, without prior knowledge.

By introducing a novel velocity graph method, which makes use of pairwise consistency between
radar detections, a solution to these challenges will be proposed. This method allows for robust and
accurate full velocity vector estimation even in difficult scenarios.

In the remaining sections, the following symbols will be used in relation to the problem.

• 𝜃, the angle of measurement in relation to the radar

• 𝑟, the distance of the measurement to the radar

• 𝑉𝑟, the velocity component in the direction of the radar

25
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• 𝑉𝑥, the velocity component in the 𝑥 direction

• 𝑉𝑦, the velocity component in the 𝑦 direction

The following section will describe the existing methods and their failure cases, and the proposed
solution in detail.

4.2. Current Method and Failure Cases
The most common method to determine the velocity of an object, either the ego-vehicle or a target, is
to first extract the detections belonging to the object. This is done by fitting a velocity profile and using
RANSAC to determine inliers [9][10]. This method works particularly well for objects that cover a large
range of angles, like vehicles that are close (<10m) or the static environment [8]. This is because in
these conditions, the velocity profile spans a large range of angles and thus creates a large variety in
radial velocity vectors. An example of fitting a velocity profile to the static environment can be seen in
Figure 4.1. Here the total range of angles is around 160 degrees.

Figure 4.1: This figure shows an ego-motion estimation problem, though the same principle can be applied for moving targets.
From [9].

For objects that are farther away and already do not span such a large angle as the static environ-
ment, like cars, the velocity profile becomes a straight line and thus reduces the data to only a single
dimension. For objects other than the static environment, this occurs already at relatively small dis-
tances. An example of this can be seen in Figure 4.2, where a simulated object 5 meters of length was
placed 20m in front of the sensors.
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Figure 4.2: Velocity profile of simulated target of 5m at 20m distance. Here it is visible that even at this distance the profile
becomes an almost straight line.

When no outliers are present this does not cause any problems since then all points belong to the
target and the velocity can still be calculated. However, RANSAC will fail to determine the correct
inliers when the data contains a larger percentage of outliers. This can be seen by comparing the data
in Figure 4.3.

Figure 4.3: Comparison of RANSAC filtering for 20% and 80% outliers respectively. Data generated from a 5m wide target at
20m distance.

After determining the inliers, the velocity of the object can be calculated by constructing an overde-
termined system of equations and solving for the full velocity vector according to the equations in Figure
4.4.
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Figure 4.4: Overdetermined matrix equation for computing the full velocity vector from a set of N points. From [10].

This matrix can also be computed in Cartesian coordinates, where each line will change to the
following:

𝑉𝑟 = 𝑉 • 𝐿/|𝐿| = (𝑉𝑥 ∗ 𝐿𝑥 + 𝑉𝑦 ∗ 𝐿𝑦)/|𝐿| (4.1)
where 𝐿 is the distance vector from the measured point to the sensor, 𝑉 is the velocity vector, 𝐿𝑥 , 𝐿𝑦

are the X and Y components of the vector 𝐿, respectively, 𝑉𝑥 , 𝑉𝑦 and 𝑉𝑟 are the X,Y and radial compo-
nents of the velocity vector, respectively.

As will be shown in the in chapter 5, this method works well for data that contains few outliers and
is not noisy. In reality, especially for targets that are farther away, this method fails to accurately de-
termine a target’s true velocity vector. This is a direct result of RANSAC not being able to distinguish
between in- and outliers under these conditions.

4.3. Simulation
For comparison of different methods and to be able to accurately control both system and environmental
parameters, a radar point cloud simulation was written. This simulation is able to simulate both dynamic
and static targets, with data from multiple radars.

Multiple assumptions are made:

• All variation inmeasurements follows a normal distribution. This was checkedwith the RadarScenes
dataset to be a valid assumption.

• Targets, both dynamic and static, are represented by a 1-dimensional line. Due to the targets be-
ing relatively far away from the radar in this study, the (partially) occluded sides of the targets are
of lesser importance. Also, adding reflections from these sides would provide more information
to the algorithm. Making this assumption is thus creating more difficult conditions than would be
encountered in the real world.

• The number of detections decreases linearly with distance. Due to the same radar angle having
to cover a linearly increasing area.

• Points, and thus noise, are generated in polar coordinates. This is because a radar sensor oper-
ates in polar coordinates.

• A given percentage of outliers is added to any target. This is done to simulate multi-path reflec-
tions and other disturbances.

• System parameters are based on the setup used in the RadarScenes dataset. Estimates of sys-
tem parameters were used based on the distributions observed in the RadarScenes dataset.

• Like in the RadarGNN paper, multiple frames are combined into a single point cloud. To give
the algorithm the same information in the simulation as will be provided in integration with the
RadarGNN model.
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• Ego-vehicle is always located at (0,0) and looking in the direction of the positive X-axis. This is
the same coordinate system as used in the RadarScenes dataset.

From the RadarScenes paper, the specifications of the used radar was taken as a basis for the
simplified sensor model. The noise was then modeled by using the specified variation and applying
this to the given parameters before constructing the full point cloud. In Figure 4.5 a visualization of the
simulated data is given.

Figure 4.5: Example of simulated unprocessed point cloud showing two targets against a static background. Size of point
indicates magnitude of radial velocity. Visual indicators are added to show the general positions of the radars.

In the remaining part of this chapter, the concept of a velocity graph will be presented, along with
a novel algorithm that makes use of this concept and addresses the shortcomings of the method ex-
plained above.

4.4. Velocity Graph
As a result of the shortcomings in existing methods, the search for a better velocity estimation method
was started. This search started with the idea that under perfect conditions, calculating the full velocity
vector from any two random detections on an object should yield the same result. By doing the reverse
of this concept, when every point in the point cloud is combined with every other point, a cluster of con-
sistent velocity vectors should form. This is under the condition that there are no significant rotational
velocities in comparison to the translational velocity.

To calculate a single velocity, at least two points are needed since the dimension of the full velocity
vector is also two. An example of this calculation is shown in Figure 4.6. This is essentially the same
calculation as mentioned before in Figure 4.4, but here the full velocity can be solved directly without
using a least squares method.
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Figure 4.6: 2 by 2 version of the velocity matrix as used in this concept.

Repeating this process for all combinations of points results in a velocity graph. In Figure 4.7 the
steps to creating the resulting graph are visualized.

Figure 4.7: Block diagram of steps to generating the velocity graph. Green indicates data, blue indicates a processing step.

Iterating over 𝑛 points as described in this diagram will lead to a total of 𝑛2 points in the velocity
graph. All combinations of points 𝑃 are shown in Equation 4.2.

𝑃 =
⎡
⎢
⎢
⎢
⎣

(0, 0) (0, 1) (0, 2) … (0, 𝑖)
(1, 0) (1, 1) (1, 2) … (1, 𝑖)
(2, 0) (2, 1) (2, 2) … (2, 𝑖)
⋮ ⋮ ⋮ ⋱ ⋮

(𝑗, 0) (𝑗, 1) (𝑗, 2) … (𝑖, 𝑗)

⎤
⎥
⎥
⎥
⎦

(4.2)

Here it also becomes clear that some performance increase can be obtained by only using the com-
bination of points from either the upper or lower half of the matrix, since a combination of (𝑖, 𝑗) will give
the same velocity as a combination of (𝑗, 𝑖). The resulting complexity remains at 𝒪2 however.

To test this hypothesis, a single target moving with a constant velocity was simulated.
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Figure 4.8: Illustration of simulated test scenario.

Next, the velocity vectors were calculated by combining every point with every other point using the
equations in Figure 4.6.

Figure 4.9: First results of generated velocity graph.

Here, it can be observed that the points are distributed along two different lines which cross each
other in the center. In Figure 4.10 the points are colored based on the radar they originate from. Since
every point in the velocity graph is constructed from two radar detections, the combination of one point
belonging to radar one and the other belonging to radar two also exists.
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Figure 4.10: Point in velocity graph colored by radar they originate from. Radar 1 is colored blue, radar 2 is colored red, and
points calculated from points from both radars are colored green.

In Figure 4.11 the previously discussed RANSAC algorithm is now used to draw two lines through
the points belonging to each radar. Since this graph was generated from simulated data, the target
velocity is precisely known. From this graph it becomes clear the intersection point of the line is almost
exactly equal to this velocity. Also, the points generated from combinations of radar one and radar two,
here in green, distribute along the direction of both lines. Why all this is the case will be discussed and
mathematically proven later in this chapter.

Figure 4.11: Same data and colors as in Figure 4.10, but RANSAC fit plotted through data from radar 1 and radar 2. This clearly
shows the distribution of points along these lines.
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Before continuing the research, it was first checked whether this phenomena was not simply an
artifact of the simulation. To do this, more than one hundred radar frames from RadarScenes were
used to manually verify the method. In Figure 4.12 the result from one of these frames is shown. This
proves the earlier results are not related to the simulation.

Figure 4.12: Velocity graph from target in RadarScenes. Here the same phenomena are visible as in the simulated velocity
graph.

Furthermore, the following relations between the angles in the velocity graph and physical angles
at the time of measurement are observed.

• The line equally dividing the large angle between the RANSAC radar lines into two has an angle
to the X-axis equal to the angle to the target observed from the ego-vehicle

• The small angle between the radar lines is the same as the angle between the lines drawn from
the viewpoints of the radars to the target

These angles are indicated in the velocity graph in Figure 4.13. From these observations it can also
be concluded that points close, within some radius 𝑟, are constructed from points with low noise.
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Figure 4.13: Velocity graph with angles beta and theta indicated.

4.5. Algorithm
To compare the performance of the proposed velocity graph method. Test runs were done in the simu-
lator with a target moving laterally across the field-of-view at different distances. From these scenarios,
the full velocity vector was reconstructed at every simulated timestep. The simulated test setup is vi-
sualized in Figure 4.8. From this point cloud, the velocity graph can be constructed. To extract the
velocity, the points are placed in bins of 0.1𝑚/𝑠. The resulting histogram is then smoothed using a
Gaussian kernel, and the peak value is selected as the estimated velocity. An example of such a
smoothed histogram is also shown in Figure 4.8.

Figure 4.14: Simulation setup and corresponding Gaussian-blurred velocity graph for a single target.

It must be noted that this method does not make explicit use of the ‘crossing lines’ that are observed.
Also, there exist various other methods that might be more suitable for this purpose. This method was
chosen for its relative simplicity in this test case. In the next section a different approach will be used
when dealing with situations where the point cloud contains multiple objects. For future research, it
might prove worthwhile to explore other options, including the training of purpose-built neural networks.

As seen in the earlier in this section, the method of using a Gaussian-blurred histogram works
well when the point cloud only contains a single object. For point clouds with multiple objects like
the example given in Figure 4.15, this method results in only finding the object which consists of the
most points. An example of the Gaussian-blurred histogram containing multiple objects along with the
simulated scenario can be seen in Figure 4.15.
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Figure 4.15: Simulation setup and corresponding Gaussian-blurred velocity graph for multiple targets.

To detect multiple objects simultaneously, the velocity graph has to be clustered. This is done by
applying DBSCAN to the data, this results in a graph like 4.15. In addition, only combinations of points
that are within a certain radius of each other are used to calculate velocities for the velocity graph. This
is done to bring down the complexity of the calculation resulting in a significant decrease of required
computational power. For the purpose of this research, a radius of 3 meters was chosen. This was
done based on the size of targets present in the RadarScenes dataset (e.g. cars and pedestrians).
See 4.16 for the resulting velocity graph.

Figure 4.16: Example of DBSCAN applied to the velocity graph with multiple objects, different colors indicate different clusters.

While creating the velocity graph, a list of point combinations and their resulting velocities is saved.
This way, clusters in the velocity graph can be used to find the matching points in the original point
cloud and cluster them together. This way the algorithm is not only able to estimate target velocities,
but also segment the original point cloud.

Once the clusters in the original point cloud are formed, DBSCAN is again applied to separate tar-
gets in the physical space. This is done because targets that have a similar velocity vector will end up
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in the same cluster in the velocity graph.

As can be seen in the velocity graph in Figure 4.16, not all points are assigned to an object. These
velocities are not close enough to any cluster to be considered part of them. By also not using these
points to label the original point cloud, it is possible to filter out points that are too noisy. An example of
this filtering is shown in Figure 4.17. Here, velocities that fit together to form a consistent full velocity
vector are labeled as core points. By changing the criteria set in de DBSCAN algorithm, the strictness
of this filtering can be changed.

Figure 4.17: Illustration of how the filtering mechanism in the velocity graph approach functions. Points that are consistent with
each other are marked in orange, points that cause deviations from the assumed velocity vector are marked in blue.

Figure 4.18 shows the result of applying this method to a point cloud from RadarScenes. In this
figure the effects of the filtering are also visible, filtered points are marked as gray circles with no smaller
colored inner circle.
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Figure 4.18: Ground truth labels are marked with large circles, velocity graph labels are marked with smaller circles. Points with
no inner color are marked as noise by the algorithm, points with same color belong to the same cluster. Black arrows indicate
measured doppler velocity, red arrows indicate estimated full velocity vector.

To summarize, the algorithm does three things:

• Cluster the point cloud based on full velocity vector.
• Assign full velocity vectors to the clusters.
• Filter out points that do not belong to clusters.

In Figure 4.19 the block diagram of the full algorithm is given.
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Figure 4.19: Block diagram of steps in velocity graph algorithm. Green indicates data, blue indicates a processing step.

This algorithm addresses the outlier problem described in 4.1 by using pairwise consistency be-
tween detections to cluster correct velocity vectors. This way a consensus can be reached about the
approximate velocity vector, even in the presence of many conflicting measurements.

4.6. RadarGNN Integration
The final step is to convert the segmented point cloud into a graph so that in can be used in RadarGNN.
This means it has to be converted from a point cloud, where each point has multiple properties, to nodes
and edges, also with their own properties.

In the original RadarGNN, the graph nodes have the following properties:

• 𝑟𝑐𝑠, value for radar cross-section.
• 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑣𝑒𝑐𝑡𝑜𝑟, X and Y components of the Doppler velocity.
• 𝑡𝑖𝑚𝑒_𝑖𝑛𝑑𝑒𝑥, time value of the measurement.
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• 𝑑𝑒𝑔𝑟𝑒𝑒, amount of edges to the node.

And the edges:

• 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, position in relation to other connected node. This is required to make the
model translation invariant.

Here, the edges are generated via a K-Nearest Neighbours (KNN) algorithm. This means a fixed
number of edges, 5 by default, is generated at random to points that are within a certain radius, see
the left side of Figure 4.20 for an example.

Figure 4.20: Original and updated graph generation methods. The new method creates edges between points with a similar full
velocity vector, the old method generates these randomly. Static environment is marked in blue, vehicle is marked in red.

For the implementation of the full velocity vector, node features were kept mostly the same as in the
original RadarGNN. The only change made was that the 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑣𝑒𝑐𝑡𝑜𝑟, which are X and Y compo-
nents of the Doppler velocity, was replaced by the X and Y components of the full velocity vector. The
edge features were not changed.

To generate the edges, the KNN algorithm was changed out for Delaunay triangulation. In the new
method, points that are within a given radius and have the same full velocity vector are connected. This
is done to more effectively implement the knowledge gained by calculating the full velocity vector. This
new implementation is shown on the right side in Figure 4.20.

4.7. Ground truth generation
Since the RadarScenes dataset does not include ground truth data for the velocity vector of objects,
and alternative had to be found to generate this data. To do this, the baseline method selected in
chapter 3 was taken as a starting point. This method is proven to work reliably and accurately when
given data with few outliers. Fortunately, RadarScenes does provide point-wise labeling, which can be
given to the baseline method. This way accurate velocity information can still be generated without it
being available in the dataset itself. Even though the labeling is near-perfect, the measurements are
of course not. Because of this, this method sometimes generates (large) errors in situations where the
measurement data is of very poor quality.

4.8. Proof
Let’s first assume that any of the measured parameters consist of two parts, the true value and a
noise value. This approach makes it possible to study how noise in the measurements affects the final
calculated velocity components.

𝑉𝑟1 = 𝑉𝑡𝑟𝑢𝑒𝑟1 + 𝑉𝑛𝑜𝑖𝑠𝑒𝑟1 (4.3)
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𝑉𝑟2 = 𝑉𝑡𝑟𝑢𝑒𝑟2 + 𝑉𝑛𝑜𝑖𝑠𝑒𝑟2 (4.4)

𝜃1 = 𝜃𝑡𝑟𝑢𝑒1 + 𝜃𝑛𝑜𝑖𝑠𝑒1 (4.5)

𝜃2 = 𝜃𝑡𝑟𝑢𝑒2 + 𝜃𝑛𝑜𝑖𝑠𝑒2 (4.6)

𝑟1 = 𝑟𝑡𝑟𝑢𝑒1 + 𝑟𝑛𝑜𝑖𝑠𝑒1 (4.7)

𝑟2 = 𝑟𝑡𝑟𝑢𝑒2 + 𝑟𝑛𝑜𝑖𝑠𝑒2 (4.8)

4.8.1. Full Velocity Vector
The radial velocity components are projections of the full velocity vector onto the directions of each
radar. These can be expressed in terms of the full velocity vector as follows:

[𝑉𝑟1𝑉𝑟2] = [
𝑐𝑜𝑠(𝜃1) 𝑠𝑖𝑛(𝜃1)
𝑐𝑜𝑠(𝜃2) 𝑠𝑖𝑛(𝜃2)] [

𝑉𝑥
𝑉𝑦] (4.9)

We can now invert this equation to compute the full velocity vector from the radial components:

[𝑉𝑥𝑉𝑦] = [
𝑐𝑜𝑠(𝜃1) 𝑠𝑖𝑛(𝜃1)
𝑐𝑜𝑠(𝜃2) 𝑠𝑖𝑛(𝜃2)]

−1
[𝑉𝑟1𝑉𝑟2] (4.10)

[𝑉𝑥𝑉𝑦] =
1

𝑐𝑜𝑠(𝜃1)𝑠𝑖𝑛(𝜃2) − 𝑠𝑖𝑛(𝜃1)𝑐𝑜𝑠(𝜃2)
[ 𝑠𝑖𝑛(𝜃2) −𝑠𝑖𝑛(𝜃1)
−𝑐𝑜𝑠(𝜃2) 𝑐𝑜𝑠(𝜃1) ] [

𝑉𝑟1
𝑉𝑟2] (4.11)

Using the identity

𝑐𝑜𝑠(𝜃1)𝑠𝑖𝑛(𝜃2) − 𝑠𝑖𝑛(𝜃1)𝑐𝑜𝑠(𝜃2) = 𝑠𝑖𝑛(𝜃2 − 𝜃1) (4.12)

the expression can be simplified:

�⃗� = 1
𝑠𝑖𝑛(𝜃2 − 𝜃1)

[ 𝑠𝑖𝑛(𝜃2) −𝑠𝑖𝑛(𝜃1)
−𝑐𝑜𝑠(𝜃2) 𝑐𝑜𝑠(𝜃1) ] 𝑉𝑟 (4.13)

4.8.2. Noise Sensitivity
It is now possible to analyze how uncertainty, or noise, in each measurement influences the calcu-
lated full velocity vector. Taking the derivatives with respect to 𝑉𝑛𝑜𝑖𝑠𝑒𝑟1 , 𝑉𝑛𝑜𝑖𝑠𝑒𝑟2 , 𝜃𝑛𝑜𝑖𝑠𝑒1 , 𝜃𝑛𝑜𝑖𝑠𝑒2 , 𝑟𝑛𝑜𝑖𝑠𝑒1 , 𝑟𝑛𝑜𝑖𝑠𝑒2 ,
starting with 𝑉𝑛𝑜𝑖𝑠𝑒𝑟1 :

𝜕�⃗�
𝜕𝑉𝑛𝑜𝑖𝑠𝑒𝑟1

= [
𝑠𝑖𝑛(𝜃2)

1
𝑠𝑖𝑛(𝜃2−𝜃1)

−𝑐𝑜𝑠(𝜃2)
1

𝑠𝑖𝑛(𝜃2−𝜃1)
] (4.14)

This derivative describes the direction and magnitude of the change in �⃗� cause by a noise in 𝑉𝑟1. In-
terestingly, this direction is constant for any 𝜃2.

The slope of the this line, 𝑎, can be calculated:

𝑎 = −𝑐𝑜𝑠(𝜃2)𝑠𝑖𝑛(𝜃2)
(4.15)

Following the same procedure for 𝑉𝑛𝑜𝑖𝑠𝑒𝑟2 yields:

𝑎 = −𝑐𝑜𝑠(𝜃1)𝑠𝑖𝑛(𝜃1)
(4.16)
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Where the direction of change in �⃗� is constant for any 𝜃1.

Doing the same for 𝜃 give the same result as for the noise in radial velocity:

𝜕�⃗�
𝜕𝜃𝑛𝑜𝑖𝑠𝑒1

= [
1

𝑠𝑖𝑛(𝜃1−𝜃2)
( 𝑐𝑜𝑠(𝜃1−𝜃2)𝑠𝑖𝑛(𝜃1−𝜃2)

(𝑉𝑟1𝑠𝑖𝑛(𝜃2) − 𝑉𝑟2𝑠𝑖𝑛(𝜃1)) + 𝑉𝑟2𝑐𝑜𝑠(𝜃1))
1

𝑠𝑖𝑛(𝜃1−𝜃2)
( 𝑐𝑜𝑠(𝜃1−𝜃2)𝑠𝑖𝑛(𝜃1−𝜃2)

(𝑉𝑟2𝑐𝑜𝑠(𝜃1) − 𝑉𝑟1𝑐𝑜𝑠(𝜃2)) + 𝑉𝑟2𝑠𝑖𝑛(𝜃1))
] (4.17)

𝜕�⃗�
𝜕𝜃𝑛𝑜𝑖𝑠𝑒1

= [
𝑐𝑜𝑠(𝜃2)

1
𝑠𝑖𝑛(𝜃1−𝜃2)2

(𝑉𝑟2 − 𝑉𝑟1𝑐𝑜𝑠(𝜃1 − 𝜃2))
−𝑠𝑖𝑛(𝜃2)

1
𝑠𝑖𝑛(𝜃1−𝜃2)2

(𝑉𝑟2 − 𝑉𝑟1𝑐𝑜𝑠(𝜃1 − 𝜃2))
] (4.18)

Again, the direction of change of �⃗� is constant for any value of 𝜃2. The slope can thus also be
calculated in the same manner.

𝑎 = −𝑐𝑜𝑠(𝜃2)𝑠𝑖𝑛(𝜃2)
(4.19)

Following the same procedure for 𝜃𝑛𝑜𝑖𝑠𝑒2 yields:

𝑎 = −𝑐𝑜𝑠(𝜃1)𝑠𝑖𝑛(𝜃1)
(4.20)

Finally, examining how range noise affects the velocity vector, we find:

𝜕�⃗�
𝜕𝑟𝑛𝑜𝑖𝑠𝑒1

= 0⃗ (4.21)

𝜕�⃗�
𝜕𝑟𝑛𝑜𝑖𝑠𝑒2

= 0⃗ (4.22)

This means that noise in the range value does not influence the calculated velocity, which makes
sense since 𝑟 is also not present in Equation 4.9.

4.8.3. Geometrical Interpretation
To further understand what this means, lets look at the general formula for a first order polynomial:

𝑦 = 𝑎𝑥 + 𝑏 (4.23)

A line tangential to this line can be formulated as:

𝑦 = −(1/𝑎)𝑥 + 𝑏 (4.24)

Now take the angle between the line and the X-axis, 𝜃, and write the gradient of the line as a function
of this angle:

𝑎 = 𝑠𝑖𝑛(𝜃)
𝑐𝑜𝑠(𝜃) (4.25)

For the tangent line this is then:

𝑎 = −𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃) (4.26)

Which is the same as Equations 4.15, 4.16, 4.19 and 4.20. This proves that for a variation in the
measured radial velocity or angle of one point, the calculated velocity coordinates form a line at an
angle tangent to the measured physical angle of the other point as visualized in Figure 4.13.





5
Experiments

In the previous chapter the concept and mathematical foundation for the velocity graph algorithm were
presented. In this chapter, these findings will first be validated in a simulated environment. The velocity
graph will then be tested against the baseline method and itself, but only making use of a single radar.
The experiments are designed to compare these methods in situations where they are expected to
behave differently from one another. This means that some of the testing conditions are sometimes
unlikely to occur in real-world road conditions, but it will also clearly show the limits of these methods.
Lastly, the classification results after integrating the full velocity vector into RadarGNNwill be presented.

5.1. Method Validation
This method is compared to three other methods:

• RANSAC and overdetermined system of equations

• velocity graph with only one radar, but same amount of points

• velocity graph with only one radar, half the amount of points

The methods described above were tested at different distances. In the simulation, a car driving
across the field-of-view at 30m, 50m, 70m and 90m were simulated. In addition, for every distance, ten
different amounts of outlier percentages were added to the target to test robustness to noise. These
percentages ranged from 0% to 90%, with 10% points increases. The amount of inlier points were kept
constant, this means the total amount of points increases with the increase in outliers.

In Figure 5.1, the test results for 30m and 90m are shown. The average and variation of the full set
of simulations can be found in Appendix A.

43



44 5. Experiments

Figure 5.1: Comparison of the single target velocity graph method with a simulated target passing at 30m and 90m distances in
front of the radar setup.

From these two graphs, already a few observations can be made:

• Unlike the RANSAC method, performance of the velocity graph method is much less dependent
on the percentage of outliers.

• Performance seems to be best exactly in front of the two radars. Since this effect is also visible
for the single radar experiments, this is most likely not a result of the crossing-radar-lines-effect.
Therefore it is most likely caused by target being further away due to the vertical distance com-
ponent.

• This effect disappears at greater distances. This is because the distance is now more or less the
same, independent of lateral position.

In the following figures key findings from the full set of experimental data are presented. In Figure 5.2
the previously mentioned methods are compared in relation to their robustness to outlier percentage.
Here it becomes clearly visible that the new dual radar method outperforms the RANSAC method in
terms of robustness. Another thing to note is that using two radars outperforms using a single radar,
but that this effect is mostly caused by having double the amount of data points to work with. This is
confirmed by also running the simulation with the viewpoint from only a single radar, but by using the
same number of points as would be produced by two radars. In the figure below, this setup has nearly
the same performance as a dual radar setup.
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Figure 5.2: Comparison of robustness to noise of different methods. In red the velocity graph method with two radars, in green
the velocity graph method with one radar but with the same amount of points, in yellow the velocity graph method with a single
radar, and lastly in blue the baseline RANSAC method using two radars.

Figure 5.3 compares the combining of different amounts of frames into a single point cloud. This
experiment was performed to test the effects of this mechanism as it is used by the RadarGNN model.
As shown in Figure 5.2, the new velocity graph algorithm is barely affected by an increase in outliers.
This seems to be the case as long as there is a minimum amount of inliers available, once this number
drops below a certain threshold the performance drops. This minimum number of inliers can be con-
trolled by combining multiple frames together, when this minimum cannot be obtained from a single
frame.

Figure 5.3: Comparison for the velocity graph algorithm using different amount of frames. By combining frames the data sparsity
problem can be addressed. Here it is visible the method significantly benefits from a denser point cloud.

Lastly, Figure 5.4 shows the effect of increased distance. Again, the performance is not signifi-
cantly affected by the increase in outliers. The performance does however degrade with an increase
in distance, likely because of the decrease in total points in the point cloud.
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Figure 5.4: Comparison of the velocity graph method with different outlier percentages, and at different distances. Accuracy
increases when the target it closer due to the denser point cloud.

To summarize, from this section the following can be concluded:

• The velocity graph method is not significantly affected by an increase in outliers, as long as there
is a minimum number of inliers available.

• The increase in performance from using two radars is mainly due to having a twice as large point
cloud. Though another roughly 10% performance increase is a result of the crossing-radar-lines-
effect.

• Combining multiple radar frames helps increase the number of inliers, extending the effective
range of the sensors.

These are the results from the experiments by using the method described at the beginning of this
chapter. It is expected that by using a method that exploits the crossing-radar-lines-effect will increase
performance. Doing so should also increase the gap between using a dual radar setup, and a single
radar with the same size point cloud.

5.2. Parameter Optimization on RadarScenes
To tune the algorithm for the radar setup used in RadarScenes, a grid search on the most important
parameters was performed. These parameters are the 𝑒𝑝𝑠 and 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 inputs for the DBSCAN
algorithm in the velocity graph. They determine the permitted error in the velocity vector during the
forming of clusters, and the minimum amount of points needed in the velocity graph to form a cluster
respectively. In other words, they determine how noisy a point is allowed to be, and the minimum num-
ber of points that are needed to label something as an object. From the scikit-learn documentation[35]
on DBSCAN:

• 𝑒𝑝𝑠, float, default=0.5
The maximum distance between two samples for one to be considered as in the neighborhood
of the other. This is not a maximum bound on the distances of points within a cluster. This is
the most important DBSCAN parameter to choose appropriately for your data set and distance
function.

• 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, int, default=5
The number of samples (or total weight) in a neighborhood for a point to be considered as a core
point. This includes the point itself. If 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is set to a higher value, DBSCAN will find
denser clusters, whereas if it is set to a lower value, the found clusters will be more sparse.
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First a rough estimate of the parameters was determined to start the grid search. This was done
based on trial and error. This resulted as a value of 1 for 𝑒𝑝𝑠 and a value of 50 for 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 as a
starting point for the grid search. Values of 0.5, 1, and 2 were tested for 𝑒𝑝𝑠. For 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 25,
50, 75, and 100 were tested.

Additionally, RadarGNN was also configured in such a way that data from roughly three frames
were combined into a single frame, since experiments showed that any number above three resulted
in diminishing returns.

Performance was tested by evaluating the precision, recall, and accuracy of the velocity estimation.
Figure 5.6, 5.5, and 5.8 show these results respectively.

Figure 5.5: Precision for different combinations of parameter values. Higher is better.

Figure 5.6: Recall for different combinations of parameter values. Higher is better.

During the evaluation of the velocity vector performance, it became clear that in some cases the
ground truth velocity estimation does not always produce a good estimate. This is the result of low
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quality data in some of the frames in RadarScenes. The magnitude of the error between the estimated
vector and the ground truth vector is shown in Figure 5.7.

Figure 5.7: Error in velocity vector estimation compared to ground truth sorted by magnitude.

To still create a fair comparison, different metrics were taken over different percentiles of data. This
way the large errors caused by low quality data do not skew the comparison. In Figure 5.8 the results
are visualized.

Figure 5.8: Magnitude of error in velocity vector. Lower is better.

5.3. Classification
Considering the extra conditions added to the test environment compared to the original RadarGNN
paper, the model was first retrained under these conditions to create a baseline comparison. This
model was then compared to a model trained with ground truth estimation, and to the model trained
with the velocity graph method.

The training was done using the parameters in the Table 5.1. These are the default parameters
from the RadarGNN project.
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Table 5.1: Table with parameters used to train the RadarGNN model.

MODEL_ARCHITECTURE
node_feature_dimension 3
edge_feature_dimension 2
conv_layer_dimensions [224, 224, 128, 64, 32]
classification_head_layer_dimensions [6]
regression_head_layer_dimensions [16, 5]
initial_node_feature_embedding True
initial_edge_feature_embedding True
node_feature_embedding_layer_dimensions [32, 64, 128, 224]
edge_feature_embedding_layer_dimensions [4, 8, 16]
conv_layer_type ”MPNNConv”
batch_norm_in_mlps False
TRAINING
dataset radarscenes
bg_index 5
learning_rate 0.001
epochs 30
batch_size 5
shuffle True
deterministic True
seed 123
exponential_lr_decay_factor 0.95
bb_loss_weight 0.5
regularization_strength 0.000005
adapt_orientation_angle True

The resulting confusion matrices can be seen in Figure 5.9.
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Figure 5.9: Confusion matrices of different models.

From this comparison, a couple observations can be made.

• The retrained model performs worse than the original from the paper.

• The ground truth method performs significantly better than the retrained original model.

• The velocity graph method performs poorly.

Considering the velocity graph method performed well in previous tests, improvements in classifi-
cation performance were expected. Especially since the ground truth method does show an increase
in performance.

There could be several origins of this under-performance. The first options is the data that the
model uses to learn. Due to the modifications made, this data could simply not be enough in quantity,
or the class balance could be disrupted due to the cropping. Secondly something could have gone
wrong in the training of the model, the model might be too complex, or the loss functions might not be
properly formulated. Lastly, the velocity graph algorithm might not perform as expected. After some
consideration, it was deemed worthwhile to investigate the following possible causes:
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• Overfitting due to smaller dataset.

• Class unbalance due to cropping of field-of-view or filtering out points that do not belong to clus-
ters.

• Low frequency but high magnitude errors cause poor learning.

In the next section, each of these possible reasons for the poor performance will be addressed.
At the end of the section a new model will be evaluated which incorporates attempted fixes for the
problems mentioned in this section.

5.4. Improvements
In this section, some areas of concern will be discussed. At the end of the section a new updated model
that attempts to solve these concerns will be presented.

5.4.1. Overfitting
As can be seen from the previous section, performance is not quite as expected. A quick look into the
training curves as seen in Figure 5.10 showed that the model is likely overfitting on the training data.

Figure 5.10: Loss curve of training original model on validation data.

Evaluating the model on the training data indeed shows that this is the case, in Figure 5.11 it is
clearly visible that there quite a big performance gap in comparison to the results from the validation
data.
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Figure 5.11: Confusion matrices for the original retrained model evaluated on the validation and training set respectively.

In Figure 5.10 it is visible that the training loss keeps dropping even after the validation loss stag-
nates. To hopefully reduce overfitting, in the next version a model will be selected from an earlier
epoch.

5.4.2. Class Unbalance
The second possibility for the poor performance is sought in the class (un)balance of the dataset. Due
to the selection of the smaller subset of 64 scenes, the cropping of the field-of-view, and the filtering of
points that do not belong to a cluster, it is possible for the classes to become unbalanced in the training
data.

To gain insight in this problem, the dataset was processed and metrics for each class were saved. In
Figure 5.12 the data from the velocity graph method with and without the filtering feature are compared
to the orignal values from the RadarScenes paper. The classes are expressed as a ratio of the total
amount of point labels, where the sum of the classes equals one.

Figure 5.12: Percentages of label occurrences for different classes in different processing methods. Original RadarScenes
dataset on the left, forward cropped version with selected 64 scenes in the middle, and forward cropped filtered version of the
selected 64 scenes on the right.

Looking at these percentages, it is deemed possible that the observed unbalance might be cause
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for the poor performance. This is especially the case for the pedestrian classes, since they are already
under represented in the original dataset.

5.4.3. Large Errors
The last possible cause for the poor performance might be that large errors in the velocity estimation
cause the training of the network to be disturbed. As can be seen in Figure 5.7, a small percentage
of estimations have massive errors. To prevent this, a limit was set on the maximum magnitude of the
velocity vector. For the purpose of this test, this limit was set at 25m/s.

5.4.4. Updated Model
With all the improvements suggested in the previous section implemented, the model was once again
retrained. This led to the model as picture in Figure 5.13.

Figure 5.13: Comparison of velocity graph models with and without further improvements.

5.5. Conclusion
In the last part of this study, the four most relevant versions of the dual radar classification models
are evaluated by analyzing the F1 and mAP scores for each model. These models are the original re-
trained model on both the validation and training data, the model incorporating the ground truth velocity
information, and the model using the velocity graph with further improvements. The results are given
below in Table 5.2.

Table 5.2: F1 and mAP scores for the different models for different classes.

original_validation original_train ground_truth velocity_graph++
F1 Car 0.75 0.83 0.93 0.71

Pedestrian 0.23 0.39 0.50 0.11
Pedestrian group 0.14 0.67 0.45 0.08
Two wheeler 0.06 0.82 0.19 0.10
Large vehicle 0.68 0.78 0.91 0.70
Background 0.99 0.99 1.00 0.98

mAP Car 0.68 0.75 0.79 0.71
Pedestrian 0.06 0.11 0.21 0.02
Pedestrian group 0.05 0.67 0.16 0.03
Two wheeler 0.05 0.53 0.40 0.16
Large vehicle 0.63 0.74 0.82 0.65
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From the results it can be concluded that including the full velocity vector information significantly
improves the classification performance. For example, the model trained with ground truth velocity
information showed consistent improvements among several classes, most notably for ”car” and ”large
vehicle” with F1 scores increasing from 0.75 to 0.93 and from 0.68 to 0.91, respectively.

It also shows that the current models are most likely over fitted on the training data, since the model
evaluated on validation data performs significantly worse than the model evaluated on the training data.
This is especially the case for the ”pedestrian”, ”pedestrian group” and ”two wheeler” classes.

However, the integration of the velocity graph algorithm did not show the expected improvements.
Despite using an improved version of the model, the performance did not show any substantial gains.
For example, the F1 score for ”car” decreased from 0.75 (original validation) to 0.71 (velocity graph++),
and the mAP for ”large vehicle” showed an increase from 0.63 to 0.65.



6
Conclusion

In this last chapter, the main motivations, methods, and findings of this thesis are presented. It reflects
on how the original research questions were answered, and provides the reader with the key contribu-
tions that are made. Finally, it will provide potential directions for future research.

6.1. Motivation and Findings
Reliable perception is critical in safe operation of autonomous vehicles. While radar offers some dis-
tinct advantages over other types of sensors, its sparse data and lack of the ability to directly measure
an objects full velocity have limited its use. This thesis is aimed at addressing these problems and
improving full velocity vector estimation by using a dual radar setup, with the broader goal of making
radar a competitive alternative to other sensors like lidar and cameras.

To tackle these problems, a novel velocity graph algorithm was introduced. This method makes
use of pairwise consistency between radar detections to estimate the 2D motion of objects in a robust
manner, even in conditions of heavy noise. A simplified radar point cloud simulation environment was
created to test this method in controlled conditions. In addition, a ground truth velocity method for the
RadarScenes dataset was created, allowing for validation in real-world conditions. The full velocity
vector information was then integrated into the RadarGNN model to quantify the effects of improved
velocity information on classification tasks.

The proposed method yielded several important results:

• Improved velocity estimation: The velocity graph method significantly outperforms traditional
RANSAC-based velocity profile fitting methods in simulation, specifically in conditions where the
percentage of outliers is above 40%.

• Better clustering and filtering: By clustering detections based on consistent velocity vectors, the
method was able to simultaneously segment the scene and filter out noisy points.

• Gains in classification performance: Integrating ground truth full velocity vectors into RadarGNN
led to improved object classification (i.e. mAP for cars from 0.68 to 0.79), though this same result
could not be achieved using the velocity graph method.

These conclusions directly answer the research questions stated at the beginning of this thesis;
the failure cases of current methods were analyzed and addressed, dual radar setups were shown to
reliably estimate full velocity vectors through the proposed velocity graph method, and lastly, accurate
full velocity vector information, though using the ground truth, improved classification performance,
showing the wider application of this work.
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6.2. Future Work and Recommendations
While this thesis showed the effectiveness of the velocity graph method and its wider use cases, sev-
eral directions of research are still left to be explored further.

The current method assumes negligible rotational velocity of targets. Expanding the algorithm to
include rotational velocity would be an interesting addition. By using three equations per point instead
of two, it should be possible to create a three-dimensional velocity graph.

Also, in this thesis DBSCAN was used as a basis for target detection in the velocity graph. Doing
more research into different algorithms and clustering methods could also still significantly improve the
clustering performance of the algorithm.

Another potential direction is to train a neural network that both performs clustering and velocity es-
timation simultaneously. Such a model could learn to recognize patterns in the velocity graph directly,
potentially resulting in better performance.

In conclusion, this thesis demonstrated the usefulness of dual radar systems in improving velocity
estimation and classification performance. With further research, these systemsmight prove a valuable
complement to current sensor systems used in automotive applications.



A
Data

Figure A.1: Simulation results for different methods using a single frame.

Figure A.2: Simulation results for different methods using three frames.

Figure A.3: Simulation results for different methods using five frames.
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