
June 6, 2021
Faculty of Technology, Policy and Management

Delft University of Technology

Master Thesis Complex Systems Engineering and Management

Transparent Decision Support in ever-changing
healthcare contexts.

- Designing an architecture of a transparent and dynamic Clinical Decision
Support System grounded in Discrete Choice Modeling -

by

Verena Schrama
Student number: 4473787

Page Count: 115

Defence: June 14th 2021

Graduation committee
First Supervisor: Mark de Reuver, Information and Communication Technology

Second Supervisor: Rens Kortmann, Policy Analysis
External Supervisor: Caspar Chorus, Councyl

Preface

In December 2020, I embarked on the journey of writing a master thesis at Delft University of
Technology. The journey started with an internship vacancy at the start-up Councyl, which imme-
diately caught my attention. It offered a combination of the three courses I enjoyed the most (IC
Architecture Design, IC Service Design and Statistical Analysis of Choice Behaviour). Moreover,
it enables me to be active in the dynamic context of a start-up. Having combined everything that
excites me into a research proposal, I saw a flawless project on my horizon. Obviously, performing
a design research turned out to be slightly more challenging than expected. Fortunately, I was
surrounded with people that guided me so that I was able to make the journey as flawless as
possible.

In general, I am everybody thankful that I have been guided by people that have consistently
trusted me and have given me the freedom to add my own spices to the project. To start with, I
consider myself very lucky to have the opportunity to do research at Councyl. Councyl allowed me
to work with very intelligent, motivated, warm, and inspiring people. Moreover, this opportunity
gave me insight into what I really like to do: ensuring the design of societal technologies aligns
with people’s needs.

Caspar Chorus, I want to thank you for helping me with finding the right balance and looking
at the bigger picture. Designing an artefact that deals with many details made me feel lost
quickly. After a talk with you I was always able to reset my focus on the aspects that required
this focus. Moreover, I would like to thank Caspar for guiding me through the complex Discrete
Choice Modeling (DCM) theories, and more importantly, finding a balance between incorporating
complex DCM practices and effective, understandable decision support.

Nicolaas Heyning, I would like to thank you for all the sparring sessions during which I identified
some of my most valuable ideas and the willingness to answer my every question. Moreover, you
showed me the added value of scheduling in ”down time” to get the most creative ideas. Finally
I would like to thank Annebel ten Broeke. Having an example of a very successful thesis project
at Councyl was of great value. The walks and substantive discussions provided me with valuable
research tips, tricks, and insights.

The guidance I received from the TU Delft has also been a great support during my thesis process.
Mark de Reuver, I would like to express my sincere thanks for being both my first supervisor
and the chair of my graduation committee. Although I sometimes felt lost in all the design con-
siderations, each meeting with you provided me with the insights and feedback to improve my
work and continue with a clear goal in mind. Especially your feedback on the writing process was
invaluable. Because the design process was highly iterative, I found reporting the results of the
iterative process clearly challenging. When discussing the challenges I encountered with you, you
always knew exactly what to ask or say to let me tackle these challenges. Second, I would like to
thank Rens Kortmann for the critical notions and feedback. There are two moments I would like
to thank you for in particular. First of all, for showing me to how to position design research in the
field of design science research so that it is of scientific value. Second, for warning me about the
amount of time that is needed to write down your research findings, especially in case of a design
research. Nothing was truer than what you told me in December 2020: schedule at least twice as
much time in for writing than you would reasonably expect.

Thanks to the support of all people at Councyl, Mark and Rens, almost six months later, I can
surely say it has been a challenging but rewarding experience.

Verena Schrama
June 3rd 2021

Executive summary

Every day, physicians make decisions on medical treatments that directly influence patients’ well-
being. Clinical decision-making is concerned with information overload, risk of treatment errors,
and risk of treatment costs. To deal with complex decisions and to minimize decision errors,
physicians show a growing interest in Clinical Decision Support Systems (CDSS). A CDSS is a
computerized system that processes relevant information and provides recommendations to assist
physicians in decision-making. Ideally, these CDSSs are transparent and dynamic. Transparency is
important because the decisions are concerned with patients’ well-being. As such, physicians need
to know how a CDSS creates its recommendations. Dynamic refers to the capability to incorporate
new clinical developments. If a CDSS is not dynamic, it will lose its accuracy in an ever-changing
healthcare decision-making context. So far, there are no technologies in place that facilitate the
development of transparent and dynamic CDSSs.

Recently a new technology has been developed: Behavioral Artificial Intelligence Technology
(BAIT). BAIT applies Discrete Choice Modeling (DCM) to codify the domain expertise of physi-
cians. In theory, this technological approach allows for the development of CDSSs that are both
transparent and dynamic. So far, BAIT has been successfully applied for the development of
transparent CDSSs. These CDSSs are referred to as BAIT-based CDSSs. The next step is to
apply BAIT for the development of a dynamic CDSSs. These CDSSs are referred to as dynamic
BAIT-based CDSSs. However, the healthcare decision-making contexts in which CDSSs are to be
applied widely vary. As a result, there is no one-size-fits-all solution for the transformation of a
BAIT-based CDSS into a dynamic one. Therefore, CDSS developers need a dynamic BAIT-based
CDSS architecture that shows a developer how to build a customized dynamic BAIT-based CDSS
that satisfies the needs of physicians in a particular decision-making context. A CDSS architecture
is a conceptual model that defines a CDSS’s structure and behavior.

The design of a dynamic BAIT-based CDSS architecture is challenging for four reasons. First,
the BAIT approach is a novel innovation. The technical and social risks of this approach in
dynamic healthcare decision-making contexts are still unknown. Moreover, designing such an ar-
chitecture involves combining theories and practices from Discrete Choice Modeling (DCM), CDSS
design, and Machine Learning. Design studies did not combine these areas before. Third, there
are no building blocks in place that facilitate the start of the architecture design. Finally, de-
signing the architecture requires incorporating the preferences of physicians in varying healthcare
contexts. Because these contexts are dynamic, physicians’ preferences regarding a dynamic BAIT-
based CDSS will also change over time.

To expedite the design of dynamic BAIT-based CDSS architectures, this research aims to formulate
and test design principles that guide architecture designers in tackling the four above-mentioned
challenges. Design principles define the guidelines designers should respect to increase the chance
of reaching a successful architecture. To identify the design principles, this research follows a case
study in line with the Action Design Research (ADR) framework. The ADR framework makes
it possible to identify the requirements of a dynamic BAIT-based CDSS architecture and to test
these requirements by building an architecture in a situated problem context. Moreover, trying out
different design alternatives in a situated context generates lessons on what works and what does
not work when designing a dynamic BAIT-based CDSS architecture. These lessons informed the
generalization of the architecture requirements into ten design principles. These principles guide
architecture designers outside the situated context in designing a dynamic BAIT-based architec-
ture and in avoiding the obstacles encountered during this research process. Although some design
principles confirm the relevance of existing CDSS architecture design principles in the context of
a BAIT-based CDSS, the greater part of the requirements is specific to the design of a dynamic
BAIT-based CDSS architecture. By providing these novel insights, the design principles contribute

to the CDSS architecture design knowledge base.

Besides contributing to this knowledge base, the design principles contribute by expressing recom-
mendations for CDSS providers. A CDSS provider should contract an architecture designer and
a CDSS developer who both possess DCM knowledge and skill. The provider should encourage
the architecture designer to design all organizational processes, software processes, and informa-
tion objects necessary for a dynamic BAIT-based CDSS. Moreover, the designer should create an
architecture with an adaptable structure. An adaptable architecture has two advantages.

The first advantage is that an adaptable architecture allows an architecture designer to adjust
the architecture towards newly discovered preferences over time. The elicitation of preferences
over time requires the CDSS provider to explicitly assign the architecture designer with the role
of architecture owner. The owner takes care of the maintenance of the architecture and provides
CDSS developers with the architecture guidelines, so CDSS developers will use the architecture
as intended. The second advantage is that an adaptable architecture allows CDSS developers
to customize a dynamic BAIT-based CDSS. The architecture should allow physicians to choose
from different options regrading the level of updating automation and the choice information
incorporated in the updates of a CDSS.

The customization that this adaptable approach facilitates might give rise to unintended subjec-
tivity in the updates of a CDSS. Therefore, the provider should instruct the architecture designer
to maximize the objectivity with which a CDSS processes novel clinical information during an
update. Moreover, the CDSS provider should make physicians aware of the effects of the different
options from which physicians can choose. By doing so, the provider ensures that physicians choose
specific CDSS features deliberately and the CDSS customization is intended.

The preferences of physicians do not vary regarding all CDSS features of a dynamic BAIT-based
CDSS. Some features are essential, independent of the preferences of physicians. Therefore, the
CDSS provider should always instruct the architecture designer to pay attention to the following
three key CDSS features:

1. The architecture should ensure the CDSS makes transparent how it processes contextual
changes during an update. Therefore, the architecture should only incorporate components
and outcomes that are comprehensible for clinical end users and that make the change in a
CDSS resulting from updates tractable for clinical end users.

2. The architecture should ensure a dynamic BAIT-based CDSS works in partnership with
physicians and allows physicians to control the change in a CDSS resulting from updates.
The latter ensures that the CDSS bases its recommendations on information physicians find
relevant.

3. The architecture should describe a performance assessment component that gives physicians
insight into the validity of the CDSS’s choice recommendations for the present decision-
making context.

While designing these CDSS features, the designer must pay attention to two vital aspects for
a viable CDSS. The first vital aspect is that the architecture should not include information
flows that a CDSS provider or physicians can relate to individual physicians or that physicians
specified as undesired. To this end, the CDSS provider should create an Information Processing
Agreement that captures the agreements on information sharing between a CDSS provider and
physicians before implementing a dynamic BAIT-based CDSS. The second vital aspect is that the
architecture should not include interaction flows that may be unavailable or concern information
from which a physician does not benefit. The provider is recommended to validate the architecture
design on these two vital aspects.

Finally, the CDSS provider will need to execute new organizational tasks that are vital for
the successful implementation of a dynamic BAIT-based CDSS. The CDSS provider should ensure
that the architecture designer describes all organizational activities a CDSS provider needs to per-
form to offer a successful decision support service. Accordingly, the provider should fit these new
organizational activities into the existing workflow.

To finish, this research contributes to CDSS architecture design knowledge because it tackles
the challenges of designing a dynamic BAIT-based CDSS architecture. By doing so, the research
outcomes eliminate the barriers to design such an architecture and lay a foundation to continue
the work on transparent and dynamic CDSSs. The utilization of this foundation could start with

the recommendations for further research identified along with this research. The research recom-
mendations fall into three categories. The first category contains research efforts to improve the
architecture design, like investigating how clinical choice outcomes can enrich the information a
CDSS incorporates during an update. The second category involves researching new design chal-
lenges, like designing a dynamic BAIT-based CDSS architecture with the ten design principles in
another sector. By doing so, the designer can investigate how to modify the design principles, so
the principles are useful outside the healthcare sector. The third category consists of research that
aims to fill in the identified knowledge gaps. An example is investigating how to customize the
ADR framework so that it better assists designers in tackling the challenges central to architecture
design research.

List of Figures

1.1 The construction of a BAIT-based CDSS. 4
1.2 Two choice scenarios for a choice experiment on ICU uptake. 4
1.3 Overview of the stakeholders. 9
1.4 The phases of the Action Design Research (ADR) framework. 12
1.5 Research flow with the input, phases, output, Action Design Research (ADR) prin-

ciples, and sub-questions. 13
1.6 Design Cycle of . 14

2.1 Conceptual overview of the intelligent internal software components of a dynamic
CDSS. 20

2.2 Human-Computer Interaction components of a dynamic CDSS. 21
2.3 Conceptual overview of the main components of a dynamic CDSS. 22
2.4 Adaptive Choice Base in the context of a dynamic BAIT-based CDSS. 23
2.5 Model Update Engine in the context of a dynamic BAIT-based CDSS. 27
2.6 Model Quality Monitor in the context of a dynamic BAIT-based CDSS. 27
2.7 Conceptual outline of the design space of a dynamic BAIT-based CDSS architecture. 28

3.1 Stakeholders of the action context: Councyl and the end users. 31
3.2 Classification of architecture requirements. 33

4.1 Conceptual overview of possible choice influence and weighting extensions. 51
4.2 Detailed overview of possible choice influence and weighting options. 52
4.3 Colored overview of possible choice influence and weighting options that marks ex-

tensions. 52
4.4 Conceptual overview of the three Information specification Extensions. 53
4.5 The interface for a clinical end user to enter choice details and request a choice

recommendation in the static BAIT-based CDSS. 56
4.6 The interface for a clinical end user to enter choice specifications and request a

choice recommendation in a dynamic BAIT-based CDSS. 57

5.1 High overview of the dynamic BAIT-based CDSS architecture for Councyl with six
components. 61

5.2 Architecture solution: Choice recommendation generator and relationships. 61
5.3 Architecture solution: Adaptive choice base module and relationships. 62
5.4 Architecture solution: Model quality monitor module and relationships. 63
5.5 Architecture solution: Model update engine and relationships. 64
5.6 Architecture solution: Information specification Extensions 1, 2 and 3, and relation-

ships (Exp. = experiment choices, RL=real-life choices). 65
5.7 Architecture solution: User settings component and relationships. 66
5.8 Architecture solution: Model management component and relationships. 67

8.1 Design principle 4 and design principle 5 both enhance a CDSS’s user involvement. 101
8.2 Design principle 5 relates to design principle 3 and design principle 1. 102
8.3 Design principle 6 supports design principles 1, 7 and 9. 102
8.4 Design principle 9 restricts design principle 7. 102

D.1 The architecture of a BAIT-based CDSS used to serve clinical end users by Councyl. 144

E.1 The architecture of a dynamic BAIT-based CDSS for Councyl. 146
E.2 The Information specification Extensions that are part of the architecture of a dy-

namic BAIT-based CDSS for Councyl. 147

F.1 High overview of the dynamic BAIT-based CDSS architecture for Councyl with six
components. 149

G.1 The python packages needed for the proof-of-technology. Required for implementa-
tion of all components in table G.1. 151

G.2 The code to retrieve and prepare the choice data in the adaptive choice base for an
update. Required for implementation of all components, but represents component
1 in table G.1. 152

G.3 The code to estimate and validate a recommendation generator model for an update
with the choices stored in in the temporary choice bases. Required for implementa-
tion of all components in table G.1. 153

G.4 The code to adjust weight with which experiment choices (SP) and real-life (RP)
choices are multiplied (front-end) and to store the multiplied choices in the tempo-
rary choice base (back-end). This code shows how an user can specify the weight
with an importance rate (a multiplication of choices with a chosen integer). Required
for implementation of component 2 in table G.1. 154

G.5 The code to adjust weight with which experiment (SP) and real-life (RP) choices are
multiplied (front-end) and to store the multiplied choices in the temporary choice
base (back-end). This code shows how an user can specify the weight with an
importance balance (a multiplication of choices with a balance slider). Required for
implementation of component 2 in table G.1. 154

G.6 The code to select a sub group of choices (for instance all choices made by juniors)
and exclude these choices or multiply these choices with a weight (here an importance
rate, alternative is importance balance). Required for implementation of component
3 and 4 in table G.1. 155

G.7 The code to create the temporary choice bases for an update according to the spec-
ifications of the clinical end user (see fig. G.6). Required for implementation of
components 3 and 4 in table G.1. 155

H.1 Performance metrics overview for Councyl. 159
H.2 Access to user settings for Councyl to make specific sub groups unavailable according

to the Information Processing Agreement for privacy reasons. 160
H.3 The login screen for both Councyl and clinical end users. 161
H.4 The real-life choice storage and recommendation request screen. A clinical end

user can enter the specification of a choice task he or she has to deals with. While
filling in the choice specifications, the choice recommendation generator dynamically
determines the recommendation. The end user can hide the recommendation if he
or she does not want to be influenced in filling the choice details or in making a
choice. Finally, the real-life choice specification can be stored. 161

H.5 A brief confirmation of a dynamic BAIT-based CDSS that the choice stored. . . . 162
H.6 The model insight screen shows the active model (in terms of the relative importance

of all choice attributes for the decision-making) and the Correspondence rate the
choice/clinical end user agreement table that were determined during the model
validation process. Moreover, end users can request previous model updates to
compare different model updates. Finally, it can be observed how the importance
of the choice attributes changes over time (per update). 162

H.7 The decision investigation allows clinical end users to specify a sub group of choices
for which they want to see the model estimation and validation. For instance, the
model for all choices made by senior clinical end users can be requested. The goal
of this tool is either mutual learning or trying out model updates with different sets
of choices. 163

H.8 As soon as a clinical end user has requested the model for a specific sub group, the
model is directly and locally presented. 163

H.9 The screen where clinical end users can activate a model update. The CDSS will
directly update with the choices as specified in the user settings. 164

H.10 The CDSS confirms an update, but does not directly presents the results of the
update. 164

H.11 The screen where clinical end users can reset the model that is used by the choice
recommendation generator to provide choice recommendation. To this end, the end
user can choose from all previous model updates. 164

H.12 The CDSS briefly confirms the selection of a new model for the choice recommen-
dation generator. 165

H.13 A clinical end user can request all experiment choices and real-life choices he or she
made in the past. 165

H.14 The end user can access all the choices for which he or she deviated from the rec-
ommendation of the dynamic BAIT-based CDSS. 166

H.15 The notification screen gives an overview of all warning feedback that is provided
by the CDSS. The notification that warns that an update is needed remains visible
until the end user updates the model. 166

H.16 The user setting for the preference values show all options from which end users can
choice to customize the CDSS towards the particular preferences. Most importantly,
a clinical end user can choose here for the desired level of updating automation. . . 167

H.17 One or more of these screens are only accessible if the clinical end user chose Infor-
mation specification Extension 1, 2 or 3. If implemented, these screens allow clinical
end users to specify how much specific types of choices will influence the model up-
dates. To specify the weight, the end user can choose between an importance rate
or an importance balance. All settings can be tried out, meaning that the results
will be presented but will not be stored or influence the model that the CDSS uses
for the generation of choice recommendation. 168

J.1 Data overview architecture of a dynamic BAIT-based CDSS for Councyl. 172

List of Tables

1 Acronyms and shortcut words. .

.25table.caption.33
2.2 The architecture design space framework. 29

3.1 Definitions of the architecture requirement categories 33
3.2 Questions and rationale semi-structured interviews Councyl 36
3.3 Questions and rationale semi-structured interviews clinical end users 37
3.4 Client Artefact Requirements . 39
3.5 Quality Attribute Requirements . 41
3.6 Development Guiding Requirements . 45

4.1 The features of real-life choices. 51

6.1 Evaluation of usefulness . 71
6.2 Evaluation of understandability . 72
6.3 Overview table of the implemented and tested architecture components 74

8.1 Overview of the design principles for designing a dynamic BAIT-based CDSS archi-
tecture. 91

8.2 Architecture Requirements design principle 1: Adaptable design. 92
8.3 Architecture Requirements design principle 2: Objectivity maximization within the

subjective boundaries. 94
8.4 Architecture Requirements design principle 3: Goal-based interaction. 95
8.5 Architecture Requirements design principle 4: Tractability of change. 96
8.6 Architecture Requirements design principle 5: Receptivity to user input. 97
8.7 Architecture Requirements design principle 6: Differentiation in consumed choices

and produced information. 98
8.8 Architecture Requirements design principle 7: Mutual learning. 99
8.9 Architecture Requirements design principle 8: Architecture intuitiveness. 100
8.10 Architecture Requirements Design principle 9: Privacy of choice information and

decision-making behaviour information. 100
8.11 Architecture Requirements design principle 10: Explication of the organizational

activities. 101

A.1 List of the requirement identification interviews . 129

C.1 Definition of relationships specified ArchiMate. 143
C.2 Additional specifications and shortcut words. 143

G.1 Overview table of the implemented and tested architecture components 150
G.2 Parameters based on experiment choices, and on experiment choices and real-life

choices (joint) with component 1 (see appendix G.1) 157
G.3 Correspondence rates for model estimation based on experiment choices and real-life

choices . 157
G.4 Parameters estimated with component 1 and 2 (see appendix G.1) based on a tem-

porary in which experiment choices and real-life choices were weighted (Exp. =
experiment choices, RL=real-life choices). 158

Acronyms and shortcut words

Table 1: Acronyms and shortcut words.

Acronym or shortcut Explanation of meaning in thesis

BAIT Behavioral Artificial Intelligence Technology

CDSS Clinical Decision Support System

CDSS architecture A formal description of all components of a CDSS to guide its devel-
opment and implementation.

CDSS update The estimation an activation of a new choice recommendation gener-
ator model with new choice information that became available since
the previous update.

Choice information All experiment and real-life choices made by physicians.

Choice recommendation gen-
erator model

The Discrete Choice Modeling choice model that a CDSS operates
to generate choice recommendations for end users (also referred to as
model or choice model).

Clinical end user A physician who consults a dynamic BAIT-based CDSS for a choice
recommendation for assistance on a choice task.

Decision-making behaviour Physicians’ implicit decision-making rules, strategies, and behaviour.

Decision-making behaviour
information

An overview of the relative importance clinical end users assign to
choice attributes when engaging in a particular decision-making task.

Decision-making context The space that is made up by all factors that influence the outcome
of a particular choice task.

Dynamic CDSS A Clinical Decision Support System that incorporates new contextual
information and, by doing so, remains or even improves the quality
of its decision recommendations during ongoing use.

Experiment choice A choice clinical on treatment for a hypothetical patient explicated
during a controlled choice experiment (also referred to as a stated
preference (SP)).

IDSS Intelligent Decision Support System

Introspection The act of investigating physicians’ decision-making behaviour.

KBS Knowledge-based system

NKBS Non knowledge-based system

Real-life choice A choice on clinical treatment for a patient that a physician expressed
in a real-life setting (also referred to as revealed preference (RP)).

Contents

Preface

List of figures

Acronyms

1 Introduction 2
1.1 Decision support in the healthcare sector . 2
1.2 BAIT approach for a new type of CDSS . 3

1.2.1 Introduction to Discrete Choice Modeling 3
1.2.2 Introduction to Behavioral Artificial Intelligence Technology 3

1.3 The dynamic application context of CDSSs . 5
1.4 Research objective . 6

1.4.1 The value of a BAIT-based CDSS . 6
1.4.2 The value of architecture design . 7
1.4.3 Filling the gap of guiding design principles 8
1.4.4 Research questions . 9

1.5 Research approach . 10
1.5.1 Selection of the research approach . 11
1.5.2 Research flow . 12

1.6 Summary chapter 1 . 15

2 Definition of the architecture design space 17
2.1 Architecture components of a CDSS . 17

2.1.1 Intelligent internal software . 18
2.1.2 Human-Computer Interaction . 20

2.2 The design space set by Discrete Choice Modeling 22
2.2.1 Adaptive knowledge base . 22
2.2.2 Model update engine . 24
2.2.3 Model quality monitor . 27

2.3 Summary chapter 2 . 28

3 Introduction to the action context: The current and desired situation 30
3.1 Introduction to the current action context . 30

3.1.1 Introduction to Councyl and the key stakeholders 30
3.1.2 Introduction to the problem experienced by Councyl 31

3.2 Desired situation: Architecture requirements . 32
3.2.1 The classification of architecture requirements 32
3.2.2 The methodology of the requirement identification 33
3.2.3 The results of the requirement identification 38

3.3 Summary chapter 3 . 44

4 Specification of the Architecture: Design Decisions 46
4.1 Design decisions on the architecture structure . 46

4.1.1 Layered design . 46
4.1.2 Adaptable design . 47
4.1.3 Soft- and hardware independence . 47

4.2 Design decisions on the estimation and validation of recommendation generator
model updates . 48
4.2.1 Extensions involvement and update trigger automation 48

4.2.2 Pooled estimation . 48
4.2.3 Restricting the individual parameters with missing values to zero 48
4.2.4 Selection of performance metrics . 49
4.2.5 K-fold cross validation with manipulated data split 49

4.3 Design decisions on the customization of the update engine 50
4.3.1 Module extensions for choice inclusion and weight specification 50
4.3.2 Multiplication of sample size to realize the weight specification 53
4.3.3 Temporary choice bases . 54
4.3.4 Information specification Extensions as user settings 55

4.4 Design decisions on information management . 55
4.4.1 The measurement of new real-life choices over time. 55
4.4.2 Separated choice bases for experiment and real-life choices 55
4.4.3 Data accessibility for clinical end users . 56
4.4.4 Split in user settings Councyl and clinical end users 56
4.4.5 Data accessibility for Councyl and clinical end users 58

4.5 Summary chapter 4 . 58

5 Results: Architecture solution 60
5.1 Architecture overview . 60

5.1.1 The relation with the current static BAIT-based CDSS 61
5.1.2 Relations between the components of a dynamic BAIT-based CDSS 61

5.2 Adaptive choice base . 62
5.3 Model quality monitor module . 63
5.4 Model update engine module . 64

5.4.1 The construction of temporary choice bases 64
5.4.2 The choice recommendation generator model estimation 65
5.4.3 The choice recommendation generator model validation 65

5.5 User settings component . 66
5.6 Model management module . 67
5.7 Summary chapter 5 . 68

6 Evaluation of the architecture solution 69
6.1 Evaluation Approach . 69
6.2 Static-oriented evaluation . 70
6.3 Dynamic-oriented evaluation . 71

6.3.1 Proof-of-technology . 72
6.3.2 Mock-ups . 74

6.4 Summary chapter 6 . 76

7 Reflection 77
7.1 The lessons learned: Reflection on the design project 77

7.1.1 Problem framing . 77
7.1.2 Emerging Artefact . 79
7.1.3 Fundamental theories . 84
7.1.4 Design Process . 87

7.2 Summary chapter 7 . 88

8 Generalization 90
8.1 Design principles . 90

8.1.1 Design principle 1: Adaptable design . 91
8.1.2 Design principle 2: Objectivity maximization within the subjective boundaries 93
8.1.3 Design principle 3: Goal-based interaction 94
8.1.4 Design principle 4: Tractability of change 94
8.1.5 Design principle 5: Receptivity to user input 96
8.1.6 Design principle 6: Differentiation in consumed choices and produced infor-

mation . 97
8.1.7 Design principle 7: Mutual learning . 98
8.1.8 Design principle 8: Architecture intuitiveness 99
8.1.9 Design principle 9: Privacy of choice information and decision-making be-

haviour information . 100

8.1.10 Design principle 10: Explication of the organizational activities for the CDSS
provider . 100

8.2 The relations within the set of design principles . 101
8.3 Contribution to architecture design science knowledge 102

8.3.1 Contribution design principle 1: Adaptable design 103
8.3.2 Contribution design principle 2: Objectivity maximization within the sub-

jective boundaries . 104
8.3.3 Contribution design principle 3: Goal-based interaction 104
8.3.4 Contribution Design principle 4: Tractability of change 104
8.3.5 Contribution design principle 5: Receptivity to user input 105
8.3.6 Contribution design principle 6: Differentiation in choices 105
8.3.7 Contribution design principle 7: Mutual learning 105
8.3.8 Contribution design principle 8: Architecture intuitiveness 106
8.3.9 Contribution design principle 9: Privacy of choices and decision-making be-

haviour information . 106
8.3.10 Contribution design principle 10: Explication of the organizational activities 107

8.4 Summary chapter 8 . 107

9 Conclusion 109
9.1 Main findings: design principles for a dynamic BAIT-based CDSS architecture . . 109
9.2 Theoretical contributions of the design research . 110

9.2.1 Design principles . 110
9.2.2 Foundation for BAIT-based CDSS architecture design work 111
9.2.3 Reusable solution concepts . 112
9.2.4 Contribution to Machine Learning knowledge field 112

9.3 Limitations and Recommendations on further research 113
9.3.1 Limitations of the design principles . 113
9.3.2 Recommendations for further research . 114

References 116

A Overview of the interviews 129

B Interview analysis 130
B.1 Interviews Councyl . 130

B.1.1 Interview part 1: Main purpose . 130
B.1.2 Interview part 2: Functions of the architecture 132
B.1.3 Interview part 3: Characteristics of the architecture 135

B.2 Interviews clinical end users . 136
B.2.1 Interview part 1: The design of the updating 136
B.2.2 Interview part 2: Frequency and activation of updating 139
B.2.3 Deviating choices . 139
B.2.4 Information provision on the model performance 141
B.2.5 Additional decision-making behaviour insights 141
B.2.6 Majority threshold . 142

C Archimate legend and relationship description 143

D Architecture current situation 144

E Architecture solution for Councyl: full overview 145

F Architecture solution for Councyl: high-level overview 148

G Architecture proof-of-technology: scripts and outcomes 150
G.1 Scripts proof-of-technology . 150
G.2 Outcomes of executing scripts . 156

H Architecture implementation: mock-ups 159
H.1 Mock-ups point of view from Councyl . 159
H.2 Mock-ups point of view from clinical end users . 161

I Organizational architecture implementation guidelines for Councyl 169

J Overview of the data objects defined by the architecture of a dynamic BAIT-
based CDSS for Councyl 171

1

Chapter 1

Introduction

1.1 Decision support in the healthcare sector

Every day, physicians make decisions on clinical treatments that directly influence patients’ well-
being. Decision-making is the practice of choosing between feasible options to select the best
alternative (Chikwe, n.d.; Delen, 2019). For physicians, decision-making is concerned with infor-
mation overload, risk of treatment errors, and risk of treatment costs (Varonen, Kortteisto, Kaila,
& Group, 2008). Moreover, the decisions directly influence patients’ well-being. Despite that
physicians are experts who exhibit powerful knowledge and experience, the decisions they face
still form recurring risky challenges with direct impact on the healthcare organization and society
(Kirkebøen, 2009).

To deal with such complex decisions and minimize decision errors, physicians show a growing
interest in Clinical Decision Support Systems (CDSSs) (Sutton et al., 2020). Since their intro-
duction in the 1980s, CDSSs have seen a rapid evolution (Sutton et al., 2020). CDSSs form a
specific subcategory of Decision Support Systems (DSS’s) that are applied in the healthcare sec-
tor. A DSS is a computerized system that processes and provides relevant information to assist in
decision-making, and by doing so, enhances human judgement (Bhatt & Zaveri, 2002; K.-W. Lee &
Huh, 2006; Power, 2008; Shim et al., 2002; Zeleznikow & Nolan, 2001). A DSS can be considered
as a system providing a set of functions that extend cognitive decision-maker abilities of the end
users (Zachary, 1988). An example of a DSS applied in the healthcare sector is a DSS providing
recommendations to a physician in favour or against surgery, given a patient’s specific conditions.
CDSSs thus function as direct aid to the complexity of clinical decisions by interpreting individual
patient data and accordingly provide a recommendation regarding the patient (Sutton et al., 2020).

CDSS developers create the CDSS’s for physicians. These developers may work for a CDSS
provider organization or be active in the academic world to research CDSS’s. CDSS developers
have been studying and improving DSSs since the 1960s (Behmel, Damour, Ludwig, & Rodriguez,
2021). This ongoing work lead to the development of Intelligent Decision Support Systems (IDSSs)
(Behmel et al., 2021). IDSSs are based on artificial intelligence (AI) and aim to support decision-
making by mimicking human capabilities and predicting choice recommendations for a physician’s
choice task (Yilmaz & Tolk, 2008). A prediction entails utilizing available information to generate
information that is absent. By doing so, an IDSS can extrapolate insights that can help facilitate
decision-making using existing data. The health sector was one of the first domains applying an
IDSS (Gulavani & Kulkarni, 2014). Because current CDSSs mainly operate AI techniques, the
notion of CDSS refers to an IDSS - a CDSS that is based on AI - in the remainder of this research.
Nowadays two main types of CDSSs exist in the literature: non-knowledge-based and knowledge-
based systems (Abbasi & Kashiyarndi, 2010). They mainly differ in their technological foundation.

Non-knowledge-based systems (NKBS). NKBS’s apply the rapidly growing branch of AI known
as machine learning (ML) (Abbasi & Kashiyarndi, 2010; Montani & Striani, 2019). They ground
their decision-support on feature extraction of labelled training data to recognize and analyse
patterns from unseen data with the use of ML techniques such as deep learning or super vector
machines (Burrell, 2016). With the use of ML techniques, there is no need for input of experts and
no necessity to write rules as the input like knowledge-based systems require. ML allows CDSSs
to learn by including a feedback loop that re-uses the predicted outputs to train new versions of
the model (Jordan & Mitchell, 2015).

2

Knowledge-based systems (KBS). KBS’s give recommendations based on domain knowledge in
if-then rules (Abbasi & Kashiyarndi, 2010; Montani & Striani, 2019). KBS’s were developed early
on in the field of AI and uses domain knowledge as a frame of reference. More precisely, it directly
translates domain knowledge of experts into a set of rules or cases to support human decisions.
As such, they heavily rely on human expertise. Therefore, a KBS is also referred to as an expert
system.

1.2 BAIT approach for a new type of CDSS

Recently a third type of CDSS has been introduced: a CDSS that is based on Behavioral Artificial
Intelligence Technology (BAIT). A BAIT-based CDSS applies Discrete Choice Modeling (DCM) to
codify the domain expertise of physicians (Ten Broeke, Hulscher, Heyning, Kooi, & Chorus, 2021).
This section gives an introduction to DCM subsection 1.2.1 and explains how DCM is applied by
BAIT subsection 1.2.2.

1.2.1 Introduction to Discrete Choice Modeling

Discrete Choice Modeling (DCM) is used to analyse decision-making and predict future choices
of individuals (J. J. Louviere, Flynn, & Carson, 2010). In the analysis of DCM, the preferences
of an individual are considered as a set of parameters evaluating how the individual values the
attributes in his or her choice-making process (Zhu, Feng, Huang, & Chen, 2020). DCM enriches
decision-making researchers or econometricians with two scientifically valuable practices.

First, researchers can estimate a choice model. During the model estimation, a researcher infers
the weights that decision-makers attach to different choice attributes (Bech, 2003; Greene, 2009).
In this report, the decision-makers are physicians choosing to proceed with a particular clinical
operation or not. Choice attributes represent the main criteria that a physician considers when
making a choice on a particular clinical operation (Bech, 2003; J. Louviere & Timmermans, 1990).
Examples of choice attributes are the BMI of a patient or the Intensive Care Unit (ICU) capacity
when deciding on the uptake of a patient in the ICU. The weights represent how important a
physician finds a choice attribute relative to the other choice attributes when making a choice.
As such, the weights contain crucial information on the likelihood that a physician will choose
to operate. With the knowledge of what an individual physician finds important, a modeller can
predict whether a physician is likely to choose a particular treatment option for future choice tasks
(Train, 2009; Zhu et al., 2020). By inferring the weights physicians attach to choice attributes,
a choice model makes the trade-offs of physicians between these attributes explicit. The power
of DCM is that the model reveals these trade-offs indirectly instead of asking an individual for
trade-offs directly. Decision-makers often don’t know what they find more important or hesitate
to give the true answers in more sensitive situations. Moreover, judgment is more susceptible to
bias than choices in which decision-makers make the trade-offs.

Second, DCM allows the researcher to explore which decision-making rule best describes how
the physicians made decisions regarding patients. Different models following a specific decision-
making rule exists. The BAIT approach is not bound to a single choice model formulation. To
give an illustration, two commonly acknowledged choice models are Random Utility Maximization
(RUM) and Random Regret Minimization (RRM). The RUM model assumes that individuals make
choices amongst a finite set of available alternatives while aiming to achieve the highest utility. The
RRM model assumes individuals make choices amongst a finite set of available alternatives while
aiming to avoid the situation where one or more non-chosen alternatives perform better than the
one that was chosen to minimise regret after the choice event (Chorus, 2010). Despite the particular
decision-making rule assumed, a choice model always consists of an observed and unobserved part.
The unobserved part is the error term representing the choice modeller’s incapacity to observe
all variables that shape an individual’s choice. The unobserved part covers measurement errors,
differences between individuals, and the randomness inherent in human nature. The variables
(choice attributes) that the modeller can measure form the observed part of the choice model
(Greene, 2009).

1.2.2 Introduction to Behavioral Artificial Intelligence Technology

A BAIT-based CDSS forms a customized system for a particular recurring choice task. The devel-
opment of a BAIT-based CDSS consists of two main steps. The first step is conducting a choice
experiment (see the left box in Figure 1.1). During the choice experiment, a group of physicians

3

makes choices on a set of hypothetical choice scenarios. The choices made during this experiment
are always hypothetical because a physician only states that he or she would choose a particular
alternative if the physician would encounter the scenario (de Freitas, Becker, Zimmermann, &
Axhausen, 2019). Because the choices made during the choice experiment reflect the choices a
physician states he or she would make, these choices are officially referred to as stated preferences
(SP) (M. Ben-Akiva et al., 1994). This research report uses the term experiment choices to refer
to stated preferences.

Figure 1.1: The construction of a BAIT-based CDSS.

All hypothetical choice scenarios reflect the situations that the physicians face in their real-life
work. Figure 1.2 presents two examples of the hypothetical choice scenarios. As explains section
1.2.1, a set of choice attributes formats the scenarios. For each scenario, the physician chooses
between the potential clinical operation alternatives given the characteristics of a patient (Bech,
2003). For instance, a physician chooses to perform a heart surgery or not. The use of hypothetical
scenarios brings the CDSS developer in the position to design the choice scenarios (Bech, 2003).
By doing so, the developer can control the correlations between attributes and avoid the presence
of unobserved attributes that influence respondent’s choice (Boyce & Williams, 2015; Helveston,
Feit, & Michalek, 2018). As a result, the developer only informs a BAIT-based CDSS about the
most relevant attributes in the particular choice task that the CDSS will assist.

Figure 1.2: Two choice scenarios for a choice experiment on ICU uptake.

The second step in the development of a BAIT-based CDSS is to use the answers of the physicians
on the hypothetical scenarios to estimate a choice model (see the right box in Figure 1.1). Based
on the experiment choices, a choice model reveals the weights that the group of physicians attaches
to the different choice attributes at a specific point in time (de Freitas et al., 2019; J. J. Louviere

4

et al., 2010). The model thus reflects the decision-making strategy of a group of physicians on
a specific choice task. An estimated choice model can predict the future choices of physicians
(J. J. Louviere et al., 2010). The prediction that a BAIT-based CDSS gives forms a recommenda-
tion on a new choice task defined in terms of the same choice attributes as the hypothetical choice
scenarios (ten Broeke, 2020). This means that a BAIT-based CDSS is limited to recurring and
structured decisions. As a result of the two development steps, a BAIT-based CDSS offers the
following two services (see Figure 1.1):

1. Introspection on the physician’s decision-making behaviour. The direct result of the formula-
tion of the choice model is an overview of the weights physicians implicitly assign to choice
attributes. Analysing the weights estimated for all choice attributes represent the trade-offs
physicians make between the choice attributes(Ten Broeke et al., 2021). By doing so, the
BAIT-based CDSS generates an improved understanding of physicians’ implicit decision-
making rules, strategies, and behaviour. The remainder of this report refers the physicians’
implicit decision-making rules, strategies, and behaviour as decision-making behaviour. The
act of investigating this behavior refers to introspection. Since research shows that it is
hard for physicians to explain their logic behind decisions (Wagholikar, Sundararajan, &
Deshpande, 2012), introspection already has an added value by generating a starting point
for valuable discussions among physicians or an enhanced understanding of how to improve
decision-making (Ten Broeke et al., 2021).

2. Decision support service. A BAIT-based CDSS allows a physician to enter a real-life choice
with regard to a particular patient. This means that a physician shows the choice task
regarding a patient to the group of physicians ‘behind’ the BAIT-based CDSS – the physicians
from whom the expertise was used to develop the BAIT-based CDSS. The system then
calculates the choice probability. The prediction that a BAIT-based CDSS gives on new
choice tasks represents the percentage of physicians that would vote in favour of a treatment.
For instance, if a BAIT-based CDSS gives a choice probability of 80%, this means that 80% of
the physicians would vote in favour of the alternative. At the same time, this means that 20%
of the colleague physicians would not continue with the treatment. If the internal agreement
among the pool of colleagues is high, a physician will feel strengthened regarding his or her
decision. If the internal agreement is low and the BAIT-based CDSS shows heterogeneous
opinions or if the prediction is not in line with the op ion of the physician consulting the
recommendation, the physician is signalled and may be triggered to reconsider the decision.

1.3 The dynamic application context of CDSSs

The BAIT-based CDSS is static. Static means that the CDSS can only be developed based on
the available knowledge at a specific point in time. However, healthcare decision-making contexts
where CDSS are applied are highly dynamic (Bennett & Doub, 2016; Gorzeń-Mitka & Okreglicka,
2014; Miah, Blake, & Kerr, 2020; Prezenski, Brechmann, Wolff, & Russwinkel, 2017; G. Zhang,
Xu, & Li, 2012). A decision-making context is defined by the space consisting of all factors that
influence the strategy used for a particular choice task. The clinical knowledge driving physicians’
decision-making develops, and the contextual conditions under which physicians make decisions
continuously change (Castaneda et al., 2015; El-Sappagh & El-Masri, 2014; Miah et al., 2020;
Lyman, Cohn, Bloomrosen, & Detmer, 2010). Information central to the decision-making process
is thus not static but changes over time (Pérez, Cabrerizo, & Herrera-Viedma, 2010). Physicians’
decision-making depends on the outcomes of previously made decisions, on implications in the
context that result from these outcomes and on events outside of the physicians’ control (Bennett
& Doub, 2016; Brehmer, 1992; Edwards, 1962; Hong, Wang, & Lin, 2010). Bennett and Doub
(2016) explain that a physician thereby learns progressively and makes decisions while being influ-
enced by, for example, the consequences of previously made decisions or by new regulations and
innovative technologies.

Clinical choices involve the incorporation of information that keeps changing (Mahiddin, Othman,
& Bakar, 2017). There are three types of dynamics in a healthcare decision-making context.

1. Clinical knowledge develops, and the contextual conditions under which physicians make
decisions change every day (Miah et al., 2020). New knowledge about diseases and treatments
continuously emerges because the development of clinical sciences is continuous and takes
place worldwide (Sanchez et al., 2011; Tomaszewski, 2012). Consequently, the number of

5

scientific articles testing the effectiveness of treatment and quality of healthcare increases
(Tomaszewski, 2012). As Sanchez et al. (2011) give as an example, a treatment could be
rendered irrelevant by a new discovery that supersedes it.

2. Accepted norms and regulations may change the possibilities of physicians by restricting
specific treatments.

3. The pool of physicians making the decisions with regard to a specific treatment may change.

As a result of these dynamics, the information central to the decision-making process is not static
but changes over time (Pérez et al., 2010). Accordingly, the decision-making strategy of physicians
and the resulting choices evolve (Zhu et al., 2020). If CDSS developers do not process these chang-
ing contextual conditions in the decision support, recommendations become inaccurate and do not
reflect intended goals (Lenz, 2020). CDSS’s are primarily dependent on the clinical information
based on which they are modelled and can thus only be as effective as the quality and relevance
of this information (Khalifa, 2014; Osop & Sahama, 2019). When a CDSS depends on unchanged
information over time, the performance of a CDSS is known to degrade over time because its appli-
cation context does not remain in a stationary state (Klinkenberg & Rüping, 2002). Consequently,
the CDSS is inactive and will become unserviceable over time (El-Sappagh & El-Masri, 2014).

Therefore, (Bennett & Doub, 2016) argue that CDSSs should mimic the way physicians evolve
within decision-making over time. Arnott (2006, p.2) agrees and states that a CDSS must be
updated frequently during ongoing use to “track changes in the problem, user, and decision-
making environment because these factors are inherently volatile”. Similarly, Vahidov and Kersten
(2004) argue that all future CDSSs should be capable of adapting to changes in their environment.
Accurate and up-to-date information can optimize the decision-making process because the new
knowledge in healthcare inspires the physicians’ decisions (Gago & Santos, 2008; Kruse, Goswamy,
Raval, & Marawi, 2016). Therefore, the successful adoption of a BAIT-based CDSS requires
transforming the static structure into a version that remains accurate over time. When a CDSS
remains accurate over time, it is applicable in dynamic healthcare contexts.

1.4 Research objective

Based on the introduction about BAIT-based CDSSs and the dynamic healthcare contexts, this
section presents the objective of this research on transforming the static BAIT-based CDSS into a
version that remains accurate over time. First, subsection 1.4.1 describes the value of BAIT-based
CDSSs in more detail. Next, subsection 1.4.2 defines the concept of architecture and points out
the value of architecture. Based on these two sections, subsection 1.4.3 explicates the goal of this
research.

1.4.1 The value of a BAIT-based CDSS

Previous research shows that the characteristics of a BAIT-based CDSS are promising for the
support of healthcare decision-making (Ten Broeke et al., 2021). The main reason is that the
BAIT approach is transparent. A transparent approach implies that a BAIT-based CDSS is un-
derstandable, interpretable, tractable, and revisable (Sutton et al., 2020). A transparent CDSS is
of great value in healthcare contexts because decisions need to be explainable (Sutton et al., 2020).
Physicians are hesitant to use a CDSS when the reasoning behind a recommendation of this CDSS
is opaque (Holst et al., 2000; Wang et al., 2021). Physicians better accept transparent support
systems because these systems allow them to understands the recommendations of a CDSS and
minimize the risk of misinterpretation (Sinha & Swearingen, 2002; Holzinger, Biemann, Pattichis,
& Kell, 2017; Curcin, Fairweather, Danger, & Corrigan, 2017; Sutton et al., 2020). Raghupathi
and Raghupathi (2014) even states that systems must be transparent and simple to succeed in
healthcare. Therefore, Korva, Porter, O’Connor, Shaw, and Brinke (2013) argues that there is a
need for CDSSs with transparent algorithms.

The existing CDSS solutions introduced in section 1.1, have limited potential for application in
dynamic healthcare contexts. NKBS’s can incorporate subtle adjustments over time but oper-
ate as “black-boxes” meaning their reasoning is not transparent (Rudin, 2019). In healthcare,
the potential existence of unobservable biases in algorithms leads to ethical concerns (Xafis et
al., 2019). KBS’s are transparent but are captured in a predefined, fixed mold of rules (Bennett
& Doub, 2016). Due to the fixed and stifle if-then-else rules, KBS’s cannot incorporate subtle

6

adjustments over time. To maintain KBS’s, knowledge and software engineers need to map and
implement decision-making changes. This maintenance need leads to time-consuming system de-
velopment (Yan, 2018)). Because it is hard to maintain KBS’s, they are inadequate for application
in contexts involving many interacting and changing variables.

The BAIT approach allows a CDSS to slightly tune its underlying model while retaining its
transparency. The BAIT approach enables this transparent tuning because BAIT is grounded in
DCM: a choice model can let its model parameters vary according to the changing preferences of
physicians over time (Danaf, Becker, Song, Atasoy, & Ben-Akiva, 2019; Lachaab, Ansari, Jedidi,
& Trabelsi, 2006; Siddarth, Bucklin, & Morrison, 1995). As a result, a BAIT-based CDSS has the
potential to keep up-to-date with the changes in the decision-making context and thereby provide
accurate recommendations over time. Because of the importance of transparent decision support
in healthcare decision-making contexts, the BAIT approach forms an important innovation for
CDSS developers who aim to satisfy the decision support needs of physicians.

1.4.2 The value of architecture design

For CDSS developers to develop transparent CDSSs for application in dynamic healthcare contexts,
developers should be able to design CDSSs based on the BAIT approach. Many CDSS development
projects start with creating a system architecture. A CDSS architecture is a formal definition of all
the information system and technology components relevant to developing a CDSS (Power, 2002).
A CDSS architecture includes the components used to manage information and communication
and the overall configuration that integrates the various components (Applegate, McFarlan, &
McKenney, 1996). For this research, a CDSS architecture is a formal description of all CDSS
components that guides developers in implementing a CDSS. There are six principal reasons for
the popularity of designing a system architecture in the system design process (Garlan, 2000).

1. Understandability. A CDSS architecture explains the CDSS’s structure at a level of abstrac-
tion at which a developer can easily comprehend the architecture (Perry & Wolf, 1992; Garlan
& Shaw, 1993). At the same time, it shows the rationale for specific design decisionsl, and
the restrictions on the CDSS (Garlan, 2000). As a result, a CDSS architecture supports the
collaboration among developers and stakeholders, it allows designers to argue the extent to
which the CDSS satisfies requirements, it improves the planning of the implementation, and
it stimulates the ability to communicate the (future) key aspects of the CDSS to developers
and end users of the CDSS. By doing so, it provides a tractable guide to the overall CDSS
(Garlan, 2000; Power, 2002).

2. Reuse. Other design projects can reuse a CDSS architecture as a blueprint that suggests the
construction and composition of the CDSS (Garlan, 2000). The reuse can also include parts
of the architecture.

3. Construction. A CDSS architecture forms a blueprint for developing a CDSS by showing
what components need to be in place and how they are related. In addition, an architecture
can help ensure a complex CDSS satisfies the main requirements regarding the relationships
between many components (Garlan, 2000). Besides, from a technical point of view, CDSS
architecture allows evaluating technology options on how they will work and make proper
design decisions accordingly (Power, 2002).

4. Evolution. A CDSS architecture exposes the dimensions along which the CDSS may evolve
over time. This exposure allows for a better understanding of the external changes that may
impact the CDSS’s application and the related costs of required adjustments.

5. Analysis. An architecture allows to analyse aspects of the CDSS as a matter of evalua-
tion (Buchgeher & Weinreich, 2014). For instance, by focusing on the CDSS’s consistency,
the CDSS’s conformance to requirements and restrictions, a dependency analysis, and the
CDSS’s applicability in a specific domain (Abowd, Allen, & Garlan, 1993; Allen & Garlan,
1994; Clements, Bass, Kazman, & Abowd, 1995; Magee, Dulay, Eisenbach, & Kramer, 1995;
Stafford, Richardson, & Wolf, 1998).

6. Management. A CDSS architecture allows for an early evaluation of the CDSS. An evaluation
may lead to a clearer understanding of requirements, suitable strategies for the CDSS imple-
mentation, and risks of the CDSS implementation (Boehm, Bose, Horowitz, & Lee, 1995).
Modifying an architecture based on evaluation outcomes is relatively easy, while revising an
implemented CDSS may be costly.

7

An architecture design is especially of value in the context of a BAIT-based CDSS for two primary
reasons. First, BAIT is a novel technology. Transforming the static BAIT-based CDSS into a
dynamic version therefore goes hand in hand with new design challenges. An architecture design
that allows for evolution and analysis better suits the phase of the BAIT approach. Second, the
healthcare contexts in which BAIT-based CDSSs are to be applied are diverse (Eapen, 2021).
Consequently, preferences of physicians regarding the CDSS will differ per context. Moreover, be-
cause healthcare contexts are dynamic, these preferences may also vary over time. Therefore, there
is no one-size-fits-all solution for the transformation of a BAIT-based CDSS into a version that
retains its accuracy over time. Instead of a prefabricated CDSS design, CDSS developers benefit
from an architecture that maps the relevant CDSS components and guides developers in creating
a context-specific CDSS that satisfies the needs in the particular decision-making context.

1.4.3 Filling the gap of guiding design principles

The entities possessing the knowledge and skill to create architectures for CDSS developers are
referred to as architecture designers. Although architecture designers possess the required design
knowledge and skill, they will encounter a challenging process when designing an architecture of a
BAIT-based CDSS. This expectation is rooted in the following four reasons:

1. The BAIT approach forms a novel technological innovation for which technical and social
feasibility in various dynamic healthcare decision-making contexts is still to be proved. In
addition, the potential implications of such an unexplored technology are yet unclear and
may give rise to unexpected events.

2. The architecture should be sufficient for the development of CDSSs for varying healthcare
decision-making contexts (Eapen, 2021). The physicians’ preferences in the variety of appli-
cation contexts are all to be addressed by the architecture.

3. The architecture design relates to knowledge on both CDSS architecture design and the
econometric field of discrete choice Modeling (DCM). No research has combined these fields
before. Therefore, there is no fundamental material in place providing examples based on
both areas.

4. The architecture design is dependent on needs at two levels: the developer who will use the
architecture to create a CDSS and the physicians who will use the CDSS that the architecture
defines. As such, the architecture designer should perform research and design activities while
incorporating considerations at both levels.

Architecture designers need support in tackling the challenges mentioned above to develop trans-
parent and accurate CDSS’s for healthcare contexts (see subsection 1.4.1). Therefore, groundwork
on designing a dynamic BAIT-based CDSS architecture is necessary. This groundwork should
provide rules that a designer can follow to arrive at the intended architecture (Winter & Aier,
2011). In architecture design, these rules are known as architectural design principles (Lindstrom,
2006). “Design principles are created to codify and formalize design knowledge so that innovative,
archival practices may be communicated and used to advance design science and solve future design
problems, especially the pinnacle, wicked, and grand-challenge problems that face the world and
cross-cutting markets” (Fu, Yang, & Wood, 2015, p. 1). Design principles define the guidelines for
developing architectures that aim to increase the chance of reaching a successful artefact (Fu et al.,
2015). They are thus a form of knowledge explication. Over the years, design principles have even
become the predominant manner to capture abstract knowledge about the development of similar
information systems (Kruse et al., 2016). As such, they are “normative, reusable and directive
guidelines, formulated towards taking action by the information system architects” (Bharosa &
Janssen, 2015, p. 472). On its own, an architecture is rather descriptive, essentially passive, and
cannot provide operational design guidance (Hoogervorst, 2009). Stimulating designers to create
accurate BAIT-based CDSS architectures requires an explication of the principles underlying this
architecture.

However, there are no design principles that can function as groundwork for dynamic BAIT-
based CDSS architecture designers. Because the value of transparent decision-making support in
healthcare contexts is tremendous and has a growing societal relevance, this research aims to for-
mulate design principles that guide the design of dynamic BAIT-based CDSS architectures. Hence,
the goal of this research is to:

8

“develop and test design principles for an architecture of a dynamic BAIT-based CDSS”.

In the remainder of this report, the concept “dynamic CDSS” points to a CDSS that incorpo-
rates newly available choice information in the decision-making context and, thus, improves the
quality of its recommendations during ongoing use. As a BAIT-based CDSS consumes choices
as input data, the concept ”dynamic BAIT-based CDSS” refers to a version of the BAIT-based
CDSS that incorporates new choice information. These choices reflect the changes in a healthcare
decision-making context. To conclude, this research focuses on developing design principles for de-
signing an architecture that enables a BAIT-based CDSS to integrate new choices during ongoing
use. This chapter introduced multiple stakeholders who benefit from or can inform these design
principles. To give an overview of the stakeholders, Figure 1.3 maps these stakeholders.

Figure 1.3: Overview of the stakeholders.

1.4.4 Research questions

Achieving the research objective requires the formulation of research questions. Answering these
questions results in the knowledge necessary in reaching the purpose of a research (Verschuren,
Doorewaard, & Mellion, 2010). Based on the research objective (see section 1.4), the overall ques-
tion of the research is framed as follows:

To what design principles should a system architecture of a dynamic BAIT-based CDSS
adhere?

Design Principles are typically derived inductively from experiences, examples, or empirical ev-
idence (Bell, Hoadley, & Linn, 2004; Fu et al., 2015). As such, the knowledge gained during an
architecture design process can inspire the formulation of architecture design principles (Fu et
al., 2015). Therefore, answering the main research question requires obtaining knowledge while
designing a dynamic BAIT-based CDSS architecture. This design and knowledge acquisition pro-
cess is structured following six sub-questions. The continuation of this paragraph presents these
sub-questions.

Existing CDSS architectures used to design CDSSs also deal with contextual changes and can,
therefore, function as an initial example. Hence, the architecture design starts with investigating
the components worth considering when designing a dynamic CDSS. This investigation results
in the definition of a framework that specifies the concepts that are at stake when designing a
dynamic CDSS architecture. The framework helps to set the focus areas of this research. To this
end, the first step is answering the following question:

9

1. What are the main components of a dynamic CDSS architecture?

The technological foundation of a BAIT-based CDSS is significantly different from that of other
CDSSs. Therefore, the inheritance of the main components of existing CDSS architectures to a
BAIT-based CDSS architecture may be restricted. It is relevant to find out if and how the DCM
foundation of a BAIT-based CDSS shapes the design of the main components identified. Thus, the
subsequent research step is to extend the framework by formulating how the theories, practices,
and characteristics of DCM shape the main components identified. The need for this step leads to
the following sub-question:

2. How is the design of the main components of a dynamic CDSS architecture shaped by the
theories, practices and characteristics of DCM?

Having in place the critical components of a dynamic CDSS and the restrictions posed to these
components by DCM, a further outline of the design is realized by selecting architectural require-
ments. Requirements can function as detailed descriptions of what an architecture user ultimately
wants from the architecture design (Dym, Little, Orwin, & Spjut, 2004). Accordingly, the re-
quirements form input for the architecture design as is desired by potential users. As such, the
requirements function as a hypothesis regarding the sought for design principles. The need for
requirements leads to the following sub-question:

3. What are the requirements for a system architecture of a dynamic BAIT-based CDSS?

The formulated requirements function as guidelines during the design process of the architec-
ture. However, an incorrect formulation of the requirements results in delays or even mistakes in
the architecture design (Shah & Patel, 2016). Designing an architecture in line with the require-
ments allows assessing whether the requirements successfully lead to an architecture of a dynamic
BAIT-based CDSS. To this end, the following sub-question is relevant:

4. What does a system architecture of a dynamic BAIT-based CDSS look like?

With an architecture solution in place, it is not yet ascertained that the requirements together
effectively guide the design of the desired architecture. Therefore, the next step is to assess the
usefulness of the architecture. The need for this assessment leads to the following research question:

5. To what extent does the designed architecture help to develop an effective tool for guiding
the development for a dynamic BAIT-based CDSS?

In the process of answering the sub-questions mentioned above, lessons on designing the archi-
tecture will arise. These lessons are of interest to future designers facing similar design challenges
and shed light upon seemingly incongruent perspectives. Therefore, the lessons are relevant to
design science research and designers facing a design problem belonging to a similar class of prob-
lems. The formulation of design lessons allows making a first move towards formalizing knowledge
for the broader class of problems. The final sub-question thereby is:

6. Considering the requirements and the evaluation, what are the lessons about how to design
architectures of a dynamic BAIT-based CDSS?

Combining the answers to all of the sub-questions generates a solution to the main research ques-
tion. Section 1.5 presents the research design that structures the process of answering these sub-
questions and the main question. This section also informs on the information and data collection
methods.

1.5 Research approach

This section presents the approach that guides the research. First, subsection 1.5.1 introduces
the approach used to structure the study. Moreover, it underpins the selection and highlights the
drawbacks of the approach. Second, subsection 1.5.2 describes the main research phases to shed
light upon the research flow.

10

1.5.1 Selection of the research approach

Two aspects are important in the explanation of the design approach selection. First, section 1.5.1
explains the choice for a particular design strategy. Second, subsection 1.5.2 shows how this
strategy inspired the choice for a research framework.

Selection of the design strategy

As explained in subsection 1.4.4, the process of designing a dynamic BAIT-based CDSS architecture
informs an answer to the main question. As such, this research is design-oriented. Design as a
science refers to knowledge “in the form of constructs, techniques, methods, models and well-
developed theory for performing the mapping between the know-how for creating artefacts and
satisfying given sets of functional requirements” (V. K. Vaishnavi & Kuechler, 2015, p. 3). The
research that is fundamental to developing this kind of knowledge is Design Science Research (DSR)
(Lavasani, Hossan, Asgari, & Jin, 2017). DSR is a valid and relevant approach in Information
Systems, the area of CDSSs (Arnott, 2006; A. Hevner & Chatterjee, 2010).

A DSR project can follow two strategies (Iivari, 2015). The first strategy begins with a general
solution concept that enables the instantiation in multiple, specific healthcare contexts. The second
strategy drives the researcher to solve a problem of one particular client with a concrete artefact.
During the development, the researcher is active in the context of this client. By doing so, the
researcher can collect prescriptive knowledge informing a general solution concept that addresses
a class of problems (Iivari, 2015).

The design challenge defined in section 1.4 stems from a practical problem experienced by the
start-up Councyl. Councyl has been developing and improving the BAIT approach since April
2020. Because BAIT is a novel technology, Councyl has been the only organization to apply
BAIT. As such, Councyl possesses critical knowledge about a BAIT-based CDSS. For that reason,
this study will focus on designing an architecture in the context of the start-up Councyl. By
doing so, this study follows strategy 2 (Iivari, 2015): the study starts from solving a problem in
a situated context (Councyl) to then distill general knowledge relevant for answering the main
research question.

Selection of the design framework

DSR literature suggests several research frameworks that inform researchers on the necessary de-
sign research activities. Sein, Henfridsson, Purao, Rossi, and Lindgren (2011) recently published
a new framework that endorses strategy 2 of (Iivari, 2015). The starting point of their work was
their intention to combine building, intervention, and evaluation of an IT artefact in a concerted
research effort (Keijzer-Broers & de Reuver, 2016). Sein et al. (2011) argue that a design research
process does not follow distinctive phases, like Peffers, Tuunanen, Rothenberger, and Chatter-
jee (2007) and Kuechler and Vaishnavi (2008) suggest, or structurally ordered research steps as
A. R. Hevner (2007) proposes. Instead, “the research steps are 1) less structured than that, 2) ex-
ecuted concurrently and 3) can be regarded as an iterative process” (Keijzer-Broers, 2016, p. 40).
As a result, they proposed Action Design Research (ADR) as a new design science research method.

ADR is “a research method for generating prescriptive design knowledge through building and
evaluating ensemble IT artefacts in an organizational setting” (Sein et al., 2011, p. 4). ADR
forms a variant of DSR frameworks that start from a theoretical design problem (A. R. Hevner,
March, Park, & Ram, 2004; March & Smith, 1995; V. Vaishnavi & Kuechler, 2004). ADR starts
from a specific problem context. Since the core consideration of ADR is how practical problems
in a specific setting drive the design of an artefact (Keijzer-Broers, 2016), it seamlessly fits the
proposed design project. Two arguments will further substantiate this.

First, the ADR method is helpful in a situation where specific outlines of the solution are yet
unclear, and the understanding of the organization will increase along the design process. ADR is
beneficial in this situation because it allows the researcher to continuously evaluate a design and
improve it while better understanding the organizational needs. Unlike other DSR methods (see
(Peffers et al., 2007)), ADR emphasizes that the artefact is to be shaped by both the researcher and
organizational actors during the entire design process (Haj-Bolouri, Purao, Rossi, & Bernhardsson,
2018). The organizational intervention becomes a priority instead of a secondary activity as in
other DSR methods (Cole, Purao, Rossi, & Sein, 2005). The system architecture design subject
to this research is closely bound to the organization Councyl. As such, it is crucial to stress the
role of Councyl in shaping the design. Because the ADR method drives the researcher to involve
the organization, this method forms an adequate basis for this design research.

11

Second, performing research in an organizational setting may cause the researcher to concen-
trate too much on developing a solution. This focus on the artefact draws away the researcher’s
attention from the production of design knowledge (Maccani, Donnellan, & Helfert, 2014). Be-
cause design knowledge can inform a generic solution concept, the production of this knowledge
is the ultimate goal of design science research (A. R. Hevner et al., 2004; Kuechler & Vaishnavi,
2008). Therefore, ADR suggests specific tasks on generalization and encourages the researcher to
balance between addressing the problem encountered in a particular setting and generating generic
knowledge for a broader class of problems (Petersson & Lundberg, 2016)). By doing so, “ADR
combines theory with researcher intervention to solve immediate organizational problems. Thus,
ADR aims to link theory with practice, and thinking with doing” (Sein et al., 2011, p. 39).

1.5.2 Research flow

This section clarifies how the ADR framework guides the identification and formulation of the
design principles. The ADR framework proposes four phases (Problem formulation - Building, in-
tervention and evaluation (BIE) - Reflection and learning - Formalization of learning). All phases
draw upon principles. These principles capture the assumptions, values, and beliefs that are im-
portant when performing a ADR study. In total, an ADR researcher should adhere to seven design
principles. Figure 1.4 gives a visualization of the four ADR research phases and the principles
fundamental to each phase. Figure 1.5 shows how the ADR framework drives the organization of
the research activities central to this research.

Figure 1.4: The phases of the Action Design Research (ADR) framework.

12

Figure 1.5: Research flow with the input, phases, output, Action Design Research (ADR) principles,
and sub-questions.

Phase 0: Architecture design space definition

Although not particularly specified by the ADR framework, the research starts with a literature
review on existing architectures for CDSSs. With this step, the research adheres to ADR Principle
2: Theory ingrained artefact (Sein et al., 2011). The CDSS architecture literature gives insight
into the principal components of an architecture and shows how researchers tackled similar design
problems in the past. The literature findings will be structured in a framework that delimits the
design space for creating a dynamic BAIT-based CDSS architecture.

Phase 1: Problem formulation and Architecture Requirements identification

The Problem Formulation phase is about formulating the problem as perceived by the researcher
(Keijzer-Broers, 2016). A thorough understanding of the problem enables the designer to attune
the solution to the primary user needs (Islam, Weir, & Del Fiol, 2014; Hutton & Klein, 1999). In
line with ADR Principle 1, a problem that occurred in practice inspired this research (Sein et al.,
2011). The problem description that Councyl provided is clear enough to function as the starting
point of the ADR process. Therefore, the goal of the Problem Formulation phase is not to simply
understand what Councyl’s problem is. Instead, the goal is to investigate what Councyl wants the
architecture to be and do in terms of architecture requirements. This knowledge denotes when the
architecture design solves the problem experienced by Councyl.

Interviews are a standard method to gain insight into an initial list of requirements (Johannesson
& Perjons, 2014). Interviews allow to engage in dialogue and identify the requirements interac-
tively and creatively (Johannesson & Perjons, 2014) (Agarwal & Tanniru, 1990; Johannesson &
Perjons, 2014). Moreover, the direct approach to the elicitation of requirements by asking stake-
holders about preferred features gives insight in many requirements in a short time (Johannesson
& Perjons, 2014). Hence, interviews form an efficient method. An additional advantage is that
interviews will increase the understanding of the interviewed stakeholders about and improve their
attitude towards the architecture (Johannesson & Perjons, 2014).

The interview respondents are the key stakeholders of the architecture design. The incorpo-
ration of the stakeholders supports ADR Principle 4, Mutually influential roles. This principle
emphasizes mutual learning among the different research, and organizational stakeholders (Sein et
al., 2011). The key stakeholders are the architecture users – the representatives of Councyl - and
the end user of the CDSS that the architecture describes – physicians. Chapter 5 gives additional
details on the organization of the interviews and the respondents.

Interviewing physicians gives rise to two implications. First, the information that physicians
provide is about the CDSS they will use. Therefore, the output of the interviews with the physicians
needs to be translated into requirements at the architecture level. Second, identifying the needs

13

of end users regarding new technological solutions is a complex process (Maiden & Hare, 1998).
Asking end users about their needs is not as straightforward as expected (Hyysalo & Lehenkari,
2003; Pitts & Browne, 2007). End users often do not understand the technical terms and find it
hard to make explicit what they really need (Keijzer-Broers & de Reuver, 2016). To deal with
these two implications, phase 1 involves an additional data collection method: the interpretation
and translation of the interviews were guided and strengthened with suggestions found in the ar-
chitecture design literature. Subsection 3.2.2 explains the combination of interviews and literature
in more detail.

The first phase gives insight into the initial list of requirements. A researcher will gain new
insights regarding the design along an ADR process (Sein et al., 2011). Therefore, the researcher
needs to refine the initial set of requirements along the design process.

Phase 2: Building, Intervention Evaluation

The goal of the second phase is to use the findings of the previous phases to design the architecture
(Keijzer-Broers & de Reuver, 2016). The ADR method states that this design process consists of
building and constantly evaluating the design in repeated cycles. The design process consists of
three cycles. Each cycle takes three weeks. Developing the architecture in a sequence of cycles is
in line with principle 3, Reciprocal shaping (Sein et al., 2011).

A drawback of the ADR method is that it does structure the second phase well. Therefore,
the research follows the design steps proposed by the framework of Verschuren and Hartog (2005).
Figure 1.6 presents this framework. The framework of Verschuren and Hartog (2005) matches the
highly iterative character of the ADR method. Verschuren and Hartog (2005) argue that the evalu-
ation of the design should happen continuously. An evaluation may indicate that the artefact does
not yet fulfil the organizational requirements and that another iteration of the cycle will be needed.
The “Prototype” step is referred to as “Realization”, a term Verschuren and Hartog (2005) use for
the explanation of this phase. This replacement avoids confusion with the implementation phase.
Accordingly, the BIE phase follows the specification, realization, implementation, and evaluation
steps. Because the requirements were needed to structure the architecture design in phase 2, this
research covers the requirement identification step (step 2 in the framework of Verschuren and Har-
tog (2005)) already in phase 1 (section 1.5.2). Therefore, phase 2 does not copy the requirements
step. The continuation of this section describes the research steps part of each design cycle.

Figure 1.6: Design Cycle of
Verschuren and Hartog (2005).

Each cycle starts with the specification. During the specification, the requirements are translated
into specifications that can be realized in the architecture design (Verschuren & Hartog, 2005). The
realization of some requirements into an architecture gave rise to design challenges. A design chal-
lenge refers to the situation in which additional research is necessary or a trade-off exists between
requirements. In case of a trade-off, the realization of one requirement hindered the realization
of another requirement. Further investigation was either by conducting sessions with Councyl
or by consulting literature providing relevant theoretical concepts and premises. The Realization
step focuses on forming an architecture design by combining the formulated specifications and the
realization of the remaining requirements.

Each design cycle concludes with an implementation and an evaluation of the architecture de-
sign. The implementation covers the development of components that are only observable during
run time. To this end, the implementation consists of a set of programmed and visualized CDSS

14

functionalities. The evaluation is twofold. A static-oriented evaluation assesses the usefulness
and usability of the architecture for Councyl. A dynamic-oriented evaluation assesses whether the
architecture describes the CDSS functionalities as desired by Councyl. This part of the evalu-
ation uses the implementation outcomes. Each BIE cycle, the architecture implementation and
evaluation generate new insights regarding the situated solution. These insights further shape the
architecture design. As such, the output of the implementation and evaluation functions as input
for the new design cycle.

Phase 3: Reflection and learning

The goal of the third phase is to make the first step from building a solution for Councyl to
applying the situated learning to a broader class of problems (Keijzer-Broers, 2016). Therefore,
this phase focuses on identifying lessons learned throughout the research process. The relevance
of the lessons is that they can support future designers who face similar design challenges.

Four categories of lessons exists: lessons on the problem formulation, emerging artefact, the-
ories ingrained in the artefact, and the design process (Sein et al., 2011). All lessons stem from
unforeseen challenges encountered throughout the design research in the situated context. Since
these challenges occur throughout the entire design process, this phase happens in parallel with
the phases mentioned above. As such, it forms a continuous process. The design decisions and
all implications for the design process were written down in a logbook to support this continuous
reflection. The research process ends with creating a list of the key lessons. By doing so, the
research adheres to the sixth principle of Guided emergence, which emphasizes the importance of
incorporating the outcome of addressing the previous five principles in the design.

Phase 4: Formalization of learning

The goal of the final phase is to further develop the situated learning into generic concepts that
solve a broader class of problems. Here, it is about the formalization of the research findings. To
realize the goal of the final phase, the architecture requirements found in the situated context are
generalized into design principles that are applicable for a broader class of problems. To be able
to make this move, three levels of generalization need to be considered (Sein et al., 2011).

1. A generalization of the problem instance

2. A generalization of the solution concept

3. Derive design principles from the design research outcomes

Accordingly, the formalization starts with articulating the problem of designing a dynamic BAIT-
based architecture as a class of problems in CDSS architecture design. The next step is to frame
the designed architecture as a representation of a class of solutions. Finally, phase 4 focuses on for-
mulating reusable design principles based on the identified architecture requirements. The lessons
learned guide this formulation (see section 1.5.2. By doing so, the final set of design principles is not
only inspired by requirements but also by the lessons that were learned during the design process.
As a result, the design principles have the power to prevent future designers from encountering
similar challenges and making similar mistakes. Therefore, the resulting design principles function
as recommendations for designing comparable CDSS architectures in the future. This phase draws
on principle 7, Generalized outcomes. This principle emphasizes that generalization is challenging
but essential since the artefact has been developed for a specific context (Sein et al., 2011).

1.6 Summary chapter 1

The goal of chapter 1 is to give an introduction to the research presented in this report. Physicians
make complex decisions on clinical treatments that directly influence patients’ well-being daily.
To deal with such complex decisions and to minimize decision errors, physicians show a growing
interest in Clinical Decision Support Systems (CDSS). BAIT forms a new approach to decision
support. The introduction of the BAIT-based CDSS is promising because it allows for the design
of transparent CDSSs. Physicians greatly value the transparency of CDSSs.

However, the development of BAIT-based CDSSs has not progressed further than a static
version. As a result, the recommendations of a BAIT-based CDSS are not informed by new
knowledge available in the decision-making context. This conflicts with the dynamic nature of
healthcare decision-making contexts. Therefore, the successful adoption of a BAIT-based CDSS

15

requires transforming the static BAIT-based CDSS into a version that provides accurate choice
recommendations over time. This research report uses the term dynamic BAIT-based CDSS to
refer to a BAIT-based CDSS that can update with new knowledge and retains its accuracy over
time.

The availability of dynamic BAIT-based CDSS architectures could foster the development of
transparent and dynamic CDSSs. However, no principles guiding the design of such architectures
exist. Therefore, this research aims at developing and testing design principles for an architecture
of a dynamic BAIT-based CDSS. To realize this goal, an answer to the following research question
is necessary: What design principles should a system architecture of a dynamic BAIT-based CDSS
meet?

Design principles can be derived inductively from design experiences, examples, or empirical evi-
dence. To work towards an answer to the research question, this research follows the Action Design
Research (ADR) framework (Sein et al., 2011). The ADR framework allows to identify and test
the requirements of a dynamic BAIT-based CDSS architecture in a situated action context. The
situated context is the start-up Councyl. Councyl currently produces BAIT-based CDSSs and thus
possesses the critical knowledge for the architecture design process. The ADR framework proposes
four design phases: the problem formulation and Architecture Requirements identification, BIE
(Building, Intervention Evaluation), reflection and learning, and formalization of learning. The
last phase generalizes the architecture requirements identified and tested in the situated context.
By doing so, a set of design principles is found that address a broader class of problems.

16

Chapter 2

Definition of the architecture
design space

Existing architectures used to develop dynamic CDSSs already incorporate techniques to update
the CDSS according to medical developments. Therefore, studies in the field of CDSS design and
CDSS architecture design can function as an initial example. However, the technological foundation
of a BAIT-based CDSS that applies Discrete Choice Modeling (DCM) is significantly different
from that of traditional CDSSs. Therefore, this chapter aims to identify the main components
of a dynamic CDSS and investigate how DCM theories, practices, and characteristics shape these
components. To this end, this chapter works towards an architecture design space framework
and presents the theories and practices that are relevant when designing a dynamic BAIT-based
CDSS architecture. First, section 2.1 distinguishes the main components that CDSS design and
CDSS architecture design literature suggest. Given the purpose of this research, the focus of the
framework is on the CDSS components necessary to update a CDSS so that the CDSS bases its
recommendations on recent clinical information. Second, section 2.2 describes how DCM theories,
practices, and characteristics shape the design of these main components. The chapter concludes
with the architecture design space framework that summarizes the main design considerations in
the context of a BAIT-based CDSS architecture in section 2.3. By outlining the design space of
the main components in the context of a dynamic BAIT-based CDSS architecture, this chapter
provides an answer to the first and second sub-question:

1. What are the main components of a dynamic CDSS architecture?

2. How is the design of the main components of a dynamic CDSS architecture
shaped by the theories, practices and characteristics of DCM?

2.1 Architecture components of a CDSS

This section introduces the main components of a dynamic CDSS. The architecture of a CDSS es-
sentially consists of two key parts: intelligent internal software that runs all the processes necessary
for qualitative decision support and systematic Human-Computer Interaction (HCI) (Power, 2002;
Yun, Ma, & Yang, 2021). The design of the HCI component depends on the intelligent internal
software of the CDSS: the HCI component covers the interaction between a physician and a CDSS
to enable physicians to achieve their goals with the functionalities that the underlying intelligent
internal software provides. The addition of new CDSS functionalities that involve human interac-
tion goes hand in hand with the addition of HCI components. Therefore, the design of a dynamic
BAIT-based CDSS architecture design does not only concern components that make it technically
possible to update a CDSS. The design also concerns establishing the interaction between a physi-
cian and a BAIT-based CDSS. Section 2.1.1 introduces the essential intelligent internal software
components of dynamic CDSS. Section 2.1.2 defines the aspects of the HCI design for a dynamic
CDSS. Finally, Figure 2.3 gives an overview of all primary components to consider when designing
an architecture of a dynamic CDSS.

17

2.1.1 Intelligent internal software

Literature on CDSS architecture design acknowledges that for a CDSS to retain its accuracy and
relevancy for physicians over, updating the CDSS is inevitable. To prevent a CDSS from becoming
unserviceable over time, the information fundamental to a CDSS must be up-to-date. Therefore, a
CDSS designer needs to refresh this information regularly (El-Sappagh & El-Masri, 2014; Lyman
et al., 2010; Osop & Sahama, 2019). Because a significant quantity of clinical research is published
on an ongoing basis (Gluud & Nikolova, 2007; Kruse et al., 2016), continuous efforts are essential to
sustain the accuracy of this information (Klein Koerkamp, 2019; Trivedi et al., 2009). To account
for these constant maintenance efforts, existing CDSS architecture literature proposes three internal
software components: an adaptive knowledge base so that the CDSS accepts new information, a
model update engine so that the CDSS continually updates according to that new information,
and a model quality monitor so that the CDSS timely detects any decrease in performance in a
changing context (Chen et al., 2007; El-Sappagh & El-Masri, 2014; Gago & Santos, 2008; Power,
2002; Velickovski et al., 2014; Zikos & DeLellis, 2018). The sections below give a description of
each component.

Adaptive knowledge base

CDSS architectures commonly include a knowledge base (Power, 2002; Tariq & Rafi, 2012; Velick-
ovski et al., 2014). This base contains a collection of data organized for easy access and analysis
by the CDSS (Power, 2002). Research on evidence-adaptive CDSSs focuses on the adaptivity
of these knowledge bases. The concept of ”evidence” refers to the literature- or practice-based
information that the CDSS uses to infer the relevant decision-making patterns (Khalifa, 2014).
A CDSS is evidence-adaptive if the CDSS has the mechanisms to incorporate novel information
into the knowledge base and the knowledge base thus always reflects the latest information in the
decision-making context (Afzal et al., 2014; Sim et al., 2001). Without updating the knowledge
base over time, the CDSS generates recommendations using inaccurate information. As a result,
the failure rate of the CDSS will increase over time (Gago & Santos, 2008).

Model update engine

A CDSS generates recommendations with a model that is built based on the information in the
knowledge base (Power, 2002; Tariq & Rafi, 2012; Yao & Kumar, 2013). In the remainder of
this report, this model is referred to as the choice recommendation generator model. The above-
mentioned evidence-adaptive CDSS’s are only dynamic if the novel information in the adaptive
knowledge base is also processed during an update of the choice recommendation generator model
(Osop & Sahama, 2019). Therefore, a dynamic CDSS needs a component that updates the recom-
mendation generator model with new knowledge as soon as physicians find an update necessary
and new clinical information concerning the choice task is available (Zikos & DeLellis, 2018). A
necessary follow-up of the training step is a model validation process (Zikos & DeLellis, 2018). The
validation process establishes the extent to which the model will generate choice recommendations
that are contextually valid and, consequently, clinically useful.

Most studies on CDSS design validate the performance of the CDSS in terms of a set of classifier
performance metrics borrowed from Machine Learning (ML) (Kong, Xu, & Yang, 2008). Examples
are studies of Anooj (2012); Gultepe et al. (2014); Lakshmanaprabu et al. (2019); Wu et al. (2020);
Ravikumar et al. (2018); Saqlain et al. (2019); Velickovski et al. (2014); Wagholikar et al. (2013);
Zikos and DeLellis (2018). The reason for the use of the ML metrics is that CDSSs commonly have
a similar goal as ML models: predicting the suited treatment class for a patient. Moreover, most
CDSSs are based on ML techniques (see section 1.1). The performance metrics that the CDSS
validation in these CDSS studies involve have the following definitions(Tharwat, 2020):

• The accuracy: The ratio between the correctly classified samples to the total number of
samples as follows.

• The confusion matrix, containing:

– True Positives: The choice tasks for which the model correctly predicts the positive
class.

– True Negatives: The choice tasks for which the model correctly predicts the negative
class.

– False Positives: The choice tasks for which the model incorrectly predicts the positive
class.

18

– False Negatives: The choice tasks for which the model incorrectly predicts the negative
class.

• Metrics that can be calculated from the Confusion Matrix:

– Sensitivity (True Positive Rate): The ratio of positives that are correctly identified as
positive samples of the total number of positive samples.

– Specificity (True Negative Rate): The ratio of negative samples that are correctly iden-
tified as negative of the total number of negative samples.

– False Positive Rate: The ratio between the number of negatives incorrectly identified as
positive and the total number of negative samples.

– False Negative Rate: The ratio between the number of positives incorrectly identified
as negative and the total number of positive samples.

• Matthews correlation coefficient: The correlation between the observed and predicted classi-
fications.

To conclude, the model update engine consists of a training component that generates an updated
model and a validation component that assesses the performance of that updated model in terms
of ML-based metrics (Zikos & DeLellis, 2018).

Model quality monitor

A monitor component continuously evaluates the recommendation generator model of the CDSS on
any loss of accuracy in a changing context (Gago & Santos, 2008; Velickovski et al., 2014). To this
end, it assesses the correctness of the CDSS’s recommendations for new choice tasks (Velickovski et
al., 2014). If the number of incorrect recommendations exceeds the level that physicians perceive as
unacceptable, the monitor will alert that the performance of the model has decreased significantly.
Moreover, the monitor will signal that the CDSS should re-train the recommendation model with
the novel information in the adaptive knowledge base. By providing this functionality, the ongoing
monitoring of a CDSS is essential in ensuring that the CDSS operates properly and trustworthily
(Chen et al., 2007).

CDSS architectures explicitly model a monitor as a system function because this is more effec-
tive than trusting physicians with performance assessment activities (Garg et al., 2005; Kawamoto,
Houlihan, Balas, & Lobach, 2005). Smith, Geddes, and Beatty (2009) even argue that when design-
ers assume that humans are capable of performing monitoring and updating activities, this results
in practically problematic CDSS designs. The incompetency of humans to monitor and maintain
the performance of CDSSs stems from the fact that humans, even when highly motivated, are not
good at sustained attention tasks (Mackworth et al., 1950; Meister & Enderwick, 2001). Moreover,
the assignment of monitoring responsibilities to humans requires the physicians to actively execute
an additional step (Garg et al., 2005; Kawamoto et al., 2005). The often occupied physicians
easily overlook this step. In short, each CDSS must include mechanisms that detect a potential
performance decrease and automatically triggers the CDSS or the physician to act in line with
this decrease (Michalewicz, Schmidt, Michalewicz, & Chiriac, 2006). As a result, the CDSS can
generate recommendations at the acceptable performance level.

Overview of the main intelligent internal software components

Figure 2.1 visualizes the intelligent internal software components that subsection 2.1.1 suggests.
The design details regarding these components depend on the technological ground of the CDSS.
For example, knowledge-based systems (KBS) generate choice recommendations by following a
set of if-then-else rules (see section 1.1). Accordingly, the update process of a KBS with novel
information requires reformulating these rules. On the contrary, non-knowledge-based systems
(NKBS) operate data mining and ML techniques — for instance, artificial neural networks or
genetic algorithms (see section 1.1). Using the data mining and ML techniques, the CDSS processes
new historical data in the knowledge base and finds the most recent decision-making patterns in
that data to update (El-Sappagh & El-Masri, 2014). The exact design of the updating engine varies
depending on the ML technique that the NKBS employs. An example of a particular updating
solution is the Intensive Care Unit CDSS designed by Kolter and Maloof (2007) that operates
the classifier updating mechanism suggested by Gago and Santos (2008). Another example of an
NKBS updating solution is the Temporal Difference Learning method to ensure a CDSS based

19

on Artificial Neural Networks can adapt to environmental changes suggested by Baba and Suto
(2000).

Because the solutions that literature suggests for dynamic CDSS architectures strongly relate
to the technological ground of a CDSS, the designer of a dynamic BAIT-based CDSS architecture
cannot directly copy the existing components. Instead, DCM theories, practices, and characteristics
delimit the design of these components in the context of a dynamic BAIT-based CDSS. Section
2.2 describes the further investigation of how DCM theories, practices, and characteristics shape
the design of the components in the context of a BAIT-based CDSS.

Figure 2.1: Conceptual overview of the intelligent internal software components of a dynamic
CDSS.

2.1.2 Human-Computer Interaction

The Human-Computer Interaction (HCI) component of a CDSS takes care of both the feedback
provision to inform physicians and the commands that physicians give to supervise the CDSS
(Frysak, 2016). Physicians mainly use CDSSs to receive a recommendation on a choice task they
face (Ltifi, Ayed, Kolski, & Alimi, 2009). According to Angehrn and Lüthi (1990) and Ltifi et al.
(2009), a CDSS thereby behaves like a cooperative human consultant who supports a physician with
a better understanding of a complex choice task. The concept of human supervisory control best
defines this role of a CDSS. Human supervisory control is the process in which a human operator
intermittently interacts with a system while receiving feedback from and providing commands to
a specific process that is part of that system (Cummings, 2006). Angehrn and Lüthi (1990) even
state that the primary goal of a CDSS is to enable physicians to interactively explore and analyse
decision situations in a way that is compatible with a physician’s thinking.

Because of its dominant role, the HCI component forms an essential part of the CDSS through-
out the complete decision-making process (Eapen, 2021; Horsky et al., 2012; Ltifi et al., 2009).
Therefore, Cummings (2006) argues that a CDSS design needs to incorporate a physician as a
system component instead of as a peripheral entity. By doing so, the designer assumes that a
physician’s performance during the interaction with the CDSS heavily influences the CDSS per-
formance. Therefore, the HCI of a CDSS should control the behaviour of a physician (Frysak,
2016).

Designing for HCI is not straightforward. The existence of different approaches to HCI design
even gives rise to a classification of CDSS types (Horsky et al., 2012). In essence, two axes define
the main HCI design considerations: the level of automation of a CDSS and the design of the
information a CDSS shares.

The level of automation

The level of automation of a CDSS determines the distribution of updating tasks over a CDSS and
a physician. As a result, this level of automation shapes the extent to which a CDSS involves a
physician in the updating tasks (Lajnef, Ayed, & Kolski, 2005; Ltifi et al., 2009). There are three
manners to divide a CDSS updating task over a CDSS and a physician: physicians can fully carry
out a task (manual task), a CDSS can fully carry out a task (automatic task) or the task can
involve both a physician and a CDSS (interactive task) (Cummings, 2006; El-Sappagh & El-Masri,

20

2014; Ltifi et al., 2009). The more the accomplishment of a task relies on the skill of a CDSS, the
more imbalanced the division of the task is, and the more automatic a CDSS design is. Billings
(2018) and Parasuraman and Riley (1997) argue that finding the appropriate level of automation
is the primary consideration in the design of CDSSs. Therefore, the division of tasks over a CDSS
and a physician is critical in the design of efficient and effective CDSS architectures (Cummings,
2006).

Due to the variety of healthcare contexts (Eapen, 2021), the desired balance of human supervi-
sory control is likely to be context-dependent. Highly automated CDSSs may be preferred in the
context of instance Intensive Care Units (ICUs), because these environments are highly dynamic,
and physicians have little time to control the maintenance of the CDSS (Gago & Santos, 2008). In
other contexts, the restriction of human supervision forms a barrier for the uptake of the CDSS.
For example, because the trust in the CDSS is low (Asokan & Asokan, 2015; Grossglauser & Saner,
2014). However, although the purpose of CDSS applications often is to reduce physicians’ error
and workload, the implementation of highly automated CDSSs that are not entirely reliable will
generate new errors in the decision-making context (Cummings, 2006). Therefore, an effective HCI
design requires an understanding of the likelihood of errors caused by a physician and a CDSS (Yun
et al., 2021). In addition, a designer should consider the degree to which feedback of a CDSS can
mitigate a physician’s error in a particular task (Yun et al., 2021). By sending specific information
to a physician, a CDSS has the power to direct the physician towards particular actions (Khalifa,
2014). The following section covers the design of the information a CDSS presents to a physician.

The design of information

The encouragement of particular behaviour requires the intentional design of the information a
CDSS presents to a physician (Djamasbi & Loiacono, 2008; Khalifa, 2014; Silver, 1991). Literature
distinguishes four design considerations related to the design of the information that a CDSS
provides: the type of information necessary for a specific human action, the content, the timing,
and the form of presentation (Eapen, 2021; Frysak, 2016; Khalifa, 2014). Examples of information
types in the context of a CDSS are outcome information (OI), task information (TI), cognitive
information (CI), or functional validity information (FVI) (Balzer, Doherty, et al., 1989). For
example, a CDSS may provide a response or promote insight into the state of the CDSS (Frysak,
2016). The four considerations determine what information is relevant for physicians and how
well the information enables physicians to act timely and appropriately in response to the CDSS’s
feedback (Horsky et al., 2012). Because this research does not focus on interface design, the
presentation of information is out of scope.

To conclude, the level of automation and the information a CDSS presents together shape the
HCI design of a CDSS. A relation exists between these two aspects (Figure 2.2). The level of
automation determines the extent to which the CDSS and the physician interact. If the level of
automation is low, a CDSS’s updating performance relies heavier on physicians than on the CDSS.
Consequently, it becomes more important that the information a CDSS presents drives the correct
human behaviour. For instance, by designing an alert that triggers physicians to execute the tasks
necessary to maintain the CDSS performance. However, when the level of automation increases,
a CDSS’s software components regulate the updating performance. In that case, the effect of the
information a CDSS presents on a CDSS’s performance is negligible.

Figure 2.2: Human-Computer Interaction components of a dynamic CDSS.

21

Figure 2.3: Conceptual overview of the main components of a dynamic CDSS.

2.2 The design space set by Discrete Choice Modeling

In the context of a BAIT-based CDSS, DCM theories, practices, and characteristics delimit the
design space of the main components that section 2.1 distinguishes. This section describes how
these DCM theories, practices, and characteristics shape the design of these components. Figure 2.7
summarizes the findings by giving a conceptual presentation of the design space of a dynamic
BAIT-based CDSS architecture at the end of this section.

2.2.1 Adaptive knowledge base

As subsection 1.2.2 explains, DCM choice models are based on choice information (M. Ben-Akiva
et al., 1997). Therefore, the adaptive knowledge base in the context of a BAIT-based CDSS is
referred to as an adaptive choice base. Choices typically come from two sources: stated preferences
(SP’s) and revealed preferences (RP’s) (Boxall, Adamowicz, Swait, Williams, & Louviere, 1996;
Helveston et al., 2018). This report refers to SP’s as experiment choices (see subsection 1.2.2), and
to RP’s as real-life choices.

Experiment choices. An experiment choice is a physician’s answer to a hypothetical choice
scenario (see subsection 1.2.2). Experiment choices represent the choices physicians state they
would make when facing the presented scenario (J. Louviere & Timmermans, 1990). Studies on
experiment choice-based models often aim to infer preferences regarding non-existing alternatives
(Haider, 2002). For instance, a technological innovation that is not on the market yet. By doing so,
researchers desire to test the market potential of these hypothetical alternatives with non-existing
attributes. In the context of a BAIT-based CDSS, experiment choices only contain real-life (non-
hypothetical) choice attributes and value ranges. An example of a choice attribute in a choice
model on the ICU uptake is a patient’s BMI (Body Mass Index). Although the choice scenarios
only contain real-life considerations, the experiment choices used in a BAIT-based CDSS are still
hypothetical. The choices are part of a controlled choice experiment (see subsection 1.2.2) and
contain value combinations for the choice attributes that are theoretically possible but very rare
in real life. For instance, the scenario in which a patient with an extremely high BMI has very
healthy scores on other choice attributes.

Real-life choices. A real-life choice is a choice of a physician about clinical treatment for an
actual patient expressed in a real-life situation (Lavasani et al., 2017). Because real-life choices are
the result of actual behaviour, real-life choice-based models can cover for the experiment choice-
based choice models that lack actual restrains (Qiao, Huang, Yang, Zhang, & Chen, 2016). A
downside DCM literature mentions is that real-life choices cannot capture hypothetical elements

22

and are therefore limited to the characteristics of existing alternatives (Lavasani et al., 2017).
However, this is not problematic for a dynamic BAIT-based CDSS. A BAIT-based CDSS aims to
model the decision-making strategy that physicians follow to choose between present alternatives.

The estimation of the choice recommendation generator model in the context of a static BAIT-
based CDSS only incorporates experiment choices (see subsection 1.2.2). Therefore, the choice
base of a static BAIT-based CDSS contains experiment choices. Over time, experiment choices
may give an inaccurate representation of the decision-making context. In that case, a new choice
experiment might be necessary. The estimation of a choice model should, however, never include a
combination of experiment choices collected during different choice experiments. The designer of
a choice experiment controls the correlation between choice attributes to maximize the amount of
information gained from the choice experiment (Boyce & Williams, 2015). As a result, the choice
scenarios that are part of the same choice experiment are interrelated. Instead of combining choices
collected during various choice experiments, the adaptive choice base should replace a experiment
choice set with a new set.

Real-life choices can also inform a dynamic BAIT-based CDSS about novel developments in
the decision-making context. To be able to feed the CDSS with new real-life choices over time,
the choice base should store real-life choices. The static version of the BAIT-based CDSS already
allows physicians to enter real-life choices into the CDSS. The CDSS processes this information to
generate a recommendation on the choice task that the physician entering the real-life choice faces.
The BAIT-based CDSS can only process choices that have the same format as the experiment
choices used for the estimation of the initial recommendation generator model subsection 1.2.2.
As the previous paragraph explains, physicians can enter their choices in this format because the
experiment choice format only contains real-life choice attributes.

The storage of real-life choices, however, complicates the design of an adaptive choice base. In
contrast to experiment choices, real-life choices may be incomplete because data about patients
may be unknown or unclear (M. Ben-Akiva et al., 1997). Moreover, the complexity of a choice task
may be high in real life. This high complexity can lead to a cognitive burden. To cope with complex
choices, physicians may ignore particular choice attributes (Hensher, Rose, & Greene, 2005). As
a result, physicians might solve a real-life choice without considering all the choice attributes a
CDSS’s recommendation generator model captures.

To conclude, the adaptive choice base of a dynamic BAIT-based CDSS deals with the storage of
experiment choices and potentially incomplete real-life choices that physicians enter into the CDSS
over time. Additionally, to ensure the set of experiment choices is up-to-date, the choice base should
replace these experiment choices with a novel set. Figure 2.4 provides a visual representation of
the adaptive choice base.

Figure 2.4: Adaptive Choice Base in the context of a dynamic BAIT-based CDSS.

23

2.2.2 Model update engine

The model update engine trains and validates new choice recommendation generator models. Fig-
ure 2.5 at the end of this section, gives a conceptual representation of the model update engine in
the context of a dynamic BAIT-based CDSS.

Model training

The training of a BAIT-based CDSS distinguishes it from other CDSSs. As subsection 1.2.2
explains, the recommendation generator model of a BAIT-based CDSS is a choice model that
consists of parameters for all choice attributes. The parameters are estimated based on choices
made by physicians and represent the relative importance that the physicians assign to the choice
attributes. Because a choice model consists of estimated parameters, the model training is referred
to as model estimation in the context of a BAIT-based CDSS.

The assumption that the parameters of a choice model are not stable but change over time is
not new (M. E. Ben-Akiva, McFadden, Train, et al., 2019; Danaf et al., 2019; Song, Danaf, Atasoy,
& Ben-Akiva, 2018). Lachaab et al. (2006) state that if the parameters of a choice model are
not attuned to the changing preferences, this will result in misleading outcomes. The parameters
of choice models should vary over time to reflect physician’s changing decision-making behaviour
(Lachaab et al., 2006).

Finding new parameters requires re-estimating the choice model with novel choice information
(Danaf et al., 2019; Siddarth et al., 1995). When the knowledge relevant to a choice task changes in
a particular decision-making context, physicians in that context will change their decision-making
strategy accordingly. As a result, the experiment and real-life choices of physicians will reflect this
developed strategy. When informing the model estimation with new choices over time, the param-
eters for the choice attributes will change towards the developed strategy in the decision-making
context. As subsection 2.2.1 describes, either experiment choices, real-life choices, or a combination
of both sources can inform the estimation of a choice model. The following paragraphs describe
the differences between the resulting choice models.

Choice models based on experiment choices. Although experiment choices originate from a con-
trolled environment, the data from choice experiments have inherent response biases and significant
random errors. Physicians’ decision-making strategy prevalent during a controlled experiment may
differ from the strategy used in real life (Morikawa, 1989). According to Carson and Groves (2007),
the context in which a choice is made influences the decision-making behaviour of an individual.
Even the presentation format of a choice scenario can trigger particular decision-making behaviour
(Carson & Groves, 2007; Ding, Grewal, & Liechty, 2005). Therefore, experiment choice-based
models may represent the decision-making behaviour that does not represent real-life behaviour.

Choice models based on real-life choices. Choice models based on real-life choices represent
real-life decision-making behaviour. A downside is that these choice models often lead to high
collinearity between two or more choice attributes in a real-life situation (Brownstone, Bunch, &
Train, 2000). High collinearity leads to extensive standard errors in the estimated parameters and
to small t-statics (Lavasani et al., 2017). Both relate to inaccurate model estimations (Lavasani et
al., 2017). An example of collinearity is the relation between a high age and inadequately function-
ing organs. In addition, an endogeneity problem can arise when using real-life choices (Helveston
et al., 2018). This endogeneity problem leads to biased parameters. In the case of endogeneity,
attributes that the choice model does not capture influence a physician’s choice (Helveston et
al., 2018). As a result, these unobserved attributes will correlate with attributes that the model
does capture (Helveston et al., 2018). The unobserved choice attributes that influence choices are
referred to as “noise” and represent the impact of omitted attributes on the choice model. The
endogeneity problem is more likely to occur when the number of attributes in a choice situation is
large, which is the case for the complex choices of physicians.

When the estimation of the recommendation generator model incorporates real-life choices,
the risk arises that the model estimation incorporates choices that the CDSS’s recommendations
influenced. While entering a real-life choice, a physician might adjust the choice according to
the recommendation that the CDSS provides. It is yet unclear whether physicians or BAIT-based
CDSS providers perceive this influence as an issue affecting the trustworthiness of a dynamic BAIT-
based CDSS. Moreover, it is yet unclear what solutions are available to mitigate this risk in the
context of a dynamic BAIT-based CDSS. Table 2.1 gives an overview of the characteristics of exper-
iment choice-based models and real-life choice-based models in the context of a BAIT-based CDSS.

24

Table 2.1: The differences between choice models based on experiment and real-life choices
(Helveston et al., 2018; Sanko, 2001).

Experiment choice-based model Real-life choice-based model

Information Expression concerning a hypothetical scenario. Expression in real life, result of actual behaviour.

Advantages

• Controlled experiment.

• Can include information on products and
choice attributes that do not exist in the
healthcare context, but not expected to be
relevant for decision support tool in health-
care.

• No measurement error.

• Reflects choices made in real life.

• Extensibility of the range of choice attribute
values.

Disadvantages

• Potential difference in experiment versus
decision in real life.

• Incomplete data

• Potential for omitted variable bias.

• Measurement error.

• Collinearity among explanatory variables.

• No information on alternatives and choice
attributes that are not present in real life
(yet), but not expected to be relevant for
decision support tool in healthcare.

• Incomplete patient information.

• Correlated errors among choices.

Choice models based on experiment and real-life choices. Given the advantages and disadvan-
tages of experiment choices and real-life choices as source for the estimation of a choice model,
DCM literature does not agree on the preferred source (Swait, Louviere, & Williams, 1994; Helve-
ston et al., 2018). Studies commonly assume that choice models based on real-life choices have
superior predictive ability compared to experiment choice-based models. However, other studies
emphasize that experiment choice-based models can capture changes in the set of choice attributes
(Swait & Louviere, 1993). For instance, when a new choice attribute has to be added or removed
from the choice model.

Because both have complementary characteristics, DCM research started to combine both
sources in 1990 (M. Ben-Akiva & Morikawa, 1990). DCM literature commonly supports that
real-life choices can help “ground” experiment choice-based models in reality (Axsen, Mountain,
& Jaccard, 2009; M. Ben-Akiva & Morikawa, 1990; Bhat & Castelar, 2002; Birol, Kontoleon, &
Smale, 2006; Brownstone et al., 2000; Brownstone & Small, 2005; Dissanayake & Morikawa, 2003;
Feit, Beltramo, & Feinberg, 2010; J. J. Louviere et al., 1999). A joint model estimation allows to
slightly adjust the parameters of an experiment choice-based model with real-life choices. These
real-life choices represent the contemporary decision-making strategy of physicians. As such, a
BAIT-based CDSS can capture contextual change by incorporating real-life choices over time.

However, the combination of both sources in the context of a dynamic BAIT-based CDSS is
not straightforward. First of all, possible technological preconditions on estimating a joint choice
model for decision support are yet unspecified. Besides, the combination of the two data sources
gives rise to an implication. As the previous paragraph mentions, the collection of real-life choices
happens under real-life circumstances. Consequently, the contextual ”noise” in a real-life setting
may influence physicians’ choices. The error term of a choice model captures this noise affecting a
physician’s choice. This real-life noise is absent in a controlled experimental setting. As a result,
the variance of the error term of an experiment choice-based model and a real-life choice-based
model cannot be assumed equal (Beck, Fifer, & Rose, 2016; M. Ben-Akiva & Morikawa, 1990;
Swait & Louviere, 1993). However, it is unclear if the differences between the data sources are
significant in healthcare decision-making contexts, whether this varies among different healthcare
contexts, and whether this is problematic for qualitative decision support.

25

Model validation

The goal of the model validation is to assess whether a newly estimated recommendation generator
model is clinically useful for the contemporary context. To validate the recommendation generator
model, a CDSS should contain a validation component that assesses the performance of a new
recommendation generator model on test choices every time a new model is estimated (Velickovski
et al., 2014; Zikos & DeLellis, 2018). The technological preconditions on the validation of a choice
model for decision support are yet unspecified. On the contrary, suggestions regarding validation
metrics are in place. Section 2.1.1 presents Machine Learning (ML) metrics commonly used for
the performance assessment of CDSSs. Because the architecture design is focused on a CDSS and
not on a choice model for behavioral analysis, these metrics form admissible validation metrics
for choice models that aim to predict useful recommendations like a dynamic BAIT-based CDSS
(Fan, Lin, & Tang, 2017; Franses, 2000).

Since the BAIT approach deviates from the approach of ML classifiers, the performance assess-
ment of a BAIT-based CDSS cannot directly copy ML performance metrics. A formal classifier as
specified in ML maps each instance to either a positive or a negative class (Kotsiantis, Zaharakis,
& Pintelas, 2006). ML classification models have a deterministic ground truth. This ground truth
implies that there is always an objective answer about the class membership. As a result, the
CDSS can compare the predicted class to the real class. In the context of a BAIT-based CDSS,
this discrete ground truth is absent. Instead, there is a probabilistic ground truth. If a BAIT-based
CDSS gives an 80% recommendation, the CDSS states that eight out of ten physicians would vote
against treatment. If a physician decides not to proceed with treatment despite a positive recom-
mendation, this does not mean that the recommendation of a BAIT-based CDSS is incorrect. It
rather means that the physician holds a minority view.

This subtlety has two implications for the performance assessment metrics in the context of a
dynamic BAIT-based CDSSs. First of all, the metrics should get another reference to avoid confu-
sion. Rather than being right or wrong, the recommendation can either correspond with the final
choice of the physician or not. As a result, the metric names are as follows:

• Accuracy: Correspondence

• The Confusion Matrix

– True Positives: Corresponding Positives

– True Negatives: Corresponding Negatives

– False Positives: Conflicting Positives

– False Negatives: Conflicting Negatives

• Main metrics that can be calculated from the Confusion Matrix:

– Sensitivity (True Positive Rate): Correspondence sensitivity

– Specificity (True Negative Rate): Disagreement specificity

• Matthew correlation coefficient: Not renamed, because of its unique reference.

Second, the performance validation needs a threshold defining when a recommendation is a vote
in favour or against a specific treatment. This threshold represents the minimal majority an end
user needs to see perceives as convincing. The classification of recommendations with the thresh-
old allows assessing which recommendations were in line with the real-life choice of the physician.
By doing so, the threshold value influences the performance assessment: if the value increases,
the chance that a recommendation deviates from the physician who decided to proceed with the
treatment increases. It is yet unclear whether physicians in different contexts have contrasting
opinions regarding the threshold value and what the preferences on this threshold are.

Next to the ML-based metrics, two additional metrics are suitable for the performance assess-
ment in the context of a BAIT-based CDSS. First of all, a metric that is peculiarly related to the
technological foundation of a BAIT-based CDSS. As the previous paragraph explains, the recom-
mendation of a BAIT-based CDSS represents the internal agreement within a pool of physicians.
If the internal agreement is high, the CDSS recommends with little confidence. Most likely, the
recommendation to proceed with the treatment is around 50%. As such, the recommendation is

26

either a correct or incorrect reflection of the real-life internal agreement. If a BAIT-based CDSS
and a physician are both uncertain regarding a particular choice, the CDSS correctly understands
the complexity of the choice task. As a result, the difference between the recommendation of a
BAIT-based CDSS and the physician’s confidence regarding the specific real-life choice gives in-
sight into this representation power of the CDSS. Accordingly, averaging the differences over a
set of real-life choice recommendations provides insight into the performance of a dynamic BAIT-
based CDSS over a series of real-life choice tasks. This average is referred to as the “Confidence
Representation” in the remainder of the report.

Second, DCM literature proposes a metric that DCM researchers commonly use to validate
choice models: the Rho-squared value (de Luca & Cantarella, 2009). The Rho-squared value
illustrates how well the estimated parameters of a choice model fit the choice data. The metric
value ranges from a model that does not perform better than throwing a dice to a model that forms
a perfect fit and becomes deterministic. Moreover, standard DCM diagnostics may also be helpful
for the validation of choice models in dynamic contexts. For instance, the size of the changes in
parameter estimations and in standard errors associated with these parameter estimations. The
errors represent the reliability of the estimated parameters. It is yet unclear which metrics are of
interest to physicians or BAIT-based CDSS providers.

Figure 2.5: Model Update Engine in the context of a dynamic BAIT-based CDSS.

2.2.3 Model quality monitor

The model quality monitor constantly assesses the performance of the CDSS. In the context of
a dynamic BAIT-based CDSS, a continuous performance assessment concerns examining the dif-
ference between a real-life choice of a physician and the CDSS’s recommendation on this real-life
choice (see section 2.2.2). When the recommendation corresponds with the choice made by the
physician, the BAIT-based CDSS correctly mimics the decision-making strategy of physicians ac-
tive in the decision-making context. As Figure 2.6 illustrates, the performance assessment consists
of two steps in the context of a dynamic BAIT-based CDSS. The first step the monitor should
execute is comparing the CDSS’s recommendation with the majority threshold (see section 2.2.2).
This comparison establishes whether the recommendation represents a vote in favour or against the
treatment. The second step the monitor should execute is examining whether the recommendation
is in line with the physician’s choice.

Figure 2.6: Model Quality Monitor in the context of a dynamic BAIT-based CDSS.

As section 2.1.1 explains, the model quality monitor should indicate the need for or even
directly trigger an update. When an update is necessary depends on the CDSS performance level
that physicians perceive as acceptable. This performance level represents the number of times
a dynamic BAIT-based CDSS can generate recommendations that deviate from the physicians’
choices, while assuming that the recommendation generator model does not need an update. In
the remainder of this report, this number is referred to as the level of acceptance. The level that
physicians find acceptable is yet unknown. However, this level is likely to be context-specific.
In addition, it is unknown which specific actions physicians want a dynamic BAIT-based CDSS
to undertake when obtaining this level. A physician may wish for the CDSS to push a model

27

update directly. Another physician may prefer to first further investigate the performance decline.
Figure 2.7 summarizes the findings of section 2.2 by giving a conceptual presentation of the design
space of a dynamic BAIT-based CDSS architecture.

Figure 2.7: Conceptual outline of the design space of a dynamic BAIT-based CDSS architecture.

2.3 Summary chapter 2

The goal of chapter 2 is to present the main components of a dynamic CDSS and describe how
Discrete Choice Modeling (DCM) theories, practices, and characteristics shape these components.
An architecture that defines a dynamic CDSS commonly describes four main components: an
adaptive knowledge base so that the CDSS accepts new information, a model update engine so
the recommendation generator model continually bases its recommendations on that new informa-
tion, a model update monitor so that the CDSS timely detects any decrease in performance in a
changing context, and a Human-Computer Interaction (HCI) component. CDSS and CDSS archi-
tecture literature give solutions for the design of these components that are technology-dependent.
Therefore, additional efforts are necessary to inform the design of these components in the context
of a dynamic BAIT-based CDSS architecture. Table 2.2 presents the architecture design space
framework summarizing the main components and the design gaps regarding these components.
The construction of the framework allows answering the first and second sub-question:

1. What are the main components of a dynamic CDSS architecture?

2. How is the design of the main components of a dynamic CDSS architecture
shaped by the theories, practices and characteristics of DCM?

The header of the architecture design space framework specifies the main components that CDSS
and CDSS architecture design literature suggest. The first row defines the elements of each main
component. The next row summarizes how DCM theories, practices, and characteristics restrict
the design of each component. The final row specifies which unknown aspects need additional
research to outline the design of each main component in the context of a dynamic BAIT-based
CDSS further.

The expansion of a CDSS with additional functionalities gives rise to design considerations re-
garding HCI. Consequently, the design of a dynamic BAIT-based CDSS architecture also concerns
the design of HCI. In the context of a CDSS, two HCI design aspects are essential. The first
aspect is the level of automation. For this research, this level concerns the automation of CDSS
updates. The second aspect is the design of the information a CDSS presents to physicians. A
direct relation between the two aspects exists: the higher the level of updating automation, the
less prevalent the information design becomes. The level of updating automation should suit the
preferences in the decision-making context and take into account the likelihood that a physicians or

28

a CDSS causes an error when performing a particular task. The information design can influence
the likelihood that a physician causes an error because the right information design can shape a
physician’s behaviour.

DCM theories, practices, and characteristics do not explicitly influence the HCI design. How-
ever, gaps regarding the HCI design for a dynamic BAIT-based CDSS exists: the information
physicians want to receive, the influential design of the information, and the desired level of updat-
ing automation. Depending on the variety in preferences regarding these aspects, the architecture
design is challenged with finding the right combination of updating task automation and informa-
tion provision for multiple contexts.

Table 2.2: The architecture design space framework.

Model
compo-
nent:

Adaptive knowledge base Model update engine Model quality monitor HCI component

Sub pro-
cesses:

Data measurement, Data
storage.

Model training, model valida-
tion.

Assessment of the acceptabil-
ity of the recommendations
for individual cases.

No components specified, but
considerations: level of up-
dating automation and infor-
mation design in terms of
type, content, and timing.

DCM
complica-
tions:

Need for storage of both
experiment and real-life
choice data, for replacement
of experiment choice base
while considering experiment
choices as one set, for contin-
uous acceptance of real-life
choices, for management of
incomplete real-life choices.

Real-life choices might cap-
ture “noise”, combination
of different choice sources,
estimation based on real-life
choices a dynamic BAIT-
based CDSS influenced, need
for adjusted performance
metrics, for a comparison
of recommendation and
threshold.

Need for a comparison of rec-
ommendations and threshold,
for a deviation assessment be-
tween recommendations and
choice physician, for a level of
acceptance.

-

Unknowns
in con-
text of a
dynamic
BAIT-
based
CDSS:

Most reliable way to manage
incomplete patient informa-
tion in a choice.

Preconditions on the execu-
tion of an update, the per-
formance metrics of interest,
preferred value for majority
threshold by physician, and
the preference variety, degree
to which different variances
are expectable, problematic
and DCM based suggestions
form a suitable solution.

The preferred consequences
when performance has de-
clined below the accepted
level, and the preference va-
riety, preferred level of accep-
tance and the preference vari-
ety among contexts.

The preferred information,
preferred level of updating
automation and the prefer-
ence variety among contexts,
preferred information design
and the preference variety
among contexts.

29

Chapter 3

Introduction to the action context:
The current and desired situation

This chapter presents the requirements of a dynamic BAIT-based Clinical Decision Support Sys-
tem (CDSS) architecture for Councyl. The architecture design space framework that chapter 2
presents provides insight into the CDSS components and design considerations that are relevant
when designing a dynamic BAIT-based CDSS architecture. However, the architecture design space
framework also highlights the aspects of the architecture design that are yet unknown. The move
towards the action context enables the collection of practically relevant and in-depth knowledge
necessary to answer these unknown aspects and further outline the architecture design. Section
3.1 gives an introduction to the problem that Councyl experiences. This introduction forms the
starting point of identifying the situation Councyl ultimately desires. Section 3.2 describes this
desired situation in terms of architecture requirements. The chapter concludes with a summary
in section 3.3. The findings that this chapter presents provide the answer to the following question:

3. What are the requirements for a CDSS architecture of a dynamic BAIT-based
CDSS?

3.1 Introduction to the current action context

This section introduces the action context as it is. This section first introduces the key stakeholders
that are central in the remainder of this report (subsection 3.1.1). Next, this section explicates the
problem Councyl currently faces (subsection 3.1.2).

3.1.1 Introduction to Councyl and the key stakeholders

Councyl is a spin-off of the University of Technology Delft. Councyl is a CDSS provider and has
been developing BAIT to offer transparent decision support since April 2020.As a CDSS provider,
Councyl mainly employs CDSS developers who serve physicians with a BAIT-based CDSS. Because
Councyl’s primary goal is to develop CDSSs, this research does not distinguish between needs of
Councyl’s CDSS developers and other representatives of Councyl. The developers customize a
BAIT-based CDSS for a particular choice task the physicians in a particular decision-making
context face regularly (see subsection 1.2.2). An example is a CDSS that assists the choice task
regarding the uptake of a patient in the Intensive Care Unit (ICU).

All physicians active in the same decision-making context can consult the BAIT-based CDSS.
Therefore, each BAIT-based CDSS has a group of physicians as clinical end users. Councyl dis-
tinguishes two types of clinical end users in each group of physicians using the same CDSS. The
first type is the average end user who consults the CDSS for choice recommendations. The second
type also consults the BAIT-based CDSS but is also the CDSS product owner. This type of end
user is responsible for all final decisions concerning the CDSS and is the first point of contact for
Councyl. Therefore, this report refers to the second type as the main end user.

Both types of end users apply a BAIT-based CDSS with the same goal: receiving decision
support. Besides, end users active in the same context will use the same BAIT-based CDSS and
have to agree on its characteristics and functionalities. Therefore, this research does not distinguish
between the preferences of the main end user and average end users operating in the same decision-
making context. The remainder of this report refers to both types with the term ”clinical end user”.

30

Although this report does not distinguish between the preferences of the different end user types,
expressing the distinction between these user types is necessary to understand the solution this
research gives to Councyl’s problem. Figure 3.1 gives an overview of the two key stakeholders that
this section introduced: Councyl and the end user.

Figure 3.1: Stakeholders of the action context: Councyl and the end users.

3.1.2 Introduction to the problem experienced by Councyl

As section 1.3 explains, the current version of the BAIT-based CDSS is static and only generates
choice recommendations based on clinical decision-making knowledge available at the moment
of development (for an architecture of the current static BAIT-based CDSS, see Appendix D).
Although the static BAIT-based CDSS has promising features for qualitative decision support
in healthcare contexts, the CDSS is inadequate for the application in dynamic decision-making
contexts. As a result, the BAIT-based CDSS that Councyl currently offers has shortcomings.
According to Councyl, this inadequacy to match with the dynamic context can be traced down to
the following missing features:

• The BAIT-based CDSS does not retain its accuracy over time, because there is no estab-
lished updating mechanism that lets a choice recommendation generator model incorporate
developments in the decision-making context.

• The BAIT-based CDSS cannot estimate a choice recommendation generator model based
on a combination of experiment choices and real-life choices, which are both collected under
different conditions.

• The BAIT-based CDSS cannot deal with the characteristics of choices collected in a real-life
setting. For instance, real-life choices may contain missing values.

• The BAIT-based CDSS does not assess the performance of a choice recommendation gener-
ator model in a changing context on a continuous basis.

31

Councyl needs to transform the static BAIT-based CDSSs so that it matches the dynamic contexts
and retains its value to healthcare decision-making contexts over time. To this end, the current
static BAIT-based CDSS needs an expansion with additional features. However, this expansion
requires addressing the existing shortcomings. Doing so is challenging for three reasons:

• There are no prefabricated solutions or starting points at hand because of the novelty of the
application of Discrete Choice Modeling (DCM) for CDSS development. Councyl does not
know what solutions can cover the missing features, what the risks of these solutions are,
and how a CDSS can combine these solutions effectively.

• The healthcare contexts Councyl aims to serve with a BAIT-based CDSS heavily vary (Eapen,
2021). Possible differences between contexts are the speed with which the decision-context
changes, the frequency with which the choice task occurs, and the interaction clinical end
users want with the CDSS. Councyl does not know which adjustments are necessary to satisfy
the preferences of healthcare clients best.

• Because healthcare contexts are dynamic, the preferences of healthcare clients are likely to
change over time. Councyl does not know how to take into account the changing preferences,
while covering the features that the static BAIT-based CDSS lacks.

To serve clinical end users with accurate choice recommendations during ongoing CDSS use, the
CDSS developers of Councyl need a CDSS architecture that shows how to facilitate a fit with the
dynamic decision-making context. This fit must align with the varying and changing preferences of
clinical end users in different decision-making contexts. As a result, the architecture should form
a guiding tool for developing a dynamic BAIT-based CDSS for a particular healthcare decision-
making context.

3.2 Desired situation: Architecture requirements

This section presents the final set of architecture requirements that outline the architecture as is
desired by Councyl. First, subsection 3.2.1 gives an introduction to the concept of architecture
requirements. This section also presents the categories of architecture requirements that this
report distinguishes. Section 3.2.2 describes the methodology this research followed to identify the
architecture requirements. Section 3.2.3 presents the final set of architecture requirements.

3.2.1 The classification of architecture requirements

A requirement is a property of an artefact deemed desirable by stakeholders of the artefact
(Johannesson & Perjons, 2014). As such, a set of requirements describes what an artefact should
be and do from the point of view of the stakeholders (Proper & Greefhorst, 2010). Accordingly,
requirements guide the design and development of the artefact. A requirement can concern the
functions, structure, or environment of an artefact. It can also cover the effects of using the arte-
fact. By doing so, requirements function as selection criteria for choosing the proper artefact design
(Di Noia, Mongiello, Nocera, & Straccia, 2019).

The difference between CDSS requirements and architecture requirements

The artefact subject to design in this research is an architecture. Because an architecture describes
the structure of a system, the specification of the architecture requirements will affect the function-
ing of the system (Gong, 2012). Moreover, architectures often function as a tool to communicate
and illustrate the features of a system during a system development cycle. A a result, CDSS ar-
chitecture literature mainly discusses requirements at CDSS level and barely defines requirements
at the level of the architecture (Gong, 2012; L. Tabares, Hernandez, & Cabezas, 2016; F. Tabares,
Hernandez, & Cabezas, 2017). For example, Hoogervorst (2009) states that architecture require-
ments are areas of concern related to the development a CDSS or to other aspects that are critical
for the development and implementation of that CDSS. Similarly, other studies mention that ar-
chitectures should incorporate both the functional requirements that cover the functionalities that
a CDSS must provide, and the Quality Attributes Requirements (QAR) that cover the qualities a
CDSS must meet when delivering the functional requirements (Erder & Pureur, 2015).

32

Categories of requirements at architecture level

Because this research focuses on the design of an architecture, the requirement identification does
not aim to formulate requirements at the level of the CDSS. Nevertheless, the architecture will
embed components that realize certain CDSS features. As such, the architecture requirements
should not only concern the desired architecture features. Instead, the requirements identification
involves translating CDSS features into requirements at the level of the architecture. To guide this
translation, this research distinguishes three categories of architecture requirements.

First of all, the architecture is an artefact that Councyl will use for the development of CDSSs.
For the architecture to form a tool that solves Councyl’s problem, the architecture should meet
particular requirements (see section 3.1). This research refers to these requirements as client
artefact requirements (CAR).

The second category consists of QARs. The previous paragraph gives a brief introduction to
QARs. QARs are requirements concerning the qualities of a CDSS that a single CDSS component
cannot realize (Gorton, 2011). Instead, the realization of a QAR involves the complete structure
of the CDSS. The architecture of a CDSS describes this structure. Although QARs concern
important CDSS qualities, the CDSS architecture design determines the extent to which a CDSS
will exhibit particular quality attributes (Erder & Pureur, 2015; Gorton, 2011; O’Brien, Merson,
& Bass, 2007). Therefore, QARs ensure that the architecture design guides the development of
a CDSS that possesses the desired qualities. Consequently, the architecture should result from
design decisions that adhere to the QARs (Erder & Pureur, 2015).

Next to CDSS qualities, the architecture should also ensure that the CDSS provides clinical
end users with the desired functionalities. Therefore, this research distinguishes requirements that
specify which functionalities an architecture should force at the level of the CDSS. By adhering to
these requirements, the architecture directs the development of specific CDSS components. This
report refers to these requirements as development guiding requirements (DGR). Figure 3.2 vi-
sualizes the requirement classification. For clarification purposes, Table 3.1 defines each type of
architecture requirement that this report distinguishes.

Figure 3.2: Classification of architecture requirements.

Table 3.1: Definitions of the architecture requirement categories

Requirement category Definition

Architecture requirement (AR) The functional and non-functional requirements that pertain to the architecture
of a class of CDSSs (Greefhorst & Proper, 2011).

Client artefact requirements (CAR) The functional and non-functional architecture requirements that pertain to
the architecture as an artefact.

Quality Attribute Requirements (QAR) The functional and non-functional architecture requirements that address issues
of concern to stakeholders of a CDSS and cannot be captured by a single
component or part (Gorton, 2011).

Development guiding requirements
(DGR)

The functional architecture requirements that specify what CDSS functionali-
ties the architecture should force on a CDSS.

3.2.2 The methodology of the requirement identification

This section describes the methodology of the requirement identification. The section starts with
the sources that informed the requirement identification. One of the sources are the interviews

33

conducted with the key stakeholders. The subsequent sections present the interview structure, the
interview participants, the interview setting, and the interview questions.

Sources of the requirement identification

Three sources enabled the formulation of the final set of architecture requirements. As section 1.5.2
explains, the output of six interviews with the key stakeholders formed an initial list of require-
ments. Appendix A presents a table with practical details on all interviews. The analysis of the
interview output involved CDSS design and CDSS architecture design literature. The literature
both shaped and complemented the analysis. The literature shaped the interview analysis because
it supported the translation of aspects that participants stated into feasible and relevant architec-
ture requirements. The literature complemented the interview analysis because it provided insight
into important aspects that participants did not explicitly mention. A potential reason for par-
ticipants to be incomplete in their reasoning is that the architecture defines an expansion of the
static BAIT-based CDSS that is already in place. Participants may overlook aspects already cap-
tured by the static CDSS, but are still relevant for the dynamic CDSS. Moreover, the participants
form a small selection of all physicians. Accordingly, the interview answers may be biased. Third,
interviews are subjective by nature. Literature provides an objective perspective and relaxes the
subjectivity of the interview data (Johannesson & Perjons, 2014; McIntosh & Morse, 2015). Ap-
pendix B gives the complete description of the interview analysis, and shows how the literature
informed the analysis. As a third source, the initial requirements were refined with new insights
and lessons learned during the entire research (for the lessons learned that shaped the formulation
of the requirements, see chapter 7).

The structure of the interviews

The interviews followed a semi-structured format. During a semi-structured interview, the in-
terviewer elicits information from the interviewee with questions that unfold in a conversational
manner. By doing so, the interviewer has the opportunity to explore issues that the interviewee
thinks are relevant (Longhurst, 2003). Where structured interviews may result in stale answers,
which are undesired when eliciting requirements, semi-structured interviews give the participants
space to take the initiative and guide the conversation into unexpected directions (Agarwal & Tan-
niru, 1990; Queirós, Faria, & Almeida, 2017). As such, a semi-structured format enables one to
dive deeper into surprising answers (Queirós et al., 2017). A disadvantage is that semi-structured
interviews can lead to abstract and off-topic answers (Johannesson & Perjons, 2014). Therefore,
participants receive an interview procedure in advance of the interview. Another drawback is that
data gained during interviews depends on the perspective, stakes, and interests of the specific per-
son being interviewed (McIntosh & Morse, 2015). As suggested by Checkland and Scholes (1990),
the interviews involved different representatives of Councyl and different types of clinical end users
to get a complete overview of the problem and solution expectations. Section 3.2.2 introduces the
interviewed participants.

Participants of the interviews: key stakeholders

The selection of the interview participants is vitally important (Longhurst, 2003). As the previous
section explains (section 3.2.2, a homogeneous selection of participants will lead to a restricted
perspective on the requirements. Therefore, a diverse set of stakeholders has to be involved in
the identification of the requirements (Checkland & Scholes, 1990; Shah & Patel, 2016). As sec-
tion 1.5.2 describes, the interview participants are the key stakeholders. The key stakeholders are
Councyl and the CDSS end users introduced in subsection 3.1.1.

Participants - Councyl
As Checkland and Scholes (1990) suggests, the interviews involved different representatives of
Councyl. By doing so, the interview output offers a complete overview of the problem perceptions
and the expectations regarding the problem solution. The selected representatives all have a high
stake in or a strong influence on the architecture design:

• Co-founder and CEO of Councyl: has a high stake in the architecture design since this
participant has to use the architecture to help different healthcare clients with decision-
making in dynamic contexts in the future. This participant assists clients in codifying and
automating decision-making processes. To this end, this participant will implement the
architecture in the existing software.

34

• Co-founder and scientific advisor of Councyl: has a strong influence because this representa-
tive possesses critical knowledge about DCM and BAIT. Therefore, this representative knows
which theoretical considerations are relevant and which design alternatives are feasible in the
context of a dynamic BAIT-based CDSS architecture.

• Decision analyst of Councyl: has a high stake in the architecture design since this participant
will use components defined in the architecture to apply a dynamic BAIT-based in various
healthcare decision-making contexts.

Participants - clinical end users
For the same reason as the previous paragraph gives, the interviews involved three different types
of clinical end users. Two criteria guided the selection of the end users for the interviews. First,
the degree of experience the end user has with a BAIT-based CDSS. The degree of experience
determines the knowledge of a BAIT-based CDSS. The dynamic BAIT-based CDSS should fit the
preferences of all potential end user, including existing and future users. Second, the frequency
of the choice task. The frequency determines how many choices that capture new contextual
knowledge are available in the context. Therefore, the frequency of the task represents the amount
of information that is available for updates of a CDSS. The dynamic BAIT-based CDSS should be
useful for all potential choice tasks, not matter how often it occurs. By guiding the selection with
these two criteria, the interviews generate a complete perspective on the end users’ preferences.

• A clinical end user who is an “advanced” client of Councyl. The choice task rarely occurs:
approximately 20 times a year.

• A clinical end user who is a “new” client of Councyl. The choice task often occurs: approxi-
mately 100 times a year (bi-weekly).

• A clinical end user who is not yet considered a client of Councyl. The choice task regularly
occurs: approximately 50 times a year (weekly).

Interview setting

Each interview took 45 minutes. Due to the COVID situation, the interviews were conducted online
via Microsoft Teams and Zoom. The representatives of Councyl were situated in their working
environment, where they will use the architecture. The clinical end users were situated at the
healthcare location where they make decisions and use or will use the support of the BAIT-based
CDSS.

Interview questions

The goal of the interviews is to identify the architecture requirements. These requirements outline
the architecture. The architecture design space framework created in chapter 2 forms an initial
outline. This framework presents the main components of a dynamic CDSS and the restrictions
that DCM theories, practices, and characteristics pose on these components. Moreover, the ar-
chitecture design space framework highlights the aspects that are still unclear. Therefore, the
architecture design space framework assists in selecting the focus areas of the interview questions.
Table 3.2 presents the interview questions for the interviews with representatives of Councyl.
Table 3.3 presents the interview questions for the interviews with end users. Both tables with
interview questions contain a column “Rationale/Framework reference”. This column describes
why the question is relevant. If the question is directly derived from the architecture design space
framework, the column explicitly mentions this as well.

35

Table 3.2: Questions and rationale semi-structured interviews Councyl

Reference Question Rationale/Framework reference

1 What is the goal of this design research
project?

Requirement identification should start with the goals of the project
and proposed artefact (Zhou, 2004). The goals of the project and
the artefact indicate what characteristics and functions the artefact
should have.

2 What is the goal of the to be designed
CDSS architecture?

Idem.

3 Can the goal be further specified in sub-
goals?

To understand the vision of Councyl regarding the architecture design
project and identify more precise business objectives, and while doing
so moving from the current to the future state.

4 When is this goal/ are these goals
achieved?

To get a clear overview of the features that are of value for a dynamic
BAIT-based CDSS architecture. In addition, focusing on achieve-
ment frames the discussion in a positive light and forces to focus on
the benefits, while making the key stakeholders excited about the
project.

5 What should the architecture be capa-
ble of doing in order to achieve this
goal? Per function: why?

Framework: check if additional features are needed. Cover for poten-
tially missing components of value for Councyl.

6 What characteristics should the archi-
tecture have in order to achieve this
goal? Per characteristic: why?

Framework: check if additional features are needed. Cover for poten-
tially missing components of value for Councyl.

7 With the knowledge and experience
regarding how clinical end users use
BAIT, would like to suggest additional
features and/or functions to what is al-
ready discussed?

Framework: check if additional features are needed. Cover for poten-
tially missing components of value for Councyl.

36

Table 3.3: Questions and rationale semi-structured interviews clinical end users

Reference Question Rationale/Framework reference

1 How would your trust in and acceptance of a dy-
namic BAIT-based CDSS change when the model
would incorporate both experimental and real-
world choices made by you and your colleagues?

Framework: real-life choice data may contain “noise”, which results from
decision-making in the real-world rather than in a controlled environment. It
is yet unknown whether end users trust in a dynamic BAIT-based CDSS when
it incorporates noise captured by real-life choices.

2 If a dynamic BAIT-based CDSS can be updates
with novel choice information, would you prefer
that a dynamic BAIT-based CDSS incorporates
all choices or just a specific set of choices? For
instance, specific choice situations which should
be excluded.

Framework: a dynamic BAIT-based CDSS is based on the choices in the choice
base. However, because of the variety of contexts (Eapen, 2021), clinical end
users may want to specify the choices that influence an estimation and exclude
other types of choices. It is yet unclear what preferences regarding the choice
selection are and whether they indeed vary.

3 If a BAIT-based CDSS can update, different
choices could be differently weighted. Can you
explain what you think of the following five op-
tions. A dynamic BAIT-based CDSS is always in-
fluenced by real-life choices as much as by exper-
iment choices (1), a dynamic BAIT-based CDSS
is always less influenced by real-life choices than
by choices as from choices made during a choice
experiment (2), a dynamic BAIT-based CDSS is
always heavier influenced by real-life choices than
by experiment choices (3), it depends on the char-
acteristics of the choice how much a dynamic
BAIT-based CDSS should be influenced by the
choice (4), the end user who made the choice
should determine how much a dynamic BAIT-
based CDSS should be influenced by a specific
real-life choice (5).

Framework: a dynamic BAIT-based CDSS is based on the choices in the choice
base. However, because of the variety of contexts (Eapen, 2021), clinical end
users may want specific choice types to have a larger influence on the estimation.
It is yet unclear what preferences regarding the choice weights are and whether
they indeed vary.

4 What would be a reason for you to ensure an up-
date is less influenced by a specific type of choice
observation?

Framework: a dynamic BAIT-based CDSS is based on the choice observations
in the knowledge base. The reasons for differences in the importance of differ-
ent type of choice observations are unknown. These could potentially inform
the need of additional features, like dealing with situations that are beyond
the regular decision-making structure and initially not captured by a dynamic
BAIT-based CDSS.

5 How should a dynamic BAIT-based CDSS deal
with incomplete patient information of a choice?

Framework: real-life choices may be incomplete. Information on the choice
may be missing or unknown. However, it is not yet clear how end users would
like the CDSS to deal with missing patient data.

6 Under what circumstances or according to which
criteria should a dynamic BAIT-based CDSS be
updated?

Framework: the architecture should establish an updating mechanism. How-
ever, it is yet unclear whether end users indeed have different preferences re-
garding the activation of an update. It is of interest whether an update should
be available or be restricted by specific preconditions.

7 How should an update of a dynamic BAIT-based
CDSS be activated?

Framework: the human-computer interaction can be shaped by the level of
updating automation. However, it is yet unclear whether end users indeed
have different preferences regarding the level of updating automation regarding
the updating tasks of a dynamic BAIT-based CDSS. For instance, whether an
update should be activated by an end user or initiated by a dynamic BAIT-
based CDSS itself.

8 What information would you like to receive from
a dynamic BAIT-based CDSS and when?

Framework: the human-computer interaction can be shaped by the informa-
tion the CDSS provides to the end user. However, it is yet unknown whether
end users want to receive information regarding updates and if end users have
different opinions regarding the type, content, presentation and timing infor-
mation.

9 How should the CDSS deal with the situation in
which a clinical end user’s choice deviates from
the recommendation of a dynamic BAIT-based
CDSS?

Framework: a monitor assessing the performance over time is a key component
of a dynamic CDSS. However, it is yet unknown what end users want the CDSS
to do when the CDSS notices a performance decline and if end users in different
decision-making contexts have varying opinions regarding this percentage.

10 What percentage of the clinical end users be-
hind a dynamic BAIT-based CDSS should vote
in favour of the treatment for you to take the rec-
ommendation as a serious vote in favour of the
treatment?

Framework: a majority threshold is to be defined in case of a dynamic BAIT-
based CDSS. However, it is unknown what a appropriate threshold is and if end
users in different decision-making contexts have varying preferences regarding
this threshold.

11 How many times may the CDSS give a deviat-
ing recommendation until you think an update is
needed?

Framework: a limit defining when the decline in performance is no acceptable
anymore is to be defined in case of a dynamic BAIT-based CDSS. However,
it is unknown what an appropriate threshold is and if end users in different
decision-making contexts have varying preferences regarding this threshold.

37

3.2.3 The results of the requirement identification

As subsection 3.2.1 explains, this research distinguishes three types of architecture requirements:
the Client Artefact Requirements (CAR), Quality Attribute Requirements (QARs), and Develop-
ment Guiding Requirements (DGR). Appendix B presents the interview analysis from which the
requirements were derived.

Client Artefact Requirements

The CARs define the architecture requirements that pertain to the architecture from Councyl’s
point of view. In essence, Councyl desires to use the architecture to develop dynamic BAIT-based
CDSSs for all potential healthcare end users. Therefore, the architecture should form a guiding
tool for Councyl’s developers.

The architecture should guide the development so that Councyl can generate a dynamic BAIT-
based CDSS for application in a specific healthcare context within four weeks. For a smooth
development of a dynamic BAIT-based CDSS, the description should be complete, reliable, and
uniform. Complete implies that developers of Coundyl are confident that no significant research
efforts will be needed to develop a CDSS that achieves the intended goals. A reliable architecture
will eliminate any doubts about the quality of the defined processes. A uniform will guarantee
that developers cannot interpret the architecture in multiple ways. As such, uniformity ensures
that the architecture does not lead to the development of unintended CDSS designs.

Because healthcare decision-making contexts are heterogeneous (Eapen, 2021), preferences re-
garding the CDSS will differ among the healthcare clients whom Councyl serves. For the architec-
ture to describe a CDSS that possesses the abilities and characteristics considered important by all
clinical end users, the architecture should guide the development of different forms of a dynamic
BAIT-based CDSS. Moreover, user preferences will change over time. The CDSS’s functionalities
and qualities the architecture forces on a CDSS should therefore be modifiable over time.

Finally, the architecture forms an expansion of the current static BAIT-based CDSS structure.
Hence, the architecture should align with the organizational procedures that Councyl installed
for the operation of the static BAIT-based CDSS. An important aspect is adhering to privacy
statements and protocols of Councyl, which adhere to the General Data Protection Regulation
(GDPR). On the next page, Table 3.4 lists the resulting CARs.

Quality Attribute Requirements

QARs drive how the architecture should describe the components and functionalities of the CDSS
(Gorton, 2011; O’Brien et al., 2007). The interviews and literature review showed that four
quality attributes are relevant concerning a dynamic BAIT-based CDSS: trustability, ease of use,
supportability, and service availability. The subsequent paragraphs give a further breakdown of
and explanation of these attributes. Table 3.4 provides an overview of all QARs.

Trustability
The uptake and usage of Artificial Intelligence (AI) technologies, like BAIT-based CDSSs, strongly
correlates to the trust in these technologies (Gefen, Karahanna, & Straub, 2003; Siau & Wang,
2018). Trustworthy AI forms a prerequisite for a responsible and ethical application of AI tools.
Especially for the implementation in sensitive areas like healthcare contexts (Ten Broeke et al.,
2021). For the development of initial trust in the tool, the processes of a dynamic BAIT-based
CDSS need to be explainable, and trialable (Siau & Wang, 2018). Explainability concerns the
transparency of the components and outcomes of the AI tool and the ability to justify these com-
ponents and outcomes (Siau & Wang, 2018). Transparent implies that a dynamic BAIT-based
CDSS should make its internal change visible so that end users can track how the CDSS’s recom-
mendation model evolves. However, if the end user cannot comprehend the inner workings of the
dynamic CDSS, this transparency is pointless. The more complex an AI tool becomes, the less
the tool will be capable of self-explanation in an intuitive way (Hacker, Krestel, Grundmann, &
Naumann, 2020). Unexplainable AI tools are problematic in the healthcare sector where choices
involve patients’ well-being: ethical issues will occur if clinical end users cannot understand or
validate the CDSS components and outcomes (Alexander, 2006). As such, a dynamic BAIT-based
CDSS must be explainable so that the components and outcomes are understandable for every
clinical end user (Siau & Wang, 2018). Trialability provides clinical end user with the opportunity
to try out components by investigating the effects of particular actions and undo these actions if
they are not desired. In the context of a dynamic BAIT-based CDSS, clinical end users should

38

Table 3.4: Client Artefact Requirements

Reference Rationale Requirement

CAR1 Enable smooth development,
Reliability

The architecture should define the model update engine only with processes
that have proved to achieve the goal for which the architecture includes the
processes.

CAR2 Enable smooth development,
Uniform

The architecture should mark parallel processes that have to run at the same
time.

CAR3 Enable smooth development,
Uniform

The architecture should mark processes that require collaboration between a
clinical end user and a CDSS.

CAR4 Enable smooth development,
Uniform

The architecture should be designed according to one description language.

CAR5 Enable smooth development,
Uniform

The architecture should distinguish components that produce information and
components that consume information.

CAR6 Enable smooth development,
Completeness

The architecture should inform how the architecture is used for development
in specific healthcare decision-making contexts.

CAR7 Enable smooth development,
Completeness

The architecture should inform on all processes that are needed to achieve the
goal of the CDSS.

CAR8 Enable smooth development,
Completeness

The architecture should inform on all data objects associated with the archi-
tecture.

CAR9 Enable smooth development,
Completeness

The architecture should inform on all dependencies between architecture com-
ponents.

CAR10 Modifiable The architecture should be adaptable to all preferences present in healthcare
decision-making contexts.

CAR11 Modifiable The architecture should be adaptable to all potential future preferences in
potential healthcare decision-making contexts.

CAR12 Compatible The architecture should always be integrable with the service environment of
Councyl.

CAR13 Compatible The architecture should define a CDSS that is implementable within four weeks.

CAR14 Compatible The architecture should ensure choices are not retrievable to an individual
clinical end user and Councyl only has access to decision-making behaviour for
which end users provided permission.

be able to try out an update and undo the outcomes of the update by resetting the active recom-
mendation generator model. As a result, clinical end user’s understanding of the components and
outcomes of a dynamic BAIT-based CDSS increases (Siau & Shen, 2003).

In the context of a dynamic BAIT-based CDSS, trust cannot be created at once. Trust rather
develops over time (Siau & Wang, 2018). As such, the initial trust needs to be nurtured during
ongoing use (Gefen et al., 2003; Siau & Wang, 2018). The development of trust heavily depends on
a CDSS’s reliability, degree of collaboration, security, and transparency (Aoki, 2020; Siau & Shen,
2003). The previous paragraph covers the transparency of a CDSS. In the context of a dynamic
BAIT-based CDSS, reliability implies that an update ensures the CDSS adjusts its information
processing according to the contextual change as intended.

Collaboration requires a BAIT-based CDSS never to exclude partnership with clinical end users
(Alexander, 2006; Siau & Wang, 2018). Collaboration is important because clinical end users are
hesitant for a CDSS that ignores the end user’s presence. A CDSS that takes over control forms
a threat to the user’s professional autonomy (Esmaeilzadeh, Sambasivan, Kumar, & Nezakati,
2015; Friedberg et al., 2014; Sambasivan, Esmaeilzadeh, Kumar, & Nezakati, 2012; Wang et al.,
2021). The interviews show that this threat is not solely associated with tasks that need the
knowledge and skill of a clinical end user. Instead, the tasks that need more generic skills, like
updating maintenance tasks, also impact the end user’s perceived autonomy. Having control over
these tasks allows clinical end users to know what goes on and to understand the CDSS better
(see Appendix B). As such, the architecture of a dynamic BAIT-based should not only define
independently working processes. Moreover, the end user should always be in the position to
select the choice recommendation generator model that the CDSS operates.

Similarly, too much influence of Councyl will cause a comparable threat to the end user’s au-
tonomy. Councyl mainly manages the static BAIT-based CDSS. For instance, Councyl manually
assesses the model performance and discusses the outcome with a clinical end user. The enhance-
ment of trust in the CDSS will benefit from a minimization of the intervening actions performed
by Councyl that are beyond the control of the clinical end user. However, the minimization should

39

only concern actions of Councyl that the end user did not request explicitly. By doing so, the min-
imization of Councyl’s input does not affect clinical end users’ support requests (see section 3.2.3).

Finally, the security of the CDSS and the processed data plays a vital role in nurturing trust
(Kusumasondjaja, Shanka, & Marchegiani, 2012; Siau & Shen, 2003). Because the current CDSS
is built in an environment that deals with CDSS security, the security is considered valid by en-
suring that the architecture guides implementation within this environment. The Client Artefact
Requirements cover this compatibility with the existing environment (see section 3.2.3).

Ease of use
According to Venkatesh (2000), the user acceptance of an AI tool depends heavily on the ease of
use of the tool. A CDSS that requires too much effort from clinical end users will conflict with the
clinical end users’ goals. The CDSS is not beneficial for either clinical end users or patients and
becomes a disturbing factor rather than an assisting tool as soon as a CDSS unnecessarily occupies
valuable time that clinical end users could use for patient care (Castillo & Kelemen, 2013; Yao &
Kumar, 2013). The ease of use of a CDSS is inversely related to the complexity of the CDSS (Keil,
Beranek, & Konsynski, 1995). Rogers and Shoemaker (1971) define the complexity of a CDSS as
the degree to which the CDSS is perceived as relatively difficult to understand and the effort needed
to use the CDSS properly. Having the understandability component covered (see section 3.2.3),
ease of use in the context of a dynamic BAIT-based CDSS comes down to the complexity of the ac-
tions required to fulfill the clinical end users temporal goal and the time the end user needs to do so.

Supportability
The provision of continuous assistance in using the CDSS decreases the anxiety towards the CDSS
and avoids that clinical end users will reject adopting the CDSS (Castillo & Kelemen, 2013; An-
derson & Willson, 2008). Assistance decreases anxiety and frustration of end users and fosters a
positive attitude towards the support CDSS (Castillo & Kelemen, 2013). Castillo and Kelemen
(2013) even state that for clinical end users to accept and effectively use a CDSS, the presence of
support is vital. Therefore, clinical end users must believe support is always available as soon as
the end user does not understand the CDSS processes or outputs.

Service availability
The service availability refers to the CDSS being ready to perform the tasks it must execute to
deliver the expected outcomes (F. Tabares et al., 2017). The availability covers the consultation
of choice recommendations as well as any updating component. Regarding the first aspect, the
architecture should avoid the situation where a clinical end user needs to choose between treatment
options urgently and the BAIT-based CDSS is out of order. Concerning the second aspect, the
architecture should ensure that an update can always be executed when desired.

Development Guiding Requirements

The DGRs drive the architecture design to incorporate certain CDSS functionalities and qualities.
As such, these requirements further outline the design of the main components in the architecture
design space framework (see chapter 2) in the context of a dynamic BAIT-based CDSS. The in-
terview analysis identifies the DGRs that the architecture should meet to guide the development
of each main CDSS component in the right way. Table 3.6 presents an overview of the DGRs per
component at the end of this chapter.

Adaptive choice base
The adaptive choice base enables the CDSS to store experiment choices and a continuous inflow of
real-life choices. While doing so, the choice base should separate experiment choices from real-life
choices because both choice types are produced and consumed by different kinds of processes. To
avoid that the architecture incorporates processes that consume the wrong choice type, all pro-
cesses in the architecture should be able to recognize choice types directly. Moreover, choices differ
in the additional features they possess. For instance, the date on which a clinical end user made
the choice. Therefore, the choice base should be capable of storing the features attached to each
choice.

As chapter 2 describes, real-life choices may be incomplete. Clinical end users did not give
a method for dealing with missing data. However, the interviewed end users did make explicit
that data cannot be interchanged by filling in missing values with averages calculated over other
patients in the choice base. According to Washington, Ravulaparthy, Rose, Hensher, and Pendyala
(2014), one of the approaches to obtain information on missing attribute values is to find solutions

40

Table 3.5: Quality Attribute Requirements

Reference Rationale Requirement

QAR1 Trustability The architecture should always contain processes that work in partnership with
clinical end users.

QAR2 Trustability The architecture should minimize the number of intervening actions needed
from Councyl that are not requested by a clinical end user.

QAR3 Trustability The architecture should never force a fully automated updating component.

QAR4 Trustability The architecture should avoid the development of a CDSS that forces clinical
end users to accept a choice recommendation generator model version.

QAR5 Trustability The architecture should only include components and provide clinical end users
with outcomes that a clinical end user without any knowledge about Discrete
Choice Modelling, statistics, and Machine Learning can understand.

QAR6 Trustability The architecture should force the development of a CDSS that makes its inter-
nal changes transparent for clinical end users.

QAR7 Trustability The architecture should avoid the development of a CDSS that allows clinical
end users to directly determine the importance of a single real-life choice in the
model estimation.

QAR8 Trustability The architecture should force the development of a CDSS that only updates
the choice recommendation generator model according to contextual changes
captured by the experiment choices and real-life choices the CDSS is informed
about.

QAR9 Trustability The architecture should only define components that work statistically correct.

QAR10 Ease of use The architecture should minimize the time and number of activities that a
CDSS requires from clinical end users to fulfil a clinical end user’s goals with
the CDSS.

QAR11 Ease of use The architecture should force the development of a CDSS that only asks a
clinical end user to enter choice-specific data when entering a real-life choice
from which the clinical end user will benefit later in time.

QAR12 Service availability The architecture should force the development of a CDSS that clinical end
users can always use for a choice recommendation request and measurement of
a real-life choice.

QAR13 Supportability The architecture should force the development of a CDSS that enables clini-
cal end users to always request online support on the CDSS components and
outcomes these components produce.

to impute the missing values with the average of the observed values. However, because medical
patient data is specific to a particular patient, information that stems from other patients cannot
replace the missing values. Moreover, if the flow of incoming real-life choices is marginal, the
amount of available information is too small for a valid average calculation (Washington et al.,
2014). As an alternative to imputing missing values with the average of observed values, Steinberg
and Scott Cardell (1992) show that it is possible to estimate binary discrete choice models by
pooling the accessible real-life choices with commonly available public-use data. However, this
gives rise to the same problem: the missing values are patient-specific. In sum, the CDSS should
deal with missing values that other data sources cannot cover. As a result, the CDSS must cope
with missing values for choice attributes during the estimation process instead of modifying the
choice data with imputation solutions.

Model update engine
The model update engine should complete two main tasks. First, the goal of the update engine is

to ensure that the recommendation of a dynamic BAIT-based CDSS remains relevant in a changing
context. Therefore, the update engine should estimate new parameters as soon as a clinical end
user believes the CDSS needs an update. The interview outcomes show that the opinions about the
extent to which particular choice types should influence the update vary among contexts. Clinical
end users want to determine the influence that specific types of choices have on the model esti-
mation and exclude particular choices from the update. Therefore, the architecture should specify
a model estimation process that can incorporate a weighted selection of choices rather than all
choices stored in the adaptive choice base.

Second, the engine should take care of the performance validation of the updated model. The
interview analysis shows that clinical end users and Councyl both want to track the performance
of successive model updates. In addition, the interview analysis indicates that the architecture
should specify distinct metrics to communicate the performance validation outcomes to Councyl

41

and the clinical end users. This need for different treatments follows from the stakeholders’ deviat-
ing interests. Clinical end users are interested in the extent to which the CDSS generates suitable
choice recommendations in the present context. As such, clinical end users want to know how often
a choice recommendation aligns with the clinical end user’s choice. On top of this insight, Councyl
also pursues insight into the model diagnostics representing the choice model’s goodness of fit with
the choice data. By doing so, Councyl can track the goodness of the estimated models resulting
from updates in different contexts over time and gains experience in how a dynamic BAIT-based
CDSS behaves in different decision-making contexts. Therefore, Councyl should have insight into
both the performance metrics and the DCM metrics that reveal the goodness of fit.

The interviews indicated that a valuable validation of a dynamic CDSS only includes accurate
choices. The inclusion of accurate choices ensures that the model validation process assesses the
performance of the recommendation generator model for the present decision-making context. As
a result, the validation outcomes will indicate whether the CDSS is flexible enough to capture
changing perspectives. If the validation process would incorporate all available choices that the
CDSS stores, the validation outcome only reports whether the enhanced amount of choice informa-
tion enabled the CDSS to understand the decision-making context better. Moreover, including all
choices makes a temporal performance decrease likely: it is theoretically impossible to incorporate
the renewed contextual knowledge so quickly that the CDSS will never make a few more mistakes
than it did before. As a result, this temporal decrease may give a biased representation. Validating
the model only with recent choices avoids this seemingly temporal performance decrease because
the update informed the model with new choice information. As such, it should be better aligned
with the present choice tasks than the previous model was. The validation on recent real-life
choices has two implications:

1. The choices that clinical end users entered to the choice base latest are the most recent
choices available for the validation. Therefore, a valuable validation process should include
these choices. However, including the choices that clinical end users entered most recently
does not guarantee the inclusion of choices with a particular age. If a choice task occurs
rarely, the inflow of new real-life choices is low. The inclusion of the latest choices might
imply a validation set of choices from, for example, half a year ago. Therefore, clinical end
users should have insight into the date at which a clinical end user entered a choice used for
the validation. By doing so, end users can judge the value of the validation.

2. Experiment choices are collected at a particular point in time. Depending on the degree
of dynamism in the context, they will lose their accuracy. Moreover, they originate from a
controlled experiment. For these two reasons, they do not represent fair samples to validate
the recommendation model performance in real life.

Finally, the choices used for the validation must be new to model (Ibrahim & Bennett, 2014;
Rajer-Kanduč, Zupan, & Majcen, 2003; Raschka, 2018; Xu & Goodacre, 2018). Mixing estimation
and validation choices would typically introduce an optimistic bias due to overfitting: it becomes
ambiguous whether the model memorizes the estimation choices or whether it generalizes to new
unseen real-life choices as aimed for (Raschka, 2018). To conclude, the validation should include
the most recent real-life choices that were not part of the model estimation.

Model quality monitor
The architecture should specify a quality monitor to assess the performance of the BAIT-based
CDSS constantly. In the context of a dynamic BAIT-based CDSS, such a monitor assesses if the
generated recommendations align with the clinical end users’ choices. As chapter 2 explains, for
each choice a clinical end user enters to the CDSS the monitor should compare the CDSS’s choice
recommendation with the threshold and the clinical end user’s answer to that choice. The interview
analysis identified three considerations that further shape the design of the model quality monitor:

1. The majority threshold. This threshold determines if the end user will perceive the CDSS’s
recommendation as a vote in favour or against the treatment. The interviewed clinical end
users disagreed on the percentage representing the majority view. Therefore, clinical end
users seem to have varying preferences regarding the threshold. Moreover, another threshold
may be preferred when the end user wants the CDSS to be stricter on performance later in
time. Therefore, the threshold should also be variable over context and time.

2. The level of acceptance. This level represents the maximal number of deviating recommen-
dations a CDSS may generate until the end user believes an update is needed. The interview

42

analysis shows that clinical end users are hesitant to name a value for the level of acceptance
because they have no experience with the performance of a dynamic BAIT-based CDSS in
their context. Consequently, the level of acceptance should also be variable over context
and time. Two aspects further substantiate this. First, it differs per context how quickly a
dynamic BAIT-based CDSS adapts to new contextual knowledge. The more time the CDSS
needs to adapt, the sooner it will reach the level of acceptance. Second, the inflow of real-
life choices may be diverse over contexts. In some healthcare contexts, clinical end users
encounter a choice task every hour, while other choice tasks only occur once a month. The
higher the inflow, the sooner a CDSS will reach a particular level of acceptance. Given these
two aspects, a clinical end user might prefer the level of acceptance to be stricter or wider.

3. The establishment of measures that should be taken in case the monitor does particular
findings. The quality monitor has two kinds of findings. First, the monitor highlights all
real-life choices for which the CDSS’s recommendation did not correspond with the clinical
end user’s choice. These will be referred to as deviating recommendations in the remainder of
this report. Second, the monitor notices if the level of acceptance is reached. The interview
analysis shows that all interviewed clinical end users are interested in further investigating the
real-life choices for which the CDSS’s recommendation did not correspond with the clinical
end user’s choice. This investigation allows clinical end users to observe the choices for which
the CDSS could not generate a corresponding recommendation or for which the clinical end
users performed remarkably. To realize this investigation, the monitor should store each
real-life choices for which the recommendation of the CDSS deviated from the choice made
by the clinical end user. The consequences of a noticed performance decline are related to
Human-Computer Interaction (HCI). The section below presents the requirements concerning
HCI.

Human-Computer Interaction
The HCI component covers the interaction between a dynamic BAIT-based CDSS and a clinical
end user. The interview analysis indicates that three types of information are relevant for clinical
end users: insight into physicians’ decision-making behavior, internal model changes, updating ac-
tivity, and model performance. Regarding the first, clinical end users are interested in reflecting on
how decision-making within the clinical team evolves. Therefore, clinical end users need to be able
always to access all model estimations ever stored. Moreover, the differences in decision-making
behaviour between subgroups is of interest—for instance, insight into the differences between se-
nior and junior physicians. Concerning the second, clinical end users want the CDSS’s changes
to be tractable as section 3.2.3 captures. With regard to the third, clinical end users like to be
informed about a completed update to be sure that the CDSS operates an accurate model. With
regard to the fourth, clinical end users want to know if the model quality monitor notices that the
performance has declined below the level of acceptance. Because clinical end users are occupied
during working hours, alerts that need action should remain visual until the associated action has
been successfully performed (Khalifa, 2014).

The information that the CDSS provides to the clinical end users should always be brief. No-
tifications with a high information density will cause an alert fatigue (Castillo & Kelemen, 2013).
Moreover, the provision of dense information that approaches clinical end users without being ac-
tively requested can slow down the workflow, efficiency and quality of the clinical end user (Castillo
& Kelemen, 2013). Therefore, the CDSS should not inform clinical end users about details on the
reason for the notification. Moreover, the CDSS architecture should limit the CDSS’s communica-
tion of information that an end user did not actively request confirmation or plain alert. Finally,
unrequested information should only concern a performance decline or updating activity.

Due to the variety of healthcare contexts (Eapen, 2021), the preferred level of updating automation
varies over contexts. The interview analysis shows that all interviewed end users want to receive
an alert from the CDSS if the CDSS reaches the level of acceptance. However, some clinical end
users prefer that the updating process is automatically triggered as soon as the performance has
declined below the level of acceptance, where others get anxious about a self-updating CDSS.
Therefore, the activation of the updating process must be implementable according to various lev-
els of automation. QAR4 covers the flexibility of the CDSS’s level of updating automation (see
section 3.2.3).

43

3.3 Summary chapter 3

The goal of chapter 3 is to identify and formulate the requirements of a dynamic BAIT-based
CDSS architecture for Councyl. To this end, this chapter first explicates why Councyl deems the
static BAIT-based CDSS Councyl currently offers to clinical end users insufficient. The findings
show that the static BAIT-based CDSS lacks the following features that make suitable for dynamic
healthcare contexts:

• The BAIT-based CDSS does not retain its accuracy over time, because there is no estab-
lished updating mechanism that lets a choice recommendation generator model incorporate
developments in the decision-making context.

• The BAIT-based CDSS cannot estimate a choice recommendation generator model based
on a combination of experiment choices and real-life choices, which are both collected under
different conditions.

• The BAIT-based CDSS cannot deal with the characteristics of choices collected in a real-life
setting. For instance, real-life choices may contain missing values.

• The BAIT-based CDSS does not assess the performance of a choice recommendation gener-
ator model in a changing context on a continuous basis.

Councyl perceives covering these lacking features as challenging because of the novelty of DCM
in the context of decision support, the variety of healthcare contexts, and the expected change
in the preferences of clinical end users applying a BAIT-based CDSS over time. To tackle these
challenges, Councyl needs a dynamic BAIT-based CDSS architecture that describes how Councyl
can develop CDSSs that fit the dynamic healthcare contexts and adhere to the changing preferences
present in the varying healthcare contexts. With this guiding tool, Councyl has the groundwork
for developing a dynamic BAIT-based CDSS for each potential healthcare client.

The architecture design space framework presented in chapter 2 provides an initial insight into
the main components of a dynamic BAIT-based CDSS architecture. To further specify the archi-
tecture as Councyl desires it, the research continued with six interviews and a literature review.
The participants were the key stakeholders: representatives of Councyl and clinical end users. The
interviews and the literature review resulted in an initial list of architecture requirements. This re-
port distinguishes three types of architecture requirements: Client Artefact Requirements (CAR),
Quality Attribute Requirements (QAR), and Development Guiding Requirements (DGR). Along
with the design process, lessons learned refined the initial list of requirements. The final list of
architecture requirement provides an answer to the third sub-question:

3. What are the requirements for a CDSS architecture of a dynamic BAIT-based
CDSS?

The set of architecture requirements functions as the final design outline of the main components
that the architecture design space framework in chapter 2 presents. As such, the architecture
requirements define the architecture solution for Councyl that chapter 5 presents. The realization
of the architecture requirements demanded a series of design decisions. Chapter 4 presents these
design decisions.

44

Table 3.6: Development Guiding Requirements

Reference Rationale Requirement

DGR1 Adaptive choice base The architecture should force the development of a CDSS that distinguishes
experiment choices and real-life choices.

DGR2 Adaptive choice base The architecture should force the development of a CDSS that does not inter-
change patient-specific data to deal with incomplete real-life choices.

DGR3 Adaptive choice base The architecture should force the development of a CDSS that stores a choice
with all features assigned to the choice when a clinical end user entered the
choice into the CDSS.

DGR4 Model quality monitor The architecture should force the development of a CDSS that compares each
choice recommendation with the majority threshold and the clinical end user’s
choice as soon as an end user enters a real-life choice into the CDSS.

DGR5 Model quality monitor The architecture should force the development of a CDSS that copies real-life
choices exceeding the majority threshold but deviate from a clinical end user’s
choice to a separate database.

DGR6 Model quality monitor The architecture should force the development of a CDSS that operates a mod-
ifiable majority threshold and level of acceptance.

DGR7 Model update engine The architecture should force the development of a CDSS that estimates a
new choice recommendation generator model according to the choice types and
weight specification clinical end users selected as soon as clinical end users deem
this model inaccurate or undesired for decision support.

DGR8 Model update engine The architecture should force the development of a CDSS that assesses the per-
formance of a newly estimated choice recommendation generator model based
on a unique set of recent real-life choices.

DGR9 Model update engine The architecture should force the development of a CDSS that makes the date
at which a clinical end user entered a choice used for the model validation
transparent.

DGR10 Model update engine The architecture should force the development of a CDSS that allows replacing
the experiment choices with experiment choices from a new choice experiment.

DGR11 Model update engine The architecture should force the development of a CDSS that enables clinical
end users to request the performance metrics for all choice recommendation
generator model updates.

DGR12 Model update engine The architecture should force the development of a CDSS that gives Councyl
insight into the performance metrics for the choice recommendation generator
model updates of all healthcare contexts.

DGR13 HCI component The architecture should force the development of a CDSS that presents an
alert to clinical end users when the level of acceptance has been reached and
the choice recommendation generator model is not updated yet.

DGR14 HCI component The architecture should force the development of a CDSS that confirms the
completion of a choice recommendation generator model update.

DGR15 HCI component The architecture should force the development of a CDSS that allows clinical
end users to request the relative importance of the choice attributes of all choice
recommendation generator model updates.

DGR16 HCI component The architecture should force the development of a CDSS that allows clinical
end users to request the relative importance of the choice attributes for a by
the clinical end user selected subgroups.

45

Chapter 4

Specification of the Architecture:
Design Decisions

This chapter presents the structural specification of the architecture design. For some of the
architecture requirements, the solutions are trivial. However, other requirements gave rise to con-
tradictions or solutions that need additional argumentation. This section focuses on the nontrivial
decisions made to adhere to all architecture requirements because these decisions are not straight-
forward. First, section 4.1 presents the nontrivial design decisions related to the structure of the
architecture. Next, section 4.2 lists the decisions on the estimation and validation of new model
updates. Third, section 4.3 informs on the design decisions regarding the customization of the
update engine. Finally, section 4.4 presents the decisions concerning the management of all infor-
mation with which a dynamic BAIT-based Clinical Decision Support System (CDSS) deals. The
chapter concludes with a summary of all design decisions in section 4.5. The specification of the
architecture functions as a first step towards answering the fourth sub-question:

4. What does a system architecture of a dynamic BAIT-based CDSS look
like?

4.1 Design decisions on the architecture structure

This section presents the design decisions that impact the structure of the architecture. First,
subsection 4.1.1 explains the layered design of the architecture. Next, subsection 4.1.2 explains
why the architecture design follows an adaptable approach. Finally, subsection 4.1.3 argues why
the architecture does not specify any particular software and hardware prerequisites.

4.1.1 Layered design

Decision. The architecture has a layered structure. Moreover, this layered structure is defined in
terms of the Architecture Description Language (ADL) ArchiMate.

Argument. An Architecture Description Language (ADL) is a language that describes the soft-
ware and hardware architecture of a system. The description may cover software features such
as processes, data, and subprograms and hardware components such as processors and devices
(Björnander, 2011). Examples of ADL’s are ArchiMAte, AADL, ACME, Rapide, Darwin, Aesop,
TASM, or UML. Compared to the other ADL’s, ArchiMate encourages flexibility as it allows fu-
ture additions or adaption to different application contexts with different extensions. ArchiMate
is a flexible ADL because it aligns with the concept of a service-oriented architecture (SOA). SOA
supports flexibility by combining and reusing existing services to adhere to demands that change
over time (Meertens, Iacob, & Nieuwenhuis, 2010). ArchiMate incorporates SOA by distinguish-
ing three layers at which “loosely coupled” components are specified: business, application, and
technology layer (Arsanjani, 2004; Lu, 2005). Each layer in the layered architecture pattern has a
specific role and responsibility within the application.

1. The business layer: represents the business processes stakeholders perform to interact with
a system or complete tasks related to a system.

46

2. The application layer: represents all software processes that support the business layer with
application services that software applications realize.

3. The Technology Layer: represents infrastructure services needed to run applications at the
application layer, like computer and communication hardware and system software.

The “loosely coupled” components can be changed or replaced without affecting other parts of the
architecture (Pombo Jimenez, 2017). As such, it allows for the adaptability of the architecture
in changing conditions and over time. Moreover, ArchiMate is a visual architecture description
language, which is helpful when communicating the architecture to Councyl. More specifically, it
allows for an ordered structure with the definition of components per layer to explicate parallel
processes and processes in which humans are involved. By doing so, it enhances the understand-
ability for Councyl. Finally, ArchiMate is a widely used language to describe the construction
and operation of business processes, organizational structures, information flows, IT systems, and
technical infrastructure. Especially in the context of CDSS design (Power, 2002).

4.1.2 Adaptable design

Decision. The architecture has an adaptable structure.

Argument. The architecture must guide the development of different CDSS’s that satisfy the
preferences in different contexts. A layered approach already allows removing or replacing com-
ponents in the architecture (see subsection 4.1.1). However, the layered approach does not give
the architecture multiple variants of CDSS features to satisfy varying needs. On the contrary,
an adaptable structure supports designing optional extensions that supplement the essential ar-
chitecture components. Because these extensions are optional, an adaptable architecture allows
CDSS developers to answer the varying preferences in different healthcare contexts. Moreover, an
adaptable architecture allows Councyl to dynamically include additional CDSS components when
these components turn out to be preferred by end user over time (Madura, 2006). As a result, all
features that the core of the architecture covers are static, meaning they are fixed and independent
of changing needs over time. On the contrary, the extensions in the architecture are dynamic since
the implementation depends on the end user’s preferences which may change over time.

The adaptable structure also matches the research process in three ways. First, it allows the
designer to start with a limited design scope while leaving space for the satisfaction of additional
preferences concerning the dynamic support as being revealed over time (Moore & Chang, 1980).
Second, this approach suits the ADR research method. Both the adaptable approach and ADR
accept that the design specification is not well-defined in the beginning (Moore & Chang, 1980; Sein
et al., 2011). Instead, the ADR methodology presumes that the initial requirements identification
is geared to provide sufficient information to build only the nucleus of the architecture (Sein
et al., 2011). Refinements are identified during the design process designer (Sein et al., 2011).
Finally, an adaptable architecture design allows Councyl only to implement the specific parts of
the architecture needed to satisfy the end user’s preferences. With an architecture that requires
a complete implementation to work properly, time will be wasted on implementing functionalities
that do not match the end user’s necessities. As a result, an adaptable architecture saves a CDSS
provider’s time.

4.1.3 Soft- and hardware independence

Decision. The architecture does not specify software and hardware prerequisites at a technology
layer.

Argument. The architecture needs to be adaptable over time. Software technologies and hard-
ware technologies develop quickly, and many novel innovations arise over time. For instance,
Councyl may switch from the software platform used to code and host the decision support service
or use another processor. Another advantage of the components’ independence from underlying
technology is that Councyl’s developers can build and change the components in the way they
find most cost-effective and timely. Therefore, architecture design does not specify components,
like a software development platform or any hardware components, at a technology layer (for an
explanation of the different layers, see subsection 4.1.1).

47

4.2 Design decisions on the estimation and validation of rec-
ommendation generator model updates

4.2.1 Extensions involvement and update trigger automation

Decision. The architecture defines three extensions that allow for a more and less automated ac-
tivation of the model update engine.

Argument. The architecture should not force an automated activation of updates. Four alter-
native options to activate an update exist. The option that should always be possible forms the
default: a manual activation by an end user without a trigger from the CDSS. Despite the desired
level of updating automation, an end user should always be able to update the CDSS. As a result,
the architecture includes three model update engine activation extensions:

1. Activation Extension 1: Manual update activation triggered by an update request provided
by the CDSS. The CDSS triggers this activation as soon as it reaches the level of acceptance.
The end user can activate an update by confirming the request.

2. Activation Extension 2: Automated update activation as soon as the CDSS reaches the level
of acceptance.

3. Activation Extension 3: Periodic automated update activation.

Activation Extension 1 and 2 require a trigger from the model quality monitor that checks if
the CDSS has reached the level of acceptance. Extension 3 requires a user setting specification
concerning the frequency with which the end user wants the CDSS to update. The frequency can
either be defined in terms of time or in terms of the number of new real-life choices added since the
previous update. By doing so, the architecture allows the development of a CDSS that matches
the degree of change in the context. If the context is highly dynamic, the CDSS can even activate
updates on a real-time basis.

A CDSS can combine Activation Extension 2 with Activation Extension 3. By doing so, the
architecture avoids the situation in which the model update engine will never update because the
CDSS never reaches the level of acceptance. When a CDSS includes both Activation Extension 2
and Activation Extension 3, the CDSS will activate an when it reaches the level of acceptance and
on a to be specified periodic basis as a backup that guarantees the activation of updates.

4.2.2 Pooled estimation

Decision. The architecture specifies a pooled approach for the model estimation.

Argument. Two main techniques for a model estimation with experiment choices and real-life
choices exist: “pooled” and “sequential” estimation (J. J. Louviere, Hensher, & Swait, 2000).
The techniques differ in how they combine the estimated parameters estimated with either the
experiment choices or the real-life choices (Axsen et al., 2009). The pooling approach combines
both sources to estimate the parameters from both sources at the same time. With the sequential
approach, on the contrary, separate experiment and real-life choice models are estimated (Axsen
et al., 2009; Swait et al., 1994). The parameters estimated with the experiment choices form the
basis. Only the constant representing the utility that the parameters did not capture stems from
the real-life choice based model. The pooling approach better suits the goal of the architecture
for three reasons. First, the architecture aims to inform the parameters by both experiment and
real-life choices, which is only possible with the pooling approach (Axsen et al., 2009). Second,
the pooling approach allows weighing the experiment choices and real-life choices differently dur-
ing the model estimation. This difference in weight is needed to address the varying preferences
among healthcare contexts (see section 4.3). Finally, the sequential process is more complex. This
complexity conflicts with the aim for a transparent and understandable CDSS (see requirement
QAR5 in section 3.2.3). Incorporating both techniques would, for the same reason, result in a too
complex service. Primarily because in the case of two alternatives, the clinical end users will need
to make a choice between the two statistical options, which is out of their comfort zone.

4.2.3 Restricting the individual parameters with missing values to zero

Decision. The architecture deals with incomplete data during the estimation process by restricting
the individual parameters of missing attributes to zero. By doing so, only attributes for which

48

values are known can shape the model estimation.

Argument. The decision stems from two reasons. First, there are no adequate alternatives. An
option to deal with incomplete real-life choices is to exclude all real-life choices with unknown
attribute values. However, the inflow of real-life choices may be scarce in particular healthcare
decision-making contexts. Second, restricting the parameters to zero makes the model estimation
a more objective representation of reality. When an end user enters an incomplete real-life choice,
the clinical end user was able to choose even though not all information about the patient was
available. Therefore, a missing value for a choice attribute indicates that the attribute was not
important in the choice or the choice was easy because of the (extreme) scores on other choice
attributes (Rizzi & de Dios Ortúzar, 2003; Rosenberger, Peterson, Clarke, & Brown, 2003). De-
spite the root cause, a missing value for an attribute indicates that the attribute did not influence
the physician’s choice (Carlsson, Kataria, & Lampi, 2010). Accordingly, it would be realistic if
a dynamic BAIT-based CDSS also deals with the attribute as it was not relevant for the specific
choice task. Restricting individual parameters for the missing attributes to zero allows excluding
these attributes as influencing factors ??. The outcome resulting from a model estimation is then
only a function of the attributes that the end user considered to make a choice in real life (DeShazo
& Fermo, 2004; Campbell, Hutchinson, & Scarpa, 2006).

A note regarding the restriction of parameters should is necessary. One may argue that the
restriction of an individual parameter for attributes end users ignored to zero is too restrictive.
In previous work, researchers asked respondents to define whether they ignored specific attributes
in their choice. It turns out they often mean that they have just put less weight on the attribute
they claimed to have ignored (Carlsson et al., 2010). However, in the context of a dynamic BAIT-
based CDSS, it is known that the attribute was not considered by the clinical end user, because
it was not known. The restriction of the parameter for that attribute to zero forms an admissible
representation.

4.2.4 Selection of performance metrics

Decision. The architecture provides clinical end users with insight into the Correspondence rate
and the Agreement table and Councyl with insight in all anonymous performance metrics defined
in section 2.2.2.

Argument. Both Councyl and clinical end users want insight into the performance of an updated
recommendation generator model. Section 2.2.2 presents a set of proved performance metrics.
However, some of these metrics require knowledge and skill in statistics, Discrete Choice Model-
ing (DCM), or Machine Learning (ML). However, the architecture should only provide end users
with CDSS outcomes that they can understand without knowledge and skill in these areas (see
requirement QAR5 in section 3.2.3). Therefore, the architecture only allows end users to access
the Correspondence rate (accuracy) and the Agreement table (see section 2.2.2). These metrics
are both easy to comprehend without any statistical, DCM, or ML knowledge. Because end users
will not be familiar with the terms Correspondence rate and Agreement table, the architecture
recommends that CDSS developers provide the metrics presentation with an explanation in the
interface. The architecture ensures that Councyl has insight into all metrics.

4.2.5 K-fold cross validation with manipulated data split

Decision. The architecture describes a manipulated k-fold validation process for the performance
assessment of each model update.

Argument. The decision stems from three main reasons. First, the manipulated k-fold manip-
ulated k-fold validation avoids a biased performance assessment. The k-fold validation process is a
ML technique for the validation of a model trained with a particular data set (Raschka, 2018). The
k-fold validation process partitions the complete data set into k folds to then iterate over the data
set k times (Raschka, 2018). Each iteration, the process divides the data set into k parts. One part
is held back as the validation set. The remaining k-1 parts are used for the model training. After
the k iterations, the results of the k runs are averaged to produce a single validation estimation
(Grimm, Mazza, & Davoudzadeh, 2017; Jung, 2018). Common practice is to use 1/3 of the sample
size for the model training (Wong, 2015). The k-fold validation ensures that the validation includes
the complete data set. Using the complete set significantly reduces the bias and variance of the
validation outcome (Abu-Mostafa, Magdon-Ismail, & Lin, 2012; Xiong et al., 2020). Moreover, the

49

confidence with which the CDSS can share the performance assessment with end users and Councyl
increases. If the metrics stem from a single model validation, the result could be coincidence, stem
from a biased validation set, or be the result of a manifestation of randomness in the choice set
(Abu-Mostafa et al., 2012).

Second, the k-fold validation technique is proven and popular for assessing the model perfor-
mance in case of a small data set (Bengio & Grandvalet, 2004; Ibrahim & Bennett, 2014; Jung,
2018; C. Lee, Ran, Yang, & Loh, 2010; Wong, 2015). The k-fold process is even the most plausible
candidate method in cases where a part of data cannot be withheld for validation (Sidiropoulos
et al., 2012). Because some medical choice tasks occur rarely, the number of real-life choices a
dynamic BAIT-based CDSS can use for an update might be limited. By incorporating the k-fold
validation technique, the architecture ensures that a CDSS can always validate a model properly,
even though the inflow of real-life choices is low.

Finally, alternatives to the k-fold are insufficient. The so-called hold-out technique splits the
data set only ones: one set is used to train a model, and one set to validate that model (Bengio &
Grandvalet, 2004; Xiong et al., 2020). By doing so, the technique does not allow the model train-
ing to include the complete data set. As a result, this technique uses training data inefficiently.
Therefore, it should not be applied in contexts where the data set is small (Bengio & Grandvalet,
2004; Ibrahim & Bennett, 2014; Jung, 2018; C. Lee et al., 2010; Wong, 2015). A second disad-
vantage of the hold-out technique is that the hold-out technique might over-represent a particular
real-life choice in either the training or validation set. For instance, a training set with only female
patients. Accordingly, Xiong et al. (2020) state that the model performance can be biased due to
the splitting if the data set is small as a consequence. In k-fold validation, each real-life choice has
the opportunity of being tested (Raschka, 2018).

The k-fold validation is associated with two disadvantages in the context of a dynamic BAIT-
based CDSS. First, the k-fold validation starts from the full choice set and splits this into k folds
(Jung, 2018; Raschka, 2018; Xiong et al., 2020). However, the validation must be based on recent
choices rather than on the complete choice base (see requirement DGR8 in section 3.2.3). A solu-
tion is to tune the k-fold validation with a manipulated data split. Instead of randomly splitting
the complete set as if each choice in the choice contains the same amount of information, the vali-
dation process should control the selection of choices. For each iteration, the CDSS randomly picks
1/3 of the real-life choices that end users have entered into the CDSS since the previous model
update (Wong, 2015). By doing so, the CDSS generates a validation set for a particular iteration.
Then, the CDSS picks the remaining real-life choices in the choice base and joins these with the
experiment choices. By doing so, the CDSS generates a training set for a particular iteration. If
there are not enough new real-life choices available, the CDSS will pick the real-life choices end
users entered since the second-last update, and so on.

Second, randomly picking real-life choices from the choice base gives rise to the risk of an
imbalanced data set, especially in contexts where the inflow of real-life choices is low (Raschka,
2018). By randomly pick real-life choices, the training set might mainly contain choices for which
end users chose to operate. This problem becomes worse if the set of real-life choices has a high
class imbalance upfront. This upfront imbalance is not unlikely in a healthcare decision-making
context: the choice for particular treatments may be rare. An option to deal with an imbalanced
data set is to divide the choice set in a stratified fashion (Raschka, 2018). However, the usefulness
of this method to solve the problem of an imbalanced real-life choice set in the context of a BAIT-
based CDSS should be further researched from a statistical point of view. Therefore, dealing with
an imbalanced choice set is left out of the scope of the architecture design in this research.

4.3 Design decisions on the customization of the update en-
gine

4.3.1 Module extensions for choice inclusion and weight specification

Decision. The architecture defines three extensions to customize the inclusion of particular choice
types and the weight with which particular choice types influence a model update.

Argument. The preferences concerning the choice types influencing a model update vary between
healthcare contexts. End users have varying preferences on two axes. On the one hand, an update
can include different types of choices. To this end, the CDSS can distinguish experiment choices
and real-life choices. Moreover, the CDSS can distinguish different types of real-life choices with

50

a set of features (see Table 4.1). For instance, a clinical end user may prefer to exclude all choices
made by junior physicians or all choices for which the CDSS generated a recommendation it was
not confident about.

Table 4.1: The features of real-life choices.

Feature Unit to distinguish choice types

Choice maker User ID

Recommendation of CDSS Minimal percentage

Date Date interval

Time Time interval

Deviation between the CDSS’s recommendation
and clinical end user’s choice

Binary (yes or no)

Expertise level clinical end user Category expertise (junior, senior)

Discipline level clinical end user Category expertise (Context-dependent)

Confidence of clinical end user Category (not sure, in between, super sure)

Confidence of CDSS Binary (unsure= recommendation between 40% and 60%)

Choice made based on external factors Binary (yes or no)

On the other hand, three alternatives for the weighting of different choice types exist. The
weight of a choice type determines how much each choice of that type will influence the update.
The first alternative is that end users can assign all choices with an equal weight. However, end
users may prefer to specify the influence of particular choice types on an update. Therefore, a
second alternative is to allow end user to specify the weight of particular choice types with a so-
called importance rating. With this importance rating, end users specify how many times more a
particular choice type should influence the model update than the choices of another type. For ex-
ample, when experiment choices should influence the update twice as much as the real-life choices.
A third alternative is to allow end user to specify the weight of particular choice types with a so-
called importance balance. With this importance balance, an end users can balance choice types
by specifying the shares of particular choice types in an update. For instance, when the update
should be based on experiment choices for 60% and on real-life choices for 40%.

Figure 4.1: Conceptual overview of possible choice influence and weighting extensions.

The cube in Figure 4.1 visualizes the resulting options from combining different possibilities over
the two axes mentioned above. Experiment choices can be either included or not. The same holds
for real-life choices. Given the goal of this research, it is assumed that an update will always
contain real-life choices. However, an update does not have to include all real-life choices: end

51

Figure 4.2: Detailed overview of possible choice influence and weighting options.

users may prefer to exclude a subgroup of real-life choices with particular features. Given the
choices that are included or excluded, the end user can assign a weight to choices of a particular
type with one of the two weighting options. Given the goal of this research, it is assumed that an
update will always contain real-life choices. Therefore, the focus is on the right two columns in
Figure 4.1. Figure 4.3 gives a detailed gives a detailed explanation of the resulting options for the
customization of a model update.

Figure 4.3: Colored overview of possible choice influence and weighting options that marks exten-
sions.

The realization of all update options in Figure 4.1 requires the definition of three extensions. Fig-
ure 4.2 visualizes the division of the extensions over the different options. Because these extensions
allow end users to specify the choice information an update will include, they are referred to as
Information specification Extensions. The list below gives an explanation of each extension. To
support this explanation, Figure 4.4 gives a conceptual representation of each extension.

1. Information specification Extension 1: An experiment choice and real-life choice influence
variation extension. An end user can specify a weight that adjusts the influence of the
experiment choices respectively to the real-life choices. An end user can specify a weight
in terms of the importance rating or the balance rating. As soon as the end user does not
want experiment choices to influence the model update, the end user can use the importance
balance to ensure the model update only incorporates real-life choices.

2. Information specification Extension 2: A real-life choice exclusion extension. This extension
allows end users to specify a selection of real-life choices in terms of the choice features and

52

exclude the choices that do not have these features. This extension makes use of an AND
operator, which means that the selection criteria add on. For instance, a clinical end user
can request the exclusion of choices made by junior physicians and that were made between
10 pm and 5 am. Otherwise, the update will not realize a complete exclusion. For instance,
the selection of choices would still include choices made by junior physicians because they
were active and made choices 5 am and 10 pm.

3. Information specification Extension 3: A real-life choice and real-life choice influence variation
extension. This extension allows end users to specify a selection of real-life choices in terms
of the choice features and give this selection another weight than the real-life choices that
do not have these features. The weight specification can be done in terms of the importance
rating or the importance balance.

Figure 4.4: Conceptual overview of the three Information specification Extensions.

A CDSS can combine the implementation of Information specification Extension 1 with the imple-
mentation of Extension 2 and Extension 3. When combined with Extension 2, the selected real-life
choices are weighted respectively to the experiment choices. When combined with Extension 3,
the end user assigns a different weight to a selection of real-life choices. However, all selected
and not-selected real-life choices are weighted differently compared to the experiment choices. By
letting clinical end users choose extensions, clinical end users can shape the operation of a dynamic
BAIT-based CDSS. As a result, a dynamic BAIT-based CDSS is receptive to the input of clinical
end users.

4.3.2 Multiplication of sample size to realize the weight specification

Decision. The architecture describes a multiplication of the sample size to adjust the influence of
choice types on a model update.

Argument. The customization of the influence of choice types with the extensions (see subsec-
tion 4.3.1) requires a mechanism to adjust the weights of these choice types in an update. The
influence of a choice on an update depends on a set of factors. Factors are the number of choices,
the correlation and variation among the observed choice attributes, the number of different choice
sources, and the number of alternatives each choice set contains (Huber & Zwerina, 1996). There-
fore, experiment choices will already have a different influence on an update than real-life choices
without varying the weights of the choice types. The informative influence depends on the amount
of econometric information that each choice sample contains. This econometric information differs
per choice source because of the different conditions under which the collection of the choices took
place. Generally, a set of experiment choices contains more information because they stem from
an experimental setting where the goal is to design choice efficiently and with little bias as possible
(Helveston et al., 2018; Cherchi & Hensher, 2015; Sanko, 2001). As a result, an enhanced number

53

of real-life choices will expand the influence of real-life choices on the model. However, this increase
does not equal the increase in the influence of the addition of an experiment choice. Therefore,
the balance of information between experiment and real-life choices does not completely depend
on the sample sizes (Helveston et al., 2018).

However, the number of choices does determine the greater part of the informative influence
on a model update. Therefore, it forms an effective mechanism to adjust the weights of the choice
types in an update. In addition, varying the number of choices of a particular type of choice is
understandable for end users without statistical knowledge. Finally, it is the only way possible
to adjust the influence without creating biases. Two reasons further substantiate this. First, an
option is to steer the influence via the number of choice alternatives of the experiment choices and
real-life choices. However, this option is not feasible because the medical choice tasks have fixed
choice alternatives. The choices are mainly about voting in favour or against medical treatment.
Second, an option is to scale the model parameters estimated with the influence the end user spec-
ified. In this scenario, parameters are estimated based on different types of choices. For example,
an update estimates a set of parameters based on experiment and a set of parameters based on
real-life choices. Then, the CDSS pools and weights these parameters by the respective amounts
of influence the end user specified. However, scaling the parameters with a weight specification
leads to a biased model because the CDSS allows end users to manually alter the estimated model
parameters.

Because of the reasons mentioned above, the architecture defines the influence of a choice type
on the model type as the sample size of that choice type. Consequently, adjusting the influence
of a choice type on a model update requires manipulating the number of times a choice of that
type occurs in the set of choices included in an update. The architecture describes a CDSS that
multiplies choices of a particular choice to vary their influence. The use of a choice multiplication
stems from two reasons. The first reason is that an update cannot bisect choices. Therefore, the
realization of a balance of choice types (for instance, 40% experiment choices and 60% real-life
choices) cannot use half choices. Moreover, it is not recommendable to randomly delete choices
from a choice set. The CDSS should not have the power to decide which choices will inform an
update. Besides, randomly removing choices makes it unclear which information an update incor-
porates. Finally, the experiment choices are interdependent because they stem from a controlled
environment (see subsection 1.2.2).

4.3.3 Temporary choice bases

Decision. The architecture defines a CDSS that copies choices for a model update from the original
choice bases into temporary choice bases.

Argument. The architecture describes two temporary choice bases: a temporary experiment choice
base and a temporary real-life choice base. For each update, the CDSS creates these temporary
choice bases. The temporary choice bases contain all choices that will directly inform an update.
Suppose the CDSS does not contain an Information specification Extension (see subsection 4.3.1).
In that case, the temporary choice bases contain all experiment and real-life choices stored in the
adaptive choice base. The CDSS does not multiply the choices in the temporary choice bases. How-
ever, when a CDSS includes an Information specification Extension, the temporary choice bases
contain the choices in line with the information specification of an end user. The temporary choice
bases allow a CDSS to collect the required choices for an update without deleting the original ratio
of choice types. The reason for the design of temporary choice bases is that keeping the original
choice bases available has advantages. The advantages are listed below:

• End users can always change from Information specification Extension because the original
choice bases can be used to re-weight a selection of choice types.

• The k-fold validation process requires the original real-life choice bases, to avoid a biased
performance assessment that includes double choice samples.

• End users can try out different choice selections and choice weights, because the original
choice bases can be used to re-weight a selection of choice types.

• The temporary choice bases minimize the number of choices incorporated in the update.
Every update, the CDSS creates new temporary choice bases by multiplying the original
choice bases. By doing so, the number of choices is minimal compared to the situation in
which the CDSS multiplies the same choice base over again for each update.

54

• The temporary choice bases enhance the availability of the CDSS. With temporary choice
bases, the addition of new real-life choices to a CDSS’s adaptive choice is independent of the
activity of the update engine. Because the update engine only uses the temporally choice
bases, end users can add new real-life choices while the update engine is running.

4.3.4 Information specification Extensions as user settings

Decision. The architecture describes the Information specification Extensions as user settings the
end user can access via an extension-specific interface.

Argument. By describing the Information specification Extensions as different interfaces, the end
user can adjust the choice selection and choice weight specification without changing the imple-
mentation of the model update engine. When an end user applies a CDSS with Information
specification Extension 1 (see subsection 4.3.1), the end user can adjust the influence of experi-
ment choices respectively to real-life choices on an update via an interface. The CDSS stores the
adjustment in the user settings. Each update, the CDSS checks the user settings. Accordingly, the
CDSS creates the temporary choice bases by copying the correct choices from the original choice
bases and multiplying these choices according to the weight specification in the user settings. Even
switching between Information specification Extensions does not require changes in the structure
of the model update engine. Councyl only needs to make a different interface needs available for
the end user.

4.4 Design decisions on information management

4.4.1 The measurement of new real-life choices over time.

Decision. The architecture uses a modified version of the choice recommendation generator model
that is part of the static BAIT-based CDSS for the measurement of real-life choices.

Argument. The existing static BAIT-based CDSS already contains a choice recommendation gen-
erator. This component requests clinical end users to specify the details of a choice task (see
Figure 4.5). Therefore, this component is useful for the measurement of new real-life choices in the
CDSS. Moreover, the component generates a choice recommendation based on the choice details
entered by the clinical end user. To make the recommendation generator suitable for a dynamic
BAIT-based CDSS, the architecture copies the recommendation generator of the static BAIT-based
CDSS with two modifications.

First, the architecture expands the set of choice details that the recommendation generator of
the static version requests from the clinical end user. The recommendation generator model asks
clinical end user to enter the confidence with which he or she made a choice and if factors other
than specified by the model influenced the choice (see Figure 4.6). By requesting this information,
CDSSs can distinguish choices with additional features. Using these features, end users will be
able to specify particular subgroups (subsection 4.3.1). For instance, an update that only includes
choices about which end users were confident. Moreover, the confidence specification informs the
calculation of the performance metric Confidence Representation.

Second, the architecture describes a CDSS that hides the recommendation with a “give me
advice” button. This button allows clinical end users to enter a real-life choice without being
influenced by the CDSS. The static CDSS automatically presents a recommendation to an end
user when the end user enters the real-life choice details. However, the real-life choices an end
users enter are likely to inform an update. End users might prefer to inform a CDSS update with
real-life choices that the CDSS did not influence.

4.4.2 Separated choice bases for experiment and real-life choices

Decision.The adaptive choice base consists of two separate choices bases for experiment choices
and real-life choices.

Argument. The argumentation for this decision stems from four reasons. First, the CDSS compo-
nents and processes consume choices from different sources: experiment choices or real-life choices.
For instance, the model estimation during a model update includes experiment choices and real-life
choices. In contrast, the model validation during a model update consumes only real-life choices.

55

Figure 4.5: The interface for a clinical end user to enter choice details and request a choice recom-
mendation in the static BAIT-based CDSS.

Therefore, different processes need access to choices from different sources. Second, the construc-
tion of the temporary choice bases (see subsection 4.3.3) requires the separation of experiment
choices and real-life choice choices. The temporary choice base might have to weigh the choices
from one of the sources differently than choices from the other source. Finally, only an insufficient
alternative exists. An alternative is that the process goes through the whole choice base and checks
for each choice, whether it is an experiment choice or a real-life choice. By doing so, the run time
of the update engine would increase. An increased run time is problematic in highly dynamic
contexts where the contextual conditions change fast, or the CDSS has to update on a real-time
basis.

4.4.3 Data accessibility for clinical end users

Decision. The architecture keeps the choices of a clinical end user hidden for clinical end users
accessing a dynamic BAIT-based CDSS with a different user ID.

Argument. Information cannot be retrievable to an individual clinical end user. Therefore, end
users should not be able to access the choices made by other individual clinical end users. The
CDSS stores the choices of clinical end users with the feature user ID (see Table 4.1). Therefore,
architecture should describe an additional measure to ensure that not all choices stored in the
choice base are accessible by every clinical end user. To this end, the architecture describes an
authorization check. As soon as an end user requests access to choices, this authorization checking
process verifies the user ID of the end user requesting insight into the choices. Accordingly, the
CDSS only makes the choices in the choice base visible that correspond with the user ID. An
alternative is to remove the user account associated with the stored choices. However, this gives
rise to the risk that an end user can still link a choice to a particular individual. For instance,
because only one clinical end user was active when the end user who made the choice entered the
choice to the CDSS.

4.4.4 Split in user settings Councyl and clinical end users

Decision. The architecture describes a data object representing the number of available subgroups
that is Councyl controls.

56

Figure 4.6: The interface for a clinical end user to enter choice specifications and request a choice
recommendation in a dynamic BAIT-based CDSS.

Argument. Information cannot be retrievable to an individual clinical end user. With the im-
plementation of Information specification Extensions, end users can request an update with a
subgroup of choices (see subsection 4.3.1). For instance, the subgroup consisting of choices that
senior physicians made. As a result, the updated model reveals the decision-making behaviour
of that particular subgroup. Therefore, the architecture must ensure end users cannot link the
subgroup to an individual end user. For instance, if there is only one senior physician in the
decision-making context.

In addition, end users might want to reject the visualization of decision-making behaviour of
subgroups that exist of slightly more individuals. For instance, an end user might argue that
insight into the decision-making behaviour of two end users also violates privacy. Therefore, the
architecture describes a data object representing the minimal number of clinical end users that a
subgroup should represent. As a result, the CDSS counts the number of different clinical end users
- different user IDs - in the choice set for each model update. Accordingly, the CDSS compares
the counted number to the specified minimal number of clinical end users.

Consequently, a CDSS only presents the decision-making behaviour information when more
clinical end users than specified by the minimal number of clinical end users data object made the
choices. To beware of unaware clinical end users who want as much information as possible, the
architecture describes Councyl as the entity managing the data object. By doing so, Councyl can
always discuss the trade-off between the richness of the information that the CDSS can provide
and the privacy consequences of setting the number with the main end user (for an explanation of
end user types, see subsection 3.1.1). Because this data object is adjustable, Councyl can change
the minimal number over time. For instance, when the pool of clinical end users changes.

57

4.4.5 Data accessibility for Councyl and clinical end users

Decision. The architecture describes a user authorization check as soon as it receives a request to
present choice or decision-making behaviour information.

Argument. The outcomes resulting from a recommendation generator model update contains in-
formation on the model estimation and validation. However, the information does not have a
unique receiver. Therefore, the architecture should describe the correct information flows to the
intended receivers. Two reasons explain why the CDSS does not provide end users and Councyl
with the same outcomes resulting from a model update. First, the performance metrics that the
CDSS shares with both entities vary (see subsection 4.2.4). Second, end users may want the CDSS
to hide the decision-making behaviour in their decision-making context for Councyl. With regard
to the second reason, a CDSS developer needs to identify the preferences of clinical end users
regarding the sharing of information. The information sharing options are as follows:

• Sharing both estimation and validation information with Councyl.

• Sharing only validation information that is per definition anonymous with Councyl.

• Sharing nothing with Councyl.

To declare the end users’ preferences, the developer can use the Information Processing Agreement
that Councyl already has in place. Next, the developer can implement the information flows to
Councyl following the agreement. If the agreement states that Councyl cannot access any model
update information, the developer will not implement the information flow with the outcomes
resulting from a model update to the interface of Councyl.

The architecture describes an user authorization check process to check if the user ID requesting
insight in the information is from Councyl or a clinical end user. Accordingly, the architecture
ensures that a CDSS provides the correct set of update outcome information.

4.5 Summary chapter 4

The goal of chapter 4 is to present the structural specification of the dynamic BAIT-based CDSS
architecture solution for Councyl. To this end, this chapter describes and arguments the nontrivial
design decisions on the architecture solution. In total, the architecture stems from 17 nontrivial
design decisions. The decisions concern either the architecture’s structure, the processes for the
estimation and validation of the choice recommendation generator model, the extensions of the
architecture, or the management of information that a dynamic BAIT-based CDSS consumes and
produces.

With regard to the structure, the architecture follows a layered and adaptable design so that
the architecture is modifiable towards varying and changing preferences in different healthcare
contexts. Moreover, the architecture guides the development of a dynamic BAIT-based CDSS
without specifying any system software and hardware prerequisites.

An update of the recommendation generator model needs an activation. The architecture de-
scribes three extensions that allow customizing the level of updating automation. When activated,
the update engine estimates a model with a ”pooling” technique. By doing so, the update engine
estimates the model parameters from experiment choices and real-life choices jointly. The esti-
mation deals with missing attribute values by restricting the individual parameters to zero. The
process to validate a new recommendation generator model follows a manipulated k-fold valida-
tion process. By doing so, the architecture ensures that a dynamic BAIT-based CDSS selects the
choices used for the validation in a controlled way. As a result, the CDSS validates the model on
the maximum amount of information that is available and only with unique, recent real-life choices.

To adhere to the varying preferences concerning the influence of particular choice types on an
update of the recommendation generator model, the architecture defines three Information speci-
fication Extensions: end users can vary the weight of experiment and real-life choices (Extension
1), exclude real-life choices in terms of their features (Extension 2), and assign a different weight
to a selection of real-life choices relative to the not-selected real-life choices (Extension 3). For
the weight specification, end users can use an importance rating or importance balance. The first
allows end users to specify a number that multiplies the influence of a particular set of choices

58

on an update. The latter allows end users to specify a percentage representing the share that a
particular set of choices should have in the complete set information that an update incorporates.

Councyl implements an Information specification Extension as a user interface. Accordingly,
end users can specify the preferred choice type selection and weighting settings via an interface.
Because the extensions are implemented as interfaces, end users can always change the extension
a CDSS operates without the need for any adjustments in the construction of the back-end design
of the CDSS components. By letting clinical end users choose extensions, the CDSS is receptive
to the input of clinical end users on the change of a dynamic BAIT-based CDSS.

At the start of an update of a recommendation generator model, the update engine checks
the user settings regarding the choice information an update should process. These user settings
inform the preparation of the temporary choice bases. These temporary choice bases contain the
choice information that an end user wants an update to incorporate. If a CDSS is customized with
one of the Information specification Extensions, this choice information forms a modified set of the
original choices that a CDSS stores. By creating temporary choice bases at the start of each update,
a CDSS will never lose the original content of the choice bases. By maintaining the access to the
original choice information that is not modified according to any end user preferences, the inclusion
of temporary choice bases enable end users to always specify a new set of choice information that
should inform an update.

Finally, the architecture describes three components that protect sensitive choice information
and decision-making behaviour information. The protection covers both the privacy of clinical end
users within their decision-making context as well as against Councyl.

The decisions mentioned above form a basis for the architecture design for Councyl, which chap-
ter 5 presents. As a result, this chapter represents a first step in answering the fourth sub-question:

4. What does a system architecture of a dynamic BAIT-based CDSS look
like?

59

Chapter 5

Results: Architecture solution

The goal of this chapter is to present the architecture design that the architecture requirements
outline (see subsection 3.2.3). The architecture forms the solution to the problem that Councyl
encounters (see section 3.1. Section 5.1 presents a high-level overview of the architecture solution.
The remainder of this chapter gives a detailed insight into the five components that the architecture
describes: the adaptive choice base (section 5.2), the model quality monitor (section 5.3), the model
update (section 5.4), the user settings component (section 5.5), and the model management module
(section 5.6). The chapter concludes with a summary in section 5.7. The explication of all the
architecture components answers the fifth sub-question:

5. What does a system architecture of a dynamic BAIT-based CDSS look like?

5.1 Architecture overview

A dynamic BAIT-based Clinical Decision Support System (CDSS) architecture specifies the com-
ponents a BAIT-based CDSS needs to update according to contextual change. The core of the
architecture includes five main components: an adaptive choice base, a model update engine, a
model quality monitor, user settings component, and a model management component. The archi-
tecture connects all five parts to interfaces, which cover the Human-Computer Interaction (HCI).
Business processes trigger these interfaces. The business processes are processes the CDSS stake-
holders - Councyl and the clinical end users - perform to interact with a CDSS or complete tasks
related to a CDSS. Therefore, the business processes represent (a sequence of) business practices
that aim at achieving a specific result.

The yellow boxes in the architectural visualizations in this chapter represent business processes.
If the architecture does not specify that Councyl triggers the process this means that the group
clinical end users operating in a particular decision-making context are the stakeholders performing
the business processes. As subsection 3.1.1 explains, a BAIT-based CDSS has two types of end
users. The architecture does not prescribe which type of end user should preform which process.
The group of end users should decide who is responsible for which business processes or select
a main user who takes care of and controls all processes of the dynamic BAIT-based besides
requesting choice advice. The latter will every end user facing a complex task aim to do. By doing
so, the architecture avoids the situation in which one end user automatically possesses all power
over the CDSS.

Most of the components consist of software processes and data objects. The blue boxes in the
architectural visualizations in this chapter represent these software processes and data objects. The
software processes describe the internal behaviour of an architecture component. A data object
represents information the components processes consume or produce.

The architecture combines all business processes as a business layer and all software processes
and data objects as an application layer. Because the elements at the business layer rely on the
elements at the application layer, the layers follow a hierarchical organization. By distinguishing
these different layers, the architecture follows a layered approach as section 4.1 explains. A layered
approach commonly distinguishes three layers: the business, application, and technology layer
((Arsanjani, 2004; Lu, 2005)). However, the architecture is independent of hardware and software
prerequisites. Therefore, the architecture does not describe elements at a technology layer.

60

5.1.1 The relation with the current static BAIT-based CDSS

A component that already exists in the static BAIT-based CDSS accompanies the five compo-
nents in the architecture of the dynamic BAIT-based CDSS: the choice recommendation generator
(Figure 5.2). The choice recommendation generator has two main functions. The first function is
generating choice recommendations for end user’s choice tasks using the choice recommendation
generator model. This model represents the model a CDSS uses to generates recommendations.
The second function is measuring and storing new real-life choices that clinical end users enter
in the adaptive choice base. The architecture of the dynamic BAIT-based CDSS includes this
component because the measurement of new real-life choices is key for a dynamic BAIT-based
CDSS. Moreover, the recommendation generator in the architecture is slightly different from the
generator the static BAIT-based CDSS uses (see subsection 4.4.1). As a result, the architecture
solution describes six components. Figure F.1 presents a high-level overview of the architecture
(Appendix F provides a larger version of this high-level overview). Appendix E presents the com-
plete architecture. Appendix C contains the legend defining all components and shortcut words in
the architecture.

Figure 5.1: High overview of the dynamic BAIT-based CDSS architecture for Councyl with six
components.

consisted of

Figure 5.2: Architecture solution: Choice recommendation generator and relationships.

5.1.2 Relations between the components of a dynamic BAIT-based CDSS

The six key components of the architecture are interdependent. Every time a clinical end user
enters a real-life choice, the adaptive real-life choice base stores the real-life choice. Moreover, the
model quality monitor checks whether the recommendation of the CDSS aligns with the choice of
the end user. Next, the monitor checks if the performance has declined below a specified level of
acceptance. If so, this indicates that the recommendation generator model needs an update. The

61

model update engine estimates a new recommendation generator model and validates its perfor-
mance. As a final step, the update engine replaces the recommendation generator model of the
recommendation generator component with the new model. The user settings component captures
all end user-specific preferences concerning the behaviour of all other components.

The six key components form the core of the architecture. The core covers the fundamental
necessitates that are time and context-independent (Fong, 2001; Madura, 2006; Moore & Chang,
1980; Yeung & Hall, 2007). Besides the core components, the architecture describes optional com-
ponents that form extensions of the core. These extensions form “expanding subsets of system
capabilities based on an initial nucleus of extensible features” (Moore & Chang, 1980, p. 12). By
doing so, these extensions allow customizing a CDSS so that the CDSS matches the end user’s
preferences (Moore & Chang, 1980). The main end user that subsection 3.1.1 introduced will have
the responsibility for selecting extensions. The architecture describes two types of extensions. The
grey frames in the architectural visualizations in this chapter mark the extensions. The architec-
ture describes three extensions for the activation of the model update engine. Section 5.3 explains
these extensions. In addition, the architecture describes three extensions for the incorporation of
choices in a model update. Section 5.4 explains these extensions.

5.2 Adaptive choice base

The adaptive choice base consists of an experiment choice base and a real-life choice base. Figure 5.3
presents the subcomponents of the adaptive choice base. Because the choice base is adaptive, the
choice base allows to add, delete or replace choices over time.

Figure 5.3: Architecture solution: Adaptive choice base module and relationships.

The addition of choices in each choice base is different. The adoption of new experiment choices
requires manual action. Experiment choices stem from a choice experiment (see subsection 1.2.2).
Therefore, new experiment choices require a new choice experiment. Councyl can replace the com-
plete set of experiment choices in the adaptive experiment choice base with a new set of experiment
choices. The features of an experiment choice are the choice maker, the scores on the choice at-
tributes, the date on which an end user made the choice, and the time at which an end user made
the choice.

End users add real-life choices continuously. An end user enters a new real-life choice via
the interface that the end user also accesses for choice recommendation requests (see section 5.1).
While entering a real-life choice, the end user specifies the following choice features: scores on choice
attributes, choice recommendation of the CDSS, choice of the clinical end user (which is either in
favour or against the treatment), the confidence of the clinical end user, and whether the clinical
end user let an external factor influence the choice made. The choice base automatically stores
information that is not choice specific, like e-mail address of the choice maker, the experience level
(senior or junior), the discipline of the choice maker, the current date, and the current time. To this
end, the choice recommendation generator checks the authorization of the clinical end user who
entered the choice and retrieves the personal information stored for the specific end user. By doing
so, the architecture ensures that the CDSS asks the end user only about choice-specific features
and does not bother the end user with entering redundant information each time the user enters a

62

new real-life choice. The choice base stores the entered real-life choice with a flag. After a model
update, the choice base removes all flags. As a result, this flag enables the CDSS to recognize
which choices are new since the latest model update. Accordingly, the choice base informs the
update engine on the choices that the engine can use for the model performance validation. The
validation can only include the most recent real-life choices in the choice base (see section 3.2.3).

5.3 Model quality monitor module

The model quality monitor module has two main tasks. Figure 5.4 visualizes the subcomponents
that realize these tasks. The grey boxes on the right represent the three extensions that allow
customizing the activation of the update engine.

Figure 5.4: Architecture solution: Model quality monitor module and relationships.

The first main task is continuously assessing the performance of the choice recommendation model
that the CDSS operates. Every time an end user adds a new real-life choice, the monitor checks if
the recommendation model corresponds with the end user’s choice. To this end, the monitor first
compares the recommendation of the CDSS with the majority threshold in the user settings (for
an explanation, see section 5.5). The threshold is the minimum percentage that a recommendation
should present for the end user to perceive the recommendation as a convincing vote in favour of
the treatment. By doing so, the monitor categorizes the recommendation as a vote in favour or
against the medical treatment. Next, the monitor checks whether the categorized recommendation
corresponds with the end user’s choice (which is also either in favour or against the treatment).
The monitor stores the real-life choices for which the recommendation deviates from the end user’s
choice in a separate choice base. Clinical end users can always request the choices in this choice
base. However, the CDSS will only present the choices that end users made themselves (see
subsection 4.4.3).

The second main task is warning clinical end users on a decline in the performance of the
recommendation generator model. The monitor warns end users as soon as the total number of
deviating recommendations exceeds the level of acceptance that end users specified in the user
settings. This warning remains visible until the update engine has completed the new update. In
addition, the monitor resets the data object, keeping track of the number of deviating choices, to
zero after the update engine completed the update.

If the CDSS contains an Activation Extension, the monitor has a third task. Depending on
the implemented extension, this task includes either triggering an end user to activate the model
update engine with an update request or directly activating the model update engine. The monitor
directly activates the update engine as soon as the CDSS reaches the level of acceptance or if the
periodic update rhythm in the user settings requires the activation of an update. Subsection 4.2.1
provides additional information on the Activation Extensions.

63

5.4 Model update engine module

The update engine consists of three main processes: the construction of the temporary choice
bases (see subsection 5.4.1, a model estimation (see subsection 5.4.2), and a model validation (see
subsection 5.4.3). The activation of an update triggers the construction of the temporary choice
bases (see section 5.3 for the different activation variants). The fulfillment of the temporary choice
bases triggers the latter two processes. The model estimation and model validation happen in
parallel. Figure 5.5 visualizes these three processes.

Figure 5.5: Architecture solution: Model update engine and relationships.

5.4.1 The construction of temporary choice bases

The temporary choice bases contain the choices that directly inform the estimation and validation
of the model update. Without an Information specification Extension, the temporary choice base
contains the same choices as stored in the adaptive choice base. However, if the CDSS includes
an Information specification Extension, the temporary choice bases will include a specific set of
choices.

The different extensions either allow clinical end users to vary the weight of experiment and
real-life choices (Extension 1), exclude a set of real-life choices (Extension 2), or assign a different
weight to a selection of real-life choices relative to the other real-life choices (Extension 3) (see
subsection 4.3.1). At the start of an update, the engine checks the customized updating specifi-
cations in the user settings. Given the specifications, the engine picks and multiplies the correct
experiment choices and real-life choices, and stores the resulting choice sets into the temporary
choice bases (see Figure 5.5). As a result, the temporary choice bases may contain a sub-selection
of particular choice types, a multiplied set of choices or both.

For Extension 1 and 3, the end user can choose between two weight specification variants: an
importance rating (for instance, specifying that an update should include experiment choices as
two times more important than real-life choices) or an importance balance (for instance, specifying
that the update engine should inform the model with experiment choices for 70% and with real-life
choices for 30%). A CDSS can contain all Extensions. However, the end user should choose between
the weight specification options. Figure E.2 presents the Information specification Extensions as

64

the architecture describes them.

Figure 5.6: Architecture solution: Information specification Extensions 1, 2 and 3, and relationships
(Exp. = experiment choices, RL=real-life choices).

5.4.2 The choice recommendation generator model estimation

The model estimation aims to estimate a new choice recommendation generator model with new
real-life choices end users added. The model estimation process takes the choices in the temporary
experiment choice base and real-life choice base. By combining these experiment choices and
real-life choices, the estimation process estimates the parameters for all choice attributes. The
estimation process includes choice attributes for which information is missing as if they did not
influence the clinical end user’s choice (see subsection 4.2.3). After the completion of an update, the
update engine empties the temporary choice bases, replaces the previous active recommendation
model with the newly estimated model, and adds the estimation outcomes to the database with
model updates.

5.4.3 The choice recommendation generator model validation

The goal of the model validation is to assess the performance of the newly estimated recommenda-
tion generator model. The model validation uses a manipulated k-fold validation process (for an
explanation, see subsection 4.2.5). The update engine estimates k models during this process, each
based on a slightly different choice set. End users can change the value for k in the user settings
(see section 5.5). To avoid confusion with the model estimation that provides the new recommen-
dation generator model in subsection 5.4.2, the choice set used for the k model estimations as part
of the validations refers to the training set. For each of the k estimated models, the update engine
determines the performance.

To estimate and validate k models, the update engine constructs k training sets and validation
sets. This construction does not happen entirely randomly. The validation set only contains real-
life choices from the original real-life choice base (instead of the temporary choice base). By doing
so, the validation set contains no duplicates (the temporary choice bases may contain multiplied
and thus duplicated choices). The training set used for the estimation only contains values that
are not in the validation set.

To determine the performance of each model, the update engine generates a choice recom-
mendation for each choice in the validation set. The update engine determines how well the
recommendations correspond with the real-life choices of end users in terms of the performance

65

metrics (see section 2.2.2). After the final iteration, the update engine averages the metrics result-
ing from all k iterations. The result is together with the estimated model stored in the database
with model updates. The update engine informs clinical end users with the Correspondence rate
and the Agreement table (see subsection 4.2.4). Because information on model performance is
anonymous, the update engine informs Councyl with all performance metrics listed in section 2.1.1
if the Information Processing Agreement does not obstructs this.

To finish, the architecture describes that the update engine also assesses the performance of the
previous recommendation generator model on the new real-life choices. By doing so, clinical end
user can check if the update forms an improvement compared to the previous update given the
developed decision-making context.

5.5 User settings component

The user settings component captures the specific preferences of end users in a healthcare decision-
making context regarding specific values and mechanisms with which the CDSS operates. Fig-
ure 5.7 presents the subcomponents of the user settings component.

Figure 5.7: Architecture solution: User settings component and relationships.

The user settings component consists of two parts. One part of the user settings includes the
preferences values. End users have to specify the following values:

• Value for k: the number of repetitions in the k-fold validation process. The higher the
value for k, the more model estimations the update engine validates before it calculates the
performance metrics.

• Value for majority threshold: the percentage above which the end user considers the recom-
mendation as a convincing yes in favour of the treatment.

• Value for the level of acceptance: the number of real-life choices for which the dynamic
BAIT-based CDSS is allowed to give a recommendation that deviates from the clinical end
user’s choice.

• The additional action associated with the level of acceptance: the action that the model
quality monitor must undertake as soon as the CDSS reaches the specified level of acceptance.
Two of the Activation Extensions (see subsection 4.2.1) represent the alternative actions:
automatically activate a model update or send a model update request to the end user.

• Periodic update: the options to install a repetitive update activation. The end user has two
options. The end user can specify a number of new choices entered. For instance, by letting
the model quality monitor activate the update engine every ten new real-life choices. End
user can also specify a period. For instance, by letting the model quality monitor activate
the update engine every 30 days. This user setting represents the third Activation extension
(see subsection 4.2.1).

• Minimal subgroup value: the minimal number of clinical end users a subgroup must represent
before the CDSS can give insight into the decision-making behaviour of the subgroup (see
subsection 4.4.4).

The second part of the user settings component is only relevant when a CDSS includes an Infor-
mation specification Extension. This part stores the specifications of clinical end users concerning

66

the influence of particular choice types on updates. With the Information specification Extension
1, clinical end users can specify a weight for experiment choices relative to real-life choices via
either the importance rating or balance. With the Information specification Extension 2, clinical
end users can specify a selection of real-life choices. With Information specification Extension 3,
clinical end users can specify a selection of real-life choice and a weight for the selected choices via
either the importance rating or balance (see subsection 4.3.1).

Councyl will need to guide the first specification of the user settings. By doing so, Councyl can
make end users aware of the effects of the various settings. Therefore, the architecture provides
both clinical end users and Councyl with access to the user settings of a CDSS. The user settings
do not contain privacy-sensitive information. If clinical end users consider changing in the settings
later in time, end users can consult via the support component (see section 5.6). Moreover, the
user settings interface provides buttons that explain the meaning of all user settings.

5.6 Model management module

The model management component includes all subcomponents that allow keeping track of and
controlling a CDSS. The model management component supports tasks of both clinical end users
and Councyl. Figure 5.8 presents all model management subcomponents.

Figure 5.8: Architecture solution: Model management component and relationships.

The component supports five main tasks of end users. First, end users can manually activate a
model update. As soon as the update engine completed the model update, the model management
component provides feedback in the form of a brief update confirmation. This confirmation also
requests the end user to view the update outcomes. Second, the model management component
enables clinical end users to access choices stored in the adaptive choice bases or the database with
deviating choices (see section 5.2). The model management component only presents choices the
end user requesting the choices made. To this end, the data presentation process first checks the
user ID of the requesting end user. Next, clinical end users can request support from Councyl
via the management module. For instance, if the outcomes resulting from a model update are
unclear or an end user experiences problems with a CDSS’s functionalities. Fourth, clinical end
users can always reset the active recommendation generator model to a previous model update if
they perceive the new model update as undesired. This functionality also allows end users to try
out a new update with new real-life choice information the CDSS collected so far. For instance,
to check if the performance would already improve. Fifth, clinical end users can always request
the outcomes resulting from a model update - including the estimated model parameters and the

67

model validation performance in terms of the Correspondence rate and the Agreement table (see
subsection 4.2.4) - of the current and all previous model update versions.

Finally, clinical end users can investigate the decision-making behaviour within the pool of
clinical end users over time. In addition, end user can request insight into the decision-making
behaviour of particular subgroups of physicians. For instance, end users can investigate if senior
clinical end users make choices differently than juniors or differently than they did six months ago.
Similar to Information specification Extension 2 and 3, end users can specify subgroups in terms
of the choice features (see subsection 4.3.1). The subcomponent realizing this decision-making
investigating is the local estimation component. This component can estimate a choice model that
makes the decision-making behaviour of clinical end users visible. However, the local estimation
component does not activate the process that stores estimation outcomes or the process that resets
the active recommendation generator model. Accordingly, the estimation in this environment does
not influence the operation of the CDSS. To avoid privacy issues, the local try-out estimation pro-
cess always checks if a requested subgroup does not harm the privacy of clinical end users before
it estimates a choice model (subsection 4.4.4). To this end, it compares the number of user ID’s in
the requested subgroup with the minimal subgroup substance in the user settings (see section 5.5).

The model management module supports Councyl with two processes. Similar to clinical end
users, Councyl can also request the outcomes resulting from model updates of a CDSS in a par-
ticular healthcare context. However, the model management component provides Councyl with a
selected set of information (see subsection 4.4.5). To provide Councyl with the correct informa-
tion, the model management module always checks the authorization of the entity requesting the
information. Secondly, Councyl can replace the experiment choices in the experiment choice base.
Because experiment choices originate from a controlled experiment (see subsection 1.2.2), Councyl
can only replace all experiment choices in a CDSS’s experiment choice base with a complete set of
new experiment choices (for a detailed explanation, see subsection 2.2.1).

5.7 Summary chapter 5

The goal of chapter 5 is to present the dynamic BAIT-based CDSS architecture designed for
Councyl. The design follows the architecture requirements that subsection 3.2.3 identified and
includes all architecture specifications that chapter 4 presents.

The architecture defines six main dynamic CDSS components. All components represent busi-
ness (organizational processes) or application (software processes and data objects) components.
The components do not restrict a CDSS developer with any software and hardware prerequisites.
The first main component is the choice recommendation generator. This generator is part of the
static BAIT-based CDSS. The dynamic BAIT-based CDSS architecture includes a choice recom-
mendation generator component for the measurement of new real-life choices. When an end user
enters a real-life choice to get a recommendation from the CDSS, the end user can save this choice.
Subsequently, the recommendation generator component stores the real-life choice in the adaptive
choice base. The adaptive choice base forms the second component and consists of an experiment
choice base and a real-life choice base. The third component is the model quality monitor that
continuously assesses the performance of the choice recommendation generator model that a CDSS
operates. Moreover, this monitor warns clinical end users as soon as the performance has declined
below the level of acceptance that end users specified in the user settings.

The fourth component is the model update engine that realizes the updates of the choice recom-
mendation generator model. To this end, the engine runs three processes: constructing temporary
choice bases, estimating a new recommendation generator model, and validating this recommenda-
tion generator model in terms of performance metrics. The fifth component that the architecture
defines is the user settings component that captures the specific preferences of clinical end users
regarding a dynamic BAIT-based CDSS. Finally, the model management component allows end
users to keeping track of a CDSS and to control a CDSS. The architecture describes interfaces for
all dynamic CDSS components. These interfaces facilitate the business processes that the archi-
tecture includes. All interfaces together cover the Human-Computer Interaction between a CDSS
and clinical end users or Councyl.

Chapter 6 presents the evaluation of the architecture solution for Councyl. The description of
all the architecture components answers the fourth sub-question:

5. What does a system architecture of a dynamic BAIT-based CDSS look like?

68

Chapter 6

Evaluation of the architecture
solution

This chapter presents the evaluation of the architecture solution. Architecture evaluation and
refinement activities took place throughout the research. This ongoing process of evaluation and
refinement resulted in the architecture presented in chapter 5. This chapter aims to evaluate this fi-
nal architecture to assess whether the formulated architecture requirements together guide towards
the design of a valuable architecture for Councyl. Section 6.1 explains the evaluation approach.
Section 6.2 and section 6.3 together explicate the evaluation of the architecture. As a result, this
chapter answers the fifth sub-question:

5. To what extent does the designed architecture form an effective tool for guiding
the development of dynamic BAIT-based CDSS?

6.1 Evaluation Approach

This section presents the evaluation approach. The evaluation in the context of Action Design
Research (ADR) consists of two processes. The first process runs throughout the design process to
identify weaknesses and areas of improvement and refinement for an artefact under development
(Venable, Pries-Heje, & Baskerville, 2012). By doing so, this research evaluates the early designs
in a formative manner. The evaluation in the final cycle in ADR is rather summative and involves
an evaluation of the final design (Venable et al., 2012; Sein et al., 2011). This type of evaluation
aims to determine the utility and efficacy (or lack thereof) of an artefact for achieving its purpose
(Venable et al., 2012). As a result, the summative evaluation is the process of establishing how
well the architecture performs given its purpose (March & Smith, 1995). A disadvantage of the
summative approach is that the requirements cannot form the basis of adequate architecture design
guidelines when the evaluation indicates that the architecture is low in utility. However, this risk is
negligible because the final architecture is the result of an ongoing building and evaluation process
that closely involved Councyl (Sein et al., 2011). Accordingly, it is unlikely that the architecture
is not in line with its intended purpose.

The purpose of the architecture is to guide dynamic BAIT-based Clinical Decision Support Sys-
tems (CDSS) for different healthcare decision-making contexts. The assessment of how well the
architecture performs in doing this requires insight into the architecture’s usability and usefulness
for a CDSS developer. CDSS architecture design literature proposes several methods to evaluate
architectures. The two most common methods mentioned are the scenario-based architecture eval-
uation and prototyping- or simulation-based architecture evaluation (Mårtensson, 2006). The first
uses a scenario profile which forces a concrete description of the non-functional quality requirement
(Lassing, Bengtsson, Van Vliet, & Bosch, 2002). Next, designers use the scenarios to go over all
components of the architecture and assess the likely effects on the system instance (Kazman et
al., 1998; Kazman, Bass, Abowd, & Webb, 1994). The designers document all imaginable con-
sequences. The prototyping-based method focuses on evaluating technological components that
the architecture describes in the intended run time environment (Martensson, Grahn, & Mattsson,
2004). By doing so, designers can make accurate measurements of the intended system before they

69

completely build the system (Martensson et al., 2004).
Unfortunately, well-nigh all the architecture evaluation methods that literature proposes con-

cern the system rather than the architecture that describes the system (Byrnes & Kyratzoglou,
2006; Folmer, Van Gurp, & Bosch, 2004; Shanmugapriya & Suresh, 2012; Patidar & Suman, 2015;
AlSharif, Bond, & Al-Otaiby, 2004; Stevanetic & Zdun, 2015; Babar, Winkler, & Biffl, 2007).
These methods help system designers with finding lacks in the system design early on in the soft-
ware development life cycle. As a result, the methods focus on assessing the extent to which the
system as the architecture describes it will be useful and usable. Although the architecture must
describe the components that generate the desired CDSS functionalities, the evaluation part of this
research does not aim to solely investigate whether the CDSS as an artefact is useful and usable
for Councyl. Instead, the evaluation aims to investigate whether the architecture as an artefact is
useful and usable for Councyl.

To cover both aspects - whether the architecture describes the components that generate the
desired functionalities and whether the architecture itself is useful and usable - the evaluation is
twofold. The first part of the evaluation focuses on the architecture as a static artefact. Static
refers to the aspects of the architecture that one can observe without the implementation of the
CDSS that the architecture describes (Knodel, Muthig, & Naab, 2006). In essence, this is the
architecture as a blueprint for CDSS developers. This static-oriented evaluation includes a review
session with Councyl to assess whether Councyl perceives the architecture as useful and usable
(see section section 6.2). Because the usefulness of the architecture also depends on whether
the components that it describes constitute the desired CDSS functionalities, the evaluation is
expanded with a dynamic assessment. Dynamic refers to the architecture aspects that one can
observe during a CDSS’s run time. The aim of the dynamic-oriented evaluation is to show the
architecture components describe the desired functionalities in a feasible way and to highlight any
pitfalls (Rozanski & Woods, 2012). The dynamic-oriented evaluation includes the evaluation of a
test execution of the main components that the architecture describes and of a series of mock-ups
(see section 6.3).

6.2 Static-oriented evaluation

This section describes the method and results of the first part of the evaluation: the static-oriented
evaluation. The static-oriented evaluation consists of a session with Councyl to determine the
usefulness and usability of the architecture as a tool to guide the development of dynamic BAIT-
based CDSSs. Usefulness indicates the value of the architecture Councyl ascribes to it. Usability
measures the ease with which a user completes a particular task while using the artefact.

In the context of an architecture, usability essentially comes down to the understandability of
the architecture. In the end, the main purpose of the architecture is to abstract away small details
and give a clear overview of the main components of the dynamic BAIT-based CDSS (Oreizy et
al., 1999; Stevanetic & Zdun, 2015). Understandability refers to the extent to which the architec-
ture is understandable to Councyl’s CDSS developers (Alenezi, 2016). Understandability of the
architecture is important because an architecture that is not understandable makes it is simply
impossible to develop the CDSS as intended (Akour, Aldiabat, Alsghaier, Alkhateeb, & Alenezi,
2016; Alshammary & Alenezi, 2017; Alenezi, 2016). Moreover, the understandability determines
how reusable and maintainable the architecture is for Councyl (Akour et al., 2016; Stevanetic &
Zdun, 2015).

To guide the static-oriented evaluation session with Councyl, the two concepts usefulness and
understandability, were broken down into measurable concepts. The evaluation questions to assess
the usefulness included the following concepts: the guidance capability for CDSS development,
completeness, expected development time, stability, and competitive ability of the architecture.
Table 6.1 presents the usefulness concepts, the questions asked to Councyl and a summary of the
answers Councyl provided. In addition, the sessions assessed what Councyl finds the most valuable
aspect of the architecture. The evaluation questions to assess the understandability included the
following concepts: complexity, clarity of components defined, and consistency of the architecture
description. Table 6.2 presents the understandability concepts, the questions asked to Councyl
and a summary of the answers Councyl provided.

The findings summarized in Table 6.1 and Table 6.2 indicate that Councyl finds the architecture
useful and understandable. Additional insights are as follows. Councyl declared that developers
might deem the adaptable architecture incomplete if new user preferences occur over time. How-

70

ever, the developer of Councyl is confident that the architecture can be easily adjusted to cover
these preferences. Moreover, a developer might require additional supporting tools. These tools
store the knowledge about the architecture in the long term and inform new developers, who will
join Councyl in the future and were not part of the architecture design process. Councyl declares
to perceive the following guiding tools as valuable: an overview of all data objects related to the
architecture components as Appendix J presents, a high-level overview of the architecture as Ap-
pendix F presents, a series of guidelines for the implementation of the architecture as Appendix I
presents, and a legend representing all elements in the architecture as Appendix C presents. Fi-
nally, Councyl preferred to have an overview of all design decisions, and argumentation of these
decisions as chapter 4 presents.

Table 6.1: Evaluation of usefulness

Focus area Questions asked Findings

Guidance capabil-
ity

To what extent can the ar-
chitecture guide the develop-
ment of a dynamic CDSS for
different types of end users
with different preferences

The architecture provides a valuable and effective
starting point for the development.

Completeness Are aspects that have to be
dealt with missing?

No important aspects are missing. Beyond this
research, however, it might be valuable to investi-
gate what other software packages than currently
used could be used for the model estimation. Ad-
ditionally, over time extreme scenarios may occur
for which adjustments are needed. However, it
can be stated with confidence that the architec-
ture allows for these adjustments.

Acceptable devel-
opment time

Are you confident that you
can develop a system for a
client in a proper amount of
time?

Yes. For the first implementation, however, a bit
of extra time might be needed. This is not per-
ceived problematic, since it is not expected that
the time needed will exceed what is considered
reasonable.

Acceptable devel-
opment time

Are you confident that you
can develop a system for a
client in a proper amount of
time?

Yes. For the first implementation, however, a bit
of extra time might be needed. This is not per-
ceived problematic, since it is not expected that
the time needed will exceed what is considered
reasonable.

Stability Given the adaptable ap-
proach, do you feel confident
that the architecture forms a
stable starting point that can
adjusted for use over time?

Yes.

Competitive ability What are alternatives for the
architecture you would rather
use?

None.

Most valuable spec-
ification

What are the most valuable
aspects of the architecture?

The explication and tested codification of all po-
tential extensions that may be preferred by dif-
ferent end users in different healthcare decision-
making contexts.

6.3 Dynamic-oriented evaluation

This section describes the method and results of the second part of the evaluation: the dynamic-
oriented evaluation. In contrast to the static-oriented evaluation, the dynamic-oriented evaluation
focuses on the run time behaviour of the system components defined by the architecture. The
dynamic-oriented evaluation aims at assessing whether the architecture describes the components
that generate desired CDSS functionalities, ascertaining whether the risky components of the
architecture are feasible, and investigating potential problem patterns or risks (Mårtensson, 2006;
Rozanski & Woods, 2012). The dynamic-oriented evaluation consists of two parts: the evaluation

71

Table 6.2: Evaluation of understandability

Focus area Questions asked Findings

Perceived understandability Do you feel you understand the archi-
tecture?

Definitely. However, this is also the result of the repeated
evaluation sessions. For a person with another system de-
velopment role, explaining guidelines would increase the
reasoning behind and, therefore, the understandability of
the architecture. Similarly, when it would be out of sight
of time for a while, additional effort would needed to un-
derstand everything at the same level. For a new person,
the high overview is a nice first introduction.

Complexity Do you feel the architecture is too sim-
ple or too complex for doing the job of
developing a system?

It is complex, because it contains many components and
relations. However, it is complex at the right level because
if it would be less complex it lacks the definition of relevant
aspects. This causes a decrease in the usefulness of the
architecture.

Clarity of components What do you think about the clarity
of the components (like services, inter-
faces, process) and how they differ?

At first sight, the different layers provide clarity. For the
specific types of components, a legend would be needed.
With a legend, all types of components would be clear.

Clarity of components Do you expect that additional research
effort is needed for development be-
cause aspects are still unclear due to a
too high level of abstractness?

No significant research efforts are expected, because the
level of detail is just right. Some coding details will need to
be specified by system engineers. This is, however, beyond
the goal of the architecture.

Clarity of components Does the architecture make a clear dis-
tinction between the core and the ex-
tensions that can be chosen given pref-
erences of the end user?

Yes. Mainly because of the marked boxes and associated
references (1A,1B, and 2A,2B,2C). It is clear what com-
ponents are essential core elements and which function as
optional extensions of the core. In addition, it makes clear
which extensions can be implemented jointly, and which ex-
tensions are each others’ substitutes. Moreover, the num-
ber of extensions is satisfying as well as manageable and
comprehensible.

Consistency Is the description architecture descrip-
tion perceived

Yes, because the architecture is defined using unique signs
for all types of components. Because of this systematic
translation of design choices, it is ever clear what an element
represents.

Additional guidance What additional tools would make the
architecture better understandable?

A legend of all component representations, an overview of
all data objects that are represented by the overarching
databases, a brief reasoning of the extensions and in which
contexts they are of value, and a brief reasoning of the
design decisions so that the design is tractable. The tex-
tual explanation and visual architecture description then
enhance each power.

of a proof-of-technology (see section 6.3.1) and the evaluation of a series of mock-ups (section
6.3.2).

6.3.1 Proof-of-technology

This section presents the evaluation of the proof-of-technology. A proof-of-technology is a tempo-
rary code or another form of implementation developed to prove a risky technological component in
the architecture is feasible and effectively generates the desired functionalities (Rozanski & Woods,
2012). A proof-of-technology allows evaluating the technical decisions concerning the vital compo-
nents in the architecture and understand the implementation technology of these components in a
safe environment (Rozanski & Woods, 2012). The most vital and risky architecture components are
four components that update a CDSS with new choices. These components are the core updating
engine architecture and three Information specification Extensions that modify the information the
update engine consumes (for an overview of these Extensions, see subsection 4.3.1). As a result,
evaluating the proof-of-technology shows if the components as defined indeed create the temporary
choice bases and if estimation process and validation process can use these temporary choice bases
properly (see for an explanation of these processes section 4.3). Table G.1 gives an overview of
the implemented components. The goal of the proof-of-technology is to assess whether Councyl
believes that these four updating components in the architecture generate the intended updating
functionalities and does not give rise to any risks.

Method

The proof-of-technology of this research consists of implementing and executing all the four up-
dating components the previous section mentions. The architecture guided the implementation of
the four components. Therefore, the proof-of-technology forms a reflection of the four architecture

72

components. Without the architecture as a guiding tool, the implementation would have been
different. The list below briefly describes the five most prevalent differences:

1. The choices the implementation would use for the validation process would be incorrect. In-
stead of only incorporating recent real-life choices, the implementation would select a random
set of choices from the set of available choices.

2. The implementation would not include a separate estimation process that parallels the k-
fold validation process. Instead, the implementation would solely contain a k-fold validation
process from which the update engine takes the average estimations to provide a new recom-
mendation generator model.

3. The implementation of Tested component 1 (see Table G.1) would potentially include an
estimation process that follows sequential technique (for an explanation, see subsection 4.2.2).

4. The implementation would not include a process that ”unflags” the real-life choices used in
an update. Consequently, the update engine would not distinguish the new real-life choices
that the update engine needs to incorporate for validation from the choices that are not
recent.

5. The implementations of Tested Component 2,3 and 4 (see Table G.1) would not contain
temporary choice bases. Instead, the implementation would modify the original choice bases,
which causes the loss of the original choice set (for an explanation, see subsection 5.4.1).

The implementation used a python package called Biogeme. This package relies on the Python
data analysis library Pandas. It is an open-source package designed for the maximum likelihood es-
timation of parametric models in general with an emphasis on discrete choice models as needed for
the implementation (Bierlaire & Fetiarison, 2009). It contains all the required methods to estimate
choice models. In Appendix G the implementation scripts representing the proof-of-technology are
listed. The implementation for a proof-of-technology is temporary and discarded after the evalua-
tion (Rozanski & Woods, 2012).

The execution of the implemented component relied on test data. The test data set contains
experiment choices and real-life choices collected in a healthcare context. The represented choice
task is the choice in favour or against ICU uptake of COVID patients. The answer type was
twofold: no ICU uptake and ICU uptake. The data set represents 502 choices: 425 experiment
choices and 77 real-life choices. Physicians made the real-life choices in the period from March
2020 to October 2020. Dummy data enriched this set of choices. This dummy data contains the
additional features of choices that the current static BAIT-based CDSS does not collect (for an
overview of the choice features, see Table 4.1). Because the test data includes dummy data, it is
meaningless to make and present claims about the values resulting from the execution. Instead,
the goal of the proof-of-technology is to allow Councyl to judge whether the components generate
the intended functionalities and are feasible. Therefore, the evaluation of the proof-of-technology
consisted of a software walk-through during which Councyl assessed the functionalities and out-
comes generated by the scripts. Appendix G presents the outcomes of all scripts central in the
walk-through with Councyl.

Results

Councyl confirmed that the architecture describes the components that generate the intended up-
dating functionalities feasibly. However, the walk-through pointed at a single required adjustment.
The scripts presented in section G.1 and the architecture that in chapter 5 already capture this
adjustment. The adjustment results from the manipulated data split in the k-fold validation that
was incorrect for the type of choice data k-fold validation consumes.

In medical practice, multiple physicians decide on the treatment of a single patient. Conse-
quently, multiple clinical end users enter their view on the patient as a new real-life choice into a
BAIT-based CDSS. However, these real-life choices concern the same patient and are therefore rel-
atively similar. When the k-fold validation ignores the dependence between these real-life choices,
the k-fold validation will create a training and validation set without controlling for recurring data
entries. As a result, the training set may contain multiple choices representing similar patients. At
the same time, the validation data includes choices representing other patients. The trained model
will be overfitted in favour of the patients over-represented in the training set, and the model will
not represent the population of patients well (Huang, Hung, & Jiau, 2006). As a consequence, all

73

Table 6.3: Overview table of the implemented and tested architecture components

Reference Component in
architecture

Explanation of component functionality

Tested component
1

The model updat-
ing engine

The estimation and validation of a choice model with experiment and new real-
life choices. The process part of this component are needed for every clinical end
user. The estimation should result in a set of parameters for all choice attributes
and an error term. The validation should indicate the performance on new real-
life choices in terms of the Correspondence rate and the recommendation-choice
Agreement table (also referred to as the Confusion Matrix).

Tested component
2

Information specifi-
cation Extension of
updating engine 1

The estimation and validation of a DCM in which the importance of experiment
and real-life choices are varied with both a importance rate and balance (see
subsection 4.3.1). For instance, when a clinical end user values experiment
choices two times more important than real-life choices.

Tested component
3

Information specifi-
cation Extension of
updating engine 2

The estimation and validation of a DCM in which a particular set of real-life
choices are excluded. For instance, when a clinical end user wants the CDSS
to only incorporate choices made by senior physicians. The choice base that is
used for the estimation should only include the selected choices.

Tested component
4

Information specifi-
cation Extension of
updating engine 3

The estimation and validation of a DCM in which the importance of a particular
set of real-life choices is differently weighted compared to the remaining real-
life choices by using both an importance rate and balance specification. For
instance, when a clinical end user considers choices made by senior physicians
as more important than choices that were made by junior physicians.

scripts generated divergent performance metrics for the k estimated model. An additional manip-
ulation of the k-fold validation equally divided the real-life choices that belong to the same patient
over both the training set and the validation set. Because physicians have slightly different views
on a patient, the training set and validation set will not include the exact same cases. After the
modification, the scripts generated a stable model performance over the k estimations.

After the adjustment, Councyl declared to be confident that the architecture components represent
a dynamic BAIT-based CDSS that end users can update with new choices. More specifically, the
execution of component 1 shows that the architecture correctly describes a pooled model estima-
tion with experiment and real-life choices. Moreover, the validation processes in the architecture
generate the intended performance assessment insights. Finally, the validation only used the most
recent real-life choices stored in the choice base. The outcomes generated by executing compo-
nents 2, 3, and 4 showed that the temporary choice bases copy correct choices from the choice
base. Moreover, the estimation and validation processes successfully used the choices from the
temporary choice bases.

6.3.2 Mock-ups

This section presents the evaluation of the mock-ups. Mock-ups are full-scale models of a de-
sign that are useful for demonstration and evaluation of a design (Bayramzadeh et al., 2018).
These mock-up evaluations involve testing various aspects of a proposed design. Evaluations of
physical mock-ups form an effective tool to communicate the design of healthcare systems since
they improve understanding and communication between healthcare providers and the designer
(Keys, Silverman, & Evans, 2017). For that reason, designers of healthcare systems increasingly
use mock-ups to support and validate design decisions (Bayramzadeh et al., 2018)

Method

The designed mock-ups demonstrate all functionalities that components in the architecture gen-
erate. Appendix H presents the complete set of the final mock-ups, including the improvements
resulting from the findings that section 6.3.2 presents. The main goal of the mock-up evaluation
is to assess whether the architecture covers the correct set of functionalities and whether essential
features are missing or are superfluous. To this end, the evaluation of the mock-ups consisted of
two steps. The first step is checking whether all aspects of the architecture are complete while
designing the mock-ups. The second step is evaluating the mock-ups with all representatives of
Councyl and a clinical end user who also participated in the interviews for the elicitation of re-
quirements. Although mock-ups represent interfaces, the goal of the evaluation is not to assess the
layout design of the mock-ups. However, Councyl and the end users should perceive the content
as clear and effective enough to understand and use the functionalities.

74

Results

The mock-up evaluation confirms that the architecture covers the essential functionalities of a dy-
namic BAIT-based CDSS. Besides this confirmations, the evaluation with both Councyl and the
end user pointed at a number of required adjustments to the architecture design. The list below
summarizes the four most prominent adjustments.

Findings session with Councyl. Councyl made the two following suggestions on the mock-up
designs during the mock-up evaluation session.

1. The architecture should protect the privacy of end users within the healthcare organization.
At first, the architecture dealt with privacy as an issue involving two stakeholder parties:
Councyl as an external CDSS provider and the healthcare context as end user. The eval-
uation with Councyl showed that privacy is also an issue among clinical end users within
the healthcare context. Consequently, the architecture needs two adjustments to ensure that
the architecture does not guide towards CDSS’s that visualize choices and decision-making
behaviour information in a way that harms the privacy of clinical end users within the orga-
nization. The first adjustment is that the architecture only allows end users to access choices
they made themselves. The second adjustment is that the architecture ensures that insight
in decision-making behaviour is never retrievable to an individual clinical end user.

2. The architecture should allow end users to exclude choices from updates with recommen-
dations for which the CDSS was confident but deviated from the end user’s choice. The
architecture already allowed end users to request the selection of choices for which the rec-
ommendations deviated from the end user. During the mock-up demonstration, Councyl
pointed out that the architecture should also allow end users to tune updates of the CDSS
by excluding the choices with recommendations about which the CDSS was confident but
deviated from the end user. These choices refer to the situation in which an end user made a
choice significantly different than the majority of his or her colleagues. By doing so, end users
can, for instance, first investigate why the end user made a significantly different choice than
the CDSS recommended before they let an update incorporate this type of choice. Ensur-
ing the architecture describes a CDSS that distinguishes these significantly deviating choices
required making two adjustments. The first adjustment involved changing the architecture
data objects in the data overview by adding confidence as a feature of real-life choices (see
Appendix J). The second adjustment involved adding a selection choice feature with which
end users can specify the choices they want to include in a model update. By doing so, end
users can make more sophisticated subgroups of choices for a model update or for investi-
gating the decision-making behaviour of end users in the healthcare decision-making context
(see 5.6).

Findings session with clinical end user. The static BAIT-based CDSS presents the choice recom-
mendation without a hiding option at the top of the page. While the end user enters the values
for all choice attributes, the CDSS presents the recommendation. If the end user modifies the
values, the CDSS dynamically changes the recommendation in real-time. The clinical end user
emphasized the importance of hiding the CDSS’s recommendation when an end users enters the
choice details by default. Additionally, the clinical end user suggested moving the recommendation
visualization to the bottom of the page. By doing so, end user will first enter the values for the
choice attributes before they interpret the recommendation of the CDSS. The foremost reason the
end user provided is physicians’ curiosity. Moreover, the risk exists that physicians try to achieve
a 100% recommendation by slightly modifying the choice attribute values. Although this finding
represents a layout issue, it is an important finding because it confirms the importance for the
architecture to specify a ”give me advice button”.

Findings both sessions. Both Councyl and the clinical end user asked for additional explana-
tion on functionalities the mock-ups present. The suggestions mainly concerns the performance
metrics. For example, the CDSS should clarify that the Correspondence rate does not inform how
many times the CDSS was wrong but how many times a clinical end user held a minority view
(see 2.2.2). Both Councyl and the clinical end user asked for additional explanation on function-
alities the mock-ups present. The suggestions mainly concern the presentation of the performance
metrics. For instance, the CDSS should clarify that the Correspondence rate does not inform how
many times the CDSS was wrong but how many times a clinical end user held a minority view
(see 2.2.2). This finding confirms the importance of adherence to architecture requirement QAR5
(see section 3.2.3). To clarify to CDSS developers using the architecture that it is important that

75

the CDSS makes the performance metrics understandable for end users, an architecture refinement
ensured the architecture includes a data object containing a set of metric explanation texts. The
CDSS should provide these explanation texts to end users or Councyl as soon as the CDSS presents
the performance metrics.

6.4 Summary chapter 6

The goal of chapter 6 is to evaluate the final architecture solution that chapter 5 presents. The
evaluation establishes whether the formulated architecture requirements together guide the design
of a valuable architecture for Councyl. The evaluation consists of three parts: a static-oriented
evaluation and two dynamic-oriented evaluations.

The static-oriented evaluation assessed the usefulness and understandability of the architecture
to Councyl. Static refers to the aspects of the architecture that one can observe without the
implementation of the CDSS that the architecture describes. In essence, this is the architecture
as a blueprint that CDSS developers use. Councyl declared that the architecture forms a useful
and understandable tool for the development of dynamic BAIT-based CDSSs. However, Councyl
would like to have additional supporting tools like a legend of all components and a high overview
of the main architecture components. These tools store the knowledge about the architecture in
the long term and support new developers, who will join Councyl in the future and were not part
of the architecture design process.

The dynamic-oriented evaluation assessed the architecture components that are observable dur-
ing the run time of the CDSS. The aim of the dynamic-oriented evaluation is to show the architec-
ture components that describe the desired functionalities in a feasible way and to highlight potential
pitfalls. The dynamic-oriented evaluation consisted of the evaluation of a proof-of-technology and
a series of mock-ups. The evaluation of the proof-of-technology proved that the architecture indeed
describes the components that generate the updating functionalities Councyl desires in a feasible
way. However, this evaluation identified one risk: the manipulated data split in the architecture
was incorrect for the type of choice data that the k-fold validation consumes. The mock-up evalua-
tion confirms that Councyl and a clinical end user believe that the architecture covers all essential
functionalities of a dynamic BAIT-based CDSS. However, the evaluation pointed at three required
architecture adjustments: guarding the privacy of choices and decision-making behaviour informa-
tion within a healthcare context, additional guidance on tools and numbers the CDSS displays,
and an additional feature to distinguish choices.

After processing the identified architecture adjustments, Councyl declared that the architecture
effectively guides the development of dynamic BAIT-based CDSS’s. As a result, this chapter pro-
vides a positive answer to the fifth sub-question:

5. To what extent does the designed architecture form an effective tool for guiding
the development of a dynamic BAIT-based CDSS?

76

Chapter 7

Reflection

This chapter presents the results of the ongoing reflection. It draws onto the ADR principle of
guided emergence that prescribes that the researcher should reflect on all aspects of the design
process and shed light upon seemingly incongruent perspectives (ADR principle 6) (Sein et al.,
2011). The ongoing reflection resulted in a set of lessons learned. Section 7.1 presents these lessons
learned. This section explains how each lesson learned informed and guided the architecture de-
sign. Section 7.2 gives a summary of the lessons learned. By doing so, this chapter presents the
answer to sub-question six:

6. Considering the requirements and the evaluation, what are the lessons about
how to design architectures of a dynamic BAIT-based CDSS?

7.1 The lessons learned: Reflection on the design project

The reflection took place throughout the research on an ongoing basis. The reflection concerns four
focus areas: the problem framing, the emerging artefact, the theories that informed the design,
the design process. Throughout the research, the lessons were noted in a logbook and used to
refine the requirements and the architecture design. For each lesson learned, subsection 7.1.1 to
subsection 7.1.4 explain how the lesson shaped the architecture requirements. Moreover, these
sections describe what the architecture would have looked like without the requirements shaped by
the iterative reflection process. By doing so, this indicates the relevance of the set of architecture
requirements.

7.1.1 Problem framing

The problem formulation focuses on framing and conceptualizing a research opportunity (Keijzer-
Broers, 2016). In ADR, a problem perceived in practice commonly triggers this formulation.
The problem formulation functions as a ground for all remaining design activities. However, it
is common for ADR studies that research findings will generate novel insights along the design
process. As a result, the problem formulation set at the start of the research will evolve as the
study progresses (Sein et al., 2011). This section summarizes the reflection on the problem framing
and how it evolved along with the research.

Problem framing lesson 1: An architecture of a dynamic BAIT-based CDSS concerns
a dynamic CDSS that changes over time as well as clinical end users who tune their
decision-making behaviour over time.

At the start of this research, the design focused on an architecture that ensures a Clinical Decision
Support System (CDSS) evolves by mimicking the changes in the decision-making context over
time. However, research findings collected during the research process indicated that not only the
CDSS tunes its internal processing to new information provided by clinical end users over time.
Instead, also clinical end users adjust their internal processing over time. The clinical end user
receives information from the CDSS that shapes the end user’s behaviour or thinking. Internal
processing refers to the processing of information that is relevant for the decision-making drives
the choice recommendation of a CDSS or the choice of a clinical end user.

77

State-of-the-art CDSSs also influence their end users by providing choice recommendations to
clinical end users. However, a dynamic BAIT-based CDSS provides also exposes the evolution
of the decision-making behaviour of a pool of clinical end users over time and allows end users
to investigate this for particular subgroups. By doing so, a dynamic BAIT-based CDSS produces
more information compared to other types of CDSS’s. As a result, the dynamic BAIT-based CDSS
has a more substantial influence on the behaviour and thinking of clinical end users. Therefore,
it is important to consider a dynamic BAIT-based CDSS as a CDSS that is also dynamic when
its context does not change: by providing information to and, by doing is, tuning the clinical end
user over time.

This insight has two primary consequences. First, it requires an extension of the set of architecture
requirements. Instead of shaping an architecture of an isolated object, the challenge concerned de-
signing components that together realize the complete operation of a dynamic CDSS in a dynamic
context. Simply defining requirements that capture the technical mechanisms for storage, updat-
ing and monitoring results in an insufficient architecture that does not guide a CDSS developer in
building components serving the clinical end user. Therefore, the set of requirements was extended
with requirements that drive the Human-Computer Interaction (HCI) design in the context of a
dynamic BAIT-based CDSS.

Second, the design of the architecture design involves organizational implications. The informa-
tion provided by the CDSS has to be positioned and processed in the organization in line with the
end user’s preferences. Moreover, the insights that the CDSS provides require the allocation of ac-
tions and responsibilities. The formulation of such organizational implications is beyond the scope
of the CDSS architecture design. However, Councyl needs to make clinical end users aware that
the application of a dynamic BAIT-based CDSS will influence the clinical end users who use the
CDSS. Moreover, Councyl should support end user in locating the ongoing inflow of information
into the existing clinical workflow.

Problem framing lesson 2: Contextual change can be radical or gradual, each requiring
a dynamic BAIT-based CDSS to describe different components.

Initially, the problem formulation framed the contextual change as simply being the change in
knowledge central to the decision-making in the healthcare context. CDSS literature and inter-
views showed that when speaking of contextual change in the context of a BAIT-based CDSS, a
distinction between two types of change exists:

• Gradual change: Gradual change occurs in small stages over a long time, rather than sud-
denly. An example in the context of a BAIT-based CDSS: the age attribute that becomes
slightly less important over a long time.

• Radical change: Radical change occurs relatively fast and modifies the essence of clinical
structures or organizational practices. An example in the context of a BAIT-based CDSS:
the introduction of a new treatment that instantly affects the decision-making considerations.

At first, the research aimed at framing the problem so that it covered both types of changes.
However, capturing radical change implies a significantly different challenge: incorporating radical
change requires a BAIT-based CDSS to modify the structure of the choice model used for the
generation of recommendations. A modification may involve adding an attribute to the model,
removing an attribute from the model, or changing the attribute value range. As a result, the
adaption towards radical changes in the decision-making context requires the update engine to
modify and accept new model structures. In addition, the adaption requires adjusting the format
in which clinical end users enter real-life choices. Finally, the choices stored in the choice bases
will not fit the new model structure. Therefore, the new model cannot use the previously stored
choices for model updates. As such, the choices stored before the transformation of the model
structure will lose their value. Because this research focuses on allowing attribute parameters to
slightly attune based on new choice information over time, solving the implications mentioned
above requires additional research outside of this research scope.

As a result, incorporating radical change forms a new promising research direction. Although
the insight into two types of changes sheds light upon the limitations of this research, it also
explicated the scope of the requirements. Moreover, this insight marked possibilities proved to be
worth to be further researched.

78

Problem framing lesson 3: The problem does not focus on updating for a better
understanding of the choice task.

The initial aim of the research was to find alternatives that enable a BAIT-based CDSS to update
according to changes in the environment and retain or even improve its Correspondence rate (ac-
curacy) over time. This problem formulation is closely related to better informing a BAIT-based
CDSS on the factual knowledge in the decision-making context. However, a conceptual distinction
between these two forms is important to make. The paragraphs below substantiate why making
this distinction is important.

In a static environment, incorporating new choices should enable the CDSS to understand the
decision-making context better. Zikos and DeLellis (2018) even argue that the feedback loop dur-
ing which the acquisition of novel information improves the understanding of a CDSS is one of the
most important characteristics of CDSSs. In a static decision-making context, a CDSS supports
clinical end users with choice tasks that do not change over time. However, a dynamic CDSS is
still of value in a static context because the dynamic variant will understand the specific choice
task better over time. By doing so, it can give better-informed choice recommendations over time.
Although the knowledge fundamental to the choice will not change significantly, the choice model
parameters may still be tuned in line with new experiences since the CDSS has more information.
As a result, a dynamic CDSS can become more precise in a static context over time.

In a dynamic decision-making context, a dynamic BAIT-based CDSS should not only aim to
understand the decision-making context better. Instead, a dynamic BAIT-based CDSS should
track clinical end users’ knowledge about a choice task. This knowledge will change over time.
For instance, the knowledge develops or clinical end users with specific knowledge join or leave
the team. In this situation, a CDSS update does better than the previous update if the CDSS is
flexible enough to follow the knowledge developments in the decision-making context.

This insight drives the selection of the metrics that the architecture specifies for measuring the suc-
cess of a CDSS. Instead of assessing whether the CDSS perfectly understands the decision-making
context, the architecture must describe a validation process determining whether the CDSS is
flexible enough to capture changing perspectives. Therefore, the architecture requirements were
refined so that they force a CDSS validation to only include real-life choices that are accurate at
the moment of the performance assessment. By doing so, the validation indicates the performance
of the CDSS for the present situation.

Problem framing lesson 4: A dynamic CDSS that incorporates objective clinical out-
comes in updates is of great value to physicians but complex to realize.

The initial problem formulation considered choice information as the set of experiment choices,
real-life choices and objective clinical outcomes (OCO’s). An OCO represents the result of a
decision and can therefore either confirm or reject a decision. Accordingly, an OCO has the power
to evaluate a clinical end user’s decision-making strategy.

However, designing a CDSS architecture that includes OCO’s in updates of a CDSS is complex.
First of all, an OCO cannot easily be assigned a label because it will always be unclear what would
have happened if the clinical end user made another choice. Second, it may take a long time before
the outcome of a choice becomes clear. Finally, the specification of an outcome is subjective: what
one clinical end user considers as a good outcome may another end user perceive as a bad outcome.
Therefore, there does not exist a consistent classification for OCO’s.

The findings of this research do prove the value of addressing the inclusion of OCO’s. The
interviewed clinical end users showed great interested in the inclusion of OCO’s by a dynamic BAIT-
based CDSS. Primarily because the inclusion of OCO’s enables the CDSS to mimic how clinical end
users’ decision-making evolves - by doing, gaining experience, and adjusting the decision-making
strategy accordingly. Second, interviewed end users declared that existing processes do not cover
the storage of the choice results well. A dynamic BAIT-based CDSS could enable clinical end
users to formulate, store, and organize the valuable choice outcomes. Section 9.3 presents the
specific recommendations for further research on the inclusion of OCO’s in updates of a dynamic
BAIT-based CDSS.

7.1.2 Emerging Artefact

As the ADR framework suggests, the final architecture design results from continuous instantiating
and repeatedly testing through interventions of Councyl (Sein et al., 2011). By doing so, the design

79

incorporates the insights gained along the process. The next sections list the main insights that
inspired the architecture design.

Emerging artefact lesson 1: It is not problematic for a dynamic BAIT-based CDSS
to incorporate real-life choices during an update that the CDSS might have assisted.

The architecture describes a CDSS that updates with information that real-life choices capture. A
CDSS’s recommendation might have inspired these choices. Accordingly, one may argue that an
update of a recommendation generator model processes information that a CDSS inspired and, as a
result, receives confirmations about its own recommendations. Consequently, the Correspondence
rate (accuracy) might give a biased representation. However, this argumentation is not valid
in the context of a dynamic BAIT-based CDSS. A BAIT-based CDSS codifies and captures the
expert knowledge of a group of clinical end users. Accordingly, the CDSS presents the expected
distribution of opinions on a particular choice task based on the expertise of these end users
(Ten Broeke et al., 2021). Therefore, consulting a BAIT-based CDSS equals consulting a group
of colleague clinical end users. Clinical end users also influence each other and involve in group
thinking to obtain a thought-out decision in real life. Therefore, the same processes would be
present in the situation without a BAIT-based CDSS.

Unlike a CDSS, the consultation of clinical end users in real-life does provide an opportunity
for the back-and-forth conversations during which any notions of uncertainty or confidence can be
shared (Gaube et al., 2021). However, unlike other CDSSs, a dynamic BAIT-based CDSS presents
a distribution of the clinical end users’ viewpoints and shows the internal agreement among the
clinical end users. By doing so, it indicates the level of confidence about the recommendation.
This insight in the level of confidence allows clinical end users to interpret the majority’s opinion
sensibly. By doing so, a BAIT-based CDSS avoids overreliance on the choice recommendation for
the cases where a clinical end user was already in doubt (Gaube et al., 2021). Therefore, updating
with real-life choices that a BAIT-based CDSS potentially influenced is not problematic.

However, there will always be anxious end users. Councyl can recommend putting more em-
phasis on the experiment choices in the model update to serve these users. Experiment choices
stem from a controlled choice experiment without the support of a CDSS. Modifying the weight
of specific choices requires the implementation of one of the Information specification Extensions
(see subsection 4.3.1). Assigning experiment choices with a heavier weight may give the clinical
end user confidence that the model is kept sharp with pure human knowledge over time.

Emerging artefact lesson 2: The estimation of the choice recommendation generator
model does not need to include econometric techniques to combine choice information
that comes from different sources.

The architecture combines experiment choices and real-life choices. Both choice types originate
from a different context in which different factors shape a clinical end user’s choice (M. Ben-
Akiva & Morikawa, 1990). From an econometric perspective, combining the two choice types
requires normalizing the variance in the unobserved factors (Train, 2009). To do so, DCM analysts
commonly use an experiment to real-life choice scale parameter and multiply the attribute weights
that result from either the experiment choices or the real-life choices by with this parameter (Swait
& Louviere, 1993; Train, 2009; Axsen et al., 2009; Helveston et al., 2018).

The experiment to real-life choice scale parameter shows to what extent the two choice types
have significantly different variances for the unobserved choice attributes (Lavasani et al., 2017). If
the variance in the experimental context is relatively large, this means that the choice experiment
was biased. This significant variance can also indicate that the experiment was too theoretical for a
valid representation of the real-life context. If the variance in the real-life choices is relatively large,
other attributes than the observed attributes may drive end user’s decision-making. Consequently,
Councyl should ascertain which factors influence end users’ choices and consider refining the model
structure with the right choice attributes. Alternatively, the large variance can stem from clinical
end users who deviate from the desired decision-making strategy. If so, end users may need to
be tuned towards the desired decision-making strategy (this poses organizational implications as
meant in section 7.1.1).

Despite this common DCM practice, the architecture does not describe a scale parameter that
shapes the estimation process of model updates. Three reasons further substantiate this.

• First of all, the differences in scales of the choice types are yet unknown. Moreover, it is
unclear whether these differences are problematic in healthcare decision-making contexts.
Before tuning the CDSS with the scale parameter, experience with the scale parameter in

80

different contexts is necessary. Experience in the scale differences between choice types in
different context allows Councyl to learn whether the combination of the choice types is
econometrically problematic. Accordingly, Councyl can improve the service in line with this
knowledge. Therefore, the architecture does ensure each CDSS estimates a scale parameter
during an update and makes the parameter available for Councyl. By doing so, Councyl can
track the development and significance of estimated scale parameters in different contexts
over time.

• Second, the scale parameter makes the decision support service complex and causes compo-
nents and outcomes to be unexplainable to end users without statistical knowledge. This
conflicts with the requirements formulated chapter 3.

• Finally, acknowledging the differences of the two contexts gives rise to a complex discussion
with the end user. A BAIT-based CDSS codifies the knowledge of clinical end users and
directly represents the decision-making of clinical end users in a particular context. When
a CDSS emphasizes a potentially significant difference in how physicians make choices in an
experimental context and a real-life context, it becomes vague whose recommendation an
end user consults: does the recommendation stem from clinical end users in an experimental
context or a real-life decision-making context?

To conclude, insight into the scale differences between the choice types allows gaining experience in
the extent to which differences are present and are problematic in different contexts. Accordingly,
Councyl can determine whether the dynamic BAIT-based CDSS needs additional measures to mit-
igate the potential scale differences. Because the effects are unspecified, the end user should not be
bothered by complex insights into statistical differences. Therefore, the architecture requirements
drive a CDSS to provide Councyl with insight into potential scale differences and ensure the scale
difference to not influence the updating process.

Emerging artefact lesson 3: A dynamic-BAIT-based CDSS architecture should ensure
that a CDSS eliminates choice recommendation generator model updates that stem
from undesired subjectivity.

Clinical end users operating in different contexts have varying opinions about which choices are
relevant for the update. Therefore, the architecture design has an adaptable structure (see chap-
ter 5). At the same time, an adaptable approach opens the floor to subjectivity. Councyl finds
this subjectivity not problematic as long as the subjectivity is well-thought-out and the resulting
model suits the clinical end users’ preferences and characteristics of the decision-making context.

However, a subjective CDSS is problematic in the following two scenarios. First, if the up-
dating does not result in an objective reflection of the real-life context within the subjectively
chosen boundaries. Therefore, the architecture should maximize the objectivity of the updating
processes.To this end, the architecture should ensure the processes are reliable for their purpose.
Moreover, the architecture should eliminate the personal influence of individual clinical end users
on the updating process. Second, if the subjectivity is random and clinical end users are unaware of
the consequences of the updating preferences they specify in the user settings. Three architectural
implications guard CDSS end users against encountering these situations.

1. The architecture frames the Information specification Extensions (subsection 4.3.1) as in-
terface building blocks that only Councyl can implement. When end users need to involve
Councyl in significant changes of the CDSS set-up, Councyl can make end users aware of the
consequences of these changes and guide finding the suiting settings.

2. When Councyl implements an Information specification Extension, the variable settings of
the specific extension still allow for subjectivity. For instance, if the implemented extension
allows end users to vary the weights of all experiment choices relative to the real-life choices,
clinical end user can still determine the influence of choice types on updates of a CDSS.
Therefore, the architecture describes a try-out environment that allows end users to get
familiar with the effects of particular settings. This environment enables end users to inspect
different combinations of choice types and choice weights without modifying the updating
process or recommendation generator model.

3. The architecture eliminates personal influence on the updating process. As a result, individ-
ual end users cannot determine to what extent his or her choice influences model updates.
By doing so, the architecture mitigates the risk that the CDSS incorporates the emotional

81

status of a clinical end user. For instance, when a clinical end user is in a hurry and wants to
enter the choice quickly, he or she might cut corners on specifying choice details and enters a
random weight for the choice. Moreover, clinical end users in the same context may not share
a similar view on when a choice should have more or less influence on the CDSS update. As
such, personal influence would lead to an inconsistent weighting of choices. The inconsistent
weighting makes updates of a CDSS unreliable.

Over time, Councyl should evaluate whether the subjectivity in the architecture requires additional
restrictions in particular contexts.

Emerging artefact lesson 4: The architecture design involves privacy issues at three
levels.

The architecture design deals with information accessibility issues on three levels.

1. Level 1: Between Councyl and the healthcare context: when the CDSS shares information on
the decision-making behaviour of clinical end user’s in a particular context or the performance
validation of this model with Councyl. End users may want to hide this decision-making
behaviour information for external parties.

2. Level 2: Within the healthcare context: when the CDSS shares decision-making behaviour
information with the clinical end users active in the healthcare context. End users may want
to hide this decision-making behaviour information for other end users in the context.

3. Level 3: Between individuals within a decision-making context: when the CDSS shares
individual choices of clinical end users with the pool of clinical end users active healthcare
context.

In essence, information should not be retrievable to a person. Therefore, the architecture avoids
information sharing as level 3 defines. However, two additional privacy issues exist related to levels
1 and 2 in the context of a BAIT-based CDSS. First, the architecture allows clinical end users to
request model updates based on a particular set of choices - for instance, all choices made by the
senior physicians in the decision-making context. As a result, the risk arises that an end user can
request a subgroup that only consists of one individual. Besides, clinical end users may find it
inappropriate if end users can request insight into the decision-making behaviour of slightly larger
subgroups. Second, the architecture should control the information that the CDSS shares with
Councyl.

Therefore, protection measures solving these two issues are necessary. These measures must
ensure the CDSS shares information in line with privacy preferences in the healthcare context. The
Information Processing Agreement (IPA) that Councyl already has in place forms a solution for
mapping the information sharing preferences of end users in a particular context. Councyl uses the
IPA to specify what information the CDSS can share and with whom. Therefore, the IPA avoids
potential privacy issues related to the decision support. When being attached to the architecture
design, the IPA can guide CDSS developers in implementing information flows described by the
architecture in line with the end user’s information sharing preferences.

Emerging artefact lesson 5: The architecture design involves new organizational ac-
tivities for Councyl.

The architecture describes the expansion of an existing support service. The realization of this
expansion involves technological developments and organizational activities. Councyl needs to
make decisions regarding these activities and fit these activities into the existing workflow. The
activities are present in two phases:

• Pre-implementation.

– Councyl should decide who the owner of the architecture is. This ownership involves
keeping the knowledge captured by the architecture and additional materials that en-
hance the understandability of the architecture at the right place. By doing so, the
right person(s) can use it as intended. In addition, the owner is concerned with the
maintenance of the architecture. An adaptable architecture design requires an owner
who keeps track of and processes changing preferences of end users and other factors
related to components of the architecture.

82

– The final implementation of the CDSS depends on the three aspects. First, the spec-
ification of user settings. Councyl has to meet with the end user and go through the
user settings to find the desirable values. Second, the establishment of an Information
Processing Agreement (IPA). Councyl will need to draft a document in which Councyl
and the end users agree on the information shared with Councyl. The shared informa-
tion can either be nothing, all data (including decision-making behaviour information
(relative importance) as well as model fit and performance data), or only anonymous
data (model fit and performance data). The coding to implement the lines in the archi-
tecture that defines the presented information to Councyl should follow the IPA. Third,
the activities to make clinical end users aware of the need to position and deal with the
information generated by the CDSS (see section 7.1.1). Councyl needs to walk through
the information the CDSS provides and discuss with the clinical end users what the
value of the information is and what implications may result from having access to that
information.

• Post-implementation.

– The dynamic support service includes new features that need additional support activi-
ties from Councyl. Moreover, different from the static service, the dynamic service runs
on an ongoing basis. By doing so, the CDSS generates a continuous flow of new insights
and findings that clinical end users need to understand and interpret correctly. Most
likely, clinical end users will need assistance in doing so.

– An implemented dynamic CDSS will also generate information for Councyl. For in-
stance, information about the performance and fit of the model that the CDSS oper-
ates. Therefore, Councyl should assign someone to take care of this information and
ensure that the necessary measures to deal with particular insights provided by this
information are in place.

Emerging artefact lesson 6: The architecture of a dynamic BAIT-based CDSS can be
technology-independent.

Because software technologies develop quickly and many novel innovations arise over time, the
architecture will retain its value if it does not specify technology requisites and only describes
components that are independent in terms of the technology they are consumed on. Another
advantage of the components’ independence from underlying technology is that developers can
develop and change the components in the way they find most cost-effective and timely. During
the design process, it turned out that an architecture can guide the development of a dynamic
BAIT-based CDSS without specifying any system software and hardware components requisites
at the technology layer. The two foremost reasons are as follows.

First, the architecture forms an expansion of the static BAIT-based CDSS. All insights the
architecture should provide to a CDSS developer of Councyl relate to the business and application
(including software processes and information objects) level. The features and functions that the
expansion needs to offer can be realized at the application level. Therefore, the expansion to a
dynamic version does not generate additional requirements on the technology environment. As
a result, a dynamic BAIT-based CDSS architecture design is not concerned with issues at the
technology layer.

Second, a BAIT-based CDSS is a relatively isolated system because the CDSS does not rely on
the functioning of other systems. The production of the data the CDSS consumes, the processes,
and presents are all captured locally by the CDSS itself. It consumes choices that are entered
into the CDSS by clinical end users. Therefore, the architecture design is not concerned with the
technology infrastructure and formatting of communication and data sharing standards.

Emerging artefact lesson 7: CDSS-related tasks that do not require expert knowledge
and skill can also form a threat to clinical end user’s professional autonomy.

Existing work on CDSS design and adoption emphasizes the perceived threat of CDSSs to profes-
sional autonomy (Esmaeilzadeh et al., 2015; Khairat, Marc, Crosby, & Al Sanousi, 2018; Liberati
et al., 2017; Wang et al., 2021). As such, CDSSs should ensure clinical end users feel they control
the CDSS. However, these studies explain the threat as resulting from the CDSS giving recommen-
dations and capturing the same exclusive knowledge as the clinical end user. This research involves
the design of updating components that keep the CDSS accurate over time. These components
do not directly challenge the knowledge and skill of clinical end users. Therefore, the research did

83

not treat the threat to autonomy as a dominant issue when designing in the context of a dynamic
BAIT-based CDSS

However, clinical end users also prefer to control processes that do not require expert knowledge
and skill. Before clinical end users feel comfortable with a CDSS that manages its updating
processes, they want to become familiar with the CDSS’s operation and develop trust in the CDSS.
Therefore, the architecture should allow clinical end users to control the CDSS when designing
for functionalities that do not directly replace the need for clinical end users’ knowledge and
skill. To conclude, a dynamic BAIT-based CDSS architecture should also design for the CDSS’s
receptiveness to control commands from clinical end users.

Emerging artefact lesson 8: Embedding the CDSS quality of transparency requires
design efforts at the level of the architecture.

The BAIT approach enables a CDSS to make visible how the CDSS generates choice recommen-
dations. Because CDSS literature stresses the need for CDSS’s that explain how the CDSS infers
its recommendations, the architecture initially specified an additional function that shows the ex-
planation of the generated recommendation to the clinical end user (see ??). However, by doing
so, valuable information is presented to a clinical end user when the end user is occupied with a
complex choice task. Therefore, clinical end users desire a CDSS with a completely transparent
structure. If the CDSS operates completely transparent, the end user can observe every part of
the CDSS’s operation at any time. For the architecture to drive the development of a transparent
CDSS, the architecture designer should make design decisions regarding transparency that pertain
to all components in the architecture. To this end, the value of transparency is handled by a Qual-
ity Attribute Requirement (QAR) instead of a Development Guiding Requirement (DGR). A DGR
defines the functionalities an implemented CDSS should possess, while QARs concern aspects of
the CDSS that a single component cannot capture.

7.1.3 Fundamental theories

ADR principle 2 states that theory must inform an ensemble artefact created and evaluated.
Because of the novelty of the artefact, it was unclear what theories would be relevant for the
design at the start of the research. Therefore, the focus was on overarching knowledge fields
rather than on singular theories. This research combines theories and practices from three areas:
CDSS architecture design, Discrete Choice Modeling (DCM), and Machine Learning (ML). ADR
principle 6 requires continuous reflection on the theories ingrained in the architecture to identify
contributions to the knowledge fields. This section presents the main lessons on applying the three
knowledge fields discovered during the design process.

Fundamental theories lesson 1: CDSS architecture design literature provides useful
examples for the design of a BAIT-based CDSS architecture, but the examples need
modification.

Research on CDSS architecture design proposes a commonly accepted structure for CDSS architec-
tures. This structure inspired the selection of the main components for the dynamic BAIT-based
CDSS architecture design. By doing so, this research shows how the design of an architecture of
a BAIT-based CDSS can reuse the main architecture components. The paragraphs below sum-
marize the main insights gained while transforming existing CDSS components into components
applicable in the context of a dynamic BAIT-based CDSS.

First of all, the architecture components need a preference-based design. CDSS architecture stud-
ies commonly propose uniform updating solutions that have a predetermined level of updating
automation (see section 2.1.1). By doing so, the studies ignore potential variations in preferences
on these processes. However, healthcare contexts vary. Consequently, clinical end users from differ-
ent contexts have diverging preferences regarding the influence of choice types and different views
on the level of updating automation (Aron, Dutta, Janakiraman, & Pathak, 2011; Eapen, 2021;
Khairat et al., 2018; Pirnejad et al., 2019; Wang et al., 2021). Moreover, early involvement of
clinical end-users in the CDSS development and the realization of all clinical user’s needs before
the development of a CDSS both increase the likelihood of CDSS acceptance (Khairat et al., 2018).

Second, when designing an architecture of a dynamic BAIT-based CDSS the designer can en-
gage in more detailed design decisions about transparency than when designing an architecture of
a traditional CDSSs. The focus of CDSS architecture design is mainly on embedding values like re-
liability, availability, and security. Existing CDSS designers acknowledge the value of transparency,

84

but evidence of examples showing how to design for transparency is limited. A plausible reason
is that the more significant part of the CDSSs is opaque by nature. This opaque nature restricts
the space to design for transparency. Therefore, the components proposed by CDSS design studies
could not guide the design of a transparent CDSS.

Third, a dynamic BAIT-based CDSS architecture deals with new privacy issues that are not
relevant for the design of traditional CDSS architectures. While accentuating transparency in
the architecture CDSS design, the number of privacy concerns with which the architecture design
is challenged increases. A dynamic BAIT-based CDSS stores real-life choices made by individ-
ual clinical end users, and produces information on how clinical end user’s decision-making be-
haviour evolves over time. Consequently, a BAIT-based CDSS architecture deals with additional
information flows that require the protection of personally retrievable information compared to
architectures of conventional CDSSs.

Fourth, the designer of a dynamic BAIT-based CDSS architecture can ignore particular design
issues. CDSS architecture design studies focus on dealing with data standards because data used
by the system often comes from different sources. A dynamic BAIT-based CDSS only uses data
that is locally entered and stored in a predefined format. Therefore, solutions to deal with infor-
mation from other locations or systems with different standards are not relevant for the design of
a dynamic BAIT-based CDSS.

Finally, architecture and CDSS architecture design literature barely specify design considerations
related to the architecture as a product. The literature instead focuses on the CDSS of which
the architecture describes the structure. Therefore, additional research and design efforts were
necessary to design an architecture that Councyl can use as a tool. This research shows how a
CDSS architecture can be designed as an artefact on itself, outlined in terms of requirements on
the architecture level.

Fundamental theories lesson 2: Discrete Choice Modeling (DCM) offers promising
features to a dynamic CDSS. However, not all DCM theories and practices are appli-
cable in the context of a CDSS architecture because of the diverging goals of DCM
and decision support.

A BAIT-based CDSS codifies decision-making knowledge using Discrete Choice Modeling (DCM).
(Ten Broeke et al., 2021) already prove that the use of DCM provides a BAIT-based CDSS with
characteristics that have great potential for the support of clinical choice tasks. This research shows
that the DCM has additional values for decision support in ever-changing healthcare contexts. The
list presented below gives the three most prevalent values:

1. DCM enables the development of transparent CDSSs that make visible how the decision-
making behaviour in a healthcare context evolves. Most of the traditional CDSS’s only
provide clinical end users with choice recommendations.

2. DCM enables a dynamic BAIT-based CDSS to easily collect novel choice information that the
CDSS for updating the recommendation generator model over time. Instead of combining
different data sources, a dynamic BAIT-based CDSS can collect this choice information
locally (see subsection 2.2.1). Moreover, the information always has a similar format. As
such, the components of dynamic BAT-based CDSS do not depend on other systems. This
independence eliminates the need for complex solutions to prepare and combine historic
information originating from different sources.

3. DCM provides a dynamic BAIT-based CDSS with two characteristics that mitigate the
potential issue resulting from updating a CDSS with choices that the CDSS might have
assisted (see section 7.1.2).

Despite the advantages of DCM for CDSS design, an architecture designer should not blindly
copy DCM theories, practices, and characteristics. The goal with which DCM studies generate
theoretical and practical suggestions significantly differs from the goal fostered with a decision
support service. The goal of DCM is to find the parameters that best describe the data generating
process (DGP) to convey the estimated model as the true representation of the data from which
behavioral inferences can be made (Van Cranenburgh, Wang, Vij, Pereira, & Walker, 2021). A
BAIT-based CDSS aims to utilize DCM to generate insights that maximize the quality of the
decision support. Because of these diverging intentions, the final set of requirements does not
drive the architecture designer to include theories and practices suggested in DCM literature to

85

better approach the DGP. The list below gives two examples of how the architecture was affected
by this lesson learned:

1. The architecture does not include the scale parameter that DCM literature proposes for a
joint choice model estimation (for an explanation of the scale parameter, see section 7.1.2).
The inclusion of the parameter resulted in a choice recommendation model that is justifiable
from an econometric perspective. However, the model erased the noise present in the real-life
context, like time pressure affecting the decision. Interviewed clinical end users interviewed
emphasized that they prefer the model to include this real-life noise because it makes the
model realistic. Moreover, the scale parameter makes the updating process more complex.
As a result, end users will find it harder to understand and track the CDSS behaviour. This
complexity conflicts with the architecture requirements on transparency (QAR5, QAR6).
Therefore, requirements forcing the architecture to correct the model update with a scale
parameter were excluded.

2. The architecture does not specify components that check for the significance of the estimated
choice model parameters. DCM studies aim at significant outcomes that allow for generaliza-
tion to a population. However, in the context of decision support, the findings only need to
reflect the decision behaviour of the clinical end users within the sample. Therefore, gener-
alization to a population is irrelevant. Accordingly, the set of requirements does not require
the architecture to include components that assess the significance of values estimated during
an update.

Fundamental theories lesson 3: Machine Learning techniques and theories are useful,
but need modification for a proper application of the techniques and theories in the
context of Discrete Choice Modeling-based decision support.

At the start of the research, it was expected that Machine Learning (ML) techniques could be
directly used in the architecture design. The main reason for this assumption was that ML studies
focus on building and improving models based on experience to make more accurate predictions.
This focus approaches the goal of a dynamic BAIT-based CDSS. Moreover, DCM has similarities
with ML: both are grounded in statistical theory, face similar challenges (for instance, unbalanced
data sets, and the trade-off between model complexity and understandability), and aim to generate
predictions that are replicable and flexible ((Van Cranenburgh et al., 2021)).

However, DCM and ML are significantly different. In contrast to DCM, the training of a ML
model involves labelled records (Ten Broeke et al., 2021). These records function as examples
for the to be modeled input-output behaviour. With the labelled records, ML researchers aim
to find the model that is best capable of out-of-sample generalizing. By doing so, the resulting
model approaches the correct relationships between the relevant variables (Van Cranenburgh et
al., 2021). To this end, ML assumes that the data generating process (DGP) is unknown. On the
contrary, a DCM researcher believes that the decision-making that the researcher analyzes follows
a particular decision rule (Alwosheel, 2020). An example of a decision rule is Random Utility
Maximization (RUM), which states that a decision-maker aims to maximize the utility he or she
obtains from a choice alternative. As a result of these divergent approaches, ML models are black
boxes while DCM models show how clinical end users make decisions (Ten Broeke et al., 2021).
Another important difference is that ML starts from a deterministic ground truth, while a BAIT-
based CDSS is probabilistic in nature (see section 2.2.2). Due to these differences, a designer of
a dynamic BAIT-based CDSS architecture can reuse ML theories and techniques. However, the
designer needs to tune them, so they are applicable for a DCM-based decision support technology.
The list below shows four examples of adjustments that were necessary for the architecture for
Councyl:

• The architecture incorporates the ML-based k-fold validation technique. However, the reuse
of this technique in the context of a dynamic BAIT-based CDSS required two adjustments.
The first adjustment concerns the random data split of the k-fold cross-validation. The
adjustment ensures that the CDSS equally distributes similar choice tasks over the training
and validation set. The second adjustment ensures that the validation set only includes the
recent choices representing the present decision-making behaviour in the context. For a more
detailed explanation of both adjustments, see subsection 4.2.5.

• The architecture involves ML-based performance metrics. However, the metrics have different
names that better fit the probabilistic ground-truth basis of a dynamic BAIT-based CDSS

86

(see section 2.2.2). In addition, DCM model diagnostics metrics and a metric uniquely
designed for a BAIT-based CDSS (the Confidence Representation rate) complemented the
set of ML-based metrics.

• The architecture involves ML-based performance metrics. However, the architecture allows
end users to uses the outcomes differently. For ML, the goal is to find the model with the best
performance. In the context of a BAIT-based CDSS, the performance of a recommendation
generator model should not be the only factor driving the acceptance of the model. Beyond
its performance, an end user may perceive a model as desired or undesired given the accepted
norms and values in the context.

7.1.4 Design Process

Finally, the research generated lessons that inspired the organization of the design process. The
design process involves activities key for designing an architecture in a situated context and for-
malizing the learning in this context. Although the research started with a research plan, findings
discovered along the process required revising the initial schedule. Moreover, some practices were
not part of the initial research planning but turned out to work well for achieving the research
goal. The sections below present the main lessons learned regarding the design process.

Process lesson 1: Designing an architecture as an artefact involves design considera-
tions at two levels.

Although the artefact subject to design is an architecture, the design process was highly correlated
with specifications at the level of the CDSS. Therefore, designing the architecture involves design
considerations at two levels: at the level of the architecture and the level of the CDSS that
the architecture describes. However, architecture and CDSS architecture design literature does
not explicitly support designing an architecture that functions as an artefact for CDSS providers.
Instead, current work presents the architecture as a tool to communicate and illustrate the features
of the CDSS. The difference is that in case of the latter, the architecture design is not explicitly
bound to architecture requirements. Instead, the architecture designer focuses on the requirements
of the CDSS because the designer uses the architecture to find the right CDSS design.

In addition, because designing an architecture involves design considerations at two levels,
it significantly differs from designing other kinds of IT artefacts. The design of these other IT
artefacts only requires design choices at a single level. As a result, no studies were in place that
could function as an example for designing the architecture for Councyl. To deal with the design
considerations at the two levels, the research process included the following two additional steps:

• The requirement identification involved both representatives of Councyl and clinical end
users. Councyl provided insight into the requirements that the architecture must satisfy to
be a useful and understandable artefact for Councyl. The clinical end users marked the
features a CDSS must possess. To translate the information collected at different levels
into information that directly informs the architecture design, the requirement formulation
followed three categories: Client Architecture Requirements Quality Attribute Requirements,
and Development Guiding Requirements.

• The evaluation involved an assessment at the architecture level and CDSS level. First, the
evaluation assessed whether Councyl finds the architecture is useful and understandable.
Next, the evaluation assessed whether the architecture specifies the correct CDSS functional-
ities. To this end, the evaluation included a dynamic-oriented assessment of all components
in the architecture that are only visible during CDSS run time. During this dynamic-oriented
evaluation, Counyl and clinical end users judged the relevance of the functionalities described
in the architecture. Councyl and the clinical end users functionalities could evaluate the func-
tionalities via a proof-of-technology and a series of mock-ups.

Process lesson 2: The ADR design cycles should not follow the extensions of the
adaptable architecture design.

The ADR framework proposes repeated Building, Implementation and Evaluation (BIE) cycles
(Sein et al., 2011). The initial planning assigned each cycle to a specific Information specification
Extension and update activation extension (for an explanation of these extensions, see subsec-
tion 4.3.1 and subsection 4.2.1). However, structuring the design process using each cycle for a
different part of the architecture is not recommendable. Two reasons further substantiate this:

87

1. At the start of the design process, it is unclear which extensions the optimal design requires.
Commonly, findings done along an ADR design process iteratively shape the problem formu-
lation and the emerging artefact (Sein et al., 2011). Therefore, a design process cannot be
planned based on extensions or other parts that a designer expects to need for the architecture
design.

2. Each extension or part of the design needs several design iterations. When using a single
BIE cycle per extension, each extension only receives attention during one BIE cycle.

Based on the experience gained during this research, dynamic BAIT-based architecture designers
are recommended to already design each extension conceptually during the first BIE cycle. Each
successive cycle can further shape or remove all parts of the design.

Process lesson 3: The architecture design requires technical knowledge and experi-
ence.

The design of a dynamic BAIT-based CDSS architecture is associated with multiple technical
challenges. The interviewed clinical end users had little understanding of the technical terms and
found it hard to make explicit what technical aspects they need or preferred. The end users declared
to fully trust the design team for finding the technical design solutions. Therefore, the designer
should find suitable technical solutions for a dynamic BAIT-based CDSS architecture individually.
To this end, the designer needs to possess knowledge about DCM and statistics beyond DCM.
Additionally, the designer should incorporate scientific knowledge on the technological concept(s)
for all architecture components to ensure the architecture describes statistically correct processes.
Finally, a designer is recommended to conduct a dynamic-oriented evaluation of the architecture
that assesses the effectiveness of all technical components.

Process lesson 4: The creation of mock-ups enhances the architecture design.

Although the design process focuses on the design of the architecture, the development of CDSS
mock-ups formed an effective manner to evaluate and improve the architecture design. Three
reasons explain why the mock-up development positively influenced the architecture design. First,
mock-ups stimulate collaboration with stakeholders. Visualizations of components described in
the architecture make it easier to ascertain if the designer and stakeholders are on the same
page. Second, mock-ups help the designer to think about design aspects that the designer initially
overlooked. During this research, the creation of the mock-ups revealed that particular information
flows to interfaces were missing in the architecture. Finally, mock-ups support the evaluation of
the architecture with stakeholders at the level of the CDSS. By doing so, mock-ups allow assessing
whether an architecture defines the right features and functions.

7.2 Summary chapter 7

The goal of chapter 7 is to present the results of the ongoing reflection of this design research. The
reflection enabled making the step from designing for the particular problem instance of Councyl
to applying that learning to a broader class of problems. The ongoing reflection resulted in a set
of lessons learned. These lessons shaped the problem framing, the emerging artefact, the theory
ingrained in the artefact, and the design process.

The lessons learned regarding the problem framing show that in the context of a dynamic
BAIT-based CDSS, both a CDSS and a clinical end user tune their internal processing over time.
Moreover, the lessons indicate that contextual change is either radical or gradual and that the
problem formulation of this research relates to gradual change. Finally, the reflection emphasized
that the problem formulation does not require a solution that enables a CDSS to better understand
a choice task over time but rather to become flexible enough so that the CDSS can generate accurate
decision support in an ever-changing context. The lessons learned on the emerging artefact concern
both technical and social design aspects. Four lessons concern technical design aspects.

1. It is not problematic for a dynamic BAIT-based CDSS to update with choices the CDSS has
assisted because the characteristics of a dynamic BAIT-based CDSS mitigate the effects that
might result from updating with these choices.

2. The architecture should not include econometric techniques to deal with scale differences
between information that experiment choices and real-life choices capture. Including these

88

techniques would make a dynamic BAIT-based CDSS too complex to comprehend for clinical
end users.

3. A dynamic-BAIT-based CDSS architecture should ensure that a CDSS eliminates choice
recommendation generator model updates that stem from undesired subjectivity.

4. An architecture can guide the development of a dynamic BAIT-based CDSS without speci-
fying software and hardware perquisites.

Three lessons concern social design aspects.

1. Privacy and organizational issues play a key role when designing a dynamic BAIT-based
CDSS architecture.

2. Clinical end users like to control CDSS components that do not require physicians’ knowledge
and skill. Therefore, the architecture should ensure that a dynamic BAIT-based CDSS is
receptive to clinical end users.

3. Clinical end users want a CDSS to operate completely transparent: simply complementing
choice recommendations with an explanation of how a CDSS created the recommendation
is insufficient. Instead, the designer should ensure that the architecture only describes com-
ponents that clinical end users understand, and that make the internal change of the CDSS
tractable for clinical end users.

Theories and practices provided by Discrete Choice Modeling, Machine Learning, and CDSS archi-
tecture design are beneficial for the design of a dynamic BAIT-based CDSS architecture. However,
every theory or practice requires customization before a CDSS developer can apply the theory
or practice in the context of a dynamic BAIT-based CDSS. To finish, lessons learned shaped the
design process guiding this research. The most important lesson concerning the process is that the
architecture design involves design consideration at the level of the architecture and the level of
the CDSS.

Each lesson further informed and shaped the list of architecture requirements and, by doing so,
the architecture design for Councyl. The combination of the lessons learned answers the sixth
sub-question:

6. Considering the requirements and the evaluation, what are the lessons about
how to design architectures of a dynamic BAIT-based CDSS?

89

Chapter 8

Generalization

The goal of this chapter is to make the move towards the generalization of the research findings.
This chapter draws on the ADR principle of generalized outcomes. This ADR principle claims
that the learning should be abstracted to a class of field problems (ADR principle 7) (Sein et al.,
2011). Chapter 7 presents the lessons learned that this research identified. This learning inspires
the translation of the tested architecture requirements into design principles that guide the design
process of a dynamic BAIT-based Clinical Decision Support System (CDSS) architecture outside
a situated context. Section 8.1 presents the design principles resulting from this translation step.
Next, section 8.2 describes the relationships between the coherent set of design principles. To
illustrate the contribution of the generalized findings to the design science knowledge, section 8.3
explicates the novelty and added value of each design principle. The chapter closes with a summary
in section 8.4.

8.1 Design principles

This research aims to find the design principles that guide the design of a dynamic BAIT-based
CDSS architecture outside a situated context. Design principles capture knowledge gained along
with the process of building a solution and encompass knowledge about creating other instances
that belong to this class (Dasgupta et al., 1996). By doing so, design principles connect the gen-
eralized outcomes to a class of solutions, and a class of problems (Sein et al., 2011). As a result,
design principles function as recommendations on how a designer should design artefacts that solve
comparable problems. Here, it is not about the generalization from a sample to the population, but
rather about transportability: the usability of the design principles in problem contexts outside
the study context (Degtiar & Rose, 2021; Lesko et al., 2017). Within this research, the class of
problems refers to the challenge of designing a dynamic BAIT-based CDSS architecture that func-
tions as a guiding tool for developers of transparent and dynamic CDSSs who aim to serve various
healthcare decision-making contexts. The architecture forms a solution instance that represents
a class of solutions. In this research, the class of dynamic CDSS architectures: architectures of
CDSSs that clinical end users apply in ever-changing decision-making contexts.

Generalizing findings of ADR research is challenging because the outcomes of an ADR study are
highly situated. Therefore, this research followed a structured approach to generalize the situated
outcomes. The approach consists of clustering the tested requirements into overarching themes of
design principles. The choice for this approach stems from three reasons. First, the research iden-
tified 43 architecture requirements. Therefore, the number of requirements is too high for a direct
translation into design principles, which indicates the need for clusters of requirements. In addi-
tion, the architecture requirements are interrelated. The interrelation between the requirements
indicates that the requirements are dependent on each other and can form clusters of coherent
requirements. Finally, the lessons learned (see chapter 7) demanded the definition of particular
design principles. By doing so, these lessons could guide the formulation of particular requirement
clusters.

Making the conceptual move to the generic design principles involves three steps. The first
step is to write down all problem context-related architecture requirements on post-its. The set
of post-its gives a clear overview of all requirements subject to the clustering. The second step is
to cluster the requirements into overarching themes. This second step also involves consulting the
lessons learned (see chapter 7) and determining what design principles these lessons stipulate. By

90

doing so, the lessons guide the clustering of the requirements into themes that align with important
design lessons. Some requirements related to multiple themes, indicating that relationships exist
between the design principles. The final step consists of using the overarching themes of clustered
requirements to formulate design principles.

The generalization process resulted in a coherent set of ten design principles. Table 8.1 provides
an overview of all ten design principles. Because the lessons learned inspired their formulation, the
design principles are based not only on the truth - the requirements - but also on what is important
for designers to do to avoid design obstacles encountered during this research. The sections below
explain all design principles. Each section describes a principle and explains the internal cohesion
between the underlying architecture requirements. The code between brackets in each section refers
to the architecture requirements that section 3.1 introduces (CAR: Client Artefact Requirement,
QAR: Quality Attribute Requirement, DGR: Development Guiding Requirement). Moreover, each
section explicates how the lessons learned informed the formulation of a design principle.

Table 8.1: Overview of the design principles for designing a dynamic BAIT-based CDSS architec-
ture.

Reference Catch word Design principle

Design principle 1 Adaptable design The architecture should have a technology-independent, adaptable structure
with extensions that enable customization of the updating automation level
and the choice information that updates incorporate.

Design principle 2 Objectivity max-
imization within
the subjective
boundaries

The architecture should maximize the objectivity with which choice informa-
tion is processed during an update, given the clinical end user’s deliberately
chosen updating preferences.

Design principle 3 Goal-based interac-
tion

The architecture should only define interaction flows that are always available
and from which a clinical end user directly or indirectly benefits.

Design principle 4 Tractability of
change

The architecture should only describe CDSS components and outcomes that
are comprehensible for clinical end users and that make the change in the choice
recommendation generator model tractable.

Design principle 5 Receptivity to user
input

The architecture should force a receptive CDSS that induces interaction with
end users and give end users control over the change in the choice recommen-
dation generator model.

Design principle 6 Differentiation in
consumed choices
and produced
information

The architecture should distinguish types of choices that different CDSS pro-
cesses consume and types of information that a CDSS produces for different
receivers.

Design principle 7 Mutual learning The architecture should force the development of a CDSS that enhances mutual
learning between clinical end users.

Design principle 8 Architecture intu-
itiveness

The architecture should have an intuitive design for developers with knowledge
and skill in Discrete Choice Modeling.

Design principle 9 Privacy of choice
information and
decision-making
behaviour informa-
tion

The architecture should not contain decision-making information flows that
can be traced back to individual clinical end users or are undesired by clinical
end users in the healthcare context.

Design Principle 10 Explication of
the organizational
activities

The architecture should be complemented with a description of the organiza-
tional activities needed from the CDSS provider and a procedure that guides
the provider in executing these activities.

8.1.1 Design principle 1: Adaptable design

Design principle: The architecture should have a technology-independent, adaptable structure with
extensions that enable customization of the updating automation level and the choice information
that updates incorporate.

The first design principle captures two structural aspects. The first structural aspects is that
the architecture should be adaptable. An adaptable architecture needs to contain three elements:
core components, optional extensions, and a set of modifiable process values (CAR10). The core
includes all components that are essential for a dynamic BAIT-based CDSS independent of the
preferences of end users in a healthcare context. The extensions are optional components that can
be implemented if desired by the end user. The extensions should allow end users to shape two
aspects of the CDSS: the weight with which an update includes different types of choices and the
level of updating automation. Next to the extensions, the architecture should not predetermine the

91

values influencing the behaviour of a CDSS’s processes (DGR6). An example is the value for the
majority threshold (see section 5.3). When the architecture includes these extensions and these
modifiable process values, the architecture enables CDSS developers to customize the CDSS so
that the CDSS reflects end users’ preferences. The importance of customization results from the
differences between healthcare contexts and the varying preferences regarding a dynamic BAIT-
based CDSS of end users in these contexts (see Fundamental theories lesson 1 in section 7.1.3).
Because of these differences, the architecture should be able to guide the development of CDSS’s
with different characteristics (CAR10).

The architecture should also be adaptable over time (CAR11). Because of the ever-changing
nature of healthcare decision-making contexts, clinical end users’ preferences will change over time.
The changing preferences have two implications for the architecture design. First of all, a developed
CDSS may need a modification to reflect end users’ preferences later in time. Therefore, the archi-
tecture describes extensions and modifiable process values (see the paragraph mentioned above)
that can always be adjusted with new extensions or different process value assignments. Second,
the architecture designer should be able to expand the architecture with new components. To en-
sure the addition, removal, or replacement of architecture components will not have unintentional
effects, the architecture should define all dependencies between the components in the architecture
(CAR9). When the architecture defines all these dependencies, the architecture informs a CDSS
developer about the possible effects of an architecture modification on all components.

The second structure aspect is that the architecture should have a technology-independent struc-
ture. Architecture design research commonly describes system components at three levels: the
business level, application level, and technology level (for an explanation, seesubsection 4.1.1).
The architecture of a dynamic BAIT-based CDSS should specify business processes because a dy-
namic BAIT-based CDSS relies on organizational activities executed by the CDSS provider and
clinical end users (see Emerging artefact lesson 5 in section 7.1.2 and Problem framing lesson 1
section 7.1.1). These activities determine the interaction that a dynamic CDSS must include to
serve clinical end users properly. An architecture designer typically defines these activities as busi-
ness processes at the business layer of the architecture. Therefore, an architecture of a dynamic
BAIT-based CDSS includes processes at the business layer. The architecture should specify ap-
plication components because the architecture should inform CDSS developers on the components
that a dynamic BAIT-based CDSS needs to incorporate new choice information during an update.
An architecture designer typically describes these types of components at the application layer.
Therefore, an architecture of a dynamic BAIT-based CDSS includes components at the application
layer.

The architecture can guide the development of a dynamic BAIT-based CDSS without specify-
ing any system software and hardware requisites (see Emerging artefact lesson 6 in section 7.1.2
and see Fundamental theories lesson 1 in section 7.1.3). By doing so, the architecture only de-
scribes components that are independent of the technology they are consumed on and does not
represent components at the technology layer. This technology-independent design is beneficial
for an architecture to retain its value over time (see Emerging artefact lesson 6 in section 7.1.2).
Table 8.2 gives an overview of the requirements fundamental to design principle 1.

Table 8.2: Architecture Requirements design principle 1: Adaptable design.

Reference Architecture Requirement

DGR6 The architecture should force the development of a CDSS that operates a modifiable
majority threshold and level of acceptance.

CAR10 The architecture should be adaptable to the preferences present in all healthcare decision-
making contexts.

QAR3 The architecture should never force a fully automated CDSS.

DGR7 The architecture should force the development of a CDSS that estimates a new choice
recommendation generator model according to the choice types and weight specification
clinical end users selected as soon as clinical end users deem this model inaccurate or
undesired for decision support.

CAR9 The architecture should inform on all dependencies between architecture components.

CAR11 The architecture should be adaptable to the potential future preferences in all healthcare
decision-making context.

CAR12 The architecture should always be integrable with the service environment of the CDSS
service provider.

92

8.1.2 Design principle 2: Objectivity maximization within the subjec-
tive boundaries

Design principle: The architecture should maximize the objectivity with which choice information
is processed during an update, given the clinical end user’s deliberately chosen updating preferences.

The foremost goal of a dynamic BAIT-based CDSS architecture is to define a CDSS that in-
corporates new choice information during an update of the recommendation generator model, so
the CDSS’s recommendations align with the changes in the decision-making context. Therefore,
the architecture should define components that ensure the CDSS can incorporate new experiment
choices and new real-life choices during ongoing use (QAR8, DGR10).

The preferences regarding the types of choices that should inform an update varies between health-
care contexts. Therefore, design principle 1 - adaptable design - guides designers to develop an
architecture with extensions that allow end users to customize the type of choices that inform an
update (see subsection 8.1.1). However, letting end users select the choice types that will inform
an update makes the update subjective (see Emerging artefact lesson 3 in section 7.1.2). There-
fore, an architecture of a dynamic BAIT-based CDSS should specify two approaches that avoid
the development of a CDSS that is unintentionally informed with a distorted representation of the
decision-making context.

The first approach is to ensure the choices informing an update are deliberately selected. By
doing so, the clinical end user is aware of the consequences of customization (see Emerging artefact
lesson 3 in section 7.1.2). The awareness implies that the customization is intentional and results
from a particular purpose rather than from arbitrariness. The intentional customization justifies
the subjectivity.

The second approach is to maximize the objectivity with which a CDSS processes choice infor-
mation during an update. The maximization of objectivity relates to two requisites (see Emerging
artefact lesson 3 in section 7.1.2). The first requisite is that the architecture only describes reliable
updating processes as part of the model update engine (CAR1, QAR9, DGR2). The architecture
design requires extra attention on reliability because of the Machine Learning (ML) techniques
that inform the design of the components in the architecture. The reliable application of ML tech-
niques in the context of dynamic BAIT-based CDSSs is not similar to the reliable application in
the context of ML-based CDSSs (see Fundamental theories lesson 3 in section 7.1.3). Therefore, an
architecture designer should actively monitor the reliability of all components while designing the
architecture. The second requisite is that the architecture should eliminate any personal influence
of individual clinical end users on updates (QAR7). Personal influence refers the influence of a
clinical end user’s mental state. For instance, the influence of being in a rush or being emotionally
challenged on an end user’s choice. The selection of the choice information that the model update
engine processes would become inconsistent if every end user can determine how much their choice
should influence the model updates themselves. Each end user follows different criteria to choose
a weight with which a particular choice type influences the update. Moreover, an end user may
use different criteria at different points in time. Consequently, it is hard to retrieve why particular
choice types informed an update.

A final notion regarding design principle 2 is necessary. The model recommendation generator
model estimated during an update aims to represent the pool of clinical end users in the particular
context rather than a wider group of clinical end users outside this sample (see Fundamental theo-
ries lesson 2 in section 7.1.3). Although econometricians and DCM-analysts might expect this, the
design principles concerning the updating reliability do not force the estimated recommendation
generator model to be statistically significant.

To conclude, the architecture should never be limited to the maximization of objectivity. In-
stead, the architecture should maximize objectivity within the boundaries that clinical end users
set to reflect their decision support preferences. Clinical end users define which choices should
shape an update, and a CDSS has the components to objectively update the choice recommen-
dation generator model. Table 8.3 gives an overview of the requirements fundamental to design
principle 2.

93

Table 8.3: Architecture Requirements design principle 2: Objectivity maximization within the sub-
jective boundaries.

Reference Architecture Requirement

CAR1 The architecture should define the model update engine only with processes that have
proved to achieve the goal for which the architecture includes the processes.

QAR9 The architecture should only define components that work statistically correct.

QAR7 The architecture should avoid the development of a CDSS that allows clinical end users
to directly determine the importance of a single real-life choice in the model estimation.

QAR8 The architecture should force the development of a CDSS that only updates the choice
recommendation generator model according to contextual changes captured by the ex-
periment choices and real-life choices the CDSS is informed about.

DGR10 The architecture should force the development of a CDSS that allows replacing the
experiment choices with experiment choices from a new choice experiment.

DGR2 The architecture should force the development of a CDSS that does not interchange
patient-specific data to deal with incomplete real-life choices.

8.1.3 Design principle 3: Goal-based interaction

Design principle: The architecture should only define interaction flows that are always available
and from which a clinical end user directly or indirectly benefits.

A dynamic BAIT-based CDSS produces more information compared to traditional CDSSs. There-
fore, a dynamic BAIT-based CDSS architecture designer will need guidance on designing for the
interaction that the exchange of this information with clinical end users requires (see Problem
framing lesson 1 in section 7.1.1). The interaction between a CDSS and clinical end users is associ-
ated to a contradiction that complicates the design for this interaction. On the one hand, clinical
end users have stressful working days and aim to fully focus on patients’ well-being. Interrupting
clinical end users or keeping them occupied without a clear purpose will frustrate end users and
negatively affect end users’ attitudes towards a CDSS. On the other hand, clinical end users do
not like to be excluded by a CDSS or unable to command a CDSS (see Emerging Artefact lesson
7 in section 7.1.2). They rather control a dynamic BAIT-based CDSS and observe the outcomes
resulting from updates.

To deal with this contradiction, a designer should be careful that the architecture only describes
interaction flows between a CDSS and clinical end users that ask information or provide information
from which clinical end users directly or indirectly benefit. For instance, a clinical end user is
encouraged to enter additional real-life choice information, like his or her confidence with regard
to a choice, if this leads to additional insights into the decision-making behaviour of clinical end
users and mutual learning (QAR11, DGR15, DGR16). Another example is that a clinical end user
might want to be informed about the completion of an update but does not want to investigate the
outcomes resulting from a model update at the same time. The interaction should therefore consist
of a confirmation without the presentation of any update outcomes. By doing so, the interaction
flows in the architecture will not distract clinical end users with unsolicited information.

Moreover, the architecture should ensure that clinical end users are not hindered while interact-
ing with a CDSS (QAR10, QAR12, QAR2). By doing so, the architecture minimizes the time and
effort end users need to complete particular tasks with a CDSS. A specific architecture component
enables this undisturbed interaction. The architecture should force the development of CDSS com-
ponents that enable clinical end users to request support on particular functionalities or outcomes
that a CDSS generates (QAR13). For instance, in the form of additional explanations. The notion
of ’request’ is important because end users will perceive unsolicited support as superfluous. With
a support component in place, a CDSS can help clinical end users facing an obstacle during the
interaction with a CDSS to effectively continue their task as quickly as possible. Table 8.4 gives
an overview of the requirements fundamental to design principle 3.

8.1.4 Design principle 4: Tractability of change

Design principle: The architecture should only describe CDSS components and outcomes that are
comprehensible for clinical end users and that make the change in the choice recommendation
generator model tractable.

The resources that assist clinical end user’s decision-making are ideally fully transparent because
end users’ choices concern patients’ well-being. Despite that a dynamic BAIT-based CDSS directly

94

Table 8.4: Architecture Requirements design principle 3: Goal-based interaction.

Reference Architecture Requirement

QAR10 The architecture should minimize the time and number of activities that a CDSS requires
from clinical end users to fulfil a clinical end user’s goals with the CDSS.

QAR11 The architecture should force the development of a CDSS that only asks a clinical end
user to enter choice-specific data when entering a real-life choice from which the clinical
end user will benefit later in time.

QAR12 The architecture should force the development of a CDSS that clinical end users can
always use for a choice recommendation request and measurement of a real-life choice.

QAR13 The architecture should force the development of a CDSS that enables clinical end users to
always request online support on the CDSS components and outcomes these components
produce.

DGR15 The architecture should force the development of a CDSS that allows clinical end users
to request the relative importance of the choice attributes of all model updates.

QAR2 The architecture should minimize the number of intervening actions needed from Councyl
that are not requested by a clinical end user.

DGR16 The architecture should force the development of a CDSS that allows clinical end users
to request the relative importance of the choice attributes for a by the clinical end user
selected subgroups.

reflects the changes in clinical end users’ own expert knowledge, clinical end users are not likely to
accept a dynamic CDSS if it does not make transparent how it processes these changes during an
update.

The DCM ground of a dynamic BAIT-based CDSS allows a dynamic BAIT-based CDSS to
make the changes in the choice recommendation generator model fully transparent (see Problem
framing lesson 1 in section 7.1.1). Accordingly, an architecture designer should exploit the DCM
characteristics and describe components in the architecture that ensure the visibility of the changes
in a dynamic BAIT-based CDSS’s recommendation generator model (see Fundamental theories
lesson 1 in section 7.1.3). However, simply presenting an explanation of how a CDSS derived the
recommendation when a clinical end user requests a choice recommendation is insufficient (see
Emerging Artefact lesson in section 7.1.2). Instead of capturing transparency with an additional
CDSS functionality, the architecture designer should treat transparency at the architecture level.
By doing so, the entire CDSS structure aligns with the value of transparency. To treat transparency
at the architecture level, the designer should consider two design focus areas.

The first area is the tractability of a CDSS’s components and the outcomes that these compo-
nents produce. The architecture designer should ensure that a CDSS provides end users with tools
to track the changes in the recommendation generator model. To this end, a CDSS should inform
clinical end users about the main updating activities (DGR13, DGR14). For instance, by sending
a confirmation when a CDSS completes a model update. Moreover, a CDSS should inform end
users about changes resulting from these updating activities. Therefore, the architecture should
include components that enable a CDSS to visualize how the parameters of the recommendation
generator model change (QAR6,DGR15) and how a model’s performance changes over various up-
dates (DGR11). Because clinical end users tend to forget to check the performance regularly, the
architecture should describe a model quality monitor that continuously assesses a recommendation
generator model’s performance on accurate choice tasks (DGR4, DGR5).

The second area is the comprehensibility of a CDSS’s components and the outcomes that these
components produce. If end users cannot understand these components and the outcomes, the
tractability of these components and outcomes is meaningless. The essence of all CDSS com-
ponents should be understandable regardless of any knowledge about Discrete choice modeling,
statistics, and Machine Learning (QAR5). Therefore, the architecture designer should be careful
with describing complex statistical techniques and performance metrics in the architecture. For
instance, the inclusion of the scale parameter made a CDSS’s model update engine too complex
for clinical end users to understand and track the changes resulting from model updates (see
Fundamental theories lesson 2 in section 7.1.3 and Emerging artefact lesson 2 in section 7.1.2).
Moreover, the architecture should describe an environment where end users can try out model
updates (QAR4). This environment will help end users to become familiar with a CDSS’s com-
ponents and outcomes. Table 8.5 gives an overview of the requirements fundamental to design
principle 4.

95

Table 8.5: Architecture Requirements design principle 4: Tractability of change.

Reference Architecture Requirement

QAR5 The architecture should only include components and provide clinical end users with out-
comes that a clinical end user without any knowledge about Discrete Choice Modelling,
statistics, and Machine Learning can understand.

QAR4 The architecture should avoid the development of a CDSS that forces clinical end users
to accept a choice recommendation generator model version.

DGR14 The architecture should force the development of a CDSS that confirms the completion
of a choice recommendation generator model update.

DGR13 The architecture should force the development of a CDSS that presents an alert to clinical
end users when the level of acceptance has been reached and the choice recommendation
generator model is not updated yet.

DGR9 The architecture should force the development of a CDSS that makes the date at which
a clinical end user entered a choice used for the model validation transparent.

DGR5 The architecture should force the development of a CDSS that copies real-life choices
exceeding the majority threshold but deviate from a clinical end user’s choice to a separate
database.

DGR4 The architecture should force the development of a CDSS that compares each choice
recommendation with the majority threshold and the clinical end user’s choice as soon
as an end user enters a real-life choice into the CDSS.

QAR6 The architecture should force the development of a CDSS that makes its internal changes
transparent for clinical end users.

DGR11 The architecture should force the development of a CDSS that enables clinical end users to
request the performance metrics for all choice recommendation generator model updates.

DGR15 The architecture should force the development of a CDSS that allows clinical end users
to request the relative importance of the choice attributes of all choice recommendation
generator model updates.

8.1.5 Design principle 5: Receptivity to user input

Design principle: The architecture should force a receptive CDSS that induces interaction with
end users and give end users control over the change in the choice recommendation generator model.

The architecture should ensure that an implemented CDSS is receptive to the input of clinical
end users. Receptivity to clinical end users is important for the acceptance of a CDSS. Two rea-
sons further substantiate why this is important. The first reason is that if a CDSS is receptive
to clinical end users’ input, this will give end users the feeling they have control over a CDSS.
Clinical end users are experts who have gained much experience over time. As a result, they have
developed a sense of professional autonomy. The tasks of a dynamic BAIT-based CDSS do not
directly challenge the expert knowledge and skills of clinical end users. However, these tasks still
form a threat for a clinical end user’s professional autonomy when a CDSS unsolicitedly controls
these tasks (see Emerging Artefact lesson 7 in section 7.1.2). Being able to control the tasks of a
dynamic CDSS will result in a positive attitude towards a CDSS because it leaves space for clinical
end users’ autonomy (Esmaeilzadeh et al., 2015; Siau & Shen, 2003). Second, receptivity to clinical
end users’ input gives end user the feeling they can influence a CDSS. By doing so, a receptive
CDSS approaches real-life group thinking (see Emerging artefact lesson 1 in section 7.1.2). Group
thinking allows clinical end users to exchange information about a choice task and influence each
other’s decision-making. Because a receptive CDSS approaches this real-life phenomenon, end
users will deem a CDSS as something they are familiar. As a result, clinical end users will be more
likely to develop a positive attitude towards a receptive CDSS.

To enhance the receptivity to clinical end users, two manners that both stem from the DCM
ground of the BAIT approach are effective for the architecture design (see Fundamental theories
lesson in section 7.1.3). The first manner is ensuring that the architecture includes processes that
force a CDSS to collaborate with clinical end users (QAR1, QAR2). It depends on the contextual
characteristics to what extent partnership is desired. Design principle 1 (subsection 8.1.1) allows
for the customization of the level of updating automation. However, an architecture should always
avoid the implementation of a CDSS that fully excludes clinical end users. Moreover, the archi-
tecture should guard against unsolicited influence from the CDSS provider (QAR2). This kind
of influence would have a similar effect on the perceived control of clinical end users regarding a
CDSS.

The second manner is to ensure the architecture gives end users control over the change in
the recommendation generator model. Therefore, the architecture should describe a model update

96

engine that is sensitive to what clinical end users find important (DGR7). Design principle 1
covers this sensitivity to end users’ preferences (subsection 8.1.1). However, by letting end users
determine which choices an update incorporates, the architecture does not guarantee the update
provides a recommendation generator model that the end user desires. Therefore, the clinical end
user should have the power to reject a model update and reset the active model by replacing it
with an older model update (QAR4). Table 8.6 gives an overview of the requirements fundamental
to design principle 5.

Table 8.6: Architecture Requirements design principle 5: Receptivity to user input.

Reference Architecture Requirement

QAR1 The architecture should always contain processes that work in partnership with clinical
end users.

QAR4 The architecture should avoid the development of a CDSS that poses a model version to
the clinical end user.

QAR2 The architecture should minimize the number of intervening actions needed from Councyl
that are not requested by a clinical end user.

DGR7 The architecture should force the development of a CDSS that estimates new parameters
according to the choice types and weight specification clinical end users selected as soon
as the clinical end user deems this model inaccurate or undesired for decision support.

8.1.6 Design principle 6: Differentiation in consumed choices and pro-
duced information

Design principle: The architecture should distinguish types of choices that different CDSS pro-
cesses consume and types of information that a CDSS produces for different receivers.

The architecture should differentiate types of information a dynamic BAIT-based CDSS consumes
and produces. Without this requisite, an architecture designer might overlook the differences be-
tween types of information. The result may be that the architecture describes a CDSS that stores
information in the most efficient way possible. For instance, by storing all choices as being of
one type. However, a successful architecture design requires a more sophisticated storage of infor-
mation. The need for this differentiation in information types stems from two reasons. First of
all, a dynamic BAIT-based CDSS architecture describes processes that consume different types of
choices. The list below gives three examples of processes that require a differentiation in choice
types:

1. The model update engine includes two processes that both use different types of choices
(DGR1,DGR8). The estimation process consumes both experiment choices and real-life
choices. The validation process only consumes real-life choices (see Problem Framing lesson
3 in section 7.1.1).

2. Within the validation process, the construction of the training set and validation set requires
the separation of choices based on the patient number. For some patients, multiple physicians
make a choice (see section 6.3.1). By doing so, the choice base in the architecture stores
multiple judgements for similar choice tasks. The architecture should describe a model
update engine that ensures that choices concerning the same patient are equally divided over
the training and validation set (see Fundamental theories lesson 3 in section 7.1.3. When
the training set or the validation set contains very similar choices, the validation process will
generate a biased performance assessment.

3. When a CDSS consists of an Information specification Extension, a subset of choices influ-
ences an update of the recommendation generator model differently than the choices outside
that subset (see subsection 4.3.1). For instance, if end users want an update to be more
influenced by senior end users’ choices than juniors end users’ choices. Therefore, the archi-
tecture should separate choices in terms of their features (DGR3). Examples of features are
the choice source (experiment choice or real-life choice), the date of choice, the recommen-
dation of a CDSS, the confidence of the decision-maker, the experience level of the clinical
end user).

4. While a subset of choices influences the estimation of the recommendation generator model
during an update (see the above-mentioned bullet point), the validation set needs to consist

97

of choices from the original choice base that stores the complete set of choices (DGR8). If the
validation set uses the choices in the temporary choice base, the set will contain duplicates.
When the validation set contains duplicates, the validation process will generate a biased
performance assessment.

Second, the components in the architecture produce information that is of interest to different
receivers. The architecture should ensure a CDSS presents the produced information either to the
CDSS provider, end users, or to both (DGR11, DGR12). Moreover, a CDSS should distinguish
information for different receivers to protect end users’ privacy (see Emerging artefact lesson 4
in section 7.1.2 and subsection 8.1.9). To ensure a CDSS presents the correct information to the
correct receiver, the architecture should differentiate the produced information according to the
intended receiver. As a result, the architecture describes multiple information flows with different
sources and different receivers. To avoid the development of CDSSs with unintended information
flows, the architecture should emphasize both which components consume information and produce
information and the associated dependencies between these components (CAR5, CAR9). Table 8.7
gives an overview of the requirements fundamental to design principle 6.

Table 8.7: Architecture Requirements design principle 6: Differentiation in consumed choices and
produced information.

Reference Architecture Requirement

DGR1 The architecture should force the development of a CDSS that distinguishes experiment
choices and real-life choices.

DGR8 The architecture should force the development of a CDSS that assesses the performance
of a newly estimated choice recommendation generator model based on a unique set of
recent real-life choices.

DGR3 The architecture should force the development of a CDSS that stores a choice with all
features assigned to the choice when a clinical end user entered the choice into the CDSS.

CAR5 The architecture should distinguish components that produce information and compo-
nents that consume information.

CAR9 The architecture should inform on all dependencies between architecture components.

DGR11 The architecture should force the development of a CDSS that enables clinical end users to
request the performance metrics for all choice recommendation generator model updates.

DGR12 The architecture should force the development of a CDSS that gives Councyl insight into
the performance metrics for the choice recommendation generator model updates of all
healthcare contexts.

8.1.7 Design principle 7: Mutual learning

Design principle: The architecture should force the development of a CDSS that enhances mutual
learning between clinical end users.

As subsection 8.1.5 defines, clinical end users value their autonomy. A consequence of this au-
tonomy is that clinical end users tend to be confident about their judgement and choice resulting
from this judgement. On the contrary, clinical end users are fundamentally interested in learning
from the decision-making of other clinical end users. However, clinical end users lack a tool that
triggers them to set aside their autonomy and engage in mutual learning. A BAIT-based CDSS
closes this gap because a BAIT-based CDSS can make the decision-making behaviour of a pool of
clinical end users visible (see Problem framing lesson 1 in section 7.1.1). A dynamic BAIT-based
CDSS can even do this over time, making the evolution of clinical end users’ decision-making
behaviour explicit. As a result, a dynamic BAIT-based CDSS has the characteristics that allow
clinical end users to investigate each other’s decision-making behaviour and, by doing so, learn
from each other over time.

To exploit this learning potential, the architecture should describe components that allow clini-
cal end users to request and investigate the information reflecting the decision-making behaviour in
a decision-making context (DGR15). Moreover, the architecture should include components that
will enable clinical end users to request an overview of a particular subgroup’s decision-making
behaviour and the evolution of this group’s behaviour (DGR16). By doing so, a senior clinical end
user can inform his or her decision-making strategy with the decision-making behaviour of junior
clinical end users. A clinical end user from a specific disciple can learn about the decision-making
strategy of a clinical end user from another discipline. However, this functionality is bound to pri-
vacy considerations. Section 8.1.9 covers these privacy considerations. Table 8.8 gives an overview
of the requirements fundamental to this design principle 7.

98

Table 8.8: Architecture Requirements design principle 7: Mutual learning.

Reference Architecture Requirement

DGR15 The architecture should force the development of a CDSS that allows clinical end users
to request the relative importance of the choice attributes of all model updates.

DGR16 The architecture should force the development of a CDSS that allows clinical end users
to request the relative importance of the choice attributes for a by the clinical end user
selected subgroups.

8.1.8 Design principle 8: Architecture intuitiveness

Design principle: The architecture should have an intuitive design for developers with knowledge
and skill in Discrete Choice Modeling.

Intuitive design means that when a developer sees the architecture, the developer understands
what to do. An intuitive architecture design is realized in two ways. The first way is to ensure the
architecture eases the load of research and design validation activities. The architecture should
present all the building blocks as straight-forward as possible, so no additional efforts are required
from the developer to prepare the CDSS development (CAR7, CAR13).

Besides easing the burden of additional efforts, the architecture should give a comprehensible
description in a uniform way. The architecture should realize this by addressing three challenges
related to the characteristics of a dynamic BAIT-based CDSS architecture. The first characteristic
is that a dynamic BAIT-based CDSS contains many components and information flows. Therefore,
the architecture of a dynamic BAIT-based CDSS will be complex. When the architecture gives
an ambiguous description of the CDSS components, developers will develop unintended CDSS’s.
As a result, the architecture may lead to CDSS’s that are unreliable. To avoid that developers
can interpret the architecture in multiple ways, the architecture designer should take care of three
aspects.

1. The designer should ensure that the architecture explicates everything that is not directly
clear in a static representation (CAR2). An architecture is only a static representation
that does not show all functionalities that need to occur during the run time of the CDSS.
For instance, some processes need to run in parallel because their outcomes are mutually
dependent.

2. The architecture designer should use a single description language (CAR4).

3. The designer should complement the architecture with two additional tools. The first tool
is a set of guidelines. The guidelines explain the description language and the reasoning
behind design choices fundamental to the architecture (CAR 6). By doing so, the guidelines
enhance a CDSS developer’s understanding of the architecture. The second tool is a data
object overview. To reduce the complexity of the architecture, the architecture should not
describe every single data object. The definition of many different data objects - for example,
single values - makes the architecture information-dense. Because the data objects are vital
for the intended CDSS development, all data objects and the databases that store these
objects need to be defined in a data object overview that complements the architecture
(CAR8).

The second characteristic is that a dynamic BAIT-based CDSS architecture is adaptable (see
subsection 8.1.1). Therefore, the architecture consists of core and optional components. The ar-
chitecture must clarify which elements are fundamental and which are negotiable. The third char-
acteristic is that the architecture includes human-dependent and human-independent processes.
To avoid a CDSS developer overlooks essential interaction elements, the architecture should em-
phasize the components involve interaction with the end user (CAR3).

A notion regarding design principle 8 is necessary. The components that the architecture de-
scribes heavily rely on Discrete Choice Modeling (DCM) theories and practices. Therefore, the
architecture designer should assume that the developer who will use the architecture has basic
knowledge of DCM and that the design is intuitive for developers familiar with the basic concepts
of DCM. Table 8.9 gives an overview of the requirements fundamental to design principle 8.

99

Table 8.9: Architecture Requirements design principle 8: Architecture intuitiveness.

Reference Architecture Requirement

CAR13 The architecture should define a CDSS that is implementable within four weeks.

CAR4 The architecture should be designed according to one description language.

CAR2 The architecture should mark parallel processes that have to run at the same time.

CAR3 The architecture should mark processes that require collaboration between a clinical end
user and a CDSS.

CAR6 The architecture should inform how the architecture is used for development in specific
healthcare decision-making contexts.

CAR7 The architecture should inform on all processes that are needed to achieve the goal of
the CDSS.

CAR8 The architecture should inform on all data objects associated with the architecture.

8.1.9 Design principle 9: Privacy of choice information and decision-
making behaviour information

Design principle: The architecture should not contain decision-making information flows that can
be traced back to individual clinical end users or are undesired by clinical end users in the health-
care context.

The application of a dynamic BAIT-based CDSS evokes additional and different privacy issues
than traditional CDSSs (see Fundamental theories lesson 1 in section 7.1.3). A dynamic BAIT-
based CDSS continuously consumes choice information and produces decision-making behaviour
information. As a consequence, the architecture deals with three types of privacy considerations,
each involving a different set of stakeholders (see Emerging artefact lesson 4 in section 7.1.2). To
protect the privacy of the information at all three levels, the architecture designer should respect
two types of requisites. The first requisite is that the architecture should not include informa-
tion flows that receivers can assign to individual clinical end users. The first requisite is that the
architecture must ensure the CDSS developer can skip the implementation of information flows
that end users might define as undesired in the Information Processing Agreement (see Emerging
artefact lesson 3 in section 7.1.2).

The requirement covering the privacy of the information captured by a dynamic BAIT-based
CDSS has a relation with other architecture requirements (see section 8.2). However, this require-
ment is not combined with other requirements to avoid that architecture designers will overlook
the requirement. As an illustration, design principle 6 covers the separation of decision-making
information to be accessed by different receivers. Therefore, it is related to the requirement that
concerns information privacy. However, the fulfilment of design principle 6 does not guarantee the
protection of the privacy of that information. Therefore, an additional design principle needs to
be in place that encourages architecture designers to ascertain the protection of end user’s privacy.
Table 8.10 presents the requirement fundamental to design principle 9.

Table 8.10: Architecture Requirements Design principle 9: Privacy of choice information and
decision-making behaviour information.

Reference Architecture Requirement

CAR14 The architecture should ensure choices are not retrievable to an individual clinical end
user and Councyl only has access to decision-making behaviour for which end users
provided permission.

8.1.10 Design principle 10: Explication of the organizational activities
for the CDSS provider

Design principle: The architecture should be complemented with a description of the organizational
activities needed from the CDSS provider and a procedure that guides the provider in executing
these activities.

An implemented dynamic BAIT-based CDSS requires the ongoing involvement of the CDSS
provider. Consequently, the success of a CDSS is closely related to the service that the CDSS
provider provides (see Emerging artefact lesson 5 in section 7.1.2). This service includes a series of

100

organizational activities. Because the architecture should inform a developer on all processes that
need to be in place to achieve the goals of a CDSS (CAR7), the architecture should also inform
the developer about the organizational activities a CDSS requires.

The architecture may not be clear to a CDSS provider who needs to execute the activities.
Therefore, the architecture should be complemented with a description off all organizational tasks
for CDSS providers. This description should assist providers in executing the required organiza-
tional activities, anticipating these activities, and fitting the activities into the existing workflow
of the CDSS provider (CAR6, CAR7, CAR12). As an illustration, the organizational activity
description should define the steps a CDSS provider should perform to ensure the CDSS developer
is informed about the context-specific preferences of clinical end users or to provide end users with
support on the use of a CDSS. Table 8.11 gives an overview of the requirements fundamental to
this design principle.

Table 8.11: Architecture Requirements design principle 10: Explication of the organizational activ-
ities.

Reference Architecture Requirement

CAR6 The architecture should inform how the architecture is used for development in specific
healthcare decision-making contexts.

CAR7 The architecture should inform on all processes that are needed to achieve the goal of
the CDSS.

CAR12 The architecture should always be integrable with the service environment of Councyl.

8.2 The relations within the set of design principles

The design principles that section 8.1 describes are interdependent in multiple ways. Five interre-
lations are prominent.

1. Design principles 4 and 5 (see Figure 8.1). Both design principles reflect the importance of
involving the end user. A dynamic BAIT-based CDSS can involve end users in two ways.
The first is by making the internal change of a CDSS’s recommendation generator model
comprehensible and tractable for end users. The second is by making a CDSS receptive to
user input so end users can control the internal change of a CDSS’s recommendation generator
model. An architecture designer should design for user involvement while considering both
focus areas. To encourage a designer to make complementary design decisions concerning
both focus areas, the research distinguishes design principles 4 and 5.

Figure 8.1: Design principle 4 and design principle 5 both enhance a CDSS’s user involvement.

2. Design principles 1 and 5 (see Figure 8.2). The realization of design principle 5 requires
adherence to design principle 1. Design principle 5 forces the receptivity of clinical end users
by allowing end users to control the internal change of a CDSS’s recommendation generator
model. The architecture allows end users to shape this internal change with Information
specification Extensions (see subsection 4.3.1). The design of these extensions stems from
design principle 1 (see subsection 8.1.1).

3. Design principles 3 and 5 (see Figure 8.2). Design principle 3 poses a restriction on the
realization of design principle 5. Although clinical end users should be able interact with a
CDSS, this interaction should always align with the clinical end users’ goals. Therefore, the
architecture designer should be careful with describing information flows from a CDSS to
clinical end users.

4. Design principles 1, 7 and 9 require adherence to design principle 6 (see Figure 8.3). Principle
6 ensures that the architecture distinguishes between types of information. Without making

101

Figure 8.2: Design principle 5 relates to design principle 3 and design principle 1.

this distinction, a designer will not be able to successfully implement the components required
to adhere to design principles 1, 7, and 9. For instance, design principle 1 and 7 require
the architecture to let end users specify subgroups of choices. Therefore, an architecture
should distinguish choices in terms of their features. Finally, the protection of the privacy of
choice information and decision-making behaviour information (design principle 9) requires
the architecture to distinguish information that a CDSS can share with particular receivers
from information a CDSS cannot share with particular receivers.

Figure 8.3: Design principle 6 supports design principles 1, 7 and 9.

5. Design principles 7 and 9 (see Figure 8.4). Principle 7 enhances mutual learning by generating
insight into the decision-making behaviour of specific subgroups of end users. Principle 9
puts a restriction on mutual learning as soon as the categorization into subgroups leads to
decision-making behaviour information that is retrievable to an individual end user.

Figure 8.4: Design principle 9 restricts design principle 7.

The relationships between the design principles indicate that the ten design principles for the
design of a dynamic BAIT-based CDSS together form a coherent set of design principles.

8.3 Contribution to architecture design science knowledge

The ten design principles form a coherent set of guidelines for future designers. This section
compares the design principles for designing a dynamic BAIT-based CDSS architecture with the
guidelines that already exist in architecture design literature. By doing so, this section makes
explicit the similarities and differences between designing an architecture of a dynamic BAIT-
based CDSS and a traditional dynamic CDSS architecture. As a result, the section explicates
the novelty of the design principles and proves the contribution of the design principles to the
architecture design and CDSS architecture design knowledge base.

102

8.3.1 Contribution design principle 1: Adaptable design

The use of an adaptable design that contains various extensions is not often mentioned in the
context of CDSS architecture design (Xiao, Cousins, Fahey, Dimitrov, & Hederman, 2012). (Edwin,
2014) states that designers avoid this adaptable structure because it increases the complexity of
an architecture. The studies that do mention the use of an adaptable structure focus on the
modifiability of the architecture to reflect contextual changes in the CDSS implementation (Xiao
et al., 2012). However, no suggestions on or examples of CDSS architectures were found that
include extensions to meet varying client needs.

In the context of a dynamic BAIT-based CDSS, the extensions enable customization of the
choices informing updates. CDSS architecture design literature does not describe architectures
with extensions or CDSS updating components that enable clinical end users to customize the
information that shapes updates. Traditional CDSSs commonly are black-boxes (non-knowledge-
based CDSSs) or have stifle techniques (knowledge-based CDSSs). These CDSSs do not allow
for customized weighting of information in an update. Therefore, architecture designers cannot
design extensions for the updating. Moreover, designs often focus on finding the optimal level of
updating automation rather than letting it be context-dependent (El-Sappagh & El-Masri, 2011,
2014; Greenes et al., 2018; Xiao et al., 2012). As a result, there is an absence of principles guiding
towards an adaptable CDSS architecture that allows for a customized updating process. There-
fore, design principle 1 forms a novel contribution to the CDSS architecture design knowledge base.

The use of a layered architecture design approach is already widely suggested in architecture de-
sign literature and forms an established practice (Clements, Garlan, Little, Nord, & Stafford, 2003;
Shaw & Garlan, 1996). It even is the earliest architectural style that has been ever used (Savolainen
& Myllarniemi, 2009). Most architecture description languages, like ArchiMate, propose a layered
design approach. Beyond some exceptions with more detailed layers, existing literature commonly
proposes three layers: the business layer, application layer, and technology layer (for an expla-
nation, see subsection 4.1.1). Some design studies or methods refer to the layers with a different
name. Also in the context of CDSSs, this layered architecture approach is often used (Cho, Kim,
Kim, Kim, & Kim, 2010; Kim, Cho, & Kim, 2008; Kumar, 2015; Oh et al., 2015; Y.-F. Zhang et
al., 2016).

However, because the usage of a layered approach for architecture design significantly varies
in different contexts (Savolainen & Myllarniemi, 2009), it is of value to investigate whether it
also is beneficial in the context of a BAIT-based CDSS architecture. Design principle 2 provides
a confirmation. However, adopting a layered approach in the context of a dynamic BAIT-based
CDSS differs in two ways from existing architecture designs.

1. Although a layered approach is beneficial for an architecture’s flexibility, flexibility is not often
mentioned as a reason for the choice of a layered approach (Savolainen & Myllarniemi, 2009).
Because of the set of extensions the architecture should include, architectural flexibility will
be the foremost reason for a layered approach in the context of a dynamic BAIT-based CDSS.

2. Most of the architecture designs suggest a technology layer and emphasize its importance
(Fan et al., 2017; Hussain, Afzal, Khan, & Lee, 2012). The reason is that traditional CDSSs
need to extract data from various data sources and need a connection to the hospital informa-
tion systems (HIS) or Electronic Health Record (EHR) (Esmaeilzadeh et al., 2015; Goldberg
et al., 2016; Oh et al., 2015). This technology layer especially needs further specification in
a dynamic context, where new data must be continuously retrieved from, produced for, and
shared with other sources. The operation of a dynamic BAIT-based CDSS does not rely on
other systems in the healthcare context. Therefore, the architecture can describe all compo-
nents and information flows representing the production and consumption of information a
dynamic BAIT-based CDSS uses with software processes and data objects at the application
layer. As a result, the structure of a dynamic BAIT-based CDSS should also be defined with
a layered architecture, but there are no considerations to present at the technology layer.

To finish, one may argue that an adaptable structure is unnecessary in the context of a layered ap-
proach because a layered approach is often used as a means for modifiable architectures by defining
”loosely coupled” components. However, the layered approach does not emphasize the definition
of prefabricated building blocks from which end users can choose to customize the information
shaping updates. Therefore, the suggestion of a layered approach would fall short in the context of
a dynamic BAIT-based CDSS architecture since a layered design does not propose a set of optional
extensions.

103

8.3.2 Contribution design principle 2: Objectivity maximization within
the subjective boundaries

CDSS architecture literature does not explicitly mention the balance between objectivity and
subjectivity of an update. This absence is probably related to the novelty of the extensions that
introduce subjectivity. Therefore, the balance between an objective and subjective update must
be particularly taken into account when designing a dynamic BAIT-based CDSS architecture. In
addition, the realization of an objective update was found to slightly different in the context of a
dynamic BAIT-based CDSS. Although reliability is an established value in architecture and CDSS
design literature (Vogel, Arnold, Chughtai, & Kehrer, 2011), its realization in the context of a
dynamic BAIT-based CDSS requires the designer to deliberately reuse Discrete Choice Modeling
(DCM) and Machine Learning (ML) techniques. Architecture design literature does not mention
the deliberate reuse of these techniques. Moreover, a dynamic BAIT-based CDSS architecture
designer should beware of the personal influence. A dynamic BAIT-based CDSS processes single
real-life choices entered by individuals instead of large bulks of historical data like ML models. By
doing so, the structure of a BAIT-based CDSS allows for design alternatives that nurture personal
influence. Therefore, it is important that a designer is aware of these alternatives and carefully
takes distance from them. However, design recommendations concerning the mitigation of personal
influence were not found in CDSS architecture design work.

8.3.3 Contribution design principle 3: Goal-based interaction

As illustrated by (Castillo & Kelemen, 2013; Gretton, 2018; Pirnejad et al., 2019; Varonen et al.,
2008), the interaction between a CDSS and a clinical end user should be effective and brief for
the CDSS not to interrupt or even frustrate the end user. This research shows that a dynamic
BAIT-based CDSS architecture designer should also focus on balancing and prioritizing the type
and timing of information that drives the interaction. A balance was found in ensuring that all
information provided and asked has a clear purpose from the point of view of the clinical end user.
Besides this confirmation of what architecture design literature already describes,

A dynamic BAIT-based CDSS generates information and interaction on an ongoing basis. As
a result, the architecture of a dynamic BAIT-based CDSS deals with more information compared
to traditional CDSSs. Consequently, a dynamic BAIT-based CDSS architecture designer needs
to put extra effort into ensuring the interaction between a CDSS and a clinical end user will not
interrupt or frustrate clinical end users.

8.3.4 Contribution Design principle 4: Tractability of change

CDSS architecture and CDSS design research widely acknowledge the importance of transparency
(Gretton, 2018; Melton et al., 2016; Siau & Shen, 2003; Rawson et al., 2017; Røst et al., 2020;
Wang et al., 2021). Literature frames transparency as the quality that allows a CDSS to explain
its choice recommendation to the end user. Despite that a dynamic BAIT-based CDSS directly
reflects the changes in the clinical end user’s own expert knowledge, clinical end users still want
a dynamic BAIT-based CDSS to make transparent how it processes these changes for an update.
Design principle 4 contributes by emphasizing that architecture designers should ensure that the
architecture of a dynamic BAIT-based CDSS describes a CDSS that makes the changes in the
recommendation generator model transparent to end users.

Although the importance of transparency is acknowledged, no CDSS designs can provide enough
explanatory information on a recommendation and on how severe each recommendation is (Wang
et al., 2021). CDSS design studies rather think of the wish for transparency as a threat for the
adoption and users’ acceptance than as a design opportunity (Khairat et al., 2018). A plausible
reason is that the technologies in which the state-of-the-art CDSS’s are grounded restrict the de-
sign space for transparent CDSSs over time. Non-knowledge-based (NKB) CDSSs are opaque by
nature (Wang et al., 2021) (for an explanation, see section 1.1). These CDSSs cannot make the
processes and rules followed to generate a recommendation explicit (Khairat et al., 2018; Shaikh
et al., 2020). As a result, the design space for transparency is restricted. This restriction makes
the definition of design principles that guide the design of a transparent operation meaningless.
Knowledge-based (KB) CDSSs can make the decision-making rules they follow to generate a choice
recommendation transparent but are inflexible (for an explanation, see section 1.1). Because of
this inflexible character, KB CDSSs cannot make the subtle changes in the operation transparent
over time. KB CDSSs can only approach it by presenting the differences between scripts with
if-then-else rules over time. The closest attempt to make the operation transparent was found in

104

the research of Khairat et al. (2018) Khairat et al. (2018) propose an approach with which the
CDSS presents the rules that the CDSS followed to generate a recommendation. However, this
requires the clinical end user to understand the full process and to spend a large amount of time
to compare all rules used by the recommendation generation processes.

On the contrary, a dynamic BAIT-based CDSS does possess the characteristics to satisfy the wish
for a dynamic CDSS to make the changes within in a recommendation generator model transpar-
ent. Therefore, defining a design principle that guides the design of this transparency is worthwhile
for the first time. Moreover, having the opportunity to design for this transparency also raised the
opportunity to investigate what requisites a dynamic CDSS that makes its operation transparent
over time must meet. Finally, the research findings show that designing a transparent dynamic
CDSS concerns the complete structure of a CDSS, including all components and information flows.

To conclude, the contribution of the findings associated with design principle 4 consists of three
points:

• The design principle shows that a transparent updating operation is also greatly valued in
the context of a CDSS that directly translates the expertise and knowledge of its clinical end
users.

• The design principle shows that it is worthwhile to define a design principle on the transparent
design in the context of a BAIT-based CDSS.

• The design principle gives insight into the considerations relevant when designing an archi-
tecture for a dynamic CDSS that makes the changes in the recommendation generator model
transparent.

• The design principles guides designers to deem transparency as a value that concerns the
complete structure of a CDSS rather than a individual component.

8.3.5 Contribution design principle 5: Receptivity to user input

Prior work has already proved that the perceived threat of a CDSS to an end user’s professional
autonomy and to an end user’s ability to control the CDSS directly affects their willingness to use
a CDSS (Esmaeilzadeh et al., 2015; Friedberg et al., 2014; Sambasivan et al., 2012; Wang et al.,
2021). Moreover, design principles that encourage designers to design for user control have been
in place for a long time (Nielsen & Molich, 1990). However, CDSS design literature frames this
threat as if it stems from CDSS components that provide recommendations and make choices for
the clinical end user (Esmaeilzadeh et al., 2015). Therefore, literature online provides evidence
and examples that make designers aware of the threat when designing CDSS tasks that directly
need the knowledge and skill of clinical end users.

The findings of this research show that clinical end users also prefer to control activities that do
not directly replace their knowledge and skill. Design principle 5 contributes by emphasizing that
a designer of a dynamic BAIT-based CDSS architecture should ensure that a dynamic CDSS is
receptive to control commands from clinical end users, although the CDSS mainly involves model
management activities that do not require expert knowledge or skill.

8.3.6 Contribution design principle 6: Differentiation in choices

Because of the novelty of the combination of DCM and CDSS architecture design, no design
principles or other guiding evidence on dealing with choices as source of information are found in
CDSS architecture design literature yet. As such, the importance of keeping choices of a particular
source, collected at a specific point in time and with particular features separate was not emphasized
before. This was thereby found to be important in the particular context of a BAIT-based CDSS
architecture.

8.3.7 Contribution design principle 7: Mutual learning

CDSS architecture design literature does not discuss mutual learning as a functionality of a CDSS.
The reason is that the BAIT approach offers a dynamic BAIT-based CDSS with three unique
characteristics that enable mutual learning in a dynamic setting:

1. The CDSS codifies the knowledge of the pool of clinical end users in the particular context

105

2. The CDSS can store the features of choices (for instance, the experience of the choice-maker
in terms of being a senior or a junior clinical end users). By doing so, the CDSS can expose
the decision-making behaviour of subgroups.

3. The CDSS can visualize how the decision-making behaviour (of subgroups) develops over
time.

When designing an architecture for a dynamic BAIT-based CDSS, the designer should exploit these
characteristics. By doing so, the designer ensures the architecture describes information flows and
includes processes that enable clinical end users to learn from each other over time.

Mutual learning was a greatly valued phenomenon that provides insights and constitutes learn-
ing activities that cannot be realized otherwise. Although its power and importance, mutual learn-
ing is not the head goal of a CDSS. Consequently, a designer may easily overlook it. Therefore,
design principle 7 forms an indispensable contribution to CDSS architecture design knowledge.

8.3.8 Contribution design principle 8: Architecture intuitiveness

Architecture design literature does not mention the concept of architecture intuitiveness as such.
However, architecture design literature does emphasize concepts with a similar focus, like architec-
ture understandability, consistency, and clarity (Alenezi, 2016; Ali, Baker, O’Crowley, Herold, &
Buckley, 2018; Perry & Wolf, 1992; Shahin, Liang, & Khayyambashi, 2010; Yu, Breslau, & Shenker,
1999). Along with the research, it was found that these concepts are also essential qualities for an
architecture of a dynamic BAIT-based CDSS.

However, the reasons why these qualities are important for a dynamic BAIT-based CDSS
architecture slightly differ from the reasons for generic architectures. First of all, most architecture
studies present the architecture as a tool to communicate and illustrate the features of the CDSS
rather than as an artefact that is to be reused by different developers within a CDSS provider
organization. Because the architecture of a dynamic BAIT-based CDSS should be useful as a
guiding tool for various developers, the architecture’s understandability, consistency, and clarity
are even more important. Second, because the design of a dynamic BAIT-based CDSS architecture
involves combining discrete choice modeling (DCM), Machine Learning (ML) and CDSS practices
and theories, it contains references to different knowledge fields and is highly complex. Therefore,
the architecture must be completely understandable, consistent, and clear. Finally, it contains
optional extensions. The architecture should make clear that these extensions are not mandatory.

By just being understandable, the architecture of a dynamic BAIT-based CDSS does not tackle
all of the challenges mentioned above. Therefore, the concept of intuitiveness was chosen to
summarize the features that an architecture designer must realize when designing a dynamic BAIT-
based CDSS architecture. Although the term intuitive mainly summarizes what literature already
expresses, the design principle does contribute to architecture design knowledge. The principle does
so by combining all relevant architecture features for an architecture that needs to function as a
finalized artefact instead of as a means in a software development process. In case of the latter,
the architecture designer is not explicitly concerned with features of the architecture. Instead,
the architecture designer uses the architecture to find the correct CDSS structure and focuses on
the requirements of the CDSS. For an explanation, see section 7.1.4. Moreover, it contributes by
emphasizing that intuitiveness is to be judged by a developer with knowledge and skill in DCM.
Therefore, this design principle is strongly related to the particular case of a dynamic BAIT-based
CDSS architecture that deals with DCM theories and practices.

8.3.9 Contribution design principle 9: Privacy of choices and decision-
making behaviour information

Because many architecture design and CDSS design studies design for privacy, privacy is an es-
tablished value to take into account when designing an architecture i(Hoepman, 2014; Rubinstein
& Good, 2013; Wilk et al., 2013; Vogel et al., 2011). Therefore, it was not expected that a design
principle would be dedicated to privacy. However, it was found that the design of a dynamic
BAIT-based CDSS architecture does benefit from a design principle guiding them.

An architecture of a dynamic BAIT-based CDSS deals with information representing end user’s
choices and decision-making behaviour. The choice information and the decision-making behaviour
information were found to be privacy-sensitive. Traditional CDSS architectures do not deal with
these types of information. Consequently, existing evidence and findings may provide insufficient
guidance to guarantee the protection of these particular types of information. Therefore, design

106

principle 9 contributes by guiding the design for privacy protection in the specific context of a
dynamic BAIT-based CDSS architecture.

8.3.10 Contribution design principle 10: Explication of the organiza-
tional activities

Complementing an architecture with guiding documents is established practice (Leist & Zellner,
2006; Vogel et al., 2011). Both architecture design methods and best practices found in architec-
ture design literature argue that the architecture should be delivered with a package of reference
materials (Rouhani, Mahrin, Nikpay, Ahmad, & Nikfard, 2015; Rozanski & Woods, 2012). A lack
of supporting material on the use of the architecture and its implementation might result in CDSS’s
that are ineffective or unintended (Rouhani et al., 2015). For the architecture design of a dynamic
BAIT-based CDSS this complementary guiding material was also found to be indispensable.

However, this principle makes an additional note that was not explicitly found in CDSS archi-
tecture design. Because the architecture defines a dynamic CDSS that requires ongoing service
from the CDSS provider, the materials should define the organizational activities that a CDSS
provider should execute. These activities are indispensable to guarantee a successful application
of a developed dynamic BAIT-based CDSS.

8.4 Summary chapter 8

The goal of chapter 8 is to make the move towards the generalization of the research findings. With
this purpose, the tested architecture requirements were translated into design principles that form
recommendations on how future designers should design dynamic BAIT-based CDSS architectures.

The design principles result from clustering the architecture requirements that effectively out-
line a dynamic BAIT-based CDSS architecture for application in a situated context. These re-
quirements are strongly interrelated. According to the relations between the requirements, the re-
quirements were grouped into to overarching themes that represent design principles. The lessons
learned identified during an ongoing reflection on the design process informed this clustering pro-
cess. As a result, the design principles form representations of that what is true - the architecture
requirements - and that what is important to do to avoid the obstacles encountered during this
research process. By doing so, the learning from the situated design project is developed into a
general solutions concept for a class of field problems. The result is the following set of ten design
principles:

1. Adaptable design: The architecture should have a technology-independent, adaptable struc-
ture with extensions that enable customization of the updating automation level and the
choice information that updates incorporate.

2. Objectivity maximization within the subjective boundaries: The architecture should maxi-
mize the objectivity with which choice information is processed during an update, given the
clinical end user’s deliberately chosen updating preferences.

3. Goal-based interaction: The architecture should only define interaction flows that are always
available and from which a clinical end user directly or indirectly benefits.

4. Tractability of change: The architecture should only describe CDSS components and out-
comes that are comprehensible for clinical end users and that make the change in the choice
recommendation generator model tractable.

5. Receptivity to user input: The architecture should force a receptive CDSS that induces inter-
action with end users and give end users control over the change in the choice recommendation
generator model.

6. Differentiation in consumed choices and produced information: The architecture should dis-
tinguish types of choices that different CDSS processes consume and types of information
that a CDSS produces for different receivers.

7. Mutual learning: The architecture should force the development of a CDSS that enhances
mutual learning between clinical end users.

8. Architecture intuitiveness: The architecture should have an intuitive design for developers
with knowledge and skill in Discrete Choice Modeling.

107

9. Privacy of choice information and decision-making behaviour information: The architecture
should not contain decision-making information flows that can be traced back to individual
clinical end users or are undesired by clinical end users in the healthcare context.

10. Explication of the organizational activities: The architecture should be complemented with
a description of the organizational activities needed from the CDSS provider and a procedure
that guides the provider in executing these activities.

The principles are interdependent. The interdependency denotes that the design principles form
a coherent set of principles that together guide the design of future dynamic BAIT-based CDSS
architectures. Some design principles confirm the importance of existing design principles in the
particular context of a dynamic BAIT-based CDSS architecture. Other design principles capture
design guidelines that are specifically important for the design of a dynamic BAIT-based CDSS
architecture. These principles are novel and form a contribution to the CDSS architecture design
knowledge base.

108

Chapter 9

Conclusion

The main goal of this research is to develop design principles for the design of an architecture that
functions as a tool for the development of dynamic BAIT-based Clinical Decision Support Systems
(CDSS) for various and ever-changing healthcare decision-making contexts. This chapter presents
the main findings (section 9.1), the scientific contributions to theory (section 9.2), the identified
limitations, and recommendations on future research (section 9.3). The outcomes of this research
answer the following question:

To what design principles should a system architecture of a dynamic BAIT-based
CDSS adhere?

9.1 Main findings: design principles for a dynamic BAIT-
based CDSS architecture

The answer to the main research question consists of ten design principles that guide the design
of an architecture of a dynamic BAIT-based CDSS. The design principles build onto the main
components that CDSS architecture design literature suggests for developing CDSSs in dynamic
healthcare decision-making contexts: an adaptive knowledge base so that a CDSS accepts new in-
formation, a model update engine so a CDSS’s recommendation generator model continually bases
its recommendations on that new information, a model update monitor so that the CDSS timely
detects any decrease in performance in a changing context, and a Human-Computer Interaction
(HCI) component. The design of these components, however, closely relates to the technological
basis of existing CDSSs.

However, this technological basis fundamentally differs from the BAIT approach, which ap-
plies Discrete Choice Modeling (DCM) to codify expert knowledge of clinical end users operating
the CDSS. Therefore, DCM theories, practices, and characteristics delimit the design of the main
dynamic CDSS components. Consequently, an architecture designer cannot directly reuse the ex-
isting components in the context of a dynamic BAIT-based CDSS. To find out what the design of
these components looks like in the context of a dynamic BAIT-based CDSS, this research followed
the Action Design Research (ADR) framework. The ADR framework makes it possible to identify
the requirements of a dynamic BAIT-based CDSS architecture and to test these requirements by
building an architecture in a situated problem context. The final set of requirements outline an
architecture that CDSS developers in the situated context can use to build dynamic BAIT-based
CDSSs for various healthcare decision-making contexts. The formalization of the situated archi-
tecture requirements resulted into ten design principles that guide future designers who aim to
develop a dynamic CDSS-based architecture.

The set of design principles include seven main insights regarding the design of a dynamic BAIT-
based CDSS architecture. The first insight is that the architecture of a dynamic BAIT-based
CDSS should enable customization of the level of updating automation and the types of choices
that inform a CDSS’s model update engine. By doing so, the architecture enables CDSS develop-
ers to satisfy end users’ preferences regarding a dynamic BAIT-based CDSS in various healthcare
contexts. Beyond this subjectivity, the architecture designer should ensure that the architecture
maximizes the objectivity with which the update engine reflects the changes in decision-making
contexts. To this end, the designer should exclude design alternatives that evoke personal influence
on a CDSS’s model update engine and only apply modified Machine Learning (ML) techniques that

109

work reliably in a dynamic BAIT-based CDSS. The third insight is that a designer should ensure
that the architecture only defines information flows that ask information from clinical end users or
provide clinical end users with information from which they directly or indirectly benefit. Fourth,
the architecture should ensure an implemented dynamic BAIT-based CDSS involves clinical end
users in two ways:

1. The architecture should only incorporate CDSS components and outcomes that are com-
prehensible for clinical end users and that make the change in a CDSS’s recommendation
generator model tractable for clinical end users. Although a dynamic BAIT-based CDSS di-
rectly reflects the changes in the clinical end user’s expert knowledge, end users are not likely
to accept a dynamic CDSS if it does not make transparent how it processes these changes
during an update.

2. The architecture should ensure a dynamic BAIT-based CDSS induces interaction with clinical
end users and allows end users to control the change in a CDSS’s recommendation generator
model. The latter ensures that a CDSS bases its recommendations on information the end
users find relevant.

Fifth, a designer should ensure that the architecture enhances mutual learning between a pool of
clinical end users. Clinical end users greatly value mutual learning. The BAIT approach gives a
dynamic CDSS the unique capability to make explicit how clinical end users’ decision-making be-
haviour evolves. Insight into this evolving behaviour constitutes mutual learning activities. Because
this insight stems from the BAIT approach, end users cannot engage in these activities without a
dynamic BAIT-based CDSS. Therefore, the architecture should utilize this unique capability and
describe a CDSS that enhances mutual learning between clinical end users.

The sixth insight is that the architecture should distinguish the types of choice information
a dynamic BAIT-based CDSS consumes, and the types of information that the CDSS produces.
The separation of choice types is necessary because each CDSS process consumes different types
of choices. The separation in the information that the CDSS produces is necessary to manage
the accessibility of information by different end users and the CDSS provider. As a result, the
architecture guarantees the protection of privacy within healthcare contexts.

The final finding is that the success of a dynamic BAIT-based CDSS relies not only on technical
components but also on the service that a CDSS provider offers. In the context of a dynamic BAIT-
based CDSS, this service provision includes a series of organizational activities that the provider
should execute on an ongoing basis. To guide the CDSS provider in performing these activities,
the architecture should be complemented with guidelines informing the CDSS provider on the to
be expected organizational efforts.

9.2 Theoretical contributions of the design research

The leading contribution provides new knowledge to the CDSS architecture design knowledge base.
This contribution is of interest to architecture designers who want to develop transparent and
dynamic CDSS architectures based on Discrete Choice Modeling (DCM) theories and practices.
The contribution is threefold: a set of novel design principles, a foundation for dynamic BAIT-
based CDSS architecture design research, and reusable solutions concepts. Moreover, a theoretical
contribution is dedicated to the Machine Learning (ML) knowledge base from which theories and
practices were ingrained into the architecture design.

9.2.1 Design principles

The ten design principles form an important theoretical contribution to CDSS architecture design
knowledge for two reasons. First of all, the lessons learned during the ongoing reflection on the
design process inspired the formulation of the design principles. Therefore, the principles capture
what designers should do to avoid the obstacles encountered during this research process. Second,
the principles guide CDSS architecture designers. Some principles confirm the usefulness of princi-
ples CDSS architecture already suggest in the particular context of a dynamic BAIT-based CDSS
architecture. More important, the research identified novel design principles that are specific for
designing a dynamic BAIT-based CDSS architecture. These principles provide new knowledge.
The list below summarizes the most prevalent novel contributions to CDSS architecture design
knowledge:

110

• There was an absence of design principles promoting and guiding an adaptable CDSS ar-
chitecture design with extensions that allow clinical end users to customize the updating
process. Moreover, it is common practice to design a CDSS architecture with a business,
an application, and a technology layer. However, the principles inform a designer that the
architecture can leave any software and hardware requisites at the technology layer unspec-
ified. By doing so, the principles provide novel information that is specific for the design of
a dynamic BAIT-based CDSS architecture.

• For the first time, the design principles require the designer to keep an eye on the balance
between an objective and subjective reflection of contextual changes in an update. Besides,
the principles guide a designer in realizing this objectivity with design considerations that
are not straightforward and not explicitly mentioned in CDSS architecture design literature.

• CDSS architecture and CDSS design research widely acknowledge the importance of trans-
parency. However, there are no technologies that enable the design of transparent and dy-
namic CDSSs. As a result, evidence and examples of designing for transparency in the
context of dynamic CDSS are absent. The introduction of a dynamic BAIT-based CDSS
makes it worthwhile to define a design principle for CDSS architecture designers that con-
cerns transparency. Moreover, there was space to explore and test alternatives that facilitate
transparency in dynamic CDSSs for the first time. As a result, the design principles con-
tribute by explicating how designers can develop an architecture that describes a dynamic
CDSS that is transparent.

• Prior work already argues that the professional autonomy of end users is an important con-
sideration in CDSS design. However, this work focuses on the threat posed by CDSS tasks
that directly require the knowledge and skill of clinical end users. The set of design princi-
ples contributes by defining that the designer should also ensure that the CDSS is receptive
to input from clinical end users for tasks that do not directly challenge the knowledge and
skill of clinical end users but rather involve the tasks of a dynamic CDSS, like updating and
quality monitoring.

• No design principles concerning information in the form of choices are in place yet. Therefore,
architecture design literature did not emphasize the importance of distinguishing types of
choices before.

• Because mutual learning is unique for a dynamic BAIT-based CDSS, existing CDSS architec-
ture design literature does not guide designing for mutual learning. Therefore, the principles
form an indispensable contribution to CDSS architecture design knowledge.

• Privacy is an established value in architecture design literature. However, because a dynamic
BAIT-based CDSS consumes choice information and produces decision-making behaviour
information, existing evidence and examples may provide insufficient guidance. As a result,
the principle guiding the design for privacy in the context of a BAIT-based CDSS architecture
forms a contribution to the privacy guidelines that are already in place.

9.2.2 Foundation for BAIT-based CDSS architecture design work

The second contribution of the research findings to CDSS architecture design is the foundation for
the design of transparent and dynamic CDSS architectures. Thus far, the development of these
architectures was restrained by the lack of guidance in the challenges associated with designing a
dynamic BAIT-based CDSS architecture. The design is challenging because the BAIT approach is
a novel technological innovation. Therefore, the technical and social feasibility in dynamic health-
care decision-making contexts is still to be proved. Moreover, designing the architecture requires
combining theories and practices from Discrete Choice Modeling (DCM), CDSS architecture de-
sign, and Machine Learning (ML). These knowledge areas were not combined before. The design
also requires starting without any building blocks in place. Finally, the architecture design needs
to incorporate the preferences of clinical end users in varying healthcare contexts that may also
change over time.

The lessons learned during this research and the resulting design principles support CDSS
architecture designers in tackling these challenges. By doing so, the lessons and design principles
fill the lack of guidance. It was shown how the BAIT approach can be successfully used in dynamic
contexts and how the theories and practices of DCM, CDSS and ML can be intertwined. Moreover,
there are fundamental architecture building blocks in place, and there are manners found by which

111

the varying preferences of healthcare contexts can be satisfied. Accordingly, for the first time
CDSS architecture designers are in the position to further develop CDSS architectures that enable
the development of transparent and dynamic CDSSs that generate accurate recommendations to
clinical end users in ever changing decision-making contexts.

9.2.3 Reusable solution concepts

The collection of reusable solution concepts forms the third contribution to CDSS architecture de-
sign. The architecture has an adaptable design with optional extensions. The way the architecture
is designed enables designers to reuse individual components and or the architecture as a whole.

Reusing the complete architecture

The architecture was found effective for the development of CDSSs that will be applied in dynamic
healthcare contexts. Contexts where the knowledge fundamental to a decision-making strategy
changes, such as governmental institutions or the pharmaceutic industry, are dynamic. Therefore,
CDSS providers or developers benefit from the architecture when they aim to develop CDSSs for
application in these contexts. However, the architecture can also be used for CDSSs that are to be
applied in static contexts. Instead of updating a dynamic CDSS according to contextual change,
the updates of a dynamic CDSS aim at a better understanding of the static context.

Something specific to healthcare contexts is the presence of professional autonomy. To allow end
users to control the CDSS, the architecture maximizes the value of transparency. The professional
autonomy and the perceived control over the CDSS may be less important in other dynamic
contexts. For example, in governmental contexts where many simple decisions are made on a
repetitive basis. However, the end users in these contexts may still value the focus on transparency
in the architecture. As illustration, a governmental institution needs to explain the reasoning
behind the decisions that affect civilians. Therefore, the institution needs to be able to track
the changes in the updated support model they consult to make the decisions. The transparent
approach of the architecture is still of value: not directly to the end user, but indirectly to the
group of individuals served by the end user.

Reusing the individual components

The architecture provides the main dynamic CDSS components that are transformed to match the
technological foundation of a BAIT-based CDSS. The main components are the adaptive choice
base, model update engine, model quality monitor, recommendation generator, model manage-
ment module, and user settings. The model update engine is especially useful in other contexts
where choices involve human characteristics because it deals with the challenges of estimating and
validating a DCM choice model with patient data, like the inability of replacing missing values
cannot be replaced. However, the update engine will be less useful when the contextual decision-
making conditions change quickly and the decision-making deals with deep uncertainty. In deep
uncertain contexts, the update engine will never change the recommendation generator model with
new knowledge quickly enough, so it perfectly understands significantly different choice tasks. In
addition, reusing the update engine is meaningless for the design of CDSSs for application in con-
texts where only one decision-maker is active. The update engine will estimate recommendation
generator models that entirely rely on choices made by this individual.

Finally, the architecture defines reusable components that are optional. These optional exten-
sions allow for the customization of the CDSS. The architecture consists of two types of extensions.
First, the architecture describes three extensions that allow for the modification of the information
that is included in an update. Therefore, they are all applicable in a wide variety of contexts: in
contexts where experiment choices are considered important because of the noisy real-life setting
or where choices made in real-life should be assigned with more weight because they rarely occur.
Second, the architecture includes three extensions that allow customizing the level of updating
automation. These variants can be effectively reused in contexts where end users would first like
to develop trust in the CDSS, before they let the CDSS do the work. For instance, in contexts
where decisions impact human well-being or where professional autonomy plays an important role.
An example beyond the healthcare sector is the juridical sector.

9.2.4 Contribution to Machine Learning knowledge field

Machine Learning (ML) theories and practices are ingrained in the design of the architecture. ML
thereby provided important building blocks during the design process. However, while applying

112

these theories and practices, it was found that ML theories are not directly applicable in the
context of dynamic CDSSs. The reuse of these theories is complicated for the following two main
reasons. Many ML techniques do not distinguish samples in a data set. However, the updates of
a dynamic CDSS incorporate information about real-life patients. This patient information may
include extreme cases that are perceived as inappropriate representations to inform an update of a
CDSS. Therefore, techniques that consume this information need to distinguish unequal samples.
Second, to assess the performance of a dynamic CDSS it should be determined how well the CDSS
can recommend end users in the present context. Validation techniques suggested by ML mainly
focus on assessing the performance of a model for all data samples used for the model construction.
By doing so, these techniques do not consider the recentness of the samples. This research suggests
the manipulation of the ML k-fold validation to assess the performance of a CDSS in the present
situation.

Moreover, it was found that the black-box characteristic of ML is a real issue for application
in healthcare contexts. Because of the opaque nature of ML models, it seems designers commonly
believe that designing for transparency is pointless. Consequently, barely any attempts on making
ML-based CDSSs more transparent were encountered. Encouraging designers to approach trans-
parency would, however, pay off. Along with this research, it was found that clinical end users
already more value a CDSS that makes parts of the model training and testing transparent. For
instance, by giving insight into the samples that the CDSS used for the model validation. This
insight allows end users to understand and judge the value of the performance assessment better.

9.3 Limitations and Recommendations on further research

This sections presents the limitations of the research outcomes and does suggestions for further
research.

9.3.1 Limitations of the design principles

The first limitation is that the design principles do not guide the design of a dynamic CDSS that
reflects radical changes in the context. An example of a radical change is the introduction of a
new treatment that influences end users’ decision-making. Second, the design principles stem from
the design process conducted by a single designer. Because of the designer’s basic knowledge in
DCM and architecture design, the formulation of the design principles assumes that the user of
the principles has basic knowledge about the key theories and practices of both fields. Moreover,
the principles guide the expansion of the current BAIT-based CDSS. Therefore, they assume that
a designer understands the architecture of the current BAIT-based CDSS. Third, the application
of a dynamic BAIT-based CDSS is bound to contexts with a limited level of contextual change. In
contexts where conditions change very quickly, but there is no clue how they will change, a dynamic
BAIT-based CDSS will not be able to be prepared with the accurate knowledge in time. The design
principles are thereby only applicable in contexts where the factors influencing decision-making are
foreseeable.

Finally, due to resource restrictions and physicians’ busy schedules, only three clinical end
users were involved in the requirement identification. Therefore, the interview results may have
provided a biased picture of both the important requirements. In addition, the architecture defines
an expansion of a CDSS that is already in place. As a result, interviewed end users who use
the current BAIT-based CDSS may have overlooked CDSS aspects that the static BAIT-based
CDSS already captures but are still relevant for the dynamic CDSS. For instance, the clinical
end users did not go into the reliability of the components of the dynamic BAIT-based CDSS.
To avoid that the interview findings resulted in a incomplete set of requirements, the research
included several measures concerning the requirement identification. The first measure is that
the involved clinical end users are all different in type. By doing so, the interviews give insight
into different viewpoints on the dynamic BAIT-based CDSS. Second, representatives of Councyl
who know about the preferences of a broader pool of clinical end users were interviewed. Third,
the requirement identification was complemented with a literature review. The literature review
covered the important features that were not mentioned during the interviews. However, because
of the novelty of the BAIT-based CDSS and its application in dynamic contexts, it cannot be
proved that the completion with literature is satisfying.

113

9.3.2 Recommendations for further research

There are three categories of recommendations for further research: research efforts to improve
the architecture design (1), research to answer new design questions that stem from the findings
of this research (2), and research to address knowledge gaps encountered during this research (3).
For each category, this section briefly explains the recommendations. For three recommendations,
this section gives a more extensive research plan.

1. Recommended design efforts to improve the architecture

The architecture design is associated with three improvement points, which give rise to three sug-
gestions for further research. First of all, the architecture assumes a continuous inflow of real-life
choices, which is not feasible in each decision-making context. Further research should investigate
alternative manners to collect real-life choices to realize a sufficient inflow of real-life choices in
any context. Second, the architecture does not allow for the incorporation of radical change as
subsection 9.3.1 explains. Ensuring a dynamic BAIT-based CDSS incorporates radical change is
challenging because it requires adjustments in the recommendation generator model’s structure.
An adjustment may be adding an attribute to the model, removing an attribute from the model,
or modifying the value range of an attribute. Accounting for these adjustments in the CDSSs of
all end users requires too much effort from a CDSS provider. However, there is no alternative in
place that allows clinical end users without DCM knowledge to make these adjustments themselves.
Moreover, a procedure needs to be in place that explains how to translate different types of radical
change into a new model structure. Examples of types of radical change are a new insight into a
treatment’s side-effects and an adjustment in medical rules fundamental to the decision-making.
Further research is needed to design solutions that address the challenges associated with the in-
corporation of radical change.

A final improvement of the architecture requires research on the inclusion of objective clinical
outcomes (OCO’s) in the updating process. By doing so, the CDSS improves its recommendations
based on the results of choices made. The inclusion of OCO’s turned out to be of great value
to clinical end users. However, the incorporation of OCO’s in the architecture is complicated.
First of all, because there is a lack of objective evaluation: clinical end users may differ in their
judgement on what outcome forms a good or bad result. Second, because the inflow of OCO’s
is unpredictable. In some healthcare contexts, the treatment and the recovery take a long time.
To tackle these challenges, research investigating what criteria a CDSS should meet to include
OCO’s in the updating process is needed. This research could involve a series of case studies in
different healthcare decision-making contexts to identify what requirements a CDSS should satisfy
to incorporate OCO’s. For instance, to identify what types of mechanisms are needed to evaluate
outcomes and to identify how OCO’s should be weighted compared to other decision information
during an update. When the criteria are at hand, subsequent research needs to focus on designing
the architecture components according to these criteria.

2. New design challenges

The findings of this research provided insight into three new design challenges. The recommenda-
tions on researching these challenges aim at encouraging research on BAIT-based CDSS architec-
ture design so that the quality of transparent and dynamic CDSSs will improve over time. First
of all, because clinical end users move during their working days, they will benefit from a mobile
application. Further design research could therefore use the design principles to design a similar
architecture for a mobile-based CDSS that an end user can consult from everywhere. Second,
designers are encouraged to take the design principles and investigate how well they work for
designing an architecture in contexts other than the healthcare sector. The results should argue
if and how the design principles must be adjusted, replaced, or removed for application in other
contexts.

Third, a design challenge involves designing an architecture with a model update engine that can
deal with interdependent choices. For instance, if the choice for a particular treatment depends on
the previous choices made in a patient’s medical history. Designing a dynamic BAIT-based CDSS
architecture that covers the interdependency between choices is challenging for two reasons. First,
a designer needs to clarify the different dependencies between choices. These choice dependencies
may vary over healthcare contexts or even over sectors. Second, the designer needs to determine
how the estimation and validation processes should be modified to account for all the dependencies
in various contexts. To do so, a designer will need to consult econometric and statistical theories.

114

The list below suggests three research steps for a designer to incorporate the interdependency of
choices in a dynamic BAIT-based CDSS architecture:

1. Defining how treatment choices are related to each other in a set of different contexts.

2. Formulating criteria that a BAIT-based CDSS must meet to incorporate the choice depen-
dencies.

3. Design one or multiple update engine(s) that meet the formulated criteria.

3. Research to fill identified knowledge gaps

Finally, this research indicates three fundamental knowledge gaps worth researching. Filling in
the first gap requires the design of a framework. DCM proposes various decision-making rules
that describe how individuals make decisions, like the Random Utility Maximization and Random-
Regret rule. A BAIT-based CDSS can generate recommendations following all different rules.
Because the combination of DCM and CDSS design is new, it is unclear how these rules function
for decision support in varying contexts. A framework that provides insight into the connections
between particular decision-making rules that a BAIT-based CDSS can follow to generate choice
recommendations and the characteristics of different application contexts could fill this gap. The
design of this framework will require two research steps. First, the researcher should define a short-
list of decision-making rules. Subsequently, the researcher should determine for which contextual
characteristics each rule forms a suitable representation of the decision-making strategy.

Second, CDSS design literature shows that a higher level of transparency of the decision support
enhances the clinical end users’ feeling of control. The more control clinical end users have over
a CDSS, the less likely it is that the end users perceive a CDSS as a threat to their professional
autonomy. However, it is not quantified to what extent the transparent character of a dynamic
BAIT-based CDSS can mitigate the threat to clinical end users’ autonomy, whether this is enough
to increase the likelihood of acceptance, and what other criteria a CDSS must meet to be perceived
less as a threat by clinical end users.

The final gap is methodological. ADR is a relatively new research method, and no CDSS archi-
tecture design studies following the ADR framework exist yet. This research shows the benefits of
ADR for CDSS architecture design, like the continuous reflection on and improvement of the archi-
tecture. Other architecture design studies also recognize the benefits of ADR. However, the design
of a system architecture differs from that of other IT artefacts. The architecture design requires
considerations at two levels: the system and architecture level. To encourage architecture designers
to exploit the benefits of ADR, the barrier to use ADR should be lower. For instance, by modifying
the building, implementation, and evaluation stage. This modification could involve adding steps
that guide designers in dealing with the requirement identification and evaluation at the two levels.
This modification could also complement the set ADR principles with architecture-specific design
principles. Further research needs to investigate how to customize the ADR framework so that it
tackles the challenges central to architecture design research.

115

References

Abbasi, M., & Kashiyarndi, S. (2010). Clinical decision support systems: A discussion on different
methodologies used in health care. report, 1–15.

Abowd, G., Allen, R., & Garlan, D. (1993). Using style to understand descriptions of software
architecture. ACM SIGSOFT Software Engineering Notes, 18 (5), 9–20.

Abu-Mostafa, Y., Magdon-Ismail, M., & Lin, H. (2012). Learning from data vol. 4: Amlbook new
york. NY, USA.

Afzal, M., Hussain, M., Khan, W. A., Ali, T., Lee, S., & Kang, B. H. (2014). Knowledgebutton: An
evidence adaptive tool for cdss and clinical research. In 2014 ieee international symposium
on innovations in intelligent systems and applications (inista) proceedings (pp. 273–280).

Agarwal, R., & Tanniru, M. R. (1990). Knowledge acquisition using structured interviewing: an
empirical investigation. Journal of Management Information Systems, 7 (1), 123–140.

Akour, M., Aldiabat, S., Alsghaier, H., Alkhateeb, K., & Alenezi, M. (2016). Software architecture
understandability of open source applications. International Journal of Computer Science
and Information Security , 14 (10), 65.

Alenezi, M. (2016). Software architecture quality measurement stability and understandability.
International Journal of Advanced Computer Science and Applications (IJACSA), 7 (7), 550–
559.

Alexander, G. L. (2006). Issues of trust and ethics in computerized clinical decision support
systems. Nursing administration quarterly , 30 (1), 21–29.

Ali, N., Baker, S., O’Crowley, R., Herold, S., & Buckley, J. (2018). Architecture consistency:
State of the practice, challenges and requirements. Empirical Software Engineering , 23 (1),
224–258.

Allen, R., & Garlan, D. (1994). Formalizing architectural connection. In Proceedings of 16th
international conference on software engineering (pp. 71–80).

Alshammary, T. F., & Alenezi, M. (2017). Software architecture understandability in object-
oriented systems. i-Manager’s Journal on Software Engineering , 12 (2), 1.

AlSharif, M., Bond, W. P., & Al-Otaiby, T. (2004). Assessing the complexity of software architec-
ture. In Proceedings of the 42nd annual southeast regional conference (pp. 98–103).

Alwosheel, A. S. A. (2020). Trustworthy and explainable artificial neural networks for choice
behaviour analysis.

Anderson, J. A., & Willson, P. (2008). Clinical decision support systems in nursing: synthesis
of the science for evidence-based practice. CIN: Computers, Informatics, Nursing , 26 (3),
151–158.

Angehrn, A. A., & Lüthi, H.-J. (1990). Intelligent decision support systems: a visual interactive
approach. Interfaces, 20 (6), 17–28.

Anooj, P. (2012). Clinical decision support system: Risk level prediction of heart disease using
weighted fuzzy rules. Journal of King Saud University-Computer and Information Sciences,
24 (1), 27–40.

Aoki, N. (2020). An experimental study of public trust in ai chatbots in the public sector.
Government Information Quarterly , 37 (4), 101490.

Applegate, L., McFarlan, F., & McKenney, J. (1996). Corporate information systems management:
Text and cases (chapter 12. Chicago, IL: Irwin.

Arnott, D. (2006). Cognitive biases and decision support systems development: a design science
approach. Information Systems Journal , 16 (1), 55–78.

Aron, R., Dutta, S., Janakiraman, R., & Pathak, P. A. (2011). The impact of automation
of systems on medical errors: evidence from field research. Information systems research,
22 (3), 429–446.

Arsanjani, A. (2004). Service-oriented modeling and architecture. IBM developer works, 1 , 15.

116

Asokan, G., & Asokan, V. (2015). Leveraging “big data” to enhance the effectiveness of “one
health” in an era of health informatics. Journal of epidemiology and global health, 5 (4),
311–314.

Axsen, J., Mountain, D. C., & Jaccard, M. (2009). Combining stated and revealed choice research
to simulate the neighbor effect: The case of hybrid-electric vehicles. Resource and Energy
Economics, 31 (3), 221–238.

Baba, N., & Suto, H. (2000). Utilization of artificial neural networks and the td-learning method for
constructing intelligent decision support systems. European Journal of Operational Research,
122 (2), 501–508.

Babar, M. A., Winkler, D., & Biffl, S. (2007). Evaluating the usefulness and ease of use of
a groupware tool for the software architecture evaluation process. In First international
symposium on empirical software engineering and measurement (esem 2007) (pp. 430–439).

Balzer, W. K., Doherty, M. E., et al. (1989). Effects of cognitive feedback on performance.
Psychological bulletin, 106 (3), 410.

Bayramzadeh, S., Joseph, A., Allison, D., Shultz, J., Abernathy, J., & Group, R. O. S. (2018).
Using an integrative mock-up simulation approach for evidence-based evaluation of operating
room design prototypes. Applied ergonomics, 70 , 288–299.

Bech, M. (2003). Politicians’ and hospital managers’ trade-offs in the choice of reimbursement
scheme: a discrete choice experiment. Health policy , 66 (3), 261–275.

Beck, M. J., Fifer, S., & Rose, J. M. (2016). Can you ever be certain? reducing hypothetical
bias in stated choice experiments via respondent reported choice certainty. Transportation
Research Part B: Methodological , 89 , 149–167.

Behmel, S., Damour, M., Ludwig, R., & Rodriguez, M. (2021). Intelligent decision-support system
to plan, manage and optimize water quality monitoring programs: design of a conceptual
framework. Journal of Environmental Planning and Management , 64 (4), 703–733.

Bell, P., Hoadley, C. M., & Linn, M. C. (2004). Design-based research in education. Internet
environments for science education, 2004 , 73–85.

Ben-Akiva, M., Bradley, M., Morikawa, T., Benjamin, J., Novak, T., Oppewal, H., & Rao, V.
(1994). Combining revealed and stated preferences data. Marketing Letters, 5 (4), 335–349.

Ben-Akiva, M., McFadden, D., Abe, M., Böckenholt, U., Bolduc, D., Gopinath, D., . . . others
(1997). Modeling methods for discrete choice analysis. Marketing Letters, 8 (3), 273–286.

Ben-Akiva, M., & Morikawa, T. (1990). Estimation of switching models from revealed preferences
and stated intentions. Transportation Research Part A: General , 24 (6), 485–495.

Ben-Akiva, M. E., McFadden, D., Train, K., et al. (2019). Foundations of stated preference
elicitation: Consumer behavior and choice-based conjoint analysis. Now.

Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold cross-
validation. Journal of machine learning research, 5 (Sep), 1089–1105.

Bennett, C. C., & Doub, T. W. (2016). Expert systems in mental health care: Ai applications in
decision-making and consultation. In Artificial intelligence in behavioral and mental health
care (pp. 27–51). Elsevier.

Bharosa, N., & Janssen, M. (2015). Principle-based design: a methodology and principles for cap-
italizing design experiences for information quality assurance. Journal of Homeland Security
and Emergency Management , 12 (3), 469–496.

Bhat, C. R., & Castelar, S. (2002). A unified mixed logit framework for modeling revealed and
stated preferences: formulation and application to congestion pricing analysis in the san
francisco bay area. Transportation Research Part B: Methodological , 36 (7), 593–616.

Bhatt, G. D., & Zaveri, J. (2002). The enabling role of decision support systems in organizational
learning. Decision Support Systems, 32 (3), 297–309.

Bierlaire, M., & Fetiarison, M. (2009). Estimation of discrete choice models: extending biogeme.
In Swiss transport research conference (strc).

Billings, C. E. (2018). Aviation automation: The search for a human-centered approach. CRC
Press.

Birol, E., Kontoleon, A., & Smale, M. (2006). Combining revealed and stated preference methods
to assess the private value of agrobiodiversity in hungarian home gardens. Intl Food Policy
Res Inst.

Björnander, S. (2011). Architecture description languages. Mrtc. Mdh. Se.
Blank, T., Graves, K., Sepucha, K., & Llewellyn-Thomas, H. (2006). Understanding treatment

decision making: contexts, commonalities, complexities, and challenges. Annals of Behavioral
Medicine, 32 (3), 211–217.

Boehm, B., Bose, P., Horowitz, E., & Lee, M. J. (1995). Software requirements negotiation and
renegotiation aids: A theory-w based spiral approach. In 1995 17th international conference

117

on software engineering (pp. 243–243).
Boxall, P. C., Adamowicz, W. L., Swait, J., Williams, M., & Louviere, J. (1996). A comparison

of stated preference methods for environmental valuation. Ecological economics, 18 (3), 243–
253.

Boyce, D. E., & Williams, H. C. (2015). Forecasting urban travel: Past, present and future. Edward
Elgar Publishing.

Brehmer, B. (1992). Dynamic decision making: Human control of complex systems. Acta psycho-
logica, 81 (3), 211–241.

Brownstone, D., Bunch, D. S., & Train, K. (2000). Joint mixed logit models of stated and revealed
preferences for alternative-fuel vehicles. Transportation Research Part B: Methodological ,
34 (5), 315–338.

Brownstone, D., & Small, K. A. (2005). Valuing time and reliability: assessing the evidence from
road pricing demonstrations. Transportation Research Part A: Policy and Practice, 39 (4),
279–293.

Buchgeher, G., & Weinreich, R. (2014). Continuous software architecture analysis. In Agile
software architecture (pp. 161–188). Elsevier.

Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algo-
rithms. Big Data & Society , 3 (1), 2053951715622512.

Byrnes, C., & Kyratzoglou, I. (2006). Applying architecture tradeoff assessment method (atam)
as part of formal software architecture review (Tech. Rep.). MITRE CORP BEDFORD MA
BEDFORD United States.

Campbell, D., Hutchinson, W. G., & Scarpa, R. (2006). Lexicographic preferences in discrete
choice experiments: Consequences on individual-specific willingness to pay estimates.

Carlsson, F., Kataria, M., & Lampi, E. (2010). Dealing with ignored attributes in choice experi-
ments on valuation of sweden’s environmental quality objectives. Environmental and resource
economics, 47 (1), 65–89.

Carson, R. T., & Groves, T. (2007). Incentive and informational properties of preference questions.
Environmental and resource economics, 37 (1), 181–210.

Castaneda, C., Nalley, K., Mannion, C., Bhattacharyya, P., Blake, P., Pecora, A., . . . Suh, K. S.
(2015). Clinical decision support systems for improving diagnostic accuracy and achieving
precision medicine. Journal of clinical bioinformatics, 5 (1), 1–16.

Castillo, R. S., & Kelemen, A. (2013). Considerations for a successful clinical decision support
system. CIN: Computers, Informatics, Nursing , 31 (7), 319–326.

Checkland, P., & Scholes, J. (1990). Soft systems methodology in action. (No. Q295 C51).
Chen, E. S., Borlawsky, T., Qureshi, K., Li, J., Lussier, Y. A., & Hripcsak, G. (2007). Monitoring

the function and use of a clinical decision support system. In Amia annu symp proc (Vol. 902).
Cherchi, E., & Hensher, D. A. (2015). Workshop synthesis: Stated preference surveys and experi-

mental design, an audit of the journey so far and future research perspectives. Transportation
Research Procedia, 11 , 154–164.

Chikwe, J. E. (n.d.). Decision-making feasibility and techniques: A psychological and strategic
evaluation imperatives. GLOBAL JOURNAL OF BUSINESS MANAGEMENT , 1.

Cho, I., Kim, J., Kim, J. H., Kim, H. Y., & Kim, Y. (2010). Design and implementation of
a standards-based interoperable clinical decision support architecture in the context of the
korean ehr. International journal of medical informatics, 79 (9), 611–622.

Chorus, C. G. (2010). A new model of random regret minimization. European Journal of Transport
and Infrastructure Research, 10 (2).

Clements, P., Bass, L., Kazman, R., & Abowd, G. (1995). Predicting software quality by
architecture-level evaluation. In Proceedings of the fifth international conference on software
quality (Vol. 5, pp. 485–497).

Clements, P., Garlan, D., Little, R., Nord, R., & Stafford, J. (2003). Documenting software
architectures: views and beyond. In 25th international conference on software engineering,
2003. proceedings. (pp. 740–741).

Cole, R., Purao, S., Rossi, M., & Sein, M. (2005). Being proactive: where action research meets
design research. ICIS 2005 proceedings, 27.

Cummings, M. L. (2006). Automation and accountability in decision support system interface
design.

Curcin, V., Fairweather, E., Danger, R., & Corrigan, D. (2017). Templates as a method for im-
plementing data provenance in decision support systems. Journal of biomedical informatics,
65 , 1–21.

Danaf, M., Becker, F., Song, X., Atasoy, B., & Ben-Akiva, M. (2019). Online discrete choice
models: Applications in personalized recommendations. Decision Support Systems, 119 ,

118

35–45.
Dasgupta, S., et al. (1996). Technology and creativity. Oxford University Press, USA.
de Freitas, L. M., Becker, H., Zimmermann, M., & Axhausen, K. W. (2019). Modelling intermodal

travel in switzerland: A recursive logit approach. Transportation Research Part A: Policy
and Practice, 119 , 200–213.

Degtiar, I., & Rose, S. (2021). A review of generalizability and transportability. arXiv preprint
arXiv:2102.11904 .

Delen, D. (2019). Prescriptive analytics: The final frontier for evidence-based management and
optimal decision making. FT Press.

de Luca, S., & Cantarella, G. E. (2009). Validation and comparison of choice models. Ashgate,
UK.

DeShazo, J., & Fermo, G. (2004). Implications of rationally-adaptive pre-choice behaviour for the
design and estimation of choice models. University of California, Los Angeles.

Ding, M., Grewal, R., & Liechty, J. (2005). Incentive-aligned conjoint analysis. Journal of
marketing research, 42 (1), 67–82.

Di Noia, T., Mongiello, M., Nocera, F., & Straccia, U. (2019). A fuzzy ontology-based approach for
tool-supported decision making in architectural design. Knowledge and Information Systems,
58 (1), 83–112.

Dissanayake, D., & Morikawa, T. (2003). A combined rp/sp nested logit model of vehicle owner-
ship, mode choice and trip chaining to investigate household travel behavior in developing
countries. In Trb 2003 annual meeting cd-rom, nagoya.

Djamasbi, S., & Loiacono, E. T. (2008). Do men and women use feedback provided by their
decision support systems (dss) differently? Decision Support Systems, 44 (4), 854–869.

Dym, C., Little, P., Orwin, E., & Spjut, R. (2004). Engineering design: A project based approach
. hoboken. NJ: Wiley.

Eapen, B. (2021). Towards a theory of adoption and design for clinical decision support systems
(Unpublished doctoral dissertation).

Edwards, W. (1962). Dynamic decision theory and probabilistic information processings. Human
factors, 4 (2), 59–74.

Edwin, N. M. (2014). Software frameworks, architectural and design patterns. Journal of Software
Engineering and Applications, 2014 .

El-Sappagh, S. H., & El-Masri, S. (2011). A proposal of clinical decision support system architec-
ture for distributed electronic health records. In Proceedings of the international conference
on bioinformatics & computational biology (biocomp) (p. 1).

El-Sappagh, S. H., & El-Masri, S. (2014). A distributed clinical decision support system architec-
ture. Journal of King Saud University-Computer and Information Sciences, 26 (1), 69–78.

Erder, M., & Pureur, P. (2015). Continuous architecture: sustainable architecture in an agile and
cloud-centric world. Morgan Kaufmann.

Esmaeilzadeh, P., Sambasivan, M., Kumar, N., & Nezakati, H. (2015). Adoption of clinical decision
support systems in a developing country: Antecedents and outcomes of physician’s threat
to perceived professional autonomy. International journal of medical informatics, 84 (8),
548–560.

Fan, A., Lin, D., & Tang, Y. (2017). Clinical decision support systems for comorbidity: Architec-
ture, algorithms, and applications. International journal of telemedicine and applications,
2017 .

Feit, E. M., Beltramo, M. A., & Feinberg, F. M. (2010). Reality check: Combining choice ex-
periments with market data to estimate the importance of product attributes. Management
science, 56 (5), 785–800.

Folmer, E., Van Gurp, J., & Bosch, J. (2004). Software architecture analysis of usability. In Ifip
international conference on engineering for human-computer interaction (pp. 38–58).

Fong, J. (2001). Knowledge management & intelligent enterprises. World Scientific.
Franses, P. H. (2000). A test for hit rate in binary response models. International Journal of

Market Research, 42 (2), 1–5.
Friedberg, M. W., Chen, P. G., Van Busum, K. R., Aunon, F., Pham, C., Caloyeras, J., . . . others

(2014). Factors affecting physician professional satisfaction and their implications for patient
care, health systems, and health policy. Rand health quarterly , 3 (4).

Frysak, J. (2016). A preliminary framework for feedback mechanism design in extended decision
support systems-implications of a literature review. In Mcis (p. 37).

Fu, K. K., Yang, M. C., & Wood, K. L. (2015). Design principles: The foundation of design.
In International design engineering technical conferences and computers and information in
engineering conference (Vol. 57175, p. V007T06A034).

119

Gago, P., & Santos, M. F. (2008). Towards an intelligent decision support system for intensive care
units. In Workshop on supervised and unsupervised ensemble methods and their applications
(p. 21).

Garg, A. X., Adhikari, N. K., McDonald, H., Rosas-Arellano, M. P., Devereaux, P. J., Beyene,
J., . . . Haynes, R. B. (2005). Effects of computerized clinical decision support systems
on practitioner performance and patient outcomes: a systematic review. Jama, 293 (10),
1223–1238.

Garlan, D. (2000). Software architecture: a roadmap. In Proceedings of the conference on the
future of software engineering (pp. 91–101).

Garlan, D., & Shaw, M. (1993). An introduction to software architecture. In Advances in software
engineering and knowledge engineering (pp. 1–39). World Scientific.

Gaube, S., Suresh, H., Raue, M., Merritt, A., Berkowitz, S. J., Lermer, E., . . . Ghassemi, M.
(2021). Do as ai say: susceptibility in deployment of clinical decision-aids. NPJ digital
medicine, 4 (1), 1–8.

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and tam in online shopping: An
integrated model. MIS quarterly , 51–90.

Gluud, C., & Nikolova, D. (2007). Likely country of origin in publications on randomised controlled
trials and controlled clinical trials during the last 60 years. Trials, 8 (1), 1–8.

Goldberg, H. S., Paterno, M. D., Grundmeier, R. W., Rocha, B. H., Hoffman, J. M., Tham, E.,
. . . others (2016). Use of a remote clinical decision support service for a multicenter trial to
implement prediction rules for children with minor blunt head trauma. International journal
of medical informatics, 87 , 101–110.

Gong, Y. (2012). Engineering flexible and agile services: a reference architecture for administrative
processes.

Gorton, I. (2011). Software quality attributes. In Essential software architecture (pp. 23–38).
Springer.

Gorzeń-Mitka, I., & Okreglicka, M. (2014). Improving decision making in complexity environment.
Procedia Economics and Finance, 16 , 402–409.

Greefhorst, D., & Proper, E. (2011). The role of enterprise architecture. In Architecture principles
(pp. 7–29). Springer.

Greene, W. (2009). Discrete choice modeling. In Palgrave handbook of econometrics (pp. 473–556).
Springer.

Greenes, R. A., Bates, D. W., Kawamoto, K., Middleton, B., Osheroff, J., & Shahar, Y. (2018).
Clinical decision support models and frameworks: seeking to address research issues underly-
ing implementation successes and failures. Journal of biomedical informatics, 78 , 134–143.

Gretton, C. (2018). Trust and transparency in machine learning-based clinical decision support.
In Human and machine learning (pp. 279–292). Springer.

Grimm, K. J., Mazza, G. L., & Davoudzadeh, P. (2017). Model selection in finite mixture models: A
k-fold cross-validation approach. Structural Equation Modeling: A Multidisciplinary Journal ,
24 (2), 246–256.

Grossglauser, M., & Saner, H. (2014). Data-driven healthcare: from patterns to actions. European
journal of preventive cardiology , 21 (2 suppl), 14–17.

Gultepe, E., Green, J. P., Nguyen, H., Adams, J., Albertson, T., & Tagkopoulos, I. (2014). From
vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical
decision support system. Journal of the American Medical Informatics Association, 21 (2),
315–325.

Hacker, P., Krestel, R., Grundmann, S., & Naumann, F. (2020). Explainable ai under contract
and tort law: legal incentives and technical challenges. Artificial Intelligence and Law , 1–25.

Haider, W. (2002). Stated preference and choice models–a versatile alternative to traditional
recreation research. In Monitoring and management of visitor flows in recreational and
protected areas. conference proceedings (pp. 115–121).

Haj-Bolouri, A., Purao, S., Rossi, M., & Bernhardsson, L. (2018). Action design research in
practice: lessons and concerns.

Helveston, J. P., Feit, E. M., & Michalek, J. J. (2018). Pooling stated and revealed preference
data in the presence of rp endogeneity. Transportation Research Part B: Methodological , 109 ,
70–89.

Hensher, D. A., Rose, J., & Greene, W. H. (2005). The implications on willingness to pay of
respondents ignoring specific attributes. Transportation, 32 (3), 203–222.

Hevner, A., & Chatterjee, S. (2010). Design science research in information systems. In Design
research in information systems (pp. 9–22). Springer.

120

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian journal of
information systems, 19 (2), 4.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems
research. MIS quarterly , 75–105.

Hoepman, J.-H. (2014). Privacy design strategies. In Ifip international information security
conference (pp. 446–459).

Holst, H., Åström, K., Järund, A., Palmer, J., Heyden, A., Kahl, F., . . . Edenbrandt, L. (2000).
Automated interpretation of ventilation-perfusion lung scintigrams for the diagnosis of pul-
monary embolism using artificial neural networks. European journal of nuclear medicine,
27 (4), 400–406.

Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build
explainable ai systems for the medical domain? arXiv preprint arXiv:1712.09923 .

Hong, T.-P., Wang, C.-Y., & Lin, C.-W. (2010). Providing timely updated sequential patterns
in decision making. International Journal of Information Technology & Decision Making ,
9 (06), 873–888.

Hoogervorst, J. A. (2009). Enterprise governance and enterprise engineering. Springer Science &
Business Media.

Horsky, J., Schiff, G. D., Johnston, D., Mercincavage, L., Bell, D., & Middleton, B. (2012).
Interface design principles for usable decision support: a targeted review of best practices for
clinical prescribing interventions. Journal of biomedical informatics, 45 (6), 1202–1216.

Huang, Y.-M., Hung, C.-M., & Jiau, H. C. (2006). Evaluation of neural networks and data mining
methods on a credit assessment task for class imbalance problem. Nonlinear Analysis: Real
World Applications, 7 (4), 720–747.

Huber, J., & Zwerina, K. (1996). The importance of utility balance in efficient choice designs.
Journal of Marketing research, 33 (3), 307–317.

Hussain, M., Afzal, M., Khan, W. A., & Lee, S. (2012). Clinical decision support service for
elderly people in smart home environment. In 2012 12th international conference on control
automation robotics & vision (icarcv) (pp. 678–683).

Hutton, R. J., & Klein, G. (1999). Expert decision making. Systems Engineering: The Journal of
The International Council on Systems Engineering , 2 (1), 32–45.

Hyysalo, S., & Lehenkari, J. (2003). An activity-theoretical method for studying user participation
in is design. Methods of Information in Medicine, 42 (04), 398–404.

Ibrahim, A. M., & Bennett, B. (2014). The assessment of machine learning model performance
for predicting alluvial deposits distribution. Procedia Computer Science, 36 , 637–642.

Iivari, J. (2015). Distinguishing and contrasting two strategies for design science research. European
Journal of Information Systems, 24 (1), 107–115.

Islam, R., Weir, C., & Del Fiol, G. (2014). Heuristics in managing complex clinical decision tasks
in experts’ decision making. In 2014 ieee international conference on healthcare informatics
(pp. 186–193).

Johannesson, P., & Perjons, E. (2014). An introduction to design science. Springer.
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.

Science, 349 (6245), 255–260.
Jung, Y. (2018). Multiple predicting k-fold cross-validation for model selection. Journal of

Nonparametric Statistics, 30 (1), 197–215.
Kawamoto, K., Houlihan, C. A., Balas, E. A., & Lobach, D. F. (2005). Improving clinical practice

using clinical decision support systems: a systematic review of trials to identify features
critical to success. Bmj , 330 (7494), 765.

Kazman, R., Bass, L., Abowd, G., & Webb, M. (1994). Saam: A method for analyzing the prop-
erties of software architectures. In Proceedings of 16th international conference on software
engineering (pp. 81–90).

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998). The
architecture tradeoff analysis method. In Proceedings. fourth ieee international conference
on engineering of complex computer systems (cat. no. 98ex193) (pp. 68–78).

Keijzer-Broers, W. (2016). Developing a service platform for health and wellbeing in a living lab
setting: an action design research approach.

Keijzer-Broers, W., & de Reuver, M. (2016). Applying agile design sprint methods in action design
research: prototyping a health and wellbeing platform. In International conference on design
science research in information system and technology (pp. 68–80).

Keil, M., Beranek, P. M., & Konsynski, B. R. (1995). Usefulness and ease of use: field study
evidence regarding task considerations. Decision support systems, 13 (1), 75–91.

121

Keys, Y., Silverman, S. R., & Evans, J. (2017). Identification of tools and techniques to en-
hance interdisciplinary collaboration during design and construction projects. HERD: Health
Environments Research & Design Journal , 10 (5), 28–38.

Khairat, S., Marc, D., Crosby, W., & Al Sanousi, A. (2018). Reasons for physicians not adopting
clinical decision support systems: critical analysis. JMIR medical informatics, 6 (2), e24.

Khalifa, M. (2014). Clinical decision support: Strategies for success. Procedia Computer Science,
37 , 422–427.

Kim, J. A., Cho, I., & Kim, Y. (2008). Cdss (clinical decision support system) architecture in
korea. In 2008 international conference on convergence and hybrid information technology
(pp. 700–703).

Kirkebøen, G. (2009). Decision behaviour-improving expert judgement. In Making essential choices
with scant information (pp. 169–194). Springer.

Klein Koerkamp, R. (2019). The road from analytical cdss invention to implementation in health-
care (Unpublished master’s thesis). University of Twente.

Klinkenberg, R., & Rüping, S. (2002). Concept drift and the importance of examples. In Text
mining–theoretical aspects and applications.

Knodel, J., Muthig, D., & Naab, M. (2006). Static architecture evaluation of open source reuse
candidates. NODe 2006–GSEM 2006 .

Kolter, J. Z., & Maloof, M. A. (2007). Dynamic weighted majority: An ensemble method for
drifting concepts. The Journal of Machine Learning Research, 8 , 2755–2790.

Kong, G., Xu, D.-L., & Yang, J.-B. (2008). Clinical decision support systems: a review on
knowledge representation and inference under uncertainties. International Journal of Com-
putational Intelligence Systems, 1 (2), 159–167.

Korva, N., Porter, S., O’Connor, B. P., Shaw, J., & Brinke, L. t. (2013). Dangerous decisions:
Influence of juror attitudes and defendant appearance on legal decision-making. Psychiatry,
Psychology and Law , 20 (3), 384–398.

Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: a review of
classification and combining techniques. Artificial Intelligence Review , 26 (3), 159–190.

Kruse, C. S., Goswamy, R., Raval, Y. J., & Marawi, S. (2016). Challenges and opportunities of
big data in health care: a systematic review. JMIR medical informatics, 4 (4), e38.

Kuechler, B., & Vaishnavi, V. (2008). On theory development in design science research: anatomy
of a research project. European Journal of Information Systems, 17 (5), 489–504.

Kumar, A. (2015). Stakeholder’s perspective of clinical decision support system. Open Journal of
Business and Management , 4 (1), 45–50.

Kusumasondjaja, S., Shanka, T., & Marchegiani, C. (2012). Credibility of online reviews and initial
trust: The roles of reviewer’s identity and review valence. Journal of Vacation Marketing ,
18 (3), 185–195.

Lachaab, M., Ansari, A., Jedidi, K., & Trabelsi, A. (2006). Modeling preference evolution in
discrete choice models: A bayesian state-space approach. Quantitative Marketing and Eco-
nomics, 4 (1), 57–81.

Lajnef, M. A., Ayed, M. B., & Kolski, C. (2005). Convergence possible des processus du data
mining et de conception-évaluation d’ihm: adaptation du modèle en u. In Proceedings of the
17th conference on l’interaction homme-machine (pp. 243–246).

Lakshmanaprabu, S., Mohanty, S. N., Krishnamoorthy, S., Uthayakumar, J., Shankar, K., et al.
(2019). Online clinical decision support system using optimal deep neural networks. Applied
Soft Computing , 81 , 105487.

Lassing, N., Bengtsson, P., Van Vliet, H., & Bosch, J. (2002). Experiences with alma: architecture-
level modifiability analysis. Journal of systems and software, 61 (1), 47–57.

Lavasani, M., Hossan, M. S., Asgari, H., & Jin, X. (2017). Examining methodological issues on
combined rp and sp data. Transportation research procedia, 25 , 2330–2343.

Lee, C., Ran, B., Yang, F., & Loh, W.-Y. (2010). A hybrid tree approach to modeling alternate
route choice behavior with online information. Journal of Intelligent Transportation Systems,
14 (4), 209–219.

Lee, K.-W., & Huh, S.-Y. (2006). A model-solver integration framework for autonomous and
intelligent model solution. Decision Support Systems, 42 (2), 926–944.

Leist, S., & Zellner, G. (2006). Evaluation of current architecture frameworks. In Proceedings of
the 2006 acm symposium on applied computing (pp. 1546–1553).

Lenz, A. (2020). Designing dynamic decision support for electronic requirements negotiations. In
Dynamic decision support for electronic requirements negotiations (pp. 75–89). Springer.

Lesko, C. R., Buchanan, A. L., Westreich, D., Edwards, J. K., Hudgens, M. G., & Cole, S. R. (2017).
Generalizing study results: a potential outcomes perspective. Epidemiology (Cambridge,

122

Mass.), 28 (4), 553.
Li, X., Hess, T. J., & Valacich, J. S. (2008). Why do we trust new technology? a study of

initial trust formation with organizational information systems. The Journal of Strategic
Information Systems, 17 (1), 39–71.

Liberati, E. G., Ruggiero, F., Galuppo, L., Gorli, M., González-Lorenzo, M., Maraldi, M., . . .
others (2017). What hinders the uptake of computerized decision support systems in hospi-
tals? a qualitative study and framework for implementation. Implementation Science, 12 (1),
1–13.

Lindstrom, A. (2006). On the syntax and semantics of architectural principles. In Proceedings of
the 39th annual hawaii international conference on system sciences (hicss’06) (Vol. 8, pp.
178b–178b).

Longhurst, R. (2003). Semi-structured interviews and focus groups. Key methods in geography ,
3 (2), 143–156.

Louviere, J., & Timmermans, H. (1990). Stated preference and choice models applied to recreation
research: a review. Leisure Sciences, 12 (1), 9–32.

Louviere, J. J., Flynn, T. N., & Carson, R. T. (2010). Discrete choice experiments are not conjoint
analysis. Journal of choice modelling , 3 (3), 57–72.

Louviere, J. J., Hensher, D. A., & Swait, J. D. (2000). Stated choice methods: analysis and
applications. Cambridge university press.

Louviere, J. J., Meyer, R. J., Bunch, D. S., Carson, R., Dellaert, B., Hanemann, W. M., . . . Irwin,
J. (1999). Combining sources of preference data for modeling complex decision processes.
Marketing Letters, 10 (3), 205–217.

Ltifi, H., Ayed, M. B., Kolski, C., & Alimi, A. M. (2009). Hci-enriched approach for dss develop-
ment: the up/u approach. In 2009 ieee symposium on computers and communications (pp.
895–900).

Lu, X. (2005). An investigation on service-oriented architecture for constructing distributed web
gis application. In 2005 ieee international conference on services computing (scc’05) vol-1
(Vol. 1, pp. 191–197).

Lyman, J. A., Cohn, W. F., Bloomrosen, M., & Detmer, D. E. (2010). Clinical decision support:
progress and opportunities. Journal of the American Medical Informatics Association, 17 (5),
487–492.

Maccani, G., Donnellan, B., & Helfert, M. (2014). Action design research in practice: the case of
smart cities. In International conference on design science research in information systems
(pp. 132–147).

Mackworth, N. H., et al. (1950). Researches on the measurement of human performance. Researches
on the Measurement of Human Performance.(268).

Madura, J. (2006). Introduction to business. Cengage Learning.
Magee, J., Dulay, N., Eisenbach, S., & Kramer, J. (1995). Specifying distributed software archi-

tectures. In European software engineering conference (pp. 137–153).
Mahiddin, N., Othman, Z., & Bakar, A. (2017). An architecture of multiagent system (mas) for

healthcare intelligent decision support system (idss). Journal of Fundamental and Applied
Sciences, 9 (5S), 144–167.

Maiden, N. A., & Hare, M. (1998). Problem domain categories in requirements engineering.
International Journal of Human-Computer Studies, 49 (3), 281–304.

March, S. T., & Smith, G. F. (1995). Design and natural science research on information technology.
Decision support systems, 15 (4), 251–266.

Mårtensson, F. (2006). Software architecture quality evaluation: Approaches in an industrial
context (Unpublished doctoral dissertation). Blekinge Institute of Technology.

Martensson, F., Grahn, H., & Mattsson, M. (2004). Prototype-based software architecture
evaluation–component quality attribute evaluation. In Proceedings of the 4th conference
on software engineering research and practice in sweden (pp. 11–17).

McIntosh, M. J., & Morse, J. M. (2015). Situating and constructing diversity in semi-structured
interviews. Global qualitative nursing research, 2 , 2333393615597674.

Meertens, L. O., Iacob, M.-E., & Nieuwenhuis, L. J. (2010). Goal and model driven design of
an architecture for a care service platform. In Proceedings of the 2010 acm symposium on
applied computing (pp. 158–164).

Meister, D., & Enderwick, T. P. (2001). Human factors in system design, development, and testing.
CRC Press.

Melton, B. L., Zillich, A. J., Saleem, J. J., Russ, A. L., Tisdale, J. E., & Overholser, B. R. (2016).
Iterative development and evaluation of a pharmacogenomic-guided clinical decision support
system for warfarin dosing. Applied clinical informatics, 7 (4), 1088.

123

Miah, S. J., Blake, J., & Kerr, D. (2020). Meta-design knowledge for clinical decision support
systems. Australasian Journal of Information Systems, 24 , 1–21.

Michalewicz, Z., Schmidt, M., Michalewicz, M., & Chiriac, C. (2006). Adaptive business intelli-
gence. Springer.

Montani, S., & Striani, M. (2019). Artificial intelligence in clinical decision support: a focused
literature survey. Yearbook of medical informatics, 28 (1), 120.

Moore, J. H., & Chang, M. G. (1980). Design of decision support systems. ACM SIGOA Newsletter ,
1 (4-5), 8–14.

Morikawa, T. (1989). Incorporating stated preference data in travel demand analysis (Unpublished
doctoral dissertation). Massachusetts Institute of Technology.

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. In Proceedings of the
sigchi conference on human factors in computing systems (pp. 249–256).

O’Brien, L., Merson, P., & Bass, L. (2007). Quality attributes for service-oriented architectures. In
International workshop on systems development in soa environments (sdsoa’07: Icse work-
shops 2007) (pp. 3–3).

Oh, S., Cha, J., Ji, M., Kang, H., Kim, S., Heo, E., . . . others (2015). Architecture design of
healthcare software-as-a-service platform for cloud-based clinical decision support service.
Healthcare informatics research, 21 (2), 102.

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimhigner, D., Johnson, G., Medvidovic, N., . . . Wolf,
A. L. (1999). An architecture-based approach to self-adaptive software. IEEE Intelligent
Systems and Their Applications, 14 (3), 54–62.

Osop, H., & Sahama, T. (2019). Systems design framework for a practice-based evidence ap-
proached clinical decision support systems. In Proceedings of the australasian computer
science week multiconference (pp. 1–6).

Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, abuse. Human
factors, 39 (2), 230–253.

Patidar, A., & Suman, U. (2015). A survey on software architecture evaluation methods. In 2015
2nd international conference on computing for sustainable global development (indiacom)
(pp. 967–972).

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research
methodology for information systems research. Journal of management information systems,
24 (3), 45–77.

Pérez, I. J., Cabrerizo, F. J., & Herrera-Viedma, E. (2010). A mobile decision support system
for dynamic group decision-making problems. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 40 (6), 1244–1256.

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software architecture. ACM
SIGSOFT Software engineering notes, 17 (4), 40–52.

Petersson, A. M., & Lundberg, J. (2016). Applying action design research (adr) to develop concept
generation and selection methods. Procedia Cirp, 50 , 222–227.

Pirnejad, H., Amiri, P., Niazkhani, Z., Shiva, A., Makhdoomi, K., Abkhiz, S., . . . Bal, R. (2019).
Preventing potential drug-drug interactions through alerting decision support systems: a
clinical context based methodology. International journal of medical informatics, 127 , 18–
26.

Pitts, M. G., & Browne, G. J. (2007). Improving requirements elicitation: an empirical investiga-
tion of procedural prompts. Information systems journal , 17 (1), 89–110.

Pombo Jimenez, D. (2017). Design of a flexible ict architecture for the integration of floating
car data in rijkswaterstaat’s traffic management and information systems: A design science
research approach.

Power, D. J. (2002). Decision support systems: concepts and resources for managers. Greenwood
Publishing Group.

Power, D. J. (2008). Decision support systems: a historical overview. In Handbook on decision
support systems 1 (pp. 121–140). Springer.

Prezenski, S., Brechmann, A., Wolff, S., & Russwinkel, N. (2017). A cognitive modeling approach
to strategy formation in dynamic decision making. Frontiers in psychology , 8 , 1335.

Proper, E., & Greefhorst, D. (2010). The roles of principles in enterprise architecture. In Interna-
tional workshop on trends in enterprise architecture research (pp. 57–70).

Qiao, Y., Huang, Y., Yang, F., Zhang, M., & Chen, L. (2016). Empirical study of travel mode
forecasting improvement for the combined revealed preference/stated preference data–based
discrete choice model. Advances in Mechanical Engineering , 8 (1), 1687814015624836.

Queirós, A., Faria, D., & Almeida, F. (2017). Strengths and limitations of qualitative and quanti-
tative research methods. European Journal of Education Studies.

124

Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: promise and potential.
Health information science and systems, 2 (1), 1–10.

Rajer-Kanduč, K., Zupan, J., & Majcen, N. (2003). Separation of data on the training and test
set for modelling: a case study for modelling of five colour properties of a white pigment.
Chemometrics and intelligent laboratory systems, 65 (2), 221–229.

Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine learning.
arXiv preprint arXiv:1811.12808 .

Ravikumar, K., MacLaughlin, K. L., Scheitel, M. R., Kessler, M., Wagholikar, K. B., Liu, H.,
& Chaudhry, R. (2018). Improving the accuracy of a clinical decision support system for
cervical cancer screening and surveillance. Applied clinical informatics, 9 (1), 62.

Rawson, T., Moore, L., Hernandez, B., Charani, E., Castro-Sanchez, E., Herrero, P., . . . Holmes,
A. (2017). A systematic review of clinical decision support systems for antimicrobial manage-
ment: are we failing to investigate these interventions appropriately? Clinical Microbiology
and Infection, 23 (8), 524–532.

Rizzi, L. I., & de Dios Ortúzar, J. (2003). Stated preference in the valuation of interurban road
safety. Accident Analysis & Prevention, 35 (1), 9–22.

Rogers, E. M., & Shoemaker, F. F. (1971). Communication of innovations; a cross-cultural
approach.

Rosenberger, R. S., Peterson, G. L., Clarke, A., & Brown, T. C. (2003). Measuring dispositions
for lexicographic preferences of environmental goods: integrating economics, psychology and
ethics. Ecological Economics, 44 (1), 63–76.

Røst, T. B., Clausen, C., Nytrø, Ø., Koposov, R., Leventhal, B., Westbye, O. S., . . . Skokauskas,
N. (2020). Local, early, and precise: Designing a clinical decision support system for child
and adolescent mental health services. Frontiers in Psychiatry , 11 , 1473.

Rouhani, B. D., Mahrin, M. N., Nikpay, F., Ahmad, R. B., & Nikfard, P. (2015). A systematic
literature review on enterprise architecture implementation methodologies. information and
Software Technology , 62 , 1–20.

Rozanski, N., & Woods, E. (2012). Software systems architecture: working with stakeholders using
viewpoints and perspectives. Addison-Wesley.

Rubinstein, I. S., & Good, N. (2013). Privacy by design: A counterfactual analysis of google and
facebook privacy incidents. Berkeley Tech. LJ , 28 , 1333.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1 (5), 206–215.

Sambasivan, M., Esmaeilzadeh, P., Kumar, N., & Nezakati, H. (2012). Intention to adopt clinical
decision support systems in a developing country: effect of physician’s perceived professional
autonomy, involvement and belief: a cross-sectional study. BMC medical informatics and
decision making , 12 (1), 1–8.

Sanchez, E., Toro, C., Carrasco, E., Bueno, G., Parra, C., Bonachela, P., . . . Guijarro, F. (2011).
An architecture for the semantic enhancement of clinical decision support systems. In Inter-
national conference on knowledge-based and intelligent information and engineering systems
(pp. 611–620).

Sanko, N. (2001). Guidelines for stated preference experiment design. Master of Business Admin-
stration diss., Ecole Nationale des Ponts et Chaussées. s.

Saqlain, S. M., Sher, M., Shah, F. A., Khan, I., Ashraf, M. U., Awais, M., & Ghani, A. (2019).
Fisher score and matthews correlation coefficient-based feature subset selection for heart
disease diagnosis using support vector machines. Knowledge and Information Systems, 58 (1),
139–167.

Savolainen, J., & Myllarniemi, V. (2009). Layered architecture revisited—comparison of research
and practice. In 2009 joint working ieee/ifip conference on software architecture & european
conference on software architecture (pp. 317–320).

Sein, M. K., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action design research.
MIS quarterly , 37–56.

Shah, T., & Patel, S. (2016). A novel approach for specifying functional and non-functional
requirements using rds (requirement description schema). Procedia computer science, 79 ,
852–860.

Shahin, M., Liang, P., & Khayyambashi, M. R. (2010). Improving understandability of architecture
design through visualization of architectural design decision. In Proceedings of the 2010 icse
workshop on sharing and reusing architectural knowledge (pp. 88–95).

Shaikh, F., Dehmeshki, J., Bisdas, S., Roettger-Dupont, D., Kubassova, O., Aziz, M., & Awan, O.
(2020). Artificial intelligence-based clinical decision support systems using advanced medical
imaging & radiomics. Current Problems in Diagnostic Radiology .

125

Shanmugapriya, P., & Suresh, R. (2012). Software architecture evaluation methods-a survey.
International Journal of Computer Applications, 49 (16).

Shaw, M., & Garlan, D. (1996). Software architecture: Perspectives on an engineering discipline.
Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., & Carlsson, C. (2002).

Past, present, and future of decision support technology. Decision support systems, 33 (2),
111–126.

Siau, K., & Shen, Z. (2003). Building customer trust in mobile commerce. Communications of the
ACM , 46 (4), 91–94.

Siau, K., & Wang, W. (2018). Building trust in artificial intelligence, machine learning, and
robotics. Cutter Business Technology Journal , 31 (2), 47–53.

Siddarth, S., Bucklin, R. E., & Morrison, D. G. (1995). Making the cut: Modeling and analyzing
choice set restriction in scanner panel data. Journal of Marketing Research, 32 (3), 255–266.

Sidiropoulos, K., Glotsos, D., Kostopoulos, S., Ravazoula, P., Kalatzis, I., Cavouras, D., & Ston-
ham, J. (2012). Real time decision support system for diagnosis of rare cancers, trained in
parallel, on a graphics processing unit. Computers in biology and medicine, 42 (4), 376–386.

Silver, M. S. (1991). Decisional guidance for computer-based decision support. MIS quarterly ,
105–122.

Sim, I., Gorman, P., Greenes, R. A., Haynes, R. B., Kaplan, B., Lehmann, H., & Tang, P. C. (2001).
Clinical decision support systems for the practice of evidence-based medicine. Journal of the
American Medical Informatics Association, 8 (6), 527–534.

Sinha, R., & Swearingen, K. (2002). The role of transparency in recommender systems. In Chi’02
extended abstracts on human factors in computing systems (pp. 830–831).

Smith, P. J., Geddes, N. D., & Beatty, R. (2009). Human-centered design of decision-support
systems. Human-Computer Interaction: Design Issues, Solutions, and Applications, 245.

Song, X., Danaf, M., Atasoy, B., & Ben-Akiva, M. (2018). Personalized menu optimization with
preference updater: a boston case study. Transportation Research Record , 2672 (8), 599–607.

Stafford, J. A., Richardson, D. J., & Wolf, A. L. (1998). Aladdin: A tool for architecture-level
dependence analysis of software systems (Tech. Rep.). COLORADO UNIV AT BOULDER
DEPT OF COMPUTER SCIENCE.

Steinberg, D., & Scott Cardell, N. (1992). Estimating logistic regression models when the dependent
variable has no variance. Communications in Statistics-Theory and Methods, 21 (2), 423–450.

Stevanetic, S., & Zdun, U. (2015). Software metrics for measuring the understandability of
architectural structures: a systematic mapping study. In Proceedings of the 19th international
conference on evaluation and assessment in software engineering (pp. 1–14).

Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I.
(2020). An overview of clinical decision support systems: benefits, risks, and strategies for
success. NPJ digital medicine, 3 (1), 1–10.

Swait, J., & Louviere, J. (1993). The role of the scale parameter in the estimation and comparison
of multinomial logit models. Journal of marketing research, 30 (3), 305–314.

Swait, J., Louviere, J. J., & Williams, M. (1994). A sequential approach to exploiting the combined
strengths of sp and rp data: application to freight shipper choice. Transportation, 21 (2),
135–152.

Tabares, F., Hernandez, J., & Cabezas, I. (2017). Architectural design of a clinical decision support
system for clinical triage in emergency departments. In Colombian conference on computing
(pp. 267–281).

Tabares, L., Hernandez, J., & Cabezas, I. (2016). Architectural approaches for implementing
clinical decision support systems in cloud: a systematic review. In 2016 ieee first international
conference on connected health: Applications, systems and engineering technologies (chase)
(pp. 42–47).

Tariq, A., & Rafi, K. (2012). Intelligent decision support systems-a framework. In Information
and knowledge management (Vol. 2, pp. 12–20).

ten Broeke, A. (2020). A new approach to artificial intelligence for decision support: Case study
in the neonatal intensive care unit of the university medical centre of groningen.

Ten Broeke, A., Hulscher, J., Heyning, N., Kooi, E., & Chorus, C. (2021). Bait: A new medi-
cal decision support technology based on discrete choice theory. Medical Decision Making ,
0272989X211001320.

Tharwat, A. (2020). Classification assessment methods. Applied Computing and Informatics.
Tomaszewski, W. (2012). Computer-based medical decision support system based on guidelines,

clinical pathways and decision nodes. Acta of Bioengineering & Biomechanics, 14 (1).
Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.

126

Trivedi, M. H., Daly, E. J., Kern, J. K., Grannemann, B. D., Sunderajan, P., & Claassen, C. A.
(2009). Barriers to implementation of a computerized decision support system for depression:
an observational report on lessons learned in” real world” clinical settings. BMC medical
informatics and decision making , 9 (1), 1–9.

Vahidov, R., & Kersten, G. E. (2004). Decision station: situating decision support systems.
Decision Support Systems, 38 (2), 283–303.

Vaishnavi, V., & Kuechler, W. (2004). Design research in information systems.
Vaishnavi, V. K., & Kuechler, W. (2015). Design science research methods and patterns: innovating

information and communication technology. Crc Press.
Van Cranenburgh, S., Wang, S., Vij, A., Pereira, F., & Walker, J. (2021). Choice modelling in the

age of machine learning. arXiv preprint arXiv:2101.11948 .
Varonen, H., Kortteisto, T., Kaila, M., & Group, E. S. (2008). What may help or hinder the

implementation of computerized decision support systems (cdsss): a focus group study with
physicians. Family practice, 25 (3), 162–167.

Velickovski, F., Ceccaroni, L., Roca, J., Burgos, F., Galdiz, J. B., Marina, N., & Lluch-Ariet, M.
(2014). Clinical decision support systems (cdss) for preventive management of copd patients.
Journal of translational medicine, 12 (2), 1–10.

Venable, J., Pries-Heje, J., & Baskerville, R. (2012). A comprehensive framework for evaluation in
design science research. In International conference on design science research in information
systems (pp. 423–438).

Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic moti-
vation, and emotion into the technology acceptance model. Information systems research,
11 (4), 342–365.

Verschuren, P., Doorewaard, H., & Mellion, M. (2010). Designing a research project (Vol. 2).
Eleven International Publishing The Hague.

Verschuren, P., & Hartog, R. (2005). Evaluation in design-oriented research. Quality and Quantity ,
39 (6), 733–762.

Vogel, O., Arnold, I., Chughtai, A., & Kehrer, T. (2011). Software architecture: a comprehensive
framework and guide for practitioners. Springer Science & Business Media.

Wagholikar, K. B., MacLaughlin, K. L., Kastner, T. M., Casey, P. M., Henry, M., Greenes, R. A.,
. . . Chaudhry, R. (2013). Formative evaluation of the accuracy of a clinical decision support
system for cervical cancer screening. Journal of the American Medical Informatics Associa-
tion, 20 (4), 749–757.

Wagholikar, K. B., Sundararajan, V., & Deshpande, A. W. (2012). Modeling paradigms for
medical diagnostic decision support: a survey and future directions. Journal of medical
systems, 36 (5), 3029–3049.

Wang, D., Wang, L., Zhang, Z., Wang, D., Zhu, H., Gao, Y., . . . Tian, F. (2021). ” brilliant
ai doctor” in rural china: Tensions and challenges in ai-powered cdss deployment. arXiv
preprint arXiv:2101.01524 .

Washington, S., Ravulaparthy, S., Rose, J. M., Hensher, D., & Pendyala, R. (2014). Bayesian
imputation of non-chosen attribute values in revealed preference surveys. Journal of Advanced
Transportation, 48 (1), 48–65.

Wilk, S., Michalowski, W., O’Sullivan, D., Farion, K., Sayyad-Shirabad, J., Kuziemsky, C., &
Kukawka, B. (2013). A task-based support architecture for developing point-of-care clinical
decision support systems for the emergency department. Methods of information in medicine,
52 (1), 18–32.

Winter, R., & Aier, S. (2011). How are enterprise architecture design principles used? In 2011
ieee 15th international enterprise distributed object computing conference workshops (pp.
314–321).

Wong, T.-T. (2015). Performance evaluation of classification algorithms by k-fold and leave-one-out
cross validation. Pattern Recognition, 48 (9), 2839–2846.

Wu, G., Yang, P., Xie, Y., Woodruff, H. C., Rao, X., Guiot, J., . . . others (2020). Development of
a clinical decision support system for severity risk prediction and triage of covid-19 patients
at hospital admission: an international multicentre study. European Respiratory Journal ,
56 (2).

Xafis, V., Schaefer, G. O., Labude, M. K., Brassington, I., Ballantyne, A., Lim, H. Y., . . . others
(2019). An ethics framework for big data in health and research. Asian Bioethics Review ,
11 (3), 227–254.

Xiao, L., Cousins, G., Fahey, T., Dimitrov, B. D., & Hederman, L. (2012). Developing a rule-driven
clinical decision support system with an extensive and adaptative architecture. In 2012 ieee

127

14th international conference on e-health networking, applications and services (healthcom)
(pp. 250–254).

Xiong, Z., Cui, Y., Liu, Z., Zhao, Y., Hu, M., & Hu, J. (2020). Evaluating explorative prediction
power of machine learning algorithms for materials discovery using k-fold forward cross-
validation. Computational Materials Science, 171 , 109203.

Xu, Y., & Goodacre, R. (2018). On splitting training and validation set: A comparative study of
cross-validation, bootstrap and systematic sampling for estimating the generalization perfor-
mance of supervised learning. Journal of Analysis and Testing , 2 (3), 249–262.

Yan, C. (2018). Developing digital support for learning and diagnostic reasoning in clinical practice
(Unpublished doctoral dissertation). Ume̊a University.

Yao, W., & Kumar, A. (2013). Conflexflow: integrating flexible clinical pathways into clinical
decision support systems using context and rules. Decision Support Systems, 55 (2), 499–
515.

Yeung, A. K., & Hall, G. B. (2007). Spatial database systems: design, implementation and project
management (Vol. 87). Springer Science & Business Media.

Yilmaz, L., & Tolk, A. (2008). A unifying multimodel taxonomy and agent-supported multisim-
ulation strategy for decision-support. In Intelligent decision making: An ai-based approach
(pp. 193–226). Springer.

Yu, H., Breslau, L., & Shenker, S. (1999). A scalable web cache consistency architecture. ACM
SIGCOMM Computer Communication Review , 29 (4), 163–174.

Yun, Y., Ma, D., & Yang, M. (2021). Human–computer interaction-based decision support system
with applications in data mining. Future Generation Computer Systems, 114 , 285–289.

Zachary, W. W. (1988). Decision support systems: Designing to extend the cognitive limits. In
Handbook of human-computer interaction (pp. 997–1030). Elsevier.

Zeleznikow, J., & Nolan, J. R. (2001). Using soft computing to build real world intelligent decision
support systems in uncertain domains. Decision Support Systems, 31 (2), 263–285.

Zhang, G., Xu, Y., & Li, T. (2012). Guest editorial: a special issue on new trends in intelligent
decision support systems. Knowledge-Based Systems, 32 , 1–2.

Zhang, Y.-F., Gou, L., Tian, Y., Li, T.-C., Zhang, M., & Li, J.-S. (2016). Design and development
of a sharable clinical decision support system based on a semantic web service framework.
Journal of medical systems, 40 (5), 118.

Zhou, J. Y. (2004). Functional requirements and non-functional requirements: a survey (Unpub-
lished doctoral dissertation). Concordia University.

Zhu, X., Feng, J., Huang, S., & Chen, C. (2020). An online updating method for time-varying
preference learning. Transportation Research Part C: Emerging Technologies, 121 , 102849.

Zikos, D., & DeLellis, N. (2018). Cdss-rm: a clinical decision support system reference model.
BMC medical research methodology , 18 (1), 1–14.

128

Appendix A

Overview of the interviews

Table A.1: List of the requirement identification interviews

Reference Date Respondent

Requirement interview 1 Clinical end
user

5 January 2021, 9:00am - 10:00am Jan Hulscher, UMCG

Requirement interview 2 Clinical end
user

5 January 2021, 2:00pm - 3:00pm Jean-Paul de Vries, UMCG

Requirement interview 3 Clinical end
user

12 January 2021, 5:00pm - 6:00pm Lucas Savalle, Medical Centre Haaglan-
den

Requirement interview 1 Councyl 15 January 2021, 10:00am - 11:00am Nicolaas Heyning

Requirement interview 2 Councyl 15 January 2021, 3:30pm - 4:00pm Caspar Chorus

Requirement interview 3 Councyl 14 January 2021, 1:30pm - 2:30pm Annebel ten Broeke

129

Appendix B

Interview analysis

This appendix presents an analysis of the interviews. The goal of this analysis is to identify archi-
tecture requirements that can inform the design of the architecture. The interviews were conducted
with stakeholders that are involved in the design at two different levels. The stakeholders inter-
viewed are three representatives of Councyl and three clinical end users.

The representatives of Councyl are:

1. Co-founder and CEO of Councyl: has a high stake in the design of the architecture, since
this participant has to use the architecture in future to help different healthcare clients with
decision-making in dynamic contexts. This participant helps the clients to codify, support
and automate decision processes, and will implement the full architecture in the existing
software.

2. Co-founder and scientific advisor of Councyl: has a high influence, because of the knowledge
about the science of discrete choice modeling.

3. Decision analyst of Councyl: has a high stake in the design of the architecture, since this
participant will use components defined in the architecture to apply a BAIT-based CDSS in
various healthcare decision-making contexts

The clinical end users interviewed are:

1. One clinical end user that is considered an “advanced” client of Councyl. The choice tasks
occurs rarely: approximately 20 times a year.

2. One clinical end user that is considered an “new” client of Councyl. The decision-making
tasks occurs frequently: approximately 100 times a year (bi-weekly).

3. One clinical end user that is considered not a client of Councyl.The choice tasks occurs
relatively frequent: approximately 50 times a year (weekly).

The findings of the interviews were translated into requirements at a single level: the level of
the architecture. This was done by consulting literature review as well for three reasons. First
of all, the interviews are about an extension of a CDSS that already exists. As a consequence,
respondents may only discuss what is not in place yet. However, some aspects that are covered
need to be addressed by the architecture of the desired CDSS as well. An example is reliability.
Second, the interviewed clinical end users form just a small selection which may result in somewhat
biased answers. Third, interviews are subjective by nature. Literature provides a more general
and objective input on the requirement identification. Below, the analysis of the interviews with
both Councyl (see appendix B.1) and the three clinical end users (see appendix B.2) are presented.

B.1 Interviews Councyl

B.1.1 Interview part 1: Main purpose

Two of the representatives (2 and 3), stated that the architecture should enable Councyl to con-
fidently tell clients they can serve them with a dynamic support tool that can be developed in a
foreseeable time, since Councyl has the groundwork –the architecture – already in place. This goal
can be further broken down.

130

First of all, this implies that the groundwork must be in a state such it allows Councyl to
directly develop CDSS given the preferences of the clinical end users. As such, Councyl should
be able to trust the architecture and doubtlessly follow what the architecture defines. First of
all, it is important that the architecture is reliable with regard to what the architecture describes.
Accordingly, the processes in the architecture should be tested. The test should determine if the
processes in the architecture effectively work for the goal of the process. Moreover, it is thereby
important that the developers follow the architecture as intended. This means that the architecture
can only be interpreted in one way and should therefore explicate all aspects that are relevant for
developers, but might not be directly clear by only presenting CDSS components.

• The architecture should define the model update engine only with processes that have proved
to achieve the goal for which the architecture includes the processes.

• The architecture should mark parallel processes that have to run at the same time.

• The architecture should mark processes that require collaboration between a clinical end user
and a CDSS.

• The architecture should be designed according to one description language.

• The architecture should distinguish components that produce information and components
that consume information.

Representative 2 explains that the architecture should generate a well-functioning prototype given
preferences of the client. This prototype should be developed and implemented in foreseeable time.
In the context of Councyl, this can be further specified. According to representative 1 and 2, the
current CDSS is developed and implemented within a month. Adding the components that make
the CDSS dynamic, may take another three to four weeks.

• The architecture should define a CDSS that is implementable within four weeks.

The answer of 2 and 3 triggered the question what a dynamic support entails from their perspective.
One of the representatives (2) explained that the concept of dynamic ranges from one extreme
to another. In a minimum variant, a dynamic BAIT-based CDSS should be able to run and
consulted by the clinical end users working at a specific department. This requires the architecture
to define a CDSS that delivers one-way support in which a BAIT-based CDSS does not provide
recommendations but does add and update according to real-life choices. In a maximum variant
a BAIT-based CDSS constantly provides the clinical end users with recommendations while the
clinical end users also add real-life choices. The range of potential variants indicates that different
healthcare contexts and clinical end users have diverse preferences regarding the service that the
CDSS delivers. This also found in literature (Blank, Graves, Sepucha, & Llewellyn-Thomas, 2006;
Eapen, 2021). The architecture should therefore allow Councyl to build more and less extensive
versions of a dynamic BAIT-based CDSS that differ in the completeness of the service delivered
to the healthcare client. A fixed architecture is therefore perceived as not useful. Moreover, it is
widely acknowledge that the early involvement of clinical end-users in the CDSS development and
the full realization of clinical user needs and expectations prior to the development of a CDSS,
which is achieved with an adaptable architecture structure, both increase the likelihood of CDSS
acceptance (Khairat et al., 2018). Instead, the architecture should allow the guidance of different
variants of a dynamic BAIT-based CDSS that match different end user preferences in the different
healthcare application contexts of BAIT.

The set of potential wishes and preferences regarding a dynamic BAIT-based CDSS is, however,
unknown yet. As specified by Moore and Chang (1980, p. 12), the decision-making contexts as
experienced by the end user is “constantly evolving in a decision space whose dimensions include
the problem setting, the manager’s preferences, the technology of decision-making and the envi-
ronment”. The end user’s preferences regarding a support CDSS are dynamic and therefore may
change over time. This implies that the specific the set of potential service variants is ambiguous
as well. During the design of decision support CDSSs, the discrepancy between the current design
and the known as well as the anticipated needs should be minimized (Moore & Chang, 1980).
The architecture must therefore enable the effortlessly completion of new modules (variants) that
are yet unknown, so it can be extended according to end user needs that become clear in future.
Here, effortlessly is defined as without any additional adjustments to the existing content of the
architecture. Summarizing the above, the architecture should thus be adaptable to all known and
potential future needs in potential healthcare client contexts.

131

• The architecture should be adaptable to all preferences present in healthcare decision-making
contexts.

• The architecture should be adaptable to all potential future preferences in potential health-
care decision-making contexts.

Representative 1 formulated the purpose of the architecture on a more practical level. The
focus of this representative was on an architecture that explains the specific steps that are to be
taken to both (1) save additional real-life choices made by clinical end users, and (2) update the
model with these choices. In essence, the dynamic CDSS should be capable of updating according
to new choice information captured by real-life changes to maintain its accuracy.

Representative 3 explained that it is thereby important that the architecture should enable
Councyl to judge if the architecture indeed defines a dynamic BAIT-based CDSS that is capable
of updating over time. When asking further about when and how Councyl wants to judge the
updating performance of BAIT, representative 1 and 2 stated that in the beginning it is aimed
to analyze different types of models over time in order to understand and gain experience about
the updating behaviour of a BAIT-based CDSS or to prepare a client meeting about a (series of)
model update(s). To this end, Councyl would like to have insight in the model diagnostics (Discrete
Choice Modeling based metric). Moreover, Councyl would like to observe all performance metrics -
the metrics borrowed from Machine Learning and the Confidence Representation rate - of all model
updates of end users over time. Councyl does not need to be informed about the improvement in
model performance as soon as the end user performs an update like the end user, because then
Councyl would be alarmed about updates all the time. This means Councyl only need to be able
to access models as soon as Councyl wants to.

• The architecture should force the development of a CDSS that gives Councyl insight into the
performance metrics for the choice recommendation generator model updates of all healthcare
contexts.

The representative (3) refined this by stating the architecture should not just describe how the
new choice information is to be added to the model as one set containing equally important choice
observations, but as single choices that are perceived differently in terms of importance by the end
user. Here, importance refers to the extent to which an end user wants a BAIT-based CDSS to
adjust towards a specific choice. As a consequence, deal with choice sets with choice observations
which the end user perceives as differently important for the updates. More precise, the architecture
should be sensitive to choices with different levels of importance in the updating procedure that
it specifies. The definition of an important choice, however, is to be formulated by the end user
and is therefore unknown at the moment of architecture design. This implies that there are no
prefixed importance levels or categories of choice observations that can map the choices that are
for example commonly considered as more important. The weight of a real-life that influences the
effect of that real-life choice on the update is undefined.

The selection of choices that the end user considers as important can be defined as the set of
choices of which the end user believes that if the dynamic BAIT-based CDSS gets informed by that
set, the CDSS becomes better. What it entails to become better, however, depends on the goals of
the end user regarding dynamic BAIT-based CDSS. The set of choices that is perceived relatively
important is the set of choices that causes an increase in the level the trust that a BAIT-based
CDSS matches the goals of the end user. The architecture should thus enable the end user to
specify how much dynamic BAIT-based CDSS is informed by a specific type of choice such that
dynamic BAIT-based CDSS realizes the goals of the end user.

• The architecture should force the development of a CDSS that estimates new parameters
according to the choice types and weight specification clinical end users selected as soon as
the clinical end user deems this model inaccurate or undesired for decision support.

B.1.2 Interview part 2: Functions of the architecture

The second part of the interviews was focused on the specific functions that the architecture
should fulfill in order to realize the main purpose of the architecture defined by the representatives
of Councyl.

Automated service support

Since Councyl delivers similar services to different healthcare clients, tasks part of the dynamic
decision support service will be redundant. Representative 1 aims for automating such redundant

132

activities. Examples are the model estimations for CDSS updating and the calculation of the
performance metrics. However, this would impact the relation between Councyl and end users.
Having less contact with the end users might leave end users with the feeling that help is out of
reach. Castillo and Kelemen (2013) state that for end users to accept a decision support CDSS
and use it effectively, the presence of assistance is vital. Both during the implementation of a
CDSS and after the implementation, having a feeling of sufficient support is essential in decreasing
anxiety and frustration of end users regarding the CDSS and fosters a positive attitude towards a
decision support CDSS (Castillo & Kelemen, 2013). Moreover, Councyl will become less informed
about the user experiences and feedback. Currently Councyl analyses performance manually and
discusses this in a meeting with the end user. During such a meeting, Councyl learns about the
power of the model, its value as perceived by the users, and where improvements can be made.

For Councyl to serve more end users and scale up in future, automation of redundant tasks will
be needed. However, with the importance of end user support in mind, it is argued that the au-
tomation should be focused on the tasks that do not involve moments during which Councyl could
help the end user. An example is the calculation and analysis on the performance metrics: the
CDSS can automatically generate the values for these metrics such that Councyl can easily help
the end user with interpreting them when needed. Over time, the end user may become more used
to the CDSS and may need less help. Then, it can be decided by the end user that some activities
are superfluous instead of Councyl being perceived as negligent. However, the architecture should
enhance the end users’ feeling that support of Councyl is always be available. If end users don’t
understand the results and effects of automated tasks, the architecture should, therefore, enable
end users to always request support on the CDSS components and the outcomes of these compo-
nents.

• The architecture should minimize the number of intervening actions needed from Councyl
that are not requested by the clinical end user.

• The architecture should force the development of a CDSS that enables clinical end users
to always request online support on the CDSS components and outcomes these components
produce.

Force ease of use

Representative 3 said that the CDSS should be easy to use and easy to understand for clinical
end users who have busy working days and have to perform under stressful conditions. The latter
notion is covered in appendix B.1.2. Ease of use, however, requires refinement. The ease of use
of an AI CDSS determines for the larger extent the user acceptance (Venkatesh, 2000). A CDSS
that requires the clinical end user too much time is expected to not meet the end user’s goals:
“if a CDSS is occupying copious amounts of time that could be used for patient care, then it is
not benefiting the user or the patient” (Castillo & Kelemen, 2013, p.322). The ease of use of a
CDSS can therefore be considered as inversely related to the complexity if the CDSS (Keil et al.,
1995). Rogers and Shoemaker (1971) define the complexity of a CDSS as the degree to which it is
perceived as relatively difficult to understand and use. Having the understandability component
covered, ease of use here refers to the complexity of the actions that are required to fulfil the end
user’s temporal goal(s) with the CDSS, like entering the new patient data in the CDSS, updating
the model or getting insight in the CDSS performance. The architecture should thus minimize the
time and effort that are required of the end user to fulfil the end user’s goals with the CDSS.

• The architecture should minimize the time and number of activities that a CDSS requires
from clinical end users to fulfil a clinical end user’s goals with the CDSS.

Enhance trust

Both representative 2 and 3 explained that the prototype the architecture generates should be
implementable in a way that it maximizes the end user’s trust in BAIT. This is important for
Councyl to serve the end user on a long term: lack of trust in the AI technology hinders the end
user’s uptake and usage (Gefen et al., 2003). For AI tools, trust can be a hindering factor but is
key in ensuring the acceptance and continuing progress and development (Siau & Wang, 2018).
Additionally, trustworthy AI is considered a precondition for a responsible and ethical application
of AI tools like BAIT. This is especially essential for the implementation in sensitive areas such as
the health sector (Ten Broeke et al., 2021). A clinical end user’s level of trust in decision support

133

CDSSs is affected by the way the CDSS is designed (Alexander, 2006). However, the value of
trust is rather abstract and subjective. A requirement including the notion of trust cannot be
interpreted in one way and objectively evaluated. This encouraged the translation of the value of
trust in an unambiguous requirement.

Formation of initial trust. In the context of BAIT, trust is to be perceived as something that
is not only formed at once, but should be developed maintained over time (Siau & Wang, 2018;
Ten Broeke et al., 2021). Respectively, a distinction should be made between initial and continuous
trust. Initial trust tackles an end user’s perceived uncertainty and risk regarding a new technology
(Li, Hess, & Valacich, 2008). The existing a BAIT-based CDSS is already developed in a way
that it triggers initial trust (Ten Broeke et al., 2021). To realize the same effect for the dynamic
part of the CDSS, the architecture should specify processes that are in line with the formation of
initial trust. According to Siau and Wang (2018), this requires the architecture to define updating
processes that are transparent, explainable and trailable.

Trialability refers to the opportunity to try something out and see what the effects are. This
enables the enhancement of the end user’s understanding of the components and outcomes of the
CDSS (Siau & Wang, 2018). The current CDSS already offers trialability. Considering the dynamic
part of the CDSS that is subject of design in this research, it would end user’s trust enhance trust
if they could try out updates to see the effect. The architecture should thus guarantee that the
end user can experiment with an update without ruining the model settings.

The explainability of AI tools refer to the transparency of the components and outcomes as
well as the ability to justify them (Siau & Wang, 2018). Transparent means that a CDSS should
make its internal change visible, so that end users can track how a CDSS’s recommendation model
evolves. However, if the end user cannot comprehend the inner workings of the dynamic CDSS, this
transparency is pointless. The more complex AI models become, the less they are capable of self-
explanation in an unintuitive way (Hacker et al., 2020). This becomes especially problematic in the
healthcare sector where decisions involve patients’ well-being: ethical tensions will occur if clinicians
do not understand the CDSS (Alexander, 2006). Updating components and outcomes specified by
the architecture should thus be perceived as rather simple instead of complex. This is also in line
with the core of Councyl, which strives towards simple and explainable AI (Ten Broeke et al., 2021).
To encourage the end user’s initial trust, the components and outcomes should be understandable
by the end user. Understandability, however, is subjective and needs to be standardized in order to
measure it and judge the architecture according to it. The architecture should thus guarantee that
both the updating processes and the results of these processes can be understood by an end user
without any knowledge about Discrete Choice Modeling (DCM), statistics, and Machine Learning
(ML). Besides that this enhances trust, an understandable approach is also desired and emphasized
by Representatives 2 and 3 such the expansion of the current service matches the key values of
Councyl.

• The architecture should force the development of a CDSS that makes its internal changes
transparent for clinical end users.

• The architecture should avoid the development of a CDSS that forces clinical end users to
accept a choice recommendation generator model version.

• The architecture should only include components and provide clinical end users with out-
comes that a clinical end user without any knowledge about Discrete Choice Modelling,
statistics, and Machine Learning can understand.

• The architecture should always be integrable with the service environment of Councyl.

Formation of initial trust. Initial trust formation is essential for the CDSS adoption, but for the
dynamic BAIT-based CDSS that focuses on use over time, it should be nurtured to overcome that
the end user’s tendency to use the CDSS will decrease during ongoing use (Gefen et al., 2003; Siau
& Wang, 2018). As for the formation of initial trust, continuous trust can be developed with an
interpretable and transparent CDSS that can explains its components and outcomes (Siau & Wang,
2018). This is covered in the paragraph above. Second, the extent to which trust is maintained
over time depends on the performance of the CDSS – here, of the dynamic part of the CDSS –
and requires the CDSS to be always available when needed and be reliable (Siau & Shen, 2003).
According to Representative 1, this requires the dynamic CDSS to always be available for updates
in context of a dynamic BAIT-based CDSS. Moreover, the updating processes must not hinder
other functions of the CDSS when they are running. This will affect the overall trust of the end
user in the CDSS as well.

134

With regard to reliability, Representative 1 argues that the CDSS should be the result of an
objective representation of the decision-making context. When end users are able to determine the
selection and weight of particular choices to better match their goals, this objective representation
is influenced. However, given the subjectively chosen part of the context (captured by the selected
and weighted choices), the update should ensure a direct reflection (and thus objective) of the
real-world context. To this end, Representative 1 and 2 argue for the inclusion of update processes
that are trustworthy and avoid statistical biases.

• The architecture should force the development of a CDSS that only updates the choice rec-
ommendation generator model according to contextual changes captured by the experiment
choices and real-life choices the CDSS is informed about.

• The architecture should only define components that work statistically correct.

Third, continuous trust will be developed if the CDSS works in collaboration with the end user
rather than taking over the end user’s tasks (Alexander, 2006; Siau & Shen, 2003). Because collab-
oration stimulates the perceived control a clinical end user has over the CDSS, it also decreases the
perceived threat for the professional autonomy by the clinical end user. Representative 3 argued
for an architecture that maintains the feeling of autonomy of the end user. The representative
meant that the CDSS should not give a clinical end user the feeling that once implemented, the
CDSS takes over the work of the clinical end user. Therefore, the dynamic BAIT-based CDSS
should always operate in collaboration with a clinical end user. The representative expected that
although the tasks of a dynamic BAIT-based CDSS do not directly need or replace the knowledge
and skill of a clinical end user, clinical end users would still like to have the ability to control it such
they know what is going on with regard to the CDSS. This is tested during the interviews with
the clinical end users. A similar feeling of ownership can be threatened if Councyl has too much
influence. For example, Councyl manually assesses the model performance and discusses this with
the end user. This is out of control of the end user. The enhancement of trust in the CDSS will
benefit from a minimization of the intervening actions performed by Councyl that are beyond the
control of the clinical end user, and thus are not requested by the end user. Besides the perceived
autonomy, this also ensures the minimization does not touch support requests of end users.

Finally, data security and data privacy play a key role in nurturing the trust in a new AI CDSS
(Kusumasondjaja et al., 2012; Siau & Shen, 2003). The architecture forms an expansion of an
existing CDSS for which security and privacy considerations are well organized. The architecture
should therefore include and build upon the saving processes and applications that are used by the
current CDSS. The procedure for the current CDSS and associated services states that information
should not be retrievable to individuals. Moreover, the data sharing with Councyl is organized
using the Information Processing Agreement they already have in place.

• The architecture should force the development of a CDSS that clinical end users can always
use for a choice recommendation request and measurement of a real-life choice.

• The architecture should always contain processes that work in partnership with clinical end
users.

• The architecture should ensure choices are not retrievable to an individual clinical end user
and Councyl only has access to decision-making behaviour for which end users provided
permission.

• The architecture should minimize the number of intervening actions needed from Councyl
that are not requested by a clinical end user.

• The architecture should avoid the development of a CDSS that forces clinical end users to
accept a choice recommendation generator model version.

B.1.3 Interview part 3: Characteristics of the architecture

The final part of the interviews was focused on the characteristics that the architecture should
have in order to realize the purpose of the architecture. In order to elicit this information. The
main characteristics identified during the interviews is that the architecture should be complete
and compatible. Both characteristics is further explained below.

135

Completeness of the architecture

Representative 1 mentioned that the architecture should represent all aspects that are part of the
CDSS expansion, as well as its connections to the current CDSS. The main reason provided is
that developers over time need to understand the architecture, also without guidance of persons
involved in the architecture design process. To this end, the architecture should assume that the
developer will overlook every required aspect during the CDSS development process that is not
defined by the architecture. Moreover, the architecture should be complemented with materials
that explain and argue for all aspects that are defined by the architecture.

• The architecture should inform how the architecture is used for development in specific
healthcare decision-making contexts.

• The architecture should inform on all processes that are needed to achieve the goal of the
CDSS.

• The architecture should inform on all data objects associated with the architecture.

• The architecture should inform on all dependencies between architecture components.

Compatability of the architecture

Representative 2 emphasized that the architecture forms an expansion of the current CDSS that is
already used to provide a particular service. This service is grounded in a particular organizational
and technological environment. To let the architecture be a useful starting point for CDSS devel-
opment for Councyl, all organizational and software processes and components it defines must fit
into the current environment. Otherwise, it will not be possible to connect the expansion that the
architecture defines with the existing CDSS service. The technological environment is an online
coding platform (WEM). This platform is a software that deals with the data storage and does
not require any particular hardware tools rather than a computer to access the platform. Organi-
zational wise, Councyl aims for a quick CDSS development and has already privacy procedures in
place (covered in appendix B.1.1 and appendix B.1.2).

• The architecture should always be integrable with the service environment of Councyl.

• The architecture should define a CDSS that is implementable within four weeks.

• The architecture should avoid the retrievable of choice information to an individual clini-
cal end user and undesired access to decision-making behaviour in a particular context by
Councyl.

B.2 Interviews clinical end users

B.2.1 Interview part 1: The design of the updating

The end users were first asked regarding their perspective on the importance of updating a BAIT-
based CDSS with new real-life choices. The reason was to check whether the clinical end users gain
trust from choices made in real life, next to choices made in a controlled, situated experiment. All
clinical end users appeared to be convinced that a BAIT-based CDSS should update according to
real-life choices for the following reasons:

1. The healthcare sector changes fast, and a decision support CDSS should be flexible towards
this change. For example, choices regarding the ICU uptake of COVID patients were made
with different knowledge and based on other criteria a year ago than they are now.

2. Clinical end users trust in a learning CDSS rather than a CDSS that is based on a set of
parameters that is perceived as always valid. This better mimic the clinical end user who
also learns and adjusts its strategy over time.

3. Every decision and the success of its outcome inform and influences future ones. Such feed-
back loops are essential and should be mimicked by a dynamic BAIT.

4. The choice experiment is only conducted with a selected set of clinical end users.

136

The potential “noise” that may result from decision-making in a stressful context (see section 2.2.2),
did not make clinical end users who were interviews anxious of adding real-life choices. They ex-
plained that this noise is part of the real-world, and therefore part of the decisions that clinical
end users take, and should thus be experienced by a BAIT-based CDSS as well.

clinical end user 3 added that the CDSS should not just able to attune according to new real-
life choices, but that it would be valuable if the CDSS is also flexible enough to adjust to radical
changes. It happens that a new treatment is developed that completely changes the decision-
making. The illustration the clinical end users provides was the introduction of the COVID vaccine
that influenced the decision-making on the ICU uptake. As such, the value of the CDSS would
increase if the CDSS is not only able to slightly attune its parameters over time by reflecting
gradual contextual changes, but is also modifiable in a way that radical changes can be reflected
as well.

Choice inclusion and weighting

clinical end user 2 prefers to include every real-life choice entered in and associate every real-life
choice with an equal weight. The clinical end user further specified that it is good that the real-life
choice will form the bigger part of the database and therefore will become relatively important over
time. From this notion it can be derived that the clinical end user wants a BAIT-based CDSS to
rely more on the real-life choices than on the experiment choices, since the real-life choices better
represent the real-world and the present status-quo. The clinical end user explained that, therefore,
it would not be needed to modify the weight of choices. clinical end user 3 gives a similar answer
and adds that the situation in which individuals are determining the weights of single choices is not
desirable, because then the BAIT-based CDSS will follow a subjective preference. The subjective
power in the learning of a BAIT-based CDSS should, instead, be minimized. The following example
was given: if I have a bad start of the day, had a fight with my wife, it was raining, and had a bad
coffee this will influence my opinion regarding the choice I made, and whether it is of added value
to the update of the model. According to clinical end user 3, this subjectivity should be excluded
from the model, because such subjectivity steers the model in a way that is not fair to the patient.

clinical end user 1 agrees with 2, but specifies that it might be desirable that not all real-life
choices are included. The clinical end user explains that it is goal-dependent whether a choice
should be included or not. If an end user wants the model to perfectly represent the real-world, for
example for end users to reflect on their own decision-making, it is desired to include all real-life
choices and do such they are equally relevant. The resulting model may be sub optimal because
it is based on imperfect real-life choices, for example real-life choices that were the result of a
stressful decision-making context in the middle of the night but does approach the real-world as
closely as possible. On the other side, if an end user could desire a model that only includes
real-life choices that meet specific criteria, for example that it results from decision-making of an
experienced senior clinical end user in between nine in the morning and five in the afternoon. It
could also be preferred that the group of recently added, and therefore, most accurate real-life
choices, have a larger weight. Another option would be to let the influence of experiment choices
and early real-life choices lower over time. According to clinical end user 3, the resulting model is
then considered more optimal and qualitative than objective, since it is based on a specific set of
“safe” real-life choices that meet specific optimal criteria.

The view points and reasoning with regard to the inclusion and weighting of different choices
in the update varied among the clinical end users who where interviewed. Moreover, because the
interview findings represent only three clinical end users, more viewpoints may exist in a larger
pool of clinical end users. Because preferences may also vary over time, the architecture should
specify all possible inclusion and weighting options. To enable the different weighting options,
the experiment choices and real-life choices should be stored separately. Besides the weighting of
real-life choices relative to other real-life and experiment, a final notion was made regarding the
set of experiment choices by clinical end user 1. Although the influence of this group of choices
will decrease over time, the clinical end user shared that it would be good if the model could be
informed with new choices that were not (partly) informed by the recommendation of the CDSS as
is the case for real-life choices. Choices that for which it is sure that they are not informed by the
CDSS, are choices made in a controlled experiment. However, because these choices are made in a
controlled environment with the use of a specific survey design they should not be combined with
choices made in another controlled environment. As such, the CDSS should accept the replacement
of new experiment choices rather than the addition of new experiment choices. If the end user

137

would like to enlarge the influence of experiment choices this should thus be done by giving these
choice types a larger weight instead of adding up new choices collected with different experiments.

• The architecture should force the development of a CDSS that estimates a new choice rec-
ommendation generator model according to the choice types and weight specification clinical
end users selected as soon as clinical end users deem this model inaccurate or undesired for
decision support.

• The architecture should force the development of a CDSS that distinguishes experiment
choices and real-life choices.

• The architecture should avoid the development of a CDSS that allows clinical end users to
directly determine the importance of a single real-life choice in the model estimation.

• The architecture should force the development of a CDSS that allows replacing the experiment
choices with experiment choices from a new choice experiment.

• The architecture should force the development of a CDSS that stores a choice with all features
according to which that choice is specified.

Value of Objective Clinical Outcomes for update

The interview continued with the perceived importance of clinical objective outcomes (OCO’s).
An OCO represents the consequences on the patient’s well-being of a choice. clinical end user 3
immediately states that OCO’s are really important, because they function as an evaluation of the
decision reasoning of the CDSS. The following example was given: if a clinical end user chooses
to operate nine out of ten patients, but for eight out of the nine patients the operation did not
make the patient well-being better or even made it words, than this information must be provided
to the CDSS as feedback. clinical end user 1 adds clinical end users themselves also learn from
OCO’s. When the effect of a specific choice is undesired, this will inform the choices to be made in
future. According to clinical end user 3, currently there is a vague procedure for collecting OCO-
like information. When a BAIT-based CDSS allows to adopt such information, this will enhance
both the updating of a BAIT-based CDSS and ourselves. However, clinical end users find it yet
hard to quantity how important. Since the clinical end users consider an OCO as ground truth, it
should at least always have a larger effect than a real-life choice has on the model update.

Dealing with incomplete choices for update

The experiment choices have a prefixed format. End users that enter new real-life choices have to
do this in a similar format, meaning an end user has to specify all the criteria for a patient. In
the real-world, however, some patient data may be unknown, unclear or delayed. Moreover, the
complexity of the choice tasks, referred to as information load as source of cognitive burden, may
be high. clinical end users may ignore specific criterion as a coping strategy in order to deal with
the perceived complexity (Hensher et al., 2005). This means the criterion was not relevant for the
specific clinical end user given the values for the other criteria in the specific choice task. It would
then result in more realistic reflection of the context if the end user could tell a BAIT-based CDSS
about the irrelevance of the criterion in the specific choice task. The CDSS already allows end
users to inform the CDSS that some data is missing. In the calculation of the recommendation, the
CDSS then calculates the recommendation so that the utility contribution to the recommendation
of the unknown criteria is zero. A dynamic BAIT-based CDSS does not only have to calculate an
recommendation based on data with unknown values, but also has to estimate parameters for a
new update. This links to a recognized issue in DCM literature: in the estimation of choice models
based on real-life choices, information on the choice set may be missing or incomplete or data on
some alternatives may be lacking (M. Ben-Akiva et al., 1997).

The clinical end users did not provide a clear answer on how the CDSS should deal with
missing data. clinical end user 1 and 3 showed their trust in the designer to come up with a
statistically valid solution. clinical end user 2 specified that it should at least be noted that patient
data cannot be interchanged for example by filling missing values with averages calculated over
other patients. One of the approaches to obtain information on missing attribute values is to
find solutions by which they are imputed with the average of observed values (Washington et al.,
2014). However, because the medical data is very specific for a particular patient, it cannot and
should not be replaced with other information that stems from other patients. Moreover, since the
flow of incoming real-life choices is marginal the data over which an average value would then be

138

calculated is too limited (Washington et al., 2014). The average will be too sensitive to extreme
values of other patients. As an alternative to imputing missing values with the average, Steinberg
and Scott Cardell (1992) show that it is possible to estimate choice models by pooling the accessible
real-life choices with data that is publicly available. However, again because a BAIT-based CDSS
is applied in healthcare contexts where the data is sensitive but also patient specific this is not
valid. This means there has to be dealt with missing values that cannot be replaced with other
data sources.

• The architecture should force the development of a CDSS that does not interchange patient-
specific data to deal with incomplete real-life choices.

B.2.2 Interview part 2: Frequency and activation of updating

The second part of the interview was focused on how the updating should be controlled. No partic-
ular conditions on the availability of an update were found. With regard to the level of updating
automation, clinical end user 2 states that the updates should not be activated automatically.
The idea that the model slightly changes outside the clinical end user’s control gives a feeling of
anxiousness. The other two clinical end users (1 and 3) see advantages in an automatic updating
component. However, they always want to know when and understand how the model changes.
Moreover, they want to be able to reset the model that is active if they deem a new model update
as undesired. Therefore, clinical end users should always be in the position to select the choice
recommendation generator model that the CDSS operates. The need of control regarding the up-
dating, either by activating it or fully understanding it, shows that clinical end users do not directly
believe that a updated model is always better and want to judge this themselves. This confirms
the importance of perceived autonomy as expected by Councyl (see appendix B.1.2). Clinical end
user 1 adds that it would be valuable to first execute updates manually and gain experience with
the dynamic CDSS and the effects, to later automate the update activation if trust in the CDSS
has been developed. Because the viewpoints already vary within the group of three clinical end
users, and preferences may change over time, the architecture should define different options for
the level of updating automation. Also literature indicates that full automation is not similarly
desired in every healthcare context (Aron et al., 2011; Eapen, 2021; Khairat et al., 2018; Pirnejad
et al., 2019; Wang et al., 2021).

However, when fully leaving the updating of a BAIT-based CDSS to clinical end users, there
is a risk that updates are forgotten or that clinical end users are unsure whether an update can
be done already (Smith et al., 2009). The architecture should thus ensure that the activation is
somehow encouraged, while giving the clinical end users the feeling they have the power in the
updating procedure. To this end, the architecture should always define a trigger to encourage the
clinical end user to activate a new model update as soon as the performance has degraded below
an accepted level.

For both the automated activation of a model update and the trigger towards the end user, insight
in the level of acceptance is needed. The clinical end users gave slightly different answers with
regard to the accepted level of performance. The value for the level of acceptance should therefore
be modifiable per context.

• The architecture should never force a fully automated CDSS.

• The architecture should avoid the implementation of a CDSS that forces a clinical end user
to accept a choice recommendation generator model version.

• The architecture should force the development of a CDSS that estimates a new choice rec-
ommendation generator model according to the choice types and weight specification clinical
end users selected as soon as clinical end users deem this model inaccurate or undesired for
decision support.

B.2.3 Deviating choices

With respect to what a BAIT-based CDSS should inform the end users about, clinical end user 2
and 3 both showed interest in notifications regarding interesting cases. When asking further what
interesting in this context means, the clinical end users explained that they would like to know for
which choices a BAIT-based CDSS was confident, for example a clear majority agrees in favour
or against the operation, but the clinical end user made another decision. It is outstanding if a

139

BAIT-based CDSS represents a high internal agreement regarding a specific decision case among
the pool of experts, for example a recommendation of 95% in favour of operating, while the clinical
end user entering the real-life choice makes a different decision and for example decides to not
operate). According to the clinical end users, this points to the cases where either the clinical
end user or the BAIT-based CDSS differs from a specific line of reasoning in the decision-making.
clinical end user 1 was also interested in this type of information but wants it to be stored. This
would allow to compare the cases for which the BAIT-based CDSS was sure but did not agree with
the clinical end user and investigate what the causes may be.

• The architecture should force the development of a CDSS that compares each choice recom-
mendation with the majority threshold and the clinical end user’s choice as soon as an end
user enters a real-life choice into the CDSS.

• The architecture should force the development of a CDSS that copies real-life choices ex-
ceeding the majority threshold but deviate from a clinical end user’s choice to a separate
database.

Desired information provision

The information clinical end users want to receive from the CDSS is summarized in four main
subjects: information on the decision-making behavior, the internal model changes, the updating
activity, and the model performance. The main reason which holds for all three subjects it that the
clinical end users emphasized that, in order for them to trust the CDSS and its updating process,
they want it to be as transparent as possible. With transparent they meant that they trust the
model builder with the technical details, like dealing with missing values, but find it important
to know when a CDSS executes an update and what the results of an update are. Below the
requirements related to the three subjects are respectively further explained.

1. Identified requirements with respect to the decision-making behaviour of the clinical end
users is addressed in appendix B.2.5.

2. According to clinical end user 1, the transparency of the internal model changes due to
updates is key. All clinical end users want to have insight in the model that is used and how
this model changed after an update. This allows clinical end users to judge whether the model
that results from the update is desired. For example, it could be that age has become a more
important factor in the decision-making of the decisions while this is actually not desired.
However, something that stood out was that clinical end user 2 argued that the model
information should not be used as explanation for choice recommendation when a clinical
end user requests a choice recommendation. When requesting choice recommendation, the
clinical end user is occupied and does not have the time and focus to interpret the explanation.
Moreover, the clinical end user should not be distracted by what the pool of clinical end users
find important. It should rather be accessible as soon as it suits the end user and the end
user wants to interpret the model with a specific purpose. Moreover, clinical end user 1
mentioned that it is desired to compare model updates rather than just interpret the model
that currently is used for the choice recommendation generation. clinical end users should
therefore always be able to request insight in all model updates.

3. Information on the updating activity refers to the confirmation of the activation and com-
pletion of an update.

4. Identified requirements with respect to the information on the model performance is ad-
dressed in appendix B.2.4.

As result, the requirements identified are:

• The architecture should force the development of a CDSS that allows clinical end users to
request the relative importance of the choice attributes of all model updates.

• The architecture should force the development of a CDSS that confirms the completion of a
choice recommendation generator model update.

• The architecture should force the development of a CDSS that presents an alert to clinical
end users when the level of acceptance has been reached and the choice recommendation
generator model is not updated yet.

140

B.2.4 Information provision on the model performance

Information on the model performance is twofold. First, the clinical end users find it important
to be informed as soon as the performance of the model based on which choice recommendation
is generated has degraded below a level of acceptance. This was also found to be important to
ensure clinical end users are triggered to activate updates over time (see appendix B.2.2). Because
clinical end users are occupied during working hours, alerts that need action should remain visual
until the associated action has been successfully performed (Khalifa, 2014).

Second, next to judging the change in the relative importance of choice attributes in a model
update, all clinical end users emphasize they want to know to what extent the performance of
the CDSS has improved or decreased. Therefore, they need to be informed on the performance of
the new model for choice tasks in the new, changed context. The clinical end users all stressed
that being informed the accuracy (Correspondence rate) of the model and do not want too much
information. All clinical end users also emphasized that the metrics that define the model perfor-
mance should be calculated based on recent data points. The healthcare decision-making contexts
in which the end users operate are highly dynamic, meaning that the conditions under which they
make their decisions change fast. For example, if a model that is update in January 2021 has a
high accuracy when being tested on real-life choices that were entered into the CDSS in March
2020 this does not indicate that the model update leaves the end user with an accurate CDSS.
clinical end user 3 stated that the metrics have no value if they are based on validation data that
includes cases of March 2020. Therefore, the data set based on which the CDSS calculates the
metrics should only take into account real-life choices that were recently added to the database of
the CDSS to ensure the outcomes are meaningful to the end user.

Since recent is a rather subjective concept, this requirement needs to be further specified. As
the real-life choices that were added latest to the CDSS are the most recent ones, the architecture
should ground the metrics on a minimal number of the real-life choices that were entered latest.
Because some decision-tasks are rare, filling the test set with the minimal number of real-life choices
will lead to a set with real-life choices that cover a relatively long period. For contexts that are
relatively static, this is not a problem. However, it might lower the value of the metrics for end
users in contexts that change fast. Because no other data is available, no alternative to create the
test set exists. The end user should thereby at least be able to judge to what extent the metrics
calculated are of value and to what extent the end user judges the model performance based on
these metrics. Therefore, the architecture should make the date transparent on which the real-life
choices that were used for the calculation of the metrics were entered in the CDSS.

When further discussing the content of the data set based on which the performance of the
model is determined, all clinical end users agreed that experiment choices should also not be used
for the model validation. The clinical end users have less trust in the metrics if they are grounded
on data collected in a controlled experiment setting. Instead, they are interested in the performance
of the model on real-life cases.

• The architecture should force the development of a CDSS that allows clinical end users
to request the relative importance of the choice attributes of all choice recommendation
generator model updates.

• The architecture should force the development of a CDSS that makes the date at which a
clinical end user entered a choice used for the model validation transparent.

• The architecture should force the development of a CDSS that assesses the performance of
a newly estimated choice recommendation generator model based on a unique set of recent
real-life choices.

• The architecture should force the development of a CDSS that enables clinical end users to
request the performance metrics for all choice recommendation generator model updates.

B.2.5 Additional decision-making behaviour insights

All three clinical end users appeared to be interested in the advanced decision-making trends.
According to the clinical end users, this allows for a so-called ‘mutual learning’. clinical end user
3 explained that this enables clinical end users to learn from each other: in the medical world
experienced senior clinical end users tend to be confident about their reasoning and could benefit
from opening up to juniors who are educated according to the latest technologies. A dynamic
BAIT-based CDSS could shed light upon the differences between the decision-making of seniors
and juniors. clinical end user 1 stated that every insight around the decision-making of clinical

141

end users would be of value. More specific, the patterns all clinical end users were interested could
be listed as follows:

1. The differences between choices that were made by seniors versus juniors

2. The differences between choices that were made by different expertise

3. The differences between choices that were made by different disciplines

4. The differences between choices about which the CDSS was confident

5. The differences between choices about which the clinical clinical end user was confident

6. The differences between choices made in the choice experiment setting (experiment choices)
and the real-world (real-life choices)

7. The differences between choices about which the expert was certain versus uncertain

8. The pattern according to which the relative importance of a decision criteria changes over
time

Such insights require meta-data associated with the real-life choice. This gives rise to a trade-off
between the potential extensiveness of the insights in the decision-making patterns and the amount
of data that is to be entered by the user. Although all clinical end users acknowledged to have
an aversion to entering large amounts of data, they would feel encouraged to do so when the data
requested is really needed for the purpose of the advanced insights. The clinical end users should
thus have the feeling that the extra information they enter is of value later on. Moreover, the extra
effort asked from clinical end users should be minimized while still being able to get the advanced
insights. Therefore, the CDSS should not request the same data each time that is the same for
each real-life choice. For example, the function of the clinical end user. Instead, this should be
associated to the profile of the end user that enters the real-life choice.

• The architecture should force the development of a CDSS that allows clinical end users to
request the relative importance of the choice attributes for a by the clinical end user selected
subgroups.

• The architecture should force the development of a CDSS that only asks a clinical end user
to enter choice-specific data when entering a real-life choice from which the clinical end user
will benefit later in time.

• The architecture should force the development of a CDSS that stores a choice with all features
assigned to the choice when a clinical end user entered the choice into the CDSS.

B.2.6 Majority threshold

For clinical end user 1, a BAIT-based CDSS should predict that a majority of 80% votes in favour
of the operation for him to consider it as a serious recommendation in favour of the treatment.
clinical end user 3, however, only needs 50%. According to clinical end user 3, decision-making
works like a democracy. If the majority is convinced that proceeding with a treatment, the final
decision will be to operate. clinical end user 2 did not have a clear opinion yet but was not directly
convinced by the idea of being informed by just a small majority. Clearly, the opinions regarding
the threshold are diverse. Moreover, the opinion of an end user regarding the threshold may change
over time. Instead of formulating a fixed threshold, a variable threshold that is chosen by the end
user and can be adjusted over time seems to be a better fit. This requires a BAIT-based CDSS
to be sensitive to different thresholds when informing the end user on a deviation. Because the
CDSS needs to accept values to be determined by the end user, an environment where end users
enter these values is required.

• The architecture should force the development of a CDSS that operates a modifiable majority
threshold and level of acceptance.

142

Appendix C

Archimate legend and relationship
description

This appendix presents the specification of the Architecture Description Language ArchiMate. The
following link directs to a page that provides the specification of all ArchiMate elements, including
all components and all relationships between the components: https://pubs.opengroup.org/architecture/archimate3-
doc/. Table C.1 gives an overview of the most common relationships between architecture compo-
nents and the definitions of all relationships. Table C.2 presents additional specifications and the
definitions of the shortcut words used in the architecture for Councyl.

Table C.1: Definition of relationships specified ArchiMate.

Relationship Definition

Composition The composition relationship represents that an element consists of one or more other
concepts.

Aggregation The aggregation relationship represents that an element combines one or more other
concepts.

Assignment The assignment relationship represents the allocation of responsibility, performance of
behavior, storage, or execution.

Specialization The specialization relationship represents that an element is a particular kind of another
element.

Realization The realization relationship represents that an entity plays a critical role in the creation,
achievement, sustenance, or operation of a more abstract entity.

Used by The used by relationship represents that an element provides its functionality to another
element (also referred to as the serving relationship).

Access The access relationship represents the ability of behaviour and active structure elements
to observe or act upon passive structure elements.

Association An association relationship represents an unspecified relationship, or one that is not
represented by another ArchiMate relationship.

Triggering The triggering relationship represents a temporal or causal relationship between elements.

Flow The flow relationship represents transfer from one element to another.

Junction A junction is used to connect relationships of the same type.

Table C.2: Additional specifications and shortcut words.

Reference Definition

”(Copy)” Explicates that the original component is located elsewhere in the architecture, but for
visibility purposes has been copied and replaced.

Black dot Marks processes that should run in parallel.

”DB” Database.

”Recommend.” A CDSS’s choice recommendation.

”User ID” Identified of logged in user.

”temp” Temporary database.

143

Appendix D

Architecture current situation

This section presents the architecture of a BAIT-based CDSS that is currently used to serve clinical
end users by Councyl (see fig. D.1).

Figure D.1: The architecture of a BAIT-based CDSS used to serve clinical end users by Councyl.

144

Appendix E

Architecture solution for Councyl:
full overview

This section presents the complete architecture of a dynamic BAIT-based CDSS that is designed
for Councyl in full detail (see fig. E.1). The Information specification Extensions are presented on
the next page (see fig. E.2).

145

Figure E.1: The architecture of a dynamic BAIT-based CDSS for Councyl.

146

Figure E.2: The Information specification Extensions that are part of the architecture of a dynamic
BAIT-based CDSS for Councyl.

147

Appendix F

Architecture solution for Councyl:
high-level overview

148

Figure F.1: High overview of the dynamic BAIT-based CDSS architecture for Councyl with six
components.

149

Appendix G

Architecture proof-of-technology:
scripts and outcomes

G.1 Scripts proof-of-technology

This appendix presents the scripts and outcomes that were used during the evaluation of the
proof-of-technology. The goal of the architecture is to describe the components that are to be
performed such a BAIT-based CDSS can be updated according to new choices. To customize
these components according the preferences of clinical end users, the architecture defines a set of
Information specification Extensions that modify the way in which the update is executed, each
satisfying different end user preferences. The goal of the proof-of-technology is to assess whether
Councyl is convinced that the technical updating components specified in the architecture gener-
ate the intended outcomes, and whether the outcomes are correct. To this end, the model update
engine and the three Information specification Extensions were implemented. An explanation of
these components is given in table G.1.

Table G.1: Overview table of the implemented and tested architecture components

Component Explanation of component functionality

Component 1: The
model updating en-
gine

The estimation and validation of a recommendation generator model with ex-
periment choice and new real-life choices. The process part of this component
are needed for every clinical end user. The estimation should result in a set of
parameters for all choice attributes and an error term. The validation should
indicate the performance on new real-life choices in terms of the Correspon-
dence rate and the Recommendation-choice Agreement table (also referred to
as the Confusion Matrix).

Component 2: In-
formation specifica-
tion Extension of
updating engine 1

The estimation and validation of a DCM in which the importance of experiment
choices and real-life choices are varied with both a importance rate and balance
(see section 4.3.1). For instance, when a clinical end user values experiment
choices two times more important than real-life choices.

Component 3: In-
formation specifica-
tion Extension of
updating engine 2

The estimation and validation of a DCM in which a particular set of real-life
choices are excluded. For instance, when a clinical end user wants the CDSS
to only incorporate choices made by senior clinical end users. The choice base
that is used for the estimation should only include the selected choices.

Component 4: In-
formation specifica-
tion Extension of
updating engine 3

The estimation and validation of a DCM in which the importance of a particular
set of real-life choices is differently weighted compared to the remaining real-
life choices by using both an importance rate and balance specification. For
instance, when a clinical end user considers choices made by senior clinical end
users as more important than choices that were made by junior clinical end
users.

The implementation was done with the use of a python package called Biogeme, which relies
on the package Python data analysis library Pandas. It is an open-source package designed for
the maximum likelihood estimation of parametric models in general with an emphasis on discrete
choice models as needed for the implementation (Bierlaire & Fetiarison, 2009). It contains all

150

the required methods to estimate choice models. The scripts are built for test data. The test
data set contains experiment choices and real-life choices collected in a healthcare context. The
represented decision task is the choice in favour or against ICU uptake of COVID patients. The
answer type was twofold: no ICU uptake and ICU uptake. The data set represents 502 choices:
425 experiment choices and 77 real-life choices. The real-life choices were made in the period from
March 2020 to October 2020. This choice data was enriched with dummy data. This dummy data
contains additional features to the choice samples that are not collected yet by the current static
BAIT-based CDSS.

The scripts used for the proof-of-technology are presented in fig. G.1 to fig. G.7. A brief ex-
planation of the code is provided within the scripts as well as in the captions of the figures. The
following abbreviations are used in the scripts:

• SP = Stated preference = Experiment choice

• RP = Revealed preference = Real-life choice

Figure G.1: The python packages needed for the proof-of-technology. Required for implementation
of all components in table G.1.

151

Figure G.2: The code to retrieve and prepare the choice data in the adaptive choice base for an
update. Required for implementation of all components, but represents component 1 in table G.1.

152

Figure G.3: The code to estimate and validate a recommendation generator model for an update
with the choices stored in in the temporary choice bases. Required for implementation of all
components in table G.1.

153

Figure G.4: The code to adjust weight with which experiment choices (SP) and real-life (RP)
choices are multiplied (front-end) and to store the multiplied choices in the temporary choice base
(back-end). This code shows how an user can specify the weight with an importance rate (a
multiplication of choices with a chosen integer). Required for implementation of component 2 in
table G.1.

Figure G.5: The code to adjust weight with which experiment (SP) and real-life (RP) choices are
multiplied (front-end) and to store the multiplied choices in the temporary choice base (back-end).
This code shows how an user can specify the weight with an importance balance (a multiplication
of choices with a balance slider). Required for implementation of component 2 in table G.1.

154

Figure G.6: The code to select a sub group of choices (for instance all choices made by juniors) and
exclude these choices or multiply these choices with a weight (here an importance rate, alternative
is importance balance). Required for implementation of component 3 and 4 in table G.1.

Figure G.7: The code to create the temporary choice bases for an update according to the specifi-
cations of the clinical end user (see fig. G.6). Required for implementation of components 3 and 4
in table G.1.

155

G.2 Outcomes of executing scripts

The scripts were executed with hybrid choice data (see appendix G.1), meaning that the data
was enriched with dummy data. As such, it is meaningless to make and present claims about
the values resulting from the execution. However, the outcomes do expose the functionalities of
the components defined by the architecture. Therefore, the outcomes of the scripts presented
in appendix G.1) were discussed with Councyl to judge whether the components generate the
intended functionalities. The main outcomes are shown in table G.2, table G.3, and table G.4. A
brief guiding explanation of the outcomes is provided below.

• In table G.2 the parameter estimations for each choice attribute are presented that result
from executing component 1 (see table G.1). A parameter in a Discrete Choice Modeling
(DCM) model represents the relative importance assigned by choice makers of the attribute
it was estimated for. To make the presentation more intuitive, the parameters were trans-
lated into a percentage indicating their relative importance. The first set of parameters are
estimated based on experiment choices only. The second set of parameters is estimated based
on both experiment choices and real-life choices. The current BAIT-based CDSS only es-
timates parameters based on experiment choices. The outcomes show that the parameters
change according to the new real-life choices when real-life choices are included as is intended.
When taking the new parameters as the new active model based on which the choice recom-
mendation generator calculates choice recommendations, the CDSS is updated with the new
knowledge in the decision-making context.

• In table G.3 the Correspondence rate is presented for updates with both experiment choices
joint with real-life choices, and experiment choices only found with executing component 1
and 2 (see table G.1). The correspondence rate is needed to assess the performance. The
outcome shows that the correspondence rate was found as intended. Moreover, it shows that
it changes when informing the update with choices made in the real-life context. When the
experiment data is assigned with a much larger weight, the performance does not exceed
the performance of a model with only real-life choices. This is in line with expectations,
because in this scenario the role of real-life choices is negligible. Finally, when requesting
the validation sets that the implementation used, it could be confirmed that only the most
recent choices were used for the performance assessment.

• In table G.4 the parameter estimations for each choice attribute are presented that result
from executing component 2 with different weighting specifications (see table G.1). The
outcomes show that the parameters change according to the new real-life choices when a
clinical end user specifies a weighting as is intended. Component 2 thus enables to retrieve
different choice models based on which the choice recommendation generator calculates choice
recommendations.

• For the execution of component 3 and 4 no parameter estimations are presented. It is already
shown with the execution of component 1 and 2 that parameters change as is intended both
when real-life choices are added to the choice base for an update, and when different weights
are used. It was rather important that the temporary choice bases are constructed according
the specifications of a clinical end user. The executing of component 3 and 4 showed that
the temporary choice bases contain the choices that meet the selection criteria specified by
the clinical end user.

156

Table G.2: Parameters based on experiment choices, and on experiment choices and real-life choices
(joint) with component 1 (see appendix G.1)

Variable Parameters
based on experi-
ment choices

Relative impor-
tance

Parameters
based on real-life
choices

Relative impor-
tance

Rehousing possibility (region-
al/national)

-0.419425 12.8 % -0.508854 15.2%

ICU capacity 0.444133 13.6 % 0.376721 11.2%

Acute condition patient -0.250557 7.7% -0.286038 8.5%

Age -0.027118 0.8% -0.031446 0.9%

Comorbidity: Cognitive im-
pairment

-0.011982 0.4% -0.009210 0.3%

Comorbiditeit: Heart/veins -0.006853 0.2% -0.005796 0.2%

Comorbiditeit: Pulmonary -0.004810 0.1% -0.002015 0.1%

Comorbiditeit: Kidney 0.003269 0.1% 0.003883 0.1%
Comorbiditeit: Liver -0.003483 0.1% -0.002432 0.1%

Comorbiditeit: Immune Sys-
tem

-0.002621 0.1% -0.001432 0.0%

Pattern COVID pneumonia -0.381564 11.7% -0.452723 13.5%

Body Mass Index -0.041514 1.3% 0.004899 0.1%

Frailty 0.940355 28.7% 1.0 30.9%

Treatment preference of pa-
tient

0.733978 22.4% 0.629536 18.8%

Table G.3: Correspondence rates for model estimation based on experiment choices and real-life
choices

Sample sizes Correspondence rate Correspondence rate experiment
choices only (sample size)

Equally important 83.33% (n=425) 78.75%

Real-life choices 2 times more impor-
tant than experiment choices

82.97% 76.25% (n=425)

Experiment choices 2 times more im-
portant than real-life choices

81.67% 77.08% (n=850)

Real-life choices 6 times more impor-
tant than experiment choices

82.97% 74.58% (n=425)

Experiment choices 6 times more im-
portant than real-life choices

77.92% 78.75% (n=2550)

157

Table G.4: Parameters estimated with component 1 and 2 (see appendix G.1) based on a tempo-
rary in which experiment choices and real-life choices were weighted (Exp. = experiment choices,
RL=real-life choices).

Variable RL 2x important RL 4x important Exp. 2x impor-
tant

Exp. 4x impor-
tant

Rehousing possi-
bility (regional/na-
tional)

-0.667894 -0.583053 -0.443486 -0.479233

ICU capacity 0.428654 0.369168 0.400253 0.421518

Acute condition pa-
tient

-0.238060 -0.403993 -0.274853 -0.275518

Age -0.037397 -0.029842 -0.027140 -0.028427

Comorbidity: Cog-
nitive impairment

-0.008115 -0.004676 -0.009767 -0.010901

Comorbiditeit:
Heart/veins

-0.007079 -0.004636 -0.006064 -0.006263

Comorbiditeit:
Pulmonary

-0.000612 0.004187 -0.002453 -0.003911

Comorbiditeit:
Kidney

0.006051 0.002696 0.003508 0.004029

Comorbiditeit:
Liver

-0.002098 0.000505 -0.002403 -0.003233

Comorbiditeit: Im-
mune System

-0.004007 - 0.010224 -0.003190 -0.001562

Pattern COVID
pneumonia

-0.213049 -0.397302 - 0.408632 -0.363808

Body Mass Index -0.006144 -0.023082 0.006736 0.025301

Frailty 1.038650 0.991802 0.942378 0.973326

Treatment prefer-
ence of patient

0.537457 0.673378 0.659552 0.679430

158

Appendix H

Architecture implementation:
mock-ups

H.1 Mock-ups point of view from Councyl

This section presents mock-ups that show two screens that can be entered by Councyl. In fig. H.1
it is shown how Councyl can access the anonymous metrics of all updates of a CDSS. In fig. H.2
the screen to adjust the minimal number of clinical end users for the creation of a sub group.

Figure H.1: Performance metrics overview for Councyl.

159

Figure H.2: Access to user settings for Councyl to make specific sub groups unavailable according
to the Information Processing Agreement for privacy reasons.

160

H.2 Mock-ups point of view from clinical end users

This section presents the mock-ups of all architecture components from the point of view of Coun-
cyl. They are presented in a chronological order. This section thereby approaches the journey that
a clinical end user could engage in when using a dynamic BAIT-based CDSS. The captions give a
brief explanation of what each screen shows and what the main function of the screen is.

Figure H.3: The login screen for both Councyl and clinical end users.

Figure H.4: The real-life choice storage and recommendation request screen. A clinical end user
can enter the specification of a choice task he or she has to deals with. While filling in the choice
specifications, the choice recommendation generator dynamically determines the recommendation.
The end user can hide the recommendation if he or she does not want to be influenced in filling
the choice details or in making a choice. Finally, the real-life choice specification can be stored.

161

Figure H.5: A brief confirmation of a dynamic BAIT-based CDSS that the choice stored.

Figure H.6: The model insight screen shows the active model (in terms of the relative importance
of all choice attributes for the decision-making) and the Correspondence rate the choice/clinical
end user agreement table that were determined during the model validation process. Moreover,
end users can request previous model updates to compare different model updates. Finally, it can
be observed how the importance of the choice attributes changes over time (per update).

162

Figure H.7: The decision investigation allows clinical end users to specify a sub group of choices
for which they want to see the model estimation and validation. For instance, the model for all
choices made by senior clinical end users can be requested. The goal of this tool is either mutual
learning or trying out model updates with different sets of choices.

Figure H.8: As soon as a clinical end user has requested the model for a specific sub group, the
model is directly and locally presented.

163

Figure H.9: The screen where clinical end users can activate a model update. The CDSS will
directly update with the choices as specified in the user settings.

Figure H.10: The CDSS confirms an update, but does not directly presents the results of the
update.

Figure H.11: The screen where clinical end users can reset the model that is used by the choice
recommendation generator to provide choice recommendation. To this end, the end user can choose
from all previous model updates.

164

Figure H.12: The CDSS briefly confirms the selection of a new model for the choice recommendation
generator.

Figure H.13: A clinical end user can request all experiment choices and real-life choices he or she
made in the past.

165

Figure H.14: The end user can access all the choices for which he or she deviated from the
recommendation of the dynamic BAIT-based CDSS.

Figure H.15: The notification screen gives an overview of all warning feedback that is provided by
the CDSS. The notification that warns that an update is needed remains visible until the end user
updates the model.

166

Figure H.16: The user setting for the preference values show all options from which end users can
choice to customize the CDSS towards the particular preferences. Most importantly, a clinical end
user can choose here for the desired level of updating automation.

167

Figure H.17: One or more of these screens are only accessible if the clinical end user chose Infor-
mation specification Extension 1, 2 or 3. If implemented, these screens allow clinical end users to
specify how much specific types of choices will influence the model updates. To specify the weight,
the end user can choose between an importance rate or an importance balance. All settings can be
tried out, meaning that the results will be presented but will not be stored or influence the model
that the CDSS uses for the generation of choice recommendation.

168

Appendix I

Organizational architecture
implementation guidelines for
Councyl

This section presents the main implementation guidelines associated to the architecture of a dy-
namic BAIT-based CDSS.

Targeted owner of guidelines. The guidelines aim to inform Councyl as provider of a dy-
namic BAIT-based CDSS. A provider is an entity that wants to use the architecture to develop
BAIT-based CDSSs to serve varying healthcare decision-making contexts with a dynamic BAIT-
based CDSS, and with the service that is associated to a dynamic BAIT-based CDSS.

Motivation of architecture implementation guidelines. The architecture defines the ex-
pansion of an existing support service. This does not only involve technological actions, but also
poses organizational implications. As such, it cannot be perceived isolated from new organizational
activities and challenges. With regard to these implications decisions are to be made.

Organizational architecture implementation guidelines. The guidelines give a formula-
tion of the organizational activities needed from the CDSS provider and a procedure that guides
these organizational activities. The activities are divided into three categories.

1. Organizational architecture implementation guidelines - preconditions. A decision on the own-
ership of the architecture should be made. This ownership involves the responsibility of keeping
the knowledge captured by the architecture and the additional materials that enhance the under-
standability of the architecture at the right place such the right person(s) can use it in the way
that was intended. In addition, the owner is concerned with the maintenance of the architecture.
Although the architecture is adaptable over time, it does not change by itself. It requires an owner
who keeps track of changing preferences of end users and other factors related to components of
the architecture and adjusts the architecture accordingly.

2. Organizational architecture implementation guidelines - pre-implementation. The guidelines
below define the actions that Councyl should perform together with the client to prepare a proper
implementation of a dynamic-BAIT based CDSS.

• Conduct a meeting with main clinical end user for the specification of the user settings. At
lest three aspects need to be clarified and/or determined.

1. Discuss all optional Information specification Extensions and Activation extensions,
make the client aware of the consequences of all extensions with examples, and determine
together which extensions suit the goals of the client with regard to the decision support.

2. Go through all user settings variables, discuss what they mean, and together determine
the initial set of values.

3. Schedule a next meeting in which the experiences with the settings are discussed and
potentially change the initial settings.

169

• Inform the client on the information privacy considerations and give the client time to process
the considerations. Consequently, conduct a meeting with the main end user to fill in an
Information Processing Agreement. At least the following aspects should be covered:

– The minimal size of clinical end users needed before a sub group can be made accessible.
The lower bound is always two, because information cannot be retrievable to individuals.

– The information they want to share with Councyl. This can either be nothing, all
data (including decision-making behaviour information (relative importance) as well as
model fit and performance data) or only anonymous data (performance assessment).
If the first option is chosen, the information flow from the model update database to
Councyl should be ignored.

• Inform the client on the information a dynamic BAIT-based CDSS generates and make the
client aware of the meaning and implications of this information. For instance, that the
information can show what group of clinical end users are often not confident about their
decision-making or is often deviating form the expected way of reasoning. Councyl needs to
walk through the pieces of information the CDSS provides and discuss with the clinical end
users what the power of the information is, but also what implications may result from having
access to that information. Accordingly, Councyl should encourage the client to determine
how this information should be processed, where in the organization it should be localized,
who should be the owner of this information, and who should ensure the right actions are
undertaken based on the information (see section 7.1.1).

3. Organizational architecture implementation guidelines - post-implementation. The guide-
lines below define the actions that Councyl should undertake as soon as a dynamic-BAIT based
CDSS is implemented and is running in the client’s decision-making context. The actions must be
performed by Councyl in order to deliver the dynamic support service to the client as intended by
the architecture.

• Both actions defined below are to be performed on an ongoing basis. Therefore, Councyl
first needs to assign the responsibilities to employees such the actions will be performed.

• When the dynamic support service is running, additional support will be needed to guide on
new service features. Moreover, different from the current static service, the dynamic service
runs on a ongoing basis. The dynamic CDSS changes over time, resulting in a continuous
flow of new insights and findings that are to be understood and interpreted correctly by
clinical end users. clinical end users are expected to need additional support in doing so.

• If a clinical end user wants to replace the experiment choice base, Councyl should organize
a new choice experiment and replace all experiment choices in the experiment choice base
with the choices collected during the new experiment.

• The implemented dynamic CDSSs will generate large amounts of data that is of interest
to Councyl. For instance, information about the performance of and the scale parameters
estimated by CDSSs in different applications context. Councyl needs to process this infor-
mation on a continuous basis. Moreover, Councyl needs to link this information with new
organizational and technical process. For instance, ensuring there are consequences in place
in case the situation is encountered in which multiple CDSSs show a decreasing performance
or show a significant scale parameter that is too large to ignore. To allocate these important
activities, someone has to be assigned with the role of taking care of the information and
ensuring the necessary consequences or actions are .

170

Appendix J

Overview of the data objects
defined by the architecture of a
dynamic BAIT-based CDSS for
Councyl

The data overview in fig. J.1 presents all data objects that the architecture of a dynamic BAIT-
based CDSS as designed for Councyl needs to operate successfully and generate all functions defined
in the architecture. The overview has four functions. The foremost functions of this overview is to
keep the architecture clear: by defining all data objects in a separate document, they do not have
to be visualized in the architecture. Second, because the overview shows the exact objects that are
in place and provides a clear overview of the dependencies between the data objects and databases,
it eases potential modifications in the information that the architecture components consume and
produce. Moreover, because multiple versions of the overview will result from modifications over
time, adjustments in the data objects can always be traced back later in time and there is always
a back-up of the data organization in place. Third, because it emphasizes all important objects
and shows the databases in which these objects are to be stored, Councyl can use the overview
as a checklist when developing a BAIT-based CDSS. Fourth, it allows to specify the unities, and
thereby to make an estimation of the size of the required data, in which the data objects need to be
collected and stored, which is uncommon in and too detailed for an architecture design. Finally, it
can be used to guide meetings with the client about the privacy of information and the preferences
values in the user settings.

171

Figure J.1: Data overview architecture of a dynamic BAIT-based CDSS for Councyl.

172

	Preface
	List of figures
	Acronyms
	Introduction
	Decision support in the healthcare sector
	BAIT approach for a new type of CDSS
	Introduction to Discrete Choice Modeling
	Introduction to Behavioral Artificial Intelligence Technology

	The dynamic application context of CDSSs
	Research objective
	The value of a BAIT-based CDSS
	The value of architecture design
	Filling the gap of guiding design principles
	Research questions

	Research approach
	Selection of the research approach
	Research flow

	Summary chapter 1

	Definition of the architecture design space
	Architecture components of a CDSS
	Intelligent internal software
	Human-Computer Interaction

	The design space set by Discrete Choice Modeling
	Adaptive knowledge base
	Model update engine
	Model quality monitor

	Summary chapter 2

	Introduction to the action context: The current and desired situation
	Introduction to the current action context
	Introduction to Councyl and the key stakeholders
	Introduction to the problem experienced by Councyl

	Desired situation: Architecture requirements
	The classification of architecture requirements
	The methodology of the requirement identification
	The results of the requirement identification

	Summary chapter 3

	Specification of the Architecture: Design Decisions
	Design decisions on the architecture structure
	Layered design
	Adaptable design
	Soft- and hardware independence

	Design decisions on the estimation and validation of recommendation generator model updates
	Extensions involvement and update trigger automation
	Pooled estimation
	Restricting the individual parameters with missing values to zero
	Selection of performance metrics
	K-fold cross validation with manipulated data split

	Design decisions on the customization of the update engine
	Module extensions for choice inclusion and weight specification
	Multiplication of sample size to realize the weight specification
	Temporary choice bases
	Information specification Extensions as user settings

	Design decisions on information management
	The measurement of new real-life choices over time.
	Separated choice bases for experiment and real-life choices
	Data accessibility for clinical end users
	Split in user settings Councyl and clinical end users
	Data accessibility for Councyl and clinical end users

	Summary chapter 4

	Results: Architecture solution
	Architecture overview
	The relation with the current static BAIT-based CDSS
	Relations between the components of a dynamic BAIT-based CDSS

	Adaptive choice base
	Model quality monitor module
	Model update engine module
	The construction of temporary choice bases
	The choice recommendation generator model estimation
	The choice recommendation generator model validation

	User settings component
	Model management module
	Summary chapter 5

	Evaluation of the architecture solution
	Evaluation Approach
	Static-oriented evaluation
	Dynamic-oriented evaluation
	Proof-of-technology
	Mock-ups

	Summary chapter 6

	Reflection
	The lessons learned: Reflection on the design project
	Problem framing
	Emerging Artefact
	Fundamental theories
	Design Process

	Summary chapter 7

	Generalization
	Design principles
	Design principle 1: Adaptable design
	Design principle 2: Objectivity maximization within the subjective boundaries
	Design principle 3: Goal-based interaction
	Design principle 4: Tractability of change
	Design principle 5: Receptivity to user input
	Design principle 6: Differentiation in consumed choices and produced information
	Design principle 7: Mutual learning
	Design principle 8: Architecture intuitiveness
	Design principle 9: Privacy of choice information and decision-making behaviour information
	Design principle 10: Explication of the organizational activities for the CDSS provider

	The relations within the set of design principles
	Contribution to architecture design science knowledge
	Contribution design principle 1: Adaptable design
	Contribution design principle 2: Objectivity maximization within the subjective boundaries
	Contribution design principle 3: Goal-based interaction
	Contribution Design principle 4: Tractability of change
	Contribution design principle 5: Receptivity to user input
	Contribution design principle 6: Differentiation in choices
	Contribution design principle 7: Mutual learning
	Contribution design principle 8: Architecture intuitiveness
	Contribution design principle 9: Privacy of choices and decision-making behaviour information
	Contribution design principle 10: Explication of the organizational activities

	Summary chapter 8

	Conclusion
	Main findings: design principles for a dynamic BAIT-based CDSS architecture
	Theoretical contributions of the design research
	Design principles
	Foundation for BAIT-based CDSS architecture design work
	Reusable solution concepts
	Contribution to Machine Learning knowledge field

	Limitations and Recommendations on further research
	Limitations of the design principles
	Recommendations for further research

	References
	Overview of the interviews
	Interview analysis
	Interviews Councyl
	Interview part 1: Main purpose
	Interview part 2: Functions of the architecture
	Interview part 3: Characteristics of the architecture

	Interviews clinical end users
	Interview part 1: The design of the updating
	Interview part 2: Frequency and activation of updating
	Deviating choices
	Information provision on the model performance
	Additional decision-making behaviour insights
	Majority threshold

	Archimate legend and relationship description
	Architecture current situation
	Architecture solution for Councyl: full overview
	Architecture solution for Councyl: high-level overview
	Architecture proof-of-technology: scripts and outcomes
	Scripts proof-of-technology
	Outcomes of executing scripts

	Architecture implementation: mock-ups
	Mock-ups point of view from Councyl
	Mock-ups point of view from clinical end users

	Organizational architecture implementation guidelines for Councyl
	Overview of the data objects defined by the architecture of a dynamic BAIT-based CDSS for Councyl

