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Preface 

This MSc thesis was conducted in full cooperation with Deltares. Deltares is an independent institute 

for applied research in the field of water and subsurface. Throughout the world, they work on smart 

solutions, innovations and applications for people, environment and society. The company’s main 

focus is on deltas, coastal regions and river basins. Managing these densely populated and 

vulnerable areas is complex, which is why the work is conducted closely with governments, 

businesses, other research institutes and universities at home and abroad. Their motto is Enabling 

Delta Life. As an applied research institute, the success of Deltares can be measured in the extent to 

which the expert knowledge can be used in and for society. For Deltares the quality of the expertise 

and advice comes first. I personally feel privileged to have been given the chance to work in such an 

environment, and share knowledge and experience about Civil Engineering, but also life in general. 

The “Error Correction for Wave Modelling” provides useful tools to support the accurate and efficient 

conduction of operations in offshore wind farms. The importance of renewable sources of energy in 

today’s world is widely known by now, and certainly the area of offshore wind energy offers many 

advantages, with wind speeds much higher than those on land, and vast amounts of space. 

Projections for 2020 estimate an offshore wind farm capacity of 40 GW in European waters, which 

would provide 4% of the European Union's demand of electricity. The European Wind Energy 

Association has set a target of 40 GW installed by 2020 and 150 GW by 2030. Offshore wind power 

capacity is expected to reach a total of 75 GW worldwide by 2020, with significant contributions from 

China and the United States.  

Since the techniques discussed in this research refer to mild (everyday) conditions, the results can 

form the basis of further research on ocean navigation and safety, but also other fields such as 

coastal engineering and flood risk management. More importantly this thesis is a proof of the 

importance of machine learning, and more generally data-based, techniques in civil and 

environmental engineering, while combined with already developed numerical tools. 

 

S. Emmanouil 

Delft, July 2018 
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Abstract 

Installation and maintenance strategies regarding offshore wind farm operations involve extensive 

logistics, since the main focus is the right temporal and spatial placement of personnel and equipment, 

while taking into account forecasted meteorological and hydrodynamic conditions. In order for these 

operations to be successful weather windows characterized by certain permissive wave, wind and 

current conditions is of enormous importance, whereas unforeseen events result in high cost and risk 

in terms of safety.   

For that purpose, Deltares created Meteo Dashboard, an integrated software system that collects, 

stores, computes and presents measured and forecasted meteorological and hydrodynamic data for 

decision making of maintenance or installation activities in an offshore wind farm. The wind speed, as 

well as the air and water temperatures, result from a meteorological model and serve as an input for 

the numerical modelling (e.g. SWAN or Delft3D) of waves, water levels and current related 

parameters. To account for the inherited uncertainty, several error modelling techniques, such as 

Artificial Neural Networks (ANN), Copulas, Stochastic Interpolation (SI), ARMA models, and Linear 

Regression (REG), already run operational on Meteo Dashboard and can be implemented in order for 

the numerical model forecasts to be corrected. A number of the aforementioned techniques require 

training using historical or present time data, while others can be incorporated forthwith.  

In this research, a fully automated ARIMA model and different kinds of Bayesian Network (BN) 

models are incorporated in order to enhance the accuracy of the significant wave height (Hs) 

predictions even further. Both techniques are implemented using packages provided by the free 

software environment of R, namely the bnlearn and forecast. The implemented BN models differ in 

terms of training and structure, and provide overall the most satisfying accuracy in comparison to the 

rest of the error correction techniques, when tested with data retrieved from stations deployed in the 

Irish Sea (adjacent to the Gwynt-y-Mor and Rhyl Flats offshore wind farms) corresponding to the 

whole year of 2017 (from January 2017 – to January 2018).  

Supplementary, it is also shown that the BN models illustrate even more advantages when compared 

to the rest of the error correction techniques, since they provide information about the incorporated 

variables dependence relationship through their structures, while producing estimates for the 

underlying uncertainty of the phenomenon, by means of 95% confidence intervals extracted by the 

significant wave height (Hs) conditional distribution. 

Finally, all error correction models are tested in operational (online) mode, with real-time data from the 

aforementioned locations, with the newly implemented BN models producing results of enhanced 

accuracy, even in the absence of measurements. 
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1. Introduction 

1.1. General 

Marine structures like offshore wind turbines can ensure safety and serve their main function 

adequately, in both reliability and economy terms, when most – if not all – of the parameters 

involved in their design are modelled as accurately as possible. The specification of the 

uncertainties related to the environmental parameters describing the ocean conditions is 

continuously gaining importance and interest by the offshore, coastal, and the emerging 

renewable energy industries. 

Several studies have been conducted in order to describe, classify, or quantify the 

uncertainties and errors related to meteorological and ocean climate variables (see e.g. 

Bitner – Gregersen et al., 2014; Haver and Moan, 1983; Bitner – Gregersen and Hagen, 

1990). Simplistically, the uncertainty can be classified as: 

a. Phenomenon related uncertainty, which is a product of the natural randomness and 

stochastic nature of the variables incorporated and cannot be reduced. 

b. Data related uncertainty, which surfaces either from the measuring devices’ accuracy, 

or the insufficient number or quality of the observations. 

c. Model related uncertainty, which constitutes a product of inaccurate idealisations, 

crude assumptions, or even insufficient use of either the meteorological or the 

hydrodynamic model. It is obvious that the true nature of any phenomenon cannot be 

modelled exactly and that even if the probability distributions of some variables are 

known a priori, the extreme complexity of the met-ocean environment makes the 

distributions of the rest completely unknown.  

The estimation of the bias, or systematic error, and the random error evaluation are the first 

steps to quantify the uncertainty of any variable.    

1.2. Meteo Dashboard 

In the case of offshore wind farms, the installation and maintenance strategies involve 

extensive logistics. The main focus is the right placement, in time and space, of both the 

personnel and the equipment, while taking into account forecasted meteorological and 

hydrodynamic conditions. In order for the aforementioned procedures to be carried out 

successfully, weather windows, interwoven with certain permissive wave, wind and current 

conditions, are of major importance, while unforeseen weather or sea climate events result 
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in high cost and risk, primarily in terms of safety. Subsequently, successful operations 

require accurate and representative data for the wind farm sites, which unfortunately are 

inadequately - if at all - provided by surrounding stations. 

For that purpose, Deltares created Meteo Dashboard; an integrated software system that 

collects, stores, computes and presents measured and forecasted meteorological and 

hydrodynamic data for decision making of maintenance or installation activities in an 

offshore wind farm. These forecasts can be used for other instances as well, such as flood 

warning, workability in open seas and nautical safety. The wind speed, as well as the air and 

water temperatures, result from a meteorological model and serve as an input for the 

numerical modelling (e.g. SWAN or Delft3D) of waves, water levels and current related 

parameters. 

To further improve the accuracy and usability of the forecasts and to quantify the model’s 

uncertainty, various techniques have been implemented in the Meteo Dashboard. In general, 

such techniques are referred to as data-model integration (DMI) or data assimilation (see e.g. 

Bidlot and Holt, 1999; De Las Heras et al., 1994; Anderson et al., 1996; Lefevre and Aouf, 

2012). Based on the modelled error 1  exported by the aforementioned techniques, the 

original (uncorrected) forecast can be corrected, thus improving the accuracy of the output, 

which is provided by Meteo Dashboard every 6 hours. 

Comparison of the wave model forecasts with observations is essential for characterizing the 

model deficiencies, identifying systematic and random model errors, thus providing areas for 

improvement. The error correction models are either trained offline, using a substantial 

amount of numerical model hindcast2 data and measurements from the same period, or in 

operational (online) mode using a smaller amount of data, containing only the most recent 

hindcast and measured values of interest.  

1.3. Error modelling 

Several error modelling techniques exist and can be implemented in order for the numerical 

model forecasts to be corrected. All of them constitute soft computing methods and ensure a 

reasonable computational load. A number of the aforementioned techniques require training 

using historical or present time data, while others can be incorporated forthwith. Numerous 

studies have tried to produce valid met-ocean climate forecasts using coupled (hybrid) 

                                                
1
 The term “error” refers to the difference between simulation model output and observations, while the “model 

uncertainty” term corresponds to the variability in the output of the simulation model resulting from (minor) 
differences in the input. 
2
 Hindcast is the exact opposite of forecast; numerical model results for a past time, where observations exist, 

making the calculation of the errors possible. 
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methods 3 , as the one discussed in this thesis, or incorporate one of the techniques 

discussed below to predict the environmental conditions therewithal. Certainly the use of a 

single soft computing method for prediction reduces the computational time significantly, but 

often at the expense of accuracy. 

Special attention is given in the implementation of the Bayesian Networks (BNs), graphical 

models which allow the representation of a probability distribution over more than one 

variables and whose use has not been that widespread in offshore applications (an example 

can be found in Malekmohamadi et al., 2011), but has been tested effectively in other 

engineering problems, such as coastal morphology (see e.g. Poelhekke et al., 2016; Kroon 

et al., 2017; Wilson et al., 2015; Plant and Holland, 2011), environmental modelling (see 

Chen and Pollino, 2012; Aguilera et al., 2011), construction reliability (Morales-Napoles and 

Steenbergen, 2014), or flood risk analysis, for which the reader is referred to Sebastian et al. 

(2017). An overview of many practical BN applications can be found in the work of Hanea et 

al. (2015).  

One of the techniques commonly practiced in a variety of time series forecasting applications 

is the Auto-Regressive Moving Average modelling or ARMA, which is a stationary stochastic 

process consisting of sums of auto-regressive and moving average components. Auto-

regressive (AR) models are basically recurrence relations with linear terms of past states of 

the variable itself, plus a noise term. Moving average (MA) models contain linear terms of 

the past error values, plus an expected value term. The main task when employing the 

ARMA model is to estimate the model’s parameters. ARMA assumes that the time series is 

stationary, that is the average and variance of observations do not vary in time. Moreover, 

the errors have to be independent and normally distributed, or in other words the variance 

and the average must be assumed constant in time (data stationarity).  When the data is 

non-stationary, the Auto-Regressive Integrated Moving Average (ARIMA) model, a 

generalization of the ARMA model presented by Box and Jenkins (1976), is employed. This 

is, in fact, the case with the variables of interest in met-ocean environments (e.g. wave 

heights, wind speed, current direction, etc.). Incorporating the aforementioned stochastic 

models in offshore engineering applications has been done extensively in the works of 

Manouchehr (1997); Li and Kareem (1993); Sobey (1996); Martzikos and Soukissian (2017); 

Zhang (2003); Khashei and Bijari (2010); Spanos (1983); Pena-Sanchez and Ringwood 

(2017); Delicado and Justel (1999). 

                                                
3
 By “coupled” or “hybrid” methods the use of more than one error modelling techniques, or a combination of a 

soft computing method and a numerical model, is implied. 
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Another approach is the Artificial Neural Networks (ANN), which are information processing 

paradigms composed of large number of highly interconnected processing elements 

(neurons) working together. Similarly, ANN have been used extensively in offshore and 

coastal applications (see e.g. Deo, 2010; Deo et al., 2001; Tsai et al., 2002; Makarynskyy, 

2004; Malekmohamadi et al., 2008; Kumar et al., 2017; Deo and Sridhar Naidu, 1999; 

Makarynskyy et al., 2005; Londhe et al., 2016; Agrawal and Deo, 2002; Mandal et al., 2005; 

Londhe and Panchang, 2005; Zhang et al., 2006; Deshmukh et al., 2016; Makarynskyy, 

2007; Londhe and Panchang, 2006; Makarynskyy, 2005). There are different topologies and 

learning processes to be chosen when constructing an ANN, and after sufficient training with 

historical data, it can be used operationally every time that the model data need correction. 

Useful tools for the quantification of the uncertainty in forecasts while accounting for the 

dependence between random variables are the copulas. Copulas are multivariate probability 

distributions, for which the marginal distribution of each variable is uniform (see e.g. Genest 

and Favre, 2007; Embrechts et al., 2001; Nelsen, 2006; Schmidt, 2006). In offshore 

applications, copulas have been used in various occasions to model the dependency of 

ocean related variables and predict their behavior, as it has been done in the works of 

Leontaris et al. (2016) and Jane et al. (2016).   

More straightforward and simple methods, but equally effective in numerous occasions, are 

the linear regression and the stochastic interpolation. Both of these techniques have been 

used extensively in a variety of engineering applications, including offshore and coastal 

related (see e.g. Asma et al., 2012; Scotto and Guedes Soares, 2007), do not require 

training and pose serious advantages in terms of the computational time and load. 

This thesis studies the effectiveness of the aforementioned methods in error modelling, 

focused on the minimization of the uncertainty in met-ocean climate forecasts. More 

specifically, a sufficiently large amount of met-ocean data, observed by stations deployed in 

the Irish and North Seas, in combination with produced hindcast and forecast numerical 

model data, is inserted in a hybrid error correction model, which incorporates all of the 

aforementioned statistical and stochastic methods. First, the validation of the techniques is 

done in non-operational mode (offline), with the ultimate goal being their implementation on 

the operational Meteo Dashboard platform.  

1.4. Objective and Research Questions 

This research aims to address the accuracy and quantify the possible errors present in the 

numerical model (e.g. SWAN) significant wave height (Hs) forecasts used in Meteo 

Dashboard, and provide corrections for these errors using automated statistical and 
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stochastic models.  To grant these corrections several BN models, that differ in terms of their 

training, their structure, and the incorporated variables, as well as a fully automated ARIMA 

model, are created, tested and validated with data retrieved from stations deployed in the 

Irish Sea, adjacent to the Gwynt-y-Mor and the Rhyl Flats offshore wind farms. A 

comparison of the performance of all the implemented statistical and stochastic techniques 

is also taking place, to ascertain which one performs better, using widely used evaluation 

metrics, such as the Root-Mean-Square-Error (RMSE), and more case specific indicators 

created for the purposes of the application under consideration.  

Supplementary, uncertainty estimates are provided by the conditional distribution given by 

the BN models, and then compared with the confidence intervals derived by the already 

incorporated Gumbel Copula. Finally, the ability of the error correction techniques to perform 

in operational (real-time) conditions is investigated, to evaluate their performance even with 

the possible absence of measurements. 

1.5. Reader 

Chapter 2 reviews the literature on the methodological background of the employed 

techniques and examples of the error correction techniques in engineering practice, 

presenting advantages and disadvantages of each method. Hybrid and autonomous 

versions of those methods are both examined and analysed, so that the basis of the project 

can be set. The main assumptions governing the error correction model, primarily focused 

on the spatial correlation of the met-ocean variables, as well as the Matlab® and R toolboxes’ 

possibilities and validity, are also discussed.  

Chapter 3 includes the techniques incorporated to manipulate new data for testing, 

presenting simultaneously the observational and numerical model datasets to be used 

during the simulations. A critical evaluation of the variables’ availability and appropriateness 

for use is also made, critically taking into account or discarding variables in order to make 

the models as robust and accurate as possible.  

Chapter 4 provides an overview of the methodology used to incorporate each error 

correction technique, while assessing the functionality of the newly developed methods 

(Bayesian Networks (BNs) and ARIMA error correction models) with a preliminary analysis. 

Some preliminary conclusions on the functional performance follow the aforementioned 

analysis.  

In Chapter 5 the overall performance of the error correction techniques is evaluated, with 

general and application-specific metrics, including also a critical comparison between 
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various BN structure configurations, and the influence of certain variables on the models’ 

accuracy. Supplementary, a discussion is made on the advantages that the BN models’ 

uncertainty estimates provide, while analysing two different kinds of confidence intervals, 

produced by different assumptions and approaches.   

Finally, in Chapter 6 the conclusions are present, combined with possible future research 

directions. 
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2. Literature Review 

2.1. Regressive Modelling 

2.1.1. Auto-Regressive Model (AR) 

An order p autoregressive model (AR) allows the simulation of a stochastic process at a 

certain time, specifying that the output value depends linearly on its past values, as well as 

on a stochastic term. If Xt denotes a time series then the model AR(p) takes the following 

form: 

𝑋𝑡 = 𝑐 + 𝛼1 ∙ 𝑋𝑡−1 + 𝛼2 ∙ 𝑋𝑡−2 + ⋯ + 𝛼1 ∙ 𝑋𝑡−𝑝 + 𝜀𝑡                                                                 (2.1) 

Where c is a constant, α1, α2, …, αp, are the model parameters that have to be estimated, 

while εt constitutes a zero-mean white noise. Evidently, the variable of interest Xt is a linear 

combination of its own past values. Equivalently, Eq. (2.1) can be rewritten in the form: 

𝑋𝑡 = 𝑐 + ∑ 𝛼𝑖 ∙ 𝑋𝑡−𝑖
𝑝
𝑖=1 + 𝜀𝑡                                                                                                    (2.2) 

Using the backshift operator B, which operates on a time series element in order to produce 

the previous element, the above equation can be written as: 

𝑋𝑡 = 𝑐 + ∑ 𝛼𝑖 ∙ 𝐵𝑖 ∙ 𝑋𝑡
𝑝
𝑖=1 + 𝜀𝑡                                                                                                  (2.3) 

In order for the model to remain wide-sense stationary4 the (complex) roots of the polynomial 

𝑧𝑝 − ∑ 𝛼𝑖 ∙ 𝑧𝑝−𝑖 𝑝
𝑖=1  must satisfy that |𝑧𝑖| < 1. 

2.1.2. Moving-Average Model (MA) 

An order q moving average model (MA) is a filter allowing the simulation of a stochastic 

process at a specific time, based on the past and present white noise processes, which 

serve as an input. It specifies that the variable of interest depends linearly on the present 

and past values of a stochastic term, and it is commonly used to model univariate time 

series. Contrary to the AR model, the MA model is always stationary. The model MA(q) is 

defined as: 

𝑋𝑡 = 𝜇 + 𝜀𝑡 + 𝛽1 ∙ 𝜀𝑡−1 + ⋯ + 𝛽𝑞 ∙ 𝜀𝑡−𝑞                                                                                    (2.4) 

                                                
4 Weak or wide-sense stationarity is a weaker form of stationarity employed in signal processing, only requiring 

that the mean and the auto-covariance do not vary in time. 
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Where µ is the mean of the time series, β1, …,  βq are the model parameters that need to be 

estimated, and εt, εt-1, …, εt-q are the white noise terms. Again, using the backshift operator 

(B), Eq. (2.4) can be rewritten as: 

𝑋𝑡 = 𝜇 + (1 + 𝛽1 ∙ 𝐵 + ⋯ + 𝛽𝑞 ∙ 𝐵𝑞) ∙ 𝜀𝑡                                                                                  (2.5) 

It can be seen that the MA model is actually a linear regression of the present timeseries 

values against present and past white noise error terms, which are assumed to be mutually 

independent and to originate from the same distribution, most often a normal distribution, 

with location at 0 and constant scale, i.e. ε ~ N(0,σ2). For more details and information the 

reader is referred to the work of Shumway and Stoffer (2017). 

2.1.3. Auto-Regressive Moving Average Model (ARMA) 

An order p, q autoregressive moving average model (ARMA) constitutes a filter that allows 

the simulation of a vector y at a certain time by its past time histories and the past and 

present white noise processes. It is a mixed form, which combines the AR(p) and MA(q) 

models and is formed as follows: 

𝑋𝑡 = 𝑐 + 𝜀𝑡 + ∑ 𝛼𝑖 ∙ 𝑋𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖 ∙ 𝜀𝑡−𝑖

𝑞
𝑖=1                                                                              (2.6) 

Where {𝜀𝑡} is a Gaussian white noise series with a zero mean and variance 𝜎𝑧
2. The ARMA 

model is described in the book of Box and Jenkins (1976), where a method is derived, most 

commonly known as the Box-Jenkins method, to estimate the parameters of the model. An 

important notice is that in case the assumption that the error terms are independent 

identically distributed random variables sampled from a Gaussian distribution with zero 

mean is weakened, the properties of the model might change significantly. Applications of 

ARMA in offshore applications can be found in Appendix D. 

2.1.4. Auto-Regressive Integrated Moving Average (ARIMA) 

The autoregressive integrated 5  moving average model (ARIMA), and the method for 

assessing its parameters, were primarily developed by Box and Jenkins (1976), as a tool 

which allowed the prediction and control of time series. The ARIMA model is a generalization 

of the ARMA model described previously, and it is applied often in cases where the data 

show non-stationarity. In general, non-seasonal models are denoted as ARIMA(p,d,q), 

where p is the order of the AR model, d is the degree of differencing, and q the order of the 

MA model. Seasonal ARIMA models are denoted as ARIMA(p,d,q)(P,D,Q)m, where m is the 

                                                
5
 The “integrated” (I) part of the ARIMA model indicates that the current data have been replaced with the 

difference between their present and past values. 
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number of periods in each season, and (P,D,Q) refers to the autoregressive, differencing, 

and moving average terms of the seasonal part. It is important to notice that in an ARIMA 

model, the future value of a variable is assumed to be a linear function of several past 

observations and random errors. That said, the model’s general form is given by: 

(1 − ∑ 𝛼𝑖 ∙ 𝐿𝑖𝑝
𝑖=1 ) ∙ (1 − 𝐿)𝑑 ∙ 𝑋𝑡 = 𝛿 + (1 + ∑ 𝛽𝑖 ∙ 𝐿𝑖𝑞

𝑖=1 ) ∙ 𝜀𝑡                                                     (2.7) 

Where L is the lag operator6 , and d is the number of unit roots of the autoregressive 

polynomial. Generally, an ARIMA model can be thought as a particular case of an 

ARMA(p+d,q), and for that reason it can never be wide sense stationary when d>0. It has to 

be noted that the error terms εt are assumed to be independent, identically distributed 

variables sampled by a normal distribution with zero mean. 

For forecasting purposes, the ARIMA model can be viewed as a combination of two models. 

One is a non-stationary: 

𝑌𝑡 = (1 − 𝐿)𝑑 ∙ 𝑋𝑡                                                                                                                    (2.8) 

While the second one is wide-sense stationary: 

(1 − ∑ 𝛼𝑖 ∙ 𝐿𝑖𝑝
𝑖=1 ) ∙ 𝑌𝑡 = (1 + ∑ 𝛽𝑖 ∙ 𝐿𝑖𝑞

𝑖=1 ) ∙ 𝜀𝑡                                                                            (2.9) 

More in line with Eq. (2.6), the general forecasting equation for an ARIMA model is 

presented below: 

𝑋𝑡 = 𝜇 + ∑ 𝛼𝑖 ∙ 𝑋𝑡−𝑖
𝑝
𝑖=1 − ∑ 𝛽𝑖 ∙ 𝜀𝑡−𝑞

𝑞
𝑖=1                                                                                  (2.10) 

where the constant term µ is the average difference in X. Here the moving average 

parameters (β) are defined so that their signs are negative in the equation, following the 

convention introduced by Box and Jenkins (1976).  Some authors and software (including 

the R programming language) define them so that they have plus signs instead.  When 

actual numbers are plugged into the equation, there is no ambiguity, but it’s important to 

know which convention each software uses when an output is produced. 

Even though ARIMA models can be very flexible and are able to represent several different 

types of time series, the pre-assumed linear form of the model poses a major limitation. 

Since a linear correlation structure is assumed for the time series values, it is impossible for 

the ARIMA model to capture non-linear patterns. Usually, linear model approximations to the 

                                                
6
 The lag operator (L) has the same property as the backshift operator (B); it operates on an element of a time 

series in order to produce the previous element. 
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complex real world phenomena are far from satisfactory. Zhang (2003) suggested that since 

real world time series most often contain both linear and non-linear patterns, the ARIMA 

model cannot deal with non-linear relationships by itself. It is a fact that the universal 

forecasting literature supports that more than one method (or simply hybrid methods) can 

model complex structures more accurately and that no method can be considered 

universally best in every situation (see e.g. Jenkins, 1982; Makridakis et al., 1982; Chatfield, 

1996). Lastly, Khashei and Bijari (2010) proposed a hybrid method for time series 

forecasting, using ARIMA modelling and an Artificial Neural Network (ANN) to produce more 

accurate results, than using the methods individually. 

In offshore engineering applications, the ARIMA model was tested and compared to an 

Artificial Neural Network, for the short-term prediction of the Caspian Sea surface water level 

(see Vaziri, 1997). It was concluded that the ARIMA is a useful tool for the forecasting of sea 

data time series, producing quite reasonable predictions in winter period. Supplementary it 

was suggested in the same work that the ARIMA short-term predictions could be 

incorporated in longer-term computer simulation model forecasts. Seasonal ARIMA models, 

as well as models including non-linear seasonal components, were used for short-term 

forecasting of real data series with missing data significant wave height) in the work of  

Delicado and Justel (1999).  

For wind speed predictions and modelling, the ARMA and ARIMA models have been also 

widely used (see e.g. Torres et al., 2005; Kamal and Jafri, 1997; Erdem and Shi, 2011; Chen 

et al., 2010). Kavasseri and Seetharaman (2009) used an f-ARIMA7 model, to make 24-hour 

forecasts, and proposed models whose results indicated significant improvements in 

forecasting accuracy. A hybrid ARIMA-ANN model was used for wind speed forecasting in 

three different regions of Mexico, by Cadenas and Rivera (2010), showing higher accuracy 

than the individual ARIMA and ANN models in the examined sites. A review on the 

forecasting methods for wind speed is given in the work of Lei et al. (2009). 

In Matlab®, the Econometrics toolbox provides useful functions to create and employ an 

ARMA or ARIMA model. There are also functions to fit a model to current data and generate 

simulations. Extended information can be found in Matlab® online documentation8. In R, the 

forecast package provides useful tools for automatic ARIMA modelling.  

                                                
7
 Fractional-ARIMA or f-ARIMA models are generalizations of the simple ARIMA model, which allow non-integer values for the 

differencing parameter. 
8
 For ARIMA modeling see: https://nl.mathworks.com/help/econ/specify-arimap-d-q-models.html, while for ARMA modeling see: 

https://nl.mathworks.com/help/econ/arma-models.html.  

https://nl.mathworks.com/help/econ/specify-arimap-d-q-models.html
https://nl.mathworks.com/help/econ/arma-models.html
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2.2. Simple Linear Regression Modelling 

In statistics, the simple linear regression is a linear regression model with a single 

explanatory variable, which is also called the independent variable. It states that the true 

mean of the dependent variable changes at a constant rate as the value of the independent 

variable increases or decreases. The simple linear regression model is formulated as follows: 

𝑌 = 𝛽𝑜 + 𝛽1 ∙ 𝑋 + 𝜀                                                                                                              (2.11) 

where Y is the dependent variable, X the independent variable, ε the random error, β0 is the 

y-intercept of the line y =  β0 + β1·x, and β1 is the slope of the same line. In case Y and X are 

assumed linearly correlated, Eq. (2.11) takes the form of a line: 

𝑌 = 𝛽𝑜 + 𝛽1 ∙ 𝑋                                                                                                                    (2.12) 

In offshore practice, the Y variable is usually chosen to be the observed significant wave 

parameter (wave height, wave period, etc.), and the X variable the numerically modelled 

wave parameter. The choice of an axis for the observed and modelled (predicted) data is 

actually of great importance, as it has been demonstrated in Pineiro et al. (2008). The fact 

that the slope and intercept of the model can be significantly different, when changing the 

position of the data on the axis, can be easily overlooked due to the similar r2, i.e. the 

percentage of the response variable variation that is explained by a linear model.. 

Nevertheless, in the aforementioned work, it is shown that the observed data should be on 

the y-axis (dependent variable), while the numerically modelled data should take place in the 

x-axis (independent variable).  

In case random errors are included, the following assumptions have to be made (see also 

Soukissian and Kechris, 2007; Altunkaynak and Ozger, 2004): 

i.  The random variables εi have the same variance Var[εi] = σε
2, i = 1,2, …, n. In case 

this condition is not met, the regression parameters have to be estimated with the 

weighted least squares method. 

ii. The error terms are uncorrelated to each other and uncorrelated with the 

independent variable. 

iii. The random variables εi are normally distributed with zero mean value. This 

assumption implies that the errors are independent and that the dependent variable 

Y is also normal, which leads to the conclusion that Yi and Yj are uncorrelated and 

independent as well. 
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The observations of the independent variable X are generally assumed to be measured 

without error (see Rawlings et al., 1998; Webster, 1997), which is in reality met very rarely. 

In order to account for an error in both variables, Soukissian and Kechris (2007) proposed a 

more general methodology, the so-called Errors in Variables (EIV), achieving a minor 

correction of the data prediction, compared to the simple model. An example of the 

implementation of linear regression for wave height forecasting, using wind speed as the 

independent variable, is given by Altunkaynak and Ozger (2004), while Rusu and Guedes 

Soares (2016) applied a linear regression model to an ensemble of measurements and the 

corresponding numerical model forecast (SWAN). In the latter work, the regression 

parameters are updated in every time step, only to be used to correct/improve the produced 

forecast for the next time step at a local scale. Finally, linear regression has been used as a 

data assimilation technique, to perform corrections on the results of a numerical wave model 

(SWAN) in the Romanian nearshore using satellite data, by Raileanu et al. (2015), showing 

promising results.  

2.3. Artificial Neural Networks (ANNs) 

The function of an Artificial Neural Network (ANNs) is similar to a biological neural network, 

encountered for instance in the human brain. ANNs constitute soft computing tools, which 

roughly mimic the ability of the human mind to decisively employ modes of reasoning and 

recognize certain patterns. The basis of the network is the neuron, which receives an 

argument formed as a sum of a weighted input and bias, and produces an output using a 

transfer function. Several neurons can be combined in a layer, while a network can be 

composited by more than one interconnected layers. The concept of ANN was first 

introduced by W.S. McCulloch and W. Pitts (1943), and since then, many models were 

developed based on them (e.g. see Rumelhart et al., 1986; Peterson and Anderson, 1987; 

Psaltis et al., 1988).  

A commonly used type of neural network in engineering applications (see e.g. French et al., 

1992; Yeh et al., 1993; Kasperkiewiecz et al., 1995; Grubert, 1995; Thirumalaiah and Deo, 

1998; Thirumalaiah and Deo, 2000; Deo and Kiran Kumar, 1999) is the 3-layered, feed 

forward network, given in Figure 1. Its basic advantage is the ability to approximate any non-

linear mathematical dependency structure. For more information on the function and 

theoretical basis of ANN, the reader is referred to Appendix D.  
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Fig. 1. Example of a 3-layered ANN (Source: Google Images for Artificial Neural Networks). 

In ocean engineering, ANNs have been used in order to predict accurately the values of met-

ocean parameters (see e.g. Deo, 2010). Deo and Sridhar Naidu (1999) achieved real time 

wave height forecasting (lead times 3-24 hrs) using neural networks, while comparing the 

results of different training algorithms. All of the training algorithms appeared to have similar 

correlation coefficients, but the cascade correlation algorithm was the fastest in terms of 

training. They also concluded that neural networks have many practical advantages 

compared to statistical models, like the AR, since they are more flexible and adaptable, but 

unlike numerical models, they are site specific and applicable only when the wave data are 

gathered on site. Simple 3-layered neural networks, incorporating wind speed data in order 

to produce significant wave height and average wave period predictions, were used 

satisfactory by Deo et al. (2001). They came up with the conclusion the network can 

represent successfully the relation between wind and waves in deep water for large 

prediction intervals, such as a week. For shorter time intervals, the rapid variations in wind 

measurements make the training procedure difficult, so a separate training for extreme and 

mild weather seasons is beneficial. Tsai et al. (2002) used a neural network, with a back 

propagation training algorithm, to conduct wave height and period forecasting or data 

supplement between neighbouring stations, concluding that the ANN model performs well for 

both procedures when using short-term wave data (see also Mandal et al., 2005). Stochastic 

(ARMA and ARIMA) and neural approaches were compared in terms of their operational 

forecasting ability in the work of Agrawal and Deo (2002). For short intervals (3-6 hrs), the 

neural networks proved to have a distinct superiority, while both models provided 
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satisfactory results in long range predictions (12-24 hrs). The aforementioned conclusion is 

verified by the work of Londhe and Panchang (2005), which provided one day wave 

forecasts, both in online and offline modes, using buoy data and an ANN. Additional 

examples of the use of ANN’s in met-ocean parameter estimation, with the incorporation of 

field observations, can be found in the works of Makarynskyy (2006) and Makarynskyy et al. 

(2005), where 3-layered feed forward networks with a non-linear differentiable log-sigmoid 

transfer function in the hidden layer and a linear transfer function in the output layer perform 

well in ocean wave parameter simulation. Regional wave height predictions using sequential 

learning neural networks was conducted by Krishna Kumar et al. (2017), demonstrating the 

performance advantages of neural networks as opposed to other soft-computing techniques.  

A different approach, than the ones followed in the aforementioned references, is the 

potential coupling of an ANN and a numerical model (e.g. SWAN, Delft3D, or WAM). 

Krasnopolsky et al. (2002) proposed a neural network technique, intending to improve the 

efficiency and accuracy of numerical ocean models. They showed that the use of neural 

networks is a fast, computationally beneficial, and accurate approximation of the continuous 

mappings 9 , which can essentially represent the parameterization 10  of several types of 

physical processes, thus accelerating and simplifying time-consuming calculations in 

environmental numerical models. Makarynskyy (2004) indicated that wave predictions (wave 

heights and periods) can be improved using ANNs. He proposed two procedures for an 

oceanic and a sea site; one using only the initial numerical model results (leading times from 

1 to 24 hrs), and then another one merging site measurements and forecast data. The 

forecasts were improved in the case of the oceanic site, but their accuracy continuously 

reduced with larger time intervals for the sea site, where the waves are temporally inconstant. 

Improved numerical hindcast outputs can be produced for various ocean parameters, while 

incorporating neural networks, as presented by Makarinskyy (2005). The techniques 

displayed in the aforementioned work can be embedded into operational procedures of 

model output corrections, proving the applicability of the neural methodology for an area 

close to the position where the online observations are made. A proper combination of 

numerical model results and ANNs can reduce the cost and time, accompanied with the 

desired accuracy. The literature points out occasions where numerical wave results are 

produced, using wind data as input, and then channelled to an ANN, which is designed and 

trained according to them, in order to accurately and sufficiently provide location specific 

ocean wave predictions (see e.g. Malekmohamadi et al., 2008).  
                                                
9
 Continuous mappings are synonymous to continuous dependencies between two vectors. 

10
 The parameterization of the physical processes governing the ocean environment generally requires complex, non-linear 

mathematical expressions, based on statistical or physical models. Initially, Krasnopolsky et al. (2002) indicated that those 

parameterizations can be considered continuous mappings. 
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The incorporation of ANNs, for the prediction of the forecast errors, and data assimilation 

techniques into a wind-wave model for wave forecasting was conducted by Zhang et al. 

(2006). It was shown that the accuracy of the forecasting results is enhanced, always taking 

into account the seasonal variation for the wind data, which is significant. A proposed 

solution is the training of the neural network in specific seasons, in case highly different (in 

nature) seasonal data need to be examined11. Londhe et al. (2016) predicted the forecast 

errors of a numerical model using a neural network, and then added or subtracted them to 

the numerical forecast, increasing the accuracy of 24-hr wave predictions considerably. As 

input to calculate the error between forecasted and observed data, the wave height from the 

present and the previous time steps was used. Evidence provided by the literature (see 

Deshmukh et al., 2016) points out that a sufficiently trained neural network that predicts the 

errors for future time steps, coupled with a numerical model, offers more sustained 

prediction performance for wave parameters, than a standalone neural network model, for 

time intervals varying from 3 to 24 hrs in all seasons. In such an occasion, the neural 

network is trained using buoy (or generally observed) and numerical data from past time 

steps.  

In terms of real-time forecasting, Jain and Deo (2007) showed that really accurate wave 

forecasts can be achieved by neural networks for short (3 hr) and long (24 hr) intervals, if the 

amount of annual data gaps is around 2%. Yet, they noticed that the prediction accuracy 

decreases in harsh environments. Missing wave heights were estimated in real-time basis, 

using wave height data from different locations, ANNs, and Genetic Programming (GP), in 

the work of Londhe (2008). It was found that the soft computing methods performed 

reasonably well, providing in some cases more accurate results than a numerical model. The 

GP approach yielded better results in extreme events, but both methods offered satisfactory 

results. For more information on ANNs’ efficiency and accuracy advantages over other soft-

computing methods (e.g. GP and model trees) in real-time wave forecasting, when using 

wind time history and a numerical model, the reader is referred to Jain et al. (2011).  There, 

it is stressed out that due to the very large number of available options in terms of training, 

architecture, and flexibility, ANN’s are a safe choice when it comes to wave parameter 

prediction, even if all of the presented soft-computing methods provide sufficient results. 

                                                
11

 It is trivial that different seasons produce events of highly different intensity. For instance, often winter events 
(storms) are more violent than summer or spring events, and as a result inter-seasonal input data will most 
probably affect the design and function of the ANN at hand, causing inaccuracies.  
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2.4. Copula modelling 

Multidimensional phenomena, like the ones included in the ocean environment, require the 

joint modelling of several random variables. The main limitation of traditional approaches is 

that the individual behaviour of two variables must be characterized by the same parametric 

family of univariate distributions. This restriction can be avoided with the incorporation of 

copula models (see Genest and Favre, 2007). 

Copulas are multivariate distribution functions defined on the unit cube [0,1]n, with uniformly 

distributed marginals.  For more information on the mathematical background and definition 

of copulas the reader is referred to Joe (1997), Nelsen (1999), or Embrechts et al. (2001). 

The roots of the copula approach in dependence modelling are in the representation 

theorem derived by Sklar (1959), which states that the joint cumulative distribution function 

(CDF) H (x, y) of any pair of continuous random variables (X, Y) may be written in the 

following form: 

𝐻(𝑥, 𝑦) = 𝐶{𝐹(𝑥), 𝐺(𝑦)},   𝑥, 𝑦 ∈ 𝑅                                                                                      (2.13) 

where F(x) and G(y) are the marginal distributions, and C: [0, 1]2 → [0, 1] is the copula. A 

valid model can arise for the above equation for (X, Y) whenever C, F and G are chosen 

from given parametric families of distributions: 

𝐹 ∈  (𝐹𝛿), 𝐺 ∈  (𝐺𝜂), 𝐶 ∈  (𝐶𝜃) 

A large variety of copulas can be used to model joint distributions with different 

characteristics. The Gaussian, the Gumbel and the Clayton copulas are the most common 

families (see Appendix D), since they can model different tail asymmetries of the joint 

distributions and have been used in many applications, such as in finance (see e.g. Aas et 

al., 2009).  

According to the theory described previously, the copula representation of a joint distribution 

function H (x1, x2, …, xd) is C (F1(x1), …, Fd(xd)), where C constitutes a unique cumulative 

distribution function with uniform margins on (0,1). A dependence structure of a multivariate 

distribution is well represented by a specific parametric family Co of copulas, when the 

following hypothesis is valid: 

𝐻𝑜: 𝐶 ∈ 𝐶𝑜 

In order to fit a copula to a structure there are various goodness-of-fit tests, like the Cramer-

von Mises statistic, or the Kolmogorov-Smirnov statistic (for more information see Genest et 
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al., 2009). As stated by Genest et al. (2009), because the marginal distributions of random 

variables are often unknown, the only reasonable choice is to base the tests on a sample 

from the underlying copula C, a collection of pseudo-observations U1 = (U11, …, U1d), …, Un 

= (Un1, …, Und), deduced from the ranks: 

𝑈𝑖𝑗 =
𝑅𝑖𝑗

𝑛+1
                                                                                                                             (2.14) 

where Ri,j are the ranks of the observations. 

The most well-known goodness-of-fit tests are “rank based”. The Cramer – von Mises 

statistic is based on the empirical copula, and focuses on comparing its differences with a 

parametric one (Gaussian, Gumbel, Clayton, t-student, etc.).  Information on how its is 

formulated can be found in Appendix D.  

Large values of the aforementioned statistic lead to rejection of the Ho hypothesis. The most 

appropriate parametric copula to represent the dependence between two variables is the 

one with the smallest sum of the square differences.  

Leontaris et al. (2016) adopted the technique of calculating the Pearson correlation for the 

upper and lower quadrant of the actual observations, transformed to standard normal N(0,1) 

margins, in order to model the dependence between significant wave height and wind speed. 

As described by Joe (2014), Zj = Ф-1(Uj), for j = 1, …, d, are the standard normal transforms 

of the pseudo-observations. After dividing the standard normal transforms of observations 

into four quadrants, for positive correlation, the semi-correlations of the upper (NE) and 

lower (SW) quadrants are respectively formulated as follows:  

𝜌𝑛𝑒 = 𝜌(𝑍1, 𝑍2) ∙ 𝑍1 > 0, 𝑍2 > 0                                                                                           (2.15) 

𝜌𝑠𝑤 = 𝜌(𝑍1, 𝑍2) ∙ 𝑍1 < 0, 𝑍2 < 0                                                                                           (2.16) 

The aforementioned correlations indicate the existence of tail asymmetry, which is present in 

case of significant difference between them (Joe, 2014). Also, if the values of the semi-

correlation coefficients are larger than the overall Pearson correlation coefficient, an 

indication of tail dependence in given; for more information on tail dependence the reader is 

referred to Embrechts et al. (2003). An example of this procedure, in the context of traffic 

load measurements, can be found in Morales-Napoles and Steenbergen (2014). 

Numerous studies exist, focusing on the dependence modeling of various parameters in 

engineering and financial practice (see e.g. Vaz de Melo Mendes and Martins de Souza, 

2004; Zhang et al., 2015; Accioly and Chiyoshi, 2004). Salvatori et al. (2013) used copulas 
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to estimate the joint distributions of wave characteristics, such as the wave height and period, 

while Yang and Zhang (2013) used copulas to estimate the joint distribution of wind speed 

and significant wave height without taking into account the autocorrelation, which is essential 

when time series are required. A similar approach was followed by Leontaris et al. (2016), 

where the authors used copula-based environmental time series to include environmental 

uncertainties in offshore wind farm operations and to produce realistic time series 

concerning met-ocean variables. It was also found, that dependently constructed synthetic12 

time series provide better results compared to the case where only observed time series are 

used, while the importance of including the dependence between wind speed and wave 

height, in order to construct independent time series, is stressed out.   Jane et al. (2016) 

proposed a copula-based approach for the estimation of wave height records through spatial 

correlation, in coastal environments. The predictions provided in this study were equally 

accurate to numerical model results (SWAN)13. 

In Leontaris et al. (2016) and Jane et al. (2016), it is suggested that Vine copulas (see also 

Brechmann and Czado, 2015; Smith, 2015; Bedford and Cooke, 2001, 2002; Joe, 1996; 

Kurowicka and Cooke, 2006), which capture the dependence structure between a set of 

variables by arranging a series of bivariate copulas in a tree structure, can provide larger 

modeling flexibility and describe better the existent multivariate distributions. Nevertheless, it 

has been proven that in a trivariate setting, the simpler elliptical copulas, and especially the 

student-t, are more than capable of capturing the dependence structure between a set of 

random variables (see Ma et al., 2013; Poulomi and Reddy, 2013; Wang et al., 2010; Wong 

et al., 2010), thus they can also be explored.  

Supplementary, a Pair-Copula approach has been introduced to construct a multivariate 

model, which can fully consider the dependence characteristics of wind power forecasting 

errors (Hu et al., 2017). Kazianka (2012) developed a set of open source Matlab® functions, 

which provide copula-based spatial analysis for non-Gaussian and extreme value data. Joint 

models for significant wave height and wave period were investigated by Vanem (2016), 

concluding that the model selection remains a challenge and it is difficult to unambiguously 

identify the one that better describes dependence. Finally, the author also suggests that the 

correlation in the data between extreme significant wave heights and wave period increases 

in a future climate, and might influence the risk related to ocean environments.  

                                                
12

 Synthetic time series are created by a combination of observed and model-developed time series. 
13

 For more information on SWAN the reader is referred to: http://swanmodel.sourceforge.net/.  

http://swanmodel.sourceforge.net/
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2.5. Bernstein Stochastic Interpolation 

The stochastic Bernstein method, which should not be confused with the Bernstein 

polynomials, is a novel and significantly improved non-polynomial global method of signal 

processing, suitable for erratically distributed input data interpolation and approximation (see 

Kolibal and Howard, 2006). Generally, stochastic interpolation represents a family of 

methods, posing clear advantages over polynomial interpolation methods.  

The theoretical base of the method can be found in Kolibal and Howard (2006), while for its 

implementation in practical applications the reader is referred to Kolibal and Howard (2006, 

2008). In a nutshell, considering the function 𝑓(𝑥) sampled at points 𝑥𝑘 ∈ [0,1]: 𝑓(𝑥𝑘) = 𝑦𝑘. 

The natural continuum extension of the Bayesian polynomials on the set of data {(𝑥𝑘 , 𝑦𝑘)} is 

expressed by the following sum: 

𝐾𝑛(𝑥) = ∑
𝑦𝑘

2
∙ [𝑒𝑟𝑓 (

𝑧𝑘+1−𝑥

√𝜎(𝑥)
) + 𝑒𝑟𝑓 (

𝑥−𝑧𝑘

√𝜎(𝑥)
)]𝑛

𝑘=0                                                                      (2.17) 

𝜎(𝑥) =
2

𝑛
∙ 𝑥 ∙ (1 − 𝑥)                                                                                                            (2.18) 

𝑧𝑘 = { 
−∞

(𝑥𝑘+1 + 𝑥𝑘)/2
∞

       
𝑘 = 0 

𝑘 = 1,2, … , 𝑛 − 1
𝑘 = 𝑛

                                                                           (2.19) 

where 𝑓 is assumed piecewise constant and equal to 𝑦𝑘  in (𝑧𝑘−1, 𝑧𝑘). In most cases it is 

convenient to choose a constant 𝜎(𝑥) throughout the interval, which makes the method non 

polynomial. The approach offers freedom in terms of scaling parameters, due to its 

generality. The natural continuum extension (𝐾𝑛) consists of matrix vector multiply, where 

the 𝑛 × 𝑛 matrix is denoted as 𝐴𝑛𝑛 = (𝛼𝑗𝑘). Hence, for a constant σ: 

𝛼𝑗𝑘 =
1

2
∙ [𝑒𝑟𝑓 (

𝑧𝑘+1−𝑥𝑗

√𝜎
) + 𝑒𝑟𝑓 (

𝑥𝑗−𝑧𝑘

√𝜎
)]                                                                                  (2.20) 

As a result, 𝐾𝑛(𝑥𝑘) = 𝐴𝑚𝑛 ∙ 𝑦 , where 𝑦 = (𝑦1, … , 𝑦𝑛)  and 𝐴𝑚𝑛  is a row-stochastic matrix 

whose kth row is generated using Eq. (2.20). A deconvolution operator on the data is 𝐴𝑛𝑛
−1, 

thus an elegant solution for the interpolation of data is provided by 𝐴𝑚𝑛 ∙ 𝐴𝑛𝑛
−1 ∙ 𝑦. Different 

choices of σ in 𝐴𝑛𝑛 and 𝐴𝑚𝑛 would yield a range of data representation forms, ranging from 

pure smoothing, interpolation, and deconvolution.  

Kolibar and Howard (2006) concluded that stochastic interpolation methods built around 

Bernstein functions will fit complex two dimensional surface data, and as a result they could 

find application in engineering practice.  In contrary to polynomial methods, the stochastic 
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Bernstein interpolation allows the use of any number of points, in case computational 

stencils are used, allowing for infinitely differentiable surfaces, where necessary.  

In general, to the writer’s best knowledge, the Bernstein stochastic interpolation has not 

been used in civil or hydraulic engineering applications. Examples of its application can be 

found, however, in other fields, such as visual surveillance systems (see e.g. Kim and Ko, 

2011), and computer graphics (see e.g. Seyfarth et al., 2006). Nonetheless, stochastic 

interpolation (Gaussian process regression) as a technique has been used for ocean 

parameters.  For instance, Scotto and Guedes Soares (2007) used Bayesian inference to 

make long term predictions of the significant wave height, concluding that the procedure 

provides adequate flexibility, as well as consistent forecasting results. 

Finally, it has to be noted that the Bernstein stochastic model is not available in a Matlab® 

toolbox, and as a result any effort to implement has to be improvised by the modeller. 

Matlab’s Statistical toolbox includes, however, Gaussian Process Regression Models (see 

Rasmussen and Williams, 2006), able to provide forecasts with uncertainty intervals, and 

compute the regression error. For more information the reader is referred to the Matlab® 

online documentation14. 

2.5. Bayesian Networks (BNs) 

2.5.1. General  

Bayesian Networks (BNs) are graphical models, which allow the representation of a 

probability distribution over a set of random variables (see Jensen and Nielsen, 2007; 

Morales-Napoles et al., 2013; Hanea et al., 2015; Weber et al., 2012). They consist of a 

directed acyclic graph (DAG) built on discrete (discrete networks), or continuous (continuous 

networks), or both kinds (hybrid networks) of random variables (X1, X2, …, Xn), and a set of 

(conditional) distributions. A DAG is constituted by a set of nodes, that represent random 

variables, and a set of arcs, in a way that a directed cycle cannot be created. Within the 

graph, an ordering of the variables can be established, given the directionality, which 

provides information on the sampling order, i.e. the order which has to be followed so that a 

sample can be taken from this joint distribution. As a result, some of the nodes are 

characterized as “parents” and others as “children”, depending on whether they precede or 

success the node of interest (see Figure 2). A marginal distribution is assigned to each node 

with no parent, and a conditional distribution is associated with each child node, which 

                                                
14

 See https://nl.mathworks.com/help/stats/gaussian-process-regression-models.html for more information. 

https://nl.mathworks.com/help/stats/gaussian-process-regression-models.html
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provides quantitative information 15  about the dependences between the variables. An 

important notice is that each variable Xi is conditionally independent of its non-descendants, 

given its parents in the DAG. This constitutes the Local Markov property: 

𝑃(𝑋𝑣 = 𝑥𝑣  | 𝑋𝑖 = 𝑥𝑖) = 𝑃(𝑋𝑣 = 𝑥𝑣  | 𝑋𝑗 = 𝑥𝑗)                                                                        (2.21) 

where Xi is not a descendant of Xv, and Xj is a parent of Xv. It has to be noted that the set of 

parents is a subset of the set of non-descendants because the graph is acyclic.   

 

Fig. 2. Relations between nodes in a Bayesian Network.  
(source Google Images) 

 

Denoting the parent nodes as 𝑃𝑎(𝑖), the conditional probability function (i.e. the joint density 

of X1, X2,…, Xn) of a variable given its parents is formulated as follows: 

𝑓𝑋1,…,𝑋𝑛 (𝑥1, … , 𝑥𝑛) = ∏ 𝑓𝑋𝑖|𝑋𝑃𝑎(𝑖)  (𝑥𝑖|𝑥𝑃𝑎(𝑖))𝑛
𝑖=1                                                                       (2.22) 

                                                
15

 The quantitative information can be either retrieved from data, or from expert judgment.  
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where 𝑓𝑋1,…,𝑋𝑛
 is the joint density of the n variables, 𝑓𝑋𝑖

 denotes their marginal densities, and 

𝑓𝑋𝑖|𝑋𝑗
 are the conditional densities. 

 BNs are quantitative tools, able to evaluate conditional probabilities between variables, and 

at the same time constitute valuable conceptual models, since they visually represent 

independent and dependent variables in causation relationships (see Chen and Pollino, 

2012; Palmsten et al., 2014; Stewart-Koster et al., 2010). The principles of BNs as a 

modelling tool are described thoroughly in Pearl (1988) and Jensen (1996). The main 

property of the BNs is inference, which constitutes their ability to provide updated 

distributions, given observations, but also characterization of the relationship between the 

variables. Generally, the simple visualization of the complicated relationships between the 

random variables, as well as their polyvalence, i.e. the ability to deal with issues such as 

prediction, diagnosis, optimization, data analysis of feedback experience, and model 

updating, makes the use of BNs appealing.  

Many applications of the BNs on dependability, risk analysis and maintenance can be found 

in Weber et al. (2012) and Medina Oliva et al. (2009). Most of the applications, however, use 

networks consisting of nodes that represent discrete random variables. Those networks are 

characterized as discrete BNs and suffer for serious limitations, since the provided discrete 

representation of variables for many important problems is inadequate.  

2.5.2. Hybrid Bayesian Networks 

Many domains require information about the joint behaviour of both discrete and continuous 

variables, hence they are called hybrid (see Langseth et al., 2009). As a result, the existence 

of continuous and discrete variables makes a BN hybrid as well. One way of dealing with 

Hybrid BNs, or HBNs hereon, is the use of the conditional Gaussian model, as described in 

Shachter and Kenley (1989), Phillips (1998), and Lauritzen (1992). This form of discrete-

normal HBNs suffers from the restriction to the joint normal distribution. Exact inference 

algorithms for discrete BNs (see e.g. Pearl, 1988; Zhang and Poole, 1994) have been 

extended to discrete-normal HBNs, while approximation algorithms are also available (see 

e.g. Lerner, 2002). 

When the joint normality assumption is not appropriate, the most common method to deal 

with continuous variables is discretisation. When discretizing a continuous variable, a large 

number of partitions should be used to obtain a reasonable approximation. However, in 

complex structures this approach leads to extremely large conditional probability tables 

(CPTs) that have to be quantified in a defendable way. The large amount of required data to 



23 

 

achieve this quantification is rarely available, hence a small number of partitions is used in 

order to approximate continuous variables. Additionally, even when the quantification can be 

done, exact inference might prove unfeasible due to the large number of the required 

calculations (see Murphy, 2002). Further, many discretisation techniques have only local 

application, thus they often fail to account for the entire dependence structure of the 

variables, leading to poor control of the global error  in the model (see Kozlov and Koller, 

1997; Langseth et al., 2009).  

Other methods that deal with HBNs include Markov Chain Monte Carlo simulations, 

variational methods, enhanced BNs (see Straub and Der Kiureghian, 2010), and mixtures of 

truncated exponentials (MTEs) or polynomials (see e.g. Shenoy and West, 2011). An 

extensive review of some of these methods is given by Langseth et al. (2009, 2012), while 

Hanea et al. (2015) briefly presented some advantages and disadvantages of each one.  

The methods mentioned so far demonstrate the same pathogenicity in terms of their 

quantification, since in most of the cases this process is not transparent, reliable, and 

defensible. Besides these setbacks, the aforementioned “classic” approaches are used 

extensively in real life problems. Plant and Holland (2011) demonstrated how a discretized 

BN model can be used to provide accurate predictions of wave-height evolution in the surf 

zone of a coastal region, given very sparse or inaccurate boundary-condition data. The 

accuracy of the predictions was similar to this of a numerical model, while it was noticed that 

more consistent forecasts and uncertainties were obtained if the model parameter errors 

were included, as a source of input uncertainty. The authors, in a companion work (see Plant 

and Holland, 2011), prove that the BN model can be used effectively for predicting offshore 

wave heights, given limited wave height observations from an onshore location (inverse 

procedure). It is stressed out that a major advantage of the Bayesian Networks is that they 

are simpler than a detailed numerical model, providing accurate wave height forecasts, 

accompanied with uncertainty estimates for all predictions, while simultaneously estimating 

model parameters; for more successful applications of BNs in coastal engineering practice 

the reader is referred to Pelhekke et al. (2016), Kroon et al. (2017), Jager et al. (2017), 

Wilson et al. (2015). Supplementary, Palmsten et al. (2013) showed that BNs can be 

transferred to new settings, if the observations between study sites show adequate similarity.  

An extended review of the use of Bayesian Networks in environmental modelling is given in 

Aguilera et al. (2011), where the authors intone that BNs are recommended for studies with 

missing values, which is common in ocean environments. Generally, there is no extensive 

literature on applications regarding specifically met-ocean variables, at an offshore site. 



24 

 

Nevertheless, the extended number of applications where the BNs have been used, some of 

which involve parameters found in open seas (such as the wave height, wave period, current 

direction, etc.), provide a stable base so that a model for ocean variables can be established. 

An example of the use of BNs in ocean wave height prediction can be found in the work of 

Malekmohamadi et al. (2011), where a useful comparison between BNs and ANNs is also 

given. In the same work, it is noted that when the probability mass function of wave 

parameters and the confidence intervals of the forecast are important, BNs can be used 

efficiently.  

A concluding remark regarding the nature of the prediction errors in time is that they can be 

either homoscedastic or heteroscedastic. This, however, makes a significant difference in 

the modelling strategy. In similar fashion, the variance of the errors can be constant or 

variable in space. In this case, there is variation in the parameters that link the predicted 

error at a single location to the preceding error values at that same location. A Bayesian 

modelling approach can allow spatial heterogeneity of the error. Furthermore, the fact that 

the spatial spreading problem is characterized usually by a small set of available observation 

data points in space, could favour a BN modelling method over others. 

2.5.3. Non-Parametric Bayesian Networks  

A method that handles HBNs was introduced by Kurowicka and Cooke (2004), and extended 

by Hanea et al. (2006, 2010, 2015), is the Non-Parametric Bayesian Networks, or simply 

NPBNs. This methodology was initially developed purely for continuous BNs. The NPBNs 

associate nodes with random variables for which marginal distributions were assumed, and 

arcs with one parameter conditional copulas (see Joe, 1997). The conditional copulas, 

alongside with the one-dimensional marginal distributions and the conditional independence 

statements implied by the DAG, uniquely determine the joint distribution, making the NPBN 

specification consistent (Hanea et al., 2006).   The marginal distributions can either be 

estimated from data or elicited by experts (see Cooke, 1991). In most cases, the empirical 

marginal distributions are used, but parametric forms can also be fitted. The conditional 

copulas incorporated are parameterized by constant conditional rank correlations 

(Spearman’s), which can be calculated from data, as well as obtained from expert judgment 

(see Morales et al., 2008). The rank correlation has numerous attractive properties, the most 

important of which are the ability to measure monotone dependence, rather than just linear, 

and the fact that it is independent of the marginal distributions. Associating the arcs 𝑖𝑝(𝑖)−𝑘 →

𝑖 with the conditional rank correlations, and assuming 𝑃𝑎(𝑖) = {𝑖1 … 𝑖𝑝(𝑖)}: 
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{ 
𝑟𝑖,𝑖𝑝(𝑖)

                              

𝑟𝑖,𝑖𝑝(𝑖)−𝑘|𝑖𝑝(𝑖),…,𝑖𝑝(𝑖)−𝑘+1

    
𝑖𝑓 𝑘 = 0                     

𝑖𝑓 1 ≤ 𝑘 ≤ 𝑝(𝑖) − 1
                                                                       (2.23) 

The assignment is vacuous in case {𝑖1 … 𝑖𝑝(𝑖)} = ∅. Hanea et al. (2015) presented a theorem, 

showing that these assignments are algebraically independent and uniquely determine the 

joint distribution for a particular choice of copula.  The authors also proposed a modification 

of the aforementioned theorem, allowing for various types of copula, after specifying the 

conditional independence statements as independent copula, instead of zero rank 

correlations. In this case, the conditional rank correlations associated with the arcs could be 

realized by any copula which realizes all correlations [−1,1]. That way, an NPBN could be 

quantified with a mixture of conditional independent copula and t-copula, with different tail 

dependence for each pair of variables, allowing the modeller to capture phenomena 

involving dependent extreme values.  

The quantification of NPBNs is actually brought to the quantification of marginal distributions, 

the number of which is equal to the number of variables, and of conditional dependence 

parameters, equal to the number of arcs existing in the NPBN. Assuming that the DAG of a 

NPBN is known, and that data is available, all of the above can be estimated. In case of data 

scarcity, expert judgment is a necessity. Assuming, now, that the DAG is unknown as well, 

and that is form is to be determined by data, Hanea et al.  (2010) proposed a structure 

learning algorithm from an ordinal multivariate data set, which may contain a large number of 

variables. The major assumption of this algorithm is that the joint distribution has to be a 

normal copula, thus the rank dependence structure of the variables is that of a joint normal 

distribution.  The one dimensional marginal distributions are retrieved directly from the data.  

Validating the learned NPBN model involves two steps; validating that the joint normal 

copula adequately represents the multivariate data, and verifying that the NPBN is an 

adequate model of the saturated graph. The validation procedure requires an overall 

measure of multivariate dependence, which could be provided by the determinant of the rank 

correlation matrix (see Hanea et al., 2015).  Hanea et al. (2010) stated that the major reason 

for choosing the aforementioned determinant as s a multivariate dependence measure is 

that an approximation of it factorizes on the arcs of the NPBN.  

After the quantification, the joint distribution becomes attainable, but the only way to stipulate 

it is by sampling (see Hanea et al., 2006). The independent copula has to be used to 

represent the absence of an arc, and any one-parameter copula could be used to realize the 

rank correlations associated with the arcs. However, when arbitrary copulas are used, the 

sampling procedure involves numerical evaluations of multiple integrals, which constitutes a 
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large disadvantage of NPBNs in real-time decision support problems, as the one elaborated 

in this thesis. Nonetheless, this problem can be solved by assuming a normal copula and 

transforming each marginal distribution to a standard normal. That way, a joint normal 

distribution with the same rank correlation structure as the original one can be obtained, thus 

providing a fast and efficient procedure; examples and comparisons are given in Hanea et 

al., 2006.  

Different ways of performing inference in NPBNs are described in Hanea et al. (2015). The 

only way that is going to be described here is the use of normal copula to realize the rank 

correlations, which is the fastest and can be seen as an exact propagation method. Briefly, 

the transformation of the marginals to standard normal essentially leads to a joint normal 

distribution, with any conditional distribution normally distributed with known mean and 

variance (see Whittaker, 2009), thus enabling inference to be performed analytically. 

Transforming backwards, using the inverse distribution function of the variables and the 

standard normal distribution function, provides the conditional distributions of the original 

variables (see also Hanea et al., 2006).  

Applications of NPBNs in engineering practice, and more precisely in risk analysis 

applications, reliability of structures, material properties, traffic predictions, and flood 

protection can be found in Hanea et al. (2015), Worm et al. (2011), Morales - Napoles et al. 

(2013), and Morales-Napoles and Steenbergen (2014). In conclusion, the biggest advantage 

of the NPBN is that it can handle a large amount of mixed (discrete and continuous) 

variables in a short time, while the quantification procedure requires a small number of 

parameters. This makes the use of NPBNs in an offshore ocean environment quite possible. 

It should be emphasized, however, that the normal copula, which accelerates the whole 

procedure significantly, may not be appropriate for all real-life applications. 

2.5.4. Implementation of BNs in Matlab® and R 

In order to use Bayesian networks in Matlab®, Kevin Murphy (2001) created the Bayes Net 

Toolbox16, an open source package able to support many types of conditional probability 

distributions for both static and dynamic BN modelling, with exact or approximate inference. 

Some setbacks in the use of the aforementioned toolbox are that it is relatively slow, it has 

little support for undirected models, and it does not support online inference or learning. In R, 

the bnlearn package 17  provides tools for learning the graphical structure of Bayesian 

Networks, estimate their parameters and perform some useful inference. Also, the package 

                                                
16

 The Bayes Net Toolbox can be found in: https://github.com/bayesnet/bnt.  
17

 See also: http://www.bnlearn.com/.  

https://github.com/bayesnet/bnt
http://www.bnlearn.com/
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supports both discrete and continuous variables, while assuming that the latter ones are 

jointly normally distributed. 

An alternative to the aforementioned tools could be the use of UniNet®, a standalone 

uncertainty analysis software package developed by TU Delft (see Morales-Napoles et al., 

2013), which implements NPBNs under the normal copula assumption. Through the 

UninetEngine classes and functions18 the user is able to call UniNet’s engine from Matlab® in 

order to create and use a model for a specific engineering problem (such as the problems 

mentioned above).  

2.6. SWAN 

SWAN is a third-generation wave model, developed at Delft University of Technology, which 

computes random, short-crested wind-generated wave in coastal regions and inland waters. 

The model accounts for a variety of physics that include (1) wave propagation in time and 

space, shoaling, refraction due to current and depth, frequency shifting due to currents and 

non-stationary depth, (2) wave generation by wind, (3) whitecapping, bottom friction and 

depth-induced breaking, (4) three- and four-wave interactions, (5) dissipation due to aquatic 

vegetation, turbulent flow and viscous fluid mud, (6) wave-induced set-up, (7) propagation 

from laboratory up to global scales, (8) transmission through and reflection against obstacles, 

and (9) diffraction. 

SWAN provides output quantities in numerical files containing tables, maps and timeseries. 

Those quantities include the (1) one- and two-dimensional spectra, (2) significant wave 

height and wave periods, (3) average wave direction and directional spreading, (4) one- and 

two-dimensional spectral source terms, (5) root-mean-square of the orbital near-bottom 

motion, (6) dissipation, (7) wave-induced force, (8) set-up, (9) diffraction parameter, etc. A 

limitation of the SWAN numerical model is that it does not account for Bragg-scattering and 

wave tunnelling.  

2.7. Concluding Remarks 

All of the previously described statistical and stochastic techniques will be compared in 

terms of performance, while making predictions for hydrodynamic variables in offshore 

environments. The main focus is the Bayesian Network models, which have not been used 

extensively in similar applications, but can incorporate a variety of variables, granting also 

estimates for the underlying uncertainty. The free availability and open-source nature of the 

tools provided by the bnlearn package in R, which facilitates the creation and use of BN 

                                                
18

 Full documentation can be found at www.lighttwist.net.  

http://www.lighttwist.net/
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models in automated procedures, make them attractive for this research. The same holds for 

the case of the ARIMA models to be employed, which have to be completely automated, due 

to the real-time nature of the application (forecast package in R). Certainly, the assumption 

of the multivariate normality included in the bnlearn package for the marginals and the 

conditional distribution of the variable of interest, is a matter of discussion in the chapters to 

follow, where the level of sufficiency of the underlying assumptions will become evident.  

The complete methodology, on how the different error correction models, already existent in 

Meteo Dashboard (ANN, Linear Regression, Bernstein Stochastic Interpolation, and Copula) 

or newly created (Bayesian Networks and ARIMA), can be found in the following chapters 

(Chapter 4).  
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3. The Data 

To move a step further, and evaluate the performance of the error correction model as a 

whole, data were retrieved from stations deployed in the Irish Sea (see Figures 3 and 4). 

The measurement stations, which are actually wave rider buoys and meteorological masts, 

are adjacent to the wind farms of Gwynt-y-Mor 19  and Rhyl Flats 20 , located within the 

Liverpool Bay. The received datasets consist of measurements of hydrodynamic and 

meteorological data, obtained between 01-09-2012 to 31-01-2018. The aforementioned area 

and time interval will be the focus of this research. 

 

Fig. 3. Map of the Irish Sea wind farms (underlined with red) under consideration  
(measurement stations visible as blue diamonds). 

                                                
19

 Gwynt-y-Mor Offshore Wind Farm (53°27′N 03°35′W) is located off the coast of North Wales and is the 2
nd 

largest operating wind farm in the world (160 wind turbines). 
20

 Rhyl Flats Offshore Wind Farm (53°22′N 03°39′W) is a 25 turbine wind farm, located approximately 8 km north 
east of Llandudno in North Wales. 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Gwynt_y_M%C3%B4r&params=53_27_N_03_35_W_type:landmark_region:GB
https://tools.wmflabs.org/geohack/geohack.php?pagename=Rhyl_Flats&params=53_22_N_03_39_W_region:GB_type:landmark
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Certainly in order to be able to use the data to perform training and testing of the error 

correction model, certain procedures have to be followed to transform the raw datasets to 

usable timeseries. This chapter includes all the data preparation and manipulation 

techniques and results, since their importance in obtaining satisfying and robust results is 

noteworthy.  In Section 3.1 the raw data, alongside with the corresponding results of a pre-

processing procedure, are presented. Section 3.2 includes a presentation of the “clean” data, 

accompanied by an explanation of the analysis that took place, while in Section 3.3 the 

scatterplots showing the relations between the clean observational data and the results of 

the numerical model (SWAN) for the same time period can be found. Finally, some general 

comments on the data, as well as a presentation of the behaviour of the available variables 

after their preparation, are presented in Section 3.4. 

It has to be stressed that the error correction techniques are suitable for any offshore 

environment, given the required training, and are not limited in the area of the Irish Sea. The 

case presented here serves as an example of the applicability of the models in real life 

applications. The same procedures and techniques would have to be followed in any similar 

case, aiming to accurately predict the variables’ behaviour in offshore (mild) environments.  

  

Fig. 4.Gwynt-y-Mor wind farm (left) and wave rider buoy deployed in the area (left) (Source: Google Images). 

3.1. Raw Data and Pre-processing 

Initially, it is important to have an overview of the raw data, before any processing has been 

done. In general, the pre-processing of hydrodynamic raw data is more straight-forward than 

the procedure followed for the meteorological dataset. Hydrodynamic raw data have to 

undergo a procedure of checking for continuously repeated measurements (which indicates 

a device malfunction), which are then replaced by custom fixed values (e.g. NaN21 values) in 

order for the timeseries to be presentable. An example of such a timeseries is illustrated 

below (Figure 5) for the case of the significant wave height (Hs) at the Gwynt-y-Mor station. 

                                                
21

 “NaN” is the abbreviation for” Not a Number”, which is extensively used in programming. 
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The rest of the timeseries, concerning other variables included in the analysis, are moved to 

Appendix B.  

 

Fig. 5. Significant wave height (Hs) raw data at Gwynt-y-Mor (01-09-2012 to 31-01-2018). 
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3.1.1. Meteorological Data 

Before the wind velocity timeseries could be presented or manipulated, it had to be 

transformed to the wind velocity corresponding to 10 m above sea level (Figure 6). This 

reference wind speed is used since it constitutes also an input to the numerical model (most 

theoretical relations concerning ocean waves include the 10 m wind velocity). This was 

achieved using the logarithmic wind velocity profile, by means of the ORCA tool22 (met-

Ocean data tRansformation, Classification and Analysis), provided by Deltares. ORCA 

integrates the main aspects of analysing met-ocean data, having four basic functionalities: (1) 

Data validation, (2) Normal conditions, (3) Extreme conditions, and (4) Sea State analysis.  

 

 
Fig. 6. Wind velocity profile above sea level (Source: Google Images). 

 

A density scatterplot, showing the relation between the 70 m wind velocity23 at Gwynt-y-Mor 

and the required 10 m wind velocity can be seen in Appendix B. A similar analysis was 

followed for the case of the observations corresponding to the meteorological mast at Rhyl 

Flats, where the wind velocity was measured at 58 m above sea level. The results of the 

meteorological data analysis for Rhyl Flats can also be found in Appendix B. 

After the 10 m wind velocity (U10) was calculated, the corresponding timeseries could be 

presented (Figure 7). Again for the meteorological dataset, a procedure of removing 

repeated values was carried out, only to be later replaced by NaN values (a procedure also 

known as gap filling). 

 

                                                
22

 Deltares developed a method to standardize the execution of met-ocean studies, by developing guidelines 
along with a Matlab

®
 toolbox, called ORCA (see also: https://www.deltares.nl/en/software/orca/).  

23
 Wind velocity is obviously measured above sea level, so the reference levels correspond to distances 

measured from the ocean surface. 

https://www.deltares.nl/en/software/orca/
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Fig. 7. Wind velocity (U10) timeseries at Gwynt-y-Mor (01-09-2012 to 31-01-2018). 

 

3.2. Data cleaning 

3.2.1. Methodology and Results 

A procedure of significant importance in terms of robustness in the final result of data-driven 

methods, such as the statistical error correction techniques under study in this thesis, is the 

data cleaning or data cleansing. Data cleaning is the process of detecting and correcting or 

removing inaccurate records (outliers) from a dataset. Incorrect or inconsistent data can lead 

to false conclusions and misdirected actions, which might have a large impact, depending on 

the application.  

In general, to be able to perform a consistent cleaning of the dataset in hand, certain filters 

have to be implemented. In this research, again, the ORCA tool was used for the cleaning 

procedure. The filters incorporated were two: (1) a moving average filter, and (2) a strict 

moving standard deviation filter. For more information on the aforementioned filters the 

reader is referred to Appendix B. 
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The cleaning procedure of the whole set of variables had to be done consistently according 

to their dependence. That means that a removed significant wave height value has to lead to 

a removal of the corresponding zero-crossing wave period value (same for wave direction, 

etc.). As a result the cleaning process of hydrodynamic variables was done according to the 

significant wave height (Hs), while for the meteorological variables the wind velocity (U10) 

was considered the point of focus. The results of the aforementioned analysis are presented 

below (Figures 8 to 10). Because of the nature of the timeseries produced for the wind and 

wave direction (not actual visible points of removal), the comparison plots for those two 

variables are not presented here, but are included in Appendix B for the sake of 

completeness. In Appendix B, the reader can also find the results produced for the 

measurements retrieved from Rhyl Flats. 

 

 

Fig. 8. Clean and raw significant wave height (Hs) datasets, as resulted from the ORCA cleaning procedure 
(Gwynt-y-Mor). 
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Fig. 9. Clean and raw zero-crossing wave period (Tz) datasets, as resulted from the ORCA cleaning procedure  
(Gwynt-y-Mor). 

 

 

Fig. 10. Clean and raw wind velocity (U10) datasets, as resulted from the ORCA cleaning procedure (Gwynt-y-
Mor). 
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3.3. Scatterplots 

A robust way to check whether the analysis followed is satisfying is to examine the 

scatterplots between the clean observational data and the numerical model outputs (Figures 

11 to 13). The results from the measurement stations adjacent to Gwynt-y-Mor are going to 

be presented and evaluated in this section. The respecting Rhyl Flats results can be found in 

Appendix B. 

 

Fig. 11. Numerical modelled versus Observed significant wave height (Hs) data (Gwynt-y-Mor). 

 

Fig. 12. Numerical modelled versus Observed zero-crossing wave period (Tz) data (Gwynt-y-Mor). 
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Fig. 13. Numerical modelled versus Observed wind velocity (U10) data (Gwynt-y-Mor). 

It is evident that there is a clear and satisfying relation between the modelled and measured 

datasets, close to the diagonal. Some values of the zero-crossing wave period seem to differ 

(lower area in Figure 12), but the behaviour was considered reasonable, since the wave 

period cleaning was conducted according to the wave height procedure. As a result, the 

cleaning procedure was considered successful for those variables, and their use in testing 

was justified. 

3.3.1. Peak Wave Period (Tp) Case 

Examining the modelled and observed peak wave period scatterplot, it becomes even more 

apparent that the procedure followed to calculate the variable’s values with the numerical 

model (SWAN) produces significantly different outputs, in comparison to the measurements 

(see Figure 14). While the datasets seem to present a relation close to the requested in one 

part, there is a distinctive portion of the values differing significantly. This difference, results 

most probably from the inclusion of swell in the observed data, while the numerical 

simulations separated the swell components and produced peak wave periods referring only 

to the corresponding wind waves. 

Also, the peculiar behaviour of the data, i.e. forming lines perpendicular to the observed data 

axis (x-axis), is even more visible here. Therefore, since the peak wave period develops a 

behaviour which cannot be handled consistently, it was decided not to be included as a 

variable, during the error correction simulations. Certainly, a more focused and separate 
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cleaning, or even calculation, of the peak wave period could be made, but this kind of 

analysis would deviate from the goals of this research and the real-time nature of the 

application. 

 

 

Fig. 14. Numerical modelled versus Observed peak wave period (Tp) data (Gwynt-y-Mor). 

3.4. General Comments 

3.4.1. Joint Distributions of Data 

Another way to evaluate the relations governing this application is by looking at the bivariate 

distributions of the variables in general (Figure 15). The distributions of the individual 

variables are visible at the diagonal of Figure 15, where it is shown that the wind velocity 

(U10) and the significant wave height (Hs) seem to follow a log-normal or Rayleigh distribution 

as described many times in the literature (see also Tayfun, 1980; McWilliams, Newmann and 

Sprevak, 1979; Li et al., 2016; J. Mathisen and E. Bitner-Gregersen, 1990). The fit test was 

carried out by means of the FDB24 tool in Matlab®, which incorporates certain criteria (AIC, 

BIC, etc.) to define the best parametric distribution for the data in hand. As can be seen in 

                                                
24

 For extended description and information see: https://nl.mathworks.com/matlabcentral/fileexchange/36000-fbd-
-find-the-best-distribution--tool?focused=5245793&tab=function.  

https://nl.mathworks.com/matlabcentral/fileexchange/36000-fbd--find-the-best-distribution--tool?focused=5245793&tab=function
https://nl.mathworks.com/matlabcentral/fileexchange/36000-fbd--find-the-best-distribution--tool?focused=5245793&tab=function
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Figure 16, the lognormal distribution provides a good fit for the significant wave height data 

(Hs), which will be proved really useful in the simulations to follow (see Chapter 5). 

The variables, whose joint distribution (scatter) is concentrated around the diagonal, have a 

clear and almost linear relation. Such relations can be seen between (1) the significant wave 

height (Hs) and the zero-crossing wave period (Tz), (2) the wind velocity (U10) and the zero-

crossing wave period (Tz), as well as between (3) the significant wave height (Hs) and the 

wind velocity (U10).  

For the rest of the relations it is difficult to conclude anything a priori, but for the 

aforementioned variables it has to be expected that the correlation in the Bayesian Network 

(BN) analysis will be large. Having an indication on the dependence between the variables 

can also play an important role on the decision process to establish which relations can be 

fixed in a custom-built BN, which will be the case in the remaining chapters and will help 

examine and validate the performance of the BN models more consistently. 

 

Fig. 15. Joint distributions for the available hydrodynamic and meteorological variables at Gwynt-y-Mor. 

 



40 

 

One relation that would also seem obvious is the one between the wind (Udir) and wave (Dirp) 

directions. Nevertheless, this is not the case at all, as it will also become evident in the 

following chapters.  The wave direction differs significantly in many occasions from the wind 

direction, due to the fact that its measured values might correspond to waves generated far 

from the area of interest. As described earlier, waves might be generated by storms which 

occurred may kilometres away from the measurement area. As a result the wave direction 

includes the swell wave direction as well.  

Both directions are going to be incorporated as variables in the BN model, but for the case of 

a custom-built network, it is better to implement the data driven relation between those 

variables, due to the uncertainty of their origins. As a general comment it has to be stressed 

that it is more beneficial, when sufficient data are available, to incorporate the data driven 

relations in order to perform predictions. The reasons why this option is usually less prone to 

mistakes will be clearly displayed in the remaining of this thesis. The common reason would 

say that the less the human intervention, the more the natural behaviour is encapsulated, 

given a vast amount of information and case specific measured data.  

 

Fig. 16. Results of the parametric distribution fitting procedure to the significant wave height (Hs) data of Gwynt-y-
Mor. 
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4. The Error Correction Model and its 

Functionality 

4.1. General 

The error correction model, described in this thesis, is essentially a forecasting tool, which 

attempts to predict the hydrodynamic conditions in open seas more accurately than a 

numerical model (in this case SWAN25). Hence, it is referred to as “error correction” model, 

since its nature and behaviour deviates slightly from a pure prediction tool. 

In general, the model is able to perform both in non-operational (offline) and operational 

(online) situations. By operational situation, the continuous flow of the required data in real 

time is implied, while in non-operational mode, the model interacts with data stored in the 

computer memory. Nevertheless, in both cases the nature of the data, and the number of 

variables included in each simulation, is the same. The error correction model requires three 

types of data: 

1) On site measurements (observations), which are manipulated and processed, before 

used (i.e. filling of gaps by interpolation and cleaning of outliers).  

2) Numerical model hindcast 26  data for a time interval prior to the one under 

consideration. Instead of using hindcast data for the analysis, one could alternatively 

use past forecast data of the numerical model, which of course will be lees accurate, 

due to the input of wind data produced by a numerical model (in this case HIRLAM27).  

3) Numerical model forecast data for the time interval under consideration (48 hours 

ahead of current time). The numerical model forecasts are produced every 6 hours, 

so there are 4 forecasts per day, each one for 48 hours ahead. 

Depending on the error correction method some of the above data may or may not be used. 

The functionality of each error correction technique is described in the following paragraphs. 

We start in Section 4.3 with the methods implemented also in the past, i.e. the Linear 

Regression, the Copulas, the Artificial Neural Networks and the Stochastic Interpolation, 

continuing in Section 4.3 with the function and methods incorporated into the ARIMA model. 

                                                
25

 For more information on the SWAN model the reader is referred to Chapter 2 and the official SWAN website: 
http://swanmodel.sourceforge.net/online_doc/swanuse/swanuse.html.  
26

 The numerical model hindcast data are produced by incorporation of observational wind data as input to the 
model and a reverse procedure to obtain the results (i.e. the opposite of a forecast procedure).  
27

 For more information on HIRLAM the reader is referred to: http://hirlam.org/index.php/hirlam-documentation.  

http://swanmodel.sourceforge.net/online_doc/swanuse/swanuse.html
http://hirlam.org/index.php/hirlam-documentation
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In Section 4.4 the incorporation of Bayesian Networks as an error correction technique is 

discussed. Finally, some initial tests and results on the newly implemented models’ 

functionality, alongside with some preliminary conclusions, are presented in Sections 4.5 

and 4.6 respectively. 

4.2. Operational Techniques in Meteo Dashboard 

In this section, a short description is given, about the techniques already implemented in 

Meteo Dashboard. The operational functionality of these methods has already been tested in 

the past, for a specific area in the Irish Sea, but their performance and ability to predict in 

comparison to each other, but also to newly incorporated techniques (i.e. ARIMA and the 

Bayesian Networks) is still a matter of research. Thus, it is important for the reader to get 

acquainted with their functionality in general terms, since their performance will be discussed 

extensively in the following chapters. The theoretical basis of the discussed methods has 

been presented in preceding chapters, hence only their operation as part of the error 

correction model will be addressed.   

4.2.1. Linear Regression 

For the Simple Linear Regression incorporated in the error correction model, the predicted 

significant wave height (𝐻𝑠̂) is given by the following equation: 

𝐻𝑠 =  𝛽0 + 𝛽1 ∙ 𝐻𝑠,𝑛𝑢𝑚 + 𝜀                                                                                                   (4.24) 

where, 𝐻𝑠,𝑛𝑢𝑚  is the modelled (numerically) significant wave height, ε is a random error 

variable, β0 is the y-intercept of the line y = β0 + β1 · x, and β1 is the slope of the 

aforementioned line. 

In the previously presented model, 𝐻𝑠̂ and 𝐻𝑠,𝑛𝑢𝑚 are assumed to be correlated, i.e. linearly 

related. Thus, the model function takes the form of a line: 

𝐻𝑠̂ =  𝛽0̂ + 𝛽1̂ ∙ 𝐻𝑠,𝑛𝑢𝑚                                                                                                          (4.25) 

The parameters β0 and β1 are computed using the data available in the last 48 hours at t0, 

assuming that they are constant for the next 48 hours, after t0 (prediction interval).   

4.2.2. Copulas 

Having six months of simulated significant wave height data by SWAN, the modelled data 

and the observed data are used to construct a copula. The multivariate densities are difficult 

to be estimated due to possibly complicated forms of the data distribution and the curse of 
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dimensionality. The use of copulas is simplified, by separating the learning of the marginal 

distributions from the learning of the multivariate dependence structure.  

For this particular application, the use of the Gumbel copula was chosen. For the 

determination of the degree of fit of the chosen copula, a simple fitting test was carried out 

successfully. Two variables were used for the bivariate copula; (1) the modelled, and (2) the 

observed significant wave height, which are linked together into a density model. 

The fitted copula is saved and used in operational (online) mode. The density model can be 

conditionalized according to one of the variables, in this case, the modelled significant wave 

height, giving back the marginal distribution of the observed significant wave height. This 

way, the confidence intervals for the expected conditionalized value are provided. 

4.2.3. Artificial Neural Networks 

As described previously (see Chapter 2), there are different network topologies and learning 

processes to be chosen, when building an Artificial Neural Network (ANN). For simplicity, in 

this application, a three (3) layered architecture is used, i.e. an input layer, a hidden layer, 

and an output layer. The back propagation algorithm is used and the network’s input 

consists of the modelled significant wave height at the measurement stations (numerical 

model forecast data), with the output being the corrected predictions at the same stations. 

The ANN has an autoregressive component, as significant wave height data for the last 3 

hours (prior to the forecast) have been used as an input. 

Initially, the network had to be trained, tested, and validated. After the ANN had been 

optimally trained, it was stored and used operationally, every time the model is in use. For 

the training phase, four (4) months of data were used, while for testing 1 month was 

incorporated to avoid over-fitting. The last 1 month, of the total of 6 months (same with the 

ones used for the copula construction), was used to validate the network.  

4.2.4. Stochastic Interpolation 

For the case of Stochastic Interpolation, a simple regularization routine was used, which is 

able to combine past significant wave height observations and SWAN forecast data, 

incorporating the Bernstein Stochastic Interpolation (see also Chapter 2) method, presented 

by Howard and Kolibal. Here, three basic components are required, for the model to produce 

results; (1) past (48 hours prior to the time the forecast started) observed significant wave 

height data, (2) past numerical model significant wave height data (from the same time 

interval previously mentioned), and (3) the numerical model forecast for the significant wave 

height (48 hours ahead).  
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An important comment has to be made here; the Bernstein Stochastic Interpolation is not a 

unique forecasting/predicting tool, but it was created primarily for spatial modelling. As a 

result its forecasting capabilities are limited, compared to its ability in spreading the forecast 

in space. Further results and conclusions on the method’s functionality and performance, will 

be found in the following chapters.    

4.3. ARIMA Model 

4.3.1. Methodology and Training 

The ARIMA model was built around the forecast28 package provided by R, which needs 

only past observational data of the variable of interest (in this case the significant wave 

height or simply Hs) to be able to function, and follows the previously described Box – 

Jenkins approach (see also Chapter 2). By means of these past measurements, the model 

can be trained sufficiently in order to retrieve its seasonal and non-seasonal 

order/component. The auto.arima() function in R uses a combination of unit root tests, 

minimization of the Akaike Information Criterion (AIC) and the maximum likelihood 

estimation (MLE) to obtain (fit) an ARIMA model. 

Here arises the important question of how much training is needed in order for results of 

satisfying accuracy to be produced. Normally, the prediction interval represents 20-30 % of 

the total time under consideration; hence the training data can include 70-80 % of the data29. 

That amount of training, in many occasions, (such as this one) makes the computational 

load big enough for the model to become exceptionally slow. That, of course, is an 

undesirable effect in real time simulations, and deviates from the goals of a soft computing 

technique. As a result, the amount of training has to be reduced to the minimum possible, 

which would provide under certain circumstances reasonable results. Various tests were 

carried out, but in general the phenomena involved, as well as the real-time nature of the 

application, limit the ARIMA model’s ability to perform.  

4.3.2. Seasonality 

Certainly, the aforementioned drawback could be set aside in case the results were 

exceptionally satisfying. As it can be seen in the following sections, (Section 4.4 on 

Preliminary Results) the accuracy of the model can deviate a lot from the desired one, even 

with the amount of training mentioned above. The possible reasons behind this behaviour 

are extensively discussed in following sections, but the way the results are produced can 

partly give an explanation. In order for the data to be inserted into the ARIMA model and be 

                                                
28

 See also: https://cran.r-project.org/web/packages/forecast/forecast.pdf.  
29

 Similar examples of training and test sets can be found in Chapter 2. 

https://cran.r-project.org/web/packages/forecast/forecast.pdf
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analysed, they have to be transformed into an artificial timeseries, compatible to the model. 

For this to happen, the seasonality of the dataset has to be known.  

To determine the seasonality, a Fourier Transform has to be performed, from which the two 

top frequencies are extracted. In case the top frequency indicates a time larger than the time 

interval in hand, (false estimation) it is replaced by the second most dominant frequency, 

given by the aforementioned analysis. Having the frequency, i.e. the time period, a 

timeseries can be inserted into the ARIMA model in order to produce prediction of the 

variable of interest (i.e. the significant wave height or simply Hs).  

Also, to make things even more complex, the ability of the model to produce accurate 

forecasts is further reduced when the seasonal component is omitted. Generally, a simple 

training would probably provide only the non-seasonal components (p, d, q), since the 

seasonal components (P, D, Q) are in most occasions zero. As a result, the aforementioned 

order has to be artificially inserted into the model, i.e. by setting the degree of differencing (D) 

of the seasonal component equal to 1. That way, the ARIMA model is of the order (p, d, 

q)(P,1,Q), with the seasonality inserted to the timeseries. As it can be easily understood, a 

large part of the procedure is artificial, which is reflected in the final result. 

4.4. Bayesian Networks (BN) Model 

4.4.1. Scope 

The Bayesian Networks model has an extended multivariate input in comparison to the rest 

of the error correction techniques. As it was described in the preceding paragraphs, the error 

correction model, without the addition of Bayesian Networks, would just need past 

measurements and numerical model data, as well as the numerical model forecast of the 

significant wave height, to produce a possible correction. The nature of Bayesian Networks 

imposes the use of more variables, whose dependency with the variable of interest can 

produce a forecast of reasonable accuracy.  

As stated previously, the perspective of this thesis deviates from providing just a forecast, 

accompanied with a desired level of accuracy. The goal is to learn from the errors in the 

numerical model due to certain phenomena, understand and quantify those relations to 

eventually correct/improve the prediction of the numerical model, which is solely based on 

empirically and theoretically derived formulas. The consideration of Bayesian Networks aims 

to the description and representation of the underlying uncertainty in nature’s behaviour, as 

accurately as possible, while combining different dependent components, e.g. the wave 

period, the wave direction, the wind velocity, etc.  
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Here an important notation has to be made, that is, the procedure is data driven, i.e. the 

imputed data sets determine the dependencies between the variables. Efforts were made to 

also impute some relations, such as the relation between wind velocity and significant wave 

height, but as it will become obvious by the results displayed in following chapters, these 

relations are not well reflected by the BN dependence structure implied by the data.  

4.4.2. Training Methodology 

The Bayesian Networks, as most of the data driven techniques, need a specific amount of 

data in order to be trained sufficiently and be able to represent the desired relations. When 

the BN structure is acquired through the data, then a significant amount of data is needed. In 

every application the characterization of a training procedure as “sufficient” depends largely 

on the type and behaviour of the data. A sensitivity analysis would be in place to determine 

what “sufficient amount” actually means for the application. The significant wave height, for 

instance, is a variable whose behaviour is highly dynamic, i.e. it can change radically in short 

time intervals (e.g. hours). As a result, the more training the model has the better, since it 

can assimilate, and later reflect a larger range of behaviours. 

In this thesis, the training techniques are divided into two major categories; (1) the long 

training, which involves past observational and numerical data, even from 3 years prior to 

the current date 30 , and (2) the short training, which only involves measurements and 

numerical model data from 48 hours prior to the start of the forecast.  

In order to obtain the structure of the Bayesian Network, the bnlearn31 package of R is used. 

In general, there are two broad categories to learn the structure of a BN, the score-based 

and the constraint-based. The constraint-based case employs the independence test to 

identify a set of edge constraints for the graph and then finds the best DAG that satisfies the 

constraints. This approach works well with some other prior (expert) knowledge of structure, 

but requires lots of data samples to guarantee testing power. So it is less reliable when the 

number of samples is small. The score-based approach first defines a criterion to evaluate 

how well the BN fits the data, and then searches over the space of DAGs for a structure with 

maximal score. In this way, the score-based is essentially a search problem which consists 

of two parts: (1) the definition of a score metric, and (2) the search algorithm. A hill climbing 

(HC) score-based structure learning algorithm was used to train the network, by means of a 

pre-specified dataset. For the score based analysis, the package incorporates four criterions; 

(1) the multivariate Gaussian log-likelihood, (2) the corresponding Akaike Information 

                                                
30

 By “current date” the date where the forecast takes place is implied.  
31

 See also: https://cran.r-project.org/web/packages/bnlearn/bnlearn.pdf.  

https://cran.r-project.org/web/packages/bnlearn/bnlearn.pdf
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Criterion (AIC), (3) the corresponding Bayesian Information Criterion (BIC), and (4) a score 

equivalent Gaussian posterior density (BGe). The package also assumes a multivariate 

normal distribution for continuous variables, such as the hydrodynamic variables in hand, for 

the marginals and the resulting conditional distribution of the variable of interest. This 

assumption can be considered restricting in many occasions, but as it will become obvious, 

the results of such an analysis are quite reasonable. In case the assumption of multivariate 

normality is violated, the non-parametric Bayesian Networks could produce a more accurate 

conditional distribution and possibly (that is completely uncertain) in some occasions more 

accurate forecasting results. Nevertheless, the assumption of multivariate normality was 

considered sufficient to test the BN behaviour and performance, and the bnlearn package, 

which is provided for free (open source), as the most suitable one for this particular 

application.  

In the case of the long training, the training dataset is continuously enriched with new 

measurements, encapsulating even more relations and behaviours. Certainly, this requires a 

relatively large part of the computer’s memory. This effect can be impugned by incorporation 

of new variables and deletion of older, or with smaller training sets, i.e. in the order of 

months instead of years. 

4.4.3. Data Fitting in BN Structure 

In succession to the BN structure training, the fitting (feeding) of the data in the network has 

to take place. That way, according to the data-driven structure retrieved by the 

aforementioned procedure, the relations of the variables are inserted, in terms of correlations. 

The fitted dataset involves past observational data for all variables, as well as past numerical 

model data for the variable of interest only. 

In this part, the user can impute his/her own structure, by whitelisting or blacklisting certain 

relations, i.e. providing a custom and not data-driven fit. This, certainly, creates large 

differences in the results, since in many occasions the whitelisted arc is not supported by the 

BN structure in representing the joint density. Thus, it is suggested by the writer that the 

procedure should be carried out using data-driven structure learning and fitting techniques, 

even if a given/produced relation seems completely unrealistic. Some examples will be 

provided in following chapters, where a seemingly realistic connection provides completely 

unrealistic results, due to large uncertainties in data retrieving procedures and in the natural 

phenomena themselves (for instance in offshore environments the incorporated swell 

components can make a huge difference to what is realistic and what is not). 
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4.4.4. Predictions 

The predictions provided by the Bayesian Networks (BN) model, are retrieved from the 

conditional distribution of the variable of interest, which is dependent on the rest of the 

incorporated variables. The method to retrieve a forecast from the BN is based on the 

parent-descendant (child) relations, previously established by training and fitting.  

Since it is impossible to have future measurements for the variables incorporated, forecasted 

numerical model data for these variables are used to construct the conditional distribution for 

every point prediction. In other words the network is trained and fitted with past observational 

data, as well as numerical model data for the variable of interest, and then provides a 

forecast based on forecasted numerical model data (essentially we are conditionalizing on 

forecast numerical model data). The point prediction is the expected value (E[x]) of the 

conditional distribution, which is in our case normal (Gaussian), due to the multivariate 

normality assumption made in the structure learning procedure. Unfortunately, the 

aforementioned assumption prevents us from retrieving realistic uncertainty bound for the 

variable (i.e. significant wave height). The significant wave height (Hs) is not in any case 

normally distributed (see Section 3.4); therefore the assumption is in certain occasions32 not 

appropriate. Nevertheless, symmetrical (normal) uncertainty intervals can be extracted, 

sometimes unrealistic due to negative values, which provide a fairly good coverage of the 

observations (more information and examples can be found in the following chapters). A flow 

chart, showing the function of the BN model is shown in Figure 17. 

In terms of the variable, one could say that the assumption of normality is not appropriate, 

but referring to the prediction itself and its uncertainty, i.e. predicting the conditional 

expectation, along with the confidence bounds, the normal assumption is the most correct 

and reasonable one, due to the Central Limit Theorem (CLT). Since the predictions are the 

expected values of the conditional distributions, and simultaneously they are independent, 

their distribution tends towards a normal distribution, even if the original variables are not 

normally distributed. For more information on the classical CLT, the reader is referred to 

Lindeberg (1922); Abramowitz and Stegun (1972); Feller (1945, 1968, 1971); Kallenberg 

(1997); Spiegel (2003); Trotter (1959); Weisstein; and Zabell (1995). It should be 

emphasized that the focus of this research is to account for the uncertainty in the significant 

wave height (Hs) distribution and not in the estimates, and as a result the conditional 

distribution, in most occasions, cannot be expected to be normal. 

                                                
32

 The conditional distribution can be in certain cases normal, even if the marginals are not represented by a 
Gaussian distribution. Thus, the assumption of the normality of the conditional distribution is partly rough.  
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Fig. 17. Flow Chart presenting the basic function of the BN model. 
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4.5. Non-Operational Tests of Functionality 

In order to test the functionality of the BN error correction model, past data retrieved from 

two stations (buoys) deployed in the Irish Sea, were used. Each of the stations is adjacent to 

an offshore wind farm in the same area; (1) the Gwynt-y-Mor wind farm, and (2) the Rhyl 

Flats wind farm.  

The data collected by the aforementioned wave rider buoys correspond to a time interval 

starting on 1st of March 2015, and ending on the 30th of September 2015. The months were 

selected randomly, just to evaluate the functionality of the newly implemented methods 

(ARIMA and BN models). Since this analysis has just a testing nature, the focus is on 

specific months, rather than larger time intervals (as done later in Chapter 5). Given that, the 

corrections provided refer to the 2 or 3 last days of each available month, so that sufficient 

training could take place for the cases of the ARIMA and the long-trained BN models.  

4.5.1. Model settings and training 

The simulations were executed for both of the two previously referenced stations (GyM and 

RF). Due to the inability (direct or indirect) of the previous models incorporated in the Meteo 

Dashboard platform to implement more variables in the analysis, the observations received 

up until that point included only three variables: (1) the significant wave height (Hs), (2) the 

zero-crossing wave period (Tz), and (3) the wave direction (Dirp). As a result the networks 

created for functionality testing are relatively small (4 nodes). Nevertheless, they 

demonstrate the functionality and correction/prediction abilities of the created BN models, 

sufficiently to make a first performance evaluation and draw some important preliminary 

conclusions.  

As stated before, two BN models are used: (1) a long-trained one, whose learning/training 

set in this occasion consists of 90% of the variables’ values (27 days for a month of data), 

while the test set consists of 48 hours of data (2 days), and (2) a short-trained BN, whose 

training set includes just 48 hours of data (i.e. 48 values of each variable) prior to the 

forecast, and a test set composed of 48 values33. This preliminary analysis took place in 

order to evaluate the performance of the newly implemented methods in a short time interval, 

hence the rest of the error correction techniques are not presented yet. The numerical model 

data, as well as the measurements, are hourly34. 

                                                
33

 48 hours ahead is the forecast time interval. 
34

 By hourly data it is implied that one measurement exists every hour. 
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4.5.2. Evaluation Measures/Metrics 

Since this is only a preliminary stage in comparison to the consequent veritable tests, 

presented in the following chapters (Chapter 5), the only evaluation metric calculated and 

presented here is the root-mean-square-error (RMSE). Certainly, it is extremely difficult to 

evaluate a forecast consistently using simple metrics, let alone just one of them, since a 

“good” forecast is a matter of subject and application. In later stages of this research, more 

measures are incorporated to evaluate the accuracy and performance of the various error 

correction techniques, focusing more into specific aspects of the application in hand (i.e. 

maintenance operations in offshore wind farms). In this part we are confined into 

commenting and reasoning on the applicability of the BN and ARIMA models, without trying 

to take a final decision or draw any ultimate conclusions on their accuracy.  

4.5.3. Preliminary Results 

Below, the results of the preliminary analysis (limited to some days) are presented, 

demonstrating the performance of the BN and ARIMA models individually and in comparison 

plots. The individual performance graphs of just one month are attached in Appendix A, 

since the overall performance can also be seen in the corresponding comparison/summative 

plots (see Figure 18). The rest of the graphs, corresponding to the remaining months, can be 

found in Appendix A. 

 

Fig.18. Comparison between the newly implemented correction techniques for 28-30 March 2015, at Rhyl Flats 
(Irish Sea). 
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It becomes obvious, by looking at the graphs, that the ARIMA forecast displays a serious 

time lag. Also, it is virtually impossible to produce results after the 24 hour mark, since the 

training the model has is not sufficient. In Figure 18, the training time of the ARIMA model is 

8 days prior to the forecast, and the fitted model has an order equal to (0,1,1)(0,1,1) with a 

seasonality of 48 hours. The periodogram, produced by the Fourier Transform, from which 

the seasonality was computed, can be seen in Figure 19. Unfortunately, even with more 

training (10 days or even 15 days prior to the forecast) the model still displays an 

undesirable behaviour.  

 

Fig. 19. Periodogram displaying the major frequencies extracted by the original dataset (28-30 March 2015 – 
Rhyl Flats). 

Regarding the overall performance of the model, in terms of the RMSE, Table 1 presents the 

calculated values for each technique over the period of 28-30 of March 2015, so that a 

comparison with the numerical model can be made. As an addition, the maximum absolute 

error of each method was added, to give an indication of the biggest variation from the 

observations. 
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Table 1. Preliminary Evaluation Metrics (RMSE - MAE table) for 28-30 March 2015, at Rhyl Flats (Irish Sea). 

Method SWAN Long-trained BN Short-trained BN ARIMA 

RMSE 

(48 hours) 
0.5015 m 0.2349 m 0.2002 m - 

RMSE 

(24 hours) 
0.2528 m 0.1461 m 0.1867 m 0.3707 m 

Maximum 

Absolute 

Error 

1.0249 m 0.6246 m 0.5301 m 0.8230 m 

 

As it can be seen in Table 1, but also in the presented graphs, the performance of the BN 

model is quite satisfying for the given days. In terms of both the RMSE and the MAE, the 

short-trained, as well as the long-trained BN outperform the numerical model (SWAN) and 

the ARIMA model. Another important aspect and highly positive aspect of the BN 

performance, is the lower value of the errors as we come closer to current time, i.e. the 

forecast the first 24 hours is even more accurate. As shown in Table 1, both BN methods 

display much lower RMSE values for the 24-hour than for the 48-hour forecasts. 

Nevertheless, the BN predictions/corrections fail to include the high value (Hs ≅1.6 m) on the 

28th of March (see Figure 18), which brings up the question on what do we truly consider a 

good forecast.  

Certainly, encapsulating most of the behaviour of the observations is more important than 

simulating one or two really high values, and here is the point where application specific 

evaluation metrics have to come into play. Since this discussion diverges from the goal of 

this section, it will be addressed on a later chapter, when all the error correction techniques 

can be compared. For now, the RMSE is considered enough to present the general 

tendency of the methods’ performance and accuracy. 

4.5.4. BN Structure 

Another component of the BNs, that has to be addressed, is their structure. As described 

previously the structure determines all the underlying relations between the variables, and 

largely affects the outcome of the prediction procedure. For these examples, due to the 

similar behaviour of the variables within a month (which is a relatively short interval), the 

structure is the same in terms of the arc direction for both the long – and short – trained BN. 

The components that changes and lead to slightly different results are the correlations 
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between the variables. Figure 20 shows the BN structure, for March 2015, at the Rhyl Flats 

(RF) wind farm, while Tables 2 and 3 present the correlations between the variables. The 

correlations between the two alternative methods are close, leading to similar results. The 

whole procedure was completely data-driven, i.e. no relation was imputed a priori, and the 

predictions were produced according to the methodology described in Sub-Section 4.4.4.   

 

Fig. 20. BN structure for 28-30 March 2015, at Rhyl Flats (Irish Sea). 

 

Table 2. Correlation matrix for short-trained BN, 28-30 March 2015 - Rhyl Flats. 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.6198 0.8028 0.8325 

Dirp 0.6198 1 0.2967 0.9795 

Hs,num 0.8028 0.2967 1 0.9682 

Hs 0.8325 0.2795 0.9682 1 
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Table 3. Correlation matrix for long-trained BN, 28-30 March 2015 - Rhyl Flats. 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.5045 0.7649 0.7768 

Dirp 0.5045 1 0.3260 0.2892 

Hs,num 0.7649 0.3260 1 0.9671 

Hs 0.7768 0.2892 0.9671 1 

 

4.5.5. Further Testing 

In order to have a more clear view, and to be able to draw some preliminary conclusions on 

the overall functionality of the newly implemented models, the comparison plots, and the 

evaluation metrics tables for chosen days on May, July, and August 2015 are presented in 

Appendix A. For the corresponding BN structures, as well as the graphs displaying the 

individual performances of each model, and the periodograms used in the ARIMA analysis, 

the reader is also referred to Appendix A. 

4.6. Preliminary Conclusions 

As expected, the partly artificial nature of the ARIMA model hinders the production of 

satisfying and robust results. Another important cause of this behaviour is probably the 

amount of training, which is insufficient for this particular application. Unfortunately, larger 

training sets elongate the time of training significantly, and as a result amplify the 

computational load extremely (waiting times up to 30-40 minutes for training with 70-80 % of 

the data), without actually providing significant accuracy enhancement. It is clear by the 

preceding graphs, as well as the ones displayed in Appendix A, that the ARIMA predictions 

are completely inaccurate, which is also the case in terms of the RMSE and MAE. With 

further tests and preparation of the input data, probably a more robust ARIMA model could 

be established per case, but this deviates from the goals of this particular research, since the 

real-time tenor of the particular application makes human intervention and judgement 

useless when the model runs. Consequently, the created ARIMA model was considered 

unsuitable for this application, and as a result its predictions will not be discussed or 

presented further in this thesis.  
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It is reasonable to suggest, since the data inserted in the ARIMA model are hourly, the 

seasonality of the timeseries data frame created has to be equal to 60 minutes. Just for 

demonstrational purposes, to exhibit the behaviour of the ARIMA with an imputed 

seasonality, the results of 28-30th of March 2015 are shown below (Figure 21). It is visible 

that this intervention not only did not enhance the model’s accuracy, but clearly diminished it. 

A general conclusion is that it is really difficult to automatically create and ARIMA model, 

which encapsulates the natural behaviour of offshore hydrodynamic variables. As stated 

before, the construction of the model has to be more consistent and case specific, with an 

analysis taking into account the auto-correlation function (ACF), as well as smoothing 

procedures. 

 

Fig. 21. Incorporation of an ARIMA model, with a 60 min seasonality setting applied, in 28-30 March 2015 

(Rhyl Flats - Irish Sea). 

The graphs and the metrics display the general tendency, of both BN methods, to enhance 

the forecasting accuracy in terms of the RMSE, and in some occasions of the MAE. 

Certainly, it is extremely difficult to judge the forecast’s/correction’s quality, just by looking at 

the presented numbers. In the remaining chapters of this thesis, a more concentrated 

evaluation of the predicting ability of the models will be made, by implementation of case 

specific metrics and application specific boundaries, connected to the time and wave height 
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boundaries between which the prediction is of higher importance35. Especially for values 

close to the upper boundary of interest (usually Hs = 1.5 m), the results have to be as 

accurate as possible, since a wrong prediction on either side of the boundary might have a 

great impact in terms of safety and cost. 

 Nevertheless, the BN model preliminary results are quite promising with reference to the 

overall (whole period) and individual (separate months) performances. As a result, further 

analysis with extended time intervals of training and testing for the case of the Irish Sea, as 

well as comparison with the rest of the error correction techniques incorporated in Meteo 

Dashboard, were fully justified and can be found in the remaining of this research. An 

analysis, accompanied with comments, of the data including the variables to be used in the 

extensive and more robust method validation, can be found in the following chapter (Chapter 

5). 

  

                                                
35

 In offshore wind farm maintenance operations the critical wave heights are in the interval 0.5 ≤  𝐻𝑠 ≤ 1.5 m. 
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5. Method Comparison 

In Chapter 3 the preparation and manipulation of observational and numerical model data for 

multiple consecutive years was displayed. In this chapter the use of these data in order to 

train, test and compare the results of different error correction techniques (presented in 

Sections 4.3 and 4.4) is going to be discussed thoroughly. The time interval chosen for this 

particular analysis extends from 01-01-2014 to 31-12-2017 (4 consecutive years), for the 

measurement stations situated near the Gwynt-y-Mor (GyM) and Rhyl Flats (RF) offshore 

wind farms. In Section 5.1 a brief description of the models’ configuration and the use of data 

sets in the training and testing procedures are shown.  Section 5.2 includes a presentation of 

some representative examples of the models’ behaviour, followed by a technique 

comparison based on general and case specific metrics, while Section 5.3 provides an 

overview and comparison of the prediction uncertainty provide by the BN and Copula models. 

In Section 5.4 the reader can find an analysis comparing solely different configurations and 

structures of the newly developed BN models, and their ability to produce accurate 

predictions for the case in hand. Finally, in Section 5.5 some remarks and comments on the 

accuracy and robustness of each error correction technique can be found, by means of 

which the most suiting model for this application can be chosen.  

5.1. Model configuration and settings 

5.1.1. Training and Fitting 

As described in previous sections (Sections 4.3 and 4.4), each error correction technique 

incorporates different sets for training, while some of them do not need training at all. To be 

more exact, the simple linear regression and the stochastic interpolation take as an input 

only numerical data and measurements corresponding to a time interval just 48 hours prior 

to the forecast. The artificial neural network (ANN) and the copula (Gumbel) are trained with 

6 months of data, corresponding to the months of March – September 2015, and then used 

implementing the same input delineated for the aforementioned techniques.  

The newly developed Bayesian Network (BN) models incorporate three different types of 

training; (1) long-training with data from 01-01-2014 to 31-12-2016, i.e. 3 years of training, (2) 

short-training with hourly data corresponding to 48 hours prior to the forecast, i.e. 2 days of 

training, and (3) a fixed structure, produced by 3 years of training (2014 - 2016), and fitted 

with data tallying to 48 hours prior to the respective 48-hr forecast, i.e. 3 years for training 

and 48 hours for fitting and retrieving the required variable relations, necessary to produce a 

prediction. 
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When producing a prediction with the BN model, there should be an input of the variables on 

the basis of which the conditional distribution is being produced (conditionalization). As 

described in Section 4.4 the numerical model forecast data (48 hours ahead) for the rest of 

the variables (Tz, Udir, U10, Dirp, Hs,num) are used as conditionalizing values to generate an 

accurate forecast for the variable of interest, namely the significant wave height (Hs). 

5.1.2. Testing and Validation 

For testing, validation, and comparison, data retrieved for the year of 2017 were used (01-

01-2017 to 31-12-2017). In order to simulate effectively the real-time nature of the 

application, a forecast was corrected every six hours of each day. Because SWAN produced 

4 forecasts per day, one every 6 hours, each one of the error correction techniques, 

generated a potential corrected (potentially more accurate) prediction an equal number of 

times. It can be easily realized that the extremely large amount of information makes it 

absolutely impossible for all the results to be presented. Thus, a representative set, 

displaying different types of behaviours, is going to be exhibited in the sections to follow. 

Supplementary, the individual forecast metrics, as well as the ones encapsulating the 

performance over the whole year, were calculated, in order to show and evaluate the 

application-focused and more general model behaviours respectively.   

5.2. Technique Comparison – Yearly Tests 

5.2.1. Timeseries and Evaluation of 48-hr Forecasts 

In order to establish a consistent evaluation of the error correction techniques, and conclude 

which one serves the purposes of the offshore significant wave height predictions better, 

yearly tests were conducted, involving numerical model data and measurements from 01-01-

2017 to 31-12-2017. To start with, the timeseries incorporating all the available techniques 

can be seen below. For the reader to be able to distinguish the predictive performance of the 

newly developed BN error correction model, plots comparing solely the three (3) 

implemented BN techniques are also displayed.  

In Figures 22 and 23 two crucial cases for the maintenance operations in offshore wind 

farms are introduced. The crucial nature of these cases, as well as other similar ones 

presented later, stems from the level over which nautical operations within the wind farm 

seize to take place, i.e. the significant wave height (Hs) upper boundary of 1.5 m. It is shown 

in the following graphs that SWAN over-predicts the wave height to a level where no 

operations could take place, while the observations, as well as the long-trained BN predictive 
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model, providing a value smaller than 1.5 m. Exactly the same behaviour can be seen 6 

hours later, for the next 48-hr SWAN forecast (see Figure 23). 

In terms of the difference in the RMSE or MAE, this error might not indicate a behaviour that 

arises any worry for the models accuracy, even if the long-trained BN would still be more 

accurate. In a real-life situation such a wrong prediction may encapsulate a large risk for the 

maintenance operation, since in monetary terms this miss-prediction might cost thousands of 

euros (€).   

 

 

Fig. 22. Significant wave height (Hs) predictions produced for Gwynt-y-Mor at 18:00 on 24-02-2017. 
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Fig. 23. Significant wave height (Hs) predictions produced for Gwynt-y-Mor at 00:00 on 25-02-2017. 

 

The aforementioned issue regarding the robust and consistent validation of each prediction 

can be resolved with the use of case specific metrics, i.e. indicators displaying the models’ 

accuracy within and around the significant wave height boundaries of this specific application, 

i.e. 0.5 ≤ 𝐻𝑠 ≤ 1.5 m. Particular interest is focused around the upper boundary of 1.5 m, 

which is certainly the most crucial for the offshore maintenance operations. In each 

individual forecast there is a no point of displaying the performance in terms of a number, 

since the reader can distinguish easily whether a forecast is accurate in high values or not. 

Nevertheless, the individual case general evaluation metrics (RMSE, MAE, BIAS, and 

Unbiased RMSE) can certainly give an indication of how “good” a forecast is. For the cases 

of Figures 22 and 23, Tables 4 and 5 give the corresponding accuracy metrics.  
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Table 4. General model accuracy evaluation metrics for Gwynt-y-Mor at 18:00 on 24-02-2017. 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

REG ANN Copula SI 

RMSE  

(m) 
0.179 0.146 0.149 0.142 0.169 0.142 0.373 

MAE  

(m) 
0.671 0.449 0.560 0.426 0.716 0.390 0.966 

BIAS  

(m) 
0.171 0.143 -0.006 -0.008 0.237 0.027 -0.146 

URMSE 

(m) 
0.179 0.146 0.149 0.142 0.169 0.142 0.373 

 

Table 5. General model accuracy evaluation metrics for Gwynt-y-Mor at 00:00 on 25-02-2017. 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

REG ANN Copula SI 

RMSE 

(m) 
0.236 0.144 0.196 0.144 0.281 0.147 0.687 

MAE  

(m) 
0.611 0.336 0.506 0.337 0.658 0.346 1.533 

BIAS  

(m) 
0.169 0.132 -0.016 -0.0165 0.232 0.007 -0.378 

URMSE 

(m) 
0.165 0.144 0.143 0.143 0.158 0.146 0.573 

 

According to Tables 4 and 5 a universally and clearly better model is difficult to be chosen. 

The linear regression model (REG) demonstrates a generally satisfying behaviour, and so 

does the long-trained BN. Considering its accuracy in “high” value predictions, the long-

trained BN can be distinguished as the most suitable one for this occasion. Certainly, a 

correction of the SWAN forecasts is achieved in the presented dates, which of course is the 

ultimate goal.   

An interesting fact, displayed in the foregoing figures and tables, is the behaviour and 

accuracy of the Bernstein Stochastic Interpolation (SI). While the model provides excellent 
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predictions in high and medium values, its lower value predictions are often really inaccurate 

and completely unrealistic36. This behaviour is noticed generally in the yearly predictions 

provided by this model, as for instance in the case of Figure 24, where the accuracy of the 

forecast is crucial (close to the 1.5 m upper boundary) and the rest of the methods were 

unable to predict the respective wave height values. That of course has a huge impact on 

the general metrics presented in the preceding tables. So, a general comment one could 

make is that the Bernstein Stochastic Interpolation can certainly simulate the high values, 

even if the evaluation metrics calculated for this technique are unsatisfying and do not seem 

to provide any correction. 

 

Fig. 24. Example of the SI model’s predictive accuracy, in comparison to the rest of the methods (Gwynt-y-Mor). 

  

                                                
36

 It is impossible for the significant wave height (Hs) to display negative values. 
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5.2.2. The potential of Bayesian Networks 

As displayed before, the long-trained BN error correction model can in many circumstances 

provide a robust and consistent prediction of significant wave height values. Nevertheless, 

such a performance is not limited only to this kind of BN models, but also to the short-trained 

as well as the ones whose structure is fixed. To be more exact there are various occasions 

which illustrate clearly the need and potential of each BN method. Especially in occasions 

similar to the ones presented in Figure 25, the BN techniques produced forecasts, which 

would be crucial in a real-life situation.  

 

Fig. 25. Significant wave height correction (Hs) attempts, in which the BN methods displayed satisfying 
performance (GyM). 
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For instance in the top and lower left graphs of the above figure (Figure 25), the numerical 

model (SWAN) as well as some of the error correction techniques forecasted wave height 

values smaller than 1.5 m, while the reality was quite different. That would have a huge 

impact on the maintenance operation, which is translated in monetary terms, and potentially 

put human lives at risk. A similar example, which would not have an impact on the 

conduction of the operation, but might have a serious effect on decision making, is 

presented in the top right case, where the short-trained BN was the only model capable to 

simulate nature’s behaviour.  

The opposite would take place in the lower right graph’s case, in which the numerical model, 

as well as the majority of the error correction techniques, predicted wave heights larger than 

1.5 m. Again in this case, the short-trained BN method (and the linear regression) predicted 

realistic values, which would change the fate of a possible operation, with a correction 

reaching nearly 1 m in terms of the significant wave height (Hs). 

Up until now, for display purposes, the fixed BN method’s results have not been presented. 

But, this technique’s performance is also of particular interest, since it provides useful and 

crucial corrections/predictions in various occasions (see e.g. Figures 26 and 27).  A positive 

characteristic of the BN methods as a group is that when one of the techniques predicts 

poorly, one or both of the others display satisfying results, as for example in the case of 

Figure 26. Another benefit of the fixed structure in particular is that it provides satisfying 

results consistently, even in the absence of measurements from 48 hours prior to the 

forecast, while the short-trained BN is more dependent on the recent offshore climate, and 

as a result its behaviour can be erratic (left graph of Figure 26).     

 

Fig. 26. Examples of the BN methods’ predictive accuracy, with emphasis on the fixed structure BN (Gwynt-y-
Mor). 
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Fig. 27. Occasions in which the BN methods provided satisfying predictive accuracy (Gwynt-y-Mor). 

 

From the cases of Figure 27, it becomes absolutely clear that all of the newly implemented 

BN error correction models can provide a significant accuracy enhancement in significant 

wave height (Hs) predictions. Also, all of the presented examples are crucial for the decision 

making procedures in offshore maintenance operations, supporting even further the role that 

the BN techniques can play in the Meteo Dashboard platform, or other similar applications. 
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In all the above figures, the lack of the corrections provided by the BN models would most 

probably condemn any offshore operations.   

5.2.3. Summative (Yearly) Evaluation Metrics 

To be able to establish which model serves the application better, the simulation was 

conducted for the whole year of 2017, as stated before. Table 6 shows the general 

evaluation metrics produced for the aforementioned time interval, for all the implemented 

techniques in the Gwynt-y-Mor wind farm case. The respective table for the case of Rhyl 

Flats can be found also in this section, so that the performance of the model for the whole 

area of the Irish Sea can also be evaluated. 

Table 6. Yearly (2017) Evaluation Metrics for Gwynt-y-Mor 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

REG ANN Copula SI 

RMSE 

(m) 
0.231 0.218 0.253 0.209 0.206 0.225 0.246 0.325 

MAE  

(m) 
2.410 2.360 2.607 2.728 2.907 2.397 2.566 3.999 

BIAS  

(m) 
-0.046 -0.011 -0.051 0.005 0.004 0.0365 -0.076 -0.016 

URMSE 

(m) 
0.226 0.218 0.248 0.209 0.206 0.222 0.234 0.324 

 

Both the long-trained and custom-fixed BNs introduce an enhancement in accuracy, larger 

than any other method, with the exception of linear regression. Especially the custom-fixed 

BN’s RMSE is larger than the linear regression’s metric by 3 mm. Nevertheless, the fixed 

structure produce abnormal behaviour in certain occasions (such as spikes in the timeseries), 

which produce large errors, illustrated by the value of the MAE. The long-trained BN on the 

other hand shows a more consistent behaviour in terms of the maximum absolute error. In 

any case, both of the aforementioned techniques display satisfying performance in terms of 

their error distribution, which is reflected on the bias.  

It has to be stressed out that evaluating the forecasting/correction performance solely based 

on Table 6 metrics is impossible. The metrics show the general behaviour of the models and 

are definitely indicative, but a more consistent evaluation has to be made, based also on 



68 

 

application focused (case specific) indicators (see Table 7). In order to judge more robustly 

three different indicators were taken into account: (1) the percentage of the critically accurate 

predictions, i.e. the forecasts for which the measurements were higher than 1.5 m and the 

respective model managed to predict, (2) the false positive forecast percentage, which 

provides information on the amount of predictions above 1.5 m when the measurement was 

below, and (3) the percentage of the critically inaccurate forecasts, i.e. the amount of 

predictions below the 1.5 m upper boundary, when the measurement was above that limit. 

An important note is that the percentages were calculated over the whole time interval, i.e. in 

terms of the whole dataset, hence their values are small. In any case, they provide the much 

needed comparison in this stage.  

Table 7. Application-specific Evaluation Metrics for the Gwynt-y-Mor case study. 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

REG ANN Copula SI 

Critically 

Accurate 

(%) 

19.72 21.16 20.27 22.31 22.00 23.05 16.89 20.83 

Critically 

Inaccurate 

(%) 

2.55 2.82 3.79 2.10 2.34 1.90 4.72 1.96 

False 

Positive 

(%) 

2.26 1.93 1.50 2.10 1.97 3.01 0.82 3.01 

 

By means of the above table (Table 7) it becomes clearer that the BN techniques provide a 

robust and consistent accuracy enhancement, and in combination with the metrics of Table 6, 

the foregoing analysis proves their suitability for the error correction scheme presented in 

this research. The custom-fixed BN is the one with the overall better performance in the case 

of the Gwynt-y-Mor wind farm. Certainly, the usefulness of Bayesian Networks is extended 

further if one considers the information provided by their structures, and the uncertainty 

estimation provided for the variable of interest. Those advantages will be clearly illustrated in 

the following sections.  

In order to evaluate the performance of the error correction models for the whole area of 

interest, i.e. the Irish Sea, Tables 8 and 9 illustrate the general and application specific 
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metrics for the case of Rhyl Flats. Once more the BN methods achieve to produce prediction 

of enhanced accuracy, serving the needs of the application to a satisfying degree across the 

spatial domain. The linear regression presents once more a better result in terms of the 

metrics, but the fact that it provides far less information, without any measure for the 

uncertainty of the variable of interest (i.e. the significant wave height), makes the BN 

methods more attractive and useful.  

Table 8. Yearly (2017) Evaluation Metrics for Rhyl Flats. 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

REG ANN Copula SI 

RMSE 

(m) 
0.203 0.178 0.200 0.201 0.163 0.212 0.187 0.275 

MAE  

(m) 
1.970 1.722 2.361 4.1731 2.361 1.991 1.769 2.991 

BIAS  

(m) 
-0.004 -0.010 -0.037 0.003 0.003 0.082 -0.054 0.002 

URMSE 

(m) 
0.203 0.178 0.196 0.201 0.163 0.196 0.179 0.275 

 

Table 9. Application-specific Evaluation Metrics for the Rhyl Flats case study. 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

REG ANN Copula SI 

Critically 

Accurate 

(%) 

18.02 17.01 16.04 18.82 18.02 20.64 16.64 18.49 

Critically 

Inaccurate 

(%) 

1.05 2.28 2.50 1.34 1.47 0.74 2.98 1.11 

False 

Positive 

(%) 

2.55 1.16 1.03 1.58 1.14 3.26 0.80 2.91 
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Although the performance achieved by the BN methods is quite satisfying, it can be seen 

(see Tables 8 and 9) that for the case of Rhyl Flats the network incorporating a fixed 

structure developed a slightly reduced performance in comparison to the respective Gwynt-

y-Mor tests. It still provided a small accuracy enhancement, but it is evident from its MAE 

value that its behaviour in certain occasions was erratic. On the other hand, the long-trained 

BN method provided a satisfying correction in most occasions, nonetheless being less 

accurate than SWAN at certain moments. 

5.2.4. Error Distribution 

In Figures 28 and 29 the error distributions for the cases of Gwynt-y-Mor and Rhyl Flats are 

shown respectively. It is assumed that the errors follow a normal distribution37, with the mean 

value being the bias, and the standard deviation the spread of the error (dispersion). To be 

more exact, the bias is the difference between the mean value of the distribution of errors 

given by the analysis and that of a standard normal distribution N (0, σ2), i.e. one where the 

systematic errors are 0. In both occasions, the BN modules illustrate a small bias, i.e. a 

mean value for the error close to zero, and a smaller error spread in comparison to the rest 

of the error correction techniques and SWAN. 

The erratic behaviour of the BN error correction technique incorporating a fixed structure can 

also be seen in Figure 30, where the different model errors’ evolution in time is presented. 

Apart from the time interval were no data were available (January and February 2017) it can 

be seen that between July and September 2017 some large spikes appeared in the 

timeseries of the aforementioned technique. There the dependence of the Hs with the wave 

(Dirp) and wind direction (Udir) becomes stronger and influences the forecast negatively, due 

to the large values existing in those two datasets. 

The aforementioned issue will be adressed in Section 5.4, where an accuracy comparison of 

different BN structure configurations will be made. The respective error timeseries for the 

case of Gwynt-y-Mor is presented in Appendix C. 

 

                                                
37

 According to the CLT (Central Limit Theorem) in statistics, the aggregation of a sufficiently large number of 
independent random variables results in a random variable which will be approximately normal.  The error term 
can be thought of as the composite of a number of minor influences or errors. As the number of these minor 
influences gets larger, the distribution of the error term tends to approach the normal distribution.  
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Fig. 28. Distribution of errors for the significant wave height (Hs) predictions at Gwynt-y-Mor (2017). 

 

Fig. 29. Distribution of errors for the significant wave height (Hs) predictions at Rhyl Flats (2017). 
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Fig. 30. Evolution of errors for the Rhyl Flats case study (2017). 

5.2.5. Taylor Diagrams for the yearly predictions 

Another way to evaluate the forecasting accuracy of different models is the Taylor diagram38, 

which is a mathematical diagram designed to graphically indicate which of several 

approximate representations (models) of a phenomenon or process is the most realistic. Its 

main use is the quantification of the degree of correspondence between the modelled and 

measured behaviour in terms of three metrics: (1) the Pearson correlation coefficient, (2) the 

RMSE, and (3) the standard deviation. For more information the reader is referred to Taylor 

(2001). 

Simulations that agree well with the observations will lie nearest the point marked 

"Observations" on the x-axis, i.e. models with relatively high correlation and low RMSE. It 

can be seen in Figure 31 for the case of Gwynt-y-Mor, that the linear regression and the BN 

model incorporating the fixed structures are the most suitable techniques according to the 

graph, something that was also evident from Tables 6 and 7. The respective Taylor diagram 

for the case of Rhyl Flats can be found in Appendix C. 

                                                
38 The Taylor Diagram was invented by Karl E. Taylor in 1994.  
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Fig. 31. Taylor diagram for significant wave height (Hs) predictions (Gwynt-y-Mor in 2017). 

 

5.2.6. Scatterplots of EC Model Vs Observations 

Any correlation between each model’s predictions and the observations in hand, 

accompanied with a certain confidence intervals, can be distinguished by means of 

scatterplots (see Figures 32 and 33). The diagonal (red line) indicates a pure linear relation 

between the respective sets of data, and the scatter around it gives an indication of the 

uncertainty incorporated in the prediction. 

In terms of the BN error correction models (Figure 32), the close relation between the 

predictions produced by the long-trained BN (top right) and the numerical model (SWAN) is 

evident. Regarding the uncertainty, the scatterplots of the aforementioned models are similar, 

while the short-trained BN model (bottom left) introduces a generally larger scatter under the 

diagonal. Thus it can be concluded by the graph that the short-trained BN has a tendency to 

under-predict the measurements. 
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Fig. 32. Scatterplots of SWAN (upper left) and BN models in relation to the measurements (Gwynt-y-Mor). 

On the other hand, the BN method incorporating the fixed structure (bottom right of Figure 

32) seems to be more concentrated and equally distributed around the diagonal, introducing 

an accuracy enhancement, a fact also concluded in the previous sections (see Section 

5.2.2). Certainly, there is some evidence of over-prediction, justified by the isolated values 

above the diagonal.  

In Figure 33 the rest of the incorporated techniques’ predictions in relation to the 

observations at Gwynt-y-Mor can be seen. Regarding the linear regression (top left) a similar 

behaviour to the fixed BN method can be distinguished. Nevertheless, some negative values 

were also produced by the linear regression model, leading to some unrealistic values below 



75 

 

the diagonal, while a behaviour leading to over-prediction (outliers above the diagonal) is 

also presented in this case. 

 

  

  

Fig. 33. Scatterplots of implemented error correction models in relation to the measurements (Gwynt-y-Mor). 

The implemented Gumbel Copula seems to be unable to achieve high accuracy in the large 

significant wave height values, which was also reflected on the results of Table 7. Other than 

that, its values are concentrated around the diagonal, with a tendency of under-prediction 

(more values below the diagonal). The ANN model shows a tendency of predicting higher 

values than the ones expected, but its performance in terms of high Hs values is robust and 

consistent (really small number of isolated values above the diagonal).  
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Finally, the Bernstein Stochastic Interpolation (SI) generally over-predicts in comparison to 

the observed values, displaying also an unsatisfying general behaviour in lower wave height 

value forecasts, where unrealistic negative estimates seem to exist. Even if some of the SI 

model’s forecasts are quite satisfying, the general behaviour of the model leads to the 

conclusion that this technique is not ideal for this particular application. In any case, the 

evidence provided in Figure 24 proves the stochastic interpolation’s usefulness under certain 

conditions and supports its use in real-time corrections39, since the computational load of this 

technique definitely allows its use, without hindering the forecasting procedure. For the 

respective scatterplots corresponding to the case of Rhyl Flats the reader is referred to 

Appendix C. 

5.3. Uncertainty Evaluation 

One major advantage of the newly created BN methods, in comparison to the already 

implemented techniques on the Meteo Dashboard platform, is their ability to provide 

estimates of the uncertainty governing the variable of interest; in the case of this research 

the significant wave height (Hs). The only one of the other techniques able to produce 

confidence intervals is the Gumbel Copula. Nevertheless, the assumption of a Gumbel 

Copula as the most suitable one for the data influences the confidence intervals’ 

performance significantly.  

Regarding the BN methods, as stated in Chapter (see Section 4.4), the assumption of 

multivariate normality for the conditional distribution of Hs governs the predictions. Although 

the above assumption could be quite restrictive in other applications, the predictions 

acquired by the BN models are quite satisfying, providing a correction of the numerical 

model (SWAN) forecast in the majority of the occasions in the time interval under 

consideration (Jan 2017 – Jan 2018). As a result of the aforementioned supposition (normal 

conditional Hs distribution), the uncertainty boundaries given by the BN models are 

symmetrical40. That of course does not condemn their performance or their usefulness, 

which is going to be examined thoroughly in this section. In comparison to the 

aforementioned confidence intervals, log-normal uncertainty bounds were also produced 

using a log-transformation of the data, justified by the log-normal distribution fitting the Hs 

dataset for both stations. 

                                                
39

 Real-time corrections are connected to the individual performance on each forecast. Therefore, a generally 
inaccurate model might produce extremely satisfying predictions under certain conditions. 
40

 The 95% uncertainty bounds are given by the 2.5
th
 and 97.5

th
 quantile of the conditional Hs distribution. 
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5.3.1. Normal and Log-Normal Uncertainty Bounds 

Before moving to the comparison of the uncertainty bounds provided by the different 

techniques, it is helpful to present the methodology followed during the analysis. The 

production of the normal (symmetrical) confidence intervals is straight-forward. The use of 

the cpdist function, provided by the bnlearn package in R, makes things even simpler. 

Essentially, the conditional probability is given and by extraction of its 2.5th and 97.5th 

quantile, the 95% uncertainty bounds are obtained for each one of the point predictions41.  

Because the symmetrical nature of the uncertainty bounds is not quite realistic, a log-

transformation also took place to obtain the log-normal boundaries corresponding to the 

distribution of the significant wave height (Hs). Summarily, the significant wave height (Hs) 

data were transformed to log-values (log-transformation) and then inserted into bnlearn 

package. The network was trained with the aforementioned transformed data and produced 

predictions and the conditional distribution of each point prediction. Those values were 

transformed back to their original form (i.e. 10x) and that way the log-normal boundaries 

were obtained. Again the 2.5th and the 97.5th quantiles were used. It has to be stressed that 

the expected value (i.e. the point prediction) was different than the one obtained by the 

assumption of the multivariate normality (see Figure 34). 

 

Fig. 34. Log-Normal (left) and Normal (right) 95% Uncertainty Bounds (fixed BN method for Gwynt-y-Mor on 09-
03-2017). 

                                                
41

 As stated in previous sections (see Section 4.4) the point predictions are the expected values of the conditional 
distribution. 
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In the case of Figure 34, the differences in terms of point predictions and the uncertainty 

bounds are visible. In this case the normal confidence intervals, despite their symmetrical 

appearance are more accurate and useful than the respective log-normal ones. That 

statement can be justified by taking a closer look at the coverage percentage, i.e. the 

amount of observations included in the interval in relation to the total number of observations, 

and the average length of the uncertainty interval, i.e. the average difference between the 

upper and lower boundaries. The normal uncertainty bounds (right graph) provide a 

coverage percentage equal to 90% (89.6%) of the total observations, in comparison to the 

77% coverage provided by the log-normal boundaries. Regarding the average length of the 

uncertainty bounds, a comparison will be made incorporating the data sets for the whole 

year of 2017, in order to establish which uncertainty bounds serve the application satisfyingly.  

For the sake of completeness Figures 35 and 36 present the respective confidence intervals 

provided by the other two BN techniques, for both distributions.  

 

Fig. 35. Log-Normal (left) and Normal (right) 95% Uncertainty Bounds (long-trained BN for Gwynt-y-Mor on 09-
03-2017). 

 

Both intervals for the case of the long-trained BN (Figure 35) include all the observational 

values, providing, nevertheless, quite unrealistic uncertainty bounds with really large length. 

On the other hand, for the short-trained BN (Figure 36) the log-normal uncertainty bounds 

give a coverage percentage equal to 92%, while for the respective normal ones the 
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coverage is 88%. Although the coverage percentage is larger for the log-normal confidence 

interval, its length is larger and in certain points unrealistic, which raises the question of 

when the uncertainty estimate is more useful. 

 

 

Fig. 36. Log-Normal (left) and Normal (right) 95% Uncertainty Bounds (short-trained BN for Gwynt-y-Mor on 09-
03-2017). 

 

 

5.3.2. Comparison of the provided Uncertainty Bounds 

The following tables (Tables 10 and 11) provide the necessary information for the evaluation 

of the uncertainty estimates provided by each error correction technique. It can be seen that 

the log-normal uncertainty bound provide smaller coverage percentages with similar or 

larger average lengths. As a result the normal confidence intervals are more efficient and 

accurate. The most useful uncertainty boundaries seem to be the ones provided by the BN 

model incorporating the fixed structure, which have a high coverage percentage (86.1%) 

accompanied by a satisfying average length.  
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Table 10. Uncertainty Bounds comparison for the Gwynt-y-Mor case study. 

Method 

BN 

Long 

Training 

BN 

Fixed 

Structure 

BN 

Short 

Training 

Copula 

BN 

Long 

Training 

(Log-N) 

BN 

Short 

Training 

(Log-N) 

BN 

Fixed 

Structure 

(Log-N) 

Coverage 

(%) 
89.2 86.1 75.3 68.5 95.4 73.1 76.5 

Average 

Length 

(m) 

0.630 0.531 0.356 0.375 1.185 0.550 0.594 

Table 11. Uncertainty Bounds comparison for the Gwynt-y-Mor case study (negative values included)t. 

Method 

BN 

Long 

Training 

BN 

Fixed 

Structure 

BN 

Short 

Training 

Copula 

BN 

Long 

Training 

(Log-N) 

BN 

Short 

Training 

(Log-N) 

BN 

Fixed 

Structure 

(Log-N) 

Coverage 

(%) 
89.2 86.1 75.3 68.5 95.4 73.1 76.5 

 Average 

Length 

(m) 

0.639 0.533 0.464 0.375 1.185 0.550 0.594 

 

Due to the nature of the data, there might be values that are close to 0. In such case the 

symmetrical normal boundaries will include negative values, since the expected value, i.e. 

the point prediction, will also be close to 0. Certainly, negative wave height values do not 

exist, and as a result the lower boundary was set to 0 for those occasions. Table 11 provides 

the values of the average length, when those negative values are included in the analysis, 

with the differences not being significant. 

Considering the overall performance in terms of the given uncertainty, in combination with 

the point predictions provided in the preceding sections (see Section 5.2.3) it seems that the 

BN method incorporating a fixed structure, alongside with the respective normal confidence 

intervals, is the most suitable one for the Gwynt-y-Mor case study. The long-trained BN 

normal boundaries have also a steady and robust performance, which also makes them an 

attractive and satisfying model.  
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Finally, is has to be noted that the extremely large coverage given by the log-normal 

uncertainty bounds, for the case of the long-trained BN model, is justified by the similarly 

large average length of the intervals, which makes the solution less suitable. Definitely, the 

log-normal boundaries have a more realistic form (i.e. only positive values and a match with 

parametric distribution fitting the Hs well), but in case the performance is taken into account 

the normal confidence intervals pose many advantages. The respective tables referring to 

the Rhyl Flats case can be found in Appendix C. 

 

5.4. BN Structures and Configurations 

This section consists of two major parts, both of them referring to the time interval under 

consideration, i.e. the year of 2017. The first one includes the BN structures incorporated in 

the simulations so far, the relations between the implemented variables, and an analysis of 

the information obtained by those relations. The second part introduces different BN 

structures and configurations, with an altered number of incorporated variables, as well as a 

comparison between the predictions and uncertainty provided by them and the 6-node 

structure implemented in the preceding examples. Also in this part the dependence between 

the variables will be discussed, in order to establish a clearer view of the governing relations 

existing in the application.  

5.4.1. BN Structures with 6 Variables 

Up until now in this research, the BN structures incorporated involved 6 nodes (see Figures 

37 and 38), corresponding to the following variables: (1) the observed significant wave 

height (Hs), (2) the numerical significant wave height (Hs,num) obtained by SWAN, (3) the 

wave directions (Dirp), (4) the zero-crossing wave period (Tz), (5) the wind velocity 10 m 

above the sea surface (U10), and (6) the wind direction (Udir). The simulations were carried 

out using data driven structures, i.e. structures acquired by the nature of the data and not 

imposed a priori. In general it was noted that trying to create a structure using general 

knowledge on the incorporated variables (i.e. knowledge on the underlying relations 

procured by the literature or by experts) only hindered the prediction/correction procedure 

instead of enhancing its accuracy.  
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Fig. 37. Structure for the long-trained and fixed BN models, incorporating 6 variables (Gwynt-y-Mor). 

  

Fig. 38. Structures for the short-trained BN model incorporating 6 variables for the case of Gwynt-y-Mor.  
(29-12-2017 at 18:00 and 17-11-2017 at 06:00) 

 

The structure presented in Figure 37 is constant over time, i.e. the direction of the arcs 

remains the same, while the structure connected to the short-trained BN model (Figure 38) is 

continuously changing, since it depends solely on data retrieved 48 hours prior to the 

forecast. Some of the relations governing the first of the aforementioned structures (constant) 
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are anticipated, when others oppose what would be expected by the common knowledge on 

the variables in hand.   

The most distinctive examples here are the relations between the observed significant wave 

height (Hs) and the wind velocity (U10), as well as the wind (Udir) and wave (Dirp) directions. In 

a situation represented by the dependencies described in the literature, supported by 

common knowledge by experts, one would expect the wind direction to influence the wave 

direction, i.e. the arc connecting those two nodes to have a direction from Udir to Dirp. In both 

occasions presented in the preceding figures, the opposite occurs. The data-driven analysis 

implies that the wind direction depends on the wave direction, something which is certainly 

not the case in reality. But here a quite reasonable explanation exists, justifying this kind of 

behaviour. The wind and wave directions are measured at the same locations, a fact that 

insinuates that the variables influence one another in one specific area. Still, waves are 

created by storms occurred many kilometres (or miles in the nautical language) away from 

the location of the measurement. As a result, the measured wind directions might indeed not 

have any influence on the wave directions. Further, the wave direction is influenced by many 

effects, such as diffraction due to islands or other obstacles, so their direction can be totally 

irrelevant to the values given by the wind direction. That of course raises the question on 

whether the wind direction could be omitted by the analysis, which will be addressed in the 

following sections. 

On the other hand, the significant wave height and wave direction relation is in reality two 

different stories. For the case of the long training (3 years of data), presented in Figure 37, 

the relation is the one expected by the descriptions available in the literature, corresponding 

to the experts opinions. To be more exact, the wind velocity influences the significant wave 

height, a dependence which is highlighted by the high correlation between the variables, 

shown in Table 12 (a correlation coefficient equal to 0.795). In the same table other relations 

are also visible, as for instance the wind and wave direction relation, which justifies the 

structures form. Also visible is the extremely high dependency between the observed and 

numerically derived wave heights, which gives the character of correction instead of pure 

prediction to this whole research, since the quality of the numerical model (SWAN) results 

influence highly the long-trained model’s accuracy. 

Contrarily, the short-trained BN model provides a variety of relations between the wind 

velocity and the observed significant wave height, due to the dynamic nature of the offshore 

events, which force the data to rapidly change behaviour. Figure 38 clearly illustrates that 

there is no clear relation between the two aforementioned variables, since the direction of 
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the connection changes repeatedly, and in some occasion becomes even inexistent (no 

connection at all). That of course is again explained by the nature of wave creation by distant 

storms, or secondary events like diffraction or reflection, since also those two variables are 

measured in the same location. The correlation presented for the long training set just 

proves that in most occasions the wind velocity magnitude influences the waves, but does 

not in any case make this absolute for all day-to-day cases.  

Table 12. Correlation matrix for the long-trained BN model structure (Gwynt-y-Mor). 

Variable Dirp Tz U10 Udir Hs,num Hs 

Dirp 1.000 0.381 0.001 0.515 0.245 0.249 

Tz 0.381 1.000 0.596 0.359 0.842 0.874 

U10 0.001 0.596 1.000 0.110 0.820 0.795 

Udir 0.515 0.359 0.110 1.000 0.319 0.329 

Hs,num 0.245 0.842 0.820 0.319 1.000 0.964 

Hs 0.249 0.874 0.795 0.329 0.964 1.000 

   

Table 13 is an indicative example of the erratic behaviour of the short-trained BN model’s 

structure, when it is compared to the correlation matrix given for the long training case 

(Table 12). It is obvious that the relation between the wind velocity and the observed 

significant wave height is much weaker than the one presented previously. The same holds 

for the relation between the wind and wave directions, which is almost inexistent (correlation 

coefficient equal to -0.003). Since the underlying relations (dependencies) change rapidly 

and very dynamically, the example correlation matrix presented in Table 13 supports the 

unpredictable predicting performance of the short-trained BN model, which also has an 

erratic character as described in previous sections.   
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Table 13. Correlation matrix for the short-trained BN model structure on 29-12-2017 at 18:00 (Gwynt-y-Mor). 

Variable Dirp Tz U10 Udir Hs,num Hs 

Dirp 1.000 0.659 0.138 -0.003 0.422 0.573 

Tz 0.659 1.000 -0.094 0.109 0.462 0.774 

U10 0.138 -0.094 1.000 0.281 0.416 0.297 

Udir 
-

0.003 
0.109 0.281 1.000 0.564 0.391 

Hs,num 0.422 0.462 0.416 0.564 1.000 0.687 

Hs 0.573 0.774 0.297 0.391 0.687 1.000 

 

Regarding the fixed structure BN model which retrieves the structure form (direction or even 

existence of certain arcs) from the large dataset of the long training (3 years), but is 

predicting according to the relations obtained by data acquired just 48 hours prior to the 

forecast, the underlying relations are essentially stable in terms of direction, since the long-

trained structure remains constant. The mixing of the long and short training sets to create 

essentially a hybrid structure, influences the forecasting accuracy in most occasions, as 

shown in Section 5.2, even if under certain conditions the behaviour of this model can be 

varying as well. Finally, as stated previously in Section 4.5.4, it is preferable for this 

application to allow the structure to be completely data-driven, when a sufficiently large 

amount of information is available (such as the long training set), since the real relations 

governing the phenomenon cannot be known a priori in dynamic offshore environments. The 

respective tables and figures for the case of Rhyl Flats can be found in Appendix C. 

5.4.2. Comparison of Alternative BN Structures 

It is really interesting to examine how different configurations of the BN structures, i.e. a 

different number of nodes with a selection of variables or certain assigned (custom-fitted) 

relations, influence the predictions and the provided uncertainty, while testing them in the 

time interval previously presented (Jan 2017 – Jan 2018). This comparison will shed some 

light on whether one or more of the incorporated variables influence the models’ accuracy 

positively, and will reveal if the erratic behaviour of the models incorporating short term past 
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data can be casted off. A reminder here for the reader is the behaviour presented in Section 

5.2.3 for the case of Rhyl Flats, where the impact of the BN models’ corrections where not 

so clear (see also Table 8). 

Figure 39 presents the case of BN structures incorporating 4 variables (nodes) for the case 

of Gwynt-y-Mor: (1) the observed significant wave height (Hs), (2) the numerically derived 

significant wave height (Hs,num), (3) the wave direction (Dirp), and (4) the zero-crossing wave 

period (Tz). Once more here the abrupt differences between long- and short-trained BN 

models’ structures are visible, resulting from the nature of the incorporated data. It has to be 

reminded that on 17-11-2017 the short-trained BN model provided a quite satisfying forecast 

(see also Figure 25).  

  

Fig. 39. Long- (left) and short-trained (right) BN models’ structures for the case Gwynt-y-Mor incorporating 4 

variables. (27-10-2017 at 18:00) 

 

The resulting general and application oriented evaluation metrics for this case are presented 

in Tables 14 and 15. As it can be seen, the exclusion of the meteorological variables, i.e. the 

wind velocity and direction, only triggered a reduction of the fixed structure accuracy, to a 

point where it became equal to the short-trained BN models’ one. A general comment could 

be that the behaviour of the BN models incorporating short term past data was less erratic, 

but still any accuracy reduction is unsatisfying.  

 



87 

 

Table 14. Evaluation metrics for the case of the 4-variable BN models (Gwynt-y-Mor). 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

6 Nodes 4 Nodes 

RMSE 

(m) 
0.231 0.218 0.253 0.209 0.218 0.257 0.257 

MAE  

(m) 
2.410 2.360 2.607 2.728 2.349 2.804 2.804 

BIAS  

(m) 
-0.046 -0.011 -0.051 0.005 -0.011 -0.056 -0.056 

URMSE 

(m) 
0.226 0.218 0.248 0.209 0.218 0.251 0.251 

 

Table 15. Application specific evaluation metrics for the case of the 4-variable BN models (Gwynt-y-Mor). 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

6 Nodes 4 Nodes 

Critically 

Accurate 

(%) 

19.72 21.16 20.27 22.31 20.94 19.65 19.65 

Critically 

Inaccurate 

(%) 

2.55 2.82 3.79 2.10 2.88 4.06 4.06 

False 

Positive 

(%) 

2.26 1.93 1.50 2.10 1.93 1.35 1.35 

 

Regarding the coverage percentage and the average length of the uncertainty bounds, again 

a reduction in performance is noticed (see Table 16) in the case of the fixed structure, while 

a small and insignificant enhancement of accuracy is observed in the short – and long-
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trained BN error correction models. As a result it can be concluded that for the Gwynt-y-Mor 

case the exclusion of the meteorological variables had a negative effect, and the 6-variable 

structure is suggested between the two. 

Table 16. Uncertainty estimates’ performance for the case of the 4-variable BN structures (Gwynt-y-Mor).  

Method 

BN 

Long 

Training 

BN 

Fixed 

Structure 

BN 

Short 

Training 

Copula 

BN 

Long 

Training 

(Log-N) 

BN 

Short 

Training 

(Log-N) 

BN 

Fixed 

Structure 

(Log-N) 

Coverage 

(%) 
89.3 77.6 77.6 68.5 95.4 73.1 78.8 

Average 

Length 

(m) 

0.630 0.553 0.553 0.375 1.185 0.637 0.550 

For the Rhyl Flats case, whose metrics are shown in Tables 17 and 18 in comparison to the 

6-variable BN models presented in preceding sections, it is evident that an enhancement of 

the models incorporating short-term past data has been achieved. This improvement is 

noticed in terms of the general metrics (see RMSE and URMSE in Table 17), as well as for 

some of the application specific metrics, such as the false positive percentage, and results 

from the more predictable and stable performance of the models.  

Table 17. Comparison of evaluation metrics for the 4- and 6-variable BN models (Rhyl Flats). 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

6 Nodes 4 Nodes 

RMSE 

(m) 
0.203 0.178 0.200 0.201 0.178 0.192 0.192 

MAE  

(m) 
1.970 1.722 2.361 4.1731 1.733 2.377 2.377 

BIAS  

(m) 
-0.004 -0.010 -0.037 0.003 -0.013 -0.030 -0.030 

URMSE 

(m) 
0.203 0.178 0.196 0.201 0.177 0.189 0.189 
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Table 18. Comparison of application specific evaluation metrics for the 4- and 6-variable BN models (Rhyl Flats). 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

6 Nodes 4 Nodes 

Critically 

Accurate 

(%) 

18.02 17.01 16.04 18.82 16.87 16.40 16.40 

Critically 

Inaccurate 

(%) 

1.05 2.28 2.50 1.34 2.30 2.48 2.48 

False 

Positive 

(%) 

2.55 1.16 1.03 1.58 1.14 0.84 0.84 

 

Nevertheless, the performance of the models has not been improved dramatically, while in 

some occasions the results are still better for the case of the 6-variable BN structures (see 

Table 18). Therefore it can be concluded that the 4-variable structure does not perform any 

better than the 6-variable one, which has to be adopted after this comparison. The 

uncertainty estimates for the case of Rhyl Flats, provided by the 4-variable structure are 

available in Appendix C. 

Further testing was conducted with a 5-variable BN structure, incorporating supplementary 

the wind velocity (U10). Examples of the arc directions for the case of Gwynt-y-Mor are 

shown in Figure 40, where the relations discussed previously between the meteorological 

and the hydrodynamic variables are again varying depending on the training of the BN 

model (long or short training). The explanation here is quite the same, since for the largest 

part of the year the wind velocity can in general influence the significant wave height, while 

in certain occasions this might not happen due to the origins of the waves.  

Interestingly and importantly, the performance of the models is enhanced slightly, while 

being more consistent for the BNs incorporating short-term past data. Tables 19 and 20 

illustrate the accuracy improvement in terms of the general and application specific metrics 

respectively. It is shown that the RMSE values are smaller for all BN models, with the new 

value provided by the one including the fixed structure being the smaller in comparison to 
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the rest of the error correction techniques. The accuracy in predictions close to the critical 

boundary has also increased, particularly in terms of the critically accurate and false positive 

percentages.  

 

 

 

 

Fig. 40. Long- (left) and short-trained (right) BN models’ structures for the case Gwynt-y-Mor incorporating 5 

variables. (27-10-2017 at 18:00) 

 

Table 19. Evaluation metrics for the case of the 5-variable BN models (Gwynt-y-Mor). 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

6 Nodes 5 Nodes 

RMSE 

(m) 
0.231 0.218 0.253 0.209 0.219 0.248 0.208 

MAE  

(m) 
2.410 2.360 2.607 2.728 2.360 2.801 2.809 

BIAS  

(m) 
-0.046 -0.011 -0.051 0.005 -0.012 -0.055 0.002 

URMSE 

(m) 
0.226 0.218 0.248 0.209 0.219 0.248 0.208 
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Table 20. Application specific evaluation metrics for the case of the 5-variable BN models (Gwynt-y-Mor). 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

6 Nodes 5 Nodes 

Critically 

Accurate 

(%) 

19.72 21.16 20.27 22.31 21.08 19.82 22.19 

Critically 

Inaccurate 

(%) 

2.55 2.82 3.79 2.10 2.87 3.87 2.34 

False 

Positive 

(%) 

2.26 1.93 1.50 2.10 1.96 1.39 1.95 

 

Regarding the uncertainty estimates, the coverage percentages and the lengths are similar 

to the 6-variable BN models’ figures, without any improvement to the average length of the 

long-trained log-normal confidence intervals. Yet, the extremely high coverage percentage 

reaching nearly 96% of the total observations, as well as the relatively realistic behaviour of 

the boundaries are factors that cannot be overlooked. It is truly difficult to determine which 

boundary is the most suitable and it always depends on the applications needs. 

Nevertheless, both kinds of confidence intervals display an improvement when compared to 

the already existent uncertainty estimates given by the Gumbel Copula.   

Table 21. Uncertainty estimates’ performance for the case of the 5-variable BN structures (Gwynt-y-Mor). 

Method 

BN 

Long 

Training 

BN 

Fixed 

Structure 

BN 

Short 

Training 

Copula 

BN 

Long 

Training 

(Log-N) 

BN 

Short 

Training 

(Log-N) 

BN 

Fixed 

Structure 

(Log-N) 

Coverage 

(%) 
89.2 87.6 76.0 68.5 95.4 77.0 73.1 

Average 

Length 

(m) 

0.631 0.551 0.530 0.375 1.185 0.610 0.550 
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Even more interesting are the results produced for the case of Rhyl Flats. As shown in Table 

22, there is a significant improvement in terms of all the metrics, to a degree that the BN 

model incorporating the fixed structure becomes the error correction technique serving the 

application better. Table 23 illustrates that also in terms of critical performance, around the 

1.5 m upper boundary, the fixed structure BN model’s performance is enhanced. Moreover, 

the behaviour of the 5-variable structures regarding models including short-term past data 

(i.e. 48 hours prior to the forecast), is quite consistent and robust in comparison to the 

structure incorporating 6 variables. Here, the point that the wind direction causes 

unsteadiness to the predictions, inducing a completely erratic and unpredictable 

performance in certain occasions, is proved. Because the uncertainty estimates display large 

improvement as well, it seemed fit to present them here in comparison to the results given 

by the 6-variable BN structure (see Table 24). The normal confidence intervals of the fixed-

structured BN reach a coverage percentage of nearly 91% of the total observations, with an 

average length of just 49 cm. Certainly, the form of the boundaries is not ideal, since they 

are symmetrical, but still their performance provides a significant enhancement in accuracy, 

making the BN models a valuable correction tool for this application. The long-trained BN 

model is equally good in terms of accuracy whichever the configuration may be, making it 

also a robust and reliable tool, which with the inclusion of its uncertainty bounds introduces a 

significant improvement of the significant wave height (Hs) predictions. It can be concluded 

that the 5-variable BN models should be used for the case of Rhyl Flats, due to its robust 

behaviour, in comparison to similar techniques incorporating 4 or 6 variables. 

Table 22. Evaluation metrics for the case of the 5-variable BN models (Rhyl Flats). 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

6 Nodes 5 Nodes 

RMSE 

(m) 
0.203 0.178 0.200 0.201 0.178 0.195 0.163 

MAE  

(m) 
1.970 1.722 2.361 4.1731 1.733 2.377 2.361 

BIAS  

(m) 
-0.004 -0.010 -0.037 0.003 -0.013 -0.038 0.003 

URMSE 

(m) 
0.203 0.178 0.196 0.201 0.177 0.191 0.163 
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Table 23. Application specific evaluation metrics for the case of the 5-variable BN models (Rhyl Flats). 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

6 Nodes 5 Nodes 

Critically 

Accurate 

(%) 

18.02 17.01 16.04 18.82 16.87 16.08 18.03 

Critically 

Inaccurate 

(%) 

1.05 2.28 2.50 1.34 2.30 2.45 1.47 

False 

Positive 

(%) 

2.55 1.16 1.03 1.58 1.14 0.84 1.14 

 

Table 24. Uncertainty estimates’ performance for the case of a 5-variable BN structure (Rhyl Flats). 

Method 

BN 

Long 

Training 

BN 

Fixed 

Structure 

BN 

Short 

Training 

Copula 

BN 

Long 

Training 

(Log-N) 

BN 

Short 

Training 

(Log-N) 

BN 

Fixed 

Structure 

(Log-N) 

5 Variables 

Coverage 

(%) 
89.6 90.8 77.2 70.9 95.0 77.1 73.2 

Average 

Length 

(m) 

0.527 0.489 0.430 0.327 1.024 0.505 0.460 

6 Variables 

Coverage 

(%) 
89.7 64.7 69.8 70.9 94.7 68.9 61.0 

Average 

Length 

(m) 

0.527 0.491 0.427 0.327 0.948 0.466 0.425 
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5.5. Remarks – Comments 

Summarily, in this chapter the performance of the newly implemented BN methods in tests 

including data for the year of 2017 became evident. The BN method incorporating a fixed 

structure, as well as short-term past data, seems to be the best overall, out-performing any 

other error correction technique. The configuration that the BN structure should have 

depends highly on the available data. In Gwynt-y-Mor the BN models incorporating 6 

variables, namely the observed significant wave height (Hs), the numerically produced 

significant wave height (Hs,num), the wave direction (Dirp), the zero-crossing wave period (Tz), 

the wind velocity (U10), and the wind direction (Udir), seems to serve the application equally 

good to the 5-variable structure, where the wind direction is excluded. A general comment is 

that the 6-variable BN structures behave erratically in certain occasions, when short-term 

past data (i.e. data retrieved 48 hours prior to the forecast) are incorporated. 

On the other hand, for the Rhyl Flats dataset, the exclusion of the wind direction is 

imperative in order for all the BN models to be able to produce results of enhanced accuracy, 

due to the condition of the aforementioned variable’s dataset. Certainty, the long-trained BN 

provides robust and consistent results for both stations, and with the inclusion of the 

uncertainty estimates provided, it becomes also a very attractive and equally suitable error 

correction technique. The BN structures were all produced by data-driven procedures, based 

on score-based tests provided by bnlearn. It is recommended that the data should 

determine the relations in the BN structure, and no pre-determined arc direction should exist. 

The relations between the meteorological and hydrodynamic data seem odd in specific 

occasions, but the nature of the locations under consideration justifies the produced results. 

Since the origins of waves and wind are unknown in most occasions the data-driven 

procedure seemed and was fitter and more accurate. For examples of results given by 

structures in which the relation between wind velocity and significant wave height was 

imposed a priori the reader is referred to Appendix C, where it becomes evident why the 

data-driven structures serve the application better. 

All in all, it can be concluded that the BN methods provide the most suitable solution in terms 

of error correction for the examples in the Irish Sea. A major advantage is the information 

available by its structures and uncertainty estimates, which can be either provided in normal 

or log-normal format. The normal confidence intervals seem to be the most suitable for this 

application, since they provide more information, especially in terms of the higher boundary. 

Moreover, they introduce a really acceptable average length in comparison to their log-

normal counterparts. Still, the log-normal uncertainty bounds grant behaviours close to 

reality, since they only provide positive estimates, but their average length, especially the 
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one given by the long-trained technique, is totally unrealistic. Generally though, it can be 

said that all BN methods enhance the uncertainty estimates’ performance in comparison to 

the already existent Gumbel Copula. 
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6. Conclusions  

In this thesis, the behaviour and performance of several statistical and stochastic techniques 

while providing significant wave height (Hs) predictions/corrections was evaluated, and 

compared to the forecasts given by a numerical model (SWAN), with special attention given 

to the Bayesian Network models and the information granted by their structures.  Uncertainty 

estimates for the aforementioned variable of interest were also given by the underlying 

conditional distribution of the Hs, leading to a quite satisfying mapping of the variable’s 

behaviour. The provided confidence intervals were compared to estimates given by an 

assumed Gumbel Copula, showing a significant increase in forecasting performance. 

Because of the underlying multivariate normality assumption in the used bnlearn package 

of R, the given uncertainty boundaries were symmetrical above and below the point 

predictions. To assess that, and possibly reach a more realistic behaviour for the significant 

wave height estimates, a logarithmic transformation took place, to obtain log-normal 

uncertainty boundaries, derived by a parametric distribution fitting the Hs data better. 

Nevertheless, the estimates given the normal conditional distribution outperformed the ones 

provided by their log-normal counterparts, with equal or smaller average lengths, i.e. 

differences between the upper and lower estimates averaged over a whole year. It has to be 

stressed out that all the tests and validation were conducted bearing in mind the operational 

nature of the application, i.e. that the models had to perform well in conditions where the 

measurements and numerical model (SWAN) results were obtained in real-time. As a result, 

the ability of the models to provide operation (real-time) predictions of enhanced accuracy 

was also assessed.  

6.1. Overall Model Performance 

For the evaluation of the error correction techniques, metrics describing the general 

performance of the models and the quality of the predictions, as well as application-specific 

metrics focusing on constraints and boundaries provided by the application in hand 

(maintenance and installation operations in offshore wind farms), were used. For both 

stations under consideration in the Irish Sea (Gwynt-y-Mor and Rhyl Flats), the BN model 

incorporating a long-trained structure (the so-called fixed structure throughout this research) 

in combination with short-term past data (48-hrs prior to the forecast) performs better than 

any other model, including SWAN. This conclusion is reflected in all of the evaluation metrics. 

Also, the long-trained BN model produces results of really good accuracy, with a stable and 

robust performance, regardless the number of the variables. Given also that both of these 

models provide uncertainty estimates, which cover nearly 90% of the total number of 
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measurements, it can be concluded that the BN models provide the most suitable solution in 

terms of error correction, enhancing the SWAN forecasts significantly and ensuring nautical 

and operational safety in a large number of occasions. 

6.2. Analysis of the BN Structures 

The results provided by statistical methods are largely dependent on the data quality or 

suitability. Due to the topology (Irish Sea) which induces secondary events in terms of 

hydrodynamics (reflection, diffraction, etc.), some direct variable relations that would seem 

obvious are not so trivial after all. For instance, as discussed extensively in the previous 

chapters, the dependencies between meteorological and hydrodynamic variables, as the 

wind (Udir) and wave directions (Dirp), do not seem to exist when the analysis is data-driven. 

Tests conducted with pre-determined relations in a structure, i.e. the meteorological 

variables (Udir and U10) influencing the hydrodynamic ones (Hs, Tz, and Dirp) and not the other 

way around, did not produce satisfying results. Thus, data-driven approaches were used and 

are recommended when the morphology of the area, or the way the measurements are 

collected (e.g. with wave-rider buoys and met-masts), include many uncertainties of their 

own.  

The previously described sensitivity on the data suitability can influence the results of the BN 

models significantly, and make their behaviour erratic. For the case of the long-trained BN 

model, the 6-variable structure seems to perform equally well for both case studies, but the 

BN incorporating the fixed structure (which actually produced the best results overall) seems 

to be greatly influenced, especially in the case of Rhyl Flats. In offline mode it is easy to 

establish and recognise which variable/s reduces the respective models’ accuracy, but when 

the models run operationally it is impossible to interfere. In that regard the 5-variable BN 

structures, excluding the wind direction (Udir) are the most suitable to be used in operational 

(real-time) conditions. 

6.3. Evaluation of the Uncertainty Estimates 

Regarding the uncertainty estimates, which are provided in the form of 95% confidence 

intervals extracted from the conditional distribution of the significant wave height (Hs), the BN 

models in all cases outperform the assumed Gumbel Copula. The coverage percentage 

throughout the year of 2017 in both wind farms reaches approximately 90% of the total 

number of measurements, providing reasonable average lengths of 50-60 cm, for the case 

of the normal conditional distribution, i.e. 25-30 cm upper and lower uncertainty. The log-

normal uncertainty boundaries, despite their more realistic appearance and behaviour, 

provide larger average lengths with smaller coverage percentages, except for the case of the 
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long-trained BN model, which on one hand provides coverage of nearly 95% of the total 

number of measurements, but in the same time displays an average length of 1.18 m for its 

confidence intervals. As a result, it can be concluded that the normal uncertainty boundaries 

of the BN incorporating short- and long-term past data (fixed structure) are the ones 

providing the best results.  

Again in this occasion, the 5-variable structure (excluding the wind direction) has to be 

incorporated in order to achieve enhanced accuracy with the fixed-structured BN model. 

Therefore, in real-time this structure should be chosen above the 6-variable one, due to its 

far more stable performance. 

6.4. Operational Functionality 

As described in all the previous paragraphs and chapters, the final goal is to manage to 

emulate the real-time nature of the application and draw conclusions for the applicability of 

the methods under consideration in operational environments. In that regard, the fixed-

structured 5-variable BN model outperforms any other statistical or stochastic technique, not 

only in terms of point predictions/corrections, but also in terms of the uncertainty estimates 

which encapsulate nearly 90% of the measurements in 2017, in both stations (Gwynt-y-Mor 

and Rhyl Flats). Certainly this kind of model has one major disadvantage; the fact that it 

needs short-term past data (48-hrs prior to the forecast) makes it unable to produce 

predictions/corrections in the absence of recent observations. This effect is not an issue with 

the long-trained BN model, which has equally good general metrics, with RMSE values close 

to fixed-structure BN (see Chapter 5), but is underperforming in terms of the critical 

situations (close to the upper 1.5 m boundary), i.e. displays a more conservative behaviour 

which makes it unable in certain occasions to predict significant wave height peaks (see 

application-specific metrics of Chapter 5). 

Consequently, it is really a matter of subject which model is better in terms of the operational 

performance. Surely, the ability of the long-trained BN model to produce forecasts of 

enhanced accuracy constantly, even in the absence of recent observations makes it really 

attractive for real-time use. Yet, one cannot in any case overlook the really good 

performance of the fixed-structured BN, especially in producing critical predictions (close the 

application’s upper boundary), which constitutes probably the most important benefit of using 

it. As a result, it is clearly up to the user and the nature of the application, i.e. whether the 

variable of interest displays a really dynamic behaviour, such as in the case of the Hs, or not, 

to determine which of the aforementioned models is the most suitable one. In a nutshell, the 
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BN models are really suitable for operational use, but which one has to be used is largely 

dependent on the needs of the application.      

6.5. Research Directions 

To be able to draw more concrete conclusions on the operational performance of the 

methods, real-time testing has to be performed for an extensive period of time. All models 

were tested successfully in terms of their functionality in operational environments, but surely 

a concise and consistent validation of the produced results has to take place.  

Regarding the wind direction, and its suitability in terms of use, possibly it could be 

discretized rather than used as an additional continuous variable, hence transforming the BN 

network into a hybrid one. Also the accuracy of the models could be evaluated per season, 

or type of event, e.g. for wind coming from NW in comparison to SE, depending on the main 

wind directions generally occurring in the Irish Sea, or for varying training sets of 1,2, or 4 

years of data.  

Finally, concerning the impact that the corrections have, which is not always easy to find out 

just by studying metrics and percentages, an application-based stochastic impact 

assessment can take place, revealing the importance of the models in monetary and risk 

terms. For more information, the reader is referred to Bastola et al. (2011).  
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Appendix A 

A.1. Preliminary Analysis BN Structures 

Here, the Bayesian Networks’ (BN) structures corresponding to the preliminary analysis 

results are shown. The structures of the short- and long – trained BNs are sometimes similar 

in terms of their arc direction. Nevertheless, the correlation between the variables differs and, 

as a result, the predictions provided by each network display disparate accuracy.  

 

Fig. A. 1. BN structure for short and long training on 28-30 May 2015 (Rhyl Flats - Irish Sea). 

 

 

Table A. 1. Long-trained BN correlation matrix on 28-30 May 2015 (Rhyl Flats - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.4281 0.6865 0.6814 

Dirp 0.4281 1 0.2359 0.2012 

Hs,num 0.6865 0.2359 1 0.9159 

Hs 0.6814 0.2012 0.9159 1 
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Table A. 2. Short-trained BN correlation matrix on 28-30 May 2015 (Rhyl Flats - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.2866 0.5827 0.5198 

Dirp 0.2866 1 -0.1689 -0.3572 

Hs,num 0.5827 -0.1689 1 0.7676 

Hs 0.51988 -0.3572 0.7676 1 

 

 

Fig. A. 2. BN structure for long training on 28-30 May 2015 (Gwynt-y-Mor - Irish Sea). 

 

Fig. A. 3. BN structure for short training on 28-30 May 2015 (Gwynt-y-Mor - Irish Sea). 
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Table A. 3. Long-trained BN correlation matrix on 28-30 May 2015 (Gwynt-y-Mor - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 -0.0692 0.2677 0.8191 

Dirp -0.0692 1 -0.8905 -0.3947 

Hs,num 0.2677 -0.8905 1 0.6401 

Hs 0.8191 -0.3947 0.6401 1 

 

Table A. 4. Short-trained BN correlation matrix on 28-30 May 2015 (Gwynt-y-Mor - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.4127 0.5481 0.7525 

Dirp 0.4127 1 0.1129 0.2028 

Hs,num 0.5480 0.1129 1 0.7972 

Hs 0.7525 0.2028 0.7972 1 

 

 

Fig. A. 4. BN structure for long training on 29-31 July 2015 (Rhyl Flats - Irish Sea). 
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Table A. 5. Long-trained BN correlation matrix on 29-31 July 2015 (Rhyl Flats - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.5284 0.5953 0.6939 

Dirp 0.5284 1 0.2789 0.3603 

Hs,num 0.5953 0.2789 1 0.8528 

Hs 0.6939 0.3603 0.8528 1 

 

 

Fig. A. 5. BN structure for short on 29-31 July 2015 (Rhyl Flats - Irish Sea). 

 

Table A. 6. Short-trained BN correlation matrix on 29-31 July 2015 (Rhyl Flats - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.5547 0.4499 0.8952 

Dirp 0.5547 1 0.1429 0.5055 

Hs,num 0.4499 0.1429 1 0.5907 

Hs 0.8952 0.5055 0.5907 1 
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Fig. A. 6. BN structure for long training on 29-31 July 2015 (Gwynt-y-Mor - Irish Sea). 

 

Table A. 7. Long-trained BN correlation matrix on 29-31 July 2015 (Gwynt-y-Mor - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.4409 0.4958 0.7472 

Dirp 0.4409 1 0.1003 0.2369 

Hs,num 0.4958 0.1003 1 0.6941 

Hs 0.7472 0.2369 0.6941 1 

 

 

Fig. A. 7. BN structure for short on 29-31 July 2015 (Gwynt-y-Mor - Irish Sea). 
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Table A. 8. Short-trained BN correlation matrix on 29-31 July 2015 (Gwynt-y-Mor - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.3723 0.6074 0.8674 

Dirp 0.3723 1 0.3631 0.2556 

Hs,num 0.6074 0.3631 1 0.5176 

Hs 0.8674 0.2556 0.5176 1 

 

 

Fig. A. 8. BN structure for long training on 28-30 August 2015 (Rhyl Flats - Irish Sea). 

 

Table A. 9. Long-trained BN correlation matrix on 28-30 August 2015 (Rhyl Flats - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.3512 0.6222 0.6614 

Dirp 0.3512 1 0.1969 0.2160 

Hs,num 0.6222 0.1969 1 0.9351 

Hs 0.6614 0.2160 0.9351 1 
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Fig. A. 9. BN structure for short on 28-30 August 2015 (Rhyl Flats - Irish Sea). 

 

Table A. 10. Short-trained BN correlation matrix on 28-30 August 2015 (Rhyl Flats - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.4684 0.5401 0.6317 

Dirp 0.4684 1 0.5585 0.5689 

Hs,num 0.5401 0.5585 1 0.6485 

Hs 0.6317 0.5689 0.6485 1 

 

 

 

Fig. A. 10. BN structure for long training on 28-30 August 2015 (Gwynt-y-Mor - Irish Sea). 
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Table A. 11. Long-trained BN correlation matrix on 28-30 August 2015 (Gwynt-y-Mor - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.4032 0.3396 0.5076 

Dirp 0.4032 1 0.0960 0.3338 

Hs,num 0.3396 0.0960 1 0.7529 

Hs 0.5076 0.3338 0.7529 1 

 

 

Fig. A. 11. BN structure for short on 28-30 August 2015 (Gwynt-y-Mor - Irish Sea). 

 

Table A. 12. Short-trained BN correlation matrix on 28-30 August 2015 (Gwynt-y-Mor - Irish Sea). 

Variable Tz Dirp Hs,num Hs 

Tz 1 0.4719 -0.3082 0.6022 

Dirp 0.4719 1 -0.3110 0.5501 

Hs,num -0.3082 -0.3110 1 0.0701 

Hs 0.6022 0.5501 0.0701 1 



108 

 

A.2. Periodograms 

As described in the main text (Section 3.2), in order to retrieve the seasonality of the original 

dataset, to create a timeseries data frame in R, a Fourier Transform was carried out to 

distinguish the main frequencies. The results of such a procedure can be displayed by 

means of periodograms42 (see below), which clearly indicate the required frequencies. A 

periodogram is an estimate of the spectral density of a signal. By definition43, the power 

spectral density of a continuous function, 𝑥(𝑡), is the Fourier Transform of its auto-correlation 

function (see e.g. Box and Jenkins, 1976; Fulop and Fitz, 2006; Auger and Flandrin, 1995; 

Schuster, 1898): 

ℱ{𝑥(𝑡) ∗ 𝑥(−𝑡)} = 𝑋(𝑓) ∙ 𝑋∗(𝑓) = |𝑋(𝑓)|2                                                                            (1.A) 

In many applications, periodogram-based techniques introduce small biases, which are 

unacceptable. Another deficiency of the periodogram is that the variance at a given 

frequency does not decrease as the number of samples used in the computation increases. 

The averaging needed to analyse noise-like signals, or even sinusoids at low signal-to-noise 

ratios, is not provided, resulting in the need for more sophisticated methods of spectral 

estimation. To expand further on the subject of spectral estimation, is far from the scope of 

this research. Consequently, the results derived from the analysis that took place, to obtain 

finally the needed ARIMA model, are presented in the following figures.  

                                                
42

 The term “periodgram” was invented by Arthur Schuster in 1898. 
43

 See also the Cross-correlation theorem (http://mathworld.wolfram.com/Cross-CorrelationTheorem.html).  

http://mathworld.wolfram.com/Cross-CorrelationTheorem.html


109 

 

 

Fig. A. 12. Periodogram corresponding to the 28-30 May 2015 data (Rhyl Flats - Irish Sea). 

 

Fig. A. 13. Periodogram corresponding to the 28-30 May 2015 data (Gwynt-y-Mor - Irish Sea). 
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Fig. A. 14. Periodogram corresponding to the 29-31 July 2015 data (Rhyl Flats - Irish Sea). 

 

Fig. A. 15. Periodogram corresponding to the 29-31 July 2015 data (Gwynt-y-Mor - Irish Sea). 



111 

 

 

Fig. A. 16. Periodogram corresponding to the 28-30 August 2015 data (Rhyl Flats - Irish Sea). 

 

Fig. A. 17. Periodogram corresponding to the 28-30 August 2015 data (Gwynt-y-Mor - Irish Sea). 
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From the previously displayed periodograms, the seasonality of the dataset was computed, 

in order for the required timeseries data frame to be created. In case the seasonality was 

larger than the time interval indicated by the dataset (i.e. 48 hours), the major frequency was 

rejected and the secondary major one was chosen. 
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A.3. Functionality Test Results 

 

Fig. A. 18. Comparison between the BN and ARIMA techniques for 28-30 May 2015 (Rhyl Flats - Irish Sea). 

 

Table A. 13. Preliminary Evaluation Metrics (RMSE - MAE table) for 28-30 May 2015, at Rhyl Flats (Irish Sea). 

Method SWAN Long-trained BN Short-trained BN ARIMA44 

RMSE 

(48 hours) 
0.2179 m 0.1821 m 0.1955 m - 

RMSE 

(24 hours) 
0.2312 m 0.1756 m 0.1688 m 0.3292 m 

Maximum 

Absolute 

Error 

0.4797 m 0.5135 m 0.4459 m 0.7125 m 

                                                
44

 ARIMA: (1,0,0)(1,1,1) with a seasonality equal to 19 hours. 
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Fig. A. 19. Comparison between the BN and ARIMA techniques for 28-30 May 2015 (Gwynt-y-Mor - Irish Sea). 

 

Table A. 14. Preliminary Evaluation Metrics (RMSE - MAE table) for 28-30 May 2015, at Gwynt-y-Mor (Irish Sea). 

Method SWAN Long-trained BN Short-trained BN ARIMA45 

RMSE 

(48 hours) 
0.2179 m 0.1821 m 0.1955 m - 

RMSE 

(24 hours) 
0.2312 m 0.1756 m 0.1688 m 0.3292 m 

Maximum 

Absolute 

Error 

0.4372 m 0.4546 m 0.7957 m 0.6402 m 

 

                                                
45

 ARIMA: (1,0,0)(1,1,1) with a seasonality equal to 19 hours. 
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Fig. A. 20. Comparison between the BN and ARIMA techniques for 29-31 July 2015 (Rhyl Flats - Irish Sea). 

 

Table A. 15. Preliminary Evaluation Metrics (RMSE - MAE table) for 29-31 July 2015, at Rhyl Flats (Irish Sea). 

Method SWAN Long-trained BN Short-trained BN ARIMA46 

RMSE 

(48 hours) 
0.1868 m 0.3009 m 0.2690 m - 

RMSE 

(24 hours) 
0.1935 m 0.2331 m 0.2582 m 0.6647 m 

Maximum 

Absolute 

Error 

0.3608 m 0.6578 m 0.5153 m 0.7125 m 

 

                                                
46

 ARIMA: (1,1,0)(1,1,0) with a seasonality equal to 24 hours. 
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Fig. A. 21. Comparison between the BN and ARIMA techniques for 29-31 July 2015 (Gwynt-y-Mor - Irish Sea). 

 

Table A. 16. Preliminary Evaluation Metrics (RMSE - MAE table) for 29-31 July 2015, at Gwynt-y-Mor (Irish Sea). 

Method SWAN Long-trained BN Short-trained BN ARIMA47 

RMSE 

(48 hours) 
0.2383 m 0.2181 m 0.1718 m - 

RMSE 

(24 hours) 
0.1499 m 0.1348 m 0.1400 m 0.5821 m 

Maximum 

Absolute 

Error 

0.5386 m 0.4839 m 0.3513 m 0.8747 m 

 

                                                
47

 ARIMA: (0,1,2)(0,1,1) with a seasonality equal to 24 hours. 
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Fig. A. 22. Comparison between the BN and ARIMA techniques for 28-30 August 2015 (Rhyl Flats - Irish Sea). 

 

Table A. 17. Preliminary Evaluation Metrics (RMSE - MAE table) for 28-30 August 2015, at Rhyl Flats (Irish Sea). 

Method SWAN Long-trained BN Short-trained BN ARIMA48 

RMSE 

(48 hours) 
0.1048 m 0.0979 m 0.1343 m - 

RMSE 

(24 hours) 
0.1264 m 0.1134 m 0.1018 m 0.1615 m 

Maximum 

Absolute 

Error 

0.2363 m 0.2530 m 0.2646 m 0.2900 m 

 

                                                
48

 ARIMA: (0,1,0)(0,1,0) with a seasonality equal to 32 hours. 
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Fig. A. 23. Comparison between the BN and ARIMA techniques for 28-30 August 2015 (Gwynt-y-Mor - Irish Sea). 

 

Table A. 18. Preliminary Evaluation Metrics (RMSE - MAE table) for 28-30 August 2015, at Gwynt-y-Mor (Irish 
Sea). 

Method SWAN Long-trained BN Short-trained BN ARIMA49 

RMSE 

(48 hours) 
0.1777 m 0.0684 m 0.0899 m - 

RMSE 

(24 hours) 
0.2325 m 0.0775 m 0.1076 m 0.2377 m 

Maximum 

Absolute 

Error 

0.3889 m 0.1633 m 0.2084 m 0.5416 m 

 

  

                                                
49

 ARIMA: (0,0,1)(0,1,0) with a seasonality equal to 32 hours. 
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Appendix B 

B.1. Numerical Model (SWAN) Timeseries 

For the reader to be more acquainted with the numerical model (SWAN) data used during 

the yearly simulations of the error correction model, the timeseries of the variables of interest 

for both stations in the Irish Sea, i.e. the ones corresponding to the Gwynt-y-Mor and Rhyl 

Flats wind farms, are displayed below (Figures B.1 - B.2 and B.5 - B.6). Alongside with the 

variables used in the analysis, the timeseries of the swell parameters (Figures B.4 and B.7) 

are also collated. It is clear by looking at the graphs, that the differences the swell creates at 

the hydrodynamic data can be significant, and certainly not negligible.  

  

  

Fig. B. 1. Significant wave height (top left), zero-crossing wave period (top right), wave direction (bottom left), and 
peak wave period (bottom right) produced by SWAN (Gwynt-y-Mor). 
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Fig. B. 2. Numerical model (HIRLAM) wind velocity data, which  
  served as input data to SWAN (Gwynt-y-Mor). 

 

Fig. B. 3. Numerical model (HIRLAM) wind direction data, 
which  

 served as input data to SWAN (Gwynt-y-Mor). 

  

  

Fig. B. 4. Timeseries of the swell components, as produced by SWAN (Gwynt-y-Mor). 
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Fig. B. 5. Hydrodynamic data timeseries as produced by SWAN for the case of Rhyl Flats. 

  

Fig. B. 6. Meteorological data timeseries as used in SWAN for the case of Rhyl Flats (produced by HIRLAM). 
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Fig. B. 7. Timeseries of the swell components, as produced by SWAN (Rhyl Flats). 

 

  



123 

 

B.2. Raw and Clean Observational Data Timeseries 

In order for the reader to have a complete picture of the application, the raw and clean 

measurement’s timeseries are presented in the following figures (Figures B.8 - B.11) for the 

Rhyl Flats offshore wind farm. The issues displayed during the peak wave period cleaning 

are also visible (Figure B.11). 

 

Fig. B. 8. Clean (blue circles) and raw (red dots) significant wave height (Hs) timeseries for the Rhyl Flats case. 

 

 

Fig. B. 9. Clean (blue circles) and raw (red dots) zero-crossing wave period (Tz) timeseries for the Rhyl Flats case.  



124 

 

 

Fig. B. 10. Clean (blue circles) and raw (red dots) wind velocity (U10) timeseries for the Rhyl Flats wind farm. 

 

 

Fig. B. 11. Clean (blue circles) and raw (red dots) peak wave period (Tp) timeseries for the Rhyl Flats wind farm. 
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As mentioned in Chapter 3, the nature of the wave and wind direction timeseries makes their 

presentation almost superfluous. Nevertheless, for the sake of consistency in the 

presentation of the variables’ timeseries and their cleaning procedure, the raw and clean 

data of the aforementioned parameters can be seen below (for both stations). Because the 

direction is measured in degrees (o), the values essentially create a circle. As a result it is 

virtually impossible to extract something useful from the timeseries, except from the 

behaviour and the availability of the data as a whole. 

 

Fig. B. 12. Clean (blue circles) and raw (red dots) wave direction (Dirp) timeseries for the Rhyl Flats wind farm. 

 

Fig. B. 13. Clean (blue circles) and raw (red dots) wind direction (Udir) timeseries for the Rhyl Flats wind farm. 
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Fig. B. 14. Clean (blue circles) and raw (red dots) wave direction (Dirp) timeseries for the Gwynt-y-Mor wind farm. 

 

Fig. B. 15. Clean (blue circles) and raw (red dots) wind direction (Udir) timeseries for the Gwynt-y-Mor wind farm. 

 

As a matter of fact the general behaviour of the data, present an interesting element. As it 

can be seen in Figure B.13, the wind direction data are concentrated in one direction. Thus, 

there is a clear, much more dominant than any other, wind direction, while the wave direction 

is more scattered. The wind roses produced by means of the ORCA tool, also display this 

kind of behaviour (see Figures B.16 and B.17). The aforementioned behaviour plays an 
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extremely important role in the way the short-trained BN methods conduct a prediction (see 

also Chapter 5). To be more specific, the dominant nature of one wind direction makes the 

forecast really inaccurate in many occasions. This is one of the reasons why different 

configurations of BNs were tested, with the results presented in Chapter 5 and Appendix C. 

 

 

Fig. B. 16. Wind rose for the case of Gwynt-y-Mor. 
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Fig. B. 17. Wind rose for the case of Rhyl Flats 

 

Regarding the individual variables’ distributions and the joint occurrence of wind and waves 

in the location of Rhyl Flats, similar graphs were produced as the ones presented for Gwynt-

y-Mor. Again in this occasion, the individual distributions of the significant wave height (Hs) 

and the wind velocity (U10) resemble a Rayleigh distribution, in accordance with the literature 

(see Figure B.18). Supplementary, the variables which have a clear, almost linear relation 

can be distinguished, while from Figure B.19 it is evident that the wind velocity and the 
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significant wave height are highly correlated (it can be seen that periods with high winds 

correspond to time periods of high waves). 

.  

Fig. B. 18. Joint and individual distributions of the hydrodynamic and meteorological variables at Rhyl Flats.

 

Fig. B. 19. Joint occurrence of wind and waves at Rhyl Flats. 
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B.3. Numerical Model Data (SWAN) Vs Measurements 

The relation between the measurement data and the datasets produced by SWAN or 

HIRLAM can be visualised in scatterplots. Below, the scatterplots between numerical and 

observational data for the Rhyl Flats’ measurement station are displayed (see Figure B.20). 

Again in this case, a distinctive relation, almost linear, for the Hs, the Tz, and the U10 is 

observed, justifying a large correlation between the model and observational variables. 

Regarding the cleaning procedure, the relations displayed below solidify that a satisfying 

cleaning procedure took place for that station as well. 

  

  

Fig. B. 20. Numerical data vs Measurements for the Rhyl Flats’ meteorological and hydrodynamic datasets. 

For the case of the peak period (Tp), seen in the bottom right of Figure B.20, a behaviour 

which definitely makes the use of that variable unsafe is shown. Again, the observational 

data involve swell parameters, which are separated from the pure variable’s timeseries in the 
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case of numerical modelling. As a result, significant differences are displayed, alongside with 

the known behaviour due to discretization. Consequently, the Rhyl Flats datasets verify and 

support the decision of not including the peak wave period in the simulations of the BN 

model. Supplementary, the scatterplots concerning the wave (Dirp) and wind (Udir) directions 

are presented in Figure B.21, for the Rhyl Flats (top row) and Gwynt-y-Mor stations (bottom 

row). The strange nature of the scatterplots is due to the fact that the directions are 

measured in degrees (o), i.e. their values are points on a circle. For example, if the model 

direction value is 1o and the measurement is 359o the difference in reality is insignificant, 

while seemingly on the scatterplot is large. As a result, the concentrated values around the 

diagonal, in combination with the values on the upper left and bottom right corners are quite 

satisfactory.  Certainly, due to the large uncertainty incorporated in the value, many values 

pose differences, which don’t create disturbances in the prediction accuracy of the BN model.  

  

  

Fig. B. 21. Numerical data vs Measurements of wind (Udir) and wave (Dirp) direction at Rhyl Flats and Gwynt-y-
Mor. 
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B.4. Density scatterplot for GyM 

 

Fig. B. 22. Density scatterplot illustrating the relation between wind velocities at different levels (Gwynt-y-Mor). 

B.5. Data Cleansing Filters 

In statistics, a moving average is a calculation to analyse data points, by creating series of 

averages of different subsets of the complete dataset. It is the most commonly used filter in 

signal processing, mainly because it is the easiest digital filter to understand and use. The 

equation of the moving average filter is given as follows (see also Smith, 1999): 

𝑦[𝑖] =
1

𝑀
∙ ∑ 𝑥[𝑖 + 𝑗]𝑀−1

𝑗=0                                                                                                          (B.1) 

where, 𝑥[ ] is the input signal, 𝑦[ ] is the output signal, and M is the number of points in the 

average. Due to the intense variability characterising the hydrodynamic and meteorological 

data, a moving average of 1 week was used, with a boundary for removing values set at 4 

times the average value of the corresponding time interval. 

The second, stricter filter is based on a sliding time window, over which the standard 

deviation is calculated50. For a random variable vector A made up of N scalar observations, 

the standard deviation is defined as: 

𝑆 = √
1

𝑁−1
∙ ∑ |𝐴𝑖 − 𝜇|2𝑁

𝑖=1                                                                                                        (B.2) 

                                                
50

 See also: https://nl.mathworks.com/help/matlab/ref/movstd.html#d119e754971.  

https://nl.mathworks.com/help/matlab/ref/movstd.html#d119e754971
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where, µ is the mean of A. The stricter nature of this filter stems from the definition of the 

value removing boundary, set at 2 times the standard deviation calculated in the respective 

time window. Here, again, the moving window was set equal to 1 week. In both filters, the 

set time frame could be even smaller, e.g. 2 days, which would be reasonable thinking of the 

variability and dynamic behaviour that the variables have. Nevertheless, cleaning would not 

be as consistent, since a possible malfunction of the measurement station, or continuous 

false observations that could take place for various reasons, would not be able to be 

detected and removed. As a result, the 1 week moving time window was considered the 

most suitable for this case. 

B.6. Peak Wave Period (Tp) Cleaning Procedure 

A procedure of particular interest, due to the nature of the variable, is the cleaning of the 

peak wave period (Tp) data. The peak wave period is the wave period with the highest 

energy, which is extracted from the wave spectra51. The peak wave period data include swell 

components52, which create extremely large values for the period (in the order of 20-30 

seconds). As a result, the cleaning process of the data cannot be consistent, especially if we 

consider the peak wave period data retrieved from the numerical model. As becomes 

evident in the preceding sections of the main text (Section 3.3), the differences between the 

clean observational and numerical model peak wave period data can be significant, and as a 

result unsafe to be used in the error correction simulations.  

 

Fig. B. 23. Clean and raw peak wave period (Tp) datasets, as resulted from the ORCA cleaning procedure 
(Gwynt-y-Mor). 

                                                
51

 The analysis of the distribution of the wave energy, as a function of wave frequency (period
-1

) for a time-series 
of individual waves, is referred to as a spectral analysis. Wind wave periods (frequencies) often follow the so-
called JONSWAP and Pierson-Moskowitz spectra. 
52

 Swell waves is a series of surface gravity waves, which are not generated by the immediate local wind, but 
instead provoked by distant weather systems, where wind blows for a duration of time over a fetch of water. 
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Figure B.23 clearly illustrates that during the cleaning process, a large amount of data is 

removed, without proper physical justification. Also, a strange behaviour of continuous equal 

values is displayed, most probably due to the discretization done while deriving the raw data. 

As a result, either the data had to remain intact in order to be used, or their usage had to be 

abandoned. If the first one is the case, the differences with the numerical model wave period 

would still be significant. 

B.7. Joint Occurrence of Wind and Waves 

In order to be able to evaluate the dependence and the relations of the data-driven 

techniques, which incorporate the wind velocity and direction, alongside with the significant 

wave height, it is important to check their joint occurrence, i.e. whether high winds provoke 

high waves in the area under consideration. This can be illustrated by the scatter between 

the two observed variables, as well as a direct comparison of their “clean” timeseries (Figure 

B.24). 

From the scatterplot (upper part of Figure B.24) it is evident that there is a direct relation 

between wind velocity and significant wave height, since the scatter is concentrated around 

the diagonal. From the timeseries it is also visible that, in many occasions, high wind 

velocities provoke large significant wave heights (e.g. in the start of 2017). This behaviour 

maybe seems obvious but in reality is far from it. High wind waves might be produced by 

storms, far away from the area of interest, but still get measured by the devices. It has to be 

stressed here that the wind velocity and the wave height are measured by two completely 

different devices, which have some distance between them. 

 
Fig. B. 24. Joint-occurrence of wind and waves at Gwynt-y-Mor. 
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Appendix C 

C.1. Error Timeseries for the Gwynt-y-Mor wind farm 

The respective error timeseries for the case of Gwynt-y-Mor is presented in the following 

figure (Figure C.1). It is shown that the behaviour of the models is far more stable in 

comparison to the one observed for the Rhyl Flats case.  Probably the condition of the 

acquired data (observations), which was better for the case of Gwynt-y-Mor for the variable 

of wind direction (see also Appendix B), led to a more erratic type of behaviour for the Rhyl 

Flats dataset, which was counteracted by removing that node from the structure (see also 

Section 5.4.2). 

 

Fig.C. 1. Evolution of errors in relation with time for the Gwynt-y-Mor case study. 
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C.2. Scatterplots for the Rhyl Flats wind farm 

The scatterplots presented below (Figures C.2 and C.3) illustrate the relation between the 

significant wave height (Hs) measurements acquired for the Rhyl Flats case, and the error 

correction and numerical models’ results for the year of 2017. The erratic behaviour 

introduced for the BN model incorporating a fixed structure is evident by the outlying data 

above the diagonal in the lower right graph of Figure C.2. Most probably, responsible for that 

behaviour are the wind direction data (Udir), since following tests without that variable 

revealed a more stable and accurate performance for this specific model.  

 

  

  

Fig.C. 2. Scatterplots of implemented BN models compared with SWAN results in relation to the observations in 
Rhyl Flats. (Jan 2017 – Jan 2018) 
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Fig.C. 3. Scatterplots of already operation error correction techniques in relation to Rhyl Flats’ observations.  
(Jan 2017 – Jan 2018) 
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C.3. Taylor diagram for the Rhyl Flats wind farm 

The Taylor diagrams of the 5-variable and 6-variable structures for the case of Rhyl Flats 

(Figures C.4 and C.5) display clearly the suitability of the first one for the application. 

 

Fig.C. 4. Taylor diagram for the case where 5-variable BN models are incorporated (Rhyl Flats). 

 

Fig.C. 5. Taylor diagram for the case where 6-variable BN models are incorporated (Rhyl Flats). 
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C.4. Uncertainty estimates for the Rhyl Flats wind farm  

The uncertainty boundaries provided for the case of Rhyl Flats, for different BN structure 

configurations, are presented in the following tables (Tables C.1 and C.2). A general 

comment is that the log-normal uncertainty bounds of the long-trained BN model 

demonstrate the highest coverage percentage, with the cost of an also large average length. 

Its normal counterpart displays also a large coverage performance, with a much smaller (half 

the size) average length. As stated in the main text (Section 5.4.2) it is extremely difficult to 

distinguish which kind of confidence estimate is better, since both exhibit an equal amount of 

advantages. The most realistic ones are the log-normal bounds, since they solely produce 

positive values, but the most informative ones seem to be the normal intervals. Still, despite 

their ability to avoid negative values, the log-normal boundaries provide in certain occasions 

extremely large estimates which can be deceiving in this application, i.e. provide an upper 

boundary way above 1.5 meters, while the observations are below, hence endangering the 

normal conduct of the maintenance operations. As a result a general conclusion for this case, 

as previously stated for Gwynt-y-Mor, is that the normal uncertainty bounds fit and serve the 

application better, since the upper confidence boundary is essentially the one with the 

highest importance.  

Table C. 1. Uncertainty estimates’ performance for the case of the 4-variable BN structures (Rhyl Flats). 

Method 

BN 

Long 

Training 

BN 

Fixed 

Structure 

BN 

Short 

Training 

Copula 

BN 

Long 

Training 

(Log-N) 

BN 

Short 

Training 

(Log-N) 

BN 

Fixed 

Structure 

(Log-N) 

Coverage 

(%) 
89.6 80.0 80.0 70.9 95.0 80.5 73.2 

Average 

Length 

(m) 

0.527 0.450 0.450 0.327 1.024 0.460 0.536 
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Table C. 2. Uncertainty estimates’ performance for the case of the 6-variable BN structures (Rhyl Flats). 

Method 

BN 

Long 

Training 

BN 

Fixed 

Structure 

BN 

Short 

Training 

Copula 

BN 

Long 

Training 

(Log-N) 

BN 

Short 

Training 

(Log-N) 

BN 

Fixed 

Structure 

(Log-N) 

Coverage 

(%) 
89.7 64.7 69.8 70.9 94.7 68.9 61.0 

Average 

Length 

(m) 

0.527 0.491 0.427 0.327 0.948 0.466 0.425 

What can also be concluded is that the exclusion of the wind direction in Rhyl Flats is 

extremely beneficial for the uncertainty estimates. Due to the erratic behaviour of the 

predictions the confidence intervals are also inaccurate for those occasions, and as a result 

the coverage percentage drops significantly. The long-trained BN model continues to be the 

most consistent and robust in both cases. 

C.5. BN structures for the Rhyl Flats wind farm 

For the sake of completeness some examples of BN structures, for the case of Rhyl Flats, 

are presented below (see Figures C.6 to C.8). Also in this case the differences between 

short- and long-trained BN models are evident.  For the cases of BN models incorporating 

one or more meteorological variables, i.e. the wind velocity (U10) or/and the wind direction 

(Udir), the relations with hydrodynamic variables, such as the significant wave height (Hs) or 

the wave direction (Dirp), can be examined by mean of Tables C.3 to C.5. 
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Fig.C. 6. Long-trained (left) and short-trained (right) BN model 4-variable structures for the Rhyl Flats case. 
(21-02-2017 at 06:00) 

  

Fig.C. 7. Long-trained (left) and short-trained (right) BN model 5-variable structures for the Rhyl Flats case. 
(21-02-2017 at 06:00) 

  

Fig.C. 8. Long-trained (left) and short-trained (right) BN model 6-variable structures for the Rhyl Flats case. 
(21-02-2017 at 06:00) 

A very interesting point for discussion is the inexistent connection of the wind velocity (U10) 

and the observed significant wave height (Hs). In none of the two long-trained (constant over 

time) structures incorporating the meteorological parameters the two aforementioned 

variables are connected. The same holds for the short-trained BN models. It has to be 

stressed out that all of the preceding structures for the short-training correspond to dates 

and times in which the correction was quite satisfying. Certainty, the significant wave height 

is indirectly dependent (or conditionally independent) on the wind velocity through the 

numerical significant wave height (Hs,num), but still the data show a completely different 
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behaviour in comparison to the Gwynt-y-Mor case, even if the locations are both in Liverpool 

Bay (Irish Sea). 

Table C. 3. Correlation matrix for the short-trained BN model 4-variable structure (Rhyl Flats). 

Variable Dirp Tz Hs,num Hs 

Dirp 1.000 -0.444 -0.911 -0.843 

Tz -0.444 1.000 0.386 0.604 

Hs,num -0.813 0.338 0.935 0.858 

Hs 0.150 0.072 -0.204 -0.268 

 

Examining Tables C.4 and C.5 it is shown that the correlation coefficient between the wind 

velocity (U10) and the significant wave height (Hs) is quite large. Nevertheless, no connection 

is visible on the corresponding long- or short-trained structures, except their indirect 

dependence (indirect causal effects) through the significant wave height produced by SWAN 

(Hs,num). Since the Hs,num is essentially given, the wind velocity and the significant wave 

height are conditionally independent throughout the tests, and that is most probably the 

reason that a decrease in accuracy and performance is noticed when custom-fitted relations 

(i.e. an imposed dependency between the wind velocity and the significant wave height) 

come into play. 

 

Table C. 4. Correlation matrix for the short-trained BN model 5-variable structure (Rhyl Flats). 

Variable Dirp Tz U10 Hs,num Hs 

Dirp 1.000 0.444 -0.813 -0.911 -0.843 

Tz -0.444 1.000 0.338 0.386 0.604 

U10 -0.813 0.338 1.000 0.935 0.858 

Hs,num 0.150 0.072 -0.359 -0.204 -0.268 
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Hs -0.911 0.386 0.935 1.000 0.875 

 

Table C. 5. Correlation matrix for the long-trained BN models (Rhyl Flats). 

Variable Dirp Tz U10 Udir Hs,num Hs 

Dirp 1.000 0.429 0.106 0.072 0.278 0.285 

Tz 0.429 1.000 0.494 -0.013 0.797 0.834 

U10 0.106 0.494 1.000 -0.055 0.782 0.751 

Udir 0.072 -0.013 -0.055 1.000 -0.033 -0.025 

Hs,num 0.278 0.797 0.782 -0.033 1.000 0.961 

Hs 0.285 0.834 0.751 -0.025 0.961 1.000 

 

C.6. Comparison of data-driven and imposed structures 

In case a relation was imposed between the hydrodynamic and meteorological data, e.g. the 

observed significant wave height (Hs) being dependent on the wind velocity (U10) the results 

would not be as satisfying as the ones produced by the data driven procedure. Figure C.9 

illustrates an example where the data-driven 5-variable structure for Gwynt-y-Mor 

outperforms its imposed counterpart. The example presented below serves just presentation 

purposes and displays the general tendency of the models on a randomly selected day.  
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Fig.C. 9. Example of differences between a data-driven and an imposed structure results for Gwynt-y-Mor. 

Appendix D 

D.1. Copula Families 

The Gaussian copula53 is formulated as follows: 

𝐶(𝑢, 𝑣) = Ф𝜌(Ф−1(𝑢), Ф−1(𝑣))                                                                                             (D.1) 

where 𝑢, 𝑣 ∈ [0,1], Ф denotes the standard normal distribution function and Фρ the standard 

bivariate normal distribution function with linear correlation coefficient ρ. The Gumbel and 

Clayton copulas are one parameter Archimedean copulas, which are defined as: 

𝐶(𝑢, 𝑣) = 𝜑−1(𝜑(𝑢) + 𝜑(𝑣))                                                                                                (D.2) 

where φ is the generator function of the respective copula. The generator functions of 

Gumbel and Clayton copulas are given respectively by (see also Nelsen, 2003): 

𝜑(𝑢) = (− ln(𝑢))𝜃, 𝜃 ∈ [1, ∞)                                                                                             (D.3) 

                                                
53

 The Gaussian copula alongside with the student-t, are elliptical copula families (see Fang et al., 2002; 2005).   
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𝜑(𝑢) =
(𝑢−𝛽−1)

𝛽
, 𝛽 ∈ [−1, ∞)                                                                                                 (D.4) 

As a result the Gumbel copula is formed as: 

𝐶(𝑢, 𝑣; 𝜃) = 𝑒𝑥𝑝 {−[(− ln(𝑢))𝜃 + (− ln(𝑣))𝜃]
1

𝜃}                                                                     (D.5) 

While the Clayton copula can be written as: 

𝐶(𝑢, 𝑣; 𝛽) = (𝑢−𝛽 + 𝑣−𝛽 − 1)
−

1

𝛽                                                                                            (D.6) 

D.2. Cramer-von Mises 

The Cramer-von Mises statistic is formulated as follows (see also Remillard, 2010): 

𝑆𝑛 = ∫ 𝐴𝑛
2 (𝑢) ∙ 𝑑 ∙ 𝐶𝑛(𝑢)

[0,1]𝑑 = ∑{𝐶𝑛(𝑢) − 𝐶𝜃𝑛
(𝑢)}

2
                                                               (D.7) 

𝐴𝑛 = √𝑛 ∙ (𝐶𝑛 − 𝐶𝜃𝑛
)                                                                                                             (D.8) 

where Cn is the empirical copula and Cθn the estimated theoretical copula.  

The empirical copula Cn, according to Deheuvels (1979), is defined as follows: 

𝐶𝑛(𝑢) =
1

𝑛
∙ ∑ 1 ∙ (𝑈𝑖1 ≤ 𝑢1, … , 𝑈𝑖𝑑 ≤ 𝑢𝑑), 𝑤𝑖𝑡ℎ  𝑢 = (𝑢1, … , 𝑢𝑑) ∈ [0,1]𝑑𝑛

𝑖=1                            (D.9) 

D.3. Artificial Neural Networks Basics 

The data are inserted to the input layer nodes, which transmit them to the hidden layer. The 

hidden layer nodes sum up the received values, add a bias to this sum, and then pass them 

through a nonlinear transfer function, like the log sigmoid or the hyperbolic tangent sigmoid. 

Those activation functions are used in order to make the ANN capable of representing the 

non-linear dependencies. The aforementioned procedure’s result is transferred to the output 

nodes, which operate identically to the hidden nodes.  

The feed forward network can be expressed mathematically in the following form: 

𝑦𝑘(𝑥) = ∑ 𝑤𝑘𝑗 × 𝑇𝑟(𝑧)𝑀
𝑗=1 + 𝑏𝑘𝑜                                                                                          (D.10) 

𝑧 = ∑ 𝑤𝑗𝑖 × 𝑥𝑖 + 𝑏𝑗𝑖
𝐷
𝑖=1                                                                                                          (D.11) 

where x is the original parameter space of dimension D, wkj and wji are the weighting 

parameters, bko and bji are bias parameters, M is the number of the hidden nodes, and Tr (z) 
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is the transfer (activation) function. The four more commonly used transfer functions are the 

unit step, the sigmoid, the piecewise linear and the Gaussian functions. 

To achieve the required accuracy, an iterative procedure for minimizing the global errors 

between the observed and the network predicted values is used. To do so, sufficient 

training54 of the network is required, in order for the weights and biases to be calculated. 

Analytically, the above statement can be expressed as follows: 

𝐸𝑝 =
1

2
∙ ∑ (𝑂𝑘 − 𝑡𝑘)2𝑁

𝑘=0                                                                                                       (D.12) 

Where N is the total number of nodes in the output layer, Ok is the output of the kth node, and 

tk is the target output at the kth node. 

The back-propagation algorithm has been applied extensively in various engineering 

problems (see e.g. Goh, 1995; Yagawa and Okuda, 1996; Tsai and Lee, 1999; Kerh and 

Yee, 2000) throughout the years as a training technique, in which the steepest descent is 

used and the weights and biases are adjusted by moving a small step in the direction of 

negative gradient of the error function in each iteration, until convergence is reached. Other 

training methods are the conjugate gradient algorithm (see Fitch et al., 1991; Fletcher and 

Reeves, 1964), where the gradient descent is made along a direction which is conjugate or 

orthogonal to the previous step, and the cascade correlation algorithm (see Fahlman and 

Lebiere, 1990), through which training efficiency is achieved by optimization of the weights 

using the gradient ascent method55. For more information on theoretical concepts of neural 

networks the reader is referred to Kosko (1992), Wu (1994), Bose and Liang (1998), 

Wasserman (1993), Maier and Dandy (2000), Dawson and Wilby (2001) and the ASCE Task 

Committee (2000). 

D.4. Applications of ARMA 

The ARMA is a useful tool for analysing, modelling, and forecasting met-ocean data, such as 

the wave height. Hence, considerable attention has been given to this method in many 

ocean engineering applications. The Box – Jenkins autoregressive model has been used 

extensively to simulate time series of the significant wave height (see e.g. Guedes Soares 

and Ferreira, 1996). Sobey (1996) proposed that the sequences of individual waves can be 

described decently as a first order ARMA process. Non-stationary time series of wave 

spectral parameters with missing values were analysed, simulated and completed using 

                                                
54

 This method is called learning. The various training sets incorporated to train the ANN are called epochs. 
55

 In the gradient ascent method the correlation between output of a hidden node and the residual error of the 

network is maximized. 
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ARMA models (see Stefanakos and Athanassoulis, 2001; Ho and Yim, 2005), while the 

wave processes and the fluctuations of the wave height of certain time histories were 

simulated by Li and Kareem (1993). Pena-Sanchez and Ringwood (2017) made a critical 

comparison of the AR and ARMA models in short-term wave forecasting and concluded that 

the AR model can give equally satisfying results with the ARMA model, despite ARMA’s 

complexity (see also Fusco and Ringwood, 2010). Nevertheless, in the work of Ming Ge and 

Kerrigan (2016), it was suggested that the AR model may not be the best option in case the 

data set exceeds a certain length, and that the ARMA model achieves better results. The 

modelling advantages of the ARMA model over the AR and MA models are described also 

by Makridakis et al. (1998). Three different algorithms for the AR, MA and ARMA models 

were presented by Spanos (1983), mainly focusing on the simulation of time series 

compatible with a given power spectrum of ocean waves. In the same work, the applicability 

of those algorithms in offshore engineering problems was also described. Finally, Martzikos 

and Soukissian (2017) tried various ARMA models, in order to model the sea surface 

elevation using data from the Greek Seas. After the best-fit model was found, a forecast of 

the free surface elevation was carried out, confirming the fair forecasting capabilities of the 

model in the estimation of forecast errors. For more details on the capabilities of an ARMA 

model in forecasting future values of an observed time series, the reader is referred to 

Chatfield (2000) and Montgomery et al. (2015).  
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