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8. Artificial intelligence in railway traffic
planning and management Taxonomy, a
systematic review of the state-of-the-art of AI,
and transferability analysis

Ruifan Tang, Zhiyuan Lin, Ronghui Liu, Rob M.P. Goverde,
and Nikola Besinovic

I. INTRODUCTION

Artificial intelligence (Al) is described as a computerized system capable of performing phys­

ical activities and cognitive processes, solving a variety of issues, and making judgements 

without explicit human instructions (Kaplan and Haenlein, 2019). AI is becoming one of the 

most significant areas of study in almost all academic and industrial sectors. Unlike many 

other industries where Al applications have reached maturity, the railway industry is still in 

its infancy concerning AL Emerging evidence has begun to demonstrate the potential of AI 

in railway traffic planning and management (RTPM) and suggests that Al can play signifi­

cant roles such as optimizing complex railway timetables, rolling stock, and crew schedules, 

rescheduling trains with disturbances/disruptions, and enhancing the quality of customer ser­

vice. Moreover, from a global perspective, Gibert et al. (2016) anticipate that Al will soon 

become a standard tool in the rail business. In recent years, the phrase artificial intelligence 

has been more ingrained in everyday life. Due to its extensive usage, AI is sometimes incor­

rectly used as a synonym for topics that are closely related, such as machine learning, deep 

learning, and big data. 

As a result, there is often a lack of clarity on what AI represents, resulting in confusion and 

misunderstanding among academics and practitioners in both academic and public communi­

cations (McCarthy, 2004; Agrawal et al., 2017). Therefore, in this chapter, we first present an 

AI taxonomy for RTPM in Section IL Taxonomy is the classification of items based on their 

natural connections. It gives a shared language for discussing and exchanging information 

about a certain issue. Section II aims to define artificial intelligence, introduce taxonomy, 

and establish the required connections between AI and RTPM. It brings together these two 

domains by considering their respective AI and railway expertise simultaneously to define 

AI for the railway domain. This will open the path for a greater knowledge of AI vocabu­

lary and ideas in the railway sector - introducing Al professionals to RTPM subdomains. In 

Section III, a thorough literature review of the state-of-the-art of AI in railway transport is 

presented. Specifically, we analysed and evaluated publications from a comprehensive RTPM 

viewpoint, encompassing areas such as timetabling, routing, shunting, managing railway 

capacity, traffic analysis and forecast, and identifying disruptions for rescheduling. Section 

IV further discusses the applicability of AI approaches for traffic planning and manage­

ment in adjacent industries to railroads. This section then identifies and analyses the most 
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promising applications in the non-rail transport sectors that may be transferred to RTPM.

Finally, Section V concludes this chapter. 

II. Al TAXONOMY IN RAILWAY TRANSPORT

This section serves to define Al at a rudimentary level, introduce relevant taxonomy, and 

clarify the essential links between AI and railway traffic planning and management (RTPM). 

The purpose of this section is to bring together two domains, as well as experts from both Al 

and railways, to define AI for RTPM. This will allow railway practitioners to obtain a better 

understanding of AI vocabulary and concepts and introduce railway subdomains to those who 

have considerable expertise in AI but little knowledge about railway planning. 

A. AI

Al is defined as any machine that acts intelligently (Przegalinska, 2019) or exhibits features 

associated with human reasoning. To put it another way, AI research strives to develop intel­

ligent agents that think and act similarly to humans, according to this broad definition. The 

Jack of a globally acknowledged definition of "intelligence" is the fundamental drawback of 

• such a definition. Intelligence refers to an agent's ability of learning, understanding, reason­

ing, planning, and solving issues in a conceptual sense. However, quantifying, describing, and

measuring these features is extremely difficult. As a result, one of the most common defini­

tions of intelligence in the AI domain is based on an agent's ability to pass the "impersonation

game", also known as the Turing test (Turing, 2009): a machine is considered intelligent if it is

indistinguishable from a human during an interaction with an impartial observer.

Besinovic et al. (2021) propose an AI taxonomy with the goal of framing the complexity 

of AI terminology after introducing the concept of AI in the railway planning and manage­

ment domain, which also considers fundamental requirements of future intelligent railways. 

A Unified Modelling Language (UML) class diagram (see Figure 8.1) is used to represent the 

taxonomy, allowing for a more formal and effective depiction. Three basic concepts comprise 
the proposed taxonomy: 

• 

• 

• 

AI techniques - representing methods, algorithms, and approaches that enable systems to 

perform tasks commonly associated with intelligent behaviours, such as machine learn­

ing and evolutionary computing. 

AI research fields - representing research areas that rely on AI techniques and would not 

exist without them, such as expert systems, data mining, and pattern recognition. 

AI applications - representing cross-domain applications that leverage Al to improve 

performance and usability, for example, computer vision, speech recognition, planning 

and scheduling. 

Figure 8.1 illustrates a class diagram, in which classes represent taxonomic ideas. The AI 

subcategories - AI technique, AI research field, and AI application - are organized based on 

the aforementioned definitions. 

As we discussed before, artificial intelligence is commonly defined as the ability of 

a machine to perform tasks that would need intellect if performed by people. We broadly 
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Figure 8.1 Artificial intelligence taxonomy class diagram 

investigated the methods, algorithms, and disciplines that enable an artificial entity to do
such intelligent activities in practical scenarios. The following paragraphs will provide more
descriptions and examples of the AI classes we defined. 

The first subclass of AI technique, evolutionary computing, is formulated by biologically
inspired algorithms and methodologies (e.g., evolutionary algorithms and swarm intelligence).
Logic programming, as the second subcategory we identified, is a collection of programming
paradigms that use first-order logic to infer new information from priors (e.g., PROLOG). And
the third subcategory, machine learning, is a holistic notion that adheres to the following logic:
typically, an ML algorithm can only be used within a certain learning paradigm, in a specific
learning scenario, and with a fixed training modality. The learning paradigm is the strategy
used to guide the algorithm during the learning process, such as supervised/unsupervised/
reinforcement learning. A learning scenario describes the distinguishing features of the task
under consideration, such as multi-tasking, single-tasking, and one-shot. The training modal­
ity gives information about how the training phase is implemented, for example, knowledge
transfer from another task/domain (transfer learning) or training from scratch. In other words,
the desired outcome would directly determine the type of ML task, such as classification, 
regression, or clustering. The series of operations needed to train a model, including support
vector machines, tree-based, Bayesian, and artificial neural networks, is referred to as ML
algorithms. 

The term AI research field refers to domains/research areas that were created from the
AI fundamental principles and cannot exist without it. Some notable examples in this cat­
egory are represented as unsupervised machine learning paradigms. Expert systems are a 
branch of implementing AI into software to emulate the decision-making process of experts in 
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certain fields (e.g., physicians for medical imaging). Data mining (DM) is a set of procedures
designed to extract information from raw data. Pattern recognition is the discipline of recog­
nizing, detecting, and discriminating samples using data patterns. And adversarial search is
the study of environments in which agents act in the presence of other opponents. 

The Al application is a category linked to AI with a one-way association, which means
that the former relies on the latter (and not the other way around). This class contains a lot
of domains, research areas, and topics that are not strictly bound to typical AI. Nevertheless,
they are increasingly relying on AI, even to the point of starting to be considered feasible only
with Al. The range of Al applications is enormous. Among these, the following areas have
close relevance to RTPM: scheduling and planning - a set of tools that uses AI to organize
activities and processes, and operations research, in particular its subfields that use AI to 
improve the performance of optimization procedures, are some of the most common. The
capability of a system to interpret and produce non-structured texts or sounds into understand­
able knowledge by machines is known as natural language processing and speech recognition.
Robotics is the collection of algorithms meant to guide a robot, even giving robots human
perception and behaviour. Image processing and computer vision are applications using AI
algorithms to encompass image acquisition, processing, inferring, and so on. 

B. Mapping AI to Railway Traffic Planning and Management

According to Besinovic et al. (2021), mapping matrices are created to demonstrate the inter­
sections between railway traffic planning and management a111d Al. We define the current
condition of each cell as it is recognized in scientific research and/or practice. Based on the
corresponding matching, each cell receives one of the three labels: certain (Y ), potential (P),
or uncertain (U). Relevant publications, such as those from railways or other areas, are pro­
vided where applicable to support the conclusion of a cell. The following rules are used to
identify whether an entry in the three tables belongs to Y, P, or U. 

Y. Exactly matched applications can be found in academic journal/conference papers and/or
successful real-world applications can be found in magazines/news or other media. 

P. Similar applications of the match can be found in academic journal/conference papers and/ 
. or real-world applications. For example, an application of Al in a sector other than rail,

but the principles are potentially transferable. 
U. The databases cannot find any explicit literature/reports/applications, even from other

related domains. In addition, we use our own discretion based on the authors' expertise
and experience. 

The Y cells, for example, indicate well mappings between an existing AI research subcategory
and a specific task solving in railway planning and management have been found. Instead,
the cells marked with P and U give the information that only a few attempts and no explicit
attempts have been found, which reflects prospective research options that are worth inves­
tigating for additional in-depth studies. That is, some of those with higher matching degrees
could be transferred more easily from related domains to the RTPM domain. 

From Table 8.1 it can be seen that many AI research fields have been extensively introduced
in railway traffic planning and management, tackling delay prediction, timetabling, and traf­
fic rescheduling, and also including some more strategic planning decisions, using techniques 
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Table 8.1 Mapping matrix for railway traffic planning and management and AI 
subcategories 

AI taxonomy Subcategories Match Concerning tasks for Key reference 
degree Rail traffic planning 

and management 
AI research field Exper t systems y Train rescheduling (Schaefer and 

Train timetabling Pferdmenges, 1970) 
(Yin et al., 2014) 

Data mining y Performance (Liu et al., 2018) 
assessment (Cerreta et al., 2018) 
Delay pattern (Wen et al., 2019) 
recognition 
Train dispatching

Pattern recognition y Train rescheduling (Nygren et al., 2017) 
Adversarial search y Train timetabling (Fragnelli and 

Sanguineti, 2014) 
AI techniques Evolutionary computing y Train timetabling (Barman et al., 

2015) 
Machine learning y Delay analysis (RoBier et al., 2021) 

Train rescheduling (Nygren et al., 2017) 
Train timetabling (Khadilkar, 2018) 
Train shunting (Peer et al., 2018) 

Logic programming u 

AI applications Operational research and p ML-based timetabling (Bengio et al., 2021)
scheduling and rescheduling 
NLP and speech p Overall management (Briola et al., 2013) 
recognition 
Computer vision and u 

image processing 
Autonomous systems and u

robotics 

Source: Authors. 

such as clustering, reinforcement learning, and evolutionary algorithms. The themes marked 
U are more adventurous, that is, difficult to realize on the technical side, or future research 
opportunities that appear to be underappreciated by the research community and practitioners 
at the time. Some of the intersections that presented U have been identified, such as traffic 
manag�ment and computer vision/speech recognition, autonomous driving, and logic pro­
grammrng, and could provide intriguing research avenues. 

C. Explainable AI and AI Ethics in RTPM

B�cause of technological advancements, data produced in safety-critical systems, such as 
railways, are more difficult to be properly interpreted (Hamon et al., 2020). Explainable AI 
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(XAI) (Arrieta et al., 2020) concerns are thus on the rise and becoming increasingly sig­
nificant. Methods and strategies for making outputs comprehensible by people are referred 
to as XAI. XAI is concerned with three distinct concepts: interpretability (also known as 
transparency) is the capability of a model to be understood by a human observer, allowing 
interventions for making empirical decisions and improving robustness; explainability is the 
feature of a model to perform actions and procedures to elucidate its behaviour. The ability 
of a model to represent its learned knowledge in a human-understandable manner is known
as comprehensibility. 

RTPM is a sector where considerations of AI ethics and explainability should be addressed. 
Nevertheless, not all applications illustrate significant enough evidence for authorities' inter­
vention to be justified. As a result, it is vital to concentrate attention on the specific use-case 
by assessing its potential hazards and consequences for human health and the environment. 
In general, we could say that surely the subdomain of RTPM will receive greater and imme­
diate attention from the legislative point of view, for example, dispatching control and staff 
scheduling. 

III. LITERATURE REVIEW AND OVERVIEW

In this section, we present a systematic literature review for recognizing the current state-of­
the-art in the RTPM sector in order to comprehend the current position of AI as a whole in rail­
way planning and management. This review bridges the gaps from defining the AI taxonomy
among traditional RTPM applications towards shaping the roadmap of AI in future RTPM. 

A. Graphical Overview of the Investigated Papers

In this subsection, we first analyse the selected articles by identifying the details of how the 
included studies are distributed over the latest 10-year period regarding their publication time. 
We further divide all these studies into four categories according to the tasks they oriented: 
rescheduling and disruptions, traffic analysis, tactical planning, and strategical planning. In 
addition, we classify the papers based on the specific railway topic/research focuses within
each category and then two pie charts were generated accordingly. 

Number of papers in each single year 
We systematically inspected the selected papers by quantitatively measuring how many arti­
cles have been included in each year. We summarize the number of papers over the years in
Figure 8.2. 

There are only three relevant papers found that were published before 2011. The sum of
available studies before the end of 2017 was noticeably lower and fluctuated between two and
four. However, the number of qualified papers has significantly increased since the year 2018, 
exceeding eight in the years 2019 and 2020. While the number of selected papers published in
2021 and the first half of 2022 dropped to four and five, respectively. 

Paper distribution in RTPM with respect to its tackled tasks 
Based on the RTPM research objectives listed in Figure 8.3, the proportion of articles published 
in these four self-defined task categories are displayed: papers belonging to tactical planning 
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Figure 8.2 Distribution of papers in each year

are the primary components, which make up 40% of the included studies - more than six timesthe percentage of papers in strategical planning. Up to 30% of the studies chose traffic analysis as their research objective - the second most popular task among RTPM. Researchers also have shown huge interest in disruption investigation and rescheduling tasks (with a proportion of 24%). 

Paper distribution in RTPM with respect to its focused topics AI has been greatly used to solve a variety of challenges in traffic planning and manage­ment, including timetabling, routing, shunting, managing railway capacity, traffic analysis and forecasting, identifying disruptions for rescheduling, and so on. A pie chart is depicted in Figure 8.4 to uncover the current research status on various problems/topics. In RTPM, delay analysis/prediction yields the most prominent research attention amongother problems/topics and the percentage of papers choosing this topic reached 26% - over sixtimes the figure than those for solving conflict prediction. Rescheduling was also a popular research direction and the percentage of papers is a similar level to train timetabling problems(22% and 20%, respectively). Third, 10% of the selected papers fall into the group of railwaycapacity management, while the figure was slightly higher than that of track design/manage­ment, train routing, and other remaining topics. 
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Figure 8.3 Categorized research objectives in RTPM 
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proposed by Briola et al. (2013) for improving the experience of a user interface when using
natural language queries. 

Tactical planning 
The tasks of scheduling, routing, and shunting have been considered in relation to tactical 
planning. Given that tactical planning problems are typically designing constraints for illus­
trating the trade-off between requests of using public infrastructure resources and limita­
tions on these resources, and are based on which to optimize as a multi-criteria objective 
function. For example, a well-experienced dispatcher aims to produce a feasible timetable 
that ensures that there are no conflicts along the entire track line (or in a station area/depot). 
Diverse AI-based methods, such as bioinspired algorithms (Tormos et al., 2008; Ho et al., 
2012) and reinforcement learning (RL) models (Khadilkar, 2018; Peer et al., 2018; Salsingikar 
and Rangaraj, 2020; Ying et al., 2020) can help to ease this procedure. 

We thoroughly examined the design goals of these research studies and categorized them 
into two types: train operator-centred studies (e.g., Tormos et al. (2008) and Khadilkar 
(2018)) and quality of service-centred studies (e.g., Schiipbach et al., 2018; Xue et al., 2019; Cao et al., 2022). The first paradigm tries to provide a workable schedule that details the 
times of each train's departure and arrival so that the necessary resources may be allocated 
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to each one (e.g., rail infrastructures and facilities). Although customer-centred models focus 
on service quality, they also attempt to cut down on overall travel time and waiting times 
during transfers. 

In order to reduce overall train delays, Barman et al. (2015) created a heuristic model
from the perspective of the passengers, which combines a number of fixed path formulations
with a GA to choose the least-time-cost path for each train. Similarly, two GA-based time­
tabling approaches were presented (Tormos et al., 2008; Arenas et al., 2015). Additionally,
Ho et al. (2012) describe the negotiation process between infrastructure providers and train
operators as a multi-objective optimization problem to create a track access rights agreement.
Alternatively,. Fragnelli and Sanguineti (2014) proposed a game theoretical model to optimize
timetables, where train operators are able to exchange information on their own needs and are
compensated by potentially increasing the resource utility. In order to solve a route optimiza­
tion problem and analyse simulation results from a quantitative and qualitative perspective, 
Wang et al. (2019b) and Bretas et al. (2021) created a continuous multi-objective swarm intel­
ligence system and a decentralized multi-agent system, respectively. Yin et al. (2019) devel­
oped a three-phase heuristic approach to solve a demand-responsive scheduling issue, while
Goverde et al. (2016) employed a hybrid performance-based timetabling strategy where they
chose a number of performance indicators to assess and create schedules. 

Towards automated railway capacity planning and allocation, Noursalehi et al. (2021)
performed real/short-time origin-destination (OD) demand prediction in a transit system, in
which three CNN layers were used to learn spatial dependencies so that train operators could
implement dynamic control strategies and provide useful customer information. To the same
aim, Asad et al. (2020) leveraged historical passenger data recorded by radio frequency identi­
fication (RFII)) sensors to develop a mobility and capacity prediction model. Xue et al. (2019)
also used a GA to discover the best solution in a double-routing optimization model in order
to utilize lost capacity at a constant departure frequency. Schupbach et al. (2018) presented
an automated schedule generation process using GA formulations in the context of the Swiss
Federal Railway and provided a step-by-step methodology for a new capacity planning para­
digm based on the service improvement aim. 

To assign track resources to each train and optimize departure and arrival times during
timetabling, a reinforcement learning algorithm was created with the aim of reducing the
overall priority-weighted delay (Khadilkar, 2018). Similarly, Peer et al. (2018), Schiipbach
et al. (2018), and Ying et al. (2020) used deep reinforcement learning techniques in the prob­
lems of single-track routing, metro train scheduling, and train unit shunting, respectively.
In particular, to achieve superior performance to exact operational research approaches,
Peer et al. (20 18) and Ying et al. (2020) trained convolutional neural networks (CNNs)
with the input matrices of state representations on allocations for metro trains and shunt­
ing yards. 

Traffic analysis 
The characteristics of statistics for large-scale railway networks include a significant number
and variety of formats. The demands of finding patterns (from a huge-sized dataset) in current
railway traffic may be too difficult for conventional data analysis methods to meet. Therefore,
novel DM analysis tools (Wang and Zhang, 2019; Cerreto et al., 2018; Keeman and Goverde,
2014), evolutionary-based strategies (Oneto et al., 2017), graph convolutional networks (Zhang
et al., 2021), and other approaches have been developed to address the challenges in delay 
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�nalysis and c?nflict predictio_n. Using a supervised approach, Liu et al. (2018) built a sophis­
ticated three-tier DM processrng system for analysing train timetable performance measure 
(such as arrival punctuality or running time of the entire line). Cerreto et al. (2018) used a D� 
method based on k-means clustering to identify significant delay patterns and provide a con­
cise explanation of the underlying c�uses for each cluste�ed group of delay occurrences. Wang 
and Zhang (2019) proposed a gradient-boosted regress10n tree model to investigate how the 
effects of weather and timetables might affect train delays. Similar to this, Laifa et al. (2022)
and Wang (2022) presented two novel two-layer light gradient boosting machine (LightGBM) 
models and a KNN-based classifier for predicting passenger train delays in long-distance rail­
way and urban rail systems, respectively. Huang et al. (2020) created a model that combines 
a fully connected neural network with two long short-term memory (LSTM) layers in order 
to study operational interactions between trains, and as a result, anticipate delays. Based on 
this, the same group of Huang et al. (2021) designed a cost-sensitive deep learning framework 
called FCF-Net, which consisted of several fully connected CNN and CNNs, and these com­
ponents handled train timetables as images to capture interactions of train events. Keeman 
and Goverde (2014) created several data-driven methodologies, including robust linear regres­
sion, tree-based algorithms (e.g., regression trees, random forest), and dynamic arc-weighted 
event graph models for precisely predicting running and dwell time, train event times, and 
expected conflicts. 

In a similar manner, Oneto et al. (2017) used big data analysis techniques (such as deep/
shallow extreme learning machines) to create a data-driven railway delay prediction sys­
tem that took previous train movements and weather patterns into account. Additionally,
Prokhorchenko et al. (2019) suggested a model to estimate the arrival time of freight trains by 
combining ANNs and multi-layer perceptron methods. In order to estimate arrival times for
freight traffic on American railroads, Barbour et al. (2018) proposed a data-driven approach
to forecast the arrival times of specific freight trains based on their characteristics, which
compared the performance of various supervised ML models. 

By utilizing a temporal fuzzy reasoning method, Zhuang et al. (2016) bridged the gap
between a conventional methodology and an innovative solution to conflict prediction prob­
lems. Differently, Besinovic et al. (2013) proposed a program for train length prediction and
offered a simulation-based method for improving the parameters in train dynamic equations
of the program, which is beneficial for a more trustworthy and reliable train running time
model. 

Rescheduling and disruptions 
Several studies have looked into rescheduling issues in disturbance and service interruption,
and they have suggested solutions based on bioinspired techniques (e.g., Wang et al., 2019a)
and reinforcement learning (e.g., Obara et al., 2018; Roost et al., 2020). Train-oriented and pas­
senger-oriented goals can both be recognized as unique objectives. For example, Wang et al.
(2019a) considered discrepancies between the scheduled timetable and the actual rescheduled
timetable such that total/primary/knock-on train delays could be reduced accordingly, with
the objective of maximizing the quality of services for passengers or increasing passenoer
satisfaction (e.g., Obara et al. (2018)). 

0 

To decrease the total number of trains whose delays exceed a predetermined threshold and 
th� su_m of secondary delays, Wang et al. (2019) developed a GA-based particle swarm opti­
mization (PSO) approach. On the other hand, Kuppusamy et al. (2020) introduced a new train 
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timetable rescheduling model that integrated the improved genetic algorithm and LSTM-R�N
with the goal of minimizing power consumption by adopting the full benefits of reproductive 
braking energy in a random circumstance. Expert systems and knowledge-based decision sup­
port systems have recently gained attention due to their ability to drastically reduce calcula­
tion time. The suggested models, such as those by Schaefer and Pferdmenges (1970) and Fay 
(2000) often employ cost functions measured by the total number of delays experienced by the
train. In some studies (Obara et al., 2018; Ning et al., 2019; Kubosawa et al., 2022; Zhu et al.,
2020), the deep Q-network method, the deep-RL approach, and pure RL were suggested. In
these approaches, an agent is in charge of adjusting running time and generating departure
sequence instructions with the aim of maximizing passenger satisfaction and minimizing ��e
average total delay for all trains along the railway line. Asynchronous advantage actor-cntic
RL which was created by Google DeepMind (Babaeizadeh et al., 2016), was also employed
by Roost et al. (2020). In addition, Q-learning is used in the study by Semrov et al. (2016) to
reschedule trains in a Slovenian real-world network when there are delays on a single track. 
The empirical findings show that this Q-learning-based method may generate rescheduling
solutions that are at least comparable and frequently better than those of numerous fundamen­
tal rescheduling methods (such as first in first out - FIFO - and random walk). In contrast,
Zheng et al. (2014) developed a hybrid biogeography-based optimization algorithm coupled
with differential evolution to reduce the weighted delivery time in the issue of disaster relief
supply operations. 

Data sources 
For ti·affic planning and management, various historical data have been used such as real­

ized traffic movements (Oneto et al., 2017; Khadilkar, 2018), infrastructure occupation data

(Keeman and Goverde, 2014; Besinovic et al., 2013; Ho et al., 2012; Schupbach et al., 2018;

Goverde et al., 2016), historical weather records (Wang and Zhang, 2019), existing train sched­

uled timetables (Wang et al., 2019a), the topology of rail networks (Zheng et al., 2014), and

accident event data (Fink et al., 2013). For comparing the important aspects of different data

types (i.e., what each type of data includes, how each type of data is collected and obtained,

and the advantages/limitations challenges when they use these data), Table 8.2 summarizes

the essential information. 

IV. TRANSFERABILITY ANALYSIS FROM OTHER TRANSPORT

SECTORS

This section addresses the transferability of AI techniques used for traffic planning and man­
agement from the aviation and automotive sectors to railways. These sectors have experienced 
significant progress in AI applications in the last few decades. We first present brief reviews 
on the application of AI in air and road transport. 

A. Al-based Emerging Technologies in Aviation

Traffic prediction 
The two most popular techniques in estimating aircraft arrival time are physics-based meth­

ods and machine learning (ML)-based approaches. Existing applications for the first method
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were often designed with a trajectory-based operation (TBO) paradigm, where the trajectory 
becomes one of the key features that significantly determine air traffic management capa­
bilities. Such an implementation, called air/ground trajectory synchronization (AGTS) by 
Fernandes et al. (2020), aims to choose the most precise scheduled time of arrival. Ayhan 
et al. (2018) created a brand-new technique for predicting expected arrival times for commer­
cial flights. To gather essential information including weather conditions, flight operations, 
and airport facts along the possible flight path, the system learns important characteristics 
from prior trajectories and its appropriate 3D grid points. Several well-known machine 
learning techniques, including gradient boosting classifiers (Chakrabarty, 2019; Thiagarajan 
et al., 2017), decision trees (Al-Tabbakh and El-Zahed, 2018), random forests (Rebollo and 
Balakrishnan, 2014), and hybrid models (Choi et al., 2016) have been broadly implemented in 
the process of aircraft delay prediction. 

The majority of forecast models, such as Nilim et al. (2001), primarily concentrated on 
weather-related delays and how these delays spread in extreme meteorological conditions. It 
is now evident that an increasing number of applications predict upcoming network-related 
delays for a specific airline. For instance, Xu et al. (2005) were able to capture interactions/ 
communications among airports using a systematic Bayesian network. Another established 
truth is that the standard machine learning-based techniques discussed above frequently per­
form less than optimally because the complexity and volume of data resources are constantly 

• increasing, demanding more effective pre-processing approaches for handling the data. Thus, 
to this point, deep learning techniques and big data approaches are introduced, for example, 
by Kim et al. (2016), Khanmohammadi et al. (2016), and Belcastro et al. (2016). When tack­
ling challenging traffic classification jobs, a hybrid structure that mixes deep learning and big
data algorithms can analyse a large amount of data . 

Strategic/tactical airspace planning 
The global air traffic management (ATM)  system now in place for civil aviation is managing a 
significant amount of demand, which is still increasing. This high demand can potentially lead 
to problems with demand-capacity balancing (DCB) issues. Given this context, an innovative 
AI-based solution has been presented by Amaral and Zang (2019), who are using unmanned 
aerial vehicles (UAVs) to execute three degrees of freedom (3D) path planning, route algo­
,:ithm, and navigation. Conventional and node-based algorithms are the most popular options 
for path planning, according to the findings of Amarat and Zong (2019). 

Air traffic flow management 
The two main areas of air transport system study are air traffic flow management (ATFM) and 
airspace research, for example, in Wu and Caves (2002) and Tosic and Babic (1995), with the 
latter being particularly important to the tactical aerospace management we previously stated. 
Airport capacity, facility utilization, aircraft operations in the airport terminal manoeuvring 
area, and aircraft ground operations research are among the study subjects at the airport level 
(Gilbo, 1997; Bertsimas and Patterson, 1998; Ma et al., 2016; Guclu and Cetek, 2017). Future 
research areas of interest could include integrating airport and airspace capacity, creating 
airport information systems to better utilize airport capacity, and enhancing flight schedule 
planning to increase the accuracy of schedule implementation. 

Since the early 1970s, researchers have been made aware of the difficulty in modelling 
and optimizing airport capacity (Zografos et al., 2017). In contrast to other public transport 
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options, assigning flights with ground-holding delays at the origin airports is a success­
ful sti:ategy to prevent aircraft delays brought on by a lack of airport capacity (Terrab and
Odom, 1993). Deterministic models and stochastic and dynamic assignment models for
ground-holding are some examples of solutions (Glover and Ball, 2013). An airport net­
':ork's air traffic �on�rol ha_s recent!� been optimized utilizing AI-based heuristic algo­
nthms and_ dyna�c s1mulat1on techmques (Wang et al., 2021), with the goal of analysing
aucraft traJectones. 

The recent increase in demand for UAVs has made managing air traffic flow even more
difficult. The advancement of automated dependent surveillance-broadcast (ADS-B) technol­
ogy makes it feasible to construct a more sophisticated ATFM architecture such that aerial
vehicles may be followed and monitored accurately in real time. All of these developments 
must ?e _built _using big data technology and robust machine learning algorithms. For example,
an aviation big data platform in the study of Gui et al. (2020) consists of a set of distributed
ADS-B ground stations. The air traffic flow between different cities can be efficiently col­
lected and anticipated by utilizing the extracted information collected from different datasets
and mapping them along routes. The experimental findings of Gui et al. (2019) using actual
data show that this new traffic flow prediction model would perform better with LSTM as the
primary predictor. 

B. AI-based Emerging Technologies in Road Transport

Dynamic traffic prediction 
Clustering algorithms. While K-means clustering (Li et al., 2016) is regarded as an efficient 
and adaptable algorithm for large datasets, fuzzy C-means (FCM) (Chen et al., 2019) or origi­
nal C-means methods (Yang et al., 2012) are the most often used approaches and they play a 
crucial part in traffic pattern detection. Except for studies using DL, because they can process 
input data across multiple layers, many studies utilize clustering prior to the main prediction 
model (Akhtar and Moridpour, 2021). To this point, clustering and data pre-processing are 
often carried out simultaneously, at least initially, with datasets that are primarily unstruc­
tured and unclassified. 

It is difficult to generalize traffic congestion forecasting research using various methods. 
The study location, data collection timeframe, predicted parameters, prediction intervals, and 
validation process are shared elements among the pertinent publications. Several articles used 
the scenarios of transportation corridors and segments (Lee et al., 2015; Onieva et al., 2016; 
Yang, 2013). The traffic network (Yang et al., 2019; Zaki et al., 2019), the ring road (Wang 
et al., 2015), and the arterial road are additional study scenarios (Jain et al., 2017). The time frame of the data gathering ranged from years (Kim and Wang, 2016) to less than a day 
( Wang et al., 2018). Mean absolute error (MAE), symmetric mean absolute percentage error 
(sMAPE), and root-mean-squared error (RMSE) are the validation techniques that compare 
the results with the ground truth value or other models. 

Probabilistic reasoning is an important part of the conventional definition of AI from a 
semantic perspective. For coping with ambiguous knowledge and reasoning, it has been used 
extensively in the comprehension and identification of traffic congestion. Traffic data are grow­
ing more complicated and non-linear due to the length of the timeline and spatial dependence. 
Fuzzy logic is now a widely used technique for predicting dynamic traffic congestion due to its superior capacity to handle ambiguity and vagueness in place of binary results (Onieva et al., 
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2012). The most popular fuzzy logic implementation in studies on traffic engineering is the
fuzzy rule-based system (FRBS). By simulating them in operational IF-THEN rules, it is able
to handle the complexity that results from real-world traffic conditions. In practice, these rules
are optimized by using different GAs. For example, Daissaoui et al. (2015) integrated the Ant
colony optimization (ACO) algorithm into the fuzzy logic system to predict traffic congestion
one minute in advance from the moment that information is provided by passing cars. The 
GPS information from each vehicle was interpreted as a pheromone, which is congruent with 
the idea of ACO. 

Tactical road capacity planning 
JoT-based approaches can be easily introduced into smart objects to simulate human
learning processes, although cognitive computing has recently grown in favour of IoT, fre­
quently alluded to as the cognitive loT (CloT). In the past, drivers assumed entire respon­
sibility for controlling the vehicle in a variety of unforeseen circumstances, such as lane
changes and lane acceleration. However, human drivers may be inattentive or distracted,
which could result in irrational outcomes like a collision, choosing the wrong route, and
speeding. The intelligent transportation system is able to carry passengers in the most
secure and effective manner from the viewpoint of public transport. Accessing real-time
data right after they are produced is necessarily important for reaching this degree of
efficiency. Transport will be safer as a result of the increased accuracy of traffic flow
brought about by the connectivity possibilities between vehicles and traffic control centres.
A dynamic map of traveller flows will be generated accordingly, for instance, by analysing
the trajectory/volume data that is acquired by sensors, cameras, and loT equipment that is
dispersed on buses, trains, and subway systems. Because of this, intelligent route planners
can analyse each person's movements individually and make recommendations that are
more precise than experts. 

For people who want to take the bus, Puiu et al. (2017) have created an app that offers route
suggestions and alerts about incidents. Real-time bus arrival-departure data streams and cit­
izen-reported incidents were processed to complete this application. Each user in this system 
contributes to the network's real-time traffic and loT information feed while also receiving 
benefits from it. 

MLP-based methods. The scope of conventional road traffic planning and management was
undoubtedly expanded by successful trials of finding potential travel routes. For instance, Hu
et al. (2020) used the open data resources of Google Maps and its "multiple destination" func­
tion to search for potential routes between origin and destination in order to meet the demand
for a delivery service at the end of this commercial chain, which was a brave attempt to face
the demand of ever-expanding e-commerce businesses. For the purpose of simulating traffic
conditions, these routes were fed into a multi-layer perceptron model. Dijkstra's algorithm
would generate the best route selection. After calculating every route that could possibly exist
between the starting point and the final destination, the ANN components help to forecast
how congested each of those paths will be. Notably, the information from the transportation
records, such as the average speed, travel distance, and idle driving time for each vehicle,
as well as the weather conditions for each trip, significantly increase the forecast accuracy.
Experimental results of Hu et al. (2020) show that the multi-layer perceptron (MLP) model
reached a stable prediction accuracy when it was trained with more than 170 epochs, with an
accuracy of 95% or more. 
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Traffic flow management 
Parame�ric

_ 
methods. Time series models (Ishak and Al-Deek, 2002) and Kalman Filtering 

(KF) (L1pp1 _et al:, 2013) are two freq�ently used techniques in parametric methods. Except 
when there 1s n01se and disturbance m the network, parametric approaches have a higher 
acc�racy with fewer errors during prediction than non-parametric approaches. Even in a given 
environment, traffic flow prediction can differ significantly since it is determined by a number 
of variables, including the forecasting horizon, dataset format, type of area, and sampling 
frequency. Due to the ambiguity and complexity of traffic flows, studies focus largely on 
short-term prediction methodologies rather than extending their horizon into days (Akhtar 
and Moridpour, 2021). The accuracy of the anticipated output typically decreases as the fore­
casting horizon value increases and vice versa. 

Non-parametric methods are preferred by researchers due to their capabilities of deal­
ing with stochastic, non-deterministic, and non-linear characteristics of traffic data. Deep 
learning-based techniques are frequently employed in predicting local and worldwide traffic 
flow because of their well-known capability in handling a large amount of complicated spa­
tiotemporal data (Smith and Demetsky, 1997). We identified three techniques among other 
candidates that have been used the most for road traffic flow estimation: LSTM, CNNs, 
and recurrent neural networks (RNNs), or a combination of them (Nguyen et al., 2018). In 
addition to these, applying deep belief networks (DBNs), autoencoder-autodecoder (AE­
AD), and deep Boltzmann machines (DBMs) to traffic flow prediction were described or 
investigated. 

With the use of computer vision techniques, automatic video analysis from traffic surveil­
lance cameras has recently become a promising field. It has already been established as one 
of the rapidly expanding fundamental technologies for efficient traffic management and intel­
ligent transportation systems (ITS). In parallel traffic management systems (PtMS), one of the 
crucial techniques for gathering traffic state information is video detection (Vishwakarma and 
Khare, 2008). To put it another way, although tracking and recognition of moving objects in 
surveillance video is not a difficult task given their non-deterministic nature, it is important 
because it provides the groundwork for more advanced intelligence applications. 

Vehicle detection and categorization technologies have important theoretical implications 
and practical utility in intelligent transportation systems. A novel vehicle classification frame­
work that can automatically interpret photos from traffic surveillance systems was proposed 
by Hannan et al. (2015). The convolutional neural network serves as the second-layer classi­
fier in this system, with the fast neural network (FNN) serving as the primary classifier. The 
multi-layer perceptron used by the FNN to create potential correlations between the input and 
the weighted neurons allows for highly accurate detection. A lighting normalization algorithm 
is used in the CNN layer to lessen the impact of fluctuations in illumination. In contrast, 
Khalid et al. (201 1) offered a new approach to vehicle detection where the processed images 
were captured by embedded cameras that were mounted on each moving vehicle. A sophisti­
cated model recognition technique that can accurately identify the car type and manufacturer 
was developed by Psyllos et al. (2011) based on their research. Multi-colour recognition was 
added to this method to produce an output that was more dependable. 

A significant component of traffic pattern recognition is the analysis of public traffic sur­
veillance, such as highway surveillance footage, in addition to the vehicle appearance pho­
tos gathered from various sources. Automatic driving and cruise control would substantially 
benefit from these techniques, which are important for detecting vehicles ahead of you and 
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recognizing traffic conditions. To realize automatic segmentation and r�cognition of_t�e road
regions, for instance, Kong et al. (2013) provided a metho_d for auto_matlcally recogmzmg t�e
frequency domain features that are produced by the vehicles movmg through road areas m
movies. 

C. Potential Directions for Transferability

In this part, the most promising applications that can be transferred from the origin domains
(those we identified in subsections IV.A and IV.B) to the target domain (i.e., RTPM) are pre­
sented. The discussion about how/to what extent AI-based solutions have been adopted in 
aviation/automotive transport sectors in typical RTPM tasks will be illustrated. As a signifi­
cant outcome of this section, several potential directions for transferability are identified. 

Integrating heuristic searching strategies with deep neural networks for vehicle routing 
In terms of the tasks of path planning, route algorithm, and navigation for aircraft, graph­
based methods, especially the critical link method and queuing theory, are more popular in 
unmanned aerial vehicle path planning compared with the traditional node-based methods. 
Adding values to the railway sectors based on this observation can be summarized as follows: 
unlike aircraft, railway vehicles must run on constructed tracks and follow the instructions 
of dispatchers to move/halt. Path planning on public transportation systems from the macro 
scope level, although conceptually similar, is a significantly harder problem, not only due to 
its inherent time-dependent and multi-criteria nature but also considering that most railway 
networks have the characteristics of heterogeneity. Thanks to the hints obtained from the 
aviation sector, a method based on the generalized cost can be proposed to discover the valid 
routes from the original station to the destination station for trains in the integrated network 
of normal-speed and high-speed railways, especially in the circumstances that the high-speed 
railway network is expanding rapidly among areas of Europe and China. The potential influ­
ential factors include total travelling time, total energy consumption, number of onboard pas­
sengers, the capacity of chosen tracks, and other possible factors in the generalized costs of 
trains. Theoretically, valid routes can be generated by considering the defined train schedule, 
and an effective route-search algorithm can be designed using the deep traversal method in a 
new valid route-searching network. 

As we already discussed, formulating a simple heuristic is challenging under the road net­
work setting since there are multiple factors to consider, such as road segment length, edge 
centrality, and speed limit. Recently, a novel study investigated how a neural network can 
learn to take these factors as inputs and yield a path given the origin and destination in the 
road network, which may give us some inspiration about how the DNN can contribute to 
railway path planning tasks. First, some random graphs can be generated by monitoring the 
size and properties of the training graph without too many details about the network. Then, 
a neural network can learn to traverse simple graphs with multiple strategies. Finally, factors
that might affect path finding in real road networks are scaled up. Overall, the training data
are optimal paths in a graph generated by the shortest path algorithm. The model is then 
applied to new graphs to generate a path given the origin and destination. The arrival rate and 
time efficiency are calculated and compared with that of the corresponding optimal path. Such 
a method investigates and innovatively combines deep traversal strategies and deep neural 
networks to perform route planning for vehicles. 
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Alternative routes services/navigation for passengers based on CloT 
In this application, transferability possibility from the perspective of the passenger (micro­
scope) is described - compared to train vehicle routing, travel route selection for individual 
passengers is also important. Passengers on the same train typically have different destina­
tions - there are a set of intermediate stations between the original and terminal stations 
and each pass.enger may leave the train at any of the intermediate stations as they need, 
even transferring to another train. The behaviour/travelling patterns of the individual pas­
senger are more difficult to capture and simulate when using mathematical methods or heu­
ristic search algorithms. The considered quantitative parameters include total travelling fare, 
travel time, transfer difficulties, travel convenience, comfort, and other possible factors in the 
generalized expenses of passengers. Relevant studies regarding this consideration have been 
found but they are limited. Most of them investigated travel time reliability and the estima­
tion of passenger route choice behaviour. By leveraging the inferred platform elapsed time 
and the transfer time from the smart card transaction data, the journey time distribution of 
any possible path can be generated, and methods were proposed for estimating route choice 
proportions. 

Current research on IoT focuses on the general perception of visual/voice objects and 
making this information connected to sharing observations and making decisions. However, 
it is not enough that only connections are established, the agent should have the capabil­
ity to learn from external inputs, think independently, and understand both physical and 
social environments by themselves. Therefore, a new paradigm, CloT, has received atten­
tion in empowering current loT with an "intelligent brain" for higher-level automation. 
Typically, an operational CloT framework mainly characterizes the interactions among five 
fundamental cognitive tasks: the perception-action cycle, massive data analytics, seman­
tic derivation and knowledge discovery, intelligent decision-making, and on-demand ser­
vice provisioning. Compared with traditional passenger route design services, the CloT 
framework has the capability to bridge the physical world (with physical objects, facility 
resources, etc.) and the social world (with human demands of travelling, social behaviour, 
etc.), and enhance tasks of smart resource allocation, automatic network operation, and 
intelligent service provisioning. From the literature we have found several promising stud­
ies related to this topic, some of them specifically improve the performance of services 
for railway users (e.g., the rail Internet of Things (RioT)), but others may enlarge their 
scope under public transport systems (e.g., the cognitive road traffic management system 
(CTMS)). Solutions found in the automotive sector show a medium level of advancement 
and promise for the rail sector. 

Attributing primary and secondary delays in railway networks using explainable AI 
Motivations of proposing this application include two aspects: the first one is the research 
direction of explainable AI (XAI) needs to be synchronized with the investigated railway 
research areas for narrowing the research gaps that could hinder operational deployment. 
Second, understanding/labelling/learning knowledge from massive data is difficult and it has 
not been fully understood at this stage, so we need a powerful framework to explain the 
mechanism of AI models to those who are experts at traffic planning and modelling but have 
little working experience on the AI side. Explainable AI is becoming more important as many 
AI systems are too complex to be properly understood by humans; therefore, XAI approaches 
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and methods are necessary to make the reasoning process and the outputs understandable by

human operators. . . 
On the one hand, the problem of discerning different reasons why tram delays occur 1s

tough and complex. Train dispatchers want to know which train builds up a del�y at which

station, as well as why this delay build-up occurs. On the other, XAI has not received exten­

sive practical attention in the rail sector, and where the authors have tackled_ the pro�lem of

discerning different reasons for the occurrence of train delays. Hence, there 1s much mterest

in the causes of delays, as different causes imply different ways to prevent these delays from

occurrino. Given the total amount of delay a specific train builds up at a specific station, we

discern the primary delays that would have occurred if there had been no other train in the

network, such as vehicle problems, from secondary delays that are knock-on delays. The pro­

posed approach is to train an ML model that predicts the additional delay of a train, given a

set of primary features (e.g., weather conditions) and secondary features (e.g., the delays of

nearby other trains). Methods from explainable AI help to classify how primary features and

secondary features contribute to a specific prediction of the model. 

V. DISCUSSION

This chapter has provided a comprehensive review of scientific papers addressing the state­
of-the-art AI in the railway sector. We reviewed papers from a holistic railway perspective, 
covering subdomains such as strategical planning, tactical planning, traffic analysis, and 
rescheduling after disruptions. As such, this chapter presents a first step towards the adoption 
of AI in the RTPM domain by providing an in-depth summary of the current research focus. 
In addition, we identify some promising research directions to provide further uptake of AI 
in railways. 

In the domain of RTPM, although pure mathematical/exact operation research algorithms 
are popular for those who want to find the upper limits of optimization performance, effective 
AI approaches (e.g., data mining, reinforcement learning, and expert/knowledge-based rea­
soning system) have been gradually adopted thanks to their advantages over exact methods, 
especially when the problem is NP-hard and it is difficult to yield an optimal solution within 
limited computational time. However, optimization-based solutions to support traffic analy-

• sis and tactical planning have their own advantages over heuristic approaches (i.e., genetic 
algorithm, evolutionary computing and particle swarm optimization) in solution quality and 
robustness. 

Conventional machine learning models (i.e., regression trees, decision trees, random for­
est, support vector machine) have been widely adopted in solving rescheduling, timetable 
design, and train routing problems. Furthermore, they are effective ways within big data 
analytics to identify delay patterns and estimate the delay level for both passenger railway 
lines and the freight network. The techniques listed above, together with pattern recognition, 
have been applied to address various problems according to their objectives and acquired 
data. For example, systematic data processing and cleaning frameworks, such as feature 
engineering, clustering, or encoding of time-series data are likely to be adopted against a 
background of hybrid large-scale data resources. On the other hand, a rescheduling problem 
is about finding a feasible new timetable after disruptions and thus may require previous 
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experiences in dispatching, giving the potential of applying supervised machine learning
methods. 

All in all, different approaches demonstrate their potential in different application sce­
narios. It is difficult to outline which approach is the most promising one over others. In other
words, it largely depends on the requirements of data pre-processing and the purpose of the
study. However, the applications of machine learning and reinforcement learning are still at
their early stage and may require further development for satisfying more complex industrial/
business needs. Limited work has been done in the directions of natural language processing,
computer vision, and image processing, thus, the possibility of incorporating these AI applica­
tions into future research paradigms should be investigated. 

VI. CONCLUSIONS 

In this chapter, a taxonomy for AI in RTPM is defined. It provides a thorough description of
AI for railway scholars, practitioners, dispatchers, and decision-makers. We divide AI into 
three categories: research fields, key techniques, and applications, and describe their main
characteristics in order to confront the complex world of AI and bring it to trains. 

A systematic literature review was conducted on research papers applying AI to RTPM
mainly between the years of 201 1  and 2022. Several mainstream AI techniques were identi­
fied. Most RTPM problems are formulated as NP-hard discrete optimization problems. While
exact methods are able to find mathematically optimal solutions, they are often limited by
problem size (Alfieri et al., 2006; Lin and Kwan, 2016). Traditional evolutionary-based heu­
ristics such as GA, ant colony, and particle swarm are thus applied as a compromise (Li
et al., 2021; Wang et al ., 2019a). The disadvantages of these evolutionary methods are that
they usually cannot guarantee the quality of solutions and are less robust and transferable.
Machine learning-based optimization methods may give a promising direction in the future,
which may serve as a trade-off between exact and evolutionary approaches (Bengio et al., 
2021). ML models such as regression trees and RL are also commonly used for optimization
problems in RTMP, for example, Obara et al. (2018), Khadilkar (2018), and Salsingikar and 
Rangaraj (2020). ML models are also useful in big data analytics for estimating delay levels
and identifying delay trends for both passenger and freight trains (Wang and Zhang, 2019;
Prokhorchenko et al., 2019; Barbour et al., 2018). In accordance with the objective challenges,
different strategies, along with pattern recognition and data mining techniques, were imple­
mented in various contexts. A framework of hybrid large-scale data is required to perform
systematic data processing and cleaning, such as feature engineering, clustering, or time­
series data encoding. This requirement has been observed particularly in the areas of delay
analysis and conflict prediction (Liu et al., 2018). 

Finally, an overview of emerging AI-based technologies in air and road is given, followed
by a transferability analysis to identify which of the existing research/solutions in the aviation
and automobile sectors may be applied to RTPM, for example, integrating heuristic searching
strategies with deep neural networks for rail vehicle routing, alternative route services/naviga­
tion for passengers based on CloT, and attributing primary and secondary delays in railway
networks using XAI. 
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