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Abstract. Least-squares methods for partial differential equations are based on a norm-

equivalence between the error norm and the residual norm. The resulting algebraic system

of equations, which is symmetric positive definite, can also be obtained by solving a weighted

collocation scheme using least-squares to solve the resulting algebraic equations. Further-

more, least-squares allows to ad extra constraints to the system. In the present work the

entropy is added as an extra inequality constraint to ensure only physical solutions for the

one-dimensional inviscid Burgers equation are obtained.

1 INTRODUCTION

In the least-squares method one tries to find an approximate solution to a system of
equations – algebraic equations or partial differential equations –, by minimizing the resid-
ual in a certain norm. Once a norm-equivalence between the residual and error can be
established, one can show that minimizing the residual is equivalent to minimize the error.

Least-squares methods are well embedded in linear algebra and statistics where they are
mainly used to solve overdetermined algebraic systems. The same mathematical base can
be used to approximate the solutions of a system of partial differential equations. In order
to be able to apply the least-squares approach to systems of partial differential equations
on an arbitrary mesh, the least-squares approach is applied in a finite element sense.
This method was first proposed by Jiang1. Simultaneously, Gerritsma and Proot2,3 and
Pontaza4 extended this approach to the least-squares spectral element method. Higher
order polynomials are used to approach the exact solution within each element. This
approach allows for high order convergence rates, when the underlaying exact solution is
sufficiently smooth. In this case polynomial enrichment, so called p-type refinement, leads
to exponential convergence speed. In all other cases the convergence is algebraic and the
convergence rate depends on the polynomial degree of the approximating solution and the
smoothness of the underlying exact solution.
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In the present paper the least-squares spectral element formulation is applied to the
one-dimensional Burgers equation in a space-time formulation. In recent work it has been
demonstrated that it is possible to render a fully converged solution without the need to
add any artificial diffusion5,6. The least-squares approach allows to add more constraints
which the solution is desired to satisfy. In the present paper a weak entropy condition
will be added as an extra constraint in order to ensure that only physical solutions are
obtained.

2 LEAST SQUARES PRINCIPLES

When using least squares methods one tries to find an approximate solution in space
by minimizing the residual in a certain norm. Consider the following abstract system of
equations:

Ax = b , (1)

with x ∈ X, b ∈ Y and A a matrix or operator projecting the solution space X to the
residual space Y , A : X → Y . This may be a system of linear algebraic equations, partial
differential equations or even a combination of both. In general the solution space X is
infinitely large. In numerical methods one has to restrict the search to a finite dimensional
subspace of X, Xh ∈ X. In general the exact solution is not a member of this subspace Xh.
Therefore one tries to find a solution in Xh so that the difference with the exact solution
measured in a certain norm is as small as possible. However, when the exact solution is
unknown it is not possible to measure the error. What can be measured is the error in the
residual space:

∥

∥Axh − Axexact

∥

∥

Y
=

∥

∥Axh − b
∥

∥

Y
. (2)

Therefore, if a norm equivalence between the error in the solutions space and the error in
the residual space can be established, one can find an approximate solution by minimizing
the residual in the residual space:

xh = arg min
xh∈Xh

∥

∥Axh − b
∥

∥

Y
. (3)

In linear algebra the residual can be minimized in the L2-norm. Minimizing (3) is then
equivalent to setting up the normal equations:

min
xh∈Xh

∥

∥Axh − b
∥

∥

L2
⇔ ATAxh = ATb (4)

If A has full rank, these normal equations are symmetric positive definite.
The above described approach can also be applied to systems of partial differential

equations. Consider therefore the following system with boundary conditions:

Lu = f in Ω , (5)

Ru = g on Γ , (6)

with u ∈ X and (L,R) : X → Y (Ω)×Y (Γ). If one can derive the an a priori error estimate
of the following kind:

C1 ‖u − uexact‖X ≤ ‖Lu − f‖Y (Ω) + ‖Ru − g‖Y (Γ) ≤ C2 ‖u − uexact‖X , (7)
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the norm equivalence between the error norm and the residual norm is established. There-
fore an approximating solution for the system of partial differential equations can be found
by minimizing the residual. Minimizing the residual means minimizing the following func-
tional,

J (u) =
1

2
‖Lu − f‖Y (Ω) + ‖Ru − g‖Y (Γ) , (8)

by means of variational analysis we get the associated Euler-Lagrange equations

lim
ǫ→0

d

dǫ
J (u + ǫv) = 0 , ∀ v ∈ X , (9)

which yields the following equation:

B(u, v) = F(v) , ∀ v ∈ X , (10)

with:

B(u, v) = (Lu , Lv)Y (Ω) + (Ru , Rv)Y (Γ) (11)

F(v) = (f , Lv)Y (Ω) + (g , Rv)Y (Γ) (12)

In the present work the L2-norm is taken for the residual norm. The test functions
are chosen in such a way that they satisfy the boundary conditions. If the boundary
conditions are enforced strongly, the boundary terms in (7), (8), (12) and (12) can be
omitted. Therefore one gets:

(Lu , Lv)L2(Ω) = (f , Lv)L2(Ω) , ∀ v ∈ X (13)

with for the inner-products:

(Lu , Lv)L2(Ω) =
∫

Ω
LuLv dΩ (14)

(f , Lv)L2(Ω) =
∫

Ω
f Lv dΩ (15)

As for the normal equations the system in (13) is symmetric and positive definite.

3 BASIS FUNCTIONS AND SPECTRAL ELEMENT MATRICES

If the solution space is infinitely large one has to define a discrete solution space Xh ∈ X.
In standard finite and spectral element methods this is done by dividing the domain in a
finite number of non-overlapping sub-domains. On each sub-domain or element a set of
continuous basis functions is defined. In the present work nodal basis functions are used.
In one dimension these basis functions are Langange polynomials based on the zeros of the
first derivative of the Legendre polynomial of degree P extended with the boundary nodes
of the element. These nodes are well known as the Gauss-Lobatto-Legendre roots. The
P + 1 polynomials on a standard element [−1, 1] are then defined as:

hi(ξ) =
(ξ2 − 1) d LP (ξ)

dξ

P (P + 1) LP (ξ) (ξ − ξi)
(16)
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In multiple dimensions the basis functions are obtained by means of tensor products.
Arbitrarily shaped elements are mapped to the standard element by a parametric mapping.
Within each element the solution is approximated by a finite sum of these basis functions:

uP
e (ξ) =

P+1
∑

i=1

uh
i hi(ξ) . (17)

With uh
i the unknown coefficients. For each element this approximation can be substituted

into (13) and for the testfunction v the same basis function can be used:

(

LuP
e (ξ) , Lhi(ξ)

)

L2(Ω)
= (f , Lhi(ξ))L2(Ω) , ∀ 1 ≤ i ≤ P + 1 . (18)

Therefore, for each element:
K u = F , (19)

with for the components of K and f :

Kij = (Lhj , Lhi)L2(Ω) (20)

F i = (f , Lhi)L2(Ω) (21)

The integrals in (20) and (21) are evaluated numerically by means of Gauss-Lobatto inte-
gration rule. Therefore, the element matrices and force vectors can also be written as the
following matrix multiplications:

K = LTWL , (22)

F = LTWf , (23)

with W a diagonal matrix with in the diagonal the Gauss-Lobatto-Legendre weights and
for L and f :

Lij = Lhj|ξ=ξi
, (24)

f i = f(ξi) . (25)

L is an m×n matrix with m the number of integration points used for the Guass-integration
and n the number of unknown coefficients for the element, equals P + 1 in (17). In most
spectral element methods m is chosen equal to n. However, this is not necessary and in a
number of cases it is even advised to choose m > n as it is demonstrated by De Maerschalck
and Gerritsma6.

4 CONSTRAINED LEAST SQUARES METHODS FOR PDE’S

For each element the local system of equations in (19) can be written as:

LTWL u = LTWf ⇔
(√

WL
)T (√

WL
)

u =
(√

WL
)T (√

Wf
)

. (26)
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Note that this system is exactly what one gets when setting up the normal equations for

(√
WL

)

u =
(√

Wf
)

. (27)

When m is chosen larger then n, this system is overdetermined.
As in standard finite element methods, once the element matrices and vectors are cal-

culated they can be gathered into the stiffness matrix Ah and force vector fh. In standard
least-squares methods for PDE’s the element matrices are calculated as in (20) and (21)
and gathered into the symmetric positive definite stiffness matrix Ah which can then be
solved with an efficient solver like the preconditioned conjugate gradient method. However,
one can also calculate the element matrices as in (27), gather the element matrices and vec-
tors into the stiffness matrix and right hand side vector and then solve the overdetermined
system using a least-squares approach for algebraic systems. This has been demonstrated
before by Hoitinga and de Groot7. Actually, this is in fact using a least-squares approach to
solve a weighted collocation scheme. The collocation points are the m Gauss-Lobatto roots
for the numerical integration and the collocation weights are exactly the squares rootes of
the Gauss-Lobatto weights. Heinrichs8,9 does something similar by applying a collocation
scheme without the weights. After applying a weighted collocation method and gathering
the element matrices, the remaining least-squares problem is of the form:

uh = arg min
u∈Xh

∥

∥Ah uh − fh
∥

∥

L2
. (28)

This latter formulation allows one to add extra constraints to the solution of the mini-
mization problem. One can try to minimize (28) with an inequality constraint for uh:

uh = arg min
u∈Xh

∥

∥Ah uh − fh
∥

∥

L2
, with Cuh ≤ d . (29)

In the next sections an example will be given where the constrained is a weak entropy
condition.

5 INVISCID BURGERS EQUATION

In this section the one-dimensional inviscid Burgers equation in conservative form will
be considered:

{

∂q

∂t
+ ∂f

∂x
= 0 ,

−q2 + f = 0 .
(30)

With a prescribed initial condition at t = 0, and Dirichlet boundary conditions at x = 0
and x = L.

Before applying the least-squares principles the nonlinear algebraic equation in (30) is
linearised using Newtons method:

{

∂q

∂t
+ ∂f

∂x
= 0 ,

−2 q0q + f = −q2
0 ,

(31)
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with q0 the solution of the previous iteration step.
For this problem a space-time formulation has been used. Therefore, the time is consid-

ered as an extra spatial variable and the dimension of the problem has been augmented by
one. In this case this requires a two-dimensional grid of quadrilateral space-time elements.
The scheme is semi-implicit in that sense that for each time level the solution is solved on
a single space-time strip of one element high. The solution on the lower boundary of each
strip is then prescribed by the solution on the upper boundary of the previous time level
or by the initial condition for the first time level. For each space-time element, the element
matrix and vector can be calculated as in (22) and (23) with for L and f :

L =

(

Dt Dx

−J0 B

)

(32)

f =

(

0
f q

)

(33)

with:

[Dx]ij =
∂hj

∂x

∣

∣

∣

∣

ξi

, (34)

[Dt]ij =
∂hj

∂t

∣

∣

∣

∣

ξi

, (35)

[J0]ij = 2 q0(ξi) hj(ξi) , (36)

Bij = hj(ξi) , (37)
[

f q

]

i
= − (q0(ξi))

2 (38)

Figure 1 shows the solution and the flux when ten cells are used with with polynomial
degree N = 5 in space and time. The initial condition is a single cosine hill. The solution
is plotted at t = 2 and twelve time-steps are used. Note that no artificial diffusion terms
need to be added to the formulation. The wiggles that occur are due to the Gibbs effect
and indicate regions of limited smoothness of the solution. However, they do not have the
intention to pollute the whole domain and are restricted to the direct neighborhood of the
discontinuity. The apace-time least-squares formulation is inherently stable. When one
would increase the number of elements, the polluted area around the singularity would be
more compressed. Therefore, it is possible to correct for this numerical oscillations in a
postprocessing reconstruction step5,10,11.

6 WEAK ENTROPY CONSTRAINT

Consider the following etropy function Q(q) and the entropy flux function F (q):

Q(q) = q2 , (39)

F (q) =
4

3
q3 . (40)
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Figure 1: Solution (left) and flux (right) of the 1D Burgers equation, Ncells = 10, Order 5 in space and
time.

If q(x, t) is a solution of (30) then one can show that12:

∂Q(q)

∂t
+

∂F (q)

∂x
= 0 , (41)

in the smooth regions of the domain, and:

∂Q(q)

∂t
+

∂F (q)

∂x
< 0 , (42)

across the shock. Or in general: all weak solutions of (30) satisfy:

∂Q(q)

∂t
+

∂F (q)

∂x
≤ 0 . (43)

Consider for a moment one time level [T, T + ∆T ] and integrate (43) over the space-time
domain [0, L] × [T, T + δt], δt ≤ ∆T , as indicated in Figure 2:

∫ T+δt

T

∫ L

0

(

∂Q(q)

∂t
+

∂F (q)

∂x

)

dx dt ≤ 0 . (44)

Note that on the lower, the left and right boundary of the space-time strip Dirichlet
boundary conditions have been prescribed. When one integrates equation (44) by parts
and brings the boundary values to the other side, then:

∫ L

0

(q(x, T + δt))2 dx −
∫ L

0

(q(x, T ))2 dx + c δt ≤ 0 ∀ δt ≤ ∆T , (45)

with c = 4
3
((q(L))3 − (q(0))3) constant per time level. Figure 3 shows the entropy according
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xx=0 x=L

T+δt

T

T+∆T

Figure 2: Space-time mesh with area of integration indicated.
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Figure 3: Entropy inequality for the test case presented in Figure 1

to the right hand side of equation (45) for the test case presented in Section 5. Note that at
each moment in time, the solution satisfies the inequality of (45). Consider next the same
test case, but with a discontinuous formulation. In this formulation q(x, t) is continuous in
time, but discontinuous in space across the element interfaces, while the flux is continuous
in space and discontinuous in time13. The results for the solution and for the flux are
plotted in Figure 4. It is obvious that this is not a physical solution of (30). The entropy
is plotted in Figure 5. Note that in the last three time steps the weak entropy condition is
no longer satisfied.

In Section 4 is was stated that it is possible to add extra constraints to the minimization
problem. One can rewrite (45) by:

∫ L

0

f(x, T + δt)) dx ≤
∫ L

0

(q(x, T ))2 dx − c δt ∀ δt ≤ ∆T . (46)
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Figure 4: Solution (left) and flux (right) of the 1D Burgers equation, Ncells = 10, Order 5 in space and
time, discontinuous LS-SEM.

This inequality is linear in f . One can vary δt so that T + δt coincides with the Gauss-
Lobatto nodes in time:

δt = (ηi + 1)
∆T

2
, with − 1 ≤ ηi ≤ 1 . (47)

If for this time levels the Gauss-integration rule is used to evaluate the integrals in (46) it
is possible to write for each of these time levels the inequality in the following matrix form:

C uh ≤ c , (48)

with uh the vector with the unknown coefficients. One can solve now the constrained
least-squares problem of equation (29).

Figure 6 and 7 show the results for the solution and the flux and the weak entropy
equation for the test case as described above. Adding these inequality constraints to the
least-squares problem does improve the solution.

7 CONSLUSIONS

A least-squares spectral element method has been applied to the one-dimensional invis-
cid Burgers equation. The Burgers equation is used in a conservative form and Newton
linearization has been applied. It has been shown that no special treatment is required to
render a stable solution. When a discontinuous least-squares spectral element method is
used, this may result in a non-physical solution. The weak entropy condition is no longer
satisfied at all time levels. To overcome this this inconsistency the entropy condition is
added as an extra inequality constraint to the least-squares approach. Adding the extra
constraints does improve the quality of the solution.
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Figure 5: Entropy inequality for the test case presented in Figure 4
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Figure 7: Entropy inequality for the test case presented in Figure 6
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