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Abstract

Analysis of petrographic thin sections is crucial to determine rock properties such as texture, crystal size distri-
bution, porosity and structure of rocks at a microscopic level. However, an accurate determination of minerals
and textures in petrographic thin sections is a time-consuming process. Despite efficiency improvements through
intensity-based segmentation, thin section petrography remains slow and manual, leaving a significant amount of
sections unexamined due to time constraints. This project aims to determine whether object-based segmentation
can be used to segment similar mineral phases in petrographic thin sections using the Al-driven ZEISS arivis
Cloud (formerly APEER).

Samples used in this project were collected by the authors of Schmiedel et al. (2021) across a traverse of the high
viscosity Sosa Dyke (37°2’S, 68°52’W) in Argentina. Ten thin sections of trachyte/trachydacite composition were
scanned under bright light (BL), circularly polarized light (CPL), cross-polarized light (XPL) and plane-polarized
light (PPL) using the ZEISS Axioscan 7 and provided to be used in this project.

The effects of annotation quantity, image resolution and the combination of CPL and BL images in a single model
were investigated through the creation of multiple Al segmentation models using arivis Cloud. Additionally, the
time spent on segmentation was compared to intensity-based segmentation, point counting, and manual segmen-
tation. The classes used to segment images were amphiboles, plagioclase, and opaque minerals.

Results from this project show that ZEISS arivis Cloud can be used to segment thin sections using object-based
Al models. Object-based segmentation with ZEISS arivis Cloud is shown to be more time-efficient than other
manual and intensity-based segmentation methods. Larger datasets of similar thin sections result in greater time
savings, and the platform also generates valuable data which can be used for geologic interpretation. BL images
produced more accurate models than CPL images, and increased annotation of images improves model accuracy.
Models trained on higher resolution images more accurately differentiated between plagioclase and amphiboles.
Conversely, higher resolution models were less consistent in identifying large plagioclase crystals. Annotation
bias and arivis Cloud performing optimally when objects are no larger than 320%320 could be reasons for this.
Although contradictory to the recommendations of the arivis Cloud documentation, combining BL and CPL
images into a single model may improve segmentation accuracy when applied to BL images.

If fully optimized, ZEISS arivis Cloud could become an important tool for analyzing thin sections that were
previously deemed too time consuming, potentially unlocking new geologic insights.
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Introduction

Analysis of petrographic thin sections are crucial to determine rock properties such as texture, crystal size distri-
bution, porosity and structure of rocks at a microscopic level. However, an accurate determination of minerals
and textures in petrographic thin sections is often a time consuming process. Since the introduction of thin sec-
tion petrography by Henry Clifton Sorby in 1849, advancements such as intensity-based image analysis have
improved efficiency [5, 27]. Despite this, thin section petrography remains a slow and manual process, resulting
in a significant amount of sections remaining unexamined due to time required for analysis.

Al-driven tools have the potential to accelerate this process process. One such tool is ZEISS arivis Cloud (pre-
viously APEER), which is a cloud-based platform primarily used in medical applications [8, 11]. Currently, no
studies have investigated the use of arivis Cloud for instance (object) based segmentation of mineral phases in pet-
rographic thin sections. The aim of this project is to determine whether object-based segmentation using ZEISS
arivis Cloud can be used to segment similar mineral phases with different textural parameters (e.g. crystal size,
different matrix composition, different degree of fractionation) in petrographic thin sections.

The 10 thin sections analyzed in this project were taken from a traverse of the Sosa Dyke (37°2’S, 68°52’W) in
the Neuquén Basin, Argentina by the authors of Schmiedel et al. (2021). The sections were scanned under BL,
CPL, XPL, and PPL using the ZEISS Axioscan 7. Previous work on this dyke includes studies by Nilsson (2020),
Schmiedel et al. (2021), and Palma et al. (2024) focused on large-scale features to investigate the emplacement
mechanisms of the dyke. If proven useful, arivis Cloud segmentations could provide insights into the micro-
textural and mineralogical causes of these large scale features in a potentially more time-efficient manner than
manual image analysis methods.

The following aspects were investigated to determine the applicability of arivis Cloud.

* How does the use of ZEISS arivis Cloud compare to more traditional segmentation methods in terms of
time efficiency?

* What effect does the number of annotations have on segmentation?
* What effect does image resolution have on segmentation?

* Does combining BL and CPL images into one model improve segmentation accuracy?

This report begins with an overview of the geologic setting of the Sosa Dyke, and a discussion of dyke formation
theory. The Methods section describes how the arivis Cloud platform was used, and provides details on the
models that were created. The results display figures and tables illustrating the impact of annotations, image
resolutions and combining BL and CPL images, as well as examples of output data which could be used for
geologic interpretation. In addition, a time comparison is done between traditional image analysis methods and
the arivis Cloud segmentation. In the discussion section, the results will be analysed and related to the research
question. The conclusion provides a summary and recommendations for further research and the potential use of
arivis Cloud.
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Geologic Background

2.1. Geologic Setting

Samples used in this project were taken from the Sosa dyke, a high viscosity dyke that is part of the Chachahuén
volcano complex [23]. The volcano is part of the Payenia volcanic province, a Cenozoic back-arc region, resulting
from the Nazca plate subducting beneath the South American plate. [14, 20, 23]. The Payenia volcanic province
is located within the older Neuquén foreland basin which has been a sedimentary sink from the Early Triassic to
present day [7].

The Chachauén Volcanic Complex has produced volcanic rocks of varying composition beginning in the Early
Miocene with basalts produced by fissure eruptions. In the late Miocene, ignimbrites and block-and-ash flows
rocks characterize the majority of deposits in the Chachahuén edifice [23]. The Sosa Dyke is an intrusion into
these deposits. In this period cryptodomes formed. Subsequently, most of these collapsed. One of the few that
did not is the Cerro Bayo cryptodome (6.7 + 0.3 Ma). The Sosa Dyke is located to the east of Cerro Bayo [23].

Cerre-Bayo
1 km

Figure 2.1: Location of the Sosa Dyke (SD). Dyke is located at 37°2’S, 68°52’W, to the east of the Cerro Bayo cryptodome (source:
Google Earth), and its position in South America (modified from https://www.nicepng.com).

2.2. Dykes and Theory

Magma-filled fractures that cut across bedding planes, in both fluid and frozen states, are referred to as dykes.
Dykes are an essential element of volcanic plumbing systems and are considered a major pathway for magma
transport from the middle to upper path of the crust [6, 15].

Dykes transport magma to feed volcanic eruptions. However, if magma does not reach the surface, it solidifies
and crystallizes in the subsurface. The largest temperature difference occurs at the dyke margin. Crystallization
begins here and propagates towards the center of the dyke [15]. Following from this, solidified dykes can provide
a valuable insight into variations in flow direction within the dyke over time as crystallization occurs. These flow
directions can be highly variable. Interpretation is possible through analysis of magnetic fabrics and macroscopic
textures like flow banding, folding, and phenocryst alignment [13, 15].

2



2.3. Sosa Dyke 3

2.3. Sosa Dyke

The exposed part of the Sosa Dyke which was studied by Schmiedel et al. (2021) solidified in the subsurface. The
dyke has a total length of about 1300 m measured along the strike (average orientation of 277°) and is considered
to be a vertical sheet [23]. Samples used in this project are from the easternmost section (segment I). It is 560 m
long with an average thickness of about 42 m. The plane of the dyke is oriented at 299° in the section containing
T1 [23]. The dyke has a trachyte/trachydacite composition with a slightly more mafic composition in the dyke
center [23].
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Figure 2.2: Figure 2 from Schmiedel et al. (2021). Overview of the Sosa Dyke. Samples used in this project are taken from traverse T1,
located in the easternmost portion of the Sosa Dyke.
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Figure 2.3: Figure 8 from Schmiedel et al. (2021). (A) Composition and classification of rocks for the Sosa Dyke (B) Zoomed portion of
the figure.



3
Methods

3.1. Input Data: Scanning Petrographic Thin Sections

The data used in this study was collected on site at traverse T1 of the Sosa Dyke by the authors of Schmiedel
et al. 2021 (see Figure 2.2). In the study, nine cores were drilled at locations spaced 5 m apart (Figure 3.1) to
measure AMS. At these same locations, rock samples were taken and labeled ”GD-T1-01” to ”GD-T1-09.” The
rock samples were used to create thin sections used in this project.

From these cores, 10 thin sections were created using clear epoxy. Sample GD-T1-09 is a special case. Here
thin sections were created using a blue dye added to the epoxy to highlight potential porosity and enhance the
visibility of clear minerals. In addition, two separate thin sections were made (GD-T1-09a and GD-T1-09b)
oriented perpendicular to each other.

All sections were scanned using the ZEISS Axioscan 7 in combination with the ZEN (blue) microscopy software.
Each sample was scanned under Plane Polarized light (PPL), Cross Polarized light (XPL) both at six intervals of
15 degrees, bright light (BL) and circularly polarized light (CPL). The scanning profile used can be found in the
digital appendix. Regular images of the thin sections with a scale bar were also provided and used to calculate
pixel size for low and high resolution images.

For each sample, an area of interest was manually selected, resulting in slight variations in image resolutions. At
full scanning resolution the file size was too large to export. Images were therefore exported at 10% resolution
(low), and 25% resolution (high) of the initial resolution. The resolution of each image is listed in table 3.1. All
images are .tif files with a bit depth of 24.

Figure 3.1: Figure 6 from Schmiedel et al. (2021). Sample locations across the Sosa Dyke with indicated magnetic lineation (arrows) and
magnetic foliation (strike-dip symbols) Sample T1-09 is located 5 m left of sample T1-08.
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Sample Low Resolution High Resolution
GD-T1-01 4278x2469 10694x6171
GD-T1-02 4463x3133 1157x7832
GD-T1-03 5401x2918 13503x7295
GD-T1-04 4585x2480 12144x6201
GD-T1-05 5414x2479 13535x6197
GD-T1-06 5043x2703 12608x6757
GD-T1-07 5227x2924 13608x7310
GD-T1-08 5574x2912 13935x7280
GD-T1-09a 4472x2027 11179x5067
GD-T1-09b 4658x1805 11645x4512

Table 3.1: Resolution (in pixels) of the images used in this study for each sample.

3.2. Training Arivis Cloud Models

To test the potential of object or instance based segmentation, the ZEISS arivis Cloud (previously known as
APEER) software was used [8]. More specifically, the one month academia trial. This trial includes thirty days of
access and 7020 minutes of computing time, of which 4000 minutes were used to create about 40 segmentations.

In this project, the use of the arivis Cloud to segment mineral phases consists of four steps; annotation, training,
inspection and analysis. Each segmentation followed this general procedure.

First, the images to be annotated were uploaded into a dataset. The dataset was given a logical name, referring
to the type of images within the dataset or the type of model which was going to be trained using the dataset.
When creating the dataset, arivis gives the option between semantic (pixel-based) and instance (object-based)
segmentation. In this project, instance segmentation was used.

Within the dataset, images can be annotated. Depending on the requirements of the model being created, annota-
tions were created on one, several, or every image in the dataset. This information is listed in section 3.4.

Annotations must be created for classes of interest which are defined by the user. In this project the classes are
are amphibole, opaque minerals and plagioclase.

Annotation was mostly done using the Al tool, which predicts the outline of the crystal when hovering over it. If
the outer boundary is correctly identified, clicking on the prediction creates an annotation. If the predicted outline
is not adequate, the annotated area can be adjusted using the brush and eraser tools.

Once annotation is complete, the AI model is trained by selecting an annotated dataset and the classes of interest.
Training the model occurs on the cloud and uses computing time. For the models trained and segmentations
created in this project, this took an average of about 100 minutes, ranging between one to four hours.

Once completed, it is possible to inspect the model’s predictions on the annotated dataset. Annotation is an
iterative process and can be done multiple times until the model performs adequately. The first iteration of a
model is either not indicated or labeled as v1. Subsequent iterations are labeled with v2,v3 etc.

If, upon inspection of the model’s predictions, the predictions are satisfactory, the segmentation results can be
downloaded. This is in the form of a .ome file and a .csv file. Within the .ome file is a .tiff file for each class
indicating the identified objects in grayscale. In the .csv file are measurements, done by arivis Cloud on the
identified objects. This file is conveniently named measurements.csv. Some of the measurements include the
centroid coordinates, object area and major axis length. A list of all measurements contained within .csv file can
be found in appendix A.

In this project, either one (GD-T1-01), three (GD-T1-01, GD-T1-05, GD-T1-09a) or all ten images were seg-
mented dependent on the purpose of the model. Segmenting all ten allows for comparison across the dyke.

Although PPL and XPL images were provided, BL and CPL contains less variation between images of the same
sample and therefore provides more consistent data for the Al to train on [11]. Therefore, only BL. and CPL
images were used.
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According to the arivis documentation the segmentation can be accessed through ZEISS software such as, ZEN,
or ZEN core. I did not have the licenses for these products and therefore wrote a Python script (contained within
the digital appendix) to handle the files and create outputs which can be interpreted. It is possible to integrate
Python scripts using docker, however due to limited time with the platform this option was not explored.

arivis Cloud Results

arivis Pro Result:
Create Annotate Use esults
Inspect

Dataset Dataset Trained Model

arivis Hub Results

ZEN & ZEN core Results

Figure 3.2: The Al model development overview from arivis Cloud [8]. In this project results are analyzed using Python.

3.3. Output Data using Python

The Python file created is attached in the digital appendix. As inputs the script takes a folder congaing the .ome
files and the .csv file from arivis Cloud. The model name, image specifications, and names of colors for each
class must be input manually. For the data in this project, the conversion done from pixels to zm was not accurate.
For this reason, it is necessary to provide pixel size in pm per pixel. Additionally, users must specify the folders
where the script will save the output files. In table 3.2 the output data is described.

Arivis considers the major axis orientation (radians) to be at the three o’clock position, and clockwise movement
to be positive. For interpretation, it is more logical for the zero to be located at the twelve o’clock position. This
is adjusted within the code.
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Output Data Input Data Description of Methods  Output File Type
Segmented Image Folder containing .ome Convert each .tiff file into .png or .tiff.

files. Each .ome consists binary. Color by class and
of a greyscale .tiff file for overlay. Creates one im-
each class age per sample
Major Axis Plot measurements.csv From the centroid coor- .png
dinates, define line end-
points. Plot the major axis
of each crystal.
Orientation Rose Plots measurements.csv For each class, the his- .png

togram of orientations is
plotted on a rose plot.

For measurements of in-
terest, group data by class
and by sample. Save to an

Summary Excel File and Plot = measurements.csv .xIsx and .png

Excel file and plot.

Major Axis Length Violinplot measurements.csv Plot the major axis length .png
for each class for compari-
son between models.

CSD measurements.csv For each sample, cumula- .png

tive probability for crys-
tals of a given size is
plotted against crystal size.
Major axis length is used
for crystal size.

Table 3.2: Output data created using Python which can be used for interpretation and analysis.

3.4. Comparison of Models

To determine the potential of object based segmentation using arivis Cloud, different variations of annotations
and models were created for comparison.

3.4.1. Number of Annotations and Annotating Multiple Classes

The first set of annotations and models were trained to investigate the effects of the number and type of annotations.
This followed the recommendations found in the arivis Cloud docs: annotate about 50 objects for a single class,
inspect the results, identify areas of weakness, annotate more images and repeat until satisfied, the move on to the
next class [11].

The first class which was annotated was plagioclase, starting with about 50 annotations on the low resolution (for
specific resolutions refer to table 3.1) BL image of sample GD-T1-01 to create the first model; T1-01-bright10.
The number of additional annotations created for iterations of this set of models are shown in table 3.3.

Note, this dataset included low resolution BL images of all samples (10 in total). Samples GD-T1-09a and GD-
T1-09b are not annotated. These slides are used as test images to determine what effect the blue dye has on the
predictions that the model makes.
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Model Name Plagioclase Additional Annotations
T1-01-bright10v1 50 on GD-T1-01
T1-01-bright10v2 300 on GD-T1-01
T1-01-bright10v3 300 on GD-T1-05
T1-01-bright10v4 50 on each unannotated sample,

except GD-T1-09a and GD-T1-9b

Total Annotations 950

Table 3.3: Additional annotations created for each model. Samples GD-T1-09a and GD-T1-9b were not annotated to determine how arivis
Cloud deals with different thin section

After creating the annotations for plagioclase crystals, the other two classes were annotated (amphiboles and
opaque minerals) in the same dataset to expand the model. First, amphiboles were annotated with 50 annotations
on each image except GD-T1-09a and GD-T1-09b . This resulted in model T1-bright10_pavl.

Next, 50 opaque minerals were annotated on each image except GD-T1-09a and GD-T1-09b to create model
T1-bright10_paovl. For an overview of the total number of annotations for T1-bright10_paovl see table 3.4.

This model was used to segment all ten sample images.

Class T1-bright10_paovl
Total Annotations

Amphibole 400

Opaque 400

Plagioclase 950

Table 3.4: Total number of annotations per class to create model T1-bright10_paov1

3.4.2. Resolution

According to arivis Cloud documentation the minimum image resolution is 128*128 pixels [11]. Images scanned
using the Axioscan have much higher resolutions (see table 3.1). To determine the influence of image resolution
on the Al models, images in BL and CPL were compared when trained on low and high resolution datasets.

In the model names, such as T1-bright10 or bright&cpl_25_v1, 10 and 25 refer to the percentage of the resolution
of the initial scan. 10 refers to the to low resolution image and, 25 refers to the high resolution image as listed in
3.5.

Each dataset consists of all samples of the given resolution. The first sample GD-T1-01 was annotated with 50
objects for all three classes (amphibole, opaque, plagioclase). The model was then trained, resulting in predictions
on every sample image. This allows for a visual comparison between the different models, as well as a statistical
one.

Model Names Sample  Annotations per Class
Bright_10_resolution GD-T1-01 50
Bright_25_resolution GD-T1-01 50
CPL_10_resolution GD-T1-01 50
CPL_25_resolution GD-T1-01 50

Table 3.5: Model names for the resolution tests and number of annotations per class on GD-T1-01.

3.4.3. Bright&CPL

This model is an investigation into whether it is possible to combine information from BL and CPL images into
one model. For each model listed below, a dataset is created which contain both BL and CPL images.
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Higher resolution images show more internal features, so this concept was tested for both low resolutions and high
resolutions. For low resolutions, three model iterations were created bright&cpl_10_v1, bright&cpl_10_v2, and
bright&cpl_10_v3. Iteration v2 and v3 included a total of 150 more annotations (50 per class) than the previous.
For the high resolution images only one model was created: bright&cpl_25_v1.

To combine information from BL and CPL images, both must be annotated. To stay within time constraints, only
samples GD-T1-01, GD-T1-05 and GD-T1-09a were used. These samples are located at the margin and center
of the dyke and therefore display significant variation in textural parameters.

Table 3.6 shows the number of annotations created on both BL and CPL samples for each class for the associated
model.

Model bright&cpl_10_v3 was used to segment all twenty low resolution images (BL and CPL).

Model Sample Annotations per Class
for BL and CPL
bright&cpl_10_vl  GD-T1-01 50
GD-T1-05 0
GD-T1-09a 0
bright&cpl_10_v2  GD-T1-01 50
GD-T1-05 25
GD-T1-09a 0
bright&cpl_10_v3  GD-T1-01 50
GD-T1-05 25
GD-T1-09a 25
bright&cpl_25_vl  GD-T1-01 50
GD-T1-05 0
GD-T1-09a 0

Table 3.6: The number of annotations for each class on both BL and CPL samples per model.

3.4.4. High Resolution Models with Many Annotations

Previous models were created to investigate the effect of number of annotations, resolution, and image types.
The models in this section were made to determine the effects of many annotations on high resolution images,
potentially to create the the most accurate segmentation.

Models (see table 3.7) were created for both BL and CPL images with fifty annotations per class (amphibole,
opaque and plagioclase) on each image. After creating the first iteration of both models, it became clear they had
trouble predicting large plagioclase crystals so a second iteration was created with 10 extra annotations of large
plagioclase crystals on each sample (total 100 extra annotations).

Since the thin sections for samples GD-T1-09a and GD-T1-09b were prepared using blue dye, it was deemed
necessary to remove large blue areas from the AI’s area of interest. This was done using the background class in
arivis Cloud.
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Model Sample Annotations per Class
for BL and CPL

Bright25-bestv1 All Samples 50
Bright25-bestv2 All Samples 50

+ 10 extra for Plagioclase
CPL25-bestv1 All Samples 50
CPL25-bestv2 All Samples 50

+ 10 extra for Plagioclase
Total Annotations per Model 1500-1600

Table 3.7: The number of annotations for each class on both "best’ models.

3.5. Time and Quality Comparison to Manual Segmentation Methods

To create a quantifiable indication of possible time saved using the arivis Cloud and to be able to make some
comments on the quality of the data produced by arivis, a few manual segmentation methods were completed.

3.5.1. Traditional Intensity Based Segmentation using Image]J
To compare the quality of the arivis object-based segmentation to an intensity-based segmentation, sample GD-
T1-01 was segmented using Image]J.

To segment each class the following procedure was completed three times. The image was converted to 8-bit
(grayscale) and if deemed necessary, the contrast was increased. To segment the crystals the threshold function
was used. The image was converted to a binary image. Possible noise was removed. The grain analysis tool was
used to create measurements of the identified crystals. Using a modified version of the Python script, a colored
segmented image was created.

The time required to segment all ten samples was found as follows.
T=t=n.

T: Total time used to manually segment the dataset, ¢: time to segment one sample using ImagelJ, n: number of
samples in the dataset.

3.5.2. Point Counting

Another method to acquire data from a petrographic thin section is point counting. Using ImagelJ, a grid of 336
crosses was overlain over GD-T1-01. At the intersection of each cross, if there is a crystal, its long axis was
measured. To create ellipsoids, the minor axis is also necessary. It is not measured, but time required to measure
both axes can be extrapolated as follows.

T=2=%t=x*n.

T: Total time used to manually segment the dataset, ¢: time to measure major axis length for one sample, n:
number of samples in the dataset.

3.5.3. Manual Segmentation

For comparison, a quarter of the high resolution image of GD-T1-01 was segmented by hand. This was done
using Goodnotes on an iPad with an Apple Pencil. The exact resolution of the segmented section was 7346x3085.
By area, this is one quarter on the total image.

To extrapolate the amount of time taken for all ten images the following formula was used.
=1
T =g5*txn.

T: Total time used to manually segment the dataset, p: fraction of sample area annotated, #: time to annotate
fraction of sample area, n: number of samples in the dataset.



4
Results

This chapter first compares the amount of time required to create an arivis Cloud segmentation as compared to
other segmentation methods. Then, some examples of output data are displayed, followed by the results of models
annotated with different parameters are shown.

4.1. Time Used and Comparison to Traditional Methods

This section details the time taken to segment images using arivis Cloud and the manual segmentation methods.
The final comparison is displayed in Table 4.2.

4.1.1. Arivis Cloud

Uploading images, annotating and segmentation all take time. Uploading images and converting them for can take
up to a few minutes per image, especially for larger resolution images. The time it takes per annotation depends on
a few factors. How large the objects are, how identifiable they are, but mostly how well the Al tool can predict the
boundaries of the image. If the Al tool does not predict the boundaries correctly, they must be manually adjusted.
This occurs more frequently in objects with large contrast within the object. Taking this into account, I managed
between 4-8 annotations per minute. Training and segmenting the models created in this project never took more
than four hours. Usually, this took around two hours.

4.1.2. Traditional Intensity Based Segmentation Using ImageJ

Creating a segmentation of one image using ImageJ took about two hours (see Figure 4.1). Plagioclase and opaque
minerals were easier to segment as they are in the upper and lower percentiles of grayscale values. Amphiboles’
lower bound was similar to opaque minerals’ upper bound. In addition, amphiboles upper bound had similar
grayscale values to the matrix, resulting in few amphiboles detected as can be seen in Table 4.1.

Class Count Segmented Area

Amphibole 4209 1% e
Opaque 1121 3%
Plagioclase 1943 25%

Total 7273 28.5%

] 2000 4000 00 000 10000

Table 4.1: Number and percentage of GD-T1-01 segmented as
amphibole, opaque, and plagioclase using ImageJ. Figure 4.1: Segmentation of GD-T1-01 using ImageJ. Green,
blue, and red represent amphiboles, opaque minerals, and
plagioclase, respectively. Areas with a combination of colors
represent conflicts.

4.1.3. Point Counting Using Image]J

The point count took 30 minutes to go over 336 points and measure the major axis of crystals in each class. The
result was 108 measurements of the major axis. Extrapolated to measurements of minor and major axes (to create
ellipses) for ten samples this would require about ten hours of work.

11
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4.1.4. Manual Segmentation

To manually trace the outlines of objects in one quarter of sample GD-T1-01, took 40 minutes. Resulting in a
total of 627 outlines (see Figure 4.2). Extrapolating to fully outlines minerals in ten samples comes to more than
25 hours of work.

Method Work Time for
10 Samples
arivis Cloud (1500 annotations) 4-5 hours
Intensity Based ImageJ 20 hours
Point Counting 10 hours
Manual Outlining 25+ hours

Table 4.2: Time taken for different methods of data collection
and segmentation.

Figure 4.2: Manual segmentation of GD-T1-01 using
Goodnotes on an iPad. Green, blue, and red are amphiboles,
opaque minerals, and plagioclase respectively.

4.2. Output Data From Python

This section displays examples of figures created in this project which were used to compare models. In addition,
these figures can be used for geologic interpretation. Figure 4.3 is an example of a segmentation created using
arivis Cloud. Figure 4.4 is the same segmentation with each crystal reduced to their major axis, illustrating their
orientation across the sample. Some major axes align with the intuitive major axis, while others do not. The empty
space seen in these figures are areas which contain large plagioclase crystals which have not been identified by
the model.

Figures 4.5 and 4.6 illustrate the distribution of orientation and crystal size between classes for one sample. Com-
parison of these figures across the Sosa Dyke provides information of textural variability across the dyke. Please
note arivis considers 0 degrees to be at the three o’clock position. As an example, Figure 4.7 plots the variability
of two measurements within one figure. The digital appendix contains the full plots for each model created.

In appendices B and C the segmentation and associated figures can be found for Bright25-bestv2 and CPI125-
bestv2 models. The digital appendix contains all segmentations, major axis plots, rose plots and CSDs for each
model created.

Data from the bright25-best model shows mean area generally increasing towards the center of the dyke. The
trend is most consistent among amphiboles. Orientation shows groupings of classes together, but there is no clear
trend across the dyke.

(Bright25-bestv2 GD-T1-01_Bright_major_axis.png]
— 1z - e e

S \\{::/;

59655.93 microns

Figure 4.3: Segmentation of GD-T1-01 using the Bright25-bestv2 Figure 4.4: Major axis plot of GD-T1-01 using the
model. Dark goldenrod, blue, and red are amphiboles, opaque Bright25-bestv2 model. Dark goldenrod, blue, and red are
minerals, and plagioclase respectively. amphiboles, opaque minerals, and plagioclase respectively.
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CSD of Bright25-bestv2 on GD-T1-01_Bright
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Figure 4.5: Rose plot displaying orientations of crystals in

GD-T1-01 segmented using the Bright25-bestv2 model. 0 degrees Figure 4.6: Crystal size distribution (CSD) of sample GD-T1-01

is at the three o’clock position of the sample. segmented using the Bright25-bestv2 model. Note xlim is set
manually for this example image. For images found in appendix B
and C xlim is set automatically to the largest crystal size in the
entire dataset for comparison between samples.

High Resolution BL Images Analysed Using Bright25-bestv2
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Figure 4.7: Some examples of data plotted per class across the Sosa dyke which can be used for geologic interpretation. Data is from high
resolution images segmented using the Bright25-bestv2 model.

4.3. Number of Annotations

For models T1-01-bright10 up to iteration T1-01-bright10v4, Figure 4.8 shows increasing the amount of anno-
tations of plagioclase crystals had an impact on both the number of plagioclase predictions made, as well as the
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percentage of the total area which the model identifies as plagioclase. Initially, the number of predictions increases
rapidly, coupled with an increase of percent area. However, as more annotations are made, both indicators seem
to settle at an asymptote.

On images GD-T1-09a and GD-T1-09b (segmentations can be found in the digital appendix), the T1-01-bright10v4
did sometimes segment areas with blue dye as plagioclase. Although many of the areas with blue dye were not
falsely segmented, using the background class to exclude those pixels from the training data would eliminate this
inaccuracy.

Plagioclase Predictions on GD-T1-01
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Figure 4.8: The number of plagioclase predictions and total area predicted as plagioclase plotted against
the number of annotations made.

4.4. Resolution

The CPL25_vl is inconsistent with the other three models created in this section. Figure 4.9 shows that for
samples analyzed, GD-T1-01 is found to have the most objects, followed by GD-T1-05 and GD-T1-09a on all
three models except CPL25_v1. Across both image types, higher resolution images find more crystals in the
analyzed samples (Figure 4.10). In BL images, while there is a 26% increase in number of objects identified in
high resolution images, there is a 19% decrease in sample area segmented (Table 4.3). More predictions but less
area is indicative of objects which are smaller. As an example, the mean crystal area of amphiboles (as a fraction
of total sample area) are 5.0 - 107> for the low resolution bright image and 1.8 - 10~> for the high resolution image.

Figure 4.11 shows a decrease in area segmented for all classes under BL. Under CPL the area segmented as
amphiboles and plagioclase also decrease, but the area of opaque minerals increases enough to reach a net 0%
increase in area.
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Predictions for Low and High Resolutions
Predictions per Model
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Figure 4.9: The total number of crystals found by models with Figure 4.10: The total number of crystals found for each
different resolutions on samples GD-T1-01, GD-T1-05, different class (amphiboles, opaque, and plagioclase) by
GD-T1-09a. models with different resolutions on samples GD-T1-01,
GD-T1-05, GD-T1-09a.
Class Bright CPL
S d Area for L d High Resoluti Count
egmented Area for Low and High Resolutions A .
mphibol 2 24
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T Opaque 17% 72%
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< Models Opaque -28%  26%
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Figure 4.11: Percentage of the area covered by each class for
bright and CPL models with low and high resolutions on

samples GD-T1-01, GD-T1-03, and GD-T1-09a. Table 4.3: The percent difference between the number of

crystals found in low and high resolution images for each class.
Positive values indicate more objects found in higher
resolution images.

4.5. Bright&CPL

Figure 4.12 shows a significantly less crystals identified on high resolution images compared to low resolution.
On CPL images, a larger number and greater area the of the image is segmented as opaque minerals (Figures 4.12
and 4.14). Figure 4.14 shows a larger portion of the sample area is segmented as plagioclase on BL images than
CPL.

For both image types, the area segmented as plagioclase increases throughout the iterative process. The number of
predicted amphiboles stays relatively consistent throughout, which is also seen in the total segmented area which
varies from 2.5 to 4%. This is in contrast to opaque minerals which varies more both in number segmented as
well as area, with a range of 1.7-5.9%.
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Bright&CPL Predictions for Low and High
Resolution Images
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Figure 4.12: The number of crystals found on samples GD-T1-01, GD-T1-05, and GD-T1-09a by
low and high resolution Bright&CPL models.
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Figure 4.13: The number of crystals found on samples GD-T1-01, GD-T1-05, and GD-T1-09a by
multiple iterations of low resolution Bright&CPL models.
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Figure 4.14: Percentage of the total sample area segmented by iterations of the low resolution
Bright&CPL models for samples GD-T1-01, GD-T1-05, and GD-T1-09a.
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4.6. High Resolution, Many Annotations

The Bright25-bestv2 and CPL25-bestv2 were created to determine what can be done if a significant amount of time
(see table 4.2) is spent to annotate samples on high resolution images. An example of the resulting segmentation
is shown in Figure 4.15. The rest of these segmentations can be found in appendices B and C.

There are significant differences between the BL and CPL model. As shown in Tables 4.4 and 4.5, overall the
model trained on BL images segments a greater are of the image as crystals. The CPL model identifies more
opaque minerals and segments a greater area.

Figure 4.16 shows the range for major axis length is far greater for plagioclase than amphiboles or opaque minerals.
All models display a similar trend. Those figures can be found in the digital appendix.

Figure 4.17 displays the distribution of eccentricity per class for the BL model. Amphiboles and plagioclase are
more eccentric and show an downward skewed distribution. Opaque minerals display a more uniform distribution
at a lower eccentricity.

Sample BL CPL

Class Bright25-bestv2 CPL25-bestv2 GD-T1-01  28%  24%
GD-T1-02  25% 18%

Amphibole 3% 3% GD-T1-03 28%  23%
Count 5368 4148 GD-TI-04  24% 11%
Opaque 1% 3% GD-TI-05 29%  19%
Count 6380 9321 GDTI-06  22%  12%
Plagioclase 20% 13% GD-T1-07 25% 1%
Con 10955 107 GD-TI-08  29% 27%

GD-T1-09a 25% 24%
GD-T1-09b  30% 23%

Table 4.4: Across all ten samples, the number of objects found
for each class as well as the percentage of the total area.

Table 4.5: Percentage of the total area segmented as
amphibole, opaque or plagioclase.

Major axis length
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Figure 4.15: Segmentation of GD-T1-01 using the
Bright25-bestv2 model. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.

Figure 4.16: Distribution of major axis length for all samples
when segmented using model Bright25-bestv2.
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Figure 4.17: Eccentricity of each class when high-resolution
sample images are segmented with model Bright25best-v2
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Discussion

As shown in Figure 4.8, after about 700 annotations (1.5-3 hours of work) the area segmented on one sample
reaches a plateau. This suggests the model has identified most plagioclase crystals on the section, which is cor-
roborated by inspection of the segmentation. Studies investigating the effects of the number of annotations on
accuracy, find a similar plateau [3, 24]. Although arivis Cloud does not provide an explicit accuracy score, in-
spection of the segmented image allows the user to identify when this plateau has been reached. The number of
annotations required to reach this plateau depends on the difficulty of segmentation and variation between images.

One source of variation in this project are samples GD-T1-09a and GD-T1-09b which were prepared using a
blue dye instead of only clear epoxy. More annotations were required to deal with this variation. To create a
robust model across different samples, research on object-based segmentation indicates that, more training data
leads to better model performance [1]. However, at a point, the plateau is reached and increasing the number
of annotations is no longer paired with substantial increases in accuracy. Annotation is time-consuming. To
decrease the amount of time spent annotating, arivis Cloud recommends standardizing the method of thin section
preparation and scanning.

In this project it is shown that the annotation person-hours required to create the segmentation of ten samples
using arivis Cloud (5 hours) is significantly less than intensity-based segmentation (20 hours), point counting
(10 hours), and manual outlining (25 hours). Other studies are in agreement that traditional methods are time-
consuming and attempt to decrease this by using machine learning to increase the efficiency of intensity-based
segmentation and point counting [5, 25]. One of the strengths of arivis Cloud, is that when a model has been and
achieves sufficient accuracy, it can be applied to an entire dataset. As dataset size increases, time savings become
more substantial. However, the cloud-based computation time does increase, but this can be scheduled to be run
outside of working hours.

Figures 4.4, 4.5 and 4.6 were created using some of the many measurements which arivis Cloud performs on each
identified crystal. The full list of measurements which it performs can be found in appendix A. This data can
be plotted across the dyke and provide new geologic insights and allows for corroboration with current geologic
knowledge. While the data is incredibly useful, there are still limitations. For example, in major axis plots (ex.
Figure 4.4), the major axis does not always align with the intuitive major axis. It is unclear whether this originated
from the analysis code or an inherent limitation of arivis Cloud’s measurement algorithm. Despite such issues,
the combination of increased time efficiency and vast data output, makes Al-based segmentation a powerful tool
for petrographic analysis, providing opportunities for new geologic insights.

Higher resolution models are less consistent in identifying large (plagioclase) crystals than lower resolution mod-
els. This decrease in segmented area is shown in Figure 4.11 and Table 4.3. Inspection of high resolution models
further confirms this result. The percentage of total area segmented per sample as listed in Table 4.5 can be inter-
preted as crystal content values. However, when compared to crystal content values from Schmiedel et al. (2021)
as seen in Table 5.1, the arivis models identify significantly fewer crystals. An investigation into the segmen-
tation of sample GD-T1-01 using the Bright25-bestv2 (a high resolution model) revealed that undetected large
plagioclase crystals account for approximately 4% of the total sample area. One possible factor contributing to
this inconsistency is an annotation bias, specifically, the tendency to annotate smaller crystals. As illustrated in
Figure 4.16, for plagioclase, the vast majority of crystals are small. When annotating a representative dataset,
users naturally select a higher number of smaller crystals as they are more abundant. In addition, since large
crystals occupy a disproportionate amount of the total sample area, annotating only a few may seem to make their
representation sufficient. As a result, users may further prioritize annotating smaller crystals, leading to a dataset
skewed towards larger objects. Since the Al model learns from the annotated dataset, this bias likely reduces
segmentation accuracy for larger crystals [11]. Accounting for as much variability within a class is essential for
creating an accurate model [9]. Creating separate classes for ’small’ and ’large’ plagioclase crystals could be an
option, however this could lead to many classification conflicts between the two classes. Another, and perhaps the
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most compelling explanation for the model’s difficulty in segmenting large plagioclase crystals, is that according
to arivis Cloud documentation, for optimal results, object sizes should be no larger than 320*320 pixels” [11].
This constraint is more prominent in high resolution image, where objects of larger pixel areas are inherently more
common. For example, in the BL resolution test, the low resolution model identified 11 occurrences of objects
larger than 320%320 pixels compared to 111 occurrences found by the high resolution model. This limits both the
range of crystal sizes which can be segmented and the maximum resolution which can be used to create an arivis
Cloud model.

While higher resolution images contain finer details, their effectiveness is limited when segmenting large objects,
potentially due to annotation bias or constraints within the arivis Cloud algorithms. Although high resolution
models less consistently identify large plagioclase crystals, they make fewer mistakes distinguishing between
opaque minerals and amphiboles than low resolution models, based on inspection and comparison. Figure 5.1
shows some of these mistakes. Research on geographic object based image analysis for land cover classification
finds similar effects, stating that ”a large segmentation scale cannot precisely extract relatively small objects” [12].
The same study concludes that ’segmentation scales are strongly correlated with an object’s average area” [12].
Selecting the appropriate resolution is crucial for model accuracy as this is crucial for classification accuracy [10,
16]. Potential methods for the optimization of resolution for segmentation accuracy include trial-and-error based
methods, statistical methods and the combination of multiple scale factors [18, 28]. The most applicable to arivis
Cloud are trial-and-error, and potentially the combination of resolutions and/or methods. For example, since
amphiboles and opaque minerals have a similar size distribution and are relatively small, a high resolution model
would be optimal. This could be combined with a lower resolution model for plagioclase or even an intensity-
based segmentation of plagioclase. To conclude, optimizing resolution based on object size and size distribution
is a crucial step for improving model accuracy in arivis Cloud.

Sample BL CPL  Schmiedel et al. (2021)
GD-T1-01  28% 24% 36.9%
GD-T1-02  25% 18% 35.0%
GD-T1-05 29% 19% 35.5%
GD-T1-09 27.5% 23.5% 37.5%

Table 5.1: Comparison between crystal content found by models Bright25-bestv2, CPL25-bestv2 and data from Schmiedel et al. (2021). In
Schmiedel et al. (2021) there was no distinction made between samples GD-T1-09a and GD-T1-09b. For comparison, the average was taken
between samples GD-T1-09a and GD-T1-09b. Full results can be found in Table 4.5

Based on observation, the models trained and used on CPL images were less accurate than those trained on BL
based on observation of the segmented images. This is due to the variability in degree of extinction within a
single crystal. For plagioclase crystals, zones in extinction were often segmented as opaque minerals or amphi-
boles. In addition, zones under different extinction phases are often segmented as separate crystals. Due to these
inaccuracies, models trained on BL images yielded better results in this project.

Combining BL and CPL images into a single dataset and training a model based on annotations from both images
types resulted in a total segmented area of 32% when applied to BL images, which is closer to the crystal content
values from Schmiedel et al. (2021) than other models created in this project. Figure 5.2 shows that while the
model performs reasonably well on BL images, it severely under-performs when applied to CPL images. The com-
bination of image types potentially allows the model to gather more information on the internal features through
the CPL images, which can help in distinguishing between features not or barely visible under BL. Although
the combination of images under different types of light goes against the recommendations of the arivis Cloud
documentation, this might be incredibly useful method to distinguish crystals which appear similar under BL, but
contain different features visible under CPL. A downside however, is that annotating both BL and CPL images
required double the annotation effort. Applying the same annotation effort to only BL images might prove to be
more accurate. Future work could further investigate this method.
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Figure 5.1: Observed differences for opaque minerals and amphiboles on a small portion of GD-T1-01
under BL when segmented using low and high resolution models. Differences are marked in red.
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Figure 5.2: Some observed inaccuracies on a small portion of GD-T1-01 when the model bright&CPL
10% v3 is used to segment BL and CPL images. Inaccuracies are marked in red.
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In Figure 4.7 plagioclase exhibits the largest difference in mean crystal area between the margin of the dyke and
the center. The trend is most clearly visible for samples GD-T1-01 to GD-T1-05. However, as mentioned in
previous sections, high resolution models tend to under segment large plagioclase crystals which could be an
explanation for this inconsistency. Opaque minerals do not show a clear spatial trend, likely due to their small
size, limiting visibility on the figure. Amphiboles, which are generally segmented with higher accuracy, do show
a consistent trend of increasing area towards the center of the dyke. Literature on mafic dykes find a similar
trend, expecting larger crystals in the center of the dyke than in the margin [2, 19]. The size difference could be
explained by the larger temperature differential at the margin, leading to more rapid cooling than at the center [15,
19]. Alternatively research on the rheology of high viscosity magmas indicate shear thinning or shear thickening
could be the cause of crystal size reduction or brecciation at the conduit margin [21, 22]. The observed crystal size
reduction at the Sosa Dyke aligns with current geologic understanding, supporting arivis Cloud’s applicability to
geologic research.

Figure 4.17 shows that opaque minerals are more uniformly distributed at a lower eccentricity whereas amphiboles
and plagioclase display higher eccentricities. In a thin section, mineral grains are randomly cut. Elongate crystals
are likely to display a more eccentric cross section than less elongate minerals. This observation aligns with
mineralogical knowledge as amphiboles and plagioclase have a more elongate shape compared to the opaque
minerals which are more isometric in shape [17]. Since the elongate minerals appear more eccentric in a thin
section, their measured orientation is more indicative of orientation than that of more spherical crystals. Among
these amphiboles are segmented more accurately and consistently, and therefore likely a more reliable indication of
orientation than plagioclase. That said, there is no clear orientation trend visible across the dyke as the orientation
of the thin sections was not recorded during sampling. As a result, the orientation of the crystals is in reference
to the thin section rather than the dyke. However, if the thin sections had been oriented, the crystal orientations
could potentially be used to determine the magma flow history within the dyke [2, 26].

Some samples contained plagioclase crystals with weathered areas. These areas are consequently filled with
epoxy during preparation of the thin sections. In BL images, these crystals no longer display the internal features
characteristic of plagioclase. Under CPL, the epoxy-filled areas are under complete extinction. Since opaque
minerals are also under complete extinction, the model likely falsely classifies epoxy filled plagioclase as opaque
minerals.

The samples used in this project were trachyte/trachydacite in composition [23]. Due to the nature of these rocks,
small amount of quartz can be expected [4]. However, distinguishing between small plagioclase crystals and quartz
was difficult in low resolution images. Since no separate class for quartz was created, some of the plagioclase is
falsely classified.

ZEISS software such as ZEN and ZEN core is typically required to segment the output data following the standard
ZEISS arivis Cloud procedure as seen in Figure 3.2 [11]. In this project I did not have access to these software and
instead developed a Python script to create the final segmented image and analyze the data. This code is included
in the digital appendix.

While arivis Cloud is a powerful tool, it presents several limitations in usability and application. Many models
were created to investigate the effects of number of annotations, resolution, image type and combining BL and CPL
images. Due to the constraint of computation time and the project deadline, a limited number of iterations were
made for each model. More iterations could yield different results [8]. There was also the issue of reproducibility
of the annotations. Each new model required re-annotating from scratch. In this project, the scanned portions
of a sample under BL and CPL images are exactly the same. Creating an annotation layer for one sample and
applying to all versions of the image would be incredibly useful. This would reduce the time spent annotating and
improve the reliability of the results of this project as there would be no variation in annotations across models.
This would also improve the accuracy of certain annotations, as some crystals are easier to differentiate under BL
and some under CPL. Finally, the arivis Cloud software displays an automatically generated scale bar in the image.
However, for all images used in this project the scale bar was overestimated by several orders of magnitude. The
source of this error could possibly lie within the image metadata, the platform itself, or elsewhere. Arivis Cloud
uses this scale bar to convert pixels to gm in the measurement.csv output file leading to incorrect measurements.
This error is adjusted for within the Python code.
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Conclusion

The aim of this project was to determine to what extent object-based segmentation using ZEISS arivis Cloud can
be used to segment similar mineral phases with different textural parameters in petrographic thin sections. This
was done by creating models within arivis Cloud to investigate the effects of annotation, image resolution and
image type (BL or CPL) on the resulting segmentation. The thin sections used in this study were taken from the
Sosa Dyke in Argentina by the authors of Schmiedel et al. (2021).

The following conclusions could be made:

1. ZEISS arivis Cloud can be used to segment petrographic thin sections using object-based Al models.

2. Models trained on BL images predict percentage of total area segmented closer to crystal content values
of Schmiedel et al. (2021) than models trained on CPL images. CPL models often misclassify areas of
complete extinction in plagioclase crystals as opaque minerals.

3. Models trained with more annotations across diverse samples segment a larger percentage of total sample
area, suggesting that increased annotations improve accuracy.

4. Models trained on high resolution images were less consistent in predicting large (plagioclase) crystals than
models trained on low resolutions. This could be due to annotation bias towards smaller crystals or because
arivis Cloud may not perform optimally when objects are larger than 320%320 pixels [11]. However, higher
resolutions were more accurate at distinguishing between opaque minerals and amphiboles on BL images.

5. Combining annotations on images of samples under BL and CPL into one model may improve segmentation
of BL images. However, this approach contradicts recommendations from the arivis Cloud documentation
and requires further study.

6. ZEISS arivis Cloud’s Object-based segmentation can significantly reduce time compared to other manual
and intensity based segmentation methods. For the ten samples in this project, manual methods took at least
twice as long. The time savings increase with larger datasets of similar thin sections. In addition, ZEISS
arivis Cloud produces data (eg. major axis length, orientation, area, eccentricity etc.) which can be used
for geologic interpretation.

This study demonstrates that ZEISS arivis Cloud can effectively segment petrographic thin sections. While chal-
lenges such as annotation bias and inconsistent segmentation of large crystals remain, the platform has the poten-
tial to significantly reduce the time required for petrographic analysis compared to manual and intensity-based
segmentation methods. With further optimization, the platform could become an important tool used to analyze
thin sections, which were previously deemed too time consuming, potentially unlocking new geologic insights.
Future research should focus on annotation strategies, improving model accuracy and investigate the applicability
across different rock types.
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Bright25-bestv2 Segmentations
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Figure B.1: Output data for sample GD-T1-01 under BL segmented with model Bright25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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Figure B.2: Output data for sample GD-T1-02 under BL segmented with model Bright25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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Figure B.3: Output data for sample GD-T1-03 under BL segmented with model Bright25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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Figure B.4: Output data for sample GD-T1-04 under BL segmented with model Bright25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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Figure B.5: Output data for sample GD-T1-05 under BL segmented with model Bright25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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Figure B.6: Output data for sample GD-T1-06 under BL segmented with model Bright25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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Figure B.7: Output data for sample GD-T1-07 under BL segmented with model Bright25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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Figure B.8: Output data for sample GD-T1-08 under BL segmented with model Bright25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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Figure B.9: Output data for sample GD-T1-09a under BL segmented with model Bright25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.



36

CSD of Bright25-bestv2 on GD-T1-09b_Bright

100 4 —— Amphibole
—— Opaque
—— Plagioclase

_ 80
&
2z
% 60
a
2
a
o
2
T 40
i
£
E
]

20 A

0+ T T T T T

0 500 1000 1500 2000 2500

6485.58 microns

Major axis length (um)

Bright25-bestv2 on sample GD-T1-09b_Bright

(Bright25-bestv2 GD-T1-09b_Bright_major_axis.png]
7 —

7 b

Amphibole
B Opaque
[ Plagioclase

Figure B.10: Output data for sample GD-T1-09b under BL segmented with model Bright25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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Figure C.1: Output data for sample GD-T1-01 under CPL segmented with model CPL25-bestv2. Dark goldenrod, blue, and red are

amphiboles, opaque minerals, and plagioclase respectively.
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Figure C.2: Output data for sample GD-T1-02 under CPL segmented with model CPL25-bestv2. Dark goldenrod, blue, and red are

amphiboles, opaque minerals, and plagioclase respectively.
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amphiboles, opaque minerals, and plagioclase respectively.
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Figure C.4: Output data for sample GD-T1-04 under CPL segmented with model CPL25-bestv2. Dark goldenrod, blue, and red are

amphiboles, opaque minerals, and plagioclase respectively.
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Figure C.5: Output data for sample GD-T1-05 under CPL segmented with model CPL25-bestv2. Dark goldenrod, blue, and red are

amphiboles, opaque minerals, and plagioclase respectively.
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Figure C.6: Output data for sample GD-T1-06 under CPL segmented with model CPL25-bestv2. Dark goldenrod, blue, and red are

amphiboles, opaque minerals, and plagioclase respectively.
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Figure C.7: Output data for sample GD-T1-07 under CPL segmented with model CPL25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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Figure C.8: Output data for sample GD-T1-08 under CPL segmented with model CPL25-bestv2. Dark goldenrod, blue, and red are

amphiboles, opaque minerals, and plagioclase respectively.
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Figure C.9: Output data for sample GD-T1-09a under CPL segmented with model CPL25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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Figure C.10: Output data for sample GD-T1-09b under CPL segmented with model CPL25-bestv2. Dark goldenrod, blue, and red are
amphiboles, opaque minerals, and plagioclase respectively.
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