

Delft University of Technology

To update network state or not?

Fu, B; Kuipers, FA; Van Mieghem, PFA

DOI
10.1109/ITNEWS.2008.4488158
Publication date
2008
Document Version
Accepted author manuscript
Published in
Proceedings of the 2008 4th Interenational telecommunication networking workshop on QoS in multiservice
IP networks

Citation (APA)
Fu, B., Kuipers, FA., & Van Mieghem, PFA. (2008). To update network state or not? In s.n. (Ed.),
Proceedings of the 2008 4th Interenational telecommunication networking workshop on QoS in multiservice
IP networks (pp. 229-234). IEEE. https://doi.org/10.1109/ITNEWS.2008.4488158

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ITNEWS.2008.4488158
https://doi.org/10.1109/ITNEWS.2008.4488158

To Update Network State or Not?
B. Fu, F. A. Kuipers, P. Van Mieghem

Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology,

P.O. Box 5031, 2600 GA, Delft, The Netherlands.
B.Fu,F.A.Kuipers,P.F.A.VanMieghem@tudelft.nl

Abstract— A Link-State Update Policy (LSUP) has the task to
distribute information regarding the network resources, and is
therefore considered to be an integral part of future Quality
of Service (QoS) routing protocols. The argument is that in
order to guarantee QoS to applications, one must know the
available resources. Unfortunately, the high dynamics in available
resources complicates the development of an LSUP, which on its
turn will result in high deployment costs for Internet Service
Providers. In this paper we will re-examine whether the gain in
network performance, which is expected under the deployment
of LSUPs, will outweigh its investment and complexity costs.
To capture the complete range of possible LSUPs, we take a
pragmatic approach and confine ourselves to examining two
extreme strategies: routing with exact resource information and
routing with no resource information.

Our study comprises of an analytical exercise and extensive
simulations on various network topologies under a large range
of network loads. Our objective is to determine where static
information provides acceptable network performance and where
dynamic LSUPs are indispensable.

I. INTRODUCTION

Most real-time applications require certain Quality of Ser-
vice (QoS) guarantees (e.g., on capacity, loss, and delay) to
achieve good performance. The study of QoS routing has
mainly focused on algorithms that can find paths based on
multiple constraints (cf. [1] for a survey). Those algorithms
assume that the knowledge on the state of the network is
provided by a QoS protocol. Unfortunately, the development
of a QoS protocol has received much less attention, most
probably due to the complexity of handling network dynamics.

In particular for QoS routing, a QoS routing protocol
is expected to determine, update and distribute the set of
dynamically changing link weights. The QoS routing protocol
possesses a functionality to give each router a consistent
view of the network and its resources by using a link-state
update policy (LSUP). The resource information varies rapidly
compared to the infrequent changes in network topology (such
as the breakdown of a link or router). Based on the resource
information, a QoS algorithm will compute a suitable path to
accommodate the QoS requirements of a particular flow.

The complexity of QoS routing in comparison to “simple”
best-effort routing may result in high costs. Internet Service
Providers (ISPs) may not be willing to change their current
non-QoS-aware systems if the performance gain of QoS-aware
networking is not substantial enough compared to the addi-
tional cost. Beside the monetary cost involved in implementing
QoS technology, cost also relates to computation and protocol

overhead. The computation overhead is bounded by the worst-
case complexity of the routing algorithm, while the protocol
overhead is caused by the flooding and updating of resource
information.

Most of the proposed link-state update policies (LSUPs)
consider a trade-off between the protocol overhead and the
accuracy of the resource information (see [2]). To reduce the
protocol overhead, the number of updates needs to be limited,
and consequently, not all resource changes are advertised.
This leads to the problem of QoS routing with stale resource
information.

Stale resource information may affect routing in the follow-
ing ways:

• A feasible path cannot be found by the algorithm although
one exists.

• A path is found by the routing algorithm but rejected
during the set-up process, because not all links along the
path can provide the required capacity.

• A non-optimal path is found while there exist other paths,
which are more suitable.

It is difficult to indicate how much cost is acceptable in order
to gain a certain improvement in network performance, as this
may differ per ISP. In this paper, the profits of using link-state
routing systems are estimated indirectly via the comparison
of two extreme strategies: (A) routing with exact resource
information, and (B) routing without resource information, i.e.,
without link-state updates (LSUs). Our work is motivated by
the fact that there are no in-depth studies that quantify the
performance gain that can be attained with accurate LSUPs.

The rest of this paper is constructed as follows. In Section
II, we discuss related work. In Section III, we motivate our
study and explain the two extreme strategies in which we
are interested. Examples of performance evaluation are given
in Section IV. Section V presents the simulation models. In
Section VI, we show the performance in selected situations
and discuss the simulation results. Finally, we present our
conclusions in Section VII.

II. RELATED WORK

In this section we briefly discuss the work related to LSUPs
and stale resource information.

A. LSUPs

For intradomain QoS routing, many LSUPs have been
proposed.

Periodic LSUP: The periodic LSUP distributes the re-
source information through the network periodically. It is,
for instance, employed by OSPF to update the topology
information. The periodic LSUP is easy to implement and the
update rate is fixed once the period is set. Hence, the periodic
LSUP is not coupled to any traffic dynamics.

Trigger-based LSUPs: Due to the shortcomings of the
periodic LSUP, the trigger-based LSUPs were proposed to
better catch the dynamics in link state [2][3][4]. In the fol-
lowing we assume that the available capacity is our link-state
metric, but the same principles apply to other metrics. Trigger-
based LSUPs can be further classified into class-based and
threshold-based LSUPs. Class-based LSUPs trigger updates
if the available capacity crosses the pre-defined boundaries;
while threshold-based LSUPs consider the relative difference
between the available capacity known by the network and the
actual available capacity known only by the immediate node.

To reduce the protocol overhead caused by LSU traffic, the
update rate should be limited. Some complementary strategies
can be added to limit the number of updates. The hold-down
timer [2][5] limits the update rates by defining the smallest
period between two consecutive updates on the same link. The
moving average strategy [4] considers the average available
capacity (over a certain window size) to trigger updates. The
average value is used to follow the trend of a link-state metric
and to avoid updates triggered by a short-lived metric change.

Combined LSUPs: Based on the LSUPs mentioned
above, some works suggest policies combining two or more
of them, e.g. [6].

B. The impact of stale resource information

Many works study the impact of stale resource information
on QoS routing performance. The effects of stale information
introduced by the LSUPs mentioned in Section II-A have
been evaluated in [4][5][6][7], where the LSUP parameters
are tuned to achieve different information granularity and thus
different network performance. Ma and Steenkiste [8] have
compared static routing (routing without LSUs) and other
routing algorithms under periodic LSUP. Shaikh et al. [2]
give an overview of how the combination of LSUP, routing
algorithm, traffic pattern and network topology influences the
network performance.

As inaccuracy in resource information is inevitable, routing
algorithms were proposed that can tolerate imprecise resource
information. Some works [9][10] suggest using intelligent
routing algorithms with local resource information.

III. TWO EXTREME STRATEGIES

A full-fledged QoS architecture requires, apart from topol-
ogy updates, also resource availability updates. The first kind
of updates are slowly varying in time, while the second type
– the traffic related – updates are changing much faster. This
article only focusses on the second kind of updates. The key
question boils down to: “Is it worth to implement complicated
update strategies for the second kind of changes in a network?”
That question is undoubtedly not new, but a clear answer is

still lacking. A quite important motivation to not update is that
the Internet, where dynamic strategies of the second kind are
absent, has featured a reasonably good overall functioning.

To simplify the setting, we confine to two extreme strategies
A and B. Strategy A is the optimal update case that takes all
information of the past and present into account to allocate a
flow in the network at each flow request instant t. “Optimal”
here refers to any property we would like to maximize or
minimize in a network, such as, for example, throughput,
rejection rate or blocking probability, or revenue. Each flow
is allocated along a path for its entire life-time; we do not
consider re-allocations of previous flows. Since the strategy A
assumes the knowledge of any past or present information, any
network property can be computed optimally in our “Gedanke”
experiment. We thus ignore the practical issues that may
prevent the strategy A to achieve optimality, such as e.g.
the computation time, flooding time and the memory needed.
In practice, strategy A cannot be implemented, because the
flooding of information always takes a non-zero time such
that not all routing topology databases can be guaranteed to
be synchronized. Strategy B is completely static and does not
update at all. Each flow is just allocated along a fixed, initially
computed shortest-hop path from source to destination.

In most real networks, we cannot predict the future. At best,
we may possess estimates of the likelihood of a future traffic
demand. Hence, strategy A is only optimal in the time interval
[0, t], but not necessarily in [t, T], where T > t, because future
demands are not taken into account.

Our analysis thus belongs to the field of dynamic decision
theory, where the key question is “Is my myopic decision rule
optimal?”. In most cases, update rules are designed to improve
the performance in the heavy traffic regime. For, if the traffic is
low, the resources are usually plentiful and no need for update
rules is perceived. Contrary to common intuition, we show
that, in the heavy traffic regime, there are network scenarios
where the static strategy B outperforms the “optimal” strategy
A.

IV. PERFORMANCE IN TIME

In routing with exact resource information (strategy A), the
network elements need to update every change, and paths are
computed based on this exact information. In routing without
LSUs (strategy B), only information about the topology is
used. Paths are not computed for each flow, but instead, a
static routing table is used. If one or more links on the path
cannot accommodate the flow, the flow is rejected.

1 3

2 4

5

(a)

1 3

2 4

5

(b)

Fig. 1. (a) the routing without LSUs; (b)the routing with exact resources
information

Consider Figure 1, where a flow is requested from source

node 1 to destination node 5. Routing without LSUs uses the
shortest path 1 → 3 → 5 (Figure 1 (a)). We assume that link
3 → 5 does not have enough capacity to accommodate the
new flow. Since the routing protocol without LSUs (strategy
B) always uses the path 1 → 3 → 5, the new flow is blocked.
Strategy A, on the other hand, can find another path for the
new flow (Figure 1 (b)). However, the new path in this example
has a larger hopcount than the shortest path, which might be
detrimental for future flows.

The effect on future flows is more pronounced under high
network loads. Indeed, if an available path with h hops is
found for a flow with capacity requirement cr, the total
network capacity consumed by this flow is crh. Ergo, the
more hops a path has, the more network capacity will be
consumed. The static strategy B chooses for each source-
destination pair the path with minimum hopcount. In the
first instance where the static routing in strategy B blocks a
flow, strategy A has the potential to find an alternative, likely
with longer hopcount. Thus, in the first few instances where
strategy B blocks flows, strategy A clearly can outperform
strategy B, but strategy A consumes in those cases, more
than the minimum amount of capacity. If the traffic demand
remains high, strategy A will find itself suffocated by those
expensive flows accepted in the past, which may result in
a higher blocking from then on compared to strategy B. In
Figure 1 (b), future flows from 3 to 4 and from 4 to 5, can
be affected by the deviation from the shortest path. Strategy
A greedily allocates each subsequent flow, until no network
capacity is available anymore. Strategy B allocates always
a minimum amount of capacity, but spreads that allocation
over time. Over a long time interval [0, T], optimal flow
scheduling assumes the knowledge of all future demands.
Since the general problem of network flow scheduling in [0, T]
is a combinatorial optimization problem that is NP-complete,
there do not exist simple greedy algorithms that are optimal.
Hence, although strategy A seems optimal, because it uses all
possible available information up to time t, the impact of the
unknown future demands may result in an inferior performance
compared to the static strategy B.

In the following example we will show that indeed static
routing can outperform dynamic routing with exact informa-
tion. Consider the complete graph KN with N nodes and
L =

(
N
2

)
links. We consider the time-frame [0, T] and assume

that each allocated flow consumes the entire link capacity for
a duration d ≥ T . Strategy A perfectly routes paths with
hopcount restricted to 2. Strategy B only allocates paths on
the direct links. We denote the steady state link availability, as
pA(i) and pB(i), which are a function of the number of flow
requests i. The blocking probability for strategy B as function
of i equals PB(i) = 1 − pB(i), which is the probability that
the direct link is already allocated. The corresponding blocking
probability for strategy A is the probability that the direct link
and all possible two hop paths between that source-destination
pair are occupied. That probability is computed in [11] as

PA(i) = (1 − pA(i))
(
1 − p2

A(i)
)N−2

Fig. 2. The cross-over point as a function of N . The blocking probability
for rules A and B as function of the number of flow requests i is shown in
the insert.

The expected number of links for strategy B after i +
1 requests equals LpB(i + 1) = LpB(i) − pB(i). For
strategy A we have LpA(i + 1) = LpA(i) − pA(i) −
2 (1 − pA(i))

(
1 − (1 − p2

A(i)
)N−2) ≈ LpA(i) − 2 + pA(i).

Solving these equations gives [12]:

pA(i) ≈ 2 −
(

1 +
1
L

)i

and pB(i) = 1 − i

L

For small i, pA ≈ pB , which results in PA(i) < PB(i).
Indeed less flows are blocked by strategy A, because more
alternative paths exist. However, by using two-hop paths,
resources are consumed faster (i.e., pA(i) decreases faster with
i than pB(i)), which increases the chance of blocking for
future flows. Hence, after the allocation of a large number
of flows, the strategy B is expected to outperform strategy A.
The cross-over point where PA(i) = PB(i) is approximately
ic ≈ ln 2

ln(1+1/L) as illustrated in Figure 2.

V. SIMULATION SCENARIOS

In this section, we describe our simulation scenarios. We
have used a flow-level simulator1. The network and traffic
parameters are introduced as well as the routing algorithm
and signaling model. At the end, we explain how we process
the data from our simulation results.

A. Network model

We mainly concentrate on the class of random graphs
Gp(N) with N the number of nodes, and p the probability that
there exists a connection between a pair of nodes. However, we
also simulate in a square lattice topology and an MCI topology,
which are given in Figure 3. Each connection is symmetric,
with the two directions treated as two links separately, and all
the links have unit capacity.

As the capacity guarantee is the most likely constraint for
a customer requiring QoS, we only consider the capacity

1DESINE (DElft SImulator of NEtworks), developed at Delft University of
Technology.

requirement as our QoS metric when carrying out the sim-
ulations. Other interesting QoS metrics like delay and packet
loss are often highly correlated to the available capacity (e.g., a
lower available capacity is likely to result in higher delays and
packet loss). Hence, we believe that the trends observed for
available capacity will match to a certain extend with trends
in delay and packet loss.

Fig. 3. a: the square lattice topology. b: the MCI topology

B. Traffic model

The arrival process of the incoming flows is modeled as a
Poisson process with rate λ flows per unit time. The pairs of
source and destination nodes are uniformly selected among the
set of nodes. The service time of flows, i.e. the flow duration,
is described by a random variable d. We denote by Cr (0 ≤
Cr ≤ 1) the capacity requirement of each flow, which is a
certain percentage of the unit link capacity.

Following Shaikh et al. [2], the network load is defined
as: ρN = λE[d]E[Cr]E[h]/L, where E[d] is the mean flow
duration, E[Cr] is the mean capacity requirement, E[h] is the
mean hopcount of the shortest paths between all pairs of source
and destination nodes, and L is the number of links in the
network.

C. Routing algorithm

For each new flow, the source node uses his own view on
the resource information to compute the path based on the
flow’s QoS requirements.

We use the widest-shortest path (WSP) algorithm with prun-
ing. As explained in [8], this algorithm gives high priority to
limiting the hopcount, thus limiting the resource consumption.
It is said to perform better than the shortest-widest path
algorithm, which gives high priority to balancing the network
load. The basic steps of the WSP algorithm are given below:

1) Based on the resource information of the source node, all
the links li,j (the link from node i to node j) for which
the known available capacity Cli,j

< Cr are pruned.
2) Compute the minimum hop paths in the pruned graph.
3) If there is only one path found with the smallest hop-

count, this path will be used to carry the flow; else
if more than one shortest paths exist, we select the
path P with the maximum available capacity (CP =
minlk,m∈P (Clk,m

)).

The available capacity Cli,j
of link li,j known by the source

node, is of great importance in the process of selecting the

path. Inaccuracy of Cli,j
may result in finding a non-optimal

path. A flow fails during the routing process if no paths can
be found by the routing algorithm.

D. Signaling model

Once a path is found by the routing algorithm for a new
flow, from the source node on, the amount of resources needed
will be reserved on each link along the path. If all the links
along this path can accommodate the new flow, i.e., Cli,j

≥
Cr,∀ li,j ∈ P , the path is set up. The resources required
by this flow will be reserved during the service time until this
flow terminates. As the information of the source node may be
inaccurate, the path computed by the routing algorithm might
be unfeasible. In this case, the resources that have already been
reserved need to be released, and the flow is rejected during
the setup process. We call this a setup failure.

Upon a failure during either the routing process or the set up
process, we drop the flow without rerouting, because our aim is
to see how stale information affects the network performance
under the same path selection process.

E. Statistical model

The square lattice topology and the MCI topology are fixed.
For each class of random graphs, we generate 1000 different
connected graphs.

For each combination of graph, network load and extreme
LSUP, 10 realizations are simulated. In each simulation, a set
of 200,000 flows are offered to the network in a Poissonian
way. The first 100,000 flows are used as warm-up flows whose
routing results will not be taken into account when collecting
the data. In this way, we model a steady-state behavior. Once
the 10 iterations are finished, an average will be taken for all
the data.

VI. SIMULATION RESULTS

We first present our simulation results after which we
collectively discuss them. The blocking ratio (blocking ratio
BRx = Number of failed flows with x

Total number of flows) , is the comparison
metric.

Two types of traffic were tested: one with the flow duration
d set to 100 time units, and the capacity requirement of
each flow Cr set to 5%, a constant percentage of the unit
link capacity; the other with the flow duration d following a
Weibull distribution with mean 100 time units to capture the
long-tailed nature of connection durations, and Cr set be to a
uniform distribution in the range [2.5%, 7.5%] of the unit link
capacity. Smaller capacity requirements may be more realistic,
but we want to know how badly a certain routing strategy
behaves. Thus, larger capacity requirements, which are more
sensitive to routing decisions, are chosen to better capture the
performance of routing strategies.

For each graph, we simulate with different load ρN (ρN <
1), and the flows’ arrival rate λ is calculated as λ =
LρN/E[d]E[Cr]E[h].

MCI topology: Figure 4 shows the network performance
of the two extreme strategies in the MCI topology, as a
function of the network load under two traffic patterns. For
both traffic patterns, the blocking ratios for both extreme
strategies increase quickly as the network load increases, and
the biggest difference happens somewhere near ρN = 0.5.
As expected, routing without LSUs performs worse than with
exact resource information, but the difference is small under
low and very high network loads.

0.30

0.25

0.20

0.15

0.10

0.05

0.00

B
lo

ck
in

g
R

at
io

1.00.80.60.40.20.0

ρ (Network load)

MCI topology
Constant Flow Duration

 with exact information
 without LSUs

Flow duration = Weibull
 with exact information
 without LSUs

Fig. 4. The blocking ratio on MCI under different types of flow duration,
different capacity requirements, and different network loads.

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

B
lo

ck
in

g
ra

ti
o

1.00.80.60.40.20.0

ρ (Network load)

R R

R

R

R

R

Lattice 5×5
Constant Flow Duration

 with exact information
 without LSUs

R randomized routing without LSUs
Flow duration = Weibull

 with exact information
 without LSUs

Fig. 5. The blocking ratio on lattice under different types of flow duration,
different capacity requirements, and different network loads.

Square lattice topology: For the lattice, the network
performance under two traffic patterns is shown in Figure 5.
Again, under low network loads, routing without LSUs has
a similar performance as routing with exact resource infor-
mation. However, its performance decreases quickly as the
network load increases. The reason is that, in a topology like
lattice, between each pair of nodes, there may exist multiple
shortest paths, and using only one out of this set could result
in earlier blocking. Randomized routing [13] was introduced
to balance the load. For each pair of source and destination
nodes, a set of shortest paths are computed, once a flow comes,
the source selects one path randomly from this set. We applied
the randomized routing to the traffic pattern with constant flow

duration. Figure 5 shows that randomized routing improves the
network performance considerably for the no LSUs case, but
it still gives higher blocking than routing with exact resource
information. The routing with exact resource information starts
giving increased blocking ratios at a heavier network load.

Random graphs: We have performed simulations in the
class of random graphs Gp(N), for different N and different
p. The critical link density pc in the random graphs equals
pc ≈ ln N

N . Choosing p < pc results, with high probability, in
disconnected graphs. We consider only Gp(N) with p > pc.

Figure 6 shows the network behavior in G0.1(50) under
different network loads for the two traffic patterns.

0.5

0.4

0.3

0.2

0.1

0.0

B
lo

ck
in

g
R

at
io

1.00.80.60.40.20.0
ρ (Network load)

N = 50
p = 0.1
Constant Flow Duration

 with exact information
 without LSUs

Flow duration = Weibull
 with exact information
 without LSUs

4.5

4.0

3.5

3.0

2.5

A
ve

ra
g

e
H

op
co

un
t

1.00.80.60.40.20.0

ρ (Network load)

Fig. 6. The blocking ratios on the class of random graphs under different
types of flow duration, different capacity requirements, and different network
loads with N = 50 and p = 0.1. The average hopcount for the constant flow
duration is put as insert.

Figure 7 shows the network behavior in the class of random
graphs Gp(N) with different N , and different p under network
load ρ = 0.99 for the type of traffic with constant flow
duration.

As can be seen from the Figures, when the network load is
low, the difference between strategy A and strategy B is small,
since it is unlikely that the shortest paths will get congested.
The difference increases with ρN , provided the network load
is not very high. For ρN → 1, shortest paths become rapidly
congested and, under strategy A, longer-hop paths are used.
Allocating long-hop paths may block future requests from
being allocated, which explains the steep increase in blocking
probability for the class of random graph. This explanation
is substantiated by the insert in Figure 6, which gives the
expected hopcount between all pairs of nodes as a function of
network load.

In the case of strategy B, no matter how many possible
paths there exist for a certain pair of source and destination
nodes, only the one with the smallest hopcount is selected
without considering the resource information. Thus, the aver-
age hopcount does not change as the network load changes.

In the case of strategy A, under small loads, the expected
hopcount equals that of the shortest paths (used with strategy
B). However, when ρN reaches a certain value, the average
hopcount E[h

′
] for routing with strategy A increases quickly.

The actual load ρ
′

which each link experiences, can be given
as ρ

′
= λE[d]E[Cr]E[h

′
]/L. ρ

′
goes to 1 before ρN does.

This is the reason why the curves for routing with strategy A
cross those for routing with strategy B in Figure 6.

Figure 7 shows that under the traffic model with the constant
flow duration, BRA increases as N increases. As the network
grows, the routing with strategy A gives worse performance
with more computation and communication overhead. This is
neither economical nor scalable.

N
p

with exact link state information

without LSUs

N
p

N
p

with exact link state information

without LSUs

Fig. 7. The blocking ratios in the class of random graphs Gp(N) with
different N , and different p under network load ρ = 0.99, with the flow
arrival process following the Poisson process; flow duration d set to 100 time
units; capacity requirement Cr set to be 5% of the unit link capacity.

For BRB we observe for each N , a bell-shaped curve, with
a peak depending on the number of nodes N . For small p, the
graph will approximate a tree-like structure and the shortest
paths between all pairs of nodes are likely to span nearly all
links. In that case the load is well balanced. Similarly for
p → 1, the shortest paths are likely to be the direct links
and by using these links the network does not waste many
resources, which would affect the allocation of other flows.
In between these densities, the shortest paths may only span
(i.e., use) a small portion of the network, causing an increased
chance of blocking (which might be reduced via randomized
routing as shown for the lattice networks).

We carried out similar simulations under the traffic model
with Weibull distributed flow duration, and obtained similar
results as under the traffic model with constant flow duration.

VII. CONCLUSION

In this paper, we have presented analytical and simulation
results for two extreme link state update policies (LSUPs),
namely routing with exact resource information and routing
with static information. Different traffic and network scenarios
have been evaluated. Our results show that the extremes
react differently to different network models. In each network
model, the difference in performance varies with the network
load, and stays small under low network loads.

For the MCI topology, the performance difference remained
fairly small.

For the square lattice topology, routing with exact resource
information gives small blocking ratio even under heavy net-
work load, while routing with static information degrades very

fast as the network load increases. However, by introducing
randomized routing without LSUs, the network performance
could be improved substantially.

The class of random graphs Gp(N) performs differently
as p or N varies. When the amount of traffic running in the
network is relatively small compared to the high capacity pro-
vided by the core network, routing without LSUs is expected
to give satisfactory performance. However, under very high
network loads, the intelligence of knowing exactly the resource
information backfires, because it leads to longer-hop paths,
which results in a more congested network, leading to high
blocking ratios.

The most striking observation in our work is that under
high network load the “no updates” routing performs close
to or even better than the “exact” routing. If we would have
counted the amount of traffic overhead induced by the LSUs,
this observation would even be more pronounced. We believe
that with the fast increase in access technologies (e.g., FttH),
the ISP and core networks will have to operate under high load
regimes. They even have an economic incentive to utilize their
network as much as possible. Our results argue that in this case
an investment in LSUPs will not be cost efficient and that a
simple shortest-hop framework is likely to suffice.

ACKNOWLEDGMENT

The work is funded by the STW foundation as part of the
Network Dynamics and QoS project (DTC.6421).

REFERENCES

[1] F. Kuipers, T. Korkmaz, M. Krunz, and P. Van Mieghem, “An overview
of constraint-based path selection algorithms for Qos routing,” IEEE
Communication Magazine, vol. 40, no. 12, pp. 50–55, December 2002.

[2] A. Shaikh, J. Rexford, and K. Shin, “Evaluating the impact of stale
link state on Quality-of-service routing,” IEEE/ACM Transactions on
Networking, vol. vol. 9, April 2001.

[3] A. Ariza, E. Casilari, and F. Sandoval, “Strategies for updating link states
in QoS routers,” Electronic Letters, vol. vol. 36, no. No. 20, 2000.

[4] B. Lekovic and P. Van Mieghem, “Link state update policies for Quality
of service routing,” Eighth IEEE Symposium on Communications and
Vehicular Technology in the Benelux (SCVT2001), 2001.

[5] G. Apostolopoulos, R. Guerin, and S. Kamat, “Quality of service based
routing: A performance perspective,” ACM SIGCOMM, 1998.

[6] M. Kabatepe and M. G. Hluchyj, “On the effectiveness of topology
update mechanisms for ATM networks,” ICC’98, 1998.

[7] Q. Ma and P. Steenkiste, “Qos routing for traffic with performance
guarantees,” Proc. IFIP Int. Workshop Quality of Service, 1997.

[8] ——, “On path selection for traffic with bandwidth guarantees,”
ICNP’97, 1997.

[9] S. Nelakuditi, Z. Zhang, R. P. Tsang, and D. H. Du, “Adaptive
proportional routing: a localized QoS routing approach,” IEEE/ACM
Transactions on Networking, 2002.

[10] X. Yuan and A. Saifee, “Path selection methods for localized Quality
of service routing,” IC3N’01, October 2001.

[11] P. Van Mieghem, “Performance analysis of communications networks
and systems,” Cambridge University Press, 2006.

[12] T. Kleiberg and P. Van Mieghem, “A queueing approach to model
network flow dynamics,” submitted to Performance Evaluation, 2006.

[13] G. Apostolopoulos, R. Guerin, S. Kamat, and S. Tripathi, “Improving
Qos routing performance under inaccurate link state information,” Pro-
ceedings of the 16th International Teletraffic Congress, 1999.

