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A B S T R A C T

Motion control is one of the most critical aspects in the design of autonomous ships. During maneuvering,
the dynamics of propellers as well as the craft hydrodynamical specifications experience severe uncertainties.
In this paper, an adaptive control approach is proposed to control the motion and trajectory tracking of an
autonomous vessel by adopting neural networks that is used for estimating the dynamics of the propellers
and handling hydrodynamical uncertainties. Considering that the maneuvering model of a vessel resemble a
nonlinear non-affine-in-control system, the proposed neural-based adaptive control algorithm is designed to
estimate the nonlinear influence of the input function which in this case is the dynamics of propellers and
thrusters. It is also shown that the proposed methodology is capable of handling state dependent uncertainties
within the ship maneuvering model. A Lyapunov-based technique and Uniform Ultimate Boundedness are
used to prove the correctness of the algorithm. To assess the method’s performance, several experiments are
considered including trajectory tracking simulations in the port of Rotterdam.

1. Introduction

Autonomous Surface Vessels (ASVs) are types of ships that are
capable of observing and sensing their surrounding environment to
maneuver or carry out dynamic positioning operations without in-
tervention of human operators. Recently, the maritime industry has
started to investigate the possibility of bringing ASVs into operation.
Rolls Royce expects to be able to introduce a fully autonomous vessel
by 2035 (Rolls-Royce, 2017). ASVs can be beneficial from several points
of view such as crew cost and safety. Many dangerous operations can
be carried out by ASVs where there is no operator on-board. ASVs
are extensively investigated by the scientific community to address
numerous existing challenges on the way of having an operational
fully-autonomous ship. These researches fall into topics such as mo-
tion control of ASVs (Fossen, 2011; Zheng, Negenborn, & Lodewijks,
2016b), coordination between multiple ASVs (Peng, Wang, & Wang,
2018; Zheng, Negenborn, & Lodewijks, 2016a), and interaction of
components inside ASVs (Haseltalab, Negenborn, & Lodewijks, 2016).

One of the major challenges within the control of ASVs is the prob-
lem of uncertainties in the craft and its components model. Recently,
several research works have been published to address this problem.
In Skjetne, Smogeli, and Fossen (2004), a maneuvering model for a
ship is extracted and an adaptive controller is implemented to control
and estimate the ship parameters. In Zhao, He, and Ge (2014), the tra-
jectory tracking problem is investigated using neural-adaptive control
schemes where there exist several output constraints and parameter
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uncertainties in the craft model. A neural learning control strategy
is adopted in Dai, Wang, and Wang (2016) to guarantee trajectory
tracking of an ASV with uncertainties in the model. In Chen, Ge, How,
and Choo (2013), a robust adaptive control strategy in combination
with back-stepping and Lyapunov techniques is adopted to control the
position of a ship in the presence of system uncertainties and unknown
environmental disturbances. The use of fuzzy control approaches for
adaptive track keeping is investigated in Velagić, Vukić, and Omerdić
(2001). In Sørensen and Breivik (2015), the performance of two differ-
ent popular adaptive control algorithms for ASVs is compared where
it is assumed that the vessel model is uncertain. Adoption of adaptive
schemes for dynamic positioning is investigated in Du, Hu, Krstić, and
Sun (2016, 2018) in the presence of uncertainty and unknown environ-
mental disturbances. In Geertsma, Visser, and Negenborn (2018), an
adaptive scheme is proposed for pitch control of propellers to reduce
fuel consumption. Adaptive control of ASVs with input constraints is
investigated in Liu, Wang, Peng, Chen, and Li (2019). Despite all these
research projects, the use of adaptive control schemes in the maritime
industry is still at its infancy.

The problem of uncertainty within propeller dynamics is not con-
sidered in any of the above works. It has been shown in the literature
that the dynamics of propellers experience a relatively large amount
of uncertainty during maneuvering of the vessel (Schulten, 2005). This
makes the speed and position control of ASVs challenging. Considering
the propellers shaft speed as the system input, the governing dynamical
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equation of the system is a non-affine in control system. As a result, the
objective is to design a control algorithm that carries out the motion
and position control of the ship by on-line approximation of propellers
dynamics and handling hydrodynamical uncertainties within the vessel
model.

The adaptive control of systems with uncertain dynamical models
has received extensive consideration by the academic community in
the recent decades. Among the diverse methodologies to control a
nonlinear uncertain system using adaptive strategies, adaptive control
using Neural Networks (NN) has been recognized as a feasible scheme
where the unmodeled dynamics are estimated by NN (Das & Lewis,
2010; Rovithakis & Christodoulou, 2000). In most of the published re-
searches, the common assumption is that the system is affine-in-control,
i.e., the control inputs appear linearly in the dynamical equations of the
system. Notable works are Lewis, Yesildirak, and Jagannathan (1998),
and Yesildirek and Lewis (1995) where the proposed methodologies
are designed based on feedback linearization. The difficulty with the
control of non-affine uncertain systems where the control input appears
as a nonlinear function 𝑔(⋅), is that the inverse of 𝑔(⋅), in general, does
not have an explicit form, even if its existence can be shown with the
Implicit Function Theorem (Nijmeijer & van der Schaft, 1990). Several
strategies to control such non-affine systems have been proposed in the
literature. In Lane and Stengel (1988) and Nijmeijer and van der Schaft
(1990), the non-affine control problem is converted into an affine-
in-control problem by defining a new control input that contains an
integrator. On the other hand, in Ge and Zhang (2003), NN is used
to design an inverse controller while in Calise, Hovakimyan, and Idan
(2001), the inversion error is approximated using NN. Moreover, time-
scale separation methods were applied in Hovakimyan, Lavretsky, and
Sasane (2005) and Lavretsky and Hovakimyan (2005).

Considering the vessel model and by building up on our previous
research results in Haseltalab and Negenborn (2017a), an adaptive
control methodology for a class of non-affine-in-control systems is
proposed where the unknown nonlinear influence of the system input
is estimated using NN, so that the ASV can follow the given tra-
jectory with the desired speed. In this paper, it is also shown that
the proposed methodology is capable of handling state dependent
uncertainties within the hydrodynamical model of the ship. To achieve
these goals, the results in Lewis et al. (1998) for adaptive control of
affine-in-control systems are extended to control of partially unknown
non-affine systems. An algorithm is proposed to address the problem
of controlling a class of non-affine systems where the dynamics of
the input function 𝑔(⋅) is unknown or uncertain where 𝑔(⋅) is the
generated thrust by the propeller. By the adoption of NN, particu-
larly the results in Hornik, Stinchcombe, and White (1989) and the
Weierstrass approximation theorem (Stone, 1948), the inverse of 𝑔(⋅)
is calculated and by adopting a control law the stability of the system
is guaranteed. For the stability analysis, the Lyapunov technique as well
as Uniform Ultimate Boundedness are employed and it is then shown
that the reference trajectory tracking error converges to a residual set.
The algorithm transforms the system to an affine-in-control system and
then, by approximating 𝑔−1(⋅), estimates the feasible control input. It
is also shown that this strategy is capable of handling state dependent
uncertainties within the hydrodynamical model of the ship. In order
to evaluate the performance of the algorithm, several experiments are
carried out. Based on actual Automatic Identification System (AIS)
data received from the Port of Rotterdam Authority, a maneuvering
experiment is carried out. It is assumed that the ship model embeds
a Direct Current (DC) power and propulsion system (Haseltalab &
Negenborn, 2017b) in order to assess the interaction of the proposed
algorithm with the on-board power and propulsion system. Moreover,
a dynamic positioning experiment and a circular trajectory tracking
experiment are performed. Compared to Haseltalab and Negenborn
(2017a), this paper contains several novelties. Some of the significant
novel aspects are:

1. The problem of uncertainty in the propeller model is discussed
in-detail and reasons behind the adoption of an adaptive control
scheme for trajectory tracking are discussed.

2. A more complex ship model is considered which comprises all
maneuvering model elements in 3 degrees of freedom.

3. The problem formulation and the correctness proof of the al-
gorithm are carried out for Multi-Input Multi-Output (MIMO)
systems, while in Haseltalab and Negenborn (2017a) the problem
formulation was carried out for Single-Input Single-Output (SISO)
systems.

4. In this paper, it is also shown that this strategy is capable of
handling state dependent uncertainties.

5. For evaluating the performance of the algorithm, more sophisti-
cated scenarios are considered where a trajectory of a real ship in
the port of Rotterdam is used as a reference trajectory. Moreover,
the interaction of the proposed methodology with on-board power
and propulsion system of ships is evaluated.

The remainder of this paper is organized as follows. In Section 2,
the problem of uncertainty in propeller dynamics is explained. In
Section 3, the overall system is described and the problem is for-
mulated. In Section 4, the algorithm is presented and its proof of
correctness is given. Simulation experiments and results are discussed
in Section 5. Concluding remarks and future research directions are
given in Section 6.

2. Propellers model and the problem of uncertainty

The propellers and thrusters are the main components for the gener-
ation of required forces to propel a ship aligned to its given referenced
trajectory. Based on the propeller model, the required forces can be
determined by introducing a proper shaft speed to the propellers and
thrusters. As a result, the propeller shaft speed is treated as the sys-
tem input. These actuators are also the main link between on-board
power and propulsion system and surrounding environment of the
ship. The relationship between the propeller shaft speed and the gen-
erated thrust and torque can be established based on the following
relationships (Izadi-Zamanabadi & Blanke, 1999):

𝑇p = 𝐾T𝜌𝐷
4
|𝑛p|𝑛p (1)

𝑄p = 𝐾Q𝜌𝐷
5
|𝑛p|𝑛p, (2)

where 𝑇p is the generated thrust, 𝑄p is the generated torque, 𝑛p is
the propeller shaft speed, 𝐷 is the propeller diameter, and 𝜌 is the
water density. Parameters 𝐾T and 𝐾Q are thrust and torque coeffi-
cients, which are functions of propeller structure and advance ratio
𝐽 (Barnitsas & Ray, 1981), defined as:

𝐾T = 𝑓𝐾𝑇 (𝐽 , 𝑃∕𝐷,𝐴e∕𝐴o, 𝑍,𝑅n, 𝑡c)

𝐾Q = 𝑓𝐾𝑄 (𝐽 , 𝑃∕𝐷,𝐴e∕𝐴o, 𝑍,𝑅n, 𝑡c),

where 𝑃∕𝐷 is the pitch ratio, 𝐴e∕𝐴o is the blade area ratio, 𝑍 is the
number of propeller blades, 𝑅n is the Reynolds number of a characteris-
tic ratio and 𝑡c is the ratio of maximum propeller thickness to the length
of the cord at a characteristic radius. Moreover, the advance ratio is
defined as:

𝐽 =
𝑉a
𝑛p𝐷

,

where 𝑉𝑎 is the advanced speed that is the speed of water passing
through propellers found using the following equation:

𝑉𝑎 = (1 −𝑤)𝑈, (3)

with 𝑈 the forward speed of the vessel and 𝑤 the wake friction,
depending on the shape of the hull.

Functions 𝑓𝐾T
and 𝑓𝐾Q

were estimated in Barnitsas and Ray (1981)
and van Oossanen and Oosterveld (1975) in terms of very long and
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Fig. 1. Open water diagram for Wageningen B 5 75 with pitch ratio 0.96 where 𝜂𝑜 is
the open water efficiency (Woud & Stapersma, 2002).

complex polynomials. However, typically, these functions are approx-
imated using 𝐽 and open water diagram where the performance of
propellers are assessed, i.e., 𝐾𝑇 and 𝐾𝑄 are functions of 𝐽 . Fig. 1 shows
an open water diagram of a fixed pitch propeller belonging to the
Wageningen B systematic series.

The modeling of propellers has always been a challenge in the
maritime industry where a thorough model has not been proposed so
far (for more information on this please refer to Schulten (2005) and
references therein). During maneuvering of a vessel, the propellers be-
have differently compared to when sailing straight. When a ship turns,
due to the presence of lateral velocity, the inflow to the propellers is
slanting and not axial. As a result, the advance ratio 𝐽 will decrease and
more load is applied to propellers. Since, the open water diagram (and
any other performance diagrams) is based on axial flow, they cannot
be used directly (Gutsche, 1975; Schulten, 2005). Several analytical
approaches have been proposed to solve this problem, however each
of them contains a great amount of uncertainty.

Moreover, in a turn, the wake factor is also influenced. During
straight courses, the wake is uniformly distributed but in a turn, the
transversal velocity component is not dispersed uniformly and in the
lower half of the propeller blade, the transversal velocity is way larger
than the upper half (Kuiper, Grimm, McNeice, Noble, & Krikke, 2002;
Schulten, 2005). Fig. 2 represents for a particular vessel the difference
between the results of a propeller model and measured values (Schul-
ten, 2005), indicating the significant uncertainty in the model. In
conventional ships, this problem might not be very critical since the
control inputs are given by human operators. However in ASVs and dur-
ing autopilot modes, this problem might result in inaccurate guidance.
Since it has been shown in the literature that having an accurate and
simple model for propellers is challenging, in this paper, the objective
is to design an algorithm to control the ship maneuvering by on-line
approximation of propellers dynamics.

3. System description and problem formulation

In this section, the ship motion dynamics in 3 Degrees of Freedom
(DoF) is presented where actuators (propellers and thrusters) shaft
speeds are regarded as control input variables and ship position and
speed are output variables. In this section, it is assumed that the
relationship between propellers shaft speeds and generated torque and
thrust is unknown. Then, the problem is formulated where the aim is
to control the ship motion by estimating the propellers dynamics.

Fig. 2. The difference between measured propeller torque and the outcome of the
model during a turn (Schulten, 2005).

3.1. ASV dynamics

In the context of this paper, the 3DoF motion of the ship is consid-
ered. The ship model can then be represented as:

�̇�𝑠(𝑡) = 𝑅
(

𝜂𝑠(𝑡)
)

𝑉 (𝑡)

𝑀𝑠�̇� (𝑡) + 𝐶𝑠
(

𝑉 (𝑡)
)

𝑉 (𝑡) +𝐷𝑠
(

𝑉 (𝑡)
)

𝑉 (𝑡) = 𝜏𝑠,
(4)

where 𝜂𝑠(𝑡) = [𝑥s(𝑡), 𝑦s(𝑡), 𝛿s(𝑡)] is a vector with the position and orienta-
tion of the ship at time 𝑡, 𝑉 (𝑡) = [𝑢(𝑡), 𝑣(𝑡), 𝑟(𝑡)]𝑇 is the 3DoF ship speed
and 𝜏𝑠 is the vector of forces applied to the ship center of gravity. 𝑀𝑠 is
the Inertial Mass matrix which consists of Rigid Body matrix 𝑀RB and
Added Mass matrix 𝑀A,

𝑀𝑠 =𝑀RB +𝑀A (5)

where

𝑀RB =
⎡

⎢

⎢

⎣

𝑚s 0 0
0 𝑚s 𝑚s𝑥g
0 𝑚s𝑥g 𝐼z

⎤

⎥

⎥

⎦

,𝑀A =
⎡

⎢

⎢

⎣

−𝑋u̇ 0 0
0 −𝑌v̇ −𝑌ṙ
0 −𝑁v̇ −𝑁ṙ

⎤

⎥

⎥

⎦

. (6)

𝑚s is the mass of the vessel, 𝑥g is the distance between the center of
gravity of the vessel to the center of the body-fixed coordinate frame.

𝐶s(⋅) represents Coriolis and Centrifugal matrices which consists of
rigid-body and added Coriolis and centripetal parts as:

𝐶s(𝑉 ) = 𝐶RB(𝑉 ) + 𝐶A(𝑉 ), (7)

where

𝐶RB(𝑉 ) =
⎡

⎢

⎢

⎣

0 0 −𝑚s(𝑥g𝑟 + 𝑣)
0 0 𝑚s𝑢

𝑚s(𝑥g𝑟 + 𝑣) −𝑚s𝑢 0

⎤

⎥

⎥

⎦

𝐶A(𝑉 ) =
⎡

⎢

⎢

⎣

0 0 𝑐13(𝑉 )
0 0 𝑐23(𝑉 )

−𝑐13(𝑉 ) −𝑐23(𝑉 ) 0

⎤

⎥

⎥

⎦

,

(8)

with 𝑐13(𝑉 ) = 𝑌v̇𝑣 +
1
2 (𝑁v̇ + 𝑌ṙ ) and 𝑐23(𝑉 ) = −𝑋u̇𝑢.

The Damping matrix 𝐷𝑠 is constructed by addition of two linear and
nonlinear matrices, i.e.,

𝐷s(𝑉 ) = 𝐷L +𝐷NL(𝑉 ) (9)

where

𝐷L =
⎡

⎢

⎢

⎣

−𝑋u 0 0
0 −𝑌v −𝑌r
0 −𝑁v −𝑁r

⎤

⎥

⎥

⎦

𝐷NL(𝑉 ) =
⎡

⎢

⎢

⎣

−𝑑11(𝑉 ) 0 0
0 −𝑑22(𝑉 ) −𝑑23(𝑉 )
0 −𝑑32(𝑉 ) −𝑑33(𝑉 )

⎤

⎥

⎥

⎦

.

(10)

3
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Fig. 3. An ASV with two propellers (𝐹1 and 𝐹2), one side thruster (𝐹3) and a bow
thruster (𝐹4).

with 𝑑11(𝑉 ) = 𝑋
|𝑢|𝑢|𝑢| + 𝑋𝑢𝑢𝑢𝑢2, 𝑑22(𝑉 ) = 𝑌

|𝑣|𝑣|𝑣| + 𝑌
|𝑟|𝑣|𝑟|, 𝑑23(𝑉 ) =

𝑌
|𝑣|𝑟|𝑣|+𝑌|𝑟|𝑟|𝑟|, 𝑑32(𝑉 ) = 𝑁

|𝑣|𝑣|𝑣|+𝑁|𝑟|𝑣|𝑟| and 𝑑33(𝑉 ) = 𝑁
|𝑣|𝑟|𝑣|+𝑁|𝑟|𝑟|𝑟|.

For more information on the model and the parameters, the reader is
referred to Fossen (2011) and Skjetne et al. (2004).

Matrix 𝑅(𝜂) is a Jacobian matrix that transforms ship velocity from
body-fixed to inertial velocities, defined as:

𝑅(𝜂𝑠) =
⎡

⎢

⎢

⎣

cos(𝛿) − sin(𝛿) 0
sin(𝛿) cos(𝛿) 0
0 0 1

⎤

⎥

⎥

⎦

, (11)

in which 𝛿 is the ship heading angle, 𝜏𝑠 is the vector of forces applied
to the ship center of gravity, i.e.,

𝜏𝑠 =
⎡

⎢

⎢

⎣

𝜏𝑥
𝜏𝑦
𝜏𝛿

⎤

⎥

⎥

⎦

, (12)

where 𝜏x and 𝜏y are surge and sway forces and 𝜏𝛿 is yaw moment, all
applied to the gravity center of the ship.

For the sake of simplicity, it is assumed that the propellers are not
rotatable. As a result, the relationship between the produced thrust by
actuators (propellers and thrusters) and the vector of forces is Fossen
(2011):

𝜏𝑠 = 𝑇3×𝑚
⎡

⎢

⎢

⎣

𝑔1(𝑛1)
⋮

𝑔𝑚(𝑛𝑚)

⎤

⎥

⎥

⎦

, (13)

where 𝑔1, …, 𝑔𝑚 are actuators dynamics, 𝑛1, …, 𝑛𝑚 are actuators shaft
speeds, 𝑚 is the number of actuators, and 𝑇 is the thrust configuration
matrix defined as:

𝑇 =
[

𝑡1 ... 𝑡𝑚
]

, (14)

with 𝑡1, 𝑡2, . . . , 𝑡𝑚 column vectors for standard actuators. If the actuator
is a propeller, then:

𝑡𝑖 =
⎡

⎢

⎢

⎣

1
0
−𝑙y

⎤

⎥

⎥

⎦

; (15)

if the actuator is a stern or bow thruster, then:

𝑡𝑖 =
⎡

⎢

⎢

⎣

0
1
𝑙x

⎤

⎥

⎥

⎦

, (16)

where 𝑙𝑦 and 𝑙𝑥 are actuator positions in the ASV reference frame
(Fig. 3). Since, generally, 𝑇 is not a square matrix the solution to the
problem of unconstrained thrust allocation to non-rotatable actuators
can be found using the pseudo-inverse of 𝑇 :

𝜏ac = 𝑇 T(𝑇𝑇 −1)−1𝜏s. (17)

where 𝜏ac is the vector of generated thrust by propelling actuators.

In this paper, it is assumed that 𝑔1, …, 𝑔𝑚 are unknown functions.
For the algorithm design, the first step is to represent (4) in state space
format. As a result, we have:

�̇� = −𝑀−1
s

(

𝐶s(𝑉 )𝑉 +𝐷s(𝑉 )𝑉 − 𝜏s
)

�̇� = 𝑇 (𝜂s)𝑉 .
(18)

Eq. (18) can be rewritten in the following form:

�̇�s = 𝑓s(𝑥s) +
[

𝑀−1
s

03×3

]

𝜏𝑠, (19)

where 𝑥s =
[

𝑣𝑇 𝜂𝑇s
]𝑇 is the vector of states, 𝑓 ∶ R6 → R6 is a nonlinear

function. By combining (13) and (19) we obtain:

�̇�𝑠 = 𝑓𝑠(𝑥𝑠) +
[

𝑀−1
𝑠 𝑇

03×𝑚

]

⎡

⎢

⎢

⎣

𝑔1(𝑛1)
⋮

𝑔𝑚(𝑛𝑚)

⎤

⎥

⎥

⎦

, (20)

�̇�𝑠 = 𝑓𝑠(𝑥𝑠) + 𝑔𝑠(𝑢𝑠). (21)

where 𝑔𝑠 ∶ R𝑚 → R6 is a nonlinear function that contains the
influence of input variables to the system and 𝑢s = [𝑛1, 𝑛2,… , 𝑛𝑚]𝑇 is
the vector of actuators shaft speeds. In the remainder of this paper, (21)
is considered as the dynamics of the ASV, a Multi-Input Multi-Output
(MIMO) non-affine in control system.

3.2. Problem formulation

Consider the following class of non-affine systems:

�̇�(𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑢(𝑡)) + 𝜔(𝑡), (22)

where 𝑥(𝑡) ∈ R𝑛 is the state of the system, 𝑢(𝑡) ∈ R𝑚 is the system input,
𝜔(𝑡) ∈ R𝑛 is the disturbance applied to the system, 𝑓 ∶ R𝑛 → R𝑛 is a
Lipschitz continuous nonlinear function and 𝑔 ∶ R𝑚 → R𝑛 is a nonlinear
continuously differentiable function with 𝑔1(0) = 0, …, 𝑔𝑛(0) = 0. In the
context of this paper, it is assumed that the function 𝑔(⋅) is unknown
but satisfies the following assumption:

Assumption 1. There exists a lower bound and an upper bound 𝛾𝑙,
𝛾𝑢 ∈ R, such that

0 < 𝛾𝑙 <
|

|

|

𝐽
(

𝑔
(

𝑢(𝑡)
)

)

|

|

|

< 𝛾𝑢 (23)

for all 𝑡 ≥ 0.

Using the Implicit Function Theorem and assumptions on 𝑔(⋅), the exis-
tence of 𝑔−1(⋅) can be demonstrated (Nijmeijer & van der Schaft, 1990).
The above assumptions on the system dynamics are moderately mild
and can be concluded for broad classes of nonlinear systems (Boskovic,
Chen, & Mehra, 2001; Nijmeijer & van der Schaft, 1990).

Assumption 2. The overall disturbance acting upon the system is
bounded, i.e., there exists 𝜔𝑀 > 0 such that ‖𝜔(𝑡)‖ ≤ 𝜔𝑀 for all 𝑡 ≥ 0.

Suppose 𝑥𝑅(𝑡) is the desired trajectory of the system. Then, one can
write the trajectory tracking error of the system as:

𝑒(𝑡) = 𝑥𝑅(𝑡) − 𝑥(𝑡). (24)

The objective is to design an adaptive controller that adopts state
feedback to ensure that 𝑥(𝑡) follows 𝑥𝑅(𝑡) for all 𝑡 > 0.

4. The adaptive control strategy

In this section, the proposed control strategy for the aforementioned
class of non-affine systems is explained and the stability analysis and
the proof of correctness are carried out.

4
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4.1. Proposed control strategy

The control strategy is based on transforming the non-affine system
to an affine nonlinear system and then, keeping 𝑒(𝑡) in a residual set by
approximating 𝑔−1(.) and adopting a proper control law. Let

𝑈 (𝑡) = 𝑔
(

𝑢(𝑡)
)

, (25)

where 𝑈 ∈ R𝑛 is treated as the control signal for the affine-in-control
system, i.e.,

�̇�(𝑡) = 𝑓 (𝑥) + 𝑈 (𝑡) + 𝜔(𝑡). (26)

Similarly as earlier research works in adaptive control (such as Das
& Lewis, 2010; Yang & Calise, 2007), we define the following control
law for the above system:

𝑈 (𝑡) = 𝑘𝑒(𝑡) − 𝑓 (𝑥), (27)

where 𝑘 is the controller gain, which will be determined below using
a Lyapunov technique. By adopting the above control rule, it can be
shown that (26) can follow the desired trajectory 𝑥𝑅(𝑡). However, in
the problem considered in this paper, one of the main challenges is that
𝑈 (𝑡) is not recognizable for the non-affine system (22), i.e., generally,
𝑢(𝑡) cannot be computed using 𝑈 (𝑡). Therefore, the objective is to
estimate 𝑢(𝑡) using the trajectory tracking error of the system and a
well-tuned controller gain.

Based on the results in the literature (Hornik et al., 1989) and sim-
ilar to the methodology used in Lewis et al. (1998), feed-forward NNs
with one hidden layer are capable of approximating any continuous
function on a compact set, regardless of the nature of NN activation
functions and input space dimensions. Assume 𝑔−1(⋅) as the inverse of
𝑔(⋅). Let us define 𝑔−1(⋅) as:

𝑔−1(𝑈 ) = 𝑑𝑖𝑎𝑔−1
(

𝑊 𝑇𝜓(𝑈 )
)

+ 𝜖, (28)

where 𝜓(𝑈 ) ∈ R𝑁×𝑛 is known as the vector of NN activation func-
tions, 𝑊 ∈ R𝑁×𝑛 is the ideal approximation weight vector, 𝜖 is the
approximation error and 𝑁 is the number of neurons. In the presented
methodology, the controller updates its set of weights �̂� based on the
tracking error 𝑒(𝑡) to approximate 𝑔−1(⋅). As a result, at each time 𝑡 ≥ 0,
the estimation of 𝑔−1(⋅) can be written as:

�̂�−1
(

𝑈
)

= 𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇𝜓(𝑈 )
)

, (29)

where �̂�−1(.) and �̂� are estimates of 𝑔−1(⋅) and 𝑊 , respectively. The
𝑑𝑖𝑎𝑔(.) operator is defined as:

𝑑𝑖𝑎𝑔
(

𝐴
)

=
⎡

⎢

⎢

⎣

𝑎1 0 ...
0 𝑎2 ...
0 0 ⋱

⎤

⎥

⎥

⎦

where 𝐴 = [𝑎1, 𝑎2,…]𝑇 and 𝑑𝑖𝑎𝑔−1
(

𝑑𝑖𝑎𝑔(𝐴)
)

= 𝐴. The error in the
estimation of 𝑔−1(⋅) can be defined as:

�̃�−1(𝑈 ) = 𝑔−1(𝑈 ) − �̂�−1(𝑈 ) = 𝑑𝑖𝑎𝑔
(

�̃� 𝑇𝜓(𝑈 )
)

+ 𝜖, (30)

where

�̃� = 𝑊 − �̂� (31)

is the weight approximation error. Furthermore, using (29), the error
dynamics of system (22) can be determined as:

�̇�(𝑡) = −
(

𝑓
(

𝑥(𝑡)
)

+ 𝑔
(

𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇𝜓(𝑈 )
))

+ 𝜔(𝑡) − �̇�𝑅(𝑡)
)

. (32)

Consider the following update rule for �̂� :

̇̂𝑊 = −𝛤𝜓(𝑈 )𝑑𝑖𝑎𝑔
(

𝑒(𝑡)
)

− 𝜇𝛤�̂� , (33)

where 𝛤 is a diagonal 𝑁×𝑁 matrix with positive diagonal elements and
𝜇 ∈ R is the NN tuning gain. The complete proposed adaptive control
algorithm for the non-affine system (22) is described in Algorithm 1.

Algorithm 1 Adaptive Control Algorithm for Non-Affine Systems:
Initialization: Obtain 𝑥(0) and 𝑥𝑅(𝑡). Assign initial values to the ele-
ments in the vector of weights.
1: Calculate 𝑒(𝑡) using (24).
2: Compute 𝑈 using (27) at each time 𝑡.
3: Estimate 𝑢 by adopting (29).
4: Apply 𝑢 to the system.
5: Update the vector of weights based on (33).
6: Obtain the state of the system and go to 1.

4.2. Stability analysis and the algorithm design

In this section, the stability analysis of the algorithm is carried out.
By employing uniform ultimate boundedness, it is shown that the error
𝑒(𝑡) converges to a residual set and states stay bounded for all 𝑡 ≥ 0.

Definition 1 (Uniform Ultimate Boundedness). The solution to system
(22) is Uniformly Ultimately Bounded with the ultimate bound 𝑏 ∈ R, if
there exists a positive constant 𝑐 ∈ R, independent of 𝑡0 ≥ 0, and if for
all 𝑎 ∈ (0, 𝑐), there is 𝜏 = 𝜏(𝑎, 𝑏) such that:

‖

‖

𝑥(𝑡0)‖‖ ≤ 𝑎⇒ ‖𝑥(𝑡)‖ ≤ 𝑏,∀𝑡 ≥ 𝑡0 + 𝜏.

If the above statement holds for arbitrarily large 𝑎 then the solution is
Globally Uniformly Ultimately Bounded.

The above definition can be extended also to the trajectory tracking
error 𝑒(𝑡). Indeed, our intention is to show that the error is uniformly
ultimately bounded and that the state 𝑥(𝑡) is contained for all 𝑡 ≥ 0.
Therefore, considering the boundedness of 𝜖, i.e., there exists a positive
real value 𝜖𝑀 such that 𝜖(𝑡) < 𝜖𝑀 for all 𝑡 ≥ 0 (Stone, 1948), there exists
a vector of activation functions 𝜓(.) and a set of weights, both with
dimension 𝑁 × 1, such that as 𝑁 → ∞, 𝜖 converges to zero (Hornik
et al., 1989; Lewis et al., 1998; Stone, 1948).

Before presenting the main result of the paper, the following as-
sumptions must be considered, in order to prove the correctness of
Theorem 1.

Assumption 3. The desired trajectory 𝑥𝑅(𝑡) and its derivative �̇�𝑅(𝑡) are
bounded, i.e., there exists 𝑥𝑀 ∈ R such that max{|𝑥𝑅(𝑡)|, |�̇�𝑅(𝑡)|} ≤ 𝑥𝑀 ,
for all 𝑡 ≥ 0.

Assumption 4. The elements in the vector of ideal weights 𝑊 are
bounded, i.e., there exists 𝑊𝑀 ∈ R such that ‖𝑊 ‖ ≤ 𝑊𝑀 .

Assumption 5. The NN activation functions are bounded. As a result,
there is a positive real value 𝜓𝑀 such that ‖𝜓(.)‖ ≤ 𝜓𝑀 .

It is worthy to mention that for designing the controller, having
the knowledge over the bounds discussed in Assumptions 1–4 is not
required.

Next, we analyze the stability of the proposed method and demon-
strate the feasibility of the choices for control law (27) and the update
rule for the NN weights (33).

Theorem 1. Suppose the control and the NN weight update laws are:

𝑈 = 𝑘𝑒(𝑡) − 𝑓 (𝑥(𝑡))
̇̂𝑊 = 𝛤𝜓(𝑈 )𝑑𝑖𝑎𝑔

(

𝑒(𝑡)
)

+ 𝜇𝛤�̂� .

If

𝑘 >
1
4 (𝑀 + 1)2𝜓2

𝑀

𝜇
, (34)

5
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where 𝑀 is the Lipschitz constant of 𝑔(⋅), then the trajectory tracking error
𝑒(𝑡) and NN weights estimation error �̃� are UUB and there exists a set of
NN activation functions and a vector of weights with which the nonlinearities
of 𝑔−1(.) can be approximated.

Proof. Consider the following Lyapunov function:

𝑉 = 1
2
𝑒𝑇 𝑒 + 1

2
𝑇 𝑟

(

�̃� 𝑇𝛤−1�̃�
)

(35)

with 𝑇 𝑟(⋅) as the trace operator. Then, the derivative of 𝑉 is:

�̇� = �̇�𝑇 𝑒 + 𝑇 𝑟
(

̇̃𝑊 𝑇𝛤−1�̃�
)

. (36)

From (32),

�̇� = −
(

𝑓
(

𝑥(𝑡)
)

+ 𝑔
(

𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇𝜓(𝑈 )
))

+ 𝜔(𝑡) − �̇�𝑅(𝑡)
)𝑇
𝑒

+𝑇 𝑟
(

̇̃𝑊 𝑇𝛤−1�̃�
)

. (37)

Since, in this paper, it is assumed that 𝑓 (𝑥) is determined, using (25)
and (27), the above equation can be rewritten as:

�̇� = −
(

𝑘𝑒 − 𝑔(𝑢) + 𝑔
(

𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇𝜓(𝑈 )
))

+ 𝜔(𝑡) − �̇�𝑅(𝑡)
)𝑇
𝑒

+ 𝑇 𝑟
(

̇̃𝑊 𝑇𝛤−1�̃�
)

= − 𝑘𝑒𝑇 𝑒 +
(

𝑔(𝑢) − 𝑔
(

𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇𝜓(𝑈 )
))

)𝑇
𝑒 + 𝜔(𝑡)𝑇 𝑒

− �̇�𝑅(𝑡)𝑇 𝑒 + 𝑇 𝑟
(

̇̃𝑊 𝑇𝛤−1�̃�
)

.

Using (33), we have:

�̇� = −𝑘𝑒𝑇 𝑒 +
(

𝑔(𝑢) − 𝑔
(

𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇𝜓(𝑈 )
))

)𝑇
𝑒 + 𝜔(𝑡)𝑇 𝑒

− �̇�𝑅(𝑡)𝑇 𝑒 + 𝑇 𝑟
(

(

𝜓(𝑈 )𝑑𝑖𝑎𝑔
(

𝑒(𝑡)
)

+ 𝜇�̂�
)𝑇 �̃�

)

and by adopting (31),

�̇� = −𝑘𝑒𝑇 𝑒 +
(

𝑔(𝑢) − 𝑔
(

𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇𝜓(𝑈 )
))

)

𝑒 + 𝜔(𝑡)𝑇 𝑒

− �̇�𝑅(𝑡)𝑇 𝑒 + 𝑇 𝑟
(

(

𝜓(𝑈 )𝑑𝑖𝑎𝑔
(

𝑒(𝑡)
)

+ 𝜇(𝑊 − �̃� )
)𝑇 �̃�

)

.

Taking into account the smoothness of 𝑔(.) which indicates its Lipschitz
continuity and Assumptions 2, 4 and 5, it can be concluded that

�̇� ≤ −𝑘 ‖𝑒‖2 +𝑀 ‖𝑒‖ ‖‖
‖

𝑢 − �̂� 𝑇𝜓(𝑈 )‖‖
‖𝐹

+ 𝜔𝑀 ‖𝑒‖ + 𝑥M ‖𝑒‖

+𝜓𝑀 ‖𝑒‖ ‖
‖

�̃� ‖

‖𝐹 + 𝜇𝑊𝑀
‖

‖

�̃� ‖

‖𝐹 − 𝜇 ‖
‖

�̃� ‖

‖

2
𝐹 , (38)

where 𝑀 is the Lipschitz constant and ‖.‖𝐹 is the Frobenius norm
operator. Considering (28), one can rewrite the above equation as:

�̇� ≤ − 𝑘 ‖𝑒‖2 +𝑀 ‖𝑒‖ ‖‖
‖

𝑊 𝑇𝜓(𝑈 ) + 𝜖 − �̂� 𝑇𝜓(𝑈 )‖‖
‖𝐹

+ 𝜔𝑀 ‖𝑒‖ + 𝑥M ‖𝑒‖ + 𝜓𝑀 ‖𝑒‖ ‖
‖

�̃� ‖

‖𝐹

+ 𝜇𝑊𝑀
‖

‖

�̃� ‖

‖𝐹 − 𝜇 ‖
‖

�̃� ‖

‖

2
𝐹

(39)

�̇� ≤ − 𝑘 ‖𝑒‖2 +𝑀𝜓𝑀 ‖𝑒‖ ‖
‖

�̃� ‖

‖𝐹 +𝑀𝜖𝑀 ‖𝑒‖ + 𝜔𝑀 ‖𝑒‖

+ 𝑥M ‖𝑒‖ + 𝜓𝑀 ‖𝑒‖ ‖
‖

�̃� ‖

‖𝐹 + 𝜇𝑊𝑀
‖

‖

�̃� ‖

‖𝐹 − 𝜇 ‖
‖

�̃� ‖

‖

2
𝐹 .

(40)

The above non-equality can be represented in matrix form, i.e.,

�̇� ≤ −
[

‖𝑒‖
‖

‖

�̃� ‖

‖𝐹

]𝑇
⎡

⎢

⎢

⎣

𝑘 −1
2
(𝑀 + 1)𝜓𝑀

−1
2
(𝑀 + 1)𝜓𝑀 𝜇

⎤

⎥

⎥

⎦

[

‖𝑒‖
‖

‖

�̃� ‖

‖𝐹

]

+
[

𝑀𝜓𝑀 + 𝜔𝑀 + 𝑥M 𝜇𝑊𝑀
]

[

‖𝑒‖
‖

‖

�̃� ‖

‖𝐹

]

(41)

which can be rewritten as:

�̇� ≤ −𝑧𝑇𝑄𝑧 + 𝑃𝑧. (42)

The necessary and sufficient conditions for correctness of �̇� ≤ 0 are 𝑄
to be positive definite and

‖𝑧‖ >
‖𝑃‖
𝜎𝑚(𝑄)

(43)

where 𝜎𝑚(𝑄) is the minimum singular value of 𝑄. For positive definite-
ness of 𝑄,

𝑘 >
1
4 (𝑀 + 1)2𝜓2

𝑀

𝜇
.

The minimum singular value 𝑄 can be calculated as:

𝜎𝑚(𝑄) =

√

𝑆1 − 𝑆2

2
,

where

𝑆1 = 𝑘2 + 1
2
(𝑀 + 1)2𝜓2

𝑀 + 𝜇2

𝑆2 =
√

(𝑘2 − 𝜇2)2 + (𝑘 + 𝜇)2(𝑀 + 1)2𝜓2
𝑀 .

For ease of calculation, take 𝜇 = 𝑘. Then,

𝜎𝑚(𝑄) = 𝑘 + 1
2
(𝑀 + 1)𝜓𝑀 . (44)

From (43) and (44),

‖𝑧‖ >
𝑀𝜓𝑀 + 𝜔𝑀 + 𝑥M + 𝜇𝑊𝑀

𝑘 + 1
2 (𝑀 + 1)𝜓𝑀

. (45)

Therefore, if

‖

‖

�̃� ‖

‖𝐹 >
𝑀𝜓𝑀 + 𝜔𝑀 + 𝑥M + 𝜇𝑊𝑀

𝑘 + 1
2 (𝑀 + 1)𝜓𝑀

(46)

or

‖𝑒‖ >
𝑀𝜓𝑀 + 𝜔𝑀 + 𝑥M + 𝜇𝑊𝑀

𝑘 + 1
2 (𝑀 + 1)𝜓𝑀

(47)

then (45) holds. (47) and (46) specify that 𝑒 and/or �̃� will always
converge to a residual set if (34) holds. Moreover, the size of the
residual set can be decreased by increasing 𝑘. The above result indicates
that 𝑒 and �̃� are uniformly ultimately bounded. Therefore, it can
be concluded that the state is bounded for all 𝑡 ≥ 0. Based on the
results in Hornik et al. (1989) and Stone (1948) there exists a set of
activation functions and a vector of weights that can approximate the
nonlinearities of 𝑔−1(⋅).

Theorem 1 implies the correctness of the method and shows that
trajectory tracking and weight estimation errors will converge to the
set provided in (45) for all 𝑡 ≥ 0. Moreover, the size of the set can be
reduced by increasing the controller gain.

There are several cases where the input function is partially known,
i.e., it consists of a known part with an explicit inverse and an unknown
part, such as vessels where the unknown part appears, mostly, during
turns. As a result, the inverse of 𝑔(.) can be written as:

𝑔−1(𝑈 ) = 𝑔′−1(𝑈 ) + 𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇𝜓(𝑈 )
)

(48)

where 𝑔′−1(.) is the inverse of the known part of 𝑔(.) and 𝑈 is calculated
using (27). It can be shown that Theorem 1 is extendable to this case.

Corollary 1. With the control law and the NN weights update rule defined
in Theorem 1, the unknown part of 𝑔−1(.) in (48) can be estimated and the
trajectory tracking and the weight estimation errors are uniformly ultimately
bounded.

Proof. Taking into account the Lipschitz continuity of 𝑔(.) and by
combining (48) and (38), (39) can be concluded. The remainder of the
proof is similar to the proof of Theorem 1.

Remark 1. Since the weight matrix �̂� is being updated online, the
presented algorithm is capable of handling the possible changes that
might happen in 𝑔−1(.) during the ship operation. As a result, the
algorithm can be used for both fixed pitch propellers and controllable
pitch propellers.

6
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4.3. The case of state dependent uncertainty

In the previous sections, it is assumed that the knowledge over
𝑓 (𝑥) is certain and there is no state dependent uncertainty in the
system. However, in many applications, this is not the case, as the ship
hydrodynamical model may face some degrees of uncertainty during
sailing. Moreover, hyrodynamical modeling of ships for maneuvering
purposes is a laborious process. In this section, it is shown that using
the same strategy and by making a small change in the previously
presented algorithm, state dependent uncertainties can be handled as
well. This is also proved by presenting a theorem. For this purpose let
us rewrite the governing equation of the system (22) as follows:

�̇�(𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑢(𝑡)) + 𝜔(𝑡) + 𝜔𝑓
(

𝑥(𝑡)
)

, (49)

where 𝑓 is an estimate of 𝑓 (which is known) and 𝜔𝑓 is the state
dependent uncertainty (that is unknown). It can be concluded that:

𝑓 (𝑥(𝑡)) = 𝑓 (𝑥(𝑡)) + 𝜔𝑓 (𝑥(𝑡)). (50)

The above equation indicates that 𝜔𝑓 (𝑥(𝑡)) is also Lipschitz continuous.
Similar to 𝑔−1, let us introduce an approximation method for 𝑓 , i.e.,

𝑓 (𝑥(𝑡)) = 𝑑𝑖𝑎𝑔−1
(

𝑊𝑓
𝑇𝜓(𝑥(𝑡))

)

+ 𝜖𝑓 (51)

and

𝑓 (𝑥(𝑡)) = 𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇
𝑓 𝜓(𝑥(𝑡))

)

, (52)

where 𝑊𝑓 is the approximation weight matrix, �̂�𝑓 is its estimate and
𝜖𝑓 is the estimation error. Then, similar as in the previous section, it
can be deduced that,

𝜔𝑓 (𝑥(𝑡)) = 𝑑𝑖𝑎𝑔
(

�̃� 𝑇
𝑓 𝜓(𝑥(𝑡))

)

, (53)

where �̃�𝑓 is the weight approximation error. As a result, the error
dynamics are:

�̇�(𝑡) = −
(

𝑓
(

𝑥(𝑡)
)

+𝑔
(

𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇
𝑓 𝜓(𝑥(𝑡))

))

+𝜔𝑓
(

𝑥(𝑡)
)

+𝜔(𝑡)− �̇�𝑅(𝑡)
)

. (54)

Theorem 2. Suppose that the adaptive control law for system (49) is:

𝑈 = 𝑘𝑒(𝑡) − 𝑓 (𝑥(𝑡)). (55)

Using the NN weights update rule (33) and the following update rule for
�̂�𝑓 :

̇̂𝑊𝑓 = −𝛤𝑓𝜓(𝑥(𝑡))𝑑𝑖𝑎𝑔
(

𝑒(𝑡)
)

− 𝜇𝑓𝛤𝑓 �̂�𝑓 , (56)

if

𝑘 >
1
4 (𝑀 + 1)2𝜓2

𝑀

𝜇
+
𝜓2
𝑀
𝜇𝑓

,

then the trajectory tracking error 𝑒(𝑡) is UUB.

Proof. Let us consider the following Lyapunov function:

𝑉 = 1
2
𝑒𝑇 𝑒 + 1

2
𝑇 𝑟

(

�̃� 𝑇𝛤−1�̃�
)

+ 1
2
𝑇 𝑟

(

�̃� 𝑇
𝑓 𝛤

−1
𝑓 �̃�𝑓

)

(57)

After derivation we obtain:

�̇� = −
(

𝑓
(

𝑥(𝑡)
)

+ 𝑔
(

𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇
𝑓 𝜓(𝑥(𝑡))

))

+ 𝜔𝑓 (𝑥(𝑡))

+ 𝜔(𝑡) − �̇�𝑅(𝑡)
) 𝑇

𝑒 + 𝑇 𝑟
(

̇̃𝑊 𝑇𝛤−1�̃�
)

+ 𝑇 𝑟
(

̇̃𝑊 𝑇
𝑓 𝛤

−1
𝑓 �̃�𝑓

)

.

(58)

Using a similar approach as for the proof of Theorem 1 and by adopting
(53) and (55), the following relationship can be obtained:

�̇� ≤ − 𝑘 ‖𝑒‖2 +𝑀𝜓𝑀 ‖𝑒‖ ‖
‖

�̃� ‖

‖𝐹 + (𝑀𝜖𝑀 + 𝜔𝑀 ) ‖𝑒‖

+ 𝑥M ‖𝑒‖ + 2𝜓𝑀 ‖𝑒‖ ‖‖
‖

�̃�𝑓
‖

‖

‖𝐹
+ 𝜓𝑀 ‖𝑒‖ ‖

‖

�̃� ‖

‖𝐹

+ 𝜇𝑊𝑀
‖

‖

�̃� ‖

‖𝐹 − 𝜇 ‖
‖

�̃� ‖

‖

2
𝐹 + 𝜇𝑓𝑊𝑓𝑀

‖

‖

‖

�̃�𝑓
‖

‖

‖𝐹
− 𝜇𝑓

‖

‖

‖

�̃�𝑓
‖

‖

‖

2

𝐹
.

(59)

By representing the above inequality in matrix form, we have:

�̇� ≤ −

⎡

⎢

⎢

⎢

⎣

‖𝑒‖
‖

‖

�̃� ‖

‖𝐹
‖

‖

‖

�̃�𝑓
‖

‖

‖𝐹

⎤

⎥

⎥

⎥

⎦

𝑇
⎡

⎢

⎢

⎢

⎢

⎣

𝑘 −1
2
(𝑀 + 1)𝜓𝑀 −𝜓𝑀

−1
2
(𝑀 + 1)𝜓𝑀 𝜇 0
−𝜓𝑀 0 𝜇𝑓

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

‖𝑒‖
‖

‖

�̃� ‖

‖𝐹
‖

‖

‖

�̃�𝑓
‖

‖

‖𝐹

⎤

⎥

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑀𝜖𝑀 + 𝜔𝑀 + 𝑥M
𝜇𝑊𝑀
𝜇𝑓𝑊𝑓𝑀

⎤

⎥

⎥

⎦

𝑇
⎡

⎢

⎢

⎢

⎣

‖𝑒‖
‖

‖

�̃� ‖

‖𝐹
‖

‖

‖

�̃�𝑓
‖

‖

‖𝐹

⎤

⎥

⎥

⎥

⎦

. (60)

which can be rewritten in the following form:

�̇� ≤ −𝑧𝑇𝑓𝑄𝑓 𝑧𝑓 + 𝑃𝑓 𝑧𝑓 . (61)

If matrix 𝑄𝑓 is positive definite then �̇� ≤ 0 holds. As a result,

𝑘 >
1
4 (𝑀 + 1)2𝜓2

𝑀

𝜇
+
𝜓2
𝑀
𝜇𝑓

.

The remainder of the proof can be carried out with the same approach
as used in the proof of Theorem 1.

It can be concluded from the above theorem that the overall system
can be uncertain and that with a small change in Algorithm 1, using the
same strategy, the state dependent uncertainties can also be handled.
The proposed methodology for this case is represented in Algorithm 2.
In the next section, the presented algorithm is applied to an ASV with
unknown actuator dynamics and state dependent uncertainties.

Algorithm 2 Adaptive Control Algorithm for Non-Affine Systems with State
Dependent Uncertainties:
Initialization: Obtain 𝑥(0) and 𝑥𝑅(𝑡). Assign initial values to the ele-
ments in the vector of weights.
1: Calculate 𝑒(𝑡) using (24).
2: Compute 𝑈 using (55) at each time 𝑡.
3: Estimate 𝑢 by adopting (29) and 𝑓 by (52).
4: Apply 𝑢 to the system.
5: Update the matrices of weights based on (33) and (56).
6: Obtain the state of the system and go to 1.

4.4. Application to ASVs

In this part, the proposed adaptive control strategy is presented
for control of ASVs with uncertainty in the maneuvering model and
unknown propellers dynamics.

Suppose the desired trajectory, the initial position of the vessel,
and its initial speed in 3DoF are denoted by 𝜂𝑑 (𝑡), 𝜂𝑠(0) and 𝑉 (0),
respectively. If 𝛥𝑡 is the duration from one time step to the next, then
the preferred speed of the vessel in its body-fixed coordinates can be
calculated as:

𝑉𝑑 (𝑡) =
1
𝛥𝑡
𝑅−1(𝜂𝑠)

(

𝜂𝑑 (𝑡) − 𝜂𝑠(𝑡)
)

. (62)

Using this, the speed error vector is found as:

𝑒s(𝑡) = 𝑉𝑑 (𝑡) − 𝑉 (𝑡). (63)

By adopting (18) and (27), the control law is established as:

𝜏𝑠 = 𝑘𝑒s(𝑡) +𝑀−1
𝑠

(

𝐶𝑠(𝑉 )𝑉 +𝐷𝑠(𝑉 )𝑉
)

. (64)

If the system model contains state dependent uncertainty then:

𝜏𝑠 = 𝑘𝑒s(𝑡) − 𝑓 (𝑥(𝑡)). (65)

The thrust allocation problem is solved using (17) with which the
vector of desired forces generated by actuators is found, denoted by 𝜏𝑑 .
Based on the length of the NN, the matrix of squashing functions 𝜓(𝜏𝑑 )
is computed. Note that the NN weight matrix �̂� and 𝜓(𝜏𝑑 ) have similar
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sizes, i.e., 𝑁 × 𝑚, where 𝑚 is the number of actuators. The estimated
actuators shaft speeds are found as follows:

𝑛 =
⎡

⎢

⎢

⎣

𝑛1
⋮
𝑛𝑚

⎤

⎥

⎥

⎦

= 𝑑𝑖𝑎𝑔−1
(

�̂� 𝑇𝜓(𝜏𝑑 )
)

. (66)

After this step, the NN weight matrices are updated. The NN weight
matrix update rules are regulated as below:

�̇� = −𝛤𝜓(𝑈 )𝑑𝑖𝑎𝑔
(

𝑇 𝑇 (𝑇𝑇 −1)−1𝑒s(𝑡)
)

− 𝜇𝛤�̂�
̇̂𝑊𝑓 = −𝛤𝑓𝜓(𝑥(𝑡))𝑑𝑖𝑎𝑔

(

𝑒s(𝑡)
)

− 𝜇𝑓𝛤𝑓
(67)

The overall algorithm for the adaptive control of ASVs is presented
in Algorithm 3.

Algorithm 3 Adaptive Control Algorithm for ASVs:
Initialization: Obtain 𝜂𝑠(0), 𝑉 (0) and 𝜂𝑑 (𝑡). Initialize NN weight matrix.
1: Compute 𝑉𝑑 (𝑡) using (62).
2: Calculate 𝑒(𝑡) by adopting (63).
3: By use of (64) and (65), compute the ship control law.
4: By exploiting (66), estimate the required actuators shaft speeds and
apply them to the system.
5: Update the NN weights matrix.
6: Obtain the system states and go to 1.

Remark 2. The proposed control approach in this paper requires
position and speed information. However, this is not a disadvantage
as speed information can be derived by taking the difference quotient
of position information.

5. Simulation experiments and evaluation results

The chosen ASV for evaluating the performance of the algorithm is
Cybership II from Skjetne et al. (2004), which is a 1:70 scale replica
of an Offshore Support Vessel. It is assumed that the ASV has four
actuators: two propellers, one stern thruster and a bow thruster as
illustrated in Fig. 3. As a result,

𝜏𝑠 = 𝑇3×4

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐾T1𝜌𝐷
4
1|𝑛p1 |𝑛p1

𝐾T2𝜌𝐷
4
2|𝑛p2 |𝑛p2

𝐾T3𝜌𝐷
4
3|𝑛p3 |𝑛p3

𝐾T4𝜌𝐷
4
4|𝑛p4 |𝑛p4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(68)

and

𝑇 =
⎡

⎢

⎢

⎣

1 1 0 0
0 0 1 1

−0.1 0.1 0.2 0.5

⎤

⎥

⎥

⎦

. (69)

Note that the vector of actuator dynamics in (68) is unknown to
the controller. Moreover, it is supposed that the knowledge over inertial
mass, Coriolis and centrifugal and damping matrices are uncertain. The
parameters of the model vessel are summarized in Table 1.

To assess the performance of the algorithm, three simulation scenar-
ios are considered. The first and second scenarios are trajectory tracking
scenarios and the third scenario is a dynamic positioning case. For these
experiments the length of the NN is opted to be 𝑁 = 300 and the chosen
activation function with which the matrix of activation functions 𝜓(.)
is constructed, is as the following:

𝑦 = 0.05
(1 − 𝑒−𝑥
1 + 𝑒−𝑥

)

. (70)

For all experiments, based on (34), 𝑘 = 500 is considered for the control
law and 𝜇 = 0.1 and 𝛤 is chosen to be an identity matrix. Simulations
are carried out with a computer which has a core i7 2.6 GHz CPU and
8 GB of RAM.

Table 1
The model ASV parameters.

Parameter Value Parameter Value

𝑚 23.8 𝑌
|𝑟|𝑣 −0.805

𝑥𝑔 0.046 𝑁
|𝑟|𝑣 0.13

𝐼𝑧 1.76 𝑌𝑟 −7.25
𝑋�̇� −2 𝑁𝑟 −1.9
𝑌�̇� −10 𝑌

|𝑣|𝑟 −0.845
𝑌�̇� 0 𝑁

|𝑣|𝑟 0.08
𝑁�̇� 0 𝑌

|𝑟|𝑟 −3.45
𝑋𝑢 −0.722 𝑁

|𝑟|𝑟 −0.75
𝑌𝑣 −0.889 𝐾𝑇1 0.08
𝑋

|𝑢|𝑢 −1.327 𝐾𝑇2 0.08
𝑌
|𝑣|𝑣 −36.472 𝐾𝑇3 0.07
𝑋𝑢𝑢𝑢 −5.866 𝐾𝑇4 0.07
𝑁𝑣 0.03130 𝐷𝑝1 0.08
𝑁

|𝑣|𝑣 3.956 𝐷𝑝2 0.08
𝜌 1024 𝐷𝑝3 0.05

𝐷𝑝4 0.05

Experiment I: Circular trajectory tracking
For the first experiment, the considered trajectory is assumed to be

circular with the following specifications:

𝜂𝑑 (𝑡) =

⎡

⎢

⎢

⎢

⎣

𝜂𝑑𝑥 (𝑡)
𝜂𝑑𝑦 (𝑡)

𝑎𝑡𝑎𝑛2(�̇�𝑑𝑥 , �̇�𝑑𝑦 )

⎤

⎥

⎥

⎥

⎦

(71)

𝜂𝑑𝑥 (𝑡) = 𝛼 cos(
𝛽𝑡
𝛼
), 𝜂𝑑𝑦 (𝑡) = 𝛼 sin(

𝛽𝑡
𝛼
) (72)

where 𝛼 and 𝛽 are the radius of the circular trajectory and traveling
speed, respectively. It is assumed that 𝑉 (0) =

[

0, 0, 0
]𝑇 , 𝜂𝑠(0) =

[

10, 0, 1.57
]𝑇 , 𝛼 = 10 and 𝛽 = 0.2 m∕s. Note that in this experiment

the reference speed is constant.
The results for the circular trajectory tracking case are shown in

Fig. 4. It can be inferred from the figures that after the transient and
training time of the NN that take few seconds, the ship can smoothly
follow the reference trajectory and actuators generated thrust as well
as ship speed converge to steady state values.

In this experiment, the proposed algorithm is compared with MIMO
nonlinear PID control scheme (Fossen, 2011) where the control law is:

𝜏 = −𝐾m�̇� + 𝑅−1(𝜂𝑠(𝑡)
)

𝜏PID (73)

and

𝜏PID = −𝐾p(𝜂𝑑 − 𝜂) −𝐾d�̇� −𝐾i ∫

𝑡

0
(𝜂𝑑 − 𝜂)𝑑𝜏. (74)

Parameter 𝐾m is the acceleration feedback. As suggested in Fossen
(2011), 𝐾i = 0. Other parameters are chosen as 𝐾p = 0.8, 𝐾d = 1
and 𝐾m = 4. As explained in Section 2, it is assumed that the precise
knowledge over actuators model is not available during the operation.
As a result, thrust coefficients are presumed to be 𝐾𝑇1 = 𝐾𝑇2 = 0.12
and 𝐾𝑇3 = 𝐾𝑇4 = 0.1. On the other hand, for the adaptive control
simulations, it is assumed no knowledge about the model exist. The ex-
periment results are shown in Fig. 5. Simulation results are represented
in terms of Root-Square Error (RSE). It can be inferred that by using
the proposed methodology the ship can stay closed to the reference
trajectory.

As mentioned in the previous section, as 𝑘 increases the size of the
residual sets (45) and (46) decreases which leads to the decrease in
error. Fig. 6 shows the value of RSE for different 𝑘 values. It is seen
that as 𝑘 increases, the bounds of error decreases.

Experiment II: Dynamic positioning
The second experiment is a dynamic positioning scenario where the

ship has to maintain its position at 𝜂𝑑 (𝑡) =
[

0, 0, 1.57
]𝑇 . Further-

more, it is assumed that there exists a current in the environment with
the inertial velocities 𝑉𝑐 (𝑡) =

[

0.1, 0.1, 0
]𝑇 .

8
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Fig. 4. Results of Experiment 2.

Fig. 7 shows the experiment results. Similar to the previous case,
the position of the ship is stabilized and actuators shaft speeds con-
verge after the transient time and the training time of NN. This indi-
cates that the NN-based adaptive controller succeeded in handling the
uncertainties within propellers dynamics and the ship model.

Experiment III: Trajectory tracking in the port of Rotterdam
In the third experiment, the real trajectory of a vessel is considered

in Oude Maas river in port of Rotterdam using AIS data received from
the Port of Rotterdam authority. The considered path is the trajectory
of an inland tanker vessel during two hours of voyage. Using Froude
scaling the trajectory is scaled down to be aligned with the dimensions
of the model ship with 𝐶Froude = 70. During this voyage, the ship should
sail with different course speeds. In simulations, it is also assumed that
there is a stream in the river which applies force to the replica model
ship hull. This force is considered to be 𝜏c = [0.1,−0.1, 0]𝑇 in global
reference frame. The trajectory of the ship is depicted in Fig. 8.

Fig. 5. Performance comparison of the proposed algorithm vs a conventional control
scheme.

Fig. 6. The effect of 𝑘 on error bounds.

The experiment results are shown in Fig. 10. The trajectory tracking
performance of the vessel is depicted in Fig. 10a and the course speed
of the vessel is compared with the scaled reference speed of the ship in
Fig. 10b. The applied thrust by the actuators are represented in Fig. 10c.
It is seen that after the transient and NN training time the ship can
follow the planned trajectory.

One of the main concerns regarding novel methods for trajectory
tracking control of ships is the applicability of these algorithms to
real ships and the interaction of the on-board power and propulsion
system with the trajectory tracking algorithm. In this regard, the power
and propulsion system should be able to generate requested thrust by
the controller with a rough approximation. To examine this issue, a
model of a power and propulsion system has been adopted. The applied
thrust in Fig. 10c is scaled up using Froude scaling to be fitting for
a real size vessel and then, it is used as the reference thrust for the
power and propulsion system. The propellers and thrusters of the on-
board propulsion system should be able to follow the reference thrust
roughly.

9
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Fig. 7. Dynamic positioning performance of the ship.

The architecture of the considered power and propulsion system
is presented in Fig. 9. The prime movers are connected to a DC-link
through converters. The electric motors that rotate the actuators are
fed and controlled by motor inverter-controllers. The reader is referred
to Haseltalab and Negenborn (2017b) for more information regarding
configuration and modeling of the power system. In this model, the
propulsion drive-train specifications are as follows:

Port side and starboard side propellers: 𝐾T = 0.8, 𝐾Q = 0.08, 𝐷 = 2
m, 1.8 MW, 60 Hz, 460 V.

Bow and stern thrusters: 𝐾T = 0.8, 𝐾Q = 0.08, 𝐷 = 1 m, 500 kW,
60 Hz, 460 V.

Matlab Simscape toolbox is partially used for the modeling. Due to
highly demanding data logging of this toolbox, the simulation cannot
be done for the whole voyage time which is approximately 6400 s. As
a result, the focus is on period which fastest transients with highest
peaks happen and in this case, this period is at the beginning of the
simulation.

The simulation results are shown in Fig. 11. Fig. 11a to d show
the generated thrust by the actuators vs the requested thrust by the

Fig. 8. The considered trajectory in the port of Rotterdam waterways.

Fig. 9. Architecture of the considered power system (Haseltalab & Negenborn, 2017b).

controllers. The angular speed of electric motors is shown in Fig. 12.
The results suggest that the transients are traceable by the propul-
sion system and it can generate the requested thrust. Therefore, the
algorithm is potentially applicable to real-size vessels.

6. Conclusions

The propellers dynamics and hydrodynamical specifications of ASVs
undergo severe uncertainties during maneuvering which makes the
position and speed control of ASVs challenging. In this paper, a novel
NN-based adaptive control algorithm has been proposed for motion and
position keeping control of ASVs with unknown actuators dynamics
and state dependent uncertainties. For the correctness proof of the
algorithm, uniform ultimate boundedness, a Lyapunov technique and
Weierstrass approximation theorem have been adopted. For the nu-
merical analysis, three cases have been considered; trajectory following
and dynamic positioning. It has been illustrated that the algorithm is
successful in terms of keeping the overall system stable and fulfilling
the objective of the operation.

Acquiring knowledge about the future state of the vessel is use-
ful and favorable for the control of ASVs. The benefits of predictive
control techniques for the control of ASVs are discussed in Geertsma,
Negenborn, Visser, and Hopman (2017), Haseltalab and Negenborn
(2017b) and Zheng, Negenborn, and Lodewijks (2016c) where the

10
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Fig. 10. Simulation results of Experiment 1.

prediction of future power demand would be advantageous for the
power and propulsion system. Using this prediction, not only the
energy conservation issues can be addressed (Haseltalab & Negen-
born, 2017b) but also, it can lead to increased stability of the power
and propulsion system. In this regard, the objective for the future
researches is to combine this algorithm with receding horizon tech-
niques in order to gain more accurate predictions for the control of
ASVs.
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