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Entanglement improves coordination in distributed
systems

Francisco Ferreira da Silva
Delft Networks and QuTech, Delft University of
Technology
Delft, The Netherlands
francisco@delftnetworks.com

ABSTRACT

Coordination in distributed systems is often hampered by
communication latency, which degrades performance. Quan-
tum entanglement enables correlations stronger than clas-
sically possible without communication. Such correlations
manifest instantaneously upon measurement, irrespective of
the physical distance separating the systems. We investigate
the application of shared entanglement to a dual-objective
optimization problem in a distributed system comprising two
servers. The servers process both a continuously available,
preemptible baseline task and incoming paired customer re-
quests, to maximize the baseline task throughput subject to
a Quality of Service (QoS) constraint on average customer
waiting time. We present a rigorous analytical model demon-
strating that an entanglement-assisted routing strategy al-
lows the system to achieve higher baseline throughput com-
pared to communication-free classical strategies, provided
the baseline task’s output exhibits sufficiently increasing
returns with processing time. This advantage stems from
entanglement enabling better coordination, which allows the
system to satisfy the customer QoS constraint with a lower
overall probability of splitting customer requests, leading
to more favorable conditions for baseline task processing
and thus higher throughput. We further show that the mag-
nitude of this throughput gain is particularly pronounced
for tasks exhibiting increasing returns, where output grows
super-linearly with processing time. Our results identify op-
timization of scheduling in distributed systems as a novel
application domain for near-term quantum networks.
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1 INTRODUCTION

Coordination enables efficient operation in distributed sys-
tems. An important application lies in scheduling, where in-
coming requests must be assigned across multiple servers [4].
Optimal load balancing often relies on global state informa-
tion, such as current server loads. However, acquiring this
information via classical communication introduces latency.
In latency-sensitive scenarios, this delay can render state
information obsolete, leading to suboptimal decisions based
on outdated data and consequently degrading overall system
performance [11, 19]. For instance, routing incoming user
requests without real-time knowledge of server availability
can cause load imbalance and increase user wait times.

Entanglement offers a fundamentally a new approach to
coordination. It provides a mechanism for establishing corre-
lations between spatially separate systems that are stronger
than any achievable classically without communication [2, 3].
This mechanism can be implemented as follows. Initially, the
coordinating parties share an entangled quantum state. At a
later time, upon receiving local information relevant to their
coordination task, each party performs a measurement on
their component of the entangled state, which can be condi-
tioned on the local information they received. The outcomes
of these local measurements will exhibit strong non-local
correlations and can be used to guide the parties’ decisions,
thus enabling coordination without communication.
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In this work, we investigate the application of
entanglement-assisted coordination to a dual-objective
optimization problem, motivated by the scheduling chal-
lenges mentioned above. We consider a distributed system
with two servers that must process both a continuously
available, preemptible baseline task as well as customer
requests. The goal is to maximize the throughput derived
from the baseline task, subject to a Quality of Service (QoS)
constraint on the average waiting time experienced by the
customer requests. The challenge lies in coordinating the
assignment of incoming requests to the servers based only
on local information, namely the processing time required
by the local request, without communication.

We develop an analytical model of this system and show
that leveraging shared entanglement enables coordination
strategies that outperform communication-free classical
strategies. Specifically, when the baseline task’s through-
put increases sufficiently with processing time, entangle-
ment allows the system to satisfy the QoS constraint while
achieving higher baseline throughput. The only quantum
resources required are the generation and local measure-
ment of bipartite entanglement between the coordinating
nodes. Heralded entanglement generation between physi-
cally separated systems has been demonstrated in multiple
qubit platforms [6, 12, 14], including over deployed fiber [15].
This makes entanglement-assisted coordination an attractive
near-term application of quantum networks.

2 RELATED WORK

The underlying principle behind leveraging entanglement
for distributed coordination can be traced back to Bell’s the-
orem. Bell demonstrated that quantum mechanics predicts
correlations between spatially separated systems that are
fundamentally stronger than those permitted by any classical
theory based on local realism [2, 10]. This phenomenon can
also be studied through the framework of non-local games,
where non-communicating players cooperate to win a game
against a referee. For some such games, quantum strategies
allow players to achieve higher success probabilities than is
classically possible without communication [3, 5].

Building on this framework, the possibility of translating
the quantum advantage observed in abstract non-local games
into practical benefits has been explored. The idea is to map
communication or coordination problems onto the structure
of a non-local game where quantum strategies are known to
outperform classical ones. Notable examples of domains for
which this mapping has been attempted include market mak-
ing in high-frequency trading [7], load balancing in ad-hoc
networks [9], and rendezvous tasks [13, 17, 18]. Our work
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introduces a novel application domain for entanglement-
assisted coordination: optimization of scheduling in dis-
tributed systems. Further, we provide a rigorous analytical
quantification of the quantum advantage in this setting.
From a different perspective, the problem studied in this
work falls within the broad classical domains of load balanc-
ing, scheduling theory, and queueing theory. These fields all
have extensive literature on resource allocation, task sched-
uling, and throughput optimization in distributed computing
and networked systems across a wide range of assumptions
and conditions. Foundational concepts can be found in refer-
ences [4, 8, 19]. Our work differs from classical approaches
by introducing entanglement as a coordination mechanism.

3 SYSTEM DESCRIPTION

We now introduce the distributed system we consider, de-
picted in Figure 1. It consists of two servers, represented by
squares, which process work at the same rate. Each server
has a queue of unlimited capacity to hold incoming requests.
The system is designed to handle two distinct types of work.

Queue Baseline Task
Entangled Servers
routers
. T
Arriving customers
. T
Assign
worl
Queue

Figure 1: Distributed system studied in this work. Two
servers, depicted by squares, handle two distinct types
of work. On the right, a baseline task that is pre-
emptible and always available. On the left, customer
requests that arrive at the system via the routers, de-
picted as circles. The servers have queues of unlimited
size for customers. The routers share entanglement
with each other, which they use to better coordinate
their routing decisions. Entanglement is depicted by
wavy lines connecting the two routers.

First, there is a baseline task that is always present and
available for processing by either server. We assume this
baseline task is preemptible, meaning a server working on it
will immediately switch to a customer request upon assign-
ment. This assumption simplifies the model by focusing the
decision-making logic entirely on the routing parties.

The second type of work consists of customer requests
that arrive dynamically. We assume these requests arrive
simultaneously in pairs, with one customer arriving at each
of two routers (depicted as circles in Figure 1) at the same
instant. This assumption was made for analytical simplicity,
but we believe lifting it and timeslotting routing decisions
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would preserve the quantum advantage we will later observe.
The customer arrival process follows a Poisson distribution
with rate parameter A. The service time required by each
individual customer i is a random variable X; drawn indepen-
dently from an exponential distribution with parameter p.
This corresponds to an M/M/2 queueing system with paired
arrivals. Each router observes the service time X; required
by its local customer upon arrival.

Upon the simultaneous arrival of a customer pair, the
routers must assign their respective customers to one of the
two servers. A key constraint of our model is that the routers
cannot communicate classically in real-time to coordinate
this assignment. We motivate this by considering scenar-
ios where the physical distance between routers introduces
communication latencies that are significant compared to
the decision timescale and the queue dynamics, rendering
decisions based on exchanged state information ineffective.
Therefore, each router must make its assignment decision
based solely on locally available information (i.e., its own
customer’s service time X;) and any pre-shared resources or
pre-established strategy.

The optimal assignment strategy depends on the combined
workload. Assigning requests with a large total service time
(X1 + X3) to the same server leads to long waiting times.
Conversely, splitting requests with a small total service time
interrupts baseline task processing on both servers. There-
fore, effective coordination involves conditionally splitting
or bunching requests based on the non-local information
X; + X,. This is discussed in more detail in Section 4.

The servers operate according to the following logic. If a
customer is assigned to a server that is currently processing
the baseline task, the task is preempted. The server then
begins servicing the newly arrived customer. If a customer
is assigned to a server already busy servicing a previous cus-
tomer, the new customer joins that server’s queue. Servers
are never idle. When a server completes service for all cus-
tomers in its queue and finds its queue empty, it resumes
processing the baseline task until the next customer is as-
signed to it.

We quantify the Quality of Service (QoS) provided to cus-
tomers by the average time they spend waiting in queue
before service begins, denoted as W,. We impose a strict QoS
requirement by demanding that this average waiting time
must not exceed a predefined limit W;:

W, < W 1)

The system’s performance on the baseline task is quantified
by its long-term average rate of output per server, denoted
as E[Tg]. We define an output function T(¢) that maps an
uninterrupted processing time interval ¢ during which a
server works on the baseline task to the total output achieved
in that interval. For a quantum advantage to manifest, T'(¢)
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must exhibit sufficiently increasing returns, meaning output
should grow, for example, super-linearly with processing
time. This will be explained in detail in Section 4.
Combining these elements, the optimization goal for the
system is to find a routing strategy, i.e., a rule for how routers
assign customers based on their local information, that maxi-
mizes the long-term average baseline throughput rate E[Tg]
while adhering to the customer waiting time constraint:

maximize E[Tg] subject to W, < W.

)

The central question investigated in this work is how dif-
ferent types of coordination strategies, constrained by the
impossibility of real-time communication, affect the achiev-
able performance in this optimization problem. In particular,
we investigate whether a coordination strategy making use
of quantum resources in the form of bipartite entanglement
shared by the two routers outperforms strategies that do not
make use of quantum resources. In the next section we will
answer this question in the affirmative.

4 MAIN RESULT

We now present the main result of this work. Entanglement
can enable a higher long-term average baseline throughput
rate, E[Tg], compared to classical strategies without commu-
nication, while respecting the same QoS constraint W; < W,
on average customer waiting time. This advantage arises pro-
vided the baseline output function T(¢), which maps an unin-
terrupted processing interval ¢ to the total output achieved,
satisfies 2E[T(L)] < (1/E[L])E[LT(L)], with L being an
exponentially distributed random variable representing the
length of a server idle period (with rate parameter deter-
mined by customer arrivals). As an example, this condition
is met if T(t) grows super-linearly with ¢ (e.g., T(t) = kt¢
with ¢ > 1). A formal derivation will be given in the full
version of the paper.

The quantum advantage stems from the ability of
entanglement-assisted strategies to better approximate an op-
timal routing strategy, which is unattainable without commu-
nication. Specifically, by mapping the routers’ coordinated
decision problem onto a non-local game with a quantum
advantage, we achieve a closer approximation to the optimal
routing strategy than is classically possible.

4.1 The Optimal Threshold Strategy

The threshold strategy is defined by a threshold time ¢*. Upon
arrival of a customer pair with service times (X1, X3), if their
sum X;+X; > t*, the pair is split; otherwise (X;+X; < t¥),itis
bunched. The value of t* is chosen to meet the QoS constraint.
This strategy is optimal for the optimization problem we
defined.

THEOREM 4.1 (OPTIMALITY OF THE THRESHOLD STRATEGY).
For a system with Poisson customer pair arrivals (rate 1) and
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independent, exponentially distributed individual customer
service times X; (mean 1/p), if the overall server utilization
p = A/u < 1, the routing strategy that maximizes the long-
term average baseline throughput rate E[Tg] subject to Wy <
W, is the threshold strategy.

A detailed proof will be presented in a full version of this
paper; here we provide the core intuition.

The long-term average baseline throughput rate can be
expressed as E[Tg] = (1 — p) - g(psplit), Where p is the
(constant) server utilization and g(pspli) is a function of
Psplit reflecting the output generated during idle periods.
If the baseline output function T(t) satisfies the condition
2E[T(L)] < (1/E[L])E[LT(L)] (where L is the length of an
idle period, whose distribution itself depends on pg;; via
the effective arrival rate Aerr = A(1 + peplit) /2), then E[T3]
is a strictly decreasing function of pg,l;;. Under this condi-
tion on T(t), maximizing E[T3] is equivalent to minimizing
Psplit- The optimization problem is then finding the strat-
egy achieving the minimum possible pgpl;; while satisfying
Wy < W

The threshold strategy achieves this minimum pgpy;. This
is because for any given pgpit the threshold strategy with
t* appropriately chosen to yield that pgp;x minimizes the
customer waiting time Wj. To see this, consider that any
routing strategy will exhibit an overall long-run probability,
Psplit» that an incoming customer pair is split between the two
servers (conversely, 1 — pqplit is the probability it is bunched
onto a single server). Any strategy with the same overall pg;;
which is not the threshold strategy must bunch some pairs
with X + X; > t*, and split some with X; + X, < t*. As the
average waiting time is proportional to the second moment of
the service time distribution, this results in a higher waiting
time for the same pgp1;r. Alternatively, it results in the same
waiting time for a higher pgp;t, and hence lower throughput.

Perfect implementation of this strategy requires non-local
knowledge of X; + X, making it unattainable without real-
time communication. Communication-free strategies must
approximate it using only local information (X; or X3) and
possibly pre-shared resources.

4.2 Mapping the Coordination Task to a
Non-Local Game

We now go into more detail regarding how to map the co-
ordination task described in Section 3 to a non-local game,
with the routers acting as the players, A and B.

The inputs to the game are derived from the routers’ ob-
served service times Xj, Xz, which are independent random
variables drawn from an exponential distribution with rate
parameter p. We transform these unbounded inputs into
variables a, b uniformly distributed in the interval [0, 1) us-
ing the probability integral transform via the exponential
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cumulative distribution function (CDF), F(x) = 1 — e™#*.
Specifically, we set a = F(X;) and b = F(X3). The inverse
transformation is X; = —i In(1 - F(X;)).

The outputs of the game, 04,05 € {+1, -1}, correspond
to the routing decision. We map the decision to bunch cus-
tomers to the output condition 04 - 0 = +1, and the decision
to split customers to o4 - 0g = —1.

The winning condition of the game reflects the optimal
threshold strategy for the original routing problem. Players
win if their output decision matches the ideal decision based
on the total service time X; + X, relative to a threshold t. The
condition to bunch, X; + X, < t, transforms under the CDF
mapping as follows:

—iln(l—a)—iln(l—b) <t = (1-a)(1-b) > M. (3)

Similarly, the condition to split, X; + X, > t, transforms to
(1-a)(1-b) <e™H.

Therefore, the coordination task is equivalent to a non-
local game where players receive inputs a, b ~ U(0, 1) and
win if their outputs 04, op satisfy:

+1
0p - OB = 1

where C; = e # is a constant determined by the threshold ¢
and rate parameter p. The objective is to find strategies 04 (a)
and op(b) that maximize the probability Py, of satisfying
this condition, averaged over the uniform input distributions.
Note that Py, is both the probability of winning the non-
local game and the probability of correctly implementing the
ideal threshold strategy.

This game shares structural similarities with previously
studied continuous-input non-local games, in particular the
first of three games introduced in [1], namely the use of
independent uniform inputs a, b € [0, 1) and binary outputs
04,0p € {+1, —1} aiming for correlation without communica-
tion. However, the boundary defining the winning condition
is different. While the game in [1] features a linear bound-
ary (a + b = 1), our game derived from the routing problem
features the hyperbolic boundary (1 — a)(1 — b) = C;. Due
to this difference, the known optimal classical (Pyin = 0.75)
and quantum (Pyi, ~ 0.818) winning probabilities for the
game in [1] do not directly apply to our scenario. Nonethe-
less, the proven existence of a quantum advantage in that
game motivates exploring quantum strategies for the game
derived here. In the subsequent sections, we will investi-
gate the maximum achievable Py;, for both classical and
entanglement-assisted quantum strategies for the game we
have defined using numerical optimization techniques.

if (1-a)(1-b) > C,

if(1-a)(1-b) <C,° @)
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4.3 Classical Strategy

Determining the optimal classical strategy that maximizes
the winning probability P“;}ﬁf“cal for the non-local game de-
fined in (4) is analytically challenging, with the difficulty
arising from the hyperbolic boundary (1 —a)(1 -b) = C;
defining the winning condition.

Necessary conditions for optimality in non-local games of-
ten lead to systems of differential equations [16]. For example,
a non-local game with a linear boundary [1] yields a simple
system of differential equations whose solutions can be fully
characterized, thus allowing for rigorous proofs of the opti-
mal classical and quantum strategies [16]. However, applying
the same methods to our non-local game results in a much
more complex system of coupled differential-functional equa-
tions that we have not been able to solve analytically. This
prevents a proof of the optimal classical strategy and its
corresponding maximum winning probability.

We hence turn to numerical optimization. We start by
noting that deterministic strategies are known to be optimal
for non-local games among the set of non-communicating
classical strategies [3], and we can thus restrict our optimiza-
tion to such strategies. We discretize the continuous input
intervals [0, 1) for a and b into N bins (we used N = 1000).
Classical deterministic strategies are then represented by
vectors G, H € {+1, -1}V, corresponding to piecewise con-
stant functions ¢g(a) and h(b). The objective is to find the
vectors G, H that maximize the expected agreement between
the players’ output product o405 = g(a)h(b) and the ideal
outcome specified by the game rule, averaged over the uni-
form input distribution. The maximum winning probability
is then given by valfrfSical = (1+ maxgy E[o40p - Rule])/2.

We employ simulated annealing to search the large (22VV)
space of possible deterministic strategy vectors (G, H). This
optimization is performed for various values of the threshold
constant C;, so as to find the value of C; for which the maxi-
mum nglf‘rfSical is minimized. We expect that this represents
the hardest’ case for classical strategies and thus offers the
largest potential margin for quantum advantage. We find
that the minimum occurs at C; ~ 0.33, yielding:

pelassical (0, ~ 0.33) ~ 0.7616.

win (5)

We use this value as the classical benchmark, although we
acknowledge that we have no formal proof of its optimality.

4.4 Quantum Strategy

To potentially outperform the classical benchmark found in
Section 4.3, the routers can leverage pre-shared quantum
entanglement. We assume the two routers share the state
|~ = (J01) — |10))/V2. Upon observing their local service
times X3, X, each router performs a local projective measure-
ment on their qubit. Crucially, the choice of measurement
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basis for router i depends on their local input X;. This is
implemented by mapping the input X; to a measurement
angle 6;, using the transformed variable F(X;) = 1 — e #X:
obtained via the probability integral transform, discussed in
Section 4.2. This angle 0; defines the local measurement basis
in the XY-plane of the Bloch sphere, relative to the compu-
tational basis. One pair of entangled qubits is consumed per
routing decision.

We employ numerical optimization to find the angle func-
tions 04(F(X;)) and 6p(F(X;)) maximizing the quantum
winning probability P&xnmm. The winning probability is cal-
culated by integrating probability of obtaining the desired
outcome (same or different, according to the game rule) mul-
tiplied by the joint probability density function p?e=#(Xi+X2)
over X1, X, € [0, ).

We explored two parameterizations: We parametrized
A = 04(F(X1)) — 05(F(X3)) as depending linearly on the
inputs F(X3), F(X;),1.e, A = dy+d,F(X1)+dyF(X;). The op-
timization yielded dy = 3.709, d;  —2.760, and d; ~ —2.759,
resulting in a maximum quantum winning probability of:

(6)

We tried also allowing for a quadratic term, which slightly
pRaMtm (0~ 0.33) ~ 0.8147. This mi-

win, quad
nor increase suggests that the optimal strategy is well-

approximated by the linear relative angle model.

4.5

quantum
win, linear

(C; ~ 0.33) ~ 0.8140.

improved this to

Quantum Advantage

S, > pelassical yranslates to im-
proved performance on the optimization problem. As per
Section 4.1 any deviation from the ideal threshold strategy
leads to an increase in the average waiting time W,. There-
fore, to satisfy a given QoS constraint W, < W}, a strategy
that deviates more from the ideal threshold decisions must
operate at a higher overall splitting probability psp;; to com-
pensate.

Let pideal be the splitting probability corresponding to the
threshold strategy that exactly meets the constraint W, = W}.
A non-communicating classical strategy, being less accurate
in approximating the threshold strategy, will effectively de-
viate more often. Let p. and p, be the splitting probabilities
required for the classical and quantum strategies to satisfy
the constraint W, < W;. As both quantum and classical devi-
ate from the ideal strategy, with quantum deviating less, it
holds that pigeq; < pg < pe.

If the baseline output function T(t) satisfies the condition
2E[T(L)] < (1/E[L])E[LT(L)], the long-term average base-
line throughput rate E[T3] is a strictly decreasing function
of pgpli. Combining these arguments leads to our main re-
sult: because the quantum strategy achieves p, < p. while
meeting the same QoS, it yields a higher baseline throughput

t
We now argue why P12
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rate:

E [TB] quantum > E [TB] classical - (7)

4.6 Example: Polynomial Throughput
Functions

As an example, we now quantify the quantum advantage
for baseline tasks where the total output function T(#) is a
monomial: T(t) = ctk for t > 0, where ¢ > 0 is a scaling
constant and k > 0 is the degree. We set ¢ = 1 without loss
of generality for analyzing relative performance.

The long-term average baseline throughput rate is E[ T ] =
(1 = peonst) * g(Psplit), Where peonst = AE[X;] is constant and
g(Psplit) = Aeﬁ(Psplit)EL~Exp()Leff(pspm)) [T(L)]. For T(t) = tk>
this simplifies to E[T5] = (1 - pcomt)m, where
Aeff(Psplit) = /1(1 + psplit)/2~

For E[Tp] to be strictly decreasing with pg,j;; the expo-
nent k — 1 must be positive, implying k > 1. This condition
signifies strictly increasing returns: longer uninterrupted
processing periods become disproportionately more valu-
able. If k = 1 (linear returns, T(t) = t), E[Tp] is independent
of peplit, yielding no throughput advantage from a lower pgpi;.
We focus on the k > 1 case.

The ratio Ry of baseline throughput rates achieved by a
quantum strategy (with splitting probability p,) and a clas-
sical strategy (with p.), where pg < p. for the same QoS, is

given by:
k-1
1
Ry = ( +Pc) .
1+ pgq

®)

The derivation will be given in the long version of this paper.
Since p. > pq for the same QoS requirement, and assuming
k > 1, we have Ry > 1. The magnitude of this advantage, Ry,
grows with as a power of the degree k — 1. This demonstrates
that even modest gains in raw coordination accuracy can
translate into substantial performance benefits for baseline
tasks exhibiting strong increasing returns.

5 CONCLUSION

We have shown that shared entanglement can significantly
improve coordination in distributed scheduling problems,
leading to higher system throughput compared to classical
strategies without real-time communication. This advantage
is most pronounced for tasks with increasing returns, where
even modest gains in coordination accuracy, achieved by
mapping the routing problem onto a non-local game with a
quantum advantage, translate into substantial performance
benefits. Our results highlight distributed scheduling as a
promising, practical application domain for near-term quan-
tum networks, given that the required resources amount to
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the generation and local measurement of bipartite entan-
glement, a capability that has been experimentally demon-
strated with multiple physical systems [6, 12, 14], including
over deployed fiber [15].

The assumption of simultaneous arrival of customer pairs
is somewhat unnatural. While this assumption made analysis
simpler, we believe it could be lifted by timeslotting routing
decisions without losing the underlying quantum advantage.
Furthermore, while our numerical evidence for quantum
advantage is strong for the non-local game derived from
exponential service times we introduced (for which rigorous
bounds are still open), the core benefit stems from apply-
ing non-local quantum correlations to a coordination task
constrained by locality. This fundamental principle suggests
that a quantum advantage should persist for other service
time distributions, even though they would map to different
non-local games with potentially different optimal strategies
and advantage magnitudes.

While the simple system we studied in this work is of
independent interest, an obvious next step is to identify spe-
cific scenarios within practical domains that map effectively
onto the core principles of the model studied here. These
would then constitute practical use cases for entanglement-
based quantum networks. Promising candidates for further
exploration include content-delivery networks and medium-
access control in wireless networking.

The identification of this novel application domain gives
rise to multiple promising avenues for further research.
These include investigating connections to, and potential
enhancements for, established load balancing and schedul-
ing algorithms from the classical literature by incorporating
entanglement resources; exploring the applicability of other
non-local games or quantum correlation protocols to differ-
ent coordination problems; and extending the analysis to
scenarios involving more than two coordinating nodes, po-
tentially leveraging multipartite entanglement or networks
of bipartite links.

This work does not raise any ethical issues.
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