
Collaboration in Computer Science Education
What Is the Relationship Between Prior Programming Experience and Code Maintainability in Student

Software Development Projects?

Egemen Yildiz1

Supervisors: Dr. ir. Fenia Aivaloglou1, ir. Merel Steenbergen1

1 EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 21, 2025

Name of the student: Egemen Yildiz
Final project course: CSE3000 Research Project
Thesis committee: Dr. ir. Fenia Aivaloglou, ir. Merel Steenbergen, Dr. ir. Mitchell Olsthoorn

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Group software projects are widely used in com-
puter science education to teach collaboration and
development skills, but students often enter with
differing levels of programming experience. This
study investigates how prior experience relates to
code maintainability in a university-level group
project course by analyzing four groups of five
individuals each. Experience was measured us-
ing a weighted survey-based score, while main-
tainability was assessed using five metrics: code
smells, comment density, code duplication, aver-
age file size, and naming quality. Although some
metrics showed weaker trends, the results overall
suggest that more experienced students tend to pro-
duce more maintainable code. These findings offer
insights into how individual backgrounds influence
collaborative software development in educational
settings.

1 Introduction
In computer science education, group software projects are
widely used to teach collaboration, software engineering
practices, and real-world development skills. These projects
often include students with different levels of programming
experience, from beginners to those with several years of
practice. Prior work has shown that group-based program-
ming tasks can improve learning outcomes and engagement,
but also introduce variation in code quality due to differing
student backgrounds [3]. Despite this variation, it remains
unclear how prior programming experience affects the qual-
ity of the code that students produce in such settings.

Code quality is a broad concept that includes aspects such
as correctness, performance, and maintainability. This study
focuses on maintainability, which refers to how easily code
can be understood, modified, and extended by others [10].
Maintainability is especially important in group projects,
where code is shared and updated frequently by multiple con-
tributors. Unmaintainable code can slow development, intro-
duce bugs, and reduce the learning value of the project for
team members [16].

The goal of this research is to examine the relationship be-
tween students’ programming experience and the maintain-
ability of their code within the context of a university-level
group software engineering project. Prior experience is mea-
sured through a structured survey from Feigenspan et al. [5],
covering dimensions such as years of programming, language
familiarity, and exposure to different paradigms. Maintain-
ability is assessed using a set of widely adopted metrics,
including code smells, comment density, code duplication,
and file modularity, extracted via static analysis tools and
grounded in the review by Ardito et al. [1]. Since the anal-
ysis is conducted on group project contributions rather than
individual assignments, the results may also reflect the in-
fluence of team collaboration, shared code ownership, and
group-level practices. These are important contextual factors
to consider when interpreting the relationship between expe-
rience and maintainability.

This study addresses three research questions:

1. Does programming experience correlate with code
maintainability?

2. Which maintainability metric best reflects experience?

3. How does maintainability evolve during the project?

To answer these, experience scores were computed using
weighted survey responses, maintainability metrics were ex-
tracted per student using SonarQube and manual evaluation,
and statistical analyses were used to explore trends and cor-
relations.

Understanding how experience affects maintainability can
inform how educators assign students to teams, interpret code
quality differences, or structure instruction in project-based
learning environments. If a clear link is found, it could jus-
tify differentiated support or assessment strategies based on
experience. If not, it may point toward the need to empha-
size collaborative practices or shared coding standards over
individual experience in improving code quality.

2 Background and Related Work
Group-based software development projects are a widely
adopted method in computer science education for teach-
ing students essential software engineering practices such as
modular design, documentation, and collaboration [3]. These
projects simulate real-world engineering environments by re-
quiring students to work in teams, manage shared reposito-
ries, and communicate design and implementation decisions
effectively [4]. Prior work has highlighted that such collabo-
rative settings often lead to disparities in code quality, influ-
enced by differences in students’ prior programming experi-
ence and familiarity with development tools [8].

A key dimension of code quality emphasized in both
academia and industry is maintainability, defined as the ease
with which code can be read, modified, or extended over
time [1,10]. In educational group projects, maintainable code
is especially important since team members frequently rely
on and extend each other’s contributions [3]. Clear structure,
proper documentation, and modular design not only facilitate
collaboration and learning but also mirror best practices in
professional software engineering, where maintainability is
critical for reducing long-term technical debt [16].

Programming experience has long been studied as a fac-
tor shaping students’ performance, code comprehension, and
development strategies. Feigenspan et al. and Siegmund et
al. propose multidimensional models of experience that go
beyond years coded, incorporating self-perception, tool fa-
miliarity, and exposure to different programming paradigms
[5, 14]. Lopes et al.’s recent systematic review further
confirms that more experienced developers generally write
higher-quality code, although the strength and nature of this
relationship vary across contexts [12]. However, much of this
research is grounded in individual or professional settings,
and it remains unclear whether these findings generalize to
collaborative student environments where peer learning and
shared ownership complicate the mapping between experi-
ence and quality outcomes.



This study addresses that gap by investigating how pro-
gramming experience correlates with code maintainability in
university-level group projects. It tests whether findings from
professional contexts also hold in educational team settings.
In doing so, it contributes to the growing literature on soft-
ware engineering education by examining experience as a
potential predictor of collaborative code quality in realistic
learning environments.

3 Methodology
The research was conducted in the context of a university-
level course where students developed a shared software
project over several weeks, using version control and regu-
lar team and scrum meetings.

3.1 Participants and Data Sources
The participants in this study were second-year undergrad-
uate students enrolled in the “CSE2000 Software Project”
course at TU Delft. A total of 20 students took part, di-
vided into 4 groups of five. Each group selected a real-world
software development project from the university’s ”Software
Project Portal” and contacted the corresponding client to ini-
tiate collaboration. Over a ten-week period, the students
worked in teams using shared GitLab repositories for version
control. Each student committed code using their own Git
account, making it possible to track individual contributions
through metadata such as author names and email addresses.
By the end of the course, each group had produced a working
project, typically consisting of around 10,000 lines of code
and ready for deployment by the client.

Two types of data were collected for this research. First,
each student completed a structured survey measuring their
prior programming experience, including both objective and
self-assessed components. Then, Git repository data was col-
lected and processed to isolate each student’s individual code
contributions. This made it possible to extract maintainability
metrics on a per-student basis. To protect privacy, all partic-
ipants were assigned anonymized identifiers (1A, 2B etc.),
which were used consistently across survey data and code at-
tribution.

3.2 Measuring Programming Experience
The programming experience of students was assessed us-
ing a survey taken from Feigenspan et al. [5]. The sur-
vey covered multiple aspects of experience, including self-
estimation, number of programming languages, years of cod-
ing, and exposure to paradigms like Object-oriented Pro-
gramming (OOP) and logic programming.

To create a unified experience score, all responses were
normalized and weighted. Furthermore, each item con-
tributed to a weighted formula, based on its relevance to gen-
eral programming fluency and its likely impact on coding
practices such as modularity, readability, and code organiza-
tion:

• Years of programming (20%): This reflects long-term
exposure to programming practice. Students who have
coded for several years are more likely to have internal-
ized fundamental principles. We assigned 20% weight

because duration strongly correlates with fluency. It is
normalized using min(years, 10) / 10, capping at
10 years to limit the effect of outliers.

• Size of past projects (10%): Experience with larger
codebases often requires more attention to structure and
maintainability. This metric captures that dimension.
We weighted it at 10% since not all students have access
to large-scale projects, but it remains an important fac-
tor that can indicate experience. Options were mapped
as: N/A = 0, <900 LOC = 3, 900 to 40000 LOC =
7, >40000 LOC = 10.

• Self-estimated experience (20%): Self-assessment on
a scale of 1–10 captures students’ confidence and per-
ceived competence. Prior research shows strong corre-
lation with actual performance. We assigned it 20% to
balance its subjective but predictive nature. It was nor-
malized as value / 10.

• Number of known programming languages (15%):
Knowing multiple languages suggests conceptual flex-
ibility and broader exposure. We weighted this at 15%
to reflect its relevance to adaptable coding habits. Nor-
malized using min(languages, 10) / 10, with a cap
at 10 languages.

• OOP and logical paradigm experience (15% total):
Experience with multiple paradigms indicates deeper
structural understanding. We split this into two 7.5%
components: one for object-oriented programming and
one for logical programming, both rated on a 1–5 scale.
Each was normalized as value / 5.

• Number of programming courses taken (15%): Com-
pleting formal coding assignments builds structured
knowledge and debugging habits. We weighted this 15%
for its academic value. Since the number of courses that
students could complete until the Software Project in TU
Delft is 21, it is normalized as min(courses, 21) /
21.

• Comparison to classmates (5%): This is a social refer-
ence point that may reflect informal confidence or team-
work dynamics. Although it adds insight into peer-
relative experience, the highly subjective aspect of it
makes its use limited. We gave it a modest 5% weight
and normalized it as value / 5.

The aforementioned normalized values, then, were multi-
plied by their assigned weight and summed to produce a final
experience score on a 0 to 100 scale. To support comparative
analysis across experience levels, participants were divided
into three groups based on the three-way distribution of the
actual scores: lower, moderate, and higher experience. This
grouping ensures balanced sample sizes and reflects the rela-
tive distribution within the studied population. The combined
scoring method captures both objective and perceived dimen-
sions of programming background and provides the founda-
tion for experience-based analysis throughout the research.

An important thing to explain is that the weighting scheme
used in this study is informed by prior work by Feigenspan
et al. [5] and Siegmund et al. [14], who demonstrated that



certain self-estimated experience items, particularly familiar-
ity with the paradigms and self-rated skill compared to peers,
were statistically predictive of performance in programming
tasks. Using stepwise regression, they assigned specific
weights to these items and showed that a linear combination
could effectively model experience. Inspired by their find-
ings, this study incorporates this set of experience indicators
and applies custom weights reflecting each item’s expected
influence on coding habits and maintainability. This approach
aligns with Feigenspan’s earlier thesis work, which aggre-
gated coded responses into a single score, as well as later
studies that normalized and averaged multiple self-estimate
items to produce a composite experience metric [15]. While
not derived from a formal regression model, the weights used
here are grounded in domain knowledge and reflect the rela-
tive importance of each factor as supported by the literature.

3.3 Measuring Code Maintainability
Maintainability in this study is understood as the degree to
which student-written code can be easily understood, mod-
ified, and extended. This interpretation is consistent with
ISO/IEC 25010 and aligns with definitions from prior liter-
ature such as Ardito et al. [1], who describe maintainability
as a composite attribute made up of analyzability, modularity,
documentation quality, and structural clarity. In the context of
student software projects, maintainability becomes especially
important due to frequent handoffs between team members,
variable experience levels, and the short but intensive nature
of group-based development tasks. Measuring maintainabil-
ity helps uncover not just technical issues, but also collabo-
ration habits, style adherence, and clarity in communication
through code.

To evaluate maintainability systematically and quantita-
tively, we selected the following five metrics:

• Code Smells: These refer to stylistic or structural warn-
ings such as duplicated code, overly long methods, or
excessive nesting. Code smells are widely accepted in-
dicators of poor design practices and reduced maintain-
ability. For each student, the total number of code smells
across their contributions was extracted. To allow cross-
student comparison, this count was normalized by divid-
ing by total lines of code, resulting in code smells per
1,000 LOC.

• Comment Density: This measures the ratio of comment
lines to total code lines. Adequate commenting aids
comprehension and team communication, especially in
educational settings where code needs to be readable not
just by compilers but by peers. This metric was normal-
ized as a percentage (comment lines / LOC × 100).

• Code Duplication: The percentage of code blocks that
are repeated within a student’s codebase. High duplica-
tion often signals poor modularization and hinders code
reusability and testability. This metric is used in percent-
age form without further normalization, as it is already
relative to the size of the codebase.

• Average Lines of Code per File: Average file size in
terms of lines of code, used as a rough proxy for mod-
ularity and code structure. While not a direct indicator

of quality, excessively large files often indicate a lack of
decomposition or adherence to the single-responsibility
principle.

• Naming Quality: Variable and function names are piv-
otal for code readability and maintainability. Research
by Avidan and Feitelson (2017) demonstrates that mean-
ingful identifier names significantly aid in program com-
prehension, particularly for novice programmers [2].
To evaluate naming quality, we assessed each student’s
code based on clarity, consistency, and descriptiveness
of identifiers. A 1–5 scale was employed, where 1 indi-
cated poor naming practices and 5 represented excellent
naming conventions. At least two representative files
per student were reviewed to ensure a comprehensive as-
sessment. While subjective, this evaluation captures as-
pects of code quality not easily measured by automated
tools.

When analyzing how code maintainability evolves over
time, it becomes necessary to aggregate the selected metrics
into a single composite value per student per week, as it is
difficult to account for each metric individually when com-
paring experience level against time. This allows for a clearer
visualization of trends across project phases without focusing
on individual metric dimensions. To achieve this, an evenly
weighted average of the five maintainability metrics is used.
Each metric is first normalized to ensure comparability, with
inverse scaling applied to metrics such as code smells and
LOC per file, where lower values indicate better maintainabil-
ity. While this temporary aggregation supports longitudinal
analysis, the study treats each metric as individually mean-
ingful in other parts of the analysis and does not focus on the
overall score created.

Furthermore, to attribute these metrics to individual stu-
dents, we bundled all Git commits by author using git log,
git show, and git diff, excluding the merge commits as
they mix the contributions of different students. A custom
Python script was used to extract all files modified by each
student and organize them into isolated directories, effec-
tively creating personal snapshots of their contributions. Each
directory was treated as an independent project and analyzed
using a locally deployed instance of SonarQube, an open-
source static analysis platform. After the individual bundles
were run on the local SonarQube server, the first four metrics
could either be obtained through the server’s API or could
be calculated from the information there, without additional
effort. Naming quality was assessed manually by reviewing
at least two representative files per student and rating identi-
fier clarity, consistency, and descriptiveness on a 1–5 scale.
To ensure fairness and accuracy, formatting-only commits
and non-source files were excluded from the analysis, and in
cases of shared file authorship, line-level attribution was de-
termined using git blame. All steps in the analysis pipeline
were recorded for reproducibility and transparency.

3.4 Data Analysis
To investigate the first research question, which explores
whether programming experience correlates with code main-
tainability, Pearson correlation analysis was applied. The



Pearson correlation coefficient (r) quantifies the linear rela-
tionship between two continuous variables, ranging from −1
(strong negative correlation) to +1 (strong positive correla-
tion), with 0 indicating no linear correlation [6]. For each
of the five maintainability metrics, code smells, comment
density, code duplication, average lines of code per file, and
naming quality, the correlation with the overall experience
score was calculated. This provided a metric-by-metric view
of how experience levels relate to maintainability. To ad-
dress the second research question, which investigates which
maintainability metric best reflects experience, the relative
strength of each correlation was compared. This included
not only evaluating the Pearson coefficients, but also com-
puting effect size estimates (using r2) to determine the pro-
portion of variance in each maintainability metric explained
by experience. The third question, concerning how maintain-
ability evolves throughout the project, was answered using a
longitudinal analysis. Maintainability scores were averaged
by experience group (high, mid, low) across four key project
weeks (Week 4 to Week 7). These values were then plotted to
visualize how code quality progressed over time within each
experience category, allowing for trend comparison between
groups. All analyses were performed using the scipy.stats
module in Python, an open-source scientific computing li-
brary. The assumption of normally distributed data, required
for the validity of Pearson correlation, was evaluated using
the Shapiro-Wilk test.

4 Results
4.1 Programming Experience Scores
Table 1 presents the final experience scores for all partici-
pants, expressed on a 0–100 scale. To preserve anonymity,
individual survey responses are not disclosed.

Student Experience Score (%) Experience Category

1A 85.36 High
1B 71.21 High
1C 64.00 Mid
1D 56.14 Mid
1E 67.57 High

2A 46.50 Low
2B 63.29 Mid
2C 65.00 High
2D 47.71 Low
2E 37.86 Low

3A 49.36 Low
3B 50.14 Mid
3C 73.79 High
3D 41.86 Low
3E 53.57 Mid

4A 53.50 Mid
4B 40.21 Low
4C 62.21 Mid
4D 74.36 High
4E 48.71 Low

Table 1: Overall experience scores and corresponding experience
categories

4.2 Maintainability Metric Results
Table 2 summarizes the maintainability metrics extracted
from the code contributions of each student. The values rep-
resent a combination of automatically computed results from
static analysis tools and manually evaluated naming quality
scores. Each metric reflects the characteristics of code writ-
ten by an individual student, allowing us to examine trends
and patterns across different levels of programming experi-
ence. These metrics form the basis for the correlation and
interpretation steps described in the following sections.

Student Comment Duplication Code Smells LOC per File Naming Quality
1A 23.73 3.19 8.41 96.12 5
1B 26.52 7.83 9.63 86.69 5
1C 24.59 5.65 16.51 100.13 4
1D 30.42 5.42 19.83 106.34 4
1E 20.34 5.85 11.43 73.32 4

2A 15.53 2.32 18.32 120.23 5
2B 14.78 3.24 16.74 113.65 4
2C 20.91 2.67 15.43 109.84 5
2D 18.71 3.75 16.52 90.83 5
2E 19.13 4.53 19.57 101.68 4

3A 17.02 6.23 19.34 110.35 3
3B 19.58 5.91 16.92 105.73 4
3C 24.54 4.18 11.27 85.25 4
3D 16.57 7.16 20.41 115.91 3
3E 21.83 5.57 14.21 98.33 4

4A 20.30 3.78 15.60 95.24 5
4B 16.70 4.25 16.60 102.24 4
4C 21.40 5.42 14.20 110.24 5
4D 22.50 3.54 12.84 88.24 4
4E 19.20 5.56 16.80 123.24 5

Table 2: Maintainability metrics per student

The dataset encompasses all 20 students and will be used
in the correlation analysis and subsequent discussion on how
experience may relate to software maintainability in educa-
tional settings.

4.3 RQ1: Experience and Maintainability Metrics
Pearson correlation coefficients were computed to examine
the relationship between each student’s experience score and
their corresponding maintainability metric values. Prior to
this analysis, the normality of each maintainability variable
was assessed using the Shapiro-Wilk test to ensure the as-
sumptions for Pearson’s r were met. All metrics except nam-
ing quality passed the normality test at α = .05, indicating
that most variables were suitable for Pearson correlation anal-
ysis.

Naming quality, which was manually rated on a discrete
1–5 scale, did not follow a normal distribution. This is likely
due to the limited range and clustering of scores near the top
end of the scale, resulting in a ceiling effect. Despite this, the
metric was retained for completeness, as it represents an im-
portant qualitative aspect of maintainability that complements
the more objective static analysis metrics.

In terms of effect size, all metrics demonstrated large mag-
nitudes, with Cohen’s d ranging from 3.88 to 5.77. These val-
ues suggest that the relationships observed in the data are not
only statistically noticeable but also potentially meaningful
in practical terms, reinforcing the relevance of programming
experience as a factor influencing maintainability outcomes.



The strongest correlation was observed between program-
ming experience and the number of code smells per 1,000
lines of code. As shown in Figure 1, this relationship was
strongly negative, r(18) = −.84, p < .001. Students with
higher experience scores tended to produce code with fewer
smells, reinforcing code smells as the most sensitive indicator
of experience in this dataset.

Figure 1: Correlation between programming experience and code
smells per 1,000 LOC.

A moderate positive correlation was found between expe-
rience and comment density, r(18) = .55, p = .037, as pre-
sented in Figure 2. The data points show some scatter and
outliers, particularly in the mid-to-lower experience range.
Nonetheless, the positive trend is evident: students with more
experience tend to comment more consistently.

Figure 2: Correlation between programming experience and com-
ment density.

Code duplication showed the weakest correlation, r(18) =
−.14, p = .221, as shown in Figure 3. The relationship was
nearly flat, suggesting little to no association between experi-
ence and duplication patterns in this dataset.

Figure 3: Correlation between programming experience and code
duplication percentage.

The relationship between experience and average lines
of code (LOC) per file was moderately negative, r(18) =
−.50, p = .060, as seen in Figure 4. Although some students
produced unusually large or small files, the general trend sug-
gests that more experienced students create more modular file
structures.

Figure 4: Correlation between programming experience and average
LOC per file.

Naming quality was positively but weakly correlated with
experience, r(18) = .27, p = .327, as shown in Figure 5. The
Shapiro-Wilk test indicated non-normal distribution, likely
due to scores clustering around 4 and 5. This limited vari-
ation may have reduced the observable correlation.



Figure 5: Correlation between programming experience and naming
quality.

In summary, all maintainability metrics showed some level
of association with experience. Code smells, comment den-
sity, and LOC per file had the strongest correlations, while
duplication and naming quality were weaker. The direction
of all associations supports the hypothesis that programming
experience shapes maintainability practices.

4.4 RQ2: Best Metric for Experience

Among the five maintainability metrics examined, code
smells per 1,000 lines of code showed the strongest corre-
lation with experience, r(18) = −.84, p < .001, as it can
be observed in Figure 1. This indicates a very strong nega-
tive linear relationship: as experience increases, the number
of code smells decreases substantially. Compared to the other
metrics, which had weaker and in some cases non-significant
correlations, code smells demonstrated the clearest and most
consistent alignment with the experience scores. Therefore,
code smells can be considered the most accurate single met-
ric for distinguishing between students with varying levels of
programming experience in this dataset.

4.5 RQ3: Maintainability Over Time

Figure 6 shows the progression of maintainability scores over
time, grouped by experience level. The chart tracks average
scores from Weeks 4 to 7 for the high, mid, and low experi-
ence groups.

All groups demonstrate improvement between Weeks 4
and 6. The high-experience group starts highest and peaks in
Week 6 before slightly declining. The mid-experience group
shows a similar pattern with a flatter rise. The low-experience
group starts lowest but improves steadily, especially between
Weeks 4 and 6. By Week 7, the gap narrows across groups,
though notable differences remain.

Figure 6: Maintainability score progression by experience group
(Weeks 4–7)

5 Responsible Research
This study involved the collection and analysis of data from
student software development teams, including survey re-
sponses and version control records. Because these data
sources may contain information that can be linked to individ-
ual participants, ethical considerations played a central role in
the research design.

Anonymity and Privacy Protection
All participants were assigned pseudonyms at the beginning
of the study to safeguard their identities. These pseudonyms
were consistently used in both the survey data and Git-
based code contributions, ensuring that no real names, student
numbers, or other personally identifiable information were
recorded or stored. This anonymization strategy was essential
in minimizing the risk of exposing individual performance or
behavior.

Informed Participation and Voluntariness
Participation in the study was entirely voluntary. Students
were informed in advance about the purpose of the research,
the types of data being collected, and how the results would
be used. They were explicitly told that they could choose not
to participate or stop participating without any consequences.
Only the data of students who provided informed consent
were included in the analysis, in accordance with ethical re-
search practices.

Patterns and Evaluation
The study was designed to uncover general patterns in the re-
lationship between programming experience and code main-
tainability, not to evaluate or grade individual students. The
analysis focused on trends across the dataset rather than on
individual outcomes, helping to ensure that the research re-
mained exploratory rather than judgmental in nature.

Reproducibility and Transparency
To support reproducibility and transparency, all stages of the
research process were thoroughly documented. This includes



the design of the experience survey, the weighting and nor-
malization procedures used to compute experience scores, the
tools and criteria applied in measuring code maintainability,
and the statistical methods used in correlation analysis. All
tools used in the study are publicly available and widely used
in both academic and professional contexts. The analysis was
carried out using simple and explained custom scripts, and
open-source analysis software, so that the study can be inde-
pendently repeated under similar conditions.

By following the principles of privacy, informed consent,
methodological transparency, and non-evaluative analysis,
this project demonstrates a strong commitment to responsible
research, as these practices not only protect participants but
also help make sure that the findings are credible, ethically
sound, and valuable for future replication or further research
in educational software engineering.

6 Discussion
6.1 Is there a correlation between experience and

code maintainability?
The findings of this study demonstrate a clear and direction-
ally consistent relationship between students’ programming
experience and the maintainability of their code. All five ana-
lyzed metrics exhibited correlations in the expected direction,
indicating that students with higher experience scores tend to
write code that is cleaner, more modular, and better docu-
mented. However, the strength and nature of these relation-
ships varied, offering important nuance to the interpretation.

The strongest correlation was found between experience
and the number of code smells per 1,000 lines of code, with a
Pearson coefficient of r = −0.84. This strong negative asso-
ciation reinforces the idea that experienced students are more
adept at avoiding structural anti-patterns such as long meth-
ods, large classes, or complex nesting. These types of flaws
are commonly associated with poor maintainability and are
unlikely to be avoided without an internalized understanding
of code design principles. This observation aligns with pre-
vious research that identifies experience as a driver of archi-
tectural awareness and long-term quality thinking [16]. That
this relationship persisted across teams using different pro-
gramming languages (Rust, Svelte, Dart) further emphasizes
its generalizability.

Moderate correlations were also observed for comment
density (r = 0.55) and average lines of code per file (r =
−0.50), both of which are commonly used indicators of main-
tainability. These suggest that more experienced students not
only write cleaner code but also structure it in a way that is
easier to read and navigate. Prior studies have highlighted
that experienced developers are more likely to anticipate the
needs of their peers by documenting functionality and main-
taining focused, modular files [8,17]. Nonetheless, these met-
rics also reflect some variability, likely influenced by instruc-
tional guidelines, team practices, or the nature of individual
tasks within the project.

The correlations for naming quality (r = 0.27) and code
duplication (r = −0.14) were weaker, suggesting these as-
pects of maintainability may be less directly shaped by expe-
rience in the short term. The narrow range of naming scores,

mostly clustered between 4 and 5, suggests a ceiling effect
that limited the potential to detect differences. Furthermore,
naming was manually scored using a rubric, introducing sub-
jectivity and reducing variability. Code duplication, on the
other hand, may be affected by non-individual factors such
as framework-specific boilerplate, shared files, or inconsis-
tent refactoring responsibilities across team members. These
findings are consistent with the literature noting that not all
maintainability outcomes are equally attributable to individ-
ual effort [11].

Overall, the consistency in correlation direction across all
metrics supports the hypothesis that programming experience
contributes positively to code maintainability. Yet, the differ-
ences in strength also highlight the complexity of both con-
structs. Maintainability is shaped not only by individual ex-
perience but also by collaborative norms, project structure,
and the educational environment. Similarly, experience is
a multidimensional construct encompassing time, exposure,
and task diversity [5, 14]. These results suggest that while
experience is a valuable predictor of code quality, it should
be considered in the broader context of group dynamics and
project-level scaffolding. As a practical implication, educa-
tors might consider pairing students of different experience
levels to balance initial disparities and promote peer learning
in maintainability practices.

6.2 Which maintainability metric best reflects
experience?

Among the analyzed metrics, code smells most effectively
captured the impact of programming experience. Its correla-
tion with experience (r = −0.84) was not only the strongest
statistically, but also the most visually consistent in the data,
suggesting a reliable and robust relationship. This aligns with
prior research, including Ardito et al.’s systematic review,
which highlights code smells as a central indicator of main-
tainability across different tools and software domains [1].
The use of SonarQube to detect code smells in this study is
further supported by its widespread application and validation
in both educational and industrial settings [9].

Code smells represent recurring patterns in code that in-
dicate poor design or implementation choices, such as long
methods, high cyclomatic complexity, large classes, low co-
hesion, or lack of encapsulation. These structural flaws typ-
ically stem from deeper issues in program organization and
logic, and they often accumulate when developers lack fa-
miliarity with design principles or refactoring techniques [7].
Because these smells are difficult to eliminate without funda-
mentally restructuring the code, they are less susceptible to
superficial fixes or future improvements. As such, their pres-
ence, or absence, serves as a strong proxy for internalized
programming practices and architectural awareness, the core
aspects of what it means to be experienced.

In contrast, metrics like comment density and naming qual-
ity, while relevant, are more easily influenced by external
factors. Students can add comments or rename variables
late in the development cycle without necessarily improving
the structural integrity of their code. These actions may re-
flect compliance with guidelines rather than actual design in-
sight. Similarly, code duplication may result from team work-



flows, reused templates, or framework constraints, especially
in frontend contexts, making it harder to isolate individual
effects.

Comment density and average lines of code per file did
show moderate correlations with experience, suggesting that
more experienced students tend to write more readable and
modular code. However, their interpretability is bounded by
instructional norms or codebase conventions. Naming qual-
ity showed a positive but weaker relationship, and its limited
variation across the dataset (with most students scoring be-
tween 4 and 5) likely reflects a ceiling effect in the rubric-
based scoring. Code duplication had the weakest correlation,
reinforcing the idea that it is not solely driven by experience.

In summary, code smells appear to be the most diagnosti-
cally valuable metric for assessing the influence of program-
ming experience on code maintainability. Their association
with deeper structural decisions, resistance to surface-level
fixes, and relevance across languages and projects makes
them a particularly meaningful indicator for educators and
researchers aiming to evaluate or improve software quality in
learning environments.

6.3 How does maintainability evolve throughout
the project?

To explore the progression of maintainability over time, the
composite maintainability scores for each experience group
were tracked from Week 4 through Week 7. All groups
demonstrated a general improvement, though the trajectory
and rate of change differed substantially.

Students in the high-experience group began the project
with the highest maintainability scores and continued to im-
prove through Week 6, followed by a slight decrease in Week
7. This plateau and dip could reflect reduced emphasis on
polishing near the deadline or increased workload across mul-
tiple responsibilities. The mid-experience group exhibited
steady gains, with scores rising consistently before leveling
off toward the end of the project. The low-experience group,
starting with the lowest maintainability levels, showed the
steepest upward trend, improving week after week and clos-
ing much of the initial gap by Week 7.

This convergence pattern aligns with previous studies in-
dicating that structured, collaborative environments help less
experienced students internalize good software practices over
time [4, 13]. Iterative development, frequent code shar-
ing, and exposure to teammates’ contributions may improve
gradual learning that reduces initial disparities. Moreover,
these results underscore the developmental potential of team
projects, not only as assessment tools but also as active mech-
anisms for improving student practices through sustained par-
ticipation.

The differing trajectories also suggest that experience in-
fluences how students adapt during the course. More experi-
enced students may reach a performance ceiling earlier or re-
allocate focus to other areas of the course. In contrast, lower-
experience students may continue to benefit from each cycle
of review and refinement. Further investigation is needed to
examine how instructional scaffolding, peer feedback, or in-
ternal motivation contribute to these patterns. Nonetheless,
the results support the value of longitudinal analysis when

studying how code quality evolves within educational set-
tings.

7 Conclusion, Limitations and Future Work
This study examined the relationship between students’ prior
programming experience and the maintainability of their code
in a university-level group software project. The analysis was
guided by three research questions: (1) whether program-
ming experience correlates with maintainability outcomes,
(2) which maintainability metric best reflects a student’s ex-
perience level, and (3) how maintainability evolves over time
during the course of a project.

Using a composite experience score derived from a
weighted survey and five maintainability metrics obtained
through a combination of static analysis and manual review,
the study found that programming experience is meaningfully
associated with code maintainability. The strongest correla-
tion was observed for code smells (r = −0.84), followed by
moderate associations for comment density and average file
size. Naming quality and code duplication exhibited weaker
but directionally consistent trends. These findings suggest
that prior programming experience influences not only func-
tional correctness, but also code structure, clarity, and main-
tainability.

The results contribute to growing evidence that experience
is a multidimensional factor with observable impact on soft-
ware quality. Code smells, in particular, emerged as a strong
proxy for programming maturity and design awareness, mak-
ing them a valuable metric for educators and researchers
seeking to assess code quality in student settings.

Limitations
Several limitations should be acknowledged when interpret-
ing the findings of this study:

First, the participant pool was limited to 20 students from a
single university course. As such, the results may not general-
ize to other educational contexts, institutions, or populations
with different levels of programming proficiency.

Second, the group-based nature of the project introduces
potential confounding factors such as team dynamics, peer
influence, and uneven task distribution. Although individual
commit histories and team communication patterns were re-
viewed, differences in workload, ownership, or collaboration
styles may still have impacted the maintainability metrics.

Third, the assessment of code maintainability relied on
SonarQube and manual evaluation of naming quality. These
methods inherently reflect specific assumptions about what
constitutes high-quality code, which may not fully align with
educational goals, client-specific coding standards, or alter-
native maintainability models.

Fourth, the analysis focused on bivariate correlations be-
tween experience and individual maintainability metrics.
While this approach provides initial insight, it does not cap-
ture potential interactions between experience dimensions or
account for additional variables such as project complexity or
team behavior. A multivariate approach could offer a more
comprehensive understanding.



Finally, the potential use of AI-assisted development tools
during the course may have influenced code quality indepen-
dently of programming experience. As such tools become in-
creasingly integrated into the software development process,
their impact represents an important area for future research.

Future Work
This research opens several avenues for further investigation:

First, longitudinal tracking across project weeks could
explore the third research question, how maintainability
evolves, in more detail. More granular analysis could uncover
nuanced trends within and between experience groups.

Second, future studies could investigate whether group
project settings inherently support learning-by-doing for less
experienced students. For example, observational studies or
interviews could reveal whether peer practices influence code
maintainability habits.

Third, expanding the analysis to incorporate multivariate
statistical models would provide a richer view of how multi-
ple experience dimensions interact with maintainability out-
comes. This could include factors such as cognitive style,
confidence, or exposure to certain tools.

Fourth, the experience survey could be extended to in-
clude behavioral and psychological constructs, such as self-
efficacy, problem-solving strategies, or reflective coding prac-
tices, to capture a more holistic picture of student back-
ground.

Finally, replicating the study in different educational
contexts, programming languages, or institutional set-
tings would help assess the generalizability of the results
and determine how contextual factors mediate the experi-
ence–maintainability relationship.

Final Remarks
This study adds to the growing body of evidence that pro-
gramming experience meaningfully shapes the quality of
student-written code in collaborative settings. By combin-
ing quantitative metrics with a structured experience model,
it highlights both the value and limitations of prior experi-
ence as a predictor of maintainability. Ultimately, the find-
ings underscore the importance of not only technical skill,
but also team context, peer learning, and instructional design
in shaping software quality outcomes in computer science ed-
ucation.

Appendix
A.1 Survey Questions and Scales
The programming experience survey was adapted from
Feigenspan et al. (2012) and included the following items:

Survey Question Response Scale
How many years have you been programming? Numeric (free entry)
What is the size of the largest project you have
worked on?

Categorical: N/A, >900
LOC, 900–40,000 LOC,
>40,000 LOC

How would you rate your own programming ex-
perience?

1 (very inexperienced) to 10
(very experienced)

How many programming languages do you know? Numeric (free entry)
How experienced are you with object-oriented
programming?

1 (no experience) to 5 (very
experienced)

How experienced are you with logical program-
ming?

1 (no experience) to 5 (very
experienced)

How many programming-related courses have
you completed?

Numeric (free entry)

How would you compare your programming ex-
perience to that of your classmates?

1 (much less) to 5 (much
more)

Table 3: Programming experience survey questions and their re-
sponse scales

A.2 Metric Extraction and Analysis Process
All scripts used for data preparation and analysis are publicly
available at:
https://github.com/EgemenTUD/maintainability

(Last checked on June 21, 2025)

This repository includes:

• A commit extractor script that isolates a student’s contri-
butions from a shared repository by cherry-picking their
commits across all branches.

• Scripts for conducting Shapiro-Wilk tests and comput-
ing Pearson correlations.

• Scripts for calculating the effect size of the correlations.

• A detailed explanation for how SonarQube was in-
stalled, set and used.

A.3 Use of Generative AI
During the preparation of this paper, generative AI tools were
used in limited and responsible ways to support the writing
and development process. Specifically:

• Grammar and language refinement: AI assistance
was used to identify and correct grammatical issues, im-
prove sentence clarity, and ensure fluency in academic
writing.

• Code and script support: AI was consulted to assist
in creating and debugging Python scripts related to data
processing and statistical analysis.

• LATEX formatting: AI provided guidance on formatting
tables, figures, and section structure within the LATEX en-
vironment.

https://github.com/EgemenTUD/maintainability


References
[1] Luca Ardito, Riccardo Coppola, Luca Barbato, and

Diego Verga. A tool-based perspective on software code
maintainability metrics: A systematic literature review.
Scientific Programming, 2020:1–26, august 2020.

[2] Sharon Avidan and Dror G Feitelson. Effects of vari-
able names on comprehension: An empirical study. In
2017 IEEE 25th International Conference on Program
Comprehension (ICPC), pages 55–65. IEEE, 2017.

[3] David Coppit and Jennifer M Haddox-Schatz. Large
team projects in software engineering courses. ACM
SIGCSE Bulletin, 37(1):137–141, 2005.

[4] Jialin Cui, Runqiu Zhang, Ruochi Li, Fangtong Zhou,
Yang Song, and Edward Gehringer. How pre-class pro-
gramming experience influences students’ contribution
to their team project: A statistical study. In Proceedings
of the 55th ACM Technical Symposium on Computer
Science Education V. 1, SIGCSE 2024, page 255–261,
New York, NY, USA, 2024. Association for Computing
Machinery.

[5] Janet Feigenspan, Christian Kästner, Jan Liebig, Sven
Apel, and Stefan Hanenberg. Measuring programming
experience. In Proceedings of the 20th International
Conference on Program Comprehension (ICPC), pages
73–82. IEEE, 2012.

[6] Andy Field. Discovering Statistics Using IBM SPSS
Statistics. SAGE Publications Ltd, London, UK, 5th
edition, 2017.

[7] Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Refactoring: Improving the
Design of Existing Code. Addison-Wesley, Boston, MA,
1999.

[8] Jose Garcia et al. Improving students’ programming
quality with the continuous inspection process: a social
coding perspective. Journal of Systems and Software,
156:1–15, 2019.

[9] Daniel Guaman, Pablo Alejandro Quezada Sarmiento,
Luis Barba-Guamán, Paola Cabrera, and Liliana Enciso.
Sonarqube as a tool to identify software metrics and
technical debt in the source code through static anal-
ysis. In Proceedings of the 7th International Work-
shop on Computer Science and Engineering (WCSE
2017), pages 171–175, Beijing, China, June 25–27
2017. WCSE.

[10] International Organization for Standardization. Sys-
tems and software engineering — Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE)
— System and software quality models, 2011. ISO/IEC
25010:2011.

[11] Hieke Keuning et al. Assessing understanding of main-
tainability using code review. In Proceedings of the
2020 ACM Conference on Innovation and Technology
in Computer Science Education, pages 123–129. ACM,
2020.

[12] Jefferson Lopes, Johnatan Oliveira, and Eduardo
Figueiredo. Evaluating the impact of developer expe-
rience on code quality: A systematic literature review.
In Anais do XXVII Congresso Ibero-Americano em En-
genharia de Software (CIbSE 2024), pages 166–180, 05
2024.

[13] Emerson Murphy-Hill, Thomas Zimmermann, and
Nachiappan Nagappan. Confessions of a used program-
ming language: the effect of experience on program
quality. In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming & Software, pages 49–60. ACM,
2014.

[14] Janet Siegmund, Christian Kästner, Jens Liebig, Sven
Apel, and Stefan Hanenberg. Measuring and model-
ing programming experience. Empirical Software Engi-
neering, 19(5):1299–1334, 2014.

[15] Stijn van Waveren, Emily J. Carter, Oscar Ornberg, and
Iolanda Leite. Exploring non-expert robot programming
through crowdsourcing. Frontiers in Robotics and AI,
8:645599, 2021.

[16] Michael Wahler, Uwe Drofenik, and Will Snipes. Im-
proving code maintainability: A case study on the im-
pact of refactoring. In Proceedings of the 32nd Interna-
tional Conference on Software Maintenance and Evo-
lution (ICSME), pages 493–501, Budapest, Hungary,
2016. IEEE.

[17] Y. Zhou, E. Denney, and B. Fischer. Assessing the stu-
dents’ understanding and their mistakes in code review
checklists. arXiv preprint arXiv:2101.04837, 2021.


	Introduction
	Background and Related Work
	Methodology
	Participants and Data Sources
	Measuring Programming Experience
	Measuring Code Maintainability
	Data Analysis

	Results
	Programming Experience Scores
	Maintainability Metric Results
	RQ1: Experience and Maintainability Metrics
	RQ2: Best Metric for Experience
	RQ3: Maintainability Over Time

	Responsible Research
	Discussion
	Is there a correlation between experience and code maintainability?
	Which maintainability metric best reflects experience?
	How does maintainability evolve throughout the project?

	Conclusion, Limitations and Future Work

