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8. Artificial intelligence in railway traffic
planning and management Taxonomy, a
systematic review of the state-of-the-art of Al,
and transferability analysis

Ruifan Tang, Zhiyuan Lin, Ronghui Liu, Rob M.P. Goverde,
and Nikola BeSinovicé

L INTRODUCTION

Artificial intelligence (AI) is described as a computerized system capable of performing phys-
ical activities and cognitive processes, solving a variety of issues, and making judgements
without explicit human instructions (Kaplan and Haenlein, 2019). Al is becoming one of the
most significant areas of study in almost all academic and industrial sectors. Unlike many
other industries where Al applications have reached maturity, the railway industry is still in
its infancy concerning AIl. Emerging evidence has begun to demonstrate the potential of Al
in railway traffic planning and management (RTPM) and suggests that Al can play signifi-
cant roles such as optimizing complex railway timetables, rolling stock, and crew schedules,
rescheduling trains with disturbances/disruptions, and enhancing the quality of customer ser-
vice. Moreover, from a global perspective, Gibert et al. (2016) anticipate that AI will soon
become a standard tool in the rail business. In recent years, the phrase artificial intelligence
has been more ingrained in everyday life. Due to its extensive usage, Al is sometimes incor-
rectly used as a synonym for topics that are closely related, such as machine learning, deep
learning, and big data.

As aresult, there is often a lack of clarity on what Al represents, resulting in confusion and
misunderstanding among academics and practitioners in both academic and public communi-
cations (McCarthy, 2004; Agrawal et al., 2017). Therefore, in this chapter, we first present an
Al taxonomy for RTPM in Section II. Taxonomy is the classification of items based on their
natural connections. It gives a shared language for discussing and exchanging information
about a certain issue. Section II aims to define artificial intelligence, introduce taxonomy,
and establish the required connections between Al and RTPM. It brings together these two
domains by considering their respective Al and railway expertise simultaneously to define
Al for the railway domain. This will open the path for a greater knowledge of Al vocabu-
lary and ideas in the railway sector — introducing Al professionals to RTPM subdomains. In
Section III, a thorough literature review of the state-of-the-art of Al in railway transport is
presented. Specifically, we analysed and evaluated publications from a comprehensive RTPM
viewpoint, encompassing areas such as timetabling, routing, shunting, managing railway
capacity, traffic analysis and forecast, and identifying disruptions for rescheduling. Section
IV further discusses the applicability of Al approaches for traffic planning and manage-
ment in adjacent industries to railroads. This section then identifies and analyses the most
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promising applications in the non-rail transport sectors that may be transferred to RTPM.
Finally, Section V concludes this chapter.

IL AI TAXONOMY IN RAILWAY TRANSPORT

This section serves to define Al at a rudimentary level, introduce relevant taxonomy, and
clarify the essential links between Al and railway traffic planning and management (RTPM).
The purpose of this section is to bring together two domains, as well as experts from both Al
and railways, to define Al for RTPM. This will allow railway practitioners to obtain a better
understanding of Al vocabulary and concepts and introduce railway subdomains to those who
have considerable expertise in Al but little knowledge about railway planning.

A. Al

Alis defined as any machine that acts intelligently (Przegalinska, 2019) or exhibits features
associated with human reasoning. To put it another way, Al research strives to develop intel-
ligent agents that think and act similarly to humans, according to this broad definition. The
lack of a globally acknowledged definition of “intelligence” is the fundamental drawback of

-such a definition. Intelligence refers to an agent's ability of learning, understanding, reason-

ing, planning, and solving issues in a conceptual sense. However, quantifying, describing, and
measuring these features is extremely difficult. As a result, one of the most common defini-
tions of intelligence in the AI domain is based on an agent’s ability to pass the “impersonation
game”, also known as the Turing test (Turing, 2009): a machine is considered intelligent if it is
indistinguishable from a human during an interaction with an impartial observer.

Besinovi¢ et al. (2021) propose an Al taxonomy with the goal of framing the complexity
of Al terminology after introducing the concept of Al in the railway planning and manage-
ment domain, which also considers fundamental requirements of future intelligent railways.
A Unified Modelling Language (UML) class diagram (see Figure 8.1) is used to represent the
taxonomy, allowing for a more formal and effective depiction. Three basic concepts comprise
the proposed taxonomy:

e Altechniques — representing methods, algorithms, and approaches that enable systems to
perform tasks commonly associated with intelligent behaviours, such as machine learn-
ing and evolutionary computing.

o Alresearch fields — representing research areas that rely on Al techniques and would not
exist without them, such as expert systems, data mining, and pattern recognition.

e Al applications — representing cross-domain applications that leverage Al to improve
performance and usability, for example, computer vision, speech recognition, planning
and scheduling.

Figure 8.1 illustrates a class diagram, in which classes represent taxonomic ideas. The Al
subcategories — Al technique, Al research field, and Al application — are organized based on
the aforementioned definitions.

As we discussed before, artificial intelligence is commonly defined as the ability of
a machine to perform tasks that would need intellect if performed by people. We broadly
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Figure 8.1 Artificial intelligence taxonomy class diagram

investigated the methods, algorithms, and disciplines that enable an artificial entity to do
such intelligent activities in practical scenarios. The following paragraphs will provide more
descriptions and examples of the Al classes we defined.

The first subclass of Al technique, evolutionary computing, is formulated by biologically
inspired algorithms and methodologies (e.g., evolutionary algorithms and swarm intelligence).
Logic programming, as the second subcategory we identified, is a collection of programming
paradigms that use first-order logic to infer new information from priors (e.g., PROLOG). And
the third subcategory, machine learning, is a holistic notion that adheres to the following logic:
typically, an ML algorithm can only be used within a certain learning paradigm, in a specific
learning scenario, and with a fixed training modality. The learning paradigm is the strategy
used to guide the algorithm during the learning process, such as supervised/unsupervised/
reinforcement learning. A learning scenario describes the distinguishing features of the task
under consideration, such as multi-tasking, single-tasking, and one-shot. The training modal-
ity gives information about how the training phase is implemented, for example, knowledge
transfer from another task/domain (transfer learning) or training from scratch. In other words,
the desired outcome would directly determine the type of ML task, such as classification,
regression, or clustering. The series of operations needed to train a model, including support
vector machines, tree-based, Bayesian, and artificial neural networks, is referred to as ML
algorithms.

The term Al research field refers to domains/research areas that were created from the
AT fundamental principles and cannot exist without it. Some notable examples in this cat-
egory are represented as unsupervised machine learning paradigms. Expert systems are a
branch of implementing Al into software to emulate the decision-making process of experts in
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certain fields (e.g., physicians for medical imaging). Data mining (DM) is a set of procedures
designed to extract information from raw data. Pattern recognition is the discipline of recog-
nizing, detecting, and discriminating samples using data patterns. And adversarial search is
the study of environments in which agents act in the presence of other opponents.

The AI application is a category linked to AI with a one-way association, which means
that the former relies on the latter (and not the other way around). This class contains a lot
of domains, research areas, and topics that are not strictly bound to typical AI. Nevertheless,
they are increasingly relying on Al even to the point of starting to be considered feasible only
with Al The range of Al applications is enormous. Among these, the following areas have
close relevance to RTPM: scheduling and planning — a set of tools that uses Al to organize
activities and processes, and operations research, in particular its subfields that use Al to
improve the performance of optimization procedures, are some of the most common. The
capability of a system to interpret and produce non-structured texts or sounds into understand-
able knowledge by machines is known as natural language processing and speech recognition.
Robotics is the collection of algorithms meant to guide a robot, even giving robots human
perception and behaviour. Image processing and computer vision are applications using Al
algorithms to encompass image acquisition, processing, inferring, and so on.

B. Mapping Al to Railway Traffic Planning and Management

According to BeSinovi¢ et al. (2021), mapping matrices are created to demonstrate the inter-
sections between railway traffic planning and management and Al. We define the current
condition of each cell as it is recognized in scientific research and/or practice. Based on the
corresponding matching, each cell receives one of the three labels: certain (Y), potential (P),
or uncertain (U). Relevant publications, such as those from railways or other areas, are pro-
vided where applicable to support the conclusion of a cell. The following rules are used to
identify whether an entry in the three tables belongs to Y, P, or U.

Y. Exactly matched applications can be found in academic journal/conference papers and/or
successful real-world applications can be found in magazines/news or other media.

P. Similar applications of the match can be found in academic journal/conference papers and/
or real-world applications. For example, an application of Al in a sector other than rail,
but the principles are potentially transferable.

U. The databases cannot find any explicit literature/reports/applications, even from other
related domains. In addition, we use our own discretion based on the authors' expertise
and experience.

The Y cells, for example, indicate well mappings between an existing Al research subcategory
and a specific task solving in railway planning and management have been found. Instead,
the cells marked with P and U give the information that only a few attempts and no explicit
attempts have been found, which reflects prospective research options that are worth inves-
tigating for additional in-depth studies. That is, some of those with higher matching degrees
could be transferred more easily from related domains to the RTPM domain.

From Table 8.1 it can be seen that many Al research fields have been extensively introduced
in railway traffic planning and management, tackling delay prediction, timetabling, and traf-
fic rescheduling, and also including some more strategic planning decisions, using techniques
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Table 8.1 Mapping matrix for railway traffic planning and management agnd A}

subcategories
Al taxonomy Subcategories Match Concerning tasks for ~ Key reference
degree Rail traffic planning
and management
Al research field Expert systems Y Train rescheduling (Schaefer and
Train timetabling Pferdmenges, 1970)
(Yinet al., 2014)
Data mining Y Performance (Liu et al., 2018)
assessment (Cerreto et al., 2018)
Delay pattern (Wen et al., 2019)
recognition
Train dispatching
Pattern recognition p Train rescheduling (Nygren et al., 2017)
Adversarial search Y Train timetabling (Fragnelli and
Sanguineti, 2014)
Al techniques Evolutionary computing Y Train timetabling (Barman et al.,
2015)
Machine learning Y Delay analysis (RoBler et al., 2021)
Train rescheduling (Nygren et al., 2017)
Train timetabling (Khadilkar, 2018)
Train shunting (Peer et al., 2018)
Logic programming 8] = .
Al applications  Operational researchand P ML-based timetabling (Bengio et al., 2021)
scheduling and rescheduling
NLP and speech P Overall management  (Briola et al., 2013)
recognition
Computer vision and 8] - =

image processing

Autonomous systems and U - -
robotics

Source:  Authors.

such as clustering, reinforcement learning, and evolutionary algorithms. The themes marked
U are more adventurous, that is, difficult to realize on the technical side, or future research
opportunities that appear to be underappreciated by the research community and practitioners
at the time. Some of the intersections that presented U have been identified, such as traffic
management and computer vision/speech recognition, autonomous driving, and logic pro-
gramming, and could provide intriguing research avenues.

C. Explainable AI and AI Ethics in RTPM

Because of technological advancements, data produced in safety-critical systems, such as
railways, are more difficult to be properly interpreted (Hamon et al., 2020). Explainable Al
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(XAI) (Arrieta et al., 2020) concerns are thus on the rise and becoming increasingly sig-
nificant. Methods and strategies for making outputs comprehensible by people are referred
to as XAl XAl is concerned with three distinct concepts: interpretability (also known as
transparency) is the capability of a model to be understood by a human observer, allowing
interventions for making empirical decisions and improving robustness; explainability is the
feature of a model to perform actions and procedures to elucidate its behaviour. The ability
of a model to represent its learned knowledge in a human-understandable manner is known
as comprehensibility.

RTPM is a sector where considerations of Al ethics and explainability should be addressed.
Nevertheless, not all applications illustrate significant enough evidence for authorities’ inter-
vention to be justified. As a result, it is vital to concentrate attention on the specific use-case
by assessing its potential hazards and consequences for human health and the environment.
In general, we could say that surely the subdomain of RTPM will receive greater and imme-
diate attention from the legislative point of view, for example, dispatching control and staff
scheduling.

III. LITERATURE REVIEW AND OVERVIEW

In this section, we present a systematic literature review for recognizing the current state-of-
the-art in the RTPM sector in order to comprehend the current position of Al as a whole in rail-
way planning and management. This review bridges the gaps from defining the AI taxonomy
among traditional RTPM applications towards shaping the roadmap of Al in future RTPM.

A. Graphical Overview of the Investigated Papers

In this subsection, we first analyse the selected articles by identifying the details of how the
included studies are distributed over the latest 10-year period regarding their publication time.
We further divide all these studies into four categories according to the tasks they oriented:
rescheduling and disruptions, traffic analysis, tactical planning, and strategical planning. In
addition, we classify the papers based on the specific railway topic/research focuses within
each category and then two pie charts were generated accordingly.

Number of papers in each single year

We systematically inspected the selected papers by quantitatively measuring how many arti-
cles have been included in each year. We summarize the number of papers over the years in
Figure 8.2.

There are only three relevant papers found that were published before 2011. The sum of
available studies before the end of 2017 was noticeably lower and fluctuated between two and
four. However, the number of qualified papers has significantly increased since the year 2018,
exceeding eight in the years 2019 and 2020. While the number of selected papers published in
2021 and the first half of 2022 dropped to four and five, respectively.

Paper distribution in RTPM with respect to its tackled tasks
Based on the RTPM research objectives listed in Figure 8.3, the proportion of articles published
in these four self-defined task categories are displayed: papers belonging to tactical planning



228  Handbook on artificial intelligence and transport

<2011 2012 2013 2014 2015 2016 2017
YEARS

Number of Papers

2018 2019 2020 2021 06/2022
Source:  Authors.

Figure 8.2 Distribution of papers in each year

are the primary components, which make u
the percentage of papers in strateg
as their research objective —
have shown huge interest in d
of 24%).

: P 40% of the included studies — more than six times
ical planning. Up to 30% of the studies chose traffic analysis
'the sc?,con.d most popular task among RTPM. Researchers also
1Sruption investigation and rescheduling tasks (with a proportion

‘l;allpher distribution in RTPM with respect to its focused topics
memasinbct;,lcigiﬁge?tly :Jsl;:]q to solve a variety of challenges in traffic planning and manage
, imetabling, routing, shunting, managing rail i 4
and forecasting identifying disrupti ’ it s e
: ] ptions for rescheduling, and so on. A ie chart i i i
Y . art
Flﬁr; gg IJIO uncover the current research status on various problems/tgpics N
S . d;:lay. analysis/prediction yields the most prominent research attention amon
problems/topics and the percentage of papers choosing this topic reached 26% — over sif

: » 10% of the selected i i
Capacity management, while the figure was slig ohes o ot Chl ki

ment, train routing, and other remaining topics.

Al in railway traffic planning and management 229

Strategical planning
6% \

= Rescheduling and disruptions
/ 24%

Tactical planning =
40%

w Traffic analysis
30%

Source:  Authors.
Figure 8.3 Categorized research objectives in RTPM

B. Paper Review Results

In this subsection, we review the included papers by clustering them based on the research
objectives we defined in Figure 8.3. Within each category, we investigated the papers accord-
ing to the problem they addressed and, for each paper, the exploited Al research fields/tech-
niques/applications and utilized data are highlighted. Papers relying on (generic) heuristics or
pure mathematical programming are not taken into consideration because they are not typi-
cally a branch of Al Instead, the use of AI in mathematical programming and evolutionary
programming is included in the scope.

Strategical planning

Pu et al. (2019) developed a genetic step-by-step hybrid particle swarm algorithm to optimize
the process of railway routing and track alignments, particularly the three-dimensional align-
ment in mountainous areas. A Bayesian optimization model was compared to the genetic
algorithm (GA) approach in the study by Hickish et al. (2020), which used a genetic algorithm
to carry out the optimization operations of rail networks. A certain number of carriages must
be distributed among trains, and line speeds were assigned in various locations throughout
the network, as part of the model's test tasks. Differently, an “ontologica” system that utilizes
ontologies to manage the centralized traffic control (CTC) logic of a railway track system was
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Figure 8.4 Popular research problems in RTPM

proposed by Briola et al. (2013) for improving the experience of a user interface when using
natural language queries.

Tactical planning

The tasks of scheduling, routing, and shunting have been considered in relation to tactical
plar}ning. Given that tactical planning problems are typically designing constraints for illus-
t.ratmg the trade-off between requests of using public infrastructure resources and limita-
tions on these resources, and are based on which to optimize as a multi-criteria objective
function. For example, a well-experienced dispatcher aims to produce a feasible timetable
that ensures that there are no conflicts along the entire track line (or in a station area/depot).
Diverse Al-based methods, such as bioinspired algorithms (Tormos et al., 2008; Ho et al.,
2012) and reinforcement learning (RL) models (Khadilkar, 2018; Peer et al., 2018; Salsingikar
and Rangaraj, 2020; Ying et al., 2020) can help to ease this procedure.

. We thoroughly examined the design goals of these research studies and categorized them
Into two types: train operator-centred studies (e.g., Tormos et al. (2008) and Khadilkar
(2018)) and quality of service-centred studies (e.g., Schiipbach et al., 2018; Xue et al., 2019;
(?ao et al., 2022). The first paradigm tries to provide a workable schedule that details the
times of each train's departure and arrival so that the necessary resources may be allocated
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to each one (e.g., rail infrastructures and facilities). Although customer-centred models focus
on service quality, they also attempt to cut down on overall travel time and waiting times
during transfers.

In order to reduce overall train delays, Barman et al. (2015) created a heuristic model
from the perspective of the passengers, which combines a number of fixed path formulations
with a GA to choose the least-time-cost path for each train. Similarly, two GA-based time-
tabling approaches were presented (Tormos et al., 2008; Arenas et al., 2015). Additionally,
Ho et al. (2012) describe the negotiation process between infrastructure providers and train
operators as a multi-objective optimization problem to create a track access rights agreement.
Alternatively, Fragnelli and Sanguineti (2014) proposed a game theoretical model to optimize
timetables, where train operators are able to exchange information on their own needs and are
compensated by potentially increasing the resource utility. In order to solve a route optimiza-
tion problem and analyse simulation results from a quantitative and qualitative perspective,
Wang et al. (2019b) and Bretas et al. (2021) created a continuous multi-objective swarm intel-
ligence system and a decentralized multi-agent system, respectively. Yin et al. (2019) devel-
oped a three-phase heuristic approach to solve a demand-responsive scheduling issue, while
Goverde et al. (2016) employed a hybrid performance-based timetabling strategy where they
chose a number of performance indicators to assess and create schedules.

Towards automated railway capacity planning and allocation, Noursalehi et al. (2021)
performed real/short-time origin-destination (OD) demand prediction in a transit system, in
which three CNN layers were used to learn spatial dependencies so that train operators could
implement dynamic control strategies and provide useful customer information. To the same
aim, Asad et al. (2020) leveraged historical passenger data recorded by radio frequency identi-
fication (RFID) sensors to develop a mobility and capacity prediction model. Xue et al. (2019)
also used a GA to discover the best solution in a double-routing optimization model in order
to utilize lost capacity at a constant departure frequency. Schiipbach et al. (2018) presented
an automated schedule generation process using GA formulations in the context of the Swiss
Federal Railway and provided a step-by-step methodology for a new capacity planning para-
digm based on the service improvement aim.

To assign track resources to each train and optimize departure and arrival times during
timetabling, a reinforcement learning algorithm was created with the aim of reducing the
overall priority-weighted delay (Khadilkar, 2018). Similarly, Peer et al. (2018), Schiipbach
etal. (2018), and Ying et al. (2020) used deep reinforcement learning techniques in the prob-
lems of single-track routing, metro train scheduling, and train unit shunting, respectively.
In particular, to achieve superior performance to exact operational research approaches,
Peer et al. (2018) and Ying et al. (2020) trained convolutional neural networks (CNNs)
with the input matrices of state representations on allocations for metro trains and shunt-
ing yards.

Traffic analysis

The characteristics of statistics for large-scale railway networks include a significant number
and variety of formats. The demands of finding patterns (from a huge-sized dataset) in current
railway traffic may be too difficult for conventional data analysis methods to meet. Therefore,
novel DM analysis tools (Wang and Zhang, 2019; Cerreto et al., 2018; Kecman and Goverde,
2014), evolutionary-based strategies (Oneto et al., 2017), graph convolutional networks (Zhang
et al,, 2021), and other approaches have been developed to address the challenges in delay
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analysis and conflict prediction. Using a supervised approach, Liu et al. (2018) built a sophis-
ticated three-tier DM processing system for analysing train timetable performance measures
(such as arrival punctuality or running time of the entire line). Cerreto et al. (2018) used a DM
method based on k-means clustering to identify significant delay patterns and provide a con-
cise explanation of the underlying causes for each clustered group of delay occurrences. Wang
and Zhang (2019) proposed a gradient-boosted regression tree model to investigate how the
effects of weather and timetables might affect train delays. Similar to this, Laifa et al. (2022)
and Wang (2022) presented two novel two-layer light gradient boosting machine (LightGBM)
models and a KNN-based classifier for predicting passenger train delays in long-distance rail-
way and urban rail systems, respectively. Huang et al. (2020) created a model that combines
a fully connected neural network with two long short-term memory (LSTM) layers in order
to study operational interactions between trains, and as a result, anticipate delays. Based on
this, the same group of Huang et al. (2021) designed a cost-sensitive deep learning framework
called FCF-Net, which consisted of several fully connected CNN and CNNs, and these com-
ponents handled train timetables as images to capture interactions of train events. Kecman
and Goverde (2014) created several data-driven methodologies, including robust linear regres-
sion, tree-based algorithms (e.g., regression trees, random forest), and dynamic arc-weighted
event graph models for precisely predicting running and dwell time, train event times, and
expected conflicts.

In a similar manner, Oneto et al. (2017) used big data analysis techniques (such as deep/
shallow extreme learning machines) to create a data-driven railway delay prediction sys-
tem that took previous train movements and weather patterns into account. Additionally,
Prokhorchenko et al. (2019) suggested a model to estimate the arrival time of freight trains by
combining ANNs and multi-layer perceptron methods. In order to estimate arrival times for
freight traffic on American railroads, Barbour et al. (2018) proposed a data-driven approach
to forecast the arrival times of specific freight trains based on their characteristics, which
compared the performance of various supervised ML models.

By utilizing a temporal fuzzy reasoning method, Zhuang et al. (2016) bridged the gap
between a conventional methodology and an innovative solution to conflict prediction prob-
lems. Differently, BeSinovi¢ et al. (2013) proposed a program for train length prediction and
offered a simulation-based method for improving the parameters in train dynamic equations

of the program, which is beneficial for a more trustworthy and reliable train running time
model.

Rescheduling and disruptions
Several studies have looked into rescheduling issues in disturbance and service interruption,
and they have suggested solutions based on bioinspired techniques (e.g., Wang et al., 2019a)
and reinforcement learning (e.g., Obara et al., 2018; Roost et al., 2020). Train-oriented and pas-
senger-oriented goals can both be recognized as unique objectives. For example, Wang et al.
(2019a) considered discrepancies between the scheduled timetable and the actual rescheduled
timetable such that total/primary/knock-on train delays could be reduced accordingly, with
the objective of maximizing the quality of services for passengers or increasing passenger
satisfaction (e.g., Obara et al. (2018)).

To decrease the total number of trains whose delays exceed a predetermined threshold and
the sum of secondary delays, Wang et al. (2019) developed a GA-based particle swarm opti-
mization (PSO) approach. On the other hand, Kuppusamy et al. (2020) introduced a new train
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timetable rescheduling model that integrated the improved genetic algorithm and LSTM-RNN
with the goal of minimizing power consumption by adopting the full benefits of reproductive
braking energy in arandom circumstance. Expert systems and knowledge-based decision sup-
port systems have recently gained attention due to their ability to drastically reduce calcula-
tion time. The suggested models, such as those by Schaefer and Pferdmenges (1970) and Fay
(2000) often employ cost functions measured by the total number of delays experienced by the
train. In some studies (Obara et al., 2018; Ning et al., 2019; Kubosawa et al., 2022; Zhu et al.,
2020), the deep Q-network method, the deep-RL approach, and pure RL were suggested. In
these approaches, an agent is in charge of adjusting running time and generating departure
sequence instructions with the aim of maximizing passenger satisfaction and minimizing the
average total delay for all trains along the railway line. Asynchronous advantage actor-critic
RL, which was created by Google DeepMind (Babaeizadeh et al., 2016), was also employed
by Roost et al. (2020). In addition, Q-learning is used in the study by Semrov et al. (2016) to
reschedule trains in a Slovenian real-world network when there are delays on a single track.
The empirical findings show that this Q-learning-based method may generate rescheduling
solutions that are at least comparable and frequently better than those of numerous fundamen-
tal rescheduling methods (such as first in first out — FIFO - and random walk). In contrast,
Zheng et al. (2014) developed a hybrid biogeography-based optimization algorithm coupled
with differential evolution to reduce the weighted delivery time in the issue of disaster relief
supply operations.

Data sources . o . |
For traffic planning and management, various historical data have been used such as real-

ized traffic movements (Oneto et al., 2017, Khadilkar, 2018), infrastructure occupation data
(Kecman and Goverde, 2014; Beginovi¢ et al., 2013; Ho et al., 2012; Schiigbaph et ?l., 2018;
Goverde et al., 2016), historical weather records (Wang and Zhang, 2019), existing train sched-
uled timetables (Wang et al., 2019a), the topology of rail networks (Zheng et al.', 2014), and
accident event data (Fink et al., 2013). For comparing the importan.t aspects of dlfferent‘data
types (i.e., what each type of data includes, how each type of data is collected and obtalqed,
and the advantages/limitations challenges when they use these data), Table 8.2 summarizes

the essential information.

IV.  TRANSFERABILITY ANALYSIS FROM OTHER TRANSPORT
SECTORS

This section addresses the transferability of Al techniques used for traffic planning and man-
agement from the aviation and automotive sectors to railways. These sectors have experienced

significant progress in Al applications in the last few decades. We first present brief reviews
on the application of Al in air and road transport.

A. Al-based Emerging Technologies in Aviation

Traffic prediction . ' . . et
The two most popular techniques in estimating aircraft arrival time are physics-based meth-

ods and machine learning (ML)-based approaches. Existing applications for the first method



A summary of the applied data sources in the literature

Table 8.2

Advantages/limitations

Typical sources and technologies used for data

collection

Description

Data type

Loop detectors are not available on all road
networks; they are a dated technology that

suffers from lock-up and needs continuous

Data is collected from inductive loop detectors
in road pavements, automatic detection from

video cameras, laser sensors, etc.

This data measures traffic volumes,
speeds, vehicle load, occupancy,

travel times, etc.

Traffic

movements

maintenance. They only measure traffic volume

and speeds. They need to be supplemented with

other data to measure travel times, etc.

Infrastructure status data is an important aspect
to be considered during RTPM as most train
activities are conducted based on it. However,

Data is directly provided by the infrastructure

This data includes information on

Infrastructure

manager/railway safety and standard board, and

infrastructure, such as the number

occupation data

collected by roadside signal or block indicators.
Also, occupancy dynamics can be updated by

dispatchers.

of tracks at stations and the length of
various sections, and can reflect the
occupancy status of infrastructure/

facility resources on stations.

currently the approaches to update it in a real-

time manner are insufficient.
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Data is collected from the temperature/humidity/ External environmental data is unstable

rainfall sensors embedded in each geometrical

Historical weather records refer to
external environmental data when

trains operate on the railways,

Historical

A

and it always changes over time. One of the

weather records

challenges is how to effectively incorporate

grid. Geographic information systems and web

these records into traffic modelling procedures.

scraping systems are supplementary sources.

including rainfall, temperature, wind

speed, snowfall, humidity, etc.

Train timetable data is good first-hand material
to investigate how different traffic issues occur.

Data is generated and provided by various train

Train timetables denote data that

Train timetables

operating companies, which can be organized by
the public infrastructure provider, e.g., Network

Rail.

can be calculated based on planned
and real timetables, such as arrival/
departure delays, buffer times,

margin, headways, etc.

However, it is typically difficult to acquire due
to confidential agreements among different

companies and stakeholders.

Compared with previous data types, the

Some open sources, e.g., openrailwaymap.org.
Data feeds (web APIs) provided by ORR (Office

of Rail and Road).

Network topology structure refers

Topology or rai
networks

network topology is more difficult to be

to the geographical locations of all

properly interpreted and represented in a

machine-friendly format.

stations, the average travelling time

on the edges, the connectivity status

between each pair of stations, etc.

Authors.
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were often designed with a trajectory-based operation (TBO) paradigm, where the trajectory
becomes one of the key features that significantly determine air traffic management capa-
bilities. Such an implementation, called air/ground trajectory synchronization (AGTS) by
Fernandes et al. (2020), aims to choose the most precise scheduled time of arrival. Ayhan
et al. (2018) created a brand-new technique for predicting expected arrival times for commer-
cial flights. To gather essential information including weather conditions, flight operations,
and airport facts along the possible flight path, the system learns important characteristics
from prior trajectories and its appropriate 3D grid points. Several well-known machine
learning techniques, including gradient boosting classifiers (Chakrabarty, 2019; Thiagarajan
et al., 2017), decision trees (Al-Tabbakh and El-Zahed, 2018), random forests (Rebollo and
Balakrishnan, 2014), and hybrid models (Choi et al., 2016) have been broadly implemented in
the process of aircraft delay prediction.

The majority of forecast models, such as Nilim et al. (2001), primarily concentrated on
weather-related delays and how these delays spread in extreme meteorological conditions. It
is now evident that an increasing number of applications predict upcoming network-related
delays for a specific airline. For instance, Xu et al. (2005) were able to capture interactions/
communications among airports using a systematic Bayesian network. Another established
truth is that the standard machine learning-based techniques discussed above frequently per-
form less than optimally because the complexity and volume of data resources are constantly

" increasing, demanding more effective pre-processing approaches for handling the data. Thus,

to this point, deep learning techniques and big data approaches are introduced, for example,
by Kim et al. (2016), Khanmohammadi et al. (2016), and Belcastro et al. (2016). When tack-
ling challenging traffic classification jobs, a hybrid structure that mixes deep learning and big
data algorithms can analyse a large amount of data.

Strategic/tactical airspace planning

The global air traffic management (ATM) system now in place for civil aviation is managing a
significant amount of demand, which is still increasing. This high demand can potentially lead
to problems with demand-capacity balancing (DCB) issues. Given this context, an innovative
Al-based solution has been presented by Amarat and Zong (2019), who are using unmanned
aerial vehicles (UAVs) to execute three degrees of freedom (3D) path planning, route algo-
rithm, and navigation. Conventional and node-based algorithms are the most popular options
for path planning, according to the findings of Amarat and Zong (2019).

Air traffic flow management
The two main areas of air transport system study are air traffic flow management (ATFM) and

airspace research, for example, in Wu and Caves (2002) and Tosic and Babic (1995), with the
latter being particularly important to the tactical aerospace management we previously stated.
Airport capacity, facility utilization, aircraft operations in the airport terminal manoeuvring
area, and aircraft ground operations research are among the study subjects at the airport level
(Gilbo, 1997; Bertsimas and Patterson, 1998; Ma et al., 2016; Guclu and Cetek, 2017). Future
research areas of interest could include integrating airport and airspace capacity, creating
airport information systems to better utilize airport capacity, and enhancing flight schedule
planning to increase the accuracy of schedule implementation.

Since the early 1970s, researchers have been made aware of the difficulty in modelling
and optimizing airport capacity (Zografos et al., 2017). In contrast to other public transport
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options, assigning flights with ground-holding delays at the origin airports is a success-
ful strategy to prevent aircraft delays brought on by a lack of airport capacity (Terrab and
Odoni, 1993). Deterministic models and stochastic and dynamic assignment models for
ground-holding are some examples of solutions (Glover and Ball, 2013). An airport net-
work’s air traffic control has recently been optimized utilizing Al-based heuristic algo-
rithms and dynamic simulation techniques (Wang et al., 2021), with the goal of analysing
aircraft trajectories.

The recent increase in demand for UAVs has made managing air traffic flow even more
difficult. The advancement of automated dependent surveillance-broadcast (ADS-B) technol-
ogy makes it feasible to construct a more sophisticated ATFM architecture such that aerial
vehicles may be followed and monitored accurately in real time. All of these developments
must be built using big data technology and robust machine learning algorithms. For example,
an aviation big data platform in the study of Gui et al. (2020) consists of a set of distributed
ADS-B ground stations. The air traffic flow between different cities can be efficiently col-
lected and anticipated by utilizing the extracted information collected from different datasets
and mapping them along routes. The experimental findings of Gui et al. (2019) using actual
data show that this new traffic flow prediction model would perform better with LSTM as the
primary predictor.

B. Al-based Emerging Technologies in Road Transport

Dynamic traffic prediction

Clustering algorithms. While K-means clustering (Li et al., 2016) is regarded as an efficient
and adaptable algorithm for large datasets, fuzzy C-means (FCM) (Chen et al,, 2019) or origi-
nal (?-means methods (Yang et al., 2012) are the most often used approaches and they play a
Frumal part in traffic pattern detection. Except for studies using DL, because they can process
input data across multiple layers, many studies utilize clustering prior to the main prediction
model (Akhtar and Moridpour, 2021). To this point, clustering and data pre-processing are
often carried out simultaneously, at least initially, with datasets that are primarily unstruc-
tured and unclassified.

It is difficult to generalize traffic congestion forecasting research using various methods.
The study location, data collection timeframe, predicted parameters, prediction intervals, and
validation process are shared elements among the pertinent publications. Several articles used
the scenarios of transportation corridors and segments (Lee et al., 2015; Onieva et al., 2016;
Yang, 2013). The traffic network (Yang et al., 2019; Zaki et al., 2019), the ring road (Wang
et al, 2015), and the arterial road are additional study scenarios (Jain et al., 2017). The time
frame of the data gathering ranged from years (Kim and Wang, 2016) to less than a day
(Wang et al,, 2018). Mean absolute error (MAE), symmetric mean absolute percentage error
(SMAPE), and root-mean-squared error (RMSE) are the validation techniques that compare
the results with the ground truth value or other models.

Probabilistic reasoning is an important part of the conventional definition of Al from a
semantic perspective. For coping with ambiguous knowledge and reasoning, it has been used
gxtensively in the comprehension and identification of traffic congestion. Traffic data are grow-
ing more complicated and non-linear due to the length of the timeline and spatial dependence.
FUZZ}" logic is now a widely used technique for predicting dynamic traffic congestion due to its
superior capacity to handle ambiguity and vagueness in place of binary results (Onieva et al.,
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2012). The most popular fuzzy logic implementation in studies on traffic engineering is the
fuzzy rule-based system (FRBS). By simulating them in operational IF-THEN rules, it is able
to handle the complexity that results from real-world traffic conditions. In practice, these rules
are optimized by using different GAs. For example, Daissaoui et al. (2015) integrated the Ant
colony optimization (ACO) algorithm into the fuzzy logic system to predict traffic congestion
one minute in advance from the moment that information is provided by passing cars. The
GPS information from each vehicle was interpreted as a pheromone, which is congruent with
the idea of ACO.

Tactical road capacity planning

IoT-based approaches can be easily introduced into smart objects to simulate human
learning processes, although cognitive computing has recently grown in favour of IoT, fre-
quently alluded to as the cognitive IoT (CIoT). In the past, drivers assumed entire respon-
sibility for controlling the vehicle in a variety of unforeseen circumstances, such as lane
changes and lane acceleration. However, human drivers may be inattentive or distracted,
which could result in irrational outcomes like a collision, choosing the wrong route, and
speeding. The intelligent transportation system is able to carry passengers in the most
secure and effective manner from the viewpoint of public transport. Accessing real-time
data right after they are produced is necessarily important for reaching this degree of
efficiency. Transport will be safer as a result of the increased accuracy of traffic flow
brought about by the connectivity possibilities between vehicles and traffic control centres.
A dynamic map of traveller flows will be generated accordingly, for instance, by analysing
the trajectory/volume data that is acquired by sensors, cameras, and IoT equipment that is
dispersed on buses, trains, and subway systems. Because of this, intelligent route planners
can analyse each person's movements individually and make recommendations that are
more precise than experts.

For people who want to take the bus, Puiu et al. (2017) have created an app that offers route
suggestions and alerts about incidents. Real-time bus arrival-departure data streams and cit-
izen-reported incidents were processed to complete this application. Each user in this system
contributes to the network’s real-time traffic and IoT information feed while also receiving
benefits from it.

MLP-based methods. The scope of conventional road traffic planning and management was
undoubtedly expanded by successful trials of finding potential travel routes. For instance, Hu
et al. (2020) used the open data resources of Google Maps and its “multiple destination” func-
tion to search for potential routes between origin and destination in order to meet the demand
for a delivery service at the end of this commercial chain, which was a brave attempt to face
the demand of ever-expanding e-commerce businesses. For the purpose of simulating traffic
conditions, these routes were fed into a multi-layer perceptron model. Dijkstra's algorithm
would generate the best route selection. After calculating every route that could possibly exist
between the starting point and the final destination, the ANN components help to forecast
how congested each of those paths will be. Notably, the information from the transportation
records, such as the average speed, travel distance, and idle driving time for each vehicle,
as well as the weather conditions for each trip, significantly increase the forecast accuracy.
Experimental results of Hu et al. (2020) show that the multi-layer perceptron (MLP) model
reached a stable prediction accuracy when it was trained with more than 170 epochs, with an
accuracy of 95% or more.
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Traffic flow management

Parametric methods. Time series models (Ishak and Al-Deek, 2002) and Kalman Filtering
(KF) (Lippi et al., 2013) are two frequently used techniques in parametric methods. Except
when there 1s noise and disturbance in the network, parametric approaches have a higher
accuracy with fewer errors during prediction than non-parametric approaches. Even in a given
environment, traffic flow prediction can differ significantly since it is determined by a number
of variables, including the forecasting horizon, dataset format, type of area, and sampling
frequency. Due to the ambiguity and complexity of traffic flows, studies focus largely on
short-term prediction methodologies rather than extending their horizon into days (Akhtar
and Moridpour, 2021). The accuracy of the anticipated output typically decreases as the fore-
casting horizon value increases and vice versa.

Non-parametric methods are preferred by researchers due to their capabilities of deal-
ing with stochastic, non-deterministic, and non-linear characteristics of traffic data. Deep
learning-based techniques are frequently employed in predicting local and worldwide traffic
flow because of their well-known capability in handling a large amount of complicated spa-
tiotemporal data (Smith and Demetsky, 1997). We identified three techniques among other
candidates that have been used the most for road traffic flow estimation: LSTM, CNNs,
and recurrent neural networks (RNNs), or a combination of them (Nguyen et al., 2018). In
addition to these, applying deep belief networks (DBNs), autoencoder-autodecoder (AE-
AD), and deep Boltzmann machines (DBMs) to traffic flow prediction were described or
investigated.

With the use of computer vision techniques, automatic video analysis from traffic surveil-
lance cameras has recently become a promising field. It has already been established as one
of the rapidly expanding fundamental technologies for efficient traffic management and intel-
ligent transportation systems (ITS). In parallel traffic management systems (PtMS), one of the
crucial techniques for gathering traffic state information is video detection (Vishwakarma and
Khare, 2008). To put it another way, although tracking and recognition of moving objects in
surveillance video is not a difficult task given their non-deterministic nature, it is important
because it provides the groundwork for more advanced intelligence applications.

Vehicle detection and categorization technologies have important theoretical implications
and practical utility in intelligent transportation systems. A novel vehicle classification frame-
work that can automatically interpret photos from traffic surveillance systems was proposed
by Hannan et al. (2015). The convolutional neural network serves as the second-layer classi-
fier in this system, with the fast neural network (FNN) serving as the primary classifier. The
multi-layer perceptron used by the FNN to create potential correlations between the input and
the weighted neurons allows for highly accurate detection. A lighting normalization algorithm
is used in the CNN layer to lessen the impact of fluctuations in illumination. In contrast,
Khalid et al. (2011) offered a new approach to vehicle detection where the processed images
were captured by embedded cameras that were mounted on each moving vehicle. A sophisti-
cated model recognition technique that can accurately identify the car type and manufacturer
was developed by Psyllos et al. (2011) based on their research. Multi-colour recognition was
added to this method to produce an output that was more dependable.

A significant component of traffic pattern recognition is the analysis of public traffic sur-
veillance, such as highway surveillance footage, in addition to the vehicle appearance pho-
tos gathered from various sources. Automatic driving and cruise control would substantially
benefit from these techniques, which are important for detecting vehicles ahead of you and
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recognizing traffic conditions. To realize automatic segmentation and recognition of the road
regions, for instance, Kong et al. (2013) provided a method for automatically recognizing the
frequency domain features that are produced by the vehicles moving through road areas in
movies.

C. Potential Directions for Transferability

In this part, the most promising applications that can be transferred from the origin domains
(those we identified in subsections IV.A and IV.B) to the target domain (i.e., RTPM) are pre-
sented. The discussion about how/to what extent Al-based solutions have been adopted in
aviation/automotive transport sectors in typical RTPM tasks will be illustrated. As a signifi-
cant outcome of this section, several potential directions for transferability are identified.

Integrating heuristic searching strategies with deep neural networks for vehicle routing
In terms of the tasks of path planning, route algorithm, and navigation for aircraft, graph-
based methods, especially the critical link method and queuing theory, are more popular in
unmanned aerial vehicle path planning compared with the traditional node-based methods.
Adding values to the railway sectors based on this observation can be summarized as follows:
unlike aircraft, railway vehicles must run on constructed tracks and follow the instructions
of dispatchers to move/halt. Path planning on public transportation systems from the macro
scope level, although conceptually similar, is a significantly harder problem, not only due to
its inherent time-dependent and multi-criteria nature but also considering that most railway
networks have the characteristics of heterogeneity. Thanks to the hints obtained from the
aviation sector, a method based on the generalized cost can be proposed to discover the valid
routes from the original station to the destination station for trains in the integrated network
of normal-speed and high-speed railways, especially in the circumstances that the high-speed
railway network is expanding rapidly among areas of Europe and China. The potential influ-
ential factors include total travelling time, total energy consumption, number of onboard pas-
sengers, the capacity of chosen tracks, and other possible factors in the generalized costs of
trains. Theoretically, valid routes can be generated by considering the defined train schedule,
and an effective route-search algorithm can be designed using the deep traversal method in a
new valid route-searching network.

As we already discussed, formulating a simple heuristic is challenging under the road net-
work setting since there are multiple factors to consider, such as road segment length, edge
centrality, and speed limit. Recently, a novel study investigated how a neural network can
learn to take these factors as inputs and yield a path given the origin and destination in the
road network, which may give us some inspiration about how the DNN can contribute to
railway path planning tasks. First, some random graphs can be generated by monitoring the
size and properties of the training graph without too many details about the network. Then,
a neural network can learn to traverse simple graphs with multiple strategies. Finally, factors
that might affect path finding in real road networks are scaled up. Overall, the training data
are optimal paths in a graph generated by the shortest path algorithm. The model is then
applied to new graphs to generate a path given the origin and destination. The arrival rate and
time efficiency are calculated and compared with that of the corresponding optimal path. Such
a method investigates and innovatively combines deep traversal strategies and deep neural
networks to perform route planning for vehicles.
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Alternative routes services/navigation for passengers based on CloT

In this application, transferability possibility from the perspective of the passenger (micro-
scope) is described — compared to train vehicle routing, travel route selection for individual
passengers is also important. Passengers on the same train typically have different destina-
tions — there are a set of intermediate stations between the original and terminal stations
and each passenger may leave the train at any of the intermediate stations as they need,
even transferring to another train. The behaviour/travelling patterns of the individual pas-
senger are more difficult to capture and simulate when using mathematical methods or heu-
ristic search algorithms. The considered quantitative parameters include total travelling fare,
travel time, transfer difficulties, travel convenience, comfort, and other possible factors in the
generalized expenses of passengers. Relevant studies regarding this consideration have been
found but they are limited. Most of them investigated travel time reliability and the estima-
tion of passenger route choice behaviour. By leveraging the inferred platform elapsed time
and the transfer time from the smart card transaction data, the journey time distribution of
any possible path can be generated, and methods were proposed for estimating route choice
proportions.

Current research on IoT focuses on the general perception of visual/voice objects and
making this information connected to sharing observations and making decisions. However,
it is not enough that only connections are established, the agent should have the capabil-
ity to learn from external inputs, think independently, and understand both physical and
social environments by themselves. Therefore, a new paradigm, CIoT, has received atten-
tion in empowering current IoT with an “intelligent brain” for higher-level automation.
Typically, an operational CIoT framework mainly characterizes the interactions among five
fundamental cognitive tasks: the perception-action cycle, massive data analytics, seman-
tic derivation and knowledge discovery, intelligent decision-making, and on-demand ser-
vice provisioning. Compared with traditional passenger route design services, the CloT
framework has the capability to bridge the physical world (with physical objects, facility
resources, etc.) and the social world (with human demands of travelling, social behaviour,
etc.), and enhance tasks of smart resource allocation, automatic network operation, and
intelligent service provisioning. From the literature we have found several promising stud-
ies related to this topic, some of them specifically improve the performance of services
for railway users (e.g., the rail Internet of Things (RIoT)), but others may enlarge their
scope under public transport systems (e.g., the cognitive road traffic management system
(CTMYS)). Solutions found in the automotive sector show a medium level of advancement
and promise for the rail sector.

Attributing primary and secondary delays in railway networks using explainable Al

Motivations of proposing this application include two aspects: the first one is the research
direction of explainable AI (XAI) needs to be synchronized with the investigated railway
research areas for narrowing the research gaps that could hinder operational deployment.
Second, understanding/labelling/learning knowledge from massive data is difficult and it has
not been fully understood at this stage, so we need a powerful framework to explain the
mechanism of Al models to those who are experts at traffic planning and modelling but have
little working experience on the Al side. Explainable Al is becoming more important as many
Alsystems are too complex to be properly understood by humans; therefore, XAl approaches
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and methods are necessary to make the reasoning process and the outputs understandable by

tors. _
hugintﬁg e(:r?e hand, the problem of discerning different reasons why train delays oceur is
tough and complex. Train dispatchers want to know which train builds up a delay at which
station, as well as why this delay build-up occurs. On the other, XAI has not received exten-
sive practical attention in the rail sector, and where the authors have tackled' the prot?lem of
discerning different reasons for the occurrence of train delays. Hence, there is much interest
in the causes of delays, as different causes imply different ways to prevent the_se dela)fs from
occurring. Given the total amount of delay a specific train builds up at a specific stgthn, we
discern the primary delays that would have occurred if there had been no other train in the
network, such as vehicle problems, from secondary delays that are knock-on delayg Thf: pro-
posed approach is to train an ML model that predicts the additional delay of a train, given a
set of primary features (e.g., weather conditions) and secondar.y features '(e.g., the delays of
nearby other trains). Methods from explainable Al help to classify how primary features and
secondary features contribute to a specific prediction of the model.

V. DISCUSSION

This chapter has provided a comprehensive review of scientific papers addressing the state-
of-the-art Al in the railway sector. We reviewed papers from a holistic railway perspective,
covering subdomains such as strategical planning, tactical planning, traffic analysis, and
rescheduling after disruptions. As such, this chapter presents a first step towards the adoption
of AI in the RTPM domain by providing an in-depth summary of the current research focus.
In addition, we identify some promising research directions to provide further uptake of Al
in railways.

In the domain of RTPM, although pure mathematical/exact operation research algorithms
are popular for those who want to find the upper limits of optimization performance, effective
Al approaches (e.g., data mining, reinforcement learning, and expert/knowledge-based rea-
soning system) have been gradually adopted thanks to their advantages over exact methods,
especially when the problem is NP-hard and it is difficult to yield an optimal solution within
limited computational time. However, optimization-based solutions to support traffic analy-
‘sis and tactical planning have their own advantages over heuristic approaches (i.e., genetic
algorithm, evolutionary computing and particle swarm optimization) in solution quality and
robustness.

Conventional machine learning models (i.e., regression trees, decision trees, random for-
est, support vector machine) have been widely adopted in solving rescheduling, timetable
design, and train routing problems. Furthermore, they are effective ways within big data
analytics to identify delay patterns and estimate the delay level for both passenger railway
lines and the freight network. The techniques listed above, together with pattern recognition,
have been applied to address various problems according to their objectives and acquired
data. For example, systematic data processing and cleaning frameworks, such as feature
engineering, clustering, or encoding of time-series data are likely to be adopted against a
background of hybrid large-scale data resources. On the other hand, a rescheduling problem
is about finding a feasible new timetable after disruptions and thus may require previous
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experiences in dispatching, giving the potential of applying supervised machine learning
methods.

All in all, different approaches demonstrate their potential in different application sce-
narios. It is difficult to outline which approach is the most promising one over others. In other
words, it largely depends on the requirements of data pre-processing and the purpose of the
study. However, the applications of machine learning and reinforcement learning are still at
their early stage and may require further development for satisfying more complex industrial/
business needs. Limited work has been done in the directions of natural language processing,
computer vision, and image processing, thus, the possibility of incorporating these Al applica-
tions into future research paradigms should be investigated.

VI.  CONCLUSIONS

In this chapter, a taxonomy for AI in RTPM is defined. It provides a thorough description of
Al for railway scholars, practitioners, dispatchers, and decision-makers. We divide Al into
three categories: research fields, key techniques, and applications, and describe their main
characteristics in order to confront the complex world of Al and bring it to trains.

A systematic literature review was conducted on research papers applying Al to RTPM
mainly between the years of 2011 and 2022. Several mainstream Al techniques were identi-
fied. Most RTPM problems are formulated as NP-hard discrete optimization problems. While
exact methods are able to find mathematically optimal solutions, they are often limited by
problem size (Alfieri et al., 2006; Lin and Kwan, 2016). Traditional evolutionary-based heu-
ristics such as GA, ant colony, and particle swarm are thus applied as a compromise (Li
et al.,, 2021; Wang et al., 2019a). The disadvantages of these evolutionary methods are that
they usually cannot guarantee the quality of solutions and are less robust and transferable.
Machine learning-based optimization methods may give a promising direction in the future,
which may serve as a trade-off between exact and evolutionary approaches (Bengio et al.,
2021). ML models such as regression trees and RL are also commonly used for optimization
problems in RTMP, for example, Obara et al. (2018), Khadilkar (2018), and Salsingikar and
Rangaraj (2020). ML models are also useful in big data analytics for estimating delay levels
and identifying delay trends for both passenger and freight trains (Wang and Zhang, 2019;
Prokhorchenko et al., 2019; Barbour et al., 2018). In accordance with the objective challenges,
different strategies, along with pattern recognition and data mining techniques, were imple-
mented in various contexts. A framework of hybrid large-scale data is required to perform
systematic data processing and cleaning, such as feature engineering, clustering, or time-
series data encoding. This requirement has been observed particularly in the areas of delay
analysis and conflict prediction (Liu et al., 2018).

Finally, an overview of emerging Al-based technologies in air and road is given, followed
by a transferability analysis to identify which of the existing research/solutions in the aviation
and automobile sectors may be applied to RTPM, for example, integrating heuristic searching
strategies with deep neural networks for rail vehicle routing, alternative route services/naviga-
tion for passengers based on CIoT, and attributing primary and secondary delays in railway
networks using XAl
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