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Biomechanics Aware Collaborative Robot System
for Delivery of Safe Physical Therapy in Shoulder

Rehabilitation
J. Micah Prendergast∗, Stephan Balvert, Tom Driessen, Ajay Seth, and Luka Peternel

Abstract—In this work, we explore using computational mus-
culoskeletal modeling to equip an industrial collaborative robot
with awareness of the internal state of a patient to safely deliver
physical therapy. A major concern of robot-mediated physical
therapy is that robots may unwittingly injure patients. For
patients with shoulder injuries this typically means the risk of
tearing a rotator-cuff muscle tendon. Risk of reinjury hampers
both human and robot therapists and it is the main reason
for conservative physical therapy. Advances in human muscu-
loskeletal modeling, however, can equip robots with additional
perception of potential reinjury risks. While the ultimate goal is
to improve the safety, range-of-motion and activity that patients
receive through robot-mediated therapy, the aim of this letter
is to develop and test a framework that enables the robot to
understand the state of the patient and to execute physical
therapy movements that demonstrate low injury risk and achieve
a large range-of-motion in human subjects. We build on prior
work in human-robot interaction via impedance control, but take
robot awareness of the human to the next level by including and
manipulating a musculoskeletal model in parallel to the patient.
Taking the most common shoulder impairments (i.e., rotator-
cuff tears) as an example, we demonstrate planned, model-
based trajectories that minimize strain in these muscles and
corresponding robot-mediated movements on healthy subjects.
Our experiments suggest that musculoskeletal awareness is a
promising approach to plan and deliver therapeutic movements
that are safe and effective via an industrial robot.

Index Terms—Human-robot interaction, model-based aware-
ness, physical therapy robot, musculoskeletal modeling, OpenSim

I. INTRODUCTION

TO exploit the benefits of human-robot interaction partic-
ularly in patient-directed therapy, robots must perceive

the state of the patient and his/her injury risks. In this letter,
we focus on physical therapy intensive recovery from rotator-
cuff injuries of the shoulder as a clinically motivated driving
problem. Shoulder rotator-cuff tears alone have an estimated
rate of 22.1% in the general population and over 50% for those
older than 60 [1]. Either following injury or after surgical
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Fig. 1. Physical system and biomechanical simulation setup. a) A Kuka
LBR iiwa robotic manipulator delivers motion to the shoulder of a test
subject through an elbow brace and load cell attachment. b) An OpenSim
biomechanical model of the shoulder matches the movement of the subject and
strains in the rotator-cuff muscles (highlighted) are estimated. c) The estimated
strains of the individual rotator-cuff muscles presented as 2D heatmaps over
the shoulder range of motion (axes).

repair, a lengthy period of physical therapy is necessary to
restore shoulder mobility.

Due to the complexity of the shoulder and risks of re-injury
physical therapy of the shoulder remains conservative and
performed by human physiotherapists [2]. The conservative
nature of physiotherapist means that the amount of therapy
delivered is limited and there are many more patients than
available physiotherapists at any given time. Furthermore, the
work can be quite laborious for the physiotherapists. A promis-
ing alternative to classic physiotherapist-based rehabilitation is
robotic rehabilitation [3], [4].

Several upper-extremity rehabilitation devices have been
developed [3], [4], but they are highly specialized and bulky
mechanical systems that are expensive and hard to move
between patients, which severely limits clinical access to ther-
apy. In addition, to the best of our knowledge, these existing
devices do not target the physical therapy requirements of a
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Fig. 2. Biomechanical model of the shoulder [9] with only the rotator-
cuff muscles visible for clarity (left). Shoulder joint coordinate system (at
glenohumeral joint center) and the degrees-of-freedom: plane of elevation,
shoulder elevation and axial rotation of the humerus are shown (right).

recovering rotator-cuff tear. On the other hand, mass-produced
industrial collaborative robots are already certified to safely
interact with humans, are less expensive, and more generally
applicable compared to highly specialized rehabilitation de-
vices. Therefore our system aims to retool an off-the-shelf
collaborative robotic arm to safely and effectively deliver
physical therapy to the human shoulder in the case of the
most common rotator-cuff injuries.

When applying physical human-robot interaction (pHRI)
for human movement rehabilitation, impedance control offers
significant benefits, enabling the modulation of interaction
dynamics in real-time through a spring-mass-damper model
[5]. Through this impedance control approach the stiffness of
the robotic device can be decreased or increased based on
the desired rehabilitation strategy or training intensity [6]–
[8]. This method also enables the robot to be soft in certain
directions, while being stiff in the other directions, allowing
the robot to act as a guide for the human. Additionally, the for-
mulation enables easy incorporation of gravity compensation
terms for the human arm. Nevertheless, impedance control on
its own, usually cannot guarantee the safety of the human with
which the robot is interacting.

Past research on safety in pHRI has primarily focused on
external safety, i.e., collision detection and avoidance [10],
[11], awareness of potential injury due to external collisions
[12], [13], and conservative force/velocity limits [14]. In [13],
the authors proposed a safety map, which relates biomechanics
injury data to the instantaneous collision dynamics and param-
eters of the robot and the subject in task-dependent workspace
sets. In contrast to industrial applications, in rehabilitation-
related pHRI the critical safety concern is not external colli-
sions but internal properties related to the functioning of the
body (e.g., range of motion of joints, joint torques, tendon
strains, muscle forces, etc.).

To effectively deliver physical therapy to human patients,
robots have to maximize therapy time and range of motion
[15] but at the same time have to make sure they stay within
the human safety margins (muscle strains, etc.) with respect to
the current state of rehabilitation. To do this, they have to be
more perceptive of the patient and his/her injury risks. While
it is certainly necessary to imbue the robot with sensors to
carefully observe the patient, it is not enough. Injury risks in
physical therapy involve loads and strains of internal structures
and tissues (i.e, muscles, tendons and ligaments, etc.), which

cannot be directly observed by external measurements.
Recently, pHRI research started to focus on internal safety,

where the robot control system includes human biomechanical
and musculoskeletal models. These models can account for
patient-specific parameters and give an accurate estimate of
the internal properties of the human body. Some of the
properties that have been considered are (static) joint loading
[16], muscle fatigue [17], muscle comfort [18], and muscle
manipulability [19]. However, these methods were mostly
designed for non-rehabilitation related applications, such as
human-robot collaboration in industrial tasks [16]–[18] and
use of exoskeleton for power-assist [19].

A few recent studies focused on using off-the-shelf collab-
orative robotic arms for shoulder rehabilitation. The method
in [20] used collaborative robotic arm for upper arm rehabil-
itation and proposed to gather physical (force, position, etc.)
and psycho-physiological (EMG, EEG, etc.) measurement data
from various sensory systems. The method in [21] similarly
used a collaborative robotic arm to perform shoulder rehabili-
tation, where the control was based on the measurement of arm
pose and muscle activity through electromyography. However,
these methods did not incorporate biomechanical models of the
human arm and therefore had limited knowledge of the internal
musculoskeletal system of the human arm. Without accurate
perception of these complex internal dynamics, injury risks
during robotic physical therapy can not be properly mitigated.
In addition, these methods also did not target rotator cuff
injuries and physiotherapy.

To address this issue, we propose a new physiotherapy
system for rotator cuff injuries, based on a collaborative robot
that incorporates a patient-specific biomechanical model to
inform robotic trajectory planning, patient state estimation and
impedance control. This integration of musculoskeletal mod-
eling within the system allows it to plan therapy trajectories
to reduce the strain of targeted muscles and tendons, while
enabling increased mobility of the human arm in terms of
range of motion.

A critical component of this system is the strain map
(Fig. 1c), which we have developed to provide the muscle
strains of each of the rotator-cuff muscles at any pose of
the subject’s arm. These strain maps allow us to integrate
muscle strain estimates from the biomechanical model (see
Fig. 2) into the robotic path planning and control system and
enable quantitative feedback to the system about safety/injury
in any patient pose. If strains in the muscles are exceeded, a
healing muscle/tendon might be re-injured. While a human
physiotherapist has only qualitative sensing and no direct
access to the muscle strains, they are limited to more con-
servative movements to avoid re-injuring the healing muscles.
By using these strain maps, the proposed robotic system gains
quantitative insight into a subject’s muscles strains, allowing it
to safely maneuver a subject through less conservative, larger
range of motion exercises.

In addition, the biomechanical model is complemented by
external measurements to augment the estimates of the model.
This allows for real-time model updates, and more accurate
perception and control of the complete robotic system, for safe
delivery of robotic physiotherapy. In this work, we present the
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Fig. 3. Workflow of the biomechanics aware robotic system for delivering physical therapy. The biomechanical model is used to generate maps of muscle
strains. A simple point selection and planning interface enables the user to select start, end and waypoints in joint space. A low strain path is computed over
the strain map and transformed into an endpoint reference frame that the robotic manipulator can follow at a user-selected speed. Robot position and force
measures are fed back to the biomechanical model to update its current state. Data is collected from the robot for further evaluation.

development of these shoulder muscle strain maps according
to which the optimization algorithm plans the trajectories. The
system is demonstrated and evaluated with proof of concept
experiments on a Kuka LBR iiwa collaborative robot.

II. METHODOLOGY

The methodology is divided into three subsections (see Fig.
3 for an overview). A) Presents the use of the biomechanics
modeling tools in the development of the shoulder strain maps.
B) Establishes the safe path planning technique implemented
by the proposed system for navigating these strain maps. C)
Explains the transition of these strain map paths to the physical
space of the robotic system and highlights the impedance
control law used for safely tracking these target trajectories.

A. Strain map computation

To accurately model the internal strains of a subject’s shoul-
der, the open-source computational musculoskeletal modeling
tool OpenSim is used. This software allows for biometrically
scaled subject models to be created and analyzed at a high
degree of fidelity and under all manner of physical input dy-
namics (both internal from the muscle activations themselves
and external). For the purposes of this work, the primary goal
is to inform the robot of the tendon strain on each of the
four rotator-cuff muscle tendons (strain map) throughout the
range of motion of the subject (see Fig. 4). This strain space is
obtained using OpenSim [22] and the Thoracoscapular Shoul-
der Model [9]. To generate muscle strain map, the proposed
approach requires position and velocity of the shoulder model
(joints) and the applied loads and their location.

As the rotator-cuff muscles span the glenohumeral joint we
consider only the three degrees of freedom that comprise the
motion of the humerus (upper arm) relative to the scapula
(shoulder blade). These include: shoulder elevation, with a
range of motion from -44 to 144 degrees; the plane in which

the arm is moved (referred to as plane of elevation throughout),
also known as horizontal abduction, with a range from -85 to
180 degrees; internal and external (axial) rotation, with a range
from -90 to 90 degrees (see Fig. 2).

To reduce computational costs during real-time operation,
complete strain maps are computed throughout the entire range
of motion for each muscle and at varying speeds and muscle
activation off-line. For this computation, the humerus was
posed in every possible combination of the selected three
degrees of freedom of the glenohumeral joint, using 4 degree
increments. The speed of the arm and the level of activation
of all four of the rotator-cuff muscles were set. The muscle
and tendon are allowed to reach equilibrium according to

fMo (afL(lM )fV(vM )+fPE(lM ))cosα−fMo fT(lT ) = 0, (1)

where fL, fPE, fT are the active force-length curve, passive
force-length curve and tendon force-length curve respectively,
fv is the force-velocity curve, a is the muscle activation, α is
the pennation angle, lM is the muscle fiber length, vM is the
muscle velocity, and lT is the tendon length and fMo is the max
isometric force. The muscle fiber length at equilibrium is then
used to determine the normalized muscle fiber force which is
then used to obtain the tendon length from the normalized
tendon force-length curve as detailed in [23]. The tendon
length and tendon slack length lo are then used to compute
percent tendon strain ε as

ε =
lT − lo

lo
· 100% (2)

Note that for the purpose of physical therapy after a rotator-
cuff tear, in this study we assume low muscle activation as the
subject is expected to be fully relaxed throughout the motion.
We precompute activated strain maps in anticipation of the
next phase of therapy involving low levels of activity such that
the measured input forces between the subject and the robot
end-effector can be used as feedback and for map/trajectory
updates.
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Fig. 4. Tendon strain maps represented by a heat spectrum. Four individual
rotator-cuff muscle tendon strains (upper graphs) and total combined (lower
graph) were used to plan motions that reduce the potential strain on one or
multiple tendons. Path indicates different motion paths for identical starting
pose and intermediate points, when different muscle tendons are prioritized.

Within the biomechanical shoulder model, the infraspinatus
muscle is divided into an inferior and a superior part, the
supraspinatus muscle into an anterior and a posterior part
and the subscapularis muscle into an inferior, medial and
superior part, while the teres minor muscle is not divided.
In determining the strain of each of the rotator-cuff muscle
tendons, the strains of those parts were compared for each
muscle at each position and the highest strain value was taken
to be representative of the strain of the entire muscle tendon.
This way, the strain space includes the highest possible strain
the tendon will undergo at any given position.

In addition, we reduce the size of our map to include
only feasible poses (-20-160 degrees for plane of elevation
and 0-144 degrees for shoulder elevation). Once these maps
have been computed for the subject, they are then stored in
the system for use by the robot in the planning and control
operations during therapy.

B. Safe Path Planning

With strain space maps computed for each of the four
rotator-cuff muscles, these maps can be utilized to plan trajec-
tories that avoid large strains in one or more muscle tendons
(see Fig. 5). To avoid the task of manually selecting safe
paths within these maps, we automate this procedure using
a weighted A* approach to path generation [24]. A strain

threshold (2 percent strain for the results presented here) is
first set, which will denote the barrier within the 3D map.
This threshold is easily changed to accommodate more/less
restrictive strain limits when that is desired. Regions above this
threshold cannot be selected as starting points or waypoints,
and the path planner will not cross these barriers.

With the barrier map determined, it is possible to run A*
to find the shortest path between any two points within the
strain space, however because our goal is to avoid straining
the tendons while increasing range of motion, we modify A*
to plan trajectories that result in reduced accumulated strain
throughout the entire trajectory. This results in generally longer
paths with reduced accumulated strain. To accomplish this,
we define the distance between each adjacent node within the
map by the strain of that node, εn. In addition, to allow for
A* to continue traversing the strain map towards the end goal,
we define a strain distance heuristic. While conventional A*
typically uses the Euclidean distance, deuclid as this heuristic,
to accommodate our strain weighted method, we multiply by
the mean of the strain εmean within the strain map as a gross
estimate of the strain likely to be experienced via a straight-
line path to the way-point/goal. The accumulated strain of
each node g(n) in the path along with this strain distance
estimate from the end goal h(n)) allows us to assert a cost
f(n) associated with each new node explored in the path.

f(n) = g(n) + h(n), (3)

g(n) =

n∑
i=1

εi, (4)

h(n) = εmean · deuclid. (5)

While this weighted A* approach allows us to automate the
path planning procedure, A* will still tend towards relatively
short paths between start and goal points. To improve the range
of motion while still allowing for low strain paths, the user can
select any number of waypoints within the map (see Fig. 5).
A* is then run between each point until the path is complete
to generate a complete, larger range of motion trajectory.

C. Trajectory Implementation and Control

Once a path has been chosen in the strain map, this path
must be transformed to the physical space of the robotic ma-
nipulator to allow for implementation of the planned trajectory.
To accomplish this, some prior information is necessary about
the starting pose of the human relative to the robot base frame,
as well as the arm length of the human. Subject specific data
(arm length, torso height) is entered along with the starting
pose of the human in the robot’s X,Y frame and the starting
rotation of the human body. For the tests presented here the
X,Y position of the subject has been fixed and the rotation
of the subject is either facing towards the robot’s X axis, or
rotated 90 degree and facing in the direction of the robot’s
Y axis. This allows testing paths that fall within the extreme
limits of the subjects planer elevation range of motion.

Once all subject-specific data has been entered and a path
has been generated, the path is then transformed into the
robot’s base frame coordinates. Reference frames are first
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Fig. 5. Example of a low tendon-strain trajectory of the shoulder within the
3D strain map set by a user-specified start point (1) and three waypoints, flags
(2), (3), and (4). Inset is a top-down view. Corresponding configurations of
the biomechanical model are shown in the middle row and the actual human
arm configurations as controlled by the robotic manipulator are captured in
the bottom row.

generated to maneuver the robot’s endpoint in a straight line
path to the subject’s starting position. To simplify this starting
procedure, the initial arm pose of the patient is always fixed
with the elbow at 90 degrees of shoulder elevation (parallel to
the floor) and facing in the direction of the robot’s X axis.

Next, the planned path trajectory is generated to maneuver
the patient’s arm through the prescribed path generated by
the weighted A* algorithm. Because the initial path planned
is at the resolution of the strain map (4 degrees for the tests
presented here), linear interpolation is done between each node
in the path prior to the path being transformed to the robot’s
(Cartesian) task space. The robot itself operates with a set
update rate of 200 Hz, thus the speed of the path is dependent
on the number of reference transforms provided between each
node. This speed is set prior to the initial path planning and
is fixed at 5 degrees/second for the tests demonstrated here.

The generated trajectory was controlled by a Cartesian
impedance controller [5] defined as

Fext =K
(
xd − xa

)
+D

(
ẋd − ẋa

)
, (6)

where Fext ∈ R6 is the interaction force vector acting from
the robot on the environment, K ∈ R6×6 and D ∈ R6×6 are
the desired stiffness and damping matrices in Cartesian space,
respectively, while xa ∈ R6 and xd ∈ R6 are the actual and
the reference pose vectors of the robot endpoint, respectively.
We then controlled the desired interaction force in Cartesian
space by the joint torques as

τ =M(q)q̈+C(q, q̇)q̇+g(q)+J(q)T
(
Fext+Fc(qh)

)
, (7)

where τ ∈ R7 is a vector of robot joint torques, q ∈ R7 is a
vector of robot joint angles, g ∈ R7 is the gravity vector, and
J ∈ R6×7, M ∈ R7×7 and C ∈ R7×7 are the robot Jacobian

matrix, mass matrix, and Coriolis and centrifugal matrix,
respectively. Fc ∈ R6 is a force vector used to compensate
the gravity acting on the human arm and is dependent on the
current configuration of the human shoulder qh.

The joint torques τh ∈ R3 induced into the human shoulder1

by the robot endpoint force Fext was as

τh = Jh(qh)
T
(
Fext + Fc(qh)

)
, (8)

and can be used as an input for the musculoskeletal model.
Note that due to the slow velocity of the arm for all applied
motions, we make the assumption that this is quasi-static.
The human arm Jacobian matrix Jh ∈ R6×3 and human arm
configuration qh ∈ R3 defined this transformation. In addition,
the human shoulder configuration qh can be calculated through
the kinematic model of the shoulder based on the measured
robot endpoint pose, which coincides with the human elbow
pose.

The stiffness matrix can be non-diagonal and has principal
axes rotated with respect to the robot base frame to regulate the
stiffness in arbitrary directions. The equally rotated damping
matrix was obtained by a double diagonalisation design [25]
depending on the current stiffness matrix as

D = 2QDξ

√
K0Q

T , (9)

where Q ∈ R6×6 and K0 ∈ R6×6 are eigenvectors and
eigenvalues obtained by the eigendecomposition of stiffness
matrix K = QK0Q

T . The diagonal matrix Dξ ∈ R6×6

contains damping factors, which were set to 0.7.

III. EXPERIMENTS

A. Experimental Setup

The presented research was approved by the Human Re-
search Ethics Committee of Delft University of Technology.
To evaluate the concept of robotic manipulation of the human
arm through the strain space, an arm brace was designed
to mount to the robotic manipulator and interface with the
human arm. This brace is comprised of a 6-axis load cell
(FTS-Delta SI-330-30, Schunk GmbH & Co. KG, Germany),
and a soft molded thermoplastic for orthopaedic splinting. In
addition, two 3D printed mounts allow for interfacing between
the thermoplastic brace and the load cell, and between the load
cell and the robotic endpoint. Velcro straps are used to fasten
the arm brace to the subjects arm. The entire brace mounts to
the endpoint such that the humerus is axially aligned with the
endpoint rotation, thus any axial rotation of the shoulder can
be directly controlled by the endpoint actuation.

In total, two healthy subjects were tested in these proof-
of-concept experiments. Prior to each test, the path planner
was adjusted to fit the shoulder height and humerus length
of each subject. Strength scaling has little effect because the
movement of the subject is expected to be primarily passive.
Each test trajectory shown was done with and without a subject
to demonstrate the impact of the subject’s arm on the ability
of the robot to track the reference trajectory. Conducting tests
without a subject also allows for confirming that the robot

1Shoulder typically has more degrees of freedom, however, in this study
we used the main three involving rotator-cuff muscles.
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Fig. 6. Varying shoulder trajectories maintaining low-strain for four different
conditions: (1) two point trajectory with non-compliance, (2) 0 degree axial
rotation starting pose, (3) -40 degree axial rotation starting pose and (4)
large range of motion are each projected on their respective strain map
corresponding to their starting axial-rotation pose. The two paths shown
correspond to executed robot trajectories with and without the subject.

would be capable of completing the reference trajectory. Once
this initial run has been conducted, the subject was positioned
at the previously set starting pose. The experimenter would
then initiate the trajectory via a keyboard interface. Once
the robot reaches the initial starting pose for the subject, it
maintains this pose until commanded to continue. The subject
would then place their arm in the brace and was next instructed
to relax their shoulder and to place the full weight of their arm
onto the brace, while maintaining an upright position. Once the
subject was relaxed and comfortable, the experimenter would
initiate the test trajectory. This trajectory could be paused or
aborted completely at any time, but this was not necessary for
any of the experiments shown.

Once each trajectory was completed, the subject was helped
out of the arm brace. Reference pose, actual pose, and force
data were saved for post processing and evaluation.

B. Results

Several metrics were used to validate the utility of the pro-
posed physiotherapy system. Positional tracking accuracy, total
accumulated path strain, max estimated strain, and reaction
forces were all measured and/or calculated to assess the ability
of the system to safely plan and execute trajectories utilizing
the biomechanics model, strain path planning and impedance
control system.

For this evaluation, we highlight four different trajectories,
each test with and without a subject present. Trajectory (1) is
a point-to-point path over a long range of motion. At the end
of this trajectory, the subject intentionally resisted the robotic
motion slightly (simulating a non-compliant patient). While
this does not result in any unsafe reaction from the system, it
does cause the trajectory to deviate from the target path as is
expected by the impedance controller.

Trajectories (2) and (3) demonstrate two similar sets of
waypoints selected at different axial rotation starting positions
(2) at 0 degrees, and (3) at -40 degrees of axial rotation. This

Fig. 7. 3D view of test (3) shown from start to finish. This includes the initial
starting pose of the end effect, the mounting of the arm brace on the subject’s
arm, and the complete trajectory in 3D space.

can be seen by the different heatmaps in the top right and
bottom left images appearing in Fig. 6.

Finally, trajectory (4) demonstrates the tendency of the path
planner to move towards the low strain point on the map,
retracing along the initial path it finds rather than taking the
shortest distance between the top two waypoints.

Max strains expected during these trajectories and the total
expected accumulated strain are shown in Table I. These
expected strains using the weighted A* approach are compared
to trajectories planned by the conventional A* algorithm and
generally show lower total path strains throughout. Weighted
A* and conventional A* approaches are denoted as W-A* and
C-A* respectively in I.

Fig. 6, shows all four sample trajectories highlighted within
their respective strain maps at a fixed axial rotation (for ease
of visualization), along with the actual trajectories measured
by the robotic arm with and without the applied load of the
subject’s arm. Fig. 7 shows endpoint trajectory (3) in 3D space
and Fig. 8 shows all four trajectories in x,y,z components. As
shown, the tracking errors were generally very low for the
unloaded case and increased slightly (typically less than 3 cm)
for the loaded case. Note the initial motion of the endpoint as
the subject enters the arm cuff.

As shown in Table II These errors were not significant
enough to substantially increase the strain experienced by the
subject during the trajectory and did not result in the subject
undergoing any large peak strains at any point during the
exercise. Finally, the force data is shown for two of these
example trajectories in Fig. 9. All force data is transformed
into the starting axial rotation pose of the trajectory such that
forces acting in the downward direction will be fully resolved
into the z direction of the endpoint, once the trajectory begins.
No large reaction forces were measured during any tests. In
general these forces stayed at or below the 40 N force expected
from the relaxed weight (approximately 4kg) of the subject’s
arm.

IV. DISCUSSION

There are several key benefits to our proposed approach. The
model and corresponding strain maps provide novel informa-
tion about how to tune end-point stiffness when interacting
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Fig. 8. Four different trajectories from tests (1), (2), (3) and (4). The two
resulting paths in x, y and z axes correspond to the reference trajectory given
and the actual trajectory followed by the endpoint.

TABLE I
WEIGHTED A* VS. CONVENTIONAL A*: MAX AND ACCUMULATED

STRAINS

Test Max C-A* Max W-A* Total C-A* Total W-A*
1 0.64 0.45 11.79 10.47
2 0.93 0.93 23.10 22.29
3 0.82 0.82 24.38 22.66
4 0.98 0.98 22.38 19.38

with patients. Impedance and task-space control formulations
enable us to manipulate the endpoint stiffness in varying
directions, but the strain map gradients provide the directions
needed to orient the endpoint stiffness such that the robot
resists movement along lines of increasing strain and is
compliant in the direction of decreasing strain.

The use of an industrial collaborative robot for delivery of
physiotherapy also has significant benefits. While a custom-
built exoskeleton/robot might have several advantages (larger
RoM, higher payload, more DoF) [26], [27] and the option to
optimise the mechanical design for a specific task and kine-
matic constraints [28], mass-produced industrial collaborative
robots are typically less costly and more readily available
compared to custom-built exoskeletons. Furthermore, such
robots require little additional training and include rigorous
safety features for human-robot interaction.

While we have successfully demonstrated how a collabo-
rative robot can be imbued with biomechanical awareness to

Fig. 9. Measured forces for tests (2) and (3). Note that test (3) involves an
initial axial rotation about the endpoint/humerus of -40 degrees. All forces
are displayed in the starting frame of the endpoint (after it has reached the
starting pose) such that downward forces on the arm brace are in the z-axis
of the endpoint coordinates.

TABLE II
ACTUAL MAX AND ACCUMULATED STRAINS

Test Max Weighted Actual Total Weighted Actual
1 0.42 9.00
2 0.92 18.73
3 0.85 21.94
4 0.74 13.28

guide physical therapy movements in healthy subjects, there
are some limitations that must be addressed before attempting
to transfer this technology to patients.

One limitation is the unknown accuracy of model estimated
rotator-cuff strains. While the model was compared to motion
and muscle activity in healthy individuals, it has not been
applied, yet, to the specific problem of estimating the strains of
the rotator-cuff muscles. Validation of this model from multi-
subject experiments is one of the most important steps we will
undertake to further the goals of this system.

For this initial study we have limited induced therapy to
passive movements where the subject allows the robot to
maneuver their arm without actively resisting. While this rep-
resents the earliest stages of therapy, later in recovery, patients
must begin to increase the activation of their muscles. With
this in mind, future work will focus on planning rehabilitation
exercises that safely allow for greater muscle activity and
forces.

While our model is capable of capturing the kinematics of
the scapula given sufficient measurements, the scapula degrees
of freedom were not tracked in this initial study. Our focus
was on the glenohumeral joint since its degrees of freedom
directly affect rotator-cuff muscle strains. Future work focused
on larger range of motion activities will need to better account
for the scapula pose. We are currently exploring methods using
inertial measurement units (on the acromion and sternum) and
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machine vision to track scapula movement during physical
therapy.

In the interest of patient engagement and safety, we continue
to explore interfaces such as grips and joysticks to easily
engage or disengage the system, or a manual override by
releasing their grasp. In this case, the robot returns the patient
to a neutral pose. The same action would be executed if
muscle strain and/or robot endpoint forces are above specified
thresholds.

We have presented a novel approach to biomechanically
aware robotics that puts safety and injury to a patient’s internal
structures at the forefront of robot control. It is a critical
first step to exploit industrial robots for the safe delivery of
physical therapy to patients. The next steps are clinical studies
to verify and enhance patient safety, but more importantly
for patients, to evaluate and improve the efficacy of robot-
mediated physical therapy. Further future work can focus on
extending the approach to other joints.
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