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Interferometric redatuming by deconvolution and correlation-based
focusing

Diego F. Barrera1, Joerg Schleicher2, and Joeri Brackenhoff3

ABSTRACT

Seismic interferometry is a method used to calculate wave-
fields for sources and receivers that are located where only
sources or only receivers are available. There are correlation-
or deconvolution-based interferometric methods that can be
used to reposition the seismic array from the earth’s surface
to an arbitrary datum at depth. Based on the one-way reci-
procity theorems of convolution and correlation type, we have
determined that interferometric redatuming can be achieved in
a deconvolution-only procedure in three steps. The first two
steps consist of separately retrieving, for sources at the earth’s
surface, the downward- and upward-propagating Green’s
functions at receivers at the datum, which are then used in
the third step to reposition the sources to the datum. For the
involved deconvolutions, transmitted and backscattered
wavefields need to be modeled with a velocity model between
the acquisition and datum levels. Our numerical experiments
demonstrate that the method can help to reduce nonphysical
events and other artifacts that commonly arise in purely cor-
relation-based procedures. If a high-quality overburden-
velocity model is available, it correctly accounts for inhomo-
geneities in the overburden medium. Because the method’s
sensitivity to the velocity model is mainly introduced by back-
scattering at overburden heterogeneities, a smooth model is
sufficient when overburden scattering is weak.

INTRODUCTION

Seismic interferometry is a technique that allows for the retrieval of
the Green’s functions for sources at positions at which only receivers
are available (or vice versa). The classic redatuming procedure cor-

relates surface seismic data with those acquired at depth. These so-
called correlation-based methods have been well-studied in the liter-
ature (see, e.g., Wapenaar et al., 2008, 2010b; Curtis, 2009; Schuster,
2009; Curtis and Halliday, 2010; van der Neut, 2012). However, they
can suffer from crosstalk between unrelated events leading to the gen-
eration of nonphysical events if the medium between the earth’s sur-
face and the datum is heterogeneous (Barrera et al., 2017).
According to Wapenaar et al. (2011), seismic interferometry by

deconvolution can be an advantageous alternative to the classic cor-
relation-based procedure because the former techniques tend to suf-
fer less from crosstalk, in this way generating fewer acausal and
other nonphysical events than the latter. The cited authors demon-
strate that multidimensional deconvolution of the separated up- and
downgoing wavefields for sources at the surface and receivers at
depth can be used to recover the complete reflected wavefield at
the datum with significantly fewer artifacts.
However, before the work of van der Neut et al. (2015a), the re-

quired wavefield constituents would be available only if actual
physical receivers had been placed at depth. Still, Wapenaar et al.
(2011) point out that there are many situations in which the decon-
volutional form is more convenient than the correlation-based
methods. One of the main advantages of the deconvolution-based
procedure is its inherent compensation for the properties of the
source wavelet. Another important advantage is that deconvolu-
tion-based techniques can treat internal multiples and are generally
more easily extendable to lossy media (Slob and Wapenaar, 2007).
The complete deconvolutional redatuming procedure becomes

feasible when van der Neut et al. (2015a) demonstrate that the re-
quired wavefield constituents for the deconvolutional procedure of
Wapenaar et al. (2011) can be recovered by inverting two expres-
sions based on the one-way reciprocity theorems with iterative
Marchenko procedures.
In this work, we propose a different procedure to recover those

constituents. Based on the interferometric expressions of van der
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Neut et al. (2015a), we combine deconvolution-based interferom-
etry with inverse wavefield extrapolation to derive an alternative
procedure for retrieving the total wavefield at the datum. Inverse
wavefield extrapolation is a concept used to describe the process
of retrieving the Green’s functions at an arbitrary datum by means
of backpropagation of the wavefield recorded at the earth’s surface
(van der Neut et al., 2015b; van der Neut and Wapenaar, 2016). Our
proposed procedure consists of a deconvolution process that is car-
ried out as a convolution with the adjoint (modeled) wavefield, fol-
lowed by a convolution with the inverse point-spread function (PSF),
i.e., the autocorrelation of the modeled wavefield. We apply this de-
convolution process to the equations of van der Neut et al. (2015a) to
determine the downward- and upward propagating Green’s functions
at the datum for a point source at the earth’s surface. These down- and
upgoing Green’s functions are then used in a third deconvolution step
to retrieve the primary-reflected wavefield at the datum.
Using this new approach, we set up a fully deconvolutional

procedure that reduces the influence of the overburden, which can
manifest itself in the redatumed data in the form of multiples, spu-
rious events of the Green’s functions, and anticausal events. The
information required for the proposed technique is a velocity model
of the overburden medium. This model is used to simulate the (ver-
tical derivative of the) transmitted wavefield from the surface source
to the datum as well as the overburden-scattered wavefield at the
surface and its vertical derivative. If sufficient detail in the overbur-
den model is available, the proposed procedure will correctly treat
the effects of overburden inhomogeneities.

THEORY

In this section, we derive the theory of the proposed deconvolu-
tion-based interferometric redatuming procedure. For this purpose,
we revisit the derivation of the reciprocity theorems using the Helm-
holtz equation with velocity and density variation. These derivations
are fundamental to understand the wavefield expressions in different
cases. The basic form, using a closed surface, is the ideal case for the
reciprocity theorems, but special conditions make it possible to con-
sider less ideal situations. In particular, we focus on the one-way reci-
procity theorems of the correlation and convolution type. These
theorems represent the platform upon which we derive the relation-
ships allowing for up- and downward inverse wavefield propagation.

Basic equations

In this work, the Fourier-transform pair relating a time-dependent
function dðtÞ to its frequency spectrum d̂ðωÞ is defined as

d̂ðωÞ ¼
Z

∞

−∞
dðtÞ expðiωtÞdt; (1)

dðtÞ ¼ 1

2π

Z
∞

−∞
d̂ðωÞ expð−iωtÞdω; (2)

where i is the imaginary unit and ω denotes the angular frequency.
The integration domain in equation 1 can be decomposed in two time
intervals, ð−∞; 0� and ½0;∞Þ. According to Bleistein et al. (2001),
the time dependence of some wavefield associated with a source
starts at t ¼ 0. Then, the second interval above corresponds to the
causal part of function dðtÞ, whereas the first interval corresponds

to its anticausal part, i.e., the wavefield described at some time in
the past and imploding toward a source at time zero.
Temporal Fourier transformation of the acoustic wave equation

with variable density leads to the corresponding Helmholtz equa-
tion, which can be written as (Bleistein et al., 2001)

ρðxÞ∇ ·

�
1

ρðxÞ∇p̂ðx;ωÞ
�
þ ω2

c2ðxÞp̂ðx;ωÞ¼−F̂ðx;ωÞ: (3)

Here, x ¼ ðx1; x2; x3Þ with the subscripts numbering the coordinate
axes. Operator ∇ is defined as the gradient and represents the deriv-
atives with respect to the spatial coordinates. Moreover, ρðxÞ de-
notes the variable density, p̂ðx;ωÞ denotes the pressure field, cðxÞ
is the spatially varying wave velocity, and F̂ðx;ωÞ is a source term.
In the particular case of a temporal and spatial point source at
position xs and time t ¼ 0 s, the source term is given by a delta
function δðx − xsÞ. Then, the pressure field is represented by the
Green’s function Ĝðx;ω; xsÞ, which must satisfy

ρðxÞ∇ ·

�
1

ρðxÞ∇Ĝðx;ω;x
sÞ
�
þ ω2

c2ðxÞĜðx;ω;x
sÞ¼−δðx−xsÞ:

(4)

The basis for seismic interferometry is Gauss’s divergence theo-
rem, which relates an integral over a closed surface ∂V of an arbi-
trary vector field → Ψ to an integral over the enclosed volume V of
the divergence of the vector field, i.e.,

∯
∂V

Ψ
!

· n̂dS ¼
ZZZ

V
∇ · Ψ

!
dV; (5)

where n̂ is the unit vector normal to surface ∂V pointing in the
outward direction of volume V. Equation 5 is the basis for the
derivation of the one-way reciprocity theorems of convolution and
correlation type in Appendix A.

Up- and downgoing Green’s functions

Using the one-way reciprocity theorems of convolution and cor-
relation type, equations A-16 and A-19, it is possible to retrieve the
upward- and downward-propagating wavefields at an arbitrary da-
tum in depth. For this purpose, we still need to specify these ex-
pressions to the specific situation under consideration. Note that
the resulting relationships are previously derived by van der Neut
et al. (2015a) in the context of Marchenko imaging. Here, we give
them a new interpretation and use them for a deconvolution-based
interferometric redatuming technique.
To derive these relationships in our notation, we start again at two

states, A and B (indicated by superscripts A and B) in the frequency-
space domain (Figure 1). In state A, we consider a point source posi-
tioned immediately above surface S1. In this situation, the vertical
derivative of the downgoing wavefield at the surface can be ex-
pressed as ∂3p̂Aþ ¼ ð−1∕2Þδðx − xAÞ (Wapenaar et al., 2014). The
validity region of this expression in state A is limited by surfaces S1
and S2. Between these surfaces, the medium may be arbitrarily
inhomogeneous. Above S1 and below S2, we consider homo-
geneous half-spaces without a free surface (Figure 1). We will refer
to the velocity model in state A as the truncated model.

Q2 Barrera et al.
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In state B, we consider the same inhomogeneous medium be-
tween surfaces S1 and S2 as in state A. Above S1, we still consider
a homogeneous medium half-space without a free surface, and be-
low S2 we now consider a scattering body. The source in state B is
also a point source immediately above surface S1, such that the ver-
tical derivative of the downgoing wavefield can be represented as
∂3p̂Bþ ¼ ð−1∕2Þδðx − xBÞ (Wapenaar et al., 2014).
In states A and B, we consider the wavefield decomposition into

up- and downgoing constituents in analogy to equation A-11. An
analysis of the physical situation in both states allows for an inter-
pretation of all propagating events at every surface in Figure 1,
resulting in Table 1.
Substitution of the wavefield expressions from Table 1 in the one-

way reciprocity theorem of convolution type, equation A-16, leads to

1

2ρðxAÞ Ĝ
B
−ðxA;ω; xBÞ −

1

2ρðxBÞ Ĝ
A
−ðxB;ω; xAÞ

≈ −
ZZ

S2

1

ρðx 0Þ Ĝ
B
−ðx 0;ω; xBÞ∂3ĜA

þðx 0;ω; xAÞd2x 0; (6)

where we have carried out the integrations over the delta functions
describing the vertical derivatives of the point-source wavefields on
the left side.
Equation 6 is the first of the desired relationships, allowing us to

arrive at the first step of our main theoretical result, which is the fol-
lowing observation: this expression allows us to invert for the up-
going Green’s function ĜB

−ðx 0;ω; xBÞ at the datum S2 if we know
the corresponding Green’s function ĜB

−ðxA;ω; xBÞ at the surface
S1 (i.e., the surface data). All we need for that purpose is the knowl-
edge of the overburden velocity field between S1 and S2, so that we
can model, for a source at xA, the backscattered Green’s function
ð1∕ðρðxBÞÞÞĜA

−ðxB;ω; xAÞ at xB as well as the derivatives of the
transmitted Green’s function ð1∕ðρðx 0ÞÞÞ∂3ĜA

þðx 0;ω; xAÞ for all
points x 0 on surface S2 (see Figure 1).
In the full analogy, we can replace the wavefield expressions of

Table 1 in the one-way reciprocity theorem of the correlation type
(equation A-19) to obtain the second important relationship,

1

2ρðxBÞ Ĝ
A�
þ ðxB;ω; xAÞ

þ
ZZ

S1

1

ρðxÞ Ĝ
B
−ðx;ω; xBÞ∂3ĜA�

− ðx;ω; xAÞd2x

≈ −
ZZ

S2

1

ρðx 0Þ Ĝ
A�
þ ðx 0;ω; xAÞ∂3ĜB

þðx 0;ω; xBÞd2x 0; (7)

which allows us to invert for the vertical derivative of the downgoing
Green’s function ∂3Ĝ

B
þðx 0;ω; xBÞ at the datum using the surface data

ĜB
−ðx;ω; xBÞ. For this purpose, we again need only the overburden

velocity model to be able to simulate three wavefields associated with
state A for a point source at xA. These are (1) the complex conjugate
of the transmitted wavefield ĜA�

þ ðx 0;ω; xAÞ from the earth’s surface
(S1) to the datum (S2), (2) its density-normalized vertical derivative
ð1∕ðρðx 0ÞÞÞ∂3ĜA�

þ ðx 0;ω; xAÞ, and (3) the complex conjugate of the
backscattered wavefield ð1∕ðρðxÞÞÞĜA�

− ðx;ω; xAÞ at the surface S1.
Note that van der Neut et al. (2015a) propose to invert equations 6

and 7 by means of an iterative Marchenko scheme to determine the
inverse operators to GAþ and its complex conjugate. In this work, we
invert these equations by means of a damped least-squares decon-

volution, so as to derive an interferometric redatuming in which all
steps are deconvolution-based.

Deconvolution-based interferometric redatuming

Our new interpretation of the above equations is fundamental be-
cause it shows that they allow for retrieving the down- and upgoing
constituents of the Green’s functions for sources at the surface and
receivers at the datum by means of deconvolution. These wavefields
are, in turn, the ingredients for redatuming the sources using the
classic expression for deconvolution-based interferometric reda-
tuming of Wapenaar et al. (2011). This expression is set up by not-
ing that each trace ĜB

−ðx 0 0;ω; xBÞ in the output gather can be
interpreted as the stack of a convolution gather, which is obtained
by convolution of each trace in the reflection response R̂ðx 0 0;ω; x 0Þ
at the datum for a fixed source point x 0 0 with each trace of the
vertical derivative ∂3Ĝ

B
þðx 0;ω; xBÞ of the downgoing wavefield

constituent for a fixed source position xB at the surface and all
receiver positions x 0 at the datum. Thus, mathematically, the decon-
volution-based redatuming equation can be expressed in the case of
variable density as

ĜB
−ðx 0 0;ω; xBÞ ¼ −2ρðx 0 0Þ

×
ZZ

S2

Z
1

ρðx 0Þ R̂ðx
0 0;ω; x 0Þ∂3ĜB

þðx 0;ω; xBÞd2x 0: (8)

The main objective of this work is to introduce equations 6 and 7
as tools to determine, by means of deconvolution, the input to equa-
tion 8, i.e., the up- and downward Green’s function constituents
ð1∕ðρðx 0 0ÞÞÞĜB

−ðx 0 0;ω; xBÞ and ð1∕ðρðx 0ÞÞÞ∂3ĜB
þðx 0;ω; xBÞ, re-

Figure 1. Two wavefield states in an inhomogeneous overburden.
State A uses a truncated model to describe the transmitted wavefield
from the surface and its responses recorded at the datum and at the
surface. State B uses the actual velocity distribution in the subsur-
face to describe the total wavefield taking into account all events
propagating in the medium.

Table 1. Analysis of the up- and downgoing wavefields at
surfaces S1 and S2 in states A and B, respectively.

Surface Direction Wavefield in state A Wavefield in state B

S1 + Point source in xA Point source in xB

S1 − ĜA
−ðx;ω; xAÞ ĜB

−ðx;ω; xBÞ
S2 + ĜA

þðx 0;ω; xAÞ ĜB
þðx 0;ω; xBÞ

S2 − 0 ĜB
−ðx 0;ω; xBÞ

Deconvolution-based redatuming Q3
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spectively. Once these wavefield constituents are known, it is pos-
sible to retrieve the total reflected wavefield R̂ðx 0 0;ω; x 0Þ at the da-
tum using any inversion method (in this work, we use a stabilized
least-squares inversion). Figure 2 explains this linear inversion
problem graphically.
According toWapenaar et al. (2011), in most situations, it is more

convenient to carry out interferometry by deconvolution-based than
by correlation-based expressions because the deconvolution-based
procedure automatically includes a compensation for the properties
of the source wavelet. Another advantage is that it does not need the

assumption of a lossless medium. If the overburden velocity model
is sufficiently accurate, it also provides a correct treatment of inter-
nal multiples.

NUMERICAL EXPERIMENTS

To evaluate the potential of our proposed procedure of redatuming
by recovering the separate wavefield constituents by means of
deconvolution, we have carried out a few numerical experiments.
To allow for an easier interpretation of the wavefield components

in the individual steps and to discuss the results,
we use synthetic data from the horizontally lay-
ered velocity model depicted in Figure 3a with
layer velocities varying between 1.8 km/s and
3.0 km/s. The original acquisition geometry
makes use of 201 sources spaced at 25 m and the
same number of receivers for each shot, all posi-
tioned in the interval between 0.0 km and 5.0 km
along the earth’s surface. Figure 3b shows the shot
section for the central source in the model.
Our purpose is to redatum these data to the

same acquisition geometry as at the surface,
but at the datum at 750 m depth. For this purpose,
we need a truncated velocity model (i.e., homo-
geneous below the datum) to simulate (1) the
transmitted wavefield from the earth’s surface
until the datum, (2) its corresponding vertical
derivative, (3) the backscattered wavefield at
the earth’s surface, and (4) its corresponding ver-
tical derivative. Using these wavefields, modeled
with a velocity model of the datum overburden,
we determine the down- and upward wavefield
constituents for receivers at depth using equa-
tions 6 and 7, and then the redatumed wavefield
with sources and receivers at the datum using
equation 8.
To test the sensibility of our redatuming meth-

odology, we use four different overburden
models as the truncated velocity model. These
models, depicted in Figure 4, are (1) the exact
model (Figure 4a), (2) a smoothed version of
the exact model (Figure 4b), obtained by passing
a 15 × 15 sample moving-average filter over the
true model, (3) an incorrect model with a mispo-
sitioned high-velocity layer and 10% too-high
velocities (Figure 4c), and (4) a smoothed
version of the incorrect model, obtained by pass-
ing the same moving average filter over the in-
correct model (Figure 4d).
For comparison with the redatumed wavefield

constituents, we simulate the full wavefield in the
model of Figure 3 for one shot at the earth’s
surface at 2.5 km on the horizontal axis with
receivers at the datum at 750 m depth (Figure 5a).
The visible events in the seismic section of Fig-
ure 5a are labeled with numbers to identify them.
The green arrows and numbers from 1 to 10 iden-
tify downgoing events, and the red arrows and
numbers from 11 to 16 identify upgoing events.
Figures 5b and 5c show the geometric interpre-

Figure 2. Sketch explaining the linear inversion problem 7. Once the one-way Green’s
function responses ð1∕ρðx 0ÞÞĜB

−ðx 0 0;ω; xBÞ and ð1∕ρðxÞÞ∂3ĜB
þðx 0;ω; xBÞ at the datum

have been determined in the previous steps, the reflected wavefield at the datum can be
calculated by deconvolution.

a) b)

Figure 3. (a) Flat layer model with sources and receivers at the earth’s surface and
(b) the central shot in model (a).

a) b)

c) d)

Figure 4. Overburden models that correspond to different tests for retrieving the back-
scattered and transmitted wavefields. The overburden velocity fields correspond to
(a) the true model, (b) its smoothed version, (c) an incorrect model, and (d) its smoothed
version. For details, see the text.
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tation of the labeled events by means of their raypaths. This will
help us to compare the respective events with the inverted up-
and downgoing wavefield constituents shown in the next sections.

Downward wavefield constituent by focusing

The first step of our proposed redatuming
procedure consists of retrieving, by means of
inverting equation 7, the vertical derivative of
the downgoing constituents of the Green’s func-
tion ∂3Ĝ

B
þðx 0;ω; xBÞ at the datum at 750 m depth.

For this inversion, we model the following in-
put data in the truncated velocity model: (1) the
vertical derivative of the transmitted wavefield
from the earth’s surface to a datum at 750 m
depth (ĜA�

þ ) and (2) the vertical derivative of
the backscattered wavefield with sources and
receivers at the earth’s surface (∂3Ĝ

A�
− ).

The deconvolution procedure consists of
convolving the left side of equation 7 with the
transmitted wavefield ĜA

þðx 0;ω; xAÞ at the datum
and then with the inverse of the resulting PSF,
which corresponds to the autocorrelation of
ĜA

þðx 0;ω; xAÞ. To calculate the inverse PSF, we
use a damped least-squares scheme with regulari-
zation of 0.1% of the maximum value of the PSF.
In the numerical procedure, the Green’s functions ĜA�

þ and ĜA�
− in

equation 7 are replaced by wavefields ÛA�
þ and ÛA�

− containing a
source wavelet. In our synthetic examples, we use the same source
wavelet for the wavefield modeling in the truncated model as for the
modeling of the simulated data. Theoretically, this should not matter
because the power spectrum of the source wavelet, which appears
on the left side of equation 7 after convolution with ÛA

þðx 0;ω; xAÞ,
is canceled by the convolution with the inverse PSF. In this way, the
original source wavelet of the input data is preserved. In practice, of
course, some frequency limitations apply to the inversion of the
PSF, which may lead to distortions of the wavelet in the redatumed
data.
Using the four overburden models of Figure 4, we numerically

simulate the transmitted wavefield from the surface to the datum
stations and the backscattered wavefield in the truncated medium
at the surface stations and use them for deconvolution according
to equations 6 and 7. Figure 6 shows the corresponding deconvo-
lution results.
Figure 6a depicts the wavefield retrieved by means of equation 7

when modeling the transmitted and backscattered wavefields in the
exact truncated velocity field. As predicted by theory, we retrieve
the vertical derivative of the downward Green’s function constitu-
ents. All interpretable events match the measured kinematics in the
modeled data of Figure 5a. As a precursor to the first event in
Figure 6a, it is possible to observe weak boundary effects related
to the finite aperture in the seismic array.
When using an incorrect velocity model, the kinematics change

and the relative amplitudes are no longer correct in the recovered
wavefield (Figure 6b). Events 3 and 10 are even no longer visible.
Moreover, the boundary effects are stronger than in Figure 6a, and
some numerical artifacts appear. Overall, we observe that a rela-
tively small velocity error already visibly affects the quality of the
results.

Figure 6c and 6d shows the results when the modeling is per-
formed using the smoothed velocity fields. We observe that, in both
cases, only event 1 has been retrieved. The reason is that the
smoothed models used in these cases for the wavefield modeling
allow us to model first arrivals only. Therefore, the deconvolution
procedure is not able to recover multiple reflections. However, the

1
2

3
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5
6
7
8
9

10

11

12

13

14

15

a) b)

c)

16

Figure 5. (a) Full synthetic seismic wavefield at the datum at 750 m depth. Labeled are
the down- (the green arrows) and upgoing (the red arrows) constituents, the raypaths of
which are shown in (b) and (c), respectively.
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Figure 6. Downward Green’s function retrieved by inversion using
equation 7, using different models for wavefield modeling: (a) exact,
(b) incorrect, (c) smoothed exact, and (d) smoothed incorrect model.
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recovered event 1 is actually better positioned when using the
smoothed incorrect model (Figure 6d) than the nonsmoothed
version (Figure 6b).
The situation is different in Figure 7. Here, we model the trans-

mitted wavefield in the smoothed truncated velocity field (Figure 4b)
and the backscattered wavefield in the exact version (Figure 4a).
We did this because, during sensitivity tests of the method, we noted
that this combination of input data allows us to retrieve most of the
downward wavefield signals. However, note that events 2 and 3 are
not retrieved in this response because these events are due to internal
reverberations of the transmitted wavefield in the overburden. In con-
trast, the internal multiples from below the datum (events 4–10) are
correctly recovered. Moreover, Figure 7 shows a strongly perturbed
event 1 and an additional event D.
These effects can be interpreted as artifacts corresponding to

overburden reverberations. They are generated by the deconvolu-
tion through nonphysical combination of primaries and multiples
in such a way that some parts of their raypaths contribute with pos-
itive and others with negative traveltimes (see the raypaths for
events B, C, and D in Figure 8). Note that events B and C are
not easily interpretable in Figures 6 and 7 because they interfere
with event 1. This experiment indicates that, if we were able to de-
termine and separate the backscattering from overburden inhomo-
geneities in the input reflection seismic data, it might be possible to
obtain redatuming results of the quality of Figure 7 using a smooth
velocity field for the modeling of the transmitted wavefield only.

Upward wavefield constituent by focusing

In the next step, we need to determine the upward Green’s func-
tion ĜB

−ðx 0;ω; xBÞ by inverting equation 6. For this purpose, we
require the following input data: (1) the vertical derivative of the
transmitted wavefield from the earth’s surface to the datum at 750 m
depth (∂3Ĝ

A
þ) and (2) the backscattered wavefield with sources and

receivers at the earth’s surface (ĜA
−), both modeled in the truncated

velocity field. As previously, we correct the deconvolution results
for the PSF, in this case given by the autocorrelation of the vertical
derivative of the transmitted wavefield ∂3Ĝ

A
þðx 0;ω; xAÞ. Again, to

retrieve the inverse PSF, we use a damped least-squares scheme
with 0.1% of the maximum PSF value.
Our tests use the same four model combinations as previously to

model the required synthetic data. The resulting Green’s function
constituents are depicted in Figure 9. We observe that, as expected,
when the modeling is performed using the exact truncated model
(Figure 9a), all upgoing Green’s function constituents but no down-
going constituents are retrieved (compare to Figure 5a). This can be
confirmed by comparing the traveltimes of the upgoing events in
Figure 5c with those in Figure 9a.
When the modeling is done in the incorrect or the smoothed veloc-

ity fields (see Figure 9b–9d), all upgoing Green’s function constitu-
ents are also retrieved, but three artifacts labeled A, B, and C are
introduced. These events correspond to nonphysical propagation
paths with negative and positive times (Figure 8). These artifacts
are generated by the lack of reverberations in the wavefields calcu-
lated using the smoothed and incorrect overburden velocity fields.
Figure 9b–9d looks very similar to each other. Closer inspection re-
veals some kinematic errors in Figure 9c and 9d because of the error
in the underlying velocity models.
When modeling the transmitted wavefield in the smoothed veloc-

ity field and the backscattered wavefield in the exact velocity field,
the upgoing Green’s function constituents are recovered without ar-
tifacts (see Figure 10). We note that the response in Figure 10 is very
similar to that in Figure 9a. Again, all events correspond to upgoing
wavefield constituents. This makes us conclude that the model of
the inversion using equation 6 is more sensitive to the backscattered
wavefield rather than the transmitted one.

Source redatuming

The above two steps describe the redatuming of receivers so as to
determine the up- and downgoing Green’s function constituents for
sources at the acquisition surface and receivers at the datum. To
complete the redatuming process, we still need to relocate the
sources to the datum level by means of inverting equation 8 for
R̂ðx 0;ω; x 0 0Þ.
The input data for the inversion of equation 8 are the up- and

downgoing Green’s function constituents retrieved in the previous
two steps. In accordance with our four model choices to determine
these wavefields, Figure 11 shows four results of the complete re-
datuming procedure. For easier interpretation, we have labeled each
physical event with an R and a number, and each nonphysical event
with an R and a capital letter.

1

4
5
7

6
8

9

D

10

Figure 7. Downward Green’s function retrieved by inversion using
equation 7, using the smoothed model for the transmitted wavefield,
but using the exact model for the backscattered wavefield.

Figure 8. Interpretation of artifacts coming from the overburden
reverberations in Figures 6 and 9. In this interpretation, the orange
path represents the positive times and the purple path represents the
negative times.
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11
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15
16

Figure 10. Upward Green’s function retrieved by inversion using
equation 6, with the transmitted wavefield modeled in the smoothed
velocity field and the backscattered wavefield in the exact velocity
model.
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R3

Figure 11. Results of the complete redatuming process using the set
of equations 6–8, with transmitted and backscattered wavefields
modeled in the (a) exact, (b) incorrect, (c) smoothed exact, and
(d) smoothed incorrect velocity fields.
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Figure 9. Upward Green’s function retrieved by inversion using
equation 6, in which the wave propagation is modeled in the (a) ex-
act, (b) incorrect, (c) smoothed exact, and (d) smoothed incorrect
velocity fields.

R1

R2
R3

RD
RE

RF

Figure 12. Results of the complete redatuming process using the set
of equations 6–8, with the transmitted wavefield modeled in the
smoothed velocity field and the backscattered wavefield modeled
in the exact velocity model.
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As for the downgoing wavefield constituents, the full redatuming
result is the best when the modeling of both required wavefields is
done in the exact truncated velocity field (Figure 11a). The three
physical events R1, R2, and R3 are clearly identifiable, and very
few artifacts are visible, mainly those from boundary effects. The
smoothed and incorrect models lead to strong artifacts (events RA,
RB, and RC) that can be associated with nonphysical events (Fig-
ure 11b–11d). As expected, the wavefields in Figure 11c and 11d
suffer from some mispositioning because of the velocity error in the
incorrect model. When using the smoothed model for the transmit-
ted wavefield and the exact model for the backscattered one, the

desired events are still well-recovered (Figure 12) but some weak
artifacts become visible (events RD, RE, and RF).
Figure 13 depicts the raypath interpretation of the redatumed

events. Labels R1, R2, and R3 (Figure 13a) denote physical events
corresponding to the primary reflections from the three interfaces
below the datum. These events are present in all four parts of Fig-
ure 11. When the modeling is done in the exact model, they are
recovered without artifacts except for boundary effects (Figure 11a).
Labels RB and RC (Figure 13b) are physical events that correspond
to primary reflections at the overburden reflectors from below, re-
corded at the position of the datum. These events appear at negative
times in the records. They are visible in all parts of Figure 11, but
their amplitudes are much stronger when smoothed models are used
for both wavefield simulations (Figure 11b and 11c). Finally, labels
RA, RD, RE, and RF denote nonphysical events (Figure 13b). La-
bel RA is an event that combines positive and negative traveltimes.
It is clearly visible only in Figure 11b, but it is hidden behind the
strong artifacts in Figure 11c. Events RD, RE, and RF combine
propagation paths in the overburden and below the datum in a non-
physical way (Figure 13b). They become visible when using the
smoothed model for the transmitted wavefield and the exact model
for the backscattered one (Figure 12).
For more details, we compare the central traces of these redatum-

ing responses to the corresponding modeled trace at the datum. In
Figure 14a, we note that, when the modeling is done in the exact
truncated model, the three principal events in the causal part retrieved
by inversion fit the modeled events, regarding the traveltimes and
amplitudes. As expected, the velocity error in the incorrect model
leads to a displacement of the events (Figure 14b). Note that the rel-
ative amplitudes are also affected by the velocity error. The smoothed
velocitymodels lead to very similar behavior of the events (Figure 14c
and 14d) as the corresponding nonsmoothed ones, except for addi-
tional artifacts.
Finally, Figure 15 shows the same comparison for the data ob-

tained with the transmitted wavefield modeled in the smoothed
velocity field and the backscattered data in the exact velocity field.
We note that the resulting central trace is very similar to the one
obtained using the exact velocity field for both modeling steps, pre-

serving the quality of the kinematics and dynam-
ics. This confirms that the sensitivity of the
redatuming method studied here comes from
the backscattered and not from the transmitted
wavefield.

DISCUSSION

We present a new interferometric procedure
entirely based on deconvolution. For the reda-
tuming of the receivers, it gives a new interpre-
tation to two expressions previously derived by
van der Neut et al. (2015a) in the context of Mar-
chenko imaging. They are used to estimate the
up- and downgoing constituents of the Green’s
funtions for sources at the surface and receivers
at the datum. These Green’s function constitu-
ents are then the input to the conventional version
of deconvolution-based interferometric redatum-
ing of Wapenaar et al. (2011) to retrieve the re-
datumed wavefield for sources and receivers at
the datum level.

a)

b)

Figure 13. Raypath interpretation of the visible events in Figure 11.
(a) Primary reflections from the three interfaces below the datum
and (b) visible artifacts. Here, the orange path represents the pos-
itive and the purple path represents the negative traveltimes.
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Figure 14. Central traces of the redatuming responses corresponding to the causal parts
in Figure 11 (the purple line), compared with the central trace of the exact data modeled
at the datum (the black line). As previously, the transmitted and backscattered wave-
fields are modeled in the (a) exact, (b) incorrect, (c) smoothed exact, and (d) smoothed
incorrect velocity fields.
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Although the procedure relies on wavefield modeling, it does not
need a full underground velocity model. It relies on a truncated
model, carrying only information about the velocity field in be-
tween the acquisition surface and the datum. Outside this region,
the truncated model is assumed to be homogeneous. In this trun-
cated model, two wavefields must be simulated for sources at their
original positions at the acquisition surface. These wavefields are
the transmitted wavefield at the datum and the backscattered wave-
field at the acquisition surface. Note that the latter is nonzero only in
the case of an inhomogeneous medium between the acquisition and
datum levels.
Our numerical experiments demonstrate that the procedure is

capable of producing a highly accurate redatumed wavefield. More-
over, they confirm the observations of Wapenaar et al. (2011) that
deconvolution-based interferometric redatuming is advantageous
over a correlation-based procedure because the former automati-
cally includes a compensation for the properties of the source wave-
let, does not need the assumption of a lossless medium, and can also
provide a correct treatment of internal multiples. In correlation-
based procedures, internal multiples in the overburden can lead to
crosstalk between uncorrelated events, generating nonphysical
events in the output data (Barrera et al., 2017), even if the overbur-
den model is perfect. In our present purely deconvolution-based
procedure, such nonphysical events are reduced to a minimum.
However, the use of an imperfect velocity model can also introduce
nonphysical events.
The underlying wavefield modeling imposes some requirements

on the quality of the truncated velocity model. Particularly, the
simulation of the backscattered wavefield at the datum-overburden
inhomogeneities requires a rather accurate model. When we use a
smoothed truncated velocity model, no internal multiples in the
overburden are modeled. As a consequence, the inverted down-
going wavefield for receivers at the datum level contain only direct

waves. The corresponding upgoing wavefield still recovers
all primary reflections from the medium below the datum, but it
contains some high-amplitude artifacts. These artifacts are then car-
ried over to the final redatumed data. However, because these ar-
tifacts are located at negative and small positive traveltimes, it
might be possible to reduce their influence by simple muting. Our
tests using a perturbed velocity model result in strong kinematic and
dynamic errors, indicating that velocity errors should be kept to a
minimum for the method to work reliably.
Because of the described characteristics, we think that the pro-

cedure discussed in this work will be of interest to redatum data
to deeper levels if the near-surface structure is well-resolved, for
example, after full-waveform inversion, which is well-known to
provide high-resolution velocity models at shallow levels.

CONCLUSION

We have presented a deconvolution-based interferometric pro-
cedure to achieve the first step of full data redatuming, i.e., the de-
termination of the downward- and upward-propagating Green’s
function for sources at the earth’s surface and receivers at a datum
in depth. Two relationships, derived from the convolution and
correlation-based one-way reciprocity theorems, allow us to
recover these Green’s function constituents by wavefield deconvolu-
tion. The inputs to this deconvolution are the transmitted and back-
scattered wavefields, simulated in a truncated overburden model. The
downward and upward Green’s function retrieved by this procedure
can then be used in conventional deconvolution-based interferometric
redatuming to retrieve the reflected wavefield for sources and receiv-
ers at the datum.
As demonstrated in a simple synthetic-data example, the result-

ing data can be recovered almost artifact free if the overburden
model is known. As a major advantage, we stress that there is no
influence of anticausal events and no causal interactions with the
overburden in the final responses. These types of events, which
are common in purely correlation-based redatuming procedures,
do not occur in the inverse wavefield extrapolation in the first
and second steps of the redatuming process. However, when using
a smoothed model for the wavefield simulations, some nonphysical
artifacts are also present in the data redatumed with the present tech-
nique because internal multiples are no longer treated correctly.
These effects can be significantly reduced if at least the backscat-
tered wavefield is modeled in a nonsmoothed truncated velocity
field. However, a sufficiently accurate overburden velocity model
is required to avoid incorrect redatuming results.
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Figure 15. Central trace of the redatuming response corresponding to
the causal part in Figure 12 (the purple line), compared with the cen-
tral trace of the exact data modeled at the datum (the black line), with
the transmitted wavefield modeled in the smoothed velocity field and
the backscattered wavefield modeled in the exact velocity model.
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APPENDIX A

ONE-WAY RECIPROCITY THEOREMS

Here, we revisit the derivation of the one-way reciprocity theo-
rems of convolution and correlation type. These theorems form the
basis of the new interferometric redatuming procedure based on de-
convolution and inverse wave propagation proposed in this work.

Reciprocity theorems of convolution and correlation type

Following Wapenaar et al. (2010a, 2010c, 2011), we consider
two states, A and B, in the Helmholtz equation to derive the reci-
procity theorem of the convolution type. We assume both states
to have the same properties, i.e., ρAðxÞ ¼ ρBðxÞ ¼ ρðxÞ and
cAðxÞ ¼ cBðxÞ ¼ cðxÞ. Moreover, we assume that the wavefields
in both states have causal sources inside volume V. Because the
states differ only in the source positions, the corresponding wave-
fields p̂Aðx;ωÞ ¼ p̂A and p̂Bðx;ωÞ ¼ p̂B must satisfy

ρðxÞ∇ ·

�
1

ρðxÞ∇p̂
A

�
þ ω2

c2ðxÞ p̂
A ¼ −F̂A; (A-1)

ρðxÞ∇ ·

�
1

ρðxÞ∇p̂
B

�
þ ω2

c2ðxÞ p̂
B ¼ −F̂B: (A-2)

Note that equations A-1 and A-2 show that the difference between
state A and state B is in the source distribution and the wavefield,
while the rest of the properties remain the same. After multiplication
of equation A-1 by p̂B and equation A-2 by p̂A, their difference
yields

ρðxÞp̂B∇ ·

�
1

ρðxÞ∇p̂
A

�
− ρðxÞp̂A∇ ·

�
1

ρðxÞ∇p̂
B

�

¼ −p̂BF̂A þ p̂AF̂B: (A-3)

Dividing equation A-3 by ρðxÞ, adding and subtracting a term
∇p̂A∇p̂B on the left side, and manipulating and reorganizing the
terms, we obtain

∇·

�
1

ρðxÞðp̂
B∇p̂A−p̂A∇p̂BÞ

�
¼ 1

ρðxÞðp̂
AF̂B−p̂BF̂AÞ: (A-4)

After integration over an arbitrary volume V, equation A-4 has an
appropriate form to apply Gauss’s theorem (equation 5). The result
is the reciprocity theorem of convolution type, which we can re-
present as

∯
∂V

1

ρðxÞ ðp̂
B∇p̂A − p̂A∇p̂BÞ · n̂dS

¼
ZZZ

V

1

ρðxÞ ðp̂
AF̂B − p̂BF̂AÞdV: (A-5)

A completely analogous analysis can be carried out starting at the
complex conjugate of equation A-1 together with equation A-2.
Replacing the wavefield p̂A and the source term F̂A in the above der-
ivation by their complex conjugates p̂A� and F̂A�, where the super-
script * denotes the complex conjugate, we correspondingly arrive at

∯
∂V

1

ρðxÞ ðp̂
B∇p̂A� − p̂A�∇p̂BÞ · n̂dS

¼
ZZZ

V

1

ρðxÞ ðp̂
A�F̂B − p̂BF̂A�ÞdV: (A-6)

This is the reciprocity theorem of correlation type.
Using the Sommerfeld radiation condition (Bleistein et al., 2001)

and the antiradiation condition (Wapenaar, 2006), it is possible to
demonstrate that the left-side integrals in equations A-5 and A-6
tend to zero when the radius of the closed surface tends to infinity.
However, the volume integrals on the right sides have only nonzero
contributions from those parts of volume V where the source func-
tions F̂A and F̂B are nonzero. Thus, their values do not change when
extending volume V over regions without sources. Therefore, we
can conclude that the surface integrals in equations A-5 and A-6
must be identically zero for any shape of surface ∂V as long as
it includes all sources of states A and B. Of course, they are also
zero if all sources of states A and B are outside V because then the
volume integrals vanish.

Surface decomposition of the reciprocity theorems

In this section, we analyze the closed-surface integrals in the reci-
procity theorems of convolution and correlation type (equations A-5
and A-6). Because volume V is arbitrary in these equations, it can be
chosen as a cylinder. Then, the surface ∂V in equations A-5 and A-6
can be decomposed into three parts ∂V1 (the top), ∂V2 (the bottom),
and ∂V3 (the side of the cylinder) with the unit vectors
n̂1 ¼ ð0; 0;−1Þ, n̂2 ¼ ð0; 0; 1Þ, and n̂3 ¼ ðn1; n2; 0Þ, respectively
(Figure A-1).
By this choice, the closed-surface integral in equation A-5 can be

recast into the form

Z Z
∂V1

1

ρðxÞðp̂
B∇p̂A−p̂A∇p̂BÞ · n̂1dx1dx2

þ
Z Z

∂V2

1

ρðxÞðp̂
B∇p̂A−p̂A∇p̂BÞ · n̂2dx1dx2

þ
Z Z

∂V3

1

ρðxÞðp̂
B∇p̂A−p̂A∇p̂BÞ · n̂3dx1dx2¼0: (A-7)

The Sommerfeld radiation conditions require that the integral over
surface ∂V3 tends to zero when the cylinder radius is extended to

Figure A-1. Cylinder surface decomposed into three surfaces ∂V1,
∂V2, and ∂V3.
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infinity. Thus, we conclude that the integrals over the remaining two
surfaces must satisfyZZ

S1

1

ρðxÞ ðp̂
B∇p̂A − p̂A∇p̂BÞ · n̂1dx1dx2

¼ −
ZZ

S2

1

ρðxÞ ðp̂
B∇p̂A − p̂A∇p̂BÞ · n̂2dx1dx2; (A-8)

where S1 and S2 denote the complete horizontal planes at two differ-
ent depth levels, e.g., the acquisition level x3 ¼ x30 and the datum
level x3 ¼ x3d, respectively. To derive equation A-8, no assump-
tions regarding the nature of the medium inside and outside the sur-
face ∂V are necessary. In other words, this equation is valid for
general inhomogeneous media, as long as the sources are com-
pletely inside or completely outside volume V and the medium
properties in both states are the same inside the volume, i.e., between
the two horizontal planes S1 and S2.
For the reciprocity theorem of correlation type, the analogous

procedure provides

Z Z
∂V1

1

ρðxÞðp̂
B∇p̂A�−p̂A�∇p̂BÞ · n̂1dx1dx2

þ
Z Z

∂V2

1

ρðxÞðp̂
B∇p̂A�−p̂A�∇p̂BÞ · n̂2dx1dx2

þ
Z Z

∂V3

1

ρðxÞðp̂
B∇p̂A�−p̂A�∇p̂BÞ · n̂3dx1dx2¼0: (A-9)

The form of the integral over surface ∂V3 in equation A-9 does not
allow for the application of the Sommerfeld radiation conditions.
However, using the Wapenaar antiradiation conditions (Wapenaar,
2006), we can also justify that this integral tends to zero when the
cylinder radius tends to infinity. In effect, these conditions state that
there should be no contributions from infinity to this integral in an
inhomogeneous medium with sufficient scattering. Hence, the reci-
procity theorem of correlation type can be written asZ Z

S1

1

ρðxÞðp̂
B∇p̂A�−p̂A�∇p̂BÞ · n̂1dx1dx2

¼−
Z Z

S2

1

ρðxÞðp̂
B∇p̂A�−p̂A�∇p̂BÞ · n̂2dx1dx2 (A-10)

again with S1 and S2 denoting the complete horizontal planes at
x3 ¼ x30 and x3 ¼ x3d, respectively. Equation A-10 is valid for gen-
eral inhomogeneous media inside and outside the
surface ∂V, as long as the medium inside the cyl-
inder is sufficiently inhomogeneous at far distan-
ces for the scattering to satisfy the Wapenaar
antiradiation conditions.

One-way wavefield decomposition

To derive the one-way forms of the above reci-
procity theorems, we consider the two states, A
and B, in the situation depicted in Figure A-2.
As previously, the surfaces S1 and S2 denote full
horizontal planes at depth levels x30 and x3d;
i.e., they are given by S1 ¼ fðx1; x2; x3Þ ∈ R3jx3
¼ x30g and S2¼fðx1;x2;x3Þ∈R3jx3¼x3dg.
States A and B have source positions xA and xB

immediately above or below surface S1, respectively, and the receiv-
ers are distributed over both surfaces. Note that we do not consider S1
to be a free surface.
In accordance with Wapenaar and Berkhout (1989), the total

wavefield p̂ðx;ωÞ at a point x in the medium can be decomposed
in up- ð−Þ and downgoing ðþÞ constituents, i.e.,

p̂ðx;ωÞ ¼ p̂þðx;ωÞ þ p̂−ðx;ωÞ: (A-11)

The substitution of decomposition A-11 in the above reciprocity
theorems allows us to derive the corresponding one-way reciprocity
theorems of convolution and correlation type. These, in turn, are the
basis for the retrieval of the up- and downgoing Green’s functions
using least-squares inversion.
At this point, we suppose that the sources are delta functions in

space and time and that the velocity field is sufficiently smooth in a
small region around surfaces S1 and S2. Under these assumptions,
we can express the up- and downgoing pressure fields p̂�ðx;ω; xsÞ
locally by means of ray-theoretical approximations of the form

p̂�ðx;ω; xsÞ ∼ Aðx; xsÞ exp½∓iωTðx; xsÞ�: (A-12)

Here, T is the traveltime function that satisfies the eikonal equation
k∇Tðx; xsÞk2 ¼ 1∕c2ðxÞ, where c is the wave speed and Aðx; xsÞ is
the amplitude, principally determined by the geometric-spreading
factor. Signs ð−Þ and ðþÞ in the exponential factor in equa-
tion A-12 refer to causal and anticausal responses in the time do-
main, respectively.
As a consequence of equation A-12, the derivatives of the up- and

downgoing pressure fields p̂�ðx;ω; xsÞ can be represented in the
high-frequency approximation as

∇p̂� ≈ ∓iωp̂�∇Tðx; xsÞ; (A-13)

where the amplitude variation has been neglected compared to the
phase variation. It is important to note that, when the wavefield is
decomposed into its up- and downgoing components, the signs of
the gradients of these individual wavefield components depend on
the propagation direction.

One-way reciprocity theorems of convolution and
correlation type

In this section, we derive the one-way reciprocity theorems of
convolution and correlation type using the above wavefield decom-
position. These theorems are helpful to extract detailed information

a) b)

Figure A-2. Sketch of two sources at positions xA and xB at surface S1 with receivers
along surfaces S1 and S2. Also shown are the selected propagation paths to selected
receivers and the angles between the propagation directions and the surface normals
at these receivers.
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about the waves and their behavior as a function of the propagation
direction.
We start our derivation at the one-way reciprocity theorem of

convolution type (equation A-8). Replacing the wavefield in equa-
tion A-8 by its decomposed form according to expression A-11, we
obtain

ZZ
S1

1

ρðxÞ ½ðp̂
Bþ þ p̂B

−Þ∇ðp̂Aþ þ p̂A
−Þ

− ðp̂Aþ þ p̂A
−Þ∇ðp̂Bþ þ p̂B

−Þ� · n̂1dx1dx2
¼ −

ZZ
S2

1

ρðxÞ ½ðp̂
Bþ þ p̂B

−Þ∇ðp̂Aþ þ p̂A
−Þ

− ðp̂Aþ þ p̂A
−Þ∇ðp̂Bþ þ p̂B

−Þ� · n̂2dx1dx2: (A-14)

Assuming that the medium is smooth in a small region around S1
and S2, the normal derivatives of the Green’s function can be ap-
proximated using expression A-13. Still upon high-frequency argu-
ments, the main contributions to the integrals in equation A-14
come from the points of stationary phase on surfaces S1 and S2. At
those stationary points, the absolute values of the cosines of the ray
angles for p̂A and p̂B, given by n · ∇T, are identical. As a conse-
quence, we have, in the vicinity of the stationary points, p̂Bþ∇p̂Aþ ≈
p̂Aþ∇p̂Bþ and p̂B

−∇p̂A
− ≈ p̂A

−∇p̂B
−. This implies that, to the leading or-

der, these terms cancel each other in the integral in equation A-14. In
contrast, we have, in the vicinity of the stationary points, p̂Bþ∇p̂A

− ≈
−p̂A

−∇p̂Bþ and p̂B
−∇p̂Aþ ≈ −p̂Aþ∇p̂B

−, which means that these terms
give equal contributions to the integral (Wapenaar and Fokkema,
2006). Hence, we can rewrite equation A-14 as

ZZ
S1

1

ρðxÞ ðp̂
B
−∇p̂Aþ − p̂A

−∇p̂BþÞ · n̂1dx1dx2

≈ −
ZZ

S2

1

ρðxÞ ðp̂
B
−∇p̂Aþ − p̂A

−∇p̂BþÞ · n̂2dx1dx2: (A-15)

Because surfaces S1 and S2 have the geometric disposition shown
in Figure A-2, the versors in equation A-15 can be expressed as
n̂1 ¼ ð0; 0;−1Þ and n̂2 ¼ ð0; 0; 1Þ. This allows us to express equa-
tion A-15 as

ZZ
S1

1

ρðxÞ ðp̂
B
−∂3p̂Aþ − p̂A

−∂3p̂BþÞdx1dx2

≈
ZZ

S2

1

ρðxÞ ðp̂
B
−∂3p̂Aþ − p̂A

−∂3p̂BþÞdx1dx2; (A-16)

where ∂3 denotes the derivative in the vertical direction. Equa-
tion A-16 is the one-way reciprocity theorem of convolution type.
The derivation of the one-way reciprocity theorem of correlation

type follows an analogous path. For this purpose, we need the com-
plex conjugate of expression A-11 to replace the full wavefields in
equation A-10 by their decomposed expressions. We find

ZZ
S1

1

ρðxÞ ½ðp̂
Bþ þ p̂B

−Þ∇ðp̂A�þ þ p̂A�
− Þ

− ðp̂A�þ þ p̂A�
− Þ∇ðp̂Bþ þ p̂B

−Þ� · n̂1dx1dx2
¼ −

ZZ
S2

1

ρðxÞ ½ðp̂
Bþ þ p̂B

−Þ∇ðp̂A�þ þ p̂A�
− Þ

− ðp̂A�þ þ p̂A�
− Þ∇ðp̂Bþ þ p̂B

−Þ� · n̂2dx1dx2: (A-17)

Again, the principal contributions to the integrals in equation A-17
come from the stationary points on surfaces S1 and S2. Using the
complex conjugate of equation A-13, we have, in the vicinity of the
stationary points, p̂Bþ∇p̂A�þ ≈ −p̂A�þ ∇p̂Bþ, p̂B

−∇p̂A�
− ≈ −p̂A�

− ∇p̂B
−,

p̂Bþ∇p̂A�
− ≈ p̂A�

− ∇p̂Bþ, and p̂B
−∇p̂A�þ ≈ p̂A�þ ∇p̂B

− (Wapenaar and Fok-
kema, 2006). With these approximations, we can write equation A-
17 as

Z Z
S1

1

ρðxÞðp̂
Bþ∇p̂A�þ −p̂A�

− ∇p̂B
−Þ · n̂1dx1dx2

≈−
Z Z

S2

1

ρðxÞðp̂
Bþ∇p̂A�þ −p̂A�

− ∇p̂B
−Þ · n̂2dx1dx2: (A-18)

Finally, using the explicit form of the versors n̂1 ¼ ð0; 0;−1Þ and
n̂2 ¼ ð0; 0; 1Þ, we can express equation A-18 as

ZZ
S1

1

ρðxÞ ðp̂
Bþ∂3p̂A�þ − p̂A�

− ∂3p̂B
−Þdx1dx2

≈
ZZ

S2

1

ρðxÞ ðp̂
Bþ∂3p̂A�þ − p̂A�

− ∂3p̂B
−Þdx1dx2: (A-19)

Equation A-19 is the one-way reciprocity theorem of correla-
tion type.
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