
Solving ML with ML: Evaluating the performance of the Monte Carlo Tree
Search algorithm in the context of Program Synthesis

Bastiaan Filius1

Supervisor(s): Sebastijan Dumančić1, Tilman Hinnerichs1
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Abstract
Machine learning pipelines encompass various se-
quential steps involved in tasks such as data ex-
traction, preprocessing, model training, and de-
ployment. Manual construction of these pipelines
demands expert knowledge and can be time-
consuming. To address this challenge, program
synthesis offers an automated approach to generate
computer programs based on high-level specifica-
tions or examples. By leveraging program synthe-
sis, the development of machine learning solutions
can be expedited, leading to broader adaptability.
A key element of program synthesis is the objective
function, which guides the combinatorial search for
a program that satisfies user-defined requirements.
This study examines the performance of the Monte
Carlo Tree Search (MCTS) algorithm in the realm
of generating machine learning pipelines through
program synthesis. The research investigates the
method’s efficacy, explores its findings in terms of
accuracy, cost, variance, and execution time, and
draws conclusions regarding the algorithm’s poten-
tial and limitations. By analyzing the MCTS al-
gorithm’s performance, this research contributes to
the advancement of automated machine learning
pipeline generation and highlights the benefits and
considerations associated with using program syn-
thesis techniques.

1 Introduction
Machine learning has gained significant traction across var-
ious domains [28]. However, one of the challenges is the
considerable time investment required to develop effective
machine learning solutions [19]. A crucial component of
machine learning pipelines is data preprocessing, which in-
volves cleaning, transforming, and preparing raw data to im-
prove model training and prediction accuracy. Determining
the appropriate data preprocessing techniques, selecting the
best machine learning algorithm, and tuning hyperparame-
ters often involve extensive trial and error. In this context,
an intriguing approach to address this challenge is the auto-
matic construction of machine learning pipelines using pro-
gram synthesis, which is explored in this paper.

Program synthesis is a subfield in the study of computer
science where high-level specifications or user-provided ex-
amples are used to automatically generate computer pro-
grams. It consists of creating methods and algorithms to close
the gap between the desired behavior of a program and how it
is implemented. Program synthesis can greatly simplify soft-
ware development, minimize programming errors, and allow
people that are less experienced in programming to design so-
lutions without having in-depth knowledge of programming
by automating the program development process [13].

To synthesize a machine learning pipeline, a crucial step
involves defining the necessary functionalities within a gram-
mar. These functionalities act as the fundamental building
blocks of the pipeline, encompassing various preprocessing

operations and a classifier. Once the grammar is established,
a search algorithm is employed to traverse it, facilitating the
iterative construction of the pipeline. In this paper, we uti-
lize the Monte Carlo Tree Search algorithm as the underlying
search algorithm for pipeline synthesis. By leveraging this
algorithm, we can effectively explore and generate optimal
pipelines through an inductive process.

The Monte Carlo Tree Search (MCTS) is a heuristic search
algorithm used in decision-making processes for problems
with large search spaces. It builds a search tree by travers-
ing and expanding nodes, representing states and actions.
MCTS balances exploration and exploitation by selecting
nodes based on statistical analysis. It performs random roll-
outs to estimate action outcomes and uses backpropagation to
update node statistics. With each iteration, MCTS refines its
estimates and converges towards high-quality actions. It has
been successful in game playing, planning, optimization, and
other domains, making it a popular choice for solving com-
plex decision-making problems [7].

In the process of finding and constructing a valid pipeline,
it becomes necessary to assess the quality of the generated
pipelines. Previous studies, such as He et al. (2021) [14],
have proposed techniques to accelerate evaluation and reduce
the number of options to consider. Additionally, Nguyen et al.
(2020) [20] introduced the concept of using a surrogate model
for machine learning pipeline evaluation. In this research,
we aim to integrate some of these solutions into the search
algorithm’s methodology. By incorporating these techniques,
we can enhance the efficiency and effectiveness of pipeline
evaluation, ultimately improving the overall performance of
the algorithm.

To conduct the experiments and evaluate the performance
of the MCTS algorithm, a diverse set of datasets is re-
quired. These datasets serve as input for the machine learn-
ing pipelines constructed by the algorithm. In this study,
we collected datasets using OpenML, a popular online plat-
form for machine learning and data mining. We collected
datasets, considering diverse domains and complexity levels.
This would allow us to evaluate the MCTS algorithm’s per-
formance across different problem spaces. We prioritized bal-
anced datasets with well-defined target variables. By leverag-
ing these diverse datasets, we simulated real-world scenar-
ios and assessed the algorithm’s ability to construct pipelines
for a wide range of problems. The dataset collection ensured
comprehensive evaluation of the algorithm’s adaptability to
various data characteristics.

The results will be compared to five other search al-
gorithms: Breadth First Search [3], A* [11], Metropolis-
Hastings [8], Very Large Neighbourhood [1], and a genetic
algorithm search [18]. Subsequently, the research question
is: How well does the Monte Carlo Tree Search algorithm
perform in the context of program synthesis?

The paper is structured as follows: Section 2 presents
the methodology used in this research, including the syn-
thesis of machine learning pipelines using the Monte Carlo
Tree Search algorithm. Section 3 describes the experimen-
tal setup, covering the datasets, hyperparameters, and per-
formance metrics. In Section 4, we present and discuss the
results obtained. The discussion of the findings, including a



comparison with other algorithms, is provided in Section 5.
Ethical considerations related to the research are discussed in
Section 6. Finally, Section 7 provides conclusions and out-
lines potential future work.

2 Methodology
The methodology employed in this study comprises five key
steps. First, a dataset of input datasets is created, provid-
ing the foundation for pipeline creation. Next, a grammar
is established to define the components and structure of the
pipelines. The Monte Carlo Tree Search algorithm is then
implemented to facilitate the search and construction process.
To expedite pipeline generation and evaluation, strategies for
speeding up these processes are employed. Finally, the gen-
erated pipelines are thoroughly evaluated to assess their per-
formance and effectiveness.

2.1 Dataset
To facilitate the synthesis of pipelines, we curated a diverse
dataset collection to serve as input, resulting in a useful
benchmark. The datasets were obtained from the OpenML
platform via its API, which is dedicated to open machine
learning resources [23]. A typical machine learning dataset
consists of a matrix-like structure, where rows represent indi-
vidual samples or instances, and columns represent features
or attributes. A fundamental characteristic of these datasets
is the association of each sample with a target class or label,
providing the basis for the machine learning algorithm’s pre-
dictive or classification tasks [24].

The choice was made to include three categories of
datasets. First, we included nine simple datasets that are
smaller in size, containing 4 to 42 features, and 2 to 3 target
classes. These datasets, as shown in Table 1, provide a solid
foundation for evaluating the performance of synthesized
pipelines. Second, we incorporated five complex datasets,
ranging from 2 to 6 target classes, 128 to 5000 features, and
between 2600 and 13910 entries. These datasets, visible in
Table 2, introduce higher levels of complexity to thoroughly
assess the capabilities of the synthesized pipelines. Last,
we included five datasets that were used in related research
[5][21][22], as presented in Table 3. The inclusion of these
datasets from comparable program synthesis studies enables
meaningful comparisons and further enhances the utility of
the benchmark.

By carefully selecting and incorporating datasets from var-
ious sources, including those found in related research, our
dataset collection has resulted in a comprehensive and repre-
sentative benchmark. This benchmark provides a solid foun-
dation for evaluating the performance and effectiveness of
the synthesized pipelines in different real-world scenarios and
challenges.

2.2 Grammar
A context-free grammar (CFG) is a formal grammar used to
describe the syntax of a language. It consists of production
rules that define how symbols can be combined. Terminal
symbols represent actual words, while non-terminal symbols
represent abstract syntactic categories. CFGs generate valid

Name ID Entries Features Target Classes
diabetes 37 768 8 2
qsar-biodeg 1494 1055 42 2
seeds 1499 210 7 3
wdbc 1510 569 30 2
iris 61 150 4 3
blood-transfusion 1464 748 4 2
monks-problems-2 334 601 6 2
ilpd 1480 583 5 2
tic-tac-toe 50 958 9 2

Table 1: Collection of simple datasets

Name ID Entries Features Target Classes
har 1478 10299 561 6
gisette 41026 7000 5000 2
madelon 1485 2600 501 2
musk 1116 6598 167 2
gas-drift 1476 13910 128 6

Table 2: Collection of complex datasets

strings by applying production rules, starting from a des-
ignated start symbol [9]. They are used in areas like pro-
gramming language design and natural language processing.
CFGs provide a formal framework for language structure de-
scription and serve as a foundation for parsing algorithms and
language processing techniques [10] [6].

We made use of the Herb.jl Julia framework on GitHub1.
This framework contains packages for a collection of com-
mon utility functions and structures, functionality for declar-
ing grammars, functionality for evaluating (candidate) pro-
grams, and search procedure implementations for the Herb
Program Synthesis framework.

The grammar we constructed is based on the grammar
found in Katz et al. (2020) [15]. One change we decided
to make was the removal of NoOp(). This terminal specified
that at that node no operation should be performed. However,
every pipeline containing a NoOp() could be rewritten to an
equivalent pipeline without the NoOp() operator. An exam-
ple of this can be found in figure 1. Removing this operator
allows for faster computation by reducing the search space.
The grammar enables the creation of a directed acyclic graph
(DAG) containing sequential and parallel processing opera-
tions. A DAG is a data structure composed of nodes con-
nected by directed edges, where the edges have a defined di-
rection and there are no cycles or loops within the graph. The
parallel operations are concatenated allowing for ensembles
of multiple classifiers.

The terminals of the grammar are operators from the Julia
scikit-learn library [25]. The choice for scikit-learn was made
as it is a powerful and one of the most commonly used li-
braries for machine learning [12]. To reduce the search space
we made the decision to keep the number of operators lim-
ited. We included seven feature preprocessing operators, five
feature selection operators, and five supervised classification
operators. The final grammar can be seen in Figure 2.

1https://github.com/Herb-AI



Name ID Entries Features Target Classes
glass 41 214 9 6
car-evaluation 40664 1728 21 4
spambase 44 461 57 2
wine-quality-red 40691 1599 11 6
wine-quality-white 40498 4898 11 7

Table 3: Collection of datasets used in related research

Figure 1: Equivalence of expressiveness after removing the NoOp()
operator.

2.3 Search
The MCTS algorithm, implemented in Julia, consists of four
main steps: selection, expansion, simulation, and backpropa-
gation. Since MCTS is classically used in game theory related
subjects some adaptions were necessary in its implementation
for it to be applied in this research. The nodes in the tree rep-
resent pipeline configurations that are derived from the gram-
mar. These derivations are done using a ContextFreeEnu-
merator from the Herb library which takes as an input: the
grammar, the maximum depth, and the starting symbol. An
overview of the algorithm in pseudocode can be found in Al-
gorithm 1.

Algorithm 1: MCTS
Input: grammar, dataset, maxIterations, c
Output: bestPipeline, bestScore

bestScore← 0;
bestPipeline← nothing;
for i← 1 to maxIterations do

node← rootNode;
while !isempty(node.children) do

node← SelectChild(node, c);
end
if node.visits > 0 then

node← ExpandNode(node, grammar);
end
score← Simulate(node.pipeline, dataset);
if score > bestScore then

bestScore← score;
bestPipeline← node.pipeline;

end
Backpropagate(node, reward);

end
bestCost← 1 - bestScore;

During the selection step, the algorithm employs the UCT

Figure 2: Context-free grammar for generating machine learning
pipelines.

(Upper Confidence Bound for Trees) selection policy [16] to
traverse the tree from the root node to a leaf node. The UCT
policy strikes a balance between exploration and exploitation
by considering the estimated value and exploration potential
of child nodes in the search tree. For the detailed pseudocode
of the selection step and the UCT policy formula, refer to Al-
gorithm 2. The UCT policy incorporates an exploration term
that takes into account the visit count of a node, the total visit
count of its parent, and an exploration constant c. This for-
mula encourages the algorithm to explore less-visited nodes
while favoring nodes with higher average rewards. Upon
reaching a leaf node, the algorithm checks if it has been vis-
ited before. If so, the node is expanded by adding all possible
pipeline derivations of one more depth as its child nodes, and
one is randomly selected. An exploration constant analysis
has been conducted to determine the optimal value for c, and
the experimental setup and results are presented in Sections 3
and 4, respectively.

Next, in the simulation step, the algorithm classically per-
forms a playout or rollout from the chosen node until a termi-
nal state or predefined depth is reached. Since in the case
of a machine learning pipeline a "win" or a "loss" cannot
be achieved the configuration at that node is evaluated which
produces an accuracy score.

Finally, in the backpropagation step, the results of the eval-
uated pipeline are backpropagated up the tree, updating the
statistics of visited nodes. It increments the visited and score
fields of the nodes by one and the accuracy score respectively.

By repeating these steps iteratively, MCTS explores the
state space more effectively over time, focusing on more
promising areas based on the collected statistics. The algo-
rithm can be terminated after a certain number of iterations,
and the best pipeline configuration is chosen based on the ac-
cumulated statistics.



Algorithm 2: SelectChild
Input: node, c
Output: bestChild

totalVisits← sum(n.visits for n in node.children);
bestScore← −∞;
bestChild← nothing;
for child ∈ node.children do

if child.visits = 0 then
score←∞;

else
explorationTerm← c * sqrt(log(totalVisits) /

child.visits);
score← child.wins / child.visits +
explorationTerm;

end
if score > bestScore then

bestScore← score;
bestChild← child;

end
end

2.4 Pipeline Generation and Evaluation

Executing pipelines during the search is an integral part of
the simulation step within the MCTS algorithm. In each iter-
ation of the search, a pipeline is generated and subsequently
evaluated to estimate its performance.

To expedite the training process, techniques were em-
ployed to limit the pipeline training to the first n samples of a
dataset. By using a subset of the data, the training time can be
significantly reduced without compromising the overall eval-
uation accuracy. This approach, commonly known as "data
subsampling," has been widely adopted in various AutoML
solutions, including TPOT, Auto-WEKA, and Auto-sklearn.

These AutoML frameworks also utilize data subsampling
techniques to improve computational efficiency during the
pipeline search process. By training on a smaller subset of
the data, these frameworks can explore a larger number of
pipelines within a limited computational budget. This strat-
egy is particularly advantageous when dealing with large
datasets, where training on the entire dataset can be time-
consuming and resource-intensive [14].

Additionally, to optimize the search process and avoid re-
dundant computations, a dynamic programming technique
was implemented. This technique involved storing pipelines
that had been generated but not yet fully utilized, allowing
them to be reused in subsequent iterations. By leveraging this
storage mechanism, redundant computations associated with
identical or similar pipeline structures were avoided, leading
to improved efficiency and faster convergence.

The combination of training on a subset of data and the
dynamic programming technique collaboratively enhance the
efficiency of the pipeline generation and evaluation process
within the MCTS algorithm. These optimizations not only
reduce the computational cost but also expedite the conver-
gence of the search towards high-quality pipelines.

2.5 Performance Evaluation
The evaluation of each generated pipeline was conducted us-
ing the "evaluate_pipeline" function. This function takes a
pipeline and the train and validation sets as input. It employs
the scikit-learn’s "fit" function to train the model using the
training set and generate predictions on the test set. The ac-
curacy of these predictions was then computed and returned
as the evaluation metric for the pipeline. In the case of in-
valid pipelines that could not be executed, a try-catch block
was implemented within the evaluation function. This en-
sured that if an exception occurred during pipeline execution,
an accuracy score of 0.0 was returned, preventing the influ-
ence of invalid pipelines on the overall accuracy calculation.

The cost of a pipeline was defined as 1 minus its accuracy,
serving as a performance measure where lower values indi-
cated higher accuracy. The "run_search" function played a
crucial role in the performance evaluation. It accepted param-
eters such as dataset IDs, the number of runs, grammar de-
tails, enumeration and pipeline depths, subsampling size, and
the number of MCTS iterations. By performing the MCTS al-
gorithm for the specified number of runs and calculating the
average accuracy over these runs, the function provided an
overall performance metric for the algorithm.

3 Experimental Setup
In our experimental setup, we elaborate on the used data, the
partitioning of the data, the chosen hyperparameters, and the
metrics used in the results.

3.1 Training Data
For the hyperparameter analysis and evaluation, we focused
on a subset of the benchmark datasets due to time and hard-
ware constraints, as discussed in Section 5. Due to these lim-
itations, only the diabetes, and spambase datasets were uti-
lized for the hyperparameter analysis, and the seeds, wdbc,
and har datasets were utilized for the evaluation. It is im-
portant to note that the seeds and wdbc datasets are rela-
tively simple, while the har dataset presents a higher level
of complexity. The choice to use different datasets for the
hyperparameter analysis and for the evaluation was done to
prevent overfitting, which occurs when the model becomes
overly specialized to the characteristics of a specific dataset.
If the same dataset is used for both hyperparameter tuning
and performance evaluation, there is a risk of selecting hy-
perparameters that are optimized for that specific dataset but
may not generalize well to new, unseen data. By using dif-
ferent datasets, you ensure that the hyperparameters are cho-
sen based on their ability to perform well on a variety of
data distributions. Although the dataset selection was lim-
ited, these datasets provided valuable insights into the behav-
ior and effectiveness of the MCTS algorithm within the given
constraints.

To ensure reproducibility, a seed value was used for shuf-
fling the datasets. Julia has a built in feature to input a custom
seed through its "Random" package. The seed used in this
research is: 1234. This seed guaranteed that the same shuf-
fling order was maintained across multiple runs, allowing for
consistent evaluation and comparison of results. The datasets



were then shuffled and divided into three sets: train, test, and
validation, with a ratio of 70:15:15, respectively. This parti-
tioning strategy facilitated training the pipelines on the train-
ing set, evaluating their performance on the test set, and fur-
ther validating the selected pipelines using the validation set.

3.2 Variable values
The exploration constant is the only hyperparameter of the
MCTS algorithm and it determines the balance between ex-
ploration and exploitation. The original paper introducing
UCB1 (Upper Confidence Bound), which is the policy used in
UCT, determined that the minimum value of c should be

√
2

[2]. This value has been adopted theoretically as the standard
value for c. However, the choice of the exploration constant
depends on the specific problem and the desired trade-off be-
tween exploration and exploitation. It is typically determined
through experimentation or domain knowledge. Different
values of c can lead to different behaviors and performance
characteristics of the algorithm. Therefore, a hyperparameter
optimization based on two datasets has been performed for
the exploration constant. The results are visible in Section 4.

Running the algorithm multiple times is essential for as-
sessing its robustness and stability. It enables the observation
of performance variability across different runs, providing a
more reliable estimate of the algorithm’s effectiveness. Aver-
aging the results helps smooth out random fluctuations and
outliers, yielding a more representative measure of perfor-
mance. In this study, the algorithm was executed 10 times
(n_runs = 10) to ensure sufficient assessment.

To expedite the training phase of the pipeline within each
iteration, subsampling was employed. This involved limiting
the number of samples (n_samples) used from the provided
training set. Subsampling is commonly utilized to address
computational and resource constraints in machine learning
tasks. In this research, it was specifically implemented to
alleviate the computational burden associated with training
models on large datasets. The value of n_samples was set to
300.

Considering that the algorithms would be executed on dif-
ferent hardware setups, it was decided not to employ a time
cutoff but rather limit the number of evaluated pipelines. This
approach aimed to ensure a fair comparison between the al-
gorithms. The maximum number of evaluated pipelines was
set to 100 (max_pipelines = 100).

The chosen values for n_runs, n_samples, and
max_pipelines were carefully determined to allow for
the algorithm to be run within a realistic timeframe without
compromising performance and the reliability of the results.

3.3 Metrics
To evaluate the performance of the MCTS algorithm and
compare it with other algorithms, we selected specific met-
rics that reflect its effectiveness in generating high-quality
pipelines. In our research, we considered three key perfor-
mance metrics: accuracy, cost, and variance.

Accuracy: Accuracy is a widely used metric in machine
learning that measures the proportion of correct predictions
made by a model. In the context of our research, accuracy

represents the effectiveness of the generated pipelines in cor-
rectly classifying or predicting outcomes. We calculate the
accuracy by comparing the pipeline’s predictions with the
ground truth labels from the test set.

Cost: In addition to accuracy, we also considered the cost
metric. The cost represents the inverse of accuracy, i.e., the
misclassification rate or the proportion of incorrect predic-
tions. By using the cost metric, we can evaluate the perfor-
mance of the pipelines from a different perspective, focusing
on the impact of incorrect predictions.

Variance: Variance is a measure of the variability or spread
in the performance of the algorithm across multiple runs. It
provides insights into the stability and consistency of the al-
gorithm’s results. By examining the variance, we can assess
the robustness and reliability of the MCTS algorithm in gen-
erating pipelines across different experimental runs.

By considering accuracy, cost, and variance as perfor-
mance metrics, we gain a comprehensive understanding of
the algorithm’s effectiveness, its ability to generate accurate
pipelines, the cost of misclassifications, and the consistency
of results. These metrics provide valuable insights into the
performance characteristics of the MCTS algorithm and en-
able a thorough comparison with other algorithms under eval-
uation

4 Results
In this section, we present the results of our study, which in-
cludes the performance evaluation of the Monte Carlo Tree
Search (MCTS) algorithm in generating machine learning
pipelines. We conducted a hyperparameter analysis to fine-
tune the algorithm’s exploration constant and assessed its ef-
fectiveness across multiple datasets. Additionally, we com-
pare the performance of MCTS with other search algorithms
to gain insights into its relative performance and potential ad-
vantages.

4.1 Hyperparameter analysis
In order to determine the optimal value for the exploration
constant (c), we conducted an analysis based on the average
accuracy over 10 runs. The results, depicted in Figure 3, in-
dicated that there was minimal variation for dataset 44. How-
ever, for dataset 37, the value of c =

√
2 yielded the highest

average accuracy. As a result, we selected this value of c for
further experiments and evaluations.

4.2 Performance MCTS
We conducted a comprehensive performance evaluation of
the MCTS algorithm on multiple datasets to assess its effec-
tiveness in generating pipelines. The evaluation was based on
10 independent runs on each of the three selected datasets,
and the following performance metrics were analyzed: aver-
age accuracy, average cost, variance, and average execution
time of which the results are visible in Table 4.

Across the 10 runs over the three datasets, the MCTS algo-
rithm achieved an average accuracy of 0.9598, demonstrat-
ing its capability to generate pipelines that yield accurate pre-
dictions on the evaluation datasets. The high average accu-
racy underscores the effectiveness of the MCTS algorithm in
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Figure 3: Hyperparameter optimization of the exploration constant.

Average over 10 runs 1499 1510 1478 Average

Accuracy 0.9281 0.9698 0.9814 0.9598

Cost 0.0719 0.0302 0.0186 0.040

Variance 0.00110 0.00034 0.00001 0.00051

Execution time 10.9 s 166.0 s 168.7 s 115.2 s

Table 4: Performance results of the MCTS algorithm.

exploring and selecting pipeline configurations that optimize
predictive performance.

The cost metric, representing the misclassification rate or
the proportion of incorrect predictions, was also calculated
for the MCTS algorithm. The algorithm achieved an average
cost of 0.0402, indicating its ability to minimize the impact of
misclassifications and generate pipelines with improved pre-
dictive accuracy.

Assessing the variance of the MCTS algorithm’s perfor-
mance is crucial to understanding its stability and consistency
across different runs. The variance analysis revealed a rela-
tively low variance of 0.00051, suggesting that the algorithm
consistently produces reliable results across the 10 runs. The
low variance indicates that the algorithm is robust and less
sensitive to random fluctuations or variations in the datasets.

The average execution time of our MCTS algorithm was
measured to evaluate its computational efficiency. Over the
10 runs, the algorithm achieved an average execution time of
115.2 seconds, showcasing its capability to generate pipelines
within a reasonable time frame. The efficient execution time
is particularly beneficial for large-scale datasets, as it enables
timely exploration of a wide range of pipeline configurations.

Overall, the MCTS algorithm demonstrates strong perfor-
mance in terms of average accuracy, average cost, variance,
and computational efficiency. The results highlight its poten-
tial as a valuable approach for automating machine learning
pipeline generation, effectively balancing accuracy and com-
putational resources.
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Figure 4: Comparison of Average Cost among Algorithms on Dif-
ferent Datasets

4.3 Comparison to other algorithms
To assess the effectiveness of the MCTS algorithm, its per-
formance was compared with several algorithms from other
research that used the same experimental setup, including
Breadth-First Search (BFS), A* [17], Metropolis-Hastings
(MH) [26], Variable Neighborhood Local Search (VLNS)
[27], and Genetic Algorithm (GA) [4]. The comparison was
conducted based on the same set of metrics used in the previ-
ous subsection.

When comparing the average accuracy across all algo-
rithms, the MCTS algorithm got similar results or outper-
formed the other algorithms. In terms of the cost metric, our
MCTS algorithm demonstrated favorable results. It achieved
the same average cost as BFS, a difference of 0.0113 when
compared with A*, MH, and VLNS, and a difference of
0.1202 when compared with GA, indicating its ability to gen-
erate pipelines with reduced misclassification rates and im-
proved predictive performance. This highlights the effective-
ness of the MCTS algorithm in minimizing errors and pro-
ducing high-quality pipelines. The comparison is visible in
Figure 4.

Analyzing the variance of the different algorithms revealed
that the MCTS algorithm exhibited a lower variance for al-
most all datasets, with the only exception being BFS on
dataset 1510, indicating greater stability and consistency in
its performance across the 10 runs. The lower variance sug-
gests that the MCTS algorithm consistently delivers reliable
results, making it a robust choice for pipeline generation. The
comparison is visible in Figure 5 (To enhance the clarity and
readability of the figure, the decision was made to exclude
the variance of the GA results, which was notably higher than
other values by a factor of 10, in order to prevent it from over-
shadowing the results of other algorithms).

In order to ensure a fair and meaningful comparison, the
decision was made not to compare the algorithms based on
their execution time. This choice was motivated by the fact
that the algorithms were executed on different hardware se-
tups, making the results less reliable and not directly compa-
rable.

Overall, the MCTS algorithm exhibits superior perfor-
mance in terms of average accuracy, cost, and variance when
compared to the BFS, A*, MH, VLNS, and GA algorithms.
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Figure 5: Comparison of Average Sample Variance Accuracy among
Algorithms on Different Datasets

The results validate the effectiveness and efficiency of the
MCTS algorithm as a promising approach for automating ma-
chine learning pipeline generation.

5 Discussion
The findings from our experimental analysis reveal notable
performance advantages of the MCTS algorithm compared to
alternative approaches, indicating its effectiveness within our
research context. However, it is important to acknowledge the
marginal improvements observed when comparing the MCTS
algorithm with the BFS algorithm, which is recognized for
its simplicity. This observation raises intriguing points for
further discussion.

The relatively marginal gains of the MCTS algorithm over
BFS could be attributed to the limitations of the datasets em-
ployed in our experiments. Due to constraints in time and
resources, we were unable to assess the algorithm’s perfor-
mance on more diverse and complex datasets. Consequently,
the algorithm’s potential for significant advancements might
have been underexplored. It is plausible that in complex prob-
lem domains, the MCTS algorithm could exhibit its superior-
ity over BFS by utilizing its inherent capabilities for explo-
ration and exploitation.

While our research focused on a restricted dataset selec-
tion, future investigations could broaden the evaluation to en-
compass a wider range of diverse and challenging datasets.
This expanded assessment would enable a more comprehen-
sive evaluation of the MCTS algorithm’s performance and
provide valuable insights into its effectiveness in addressing
intricate problem spaces. Additionally, exploring further al-
gorithmic enhancements and tailored adaptations specific to
the problem domain could unlock the algorithm’s full poten-
tial and lead to enhanced performance.

6 Responsible Research
This section addresses concerns related to the reproducibility
and credibility of our research. Firstly, we discuss the origin
and reliability of the datasets used in our study. Secondly,
we highlight the measures taken to ensure reproducibility in
our methodology. Lastly, we evaluate the credibility of the
conclusions drawn from our research findings.

6.1 Data usage
Within this subsection, we aim to address concerns surround-
ing the datasets employed in our research. The selected
datasets were sourced from OpenML, a well-established plat-
form recognized for its provision of open datasets in the do-
mains of machine learning and data mining. By leveraging
datasets from OpenML, we prioritize transparency, accessi-
bility, and reproducibility, benefiting from a centralized and
dependable data source. Moreover, a subset of these datasets
has garnered extensive utilization in analogous studies, attest-
ing to their quality and suitability for our research. The inte-
gration of datasets sourced from OpenML, a renowned and
established platform, bolsters the credibility and dependabil-
ity of our research findings. Furthermore, we conducted rig-
orous assessments to ensure data integrity and alignment with
the specific requirements of our study. By incorporating val-
idated datasets previously employed in similar research, we
increase the confidence in the usability and trustworthiness
of our data.

6.2 Reproducibility
The Herb framework we used for our experiments is an open-
source framework, which can easily be used for implement-
ing and evaluating our algorithm. While the framework itself
is readily accessible, it is important to note that the code used
in our experiments will not be published in this paper. In-
stead, we provided pseudocode and describe the variables and
parameters used in our algorithm. Although this approach
may introduce some variation if others attempt to implement
the algorithm on their own, we have taken care to ensure that
all variables and their values are clearly mentioned in the pa-
per. This transparency allows for a better understanding of
the methodology and helps in the reproducibility of our ex-
periments. However, due to the absence of complete code
implementation, some variations may arise when reproduc-
ing our results. We encourage future researchers to refer to
the Herb framework and the pseudocode provided in this pa-
per as a starting point for their own implementations, adapting
it to their specific needs and requirements.

6.3 Credibility
The credibility of our research findings is discussed in this
subsection. While we draw conclusions based on our obser-
vations, it is essential to recognize the limitations and scope
of our study. We acknowledge that the evaluation was con-
ducted on a limited set of datasets, which may restrict the
generalizability of our conclusions to broader problem do-
mains. We emphasize the need for further research to expand
the evaluation to include more diverse datasets and problem
scenarios, thus enhancing the overall credibility and applica-
bility of our findings.

7 Conclusions and Future Work
In conclusion, our experiments highlight the promising
performance of the MCTS algorithm, although it showed
marginal gains compared to the BFS algorithm The lack
of substantial improvement can be attributed to the limited
dataset complexity explored in this study. So to answer the



research question: How well does the Monte Carlo Tree
Search algorithm perform in the context of program syn-
thesis?, based on the results it shows potential but due to
the limitations it is still uncertain whether it is applicable to
more complex problems and datasets. Future research should
delve into more challenging scenarios and consider incorpo-
rating domain-specific adaptations to further enhance the al-
gorithm’s effectiveness in real-world applications.

Moving forward, we recommend conducting experiments
on more diverse and complex datasets to fully explore the
capabilities of the MCTS algorithm. Additionally, further al-
gorithmic refinements and modifications can be investigated
to improve its performance, such as incorporating domain
knowledge, refining the exploration-exploitation trade-off, or
integrating other optimization techniques.

By addressing these aspects and expanding the scope of
evaluation, future studies can provide a more comprehensive
understanding of the MCTS algorithm’s potential and its ap-
plicability in a wider range of problem domains. Such in-
sights will contribute to the ongoing advancements in search
algorithms and further propel the field of algorithmic opti-
mization in the context of our research area.

How well does the Monte Carlo Tree Search algorithm per-
form in the context of program synthesis?
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