
D
el

ft
U

n
iv

er
si

ty
of

T
ec

h
n
ol

og
y

Variational Quantum Linear Solver
for Finite Element Problems:
a Poisson equation test case

Enrico Cappanera

Variational Quantum Linear
Solver for Finite Element

Problems: a Poisson equation
test case

by

Enrico Cappanera

to obtain the degree of Master of Science at
the Delft University of Technology, to be

publicly defended on 17th September 2021

Student Number: 4943872
Date Completed: 17th September 2021
Thesis Supervisors: Dr.ir. M.I. Gerritsma, TU Delft

Dr.ir. M. Möller, TU Delft

Cover Image: IBM Reserarch, Common Creative license, https://www.flickr.com/photos/ibm_research_zurich/40786969122/

Abstract

Computational fluid dynamic is governed by Navier Stokes equation, a set of partial dif-
ferential equations which are notoriously difficult to solve and computationally expensive
when tackled numerically. Over the years, simplified models of these equations have been
developed to solve these issues, achieving faster convergence at the expense of accuracy. On
the other hand, this research investigates the possibility of implementing these equations on
quantum computers, an emerging computational technology that promises computational
speed-ups in specific settings.

In particular, this work focuses on the Variational Quantum Linear Solver (VQLS) and
evaluates the feasibility of solving a one dimensional Poisson’s equation as a simplified proxy
for Navier Stokes. While many quantum algorithms exist, VQLS is one of the few capable
of solving linear equations that was proven feasible on real hardware for simple test cases
and was therefore chosen as most suitable for this proof of concept. This research is divided
into two main blocks: the first is dedicated to the pre-processing necessary to solve Poisson’s
equation with VQLS; the second contains numerical runs of VQLS, the evaluation of its
performance and scaling challenges.

In this work, Poisson’s equation is firstly discretized so that the resulting linear system
can be cast in VQLS. To this extent, the linear system matrix A has to be decomposed as
a linear combination of unitary matrices that are then represented by quantum logic gates.
This step is crucial because the number of unitaries in the decomposition is tied to the overall
algorithm efficiency. Therefore, the number of gates in the decomposition and their com-
plexity (e.g. interconnectivity requirements) were chosen as a compatibility metric between
discretized Poisson’s equation and VQLS.

When using Pauli Gates as a basis, both hybrid finite element discretization and first-
order finite element are inefficiently decomposed, with respectively O(Nm>1) and exactly N
terms, with N = 2n and n being the number of qubits. On the other hand, using gates
with higher entanglement allowed decomposing A in n + 3 unitaries, which is polynomial
in n, hence efficient. Moreover, the identified gate decompositions for first-order finite ele-
ment discretization can be easily generalized to a higher number of dimensions and become
progressively more efficient while doing so. In summary, it was not possible to find a gate
decomposition both efficient and with limited hardware requirements because a simple de-

i

composition requires exponentially many unitaries, whereas an efficient one requires complex
multi controlled gates. Therefore, it is deemed unlikely that Poisson’s equation can be effi-
ciently implemented on a quantum computer in the near term.

The high-entanglement decomposition of first-order finite element discretization was cho-
sen as a test case for numerical runs because it was the only efficient decomposition found.
These were carried out on a quantum simulator (Qiskit QasmSimulator) using a hardware
efficient ansatz. For each numerical run, iterations to success and minimum cost achieved
were measured as an efficiency metric. In general, iterations to success were larger than the
best classical counterpart and scaled exponentially for increasing qubits numbers. Across
all the experiments performed, scalability was an issue: while 2-qubits runs converged to
satisfactory results for most runs, 3-qubits runs seldom converged, and 4-qubits runs never
converged.

The major hurdle preventing convergence was the plateauing of the cost function for
increasing qubit numbers. This gradient vanishing was measured by extensive random sam-
pling of the cost function gradient through the domain. Moreover, for this test case, because
the gradient tends to vanish, maintaining the same level of precision on its evaluation would
require an exponential increase in shot number for an increasing number of qubits, which
would hamper the scalability of VQLS.

Throughout the analysis, several techniques were attempted to improve convergence.
Acting on the ansatz by various types of gradual optimization did not improve convergence,
whereas using a shallow ansatz improved convergence but compromised the solution’s accu-
racy. On the other hand, using a non-normalized cost function allowed easier convergence
compared to a normalized one.

Overall, in the pre-processing analysis an efficient yet simple implementation of one di-
mensional Poisson’s equation was not found, and numerical experiments showed serious con-
vergence difficulties. Therefore, this research hints at an incompatibility between variational
quantum solver and Poisson’s equation. However, future works should attempt other con-
vergence improvement strategies such as local cost function and higher-order discretization
methods before a conclusive assessment can be drafted.

ii

Preface

What a journey! This thesis marks the end of my stay at TU Delft, a great learning experi-
ence from the very first day until the last. Certainly, a journey marked with sacrifices and
hard work but also with fun and personal growth.

Meeting talented people of my study course was an inspiring and eye-opening experience.
In particular, I would like to thank Giulio, Jacopo and Andrea for all the times we helped
each other and the fun we had at the library. You managed to make 12-hours long study
sessions fun, quite an achievement! Also, special thanks to my former flatmates Klemens
and Jasper for the fun times together. Our dinners were literally the only fun thing I did in
Delft during the pandemic.

A thank you to the people that helped me complete this work: my supervisors Marc
and Matthias, for the courage of embarking on a journey outside our core competences and
comfort zone; Giorgio for sharing our quantum struggles and your advice; Gawel for the
useful emails and tips; Mario for helping me find the Pauli decomposition pattern; and the
Stack Exchange community for the brilliant answers.

Thank you to my long-time friends from Ancona, which remained close despite the pass-
ing years.

Thank you to my girlfriend Polina for being patient enough to cope with me for all these
years, the great times we had together, and the faith we could make it happen no matter
the difficulties.

Above all, I would like to thank my parents and my sister for the everlasting support and
for believing in me notwithstanding my delays in delivering this work. Undoubtedly, this
thesis would not have been possible without your help.

Enrico Cappanera
Ancona, September 2021

iii

Contents

1 Introduction 1
1.1 Problem statement and approach . 2
1.2 Outline . 3

2 Theoretical Background 4
2.1 Introduction to variational quantum algorithms 4
2.2 Implementation of variational quantum algorithms 5

2.2.1 Algorithm Workflow . 5
2.2.2 State preparation ansatz . 5
2.2.3 Scaling of the ansatz . 8
2.2.4 Expectation value Measurement . 12
2.2.5 Classical Optimization . 15

2.3 Application of Variational algorithms to Linear equations 16

3 Pre-processing and feasibility of VQLS 19
3.1 Introduction to matrix decomposition . 19
3.2 First order finite element discretization matrix decomposition 21

3.2.1 Decomposition in Pauli Basis . 21
3.2.2 Decomposition with high entanglement 25
3.2.3 Generalization to higher dimensions 31

3.3 Generalization to higher order finite element schemes 32
3.4 Hybrid finite element method . 33
3.5 Accuracy on the function evaluation . 36

3.5.1 Shot noise in the VQLS algorithm . 39

4 Numerical Experiments of VQLS 45
4.1 Definition of the test case . 45
4.2 Implementation on a Quantum Computer simulator 46

4.2.1 Setup . 46
4.2.2 Solution overview . 47
4.2.3 Ansatz optimization strategies . 51
4.2.4 Cost function improvement strategies 60
4.2.5 Comparison of classical optimization algorithms 64

iv

4.3 Implementation challenges . 67

5 Conclusion and recommendations 72
5.1 Recommendations for future work . 74

A Quantum computing fundamentals and theoretical backgroud 77
A.1 Fundamentals . 77
A.2 Theoretical background of variational quantum solvers 80

B Glossary of quantum gates 83

C Proof of convergence of Beta distribution to Gaussian 86

v

List of Figures

2.1 Illustration of hardware efficient ansatz [1] 7
2.2 Variational ansatz from [2]. The ansatz is made of layers (a layer is identified

in the red square). Every layer is composed of Ry rotations followed by CZ
gates. 10

2.3 Circuit that computes the Hadamard Test. Dashed lines represent steps that
are referenced in the text . 13

3.1 Illustration of the sequence of Pauli gates (without coefficients) that results
in the operator of (3.3). For every N , each row is a tensor product of the
gates listed and the overall matrix is obtained by linear combination of the
rows unitaries. Every gate instruction can be created in a recursive manner
starting from the previous. 22

3.2 . 24
3.3 Sparsity plot of L if the smallest N/2 terms are neglected 25
3.4 Implementation of L2 for N = 4 . 27
3.5 Detailed circuit representation of Cn−1 . 27
3.6 Circuit implementation of L2 [3] . 28
3.7 . 29
3.8 Depth requirement comparison of HHL [4] (section 4.1.1) and VQLS as imple-

mented by the Qiskit compiler. VQLS is measured in the worst-case scenario
(i.e. with the deepest of the unitaries applied). Circuits were transpiled based
on Ibmq 16 Melbourne layout, qiskit version 0.26.2, and default transpiling
optimization level 1 (light optimization) . 31

3.9 Number of decomposition terms and sparsity plot for hybrid finite element
method on a one dimensional domain and linear basis functions 35

3.10 Circuit implementation of the Hadamard test that computes 〈0| Ũ †U |0〉 . . . 38
3.11 Numerical runs are obtained measuring the variance of a sample of 100 runs

per each different number of shots. Upper bound, typical instance and “Exact
mean” are obtained plugging different values in (3.33), respectively µ = 1/2,
µ = 1/6 and µ ≈ 1/3 which is the actual average value for this specific run.
The slope of the logarithmic fit is -1, as suggested by (3.33). 39

vi

3.12 Numerical validation of (3.37) and (3.38), respectively upper bound and ana-
lytical prediction in the legend. Variance is computed with N = 80 separate
measurement for each data point. Test case is for 3 qubits and a polynomial
decomposition of A (L ∝ n) . 41

3.13 Numerical runs obtained measuring the variance of a sample of 150 runs for
each number of shots point. Typical instance is obtained using (3.42) and the
average as from (3.43) whereas a ”Using average” is obtained plugging in the
actual experiment average in (3.43) . 42

3.14 Numerical runs are obtained measuring the variance of a sample of 80 runs at
each number of shot point. 2, 3, 4 qubits fits very precisely Var(C) ∝ kN−1

r ,
whereas for 5 qubits Var(C) ∝ kN−1.36

r , which is more likely due to under-
sampling at low number of shots. The test case utilized is explained in sections
4.1 and 4.2. 43

3.15 . 44

4.1 Numerical results for Poisson’s equation with n = 2 qubits (internal points
N = 4), number of shots=106 and c ≈ 0, exponentially deep ansatz. 48

4.2 Numerical results for Poisson’s equation with n = 3 qubits (internal points
N = 8), number of shots=1.2 · 107, c ≈ 0.1, exponentially deep ansatz. 49

4.3 Averaged convergence performance with exponential ansatz 50
4.4 Single layer rotation ansatz . 51
4.5 Numerical results with a single rotation ansatz, 8 · 106 shots. “Exact numer-

ical” was obtained using a statevector simulation to make sure poor results
were only due to the ansatz and not poor convergence in the optimization
process . 52

4.6 Comparison of convergence performance between single layer and exponen-
tially deep ansatz (dotted lines) . 53

4.7 Example of gradual optimization for three qubits. At each step, only the
boxed parameters are optimized. Once a local minimum is achieved, the
optimizer moves to the next set of parameters and those from previous steps
(e.g. θ0, θ1, θ2 in step 2) are left untouched. New parameters are initialized as
θi = 0 so that Ry(θi) = I. 54

4.8 Comparison of convergence performance between different ansatzes as a func-
tion of the number of shots and number of qubits 55

4.9 Cost function as a function of the number of iterations. Dotted lines indicate
where a new ansatz layer is added, with the optimizer moving to the next set
of parameters. 55

4.10 Number of iterations to local minimum . 56
4.11 Result of overall optimization using as a starting point the results of gradual

optimization vs exponential ansatz baseline case. Powell was used for all data
points. 57

4.12 Gradual optimization of an exponentially deep ansatz 58

vii

4.13 Cost at convergence as a function of number of shots and number of qubits
for different ansatz . 58

4.14 Cost at convergence as a function of number of shots and number of qubits . 59
4.15 Cost landscape and cost at convergence for a non normalized cost function . 61
4.16 Result of overall optimization of Ĉ(θ) (non Normalized) vs C(θ) (normalized).

Powell was used for all data points. 62
4.17 Cost at convergence as a function of number of shots and number of qubits

for C̃(θ) (linear combination with α, β = 1/2) vs Ĉ(θ) (referred as “not
Normalized” in the plots). Powell was used for all data points. 63

4.18 Result of overall optimization of C̃(θ) (linear combination with α, β = 1/2)
vs C(θ) (normalized). Powell was used for all data points. 63

4.19 Comparison of Powell and Cobyla optimizers 65
4.20 Finite difference partial derivative as a function of step size and number of

shots for a 2 qubit configuration . 66
4.21 Finite difference partial derivative as a function of step size and number of

shots for a 3 qubit configuration . 66
4.22 Average gradient norm and components value as obtained by random sampling

of the optimization domain at 3.6 · 104 points with an exponentially deep ansatz 68
4.23 Gradient norm instances from random sampling of the cost function. Each

figure is obtained sampling 3.6 · 104 points. (5 · 104 points for 5 qubits) . . . 69
4.24 Relationship between shot noise and median partial derivative across the do-

main for a normalized cost function . 70

A.1 Example of quantum circuit . 79
A.2 Quantum circuit with entangled qubits . 80

viii

Chapter 1

Introduction

Fluid flow phenomena can be described by a set of partial differential equations, namely
Navier-Stokes equations. For most cases, these equations do not have an analytical solution.
Therefore, it is necessary to solve these equations numerically, which is generally achieved
by discretization of the domain. For example, some methods compute the equations only at
specific points in space and time. As a result, the initial set of partial differential equations is
approximated as a set of algebraic equations, which can be solved by a computer [5] (p.25).
This procedure is at the essence of computational fluid dynamics (CFD), which generally
consists of using numerical analysis to solve fluid flow problems.

Often these equations have proven to be computationally expensive, if not impossible
to solve in some cases. For example, for some applications, a direct numerical simulation
(DNS) of Navier Stokes equations for high Reynolds number is beyond the capabilities of
the world’s most powerful supercomputers [6]. At the moment, simplified models of these
equations are generally employed, at the expense of accuracy. Some examples are Reynolds
averaged Navier–Stokes (RANS) where only the time-averaged flow is computed [5] (page
397), or Large-eddy simulation (LES) where only the largest and more relevant length-scales
of the flow are computed directly, whereas smaller scales are modelled [7]. While in some
cases simplifying the problem can lead to satisfactory results, increasing computation power
would be beneficial to solve more complex problems or increase accuracy. Therefore, it is
interesting to investigate if a novel computational technology such as quantum computers
can be employed to solve CFD problems. In literature, only a few instances are addressing
this problem [8, 9, 10]1, so it is an open and interesting question whether this is feasible or not.

The idea of a quantum computer dates back to the 80s, when scientists started to in-
vestigate whether quantum mechanics could be used to perform computations. Noticeable
is the early work from Benioff, who introduced a quantum mechanical model of a computer
[11]. Feynman himself speculated that since the nature of the world is governed by quan-
tum mechanics, then a computational machine based on those laws would be appropriate to

1To the best of the author’s knowledge, not necessarily exhaustive

1

simulate it [12].

Since then, the development of quantum computers progressed noticeably: in autumn
2019 a team from Google was able to claim quantum supremacy for a specific computational
task [13]2. In simple words, quantum supremacy means that the quantum computer can
perform a computational task that its classical counterpart would not be able to perform.
However, quantum computers are not yet developed enough for most practical applications.
One could say that they are in their early stages, in a similar way to classical computers in
the middle of the last century.

Despite quantum information theory being a relatively ‘recent’ field, researchers have
developed a broad collection of algorithms based on different methodologies and for disparate
applications, for example [15, 16]. Some noteworthy applications are: machine learning
[17], portfolio optimization in finance [18], computational chemistry [19], and others. This
research is focused on algorithms for linear systems of equation (for example [20]), which is
a ubiquitous problem in engineering. Of particular interest for the scope of this research is
their application to differential equations.

1.1 Problem statement and approach

The objective of this research is to gain preliminary insights into possible implementations
of computational fluid dynamics on quantum computers. In particular, investigations are
focused on variational quantum algorithms for linear systems of equations, the compatibility
of current discretization methods with these algorithms, and scaling prospects.

One dimensional Poisson’s equation was chosen as a test-case for this work as a simplified
proxy for NS, also because of its simplicity and wide applicability. Overall, in this research,
rather than devising a custom quantum algorithm for Poisson’s equation, this equation is
firstly discretized and its linear system is solved using the Variational Quantum Linear Solver
(VQLS), an existing quantum algorithm for linear systems of equations.

Therefore, the first question to be addressed is what discretization scheme is more ap-
propriate and compatible with VQLS. Depending on the discretization method used, the
resulting linear system matrix will be different. Thus, it is reasonable to expect some ma-
trices will be easier and more compatible to solve with VQLS than others. Therefore, this
work focuses on finding the best possible implementation of these matrices on VQLS and
compares first order finite element method and hybrid finite element method discretizations.
For each linear system, conclusions are drawn about expected efficiency and implementation
issues.

2This claim is not universally accepted among researchers, see https://www.ibm.com/blogs/research/

2019/10/on-quantum-supremacy/ and [14]

2

While preliminary efficiency insights can already be drawn from the implementation
of this matrices on VQLS, in this research, Poisson’s equation is solved using VQLS on a
quantum simulator to evaluate whether a solution can be achieved, understand challenges and
scaling prospect. To this extent, VQLS implementation of Poisson’s equation with Dirichlet
boundary condition on a uniform domain was experimented, so that numerical results could
be compared with analytical solutions. Generally, for each numerical experiment iterations
to solution and accuracy of solution are measured so that different solution techniques (such
as different optimizers) can be compared.

1.2 Outline

Chapter 2 contains a brief literature review, necessary to understand the content of this re-
search and upon which this analysis is based. Chapter 3 explains the preprocessing necessary
to solve discretized differential equations using a variational linear solver and some prelim-
inary feasibility assessments of each technique. Mainly, this consists of decomposing the
matrix one wants to invert into unitary matrices, which are composed using quantum logic
gates. Chapter 4 contains the results of numerical experiment of the selected test case on a
quantum simulator. Here convergence behaviour, issues and potential solutions are tested.
Finally, Chapter 5 summarizes the main conclusion of this research and suggests the most
logical next steps following the completion of this work. Quantum computing fundamentals
that are often referenced in the text are briefly explained in the appendix.

3

Chapter 2

Theoretical Background

As explained in the introduction, fluid dynamics equations can be approximated by a linear
system of equations. Therefore, this chapter focuses on the theory of variational quantum
algorithms and their application to linear equations. Sections 2.1 briefly introduces varia-
tional quantum algorithms, Section 2.2 elaborates on how to implement these algorithms.
In Section 2.3, existing applications of variational algorithms to linear systems of equations
are discussed.

2.1 Introduction to variational quantum algorithms

Variational quantum algorithms were firstly introduced by Peruzzo in 2014 when he de-
veloped a Variational Quantum Eigensolver (VQE), which is a hybrid quantum-classical
algorithm that allows finding the eigenvalues of a Hamiltonian [16]. As the name suggests,
the algorithm utilizes quantum and classical resources at the same time to decrease the nec-
essary coherence time, which, in simple words, is the time information can be encoded in a
qubit before it loses information to the environment.

Motivation

Quantum computers available today are often named Noisy Intermediate-Scale Quantum
(NISQ), where Intermediate refers to the scale of their size (less than a few hundred qubits)
and Noisy to the fact the qubits are not perfectly controlled [21]. A Noisy qubit implies
that only a finite amount of elementary computations (gates) can be performed before the
signal to noise ratio drops (loss of coherence). Because of these limitations, algorithms like
the famous quantum linear solver HHL [20] that could solver linear system of equations up
to exponentially faster on a quantum computer are most likely decades away. For exam-
ple, Quantum phase estimation (QPE), which is a fundamental block of the aforementioned
algorithm, might require millions of gates [22], which is substantially more than what is
achievable by a NISQ device today.

4

2.2 Implementation of variational quantum algorithms

This section explains the basic building blocks of variational quantum algorithms. More
details about the underling theory (where concepts such as expectation value are discussed)
can be consulted in Appendix A.2. At first, Subsection 2.2.1 shows the general workflow of a
variational algorithm. Then, Subsection 2.2.2 is dedicated to the first step of the variational
algorithm, which is the preparation of a state vector. Subsection 2.2.3 investigates the scal-
ing of the state preparation parameters and connected challenges. Subsection 2.2.4 explains
different techniques used to measure the expectation value in variational algorithm. Lastly,
in 2.2.5 an overview of different optimization techniques is presented.

2.2.1 Algorithm Workflow

Consider a general problem in which one wants to minimize the expectation value of an
Hamiltonian H. In general, a Hamiltonian can be derived from physical modelling of the
problem or algebraic manipulation of a system of equations. Jarrod R. McClean, one of the
inventors of Variational quantum algorithms, describes their workflow as follows [23]: given
a state vector |ψ〉 that can be parametrized as a function of classical parameters θ:

1. a guess state |ψ(θ)〉 is prepared;

2. the expectation value of the Hamiltonian 〈H〉|ψ〉 is measured;

3. a classical optimizer is used to modify θ and determine the new ‘guess’ |ψ(θ)〉;

4. step 2 and 3 are repeated until convergence to a solution is reached.

‘Reaching convergence’ means the algorithm finds θ that allows preparing the state |ψ(θ)〉
that minimizes the energy of the Hamiltonian: i.e the solution. In the following subsection,
each of the steps and the challenges it entails will be explored.

2.2.2 State preparation ansatz

As explained above, the first step of a variational algorithm is to prepare a state |ψ(θ)〉.
It is noteworthy that the quantum state depends on classical parameters, so its state is
stored classically, hence the hybrid nature of variational solver. In other words, the vector
of classical parameters θ could be regarded as an input or solution guess for an optimization
process, and the quantum computer a tool to evaluate the cost function.

In a quantum circuit, qubits are initialized in a predetermined state at the beginning of
the computation (usually, the zero state |0〉). At this stage, the qubits hold no information,
they are not entangled, neither they are in a superposition state. Thus, a sequence of unitary
gates V (θ) named “ansatz” is applied to reach the desired quantum state:

ψ(θ) = V (θ) |0〉 (2.1)

5

In the most general case, the sequence of unitary gates V depends on two sets of parameters:

V (θ) = UkL(θL)...Uki(θi)...Uk0(θ0) (2.2)

where k is a discrete parameter that determines the type of gate and their qubit position,
whereas α is a continuous parameter that determines the action of the gate itself. For in-
stance, one gate of the sequence could be a Ry2(θj) which is a rotation along the y axis of
the Bloch sphere, [24]. In this case, the k index indicates the gate type (rotation around
y) and the target qubit 2, whereas θ indicates the magnitude of the rotation. In general,
Uki(θj) can be any unitary gate, including multi-qubit gates (in this case multiple i indices
could be necessary depending on the notation adopted).

It is easily understandable that increasing the number of gates allows searching through-
out the Hilbert space more thoroughly. On the other hand, as the number of gates grows,
the parameters that have to be optimized to achieve a solution increase. In other words, a
longer gate sequence allows for a more accurate solution but increases the complexity of op-
timization of the algorithm. This is the famous “curse of dimensionality” that afflicts many
optimization problems. Although different, one could imagine that increasing the number of
unitaries has a similar effect of increasing the number of points in a numerical discretization.
A finer grid often results in a more accurate representation of the function but also a higher
computational cost.

Now that the functioning of an ansatz has been explained, one might wonder how to
choose the type of gates. Naively, one could think that a random set of gates would provide
an unbiased and optimal choice. However, generally, it is convenient to use a structured
guess. In other words, using insights about the physics of the problem allows for searching
only the portion of the Hilbert space that is relevant for the solution, which means resources
are used most efficiently. In general, some ansatzes used in the literature are:

1. Unitary coupled cluster (UCC) ansatz [25]

2. Hardware efficient ansatz [1]

3. Adaptive Derivative-Assembled Pseudo-Trotter ansatz (ADAPT-VQE) [26]

4. Quantum circuit structure learning [27]

Hardware efficient Ansatz

The idea of hardware efficient ansatz it to build a simple ansatz with limited hardware
requirement. In other words, the structure of the ansatz is dictated by the available hard-
ware rather than problem specific knowledge. In particular, it uses gates that are native to
the hardware, as well as it requires limited connectivity, in the sense that two-qubits gates
are applied only to neighbouring qubits. Kandala et al. [1] proposes the following struc-
ture: entanglers UENT alternated to single qubit rotations U q,i(θ) = Rq

z(θ
q,i
1)Rq

x(θ
q,i
2)Rq

z(θ
q,i
3).

6

Where q identifies the qubit and i the depth position (in plain words, depth is the position
along the circuit “wire” or the order a logical operation is performed). A parallelism can be
drawn with euclidean geometry, where any rotation about the origin can be expressed as a
composition of three rotation, when only one Euler angle is changed at the time. Similarly,
these three rotations allow to reach any point of the Bloch sphere. Thus, the ansatz final
structure is expressed as:

|φ(θ)〉 =
N∏
q=1

[
U q,d(θ)

]
UENT

N∏
q=1

[
U q,d−1(θ)

]
· · ·UENT

N∏
q=1

[
U q,0(θ)

]
|00 . . . 0〉 (2.3)

which is visualized in Figure 2.1:

U1,0(θk)

U2,0(θk)

U3,0(θk)

U4,0(θk)

U5,0(θk)

U6,0(θk)

U1,1(θk)

U2,1(θk)

U3,1(θk)

U4,1(θk)

U5,1(θk)

U6,1(θk)

I X–π/2–
Yπ/2

I X–π/2
Yπ/2

I X–π/2
Yπ/2

I X–π/2
Yπ/2

I X–π/2
Yπ/2

I X–π/2
Yπ/2

U
E
N

T

d

Q1 |0〉

Q2 |0〉

Q3 |0〉

Q4 |0〉

Q5 |0〉

Q6 |0〉

Figure 2.1: Illustration of hardware efficient ansatz [1]

While other ansatzes’ structures are inspired by the physics of the problem, a hardware
efficient ansatz does not require this knowledge. This peculiarity makes it suitable for linear
system of equations where this additional information is not available. Several applications
of this ansatz can be found in literature, where depending on the application, one chooses
the rotations and entangling gates that are most suitable.

For example, if one is only interested in real numbers, only rotations around y are nec-
essary U q,i(θ) = Rq,i

y (θq,i). This reduces the number of necessary parameters by a factor of
three, compared to the previous ansatz. For instance, in [28], Ry gates are used for rotations
and CNOT as UENT . Similarly, [2] uses the same rotations but CZ gates as entanglers. In
[29], U q,i(θ) = Rq,i

x (θq,i1)Rq,i
y (θq,i2), and UENT =CNOT.

7

2.2.3 Scaling of the ansatz

In summary, a generic quantum state is prepared by a set of unitary gates V (θ) which is called
an ansatz. The reason behind this name is that, in general, it is not possible to know the
structure of the circuit which would lead the solution a priori. Therefore, the algorithm starts
with a guess that depends on parameters that can be optimized. The following paragraphs
are dedicated to explaining two of the core problems of using ansatzes: the scaling of the
number of unitaries and the problem of the vanishing gradient. It is important to answer this
question to evaluate the limits of the variational approach and understand if these algorithms
would be able to tackle real problems once the hardware scales up.

Number of unitaries scaling

Given that a physical state can be approximated by a sequence of gates, it is important
to understand how long this sequence is or in other words, what is the number of unitaries
necessary. The length of this gate sequence is important for several reasons: firstly, for
practical application, the gate length must not exceed the coherence time capabilities of the
hardware. Secondly, an increasing number of gates increases the runtime of the algorithm.
Thirdly, as the number of gates increases, the number of optimization parameters increases
as well, which makes the optimization harder.

When discussing the scaling of unitaries, one fundamental theorem that cannot be over-
looked is Solovay-Kitaev. Let us, consider a set of unitary gates G in an d dimensional subset
of SU(d), that respects:

1. All gates g ∈ G are contained in SU(d)

2. For each g its adjoint g† is also in G

3. G is universal for SU(d). In other words, given any unitary U ∈ SU there exist a set
of gates S = g1...gl that approximates U with precision ε > 0.

Then, Solovay-Kitaev loosely states that for any gate U ∈ SU(d) there is a sequence S
in G that approximates U with precision ε and length O(logc(1/ε)), where c is a constant. [30]

Furthermore, it is important to specify what does it mean for a gate S to approximate an-
other gate U with precision ε. Formally, we define it as d(U, S) = sup‖ψ‖=1‖(U − S)ψ‖ < ε.
According to Dawson et al. [30], c ≈ 3.97. However, as reported by the authors, there are
several other proofs with different bounds.

To explain why this theorem is so important, consider the case when one wants to perform
a quantum Fourier transform (QFT). This is a relevant example as QFT is a basic building
block of some of the most famous quantum algorithms, for example, Shor’s factoring or HHL
[15, 20]. A QFT requires single-qubit rotations of size e2πi/2k to be successfully implemented

8

[24]. However, it is easily understandable that these types of gates might not be native
to quantum hardware. For instance, a quantum computer might be able to perform only
π/8 rotations, Hadamard, and identity gates. Thus, the question that arises in these cases
is: how expensive would it be to approximate the required gate with those that are available?

It should not be surprising that this question is crucial for the success of the algorithm:
if an exponential number of gates are required to approximate a specific one, then the expo-
nential gains in terms of computational speed-up promised by the algorithm might be lost.
Luckily, the SK theorem cited above guarantees that SU is filled quickly by the available
gates, which means that the number of necessary gates scales logarithmically. Providing a
proof for this theorem goes beyond the scope of this thesis, but the interested reader can
consult [30] or Appendix number 2 of [24]. It is interesting to mention that the proof is based
on recursion: starting from an approximation with ε0 it is possible to increase the precision
by recursively approximating.

However, in a variational algorithm, we are not only interested in how efficiently a single-
qubit gate can be approximated, but also multi-qubit gates. Interestingly, Solovay-Kitaev
was written for a general qudit (in plain words, the superposition of d qubits). This means
that the above theorem can be extended to a multi-qubit gate just by setting the dimension
of the space d = 2n where n is the number of qubits.

The proof for this case is similar to the single-qubit gate. The curious reader is invited
to look at [30] (Section 5). The main difference lies in the initial sequence necessary to
approximate a gate with ε0 error, which is the base for the recursion process. Because in this
case SU(d) is a manifold in d2 − 1 dimensions, approximating every gate within ε0 would

require O(1/εd
2−1

0) sequences. Nielsen and Chang also provide an interesting bound taking
the ratio of surface to volume of a sphere in 2n + 1 dimensions. [24]

It is necessary to remark that SK only states that given a certain sequence, any other uni-
versal set approximates it efficiently. Thus, the double exponential scaling does not depend
on Solovay Kitaev, it is just a basic mathematical consequence of the exponential increase
in degrees of freedom of a quantum state.

For these reasons, if one has physical insights or other information about the behaviour
of the solution, it is possible to decrease the size of the ansatz. In other words, it is possible
to explore only the portion of the Hilbert space which is expected to contain the solution.
Although this effectively allows decreasing the size of an ansatz it leaves with the most im-
portant question of this section: what is an appropriate ansatz for a given problem? In other
words, given that a more compact ansatz explores only a small portion of all the possible
states, how does one choose it such that the probability of the solution being in the ansatz
range is maximized? This is a topic of ongoing research and several structures that have
been proposed in the literature are reported in the following paragraphs.

9

In general, the utility of SK in practical applications (variational algorithms) is limited
because it gives no information about the optimal shape or type of gates for an ansatz. In [2],
Bravo-Pietro et al. investigate the scaling of the depth of a variational quantum algorithm
for a condensed matter system. The ansatz utilized in the paper is reported in Figure 2.2.

Figure 2.2: Variational ansatz from [2]. The ansatz is made of layers (a layer is identified in
the red square). Every layer is composed of Ry rotations followed by CZ gates.

The CZ gates have the crucial function of entangling the qubits, whereas Ry is a single
qubit rotation. In the aforementioned paper, the VQE with this specific ansatz is bench-
marked with two quantum spin chains, the Ising model in the transverse field and the XXZ
chain. For these particular problems, the authors found an exponential accuracy increase
with increasing ansatz depth. Thus, this is a perfect example of what was mentioned above:
the chosen ansatz does not explore the whole Hilbert space, but the solution happens to be
within its range, and therefore it can be implemented extremely efficiently.

The key takeaways of this paragraph are that in general, it is impossible to build an
ansatz capable of representing every state that also scales efficiently: it is necessary to
make a trade-off between the power of the ansatz and its computational cost. Moreover,
this means that most likely it is impossible to build an efficient all-purpose ansatz.
Only problem-tailored ansatzes are likely to provide an advantage with respect to classical
computing.

The problem of vanishing gradient

Along with the scaling of the number of gates, there is another common issue that char-
acterizes variational solvers using hardware efficient ansatzes: the vanishing of the gradient.
This issue shares some similarities with gradient-based training issues of artificial neural

10

networks. This paragraph is largely based on a work of McClean [31]. To clearly describe
the problem let’s recall the basics of a variational algorithm, which is to minimize the cost
or expectation value of a Hamiltonian:

C(θ) = 〈H〉|ψ(θ)〉 = 〈0|V (θ)†HV (θ) |0〉 (2.4)

A randomly parametrized circuit has the structure:

V (θ) =
L∏
l=1

Vl(θl)Wl (2.5)

where Vl(θl) = exp(−iθlUl) and Ul is an Hermitian operator. One simple example is when
Vl is a Pauli gate. Similarly, Wl is an unitary operator. In this case, the derivative of the
cost function is computed using chain rule as:

∂C(θ)

∂θk
= 〈0| iV †−UkV

†
+HV − iV HV+UkV− |0〉 = i 〈0|V †−[Uk, V

†
+HV+]V− |0〉 (2.6)

In the expression above, V− =
∏k−1

l=1 Vl(θl)Wl and V+ =
∏L

l=k Vl(θl)Wl. According to Mc-
Clean’s work [31], the problem with randomly parametrized circuits is that the average value
of the gradient of the cost function ∇C(θ) tends to 0 and the probability that it deviates
from its average value by ε decreases exponentially with the number of qubits. According to
the authors, this is due to the phenomena of concentration of measure for high dimensional
spaces. In particular, this is formalized by Levy’s Lemma: consider a set of points in a
hypersphere φ of dimension d and area S[{φ}], and f such that |∇f | < 1 then

[S{φ|f(φ)− 〈f〉 ≥ ε}]
S[{φ}]

≤ 4 exp

(
−(d+ 1)ε2

9π3

)
(2.7)

that is to say, the points where f is not close to its average with respect to the totality of
the points decreases exponentially with the number of dimensions [32].
Thus, McClean proves and numerically verifies that the gradient does indeed vanish ex-
perientially in the number of gates (that is ∝ L) which allows drawing the conclusion that
randomly initialized circuits of sufficient depth have little utility for hybrid quantum-classical
algorithms, as they get progressively less functional for more qubits or deeper ansatzes.

Luckily, several solutions have been proposed in the literature. Firstly, it should be
pointed out that the loss of utility, in particular, affects random circuits. Therefore, this issue
does not affect ansatzes inspired by the physics of the problems, such as Unitary Coupled
Clusters [33]. However, for some applications (for example solving liner problems) there are
no physical insights available. For those cases, some solution provided in the literature are
the following:

• Gradually adding layers: the ansatz is initialized as a low depth circuit and gradually
expanded.

11

• Introducing a local cost function [28]

• Using Hamiltonian Morphing: this method is based on the Adiabatic theorem and
consists of evolving the problem’s Hamiltonian from the Identity to the desired final
state.

Gradually adding layers: Grant et al. [34] suggest dividing a hardware efficient ansatz
into M blocks. Every block is divided into two sub-blocks as following:

Vm(θm) =
L∏
l=1

Vl(θ
m
l,1)

L∏
l=1

Vl(θ
m
l,2). (2.8)

When initializing the circuit, on every block θl,1 are chosen randomly, whereas θl,2 are cho-
sen so that Vm(θm) = I, that is to say, one sub-block is the inverse of the other. One of
the blocks is chosen with a random initialization so that the gradient of that block can be
computed, whereas all the other blocks are equivalent to the identity. The reason behind
this choice is that this reduces the effective depth of the circuit, and thus the likelihood of
the gradient vanishing. Then, the blocks are progressively optimized. Although it cannot be
proven algebraically that the single block initialization will not result in a gradient plateau,
this method was validated numerically by the authors. A similar procedure was successfully
implemented in [35] as well.

Hamiltonian Morphing is clearly explained by Xi et al. in [29]. When solving a linear
system A |x〉 = |b〉 with variational algorithms, one builds a Hamiltonian that measures the
projection of A |x〉 on the subspace perpendicular to b. The idea behind this method is
to evolve the aforementioned Hamiltonian from an initial state (identity) to a final state
that represents the problem considered. The authors also mentioned that According to the
Adiabatic theorem, if A is positive definite, ∂t small enough and the ansatz powerful enough,
this method is guaranteed to find a solution [36]. The simplest parametrization possible for
the linear system matrix is A(t) = (1− t/T)I + t/TM , which means A evolves linearly over
time. Thus, the ansatz is parametrized as V (θ(t)). At every time step n, the ansatz is
initialized with the values θ((n − 1)dt) that were obtained minimizing the cost function at
the previous time step, and are minimized again for the evolved system.

2.2.4 Expectation value Measurement

As explained in the previous sections, a variational algorithm works by preparing a quantum,
state, then by measuring its expectation value with respect to a Hamiltonian and successively
minimizing the obtained value. While sub-Sections 2.2.2, 2.2.3 were dedicated to the state
preparation, this section is dedicated to the next step of the algorithm, which is determining
how the expectation value 〈H〉|ψ〉 is measured.

In this framework, the expectation value is effectively a cost function that the algorithm
attempts to minimize. Therefore, it is necessary to build a circuit that can measure this

12

value, and more importantly, assess how expensive this procedure is and its feasibility on
a quantum computer. In other words, some evaluation procedures might require deeper
circuits and fewer repetitions, whereas others have less stringent requirements but have a
longer runtime. In general, evaluation procedures can be divided into direct and indirect
measurements. When a direct measurement is performed, the quantum state collapses in
the measurement basis because the qubit that encodes the information is measured, whereas
indirect measurements allow it to “stay intact” [37] since an ancillary qubit is measured
and the register is left untouched. One example of common indirect measurement is the
Hadamard test, which allows the determination of the expectation value of a unitary 〈U〉|ψ〉
using an ancillary qubit.

One of the main differences between the two approaches is that an indirect measure
allows reusing the quantum state (for example, iterative quantum phase estimation [38]).
These algorithms run in O(1/ε), whereas, for example, VQE requires O(1/ε2) using direct
measurements [16]. Thus, the latter can be summarized by saying that direct measurement
techniques are generally less efficient in terms of runtime, but they are easier to implement
on a NISQ. A short comparison of the measurement subroutines is reported in Table 2.1

Table 2.1: Summary of measurement techniques. The columns indicate what is being mea-
sured and the row how it is being measured. A more in-depth description of this techniques
can be consulted in [39]

Expectation value measurements Overlap Measurement
Indirect measurement Hadamard Test Swap Test
Direct measurement Quantum expectation estimation Destructive Swap Test

Indirect measurements: Hadamard Test

The Hadamard test is a quantum subroutine that allows to measure the expectation value
of a unitary with respect to a state 〈U〉|ψ〉. Its circuit structure is reported below

n

|0〉 H H

|ψ〉 U

1 2 3 4

Figure 2.3: Circuit that computes the Hadamard Test. Dashed lines represent steps that are
referenced in the text

In Figure 2.3, the underling idea is that the probability of measuring 0 in the first

13

(ancilla) qubit is equal to P (0) = 1
2
(1 + Re 〈U〉) and the probability of measuring 1 is

P (1) = 1
2
(1−Re 〈U〉). Thus, taking their difference will return the real part of the expectation

value P (0) − P (1) = Re 〈U〉. After the application of the Hadamard gate, in step 1, the
circuit is initially in the state:

|0〉+ |1〉√
2
⊗ |ψ〉 =

|0〉 ⊗ |ψ〉+ |1〉 ⊗ |ψ〉√
2

(2.9)

where the first term is the ancilla qubit and it is obtained directly by applying the Hadamard
gate to |0〉, whereas the second term is the state |ψ〉 that is being evaluated. Then, the
controlled unitary U is applied, obtaining state number 2:

|0〉 ⊗ |ψ〉+ |1〉 ⊗ U |ψ〉√
2

(2.10)

Finally, another Hadamard gate is applied to the ancilla qubit to obtain state number 3:

|0〉 ⊗ |ψ〉+ |1〉 ⊗ U |ψ〉√
2

→ (|0〉+ |1〉)⊗ |ψ〉
2

+
(|0〉 − |1〉)⊗ U |ψ〉

2
=

=
1

2
[|0〉 ⊗ (|ψ〉+ U |ψ〉) + |1〉 ⊗ (|ψ〉 − U |ψ〉)] =

=
1

2
[|0〉 ⊗ (I + U) |ψ〉+ |1〉 ⊗ (I − U) |ψ〉]

(2.11)

According to the third postulate of quantum mechanics ([24] p. 87), a projective mea-
surement is performed by multiplying the state with the measurement operator and by its
complex conjugate. So, given a measurement operator Mm and a state |ψ〉, the probability
of obtaining m as a measurement outcome is

P (m) = 〈ψ|M †
mMm |ψ〉 (2.12)

Usually, one measures in the computational basis, thus the operators for a one-qubit mea-
surements are M0 = |0〉 〈0| and M1 = |1〉 〈1|. So, when taking measurements of (2.11) with
(2.12), the term multiplying |1〉 naturally drops out when measuring P (0) and vice versa:

P (0) =
1

4
〈ψ| (I + U †)(I + U) |ψ〉 =

1

4
〈ψ| (I + U + U † + U †U) |ψ〉 =

=
1

4
〈ψ| (I + U + U † + I) |ψ〉 =

1

4

[
2 〈ψ|ψ〉+ 〈ψ|U |ψ〉+ 〈ψ|U † |ψ〉

] (2.13)

Because 〈ψ| is a unit vector, 〈ψ|ψ〉 = 1. Moreover, the conjugate transpose has the propriety
(AB)† = B†A† so that (〈ψ|U |ψ〉)† = |ψ〉† U † 〈ψ|† = 〈ψ|U † |ψ〉. Since summing a number
with its complex conjugate yields the real part, the final result is:

P (0) =
1

2
(1 + Re(〈ψ|U |ψ〉) (2.14)

14

In a similar manner, P (1) = 1
2
(1− Re(〈ψ|U |ψ〉), which means

〈ψ|U |ψ〉 = P (0)− P (1) (2.15)

To summarize, the expectation value can be obtained through indirect measurements using
a simple quantum subroutine. However, this routine is easily understood from a theoretical
point of view but it is not as easily implemented: this is due to the controlled U gate, which
acts on n qubits and it is inherently difficult to build.

2.2.5 Classical Optimization

Because a variational quantum algorithm translates a linear system of equations into an
optimization problem, classical optimization is a key step necessary for the success of a vari-
ational algorithm. There is a wide variety of optimization algorithm available: one relevant
criterion to classify them is if they require knowledge about the derivative of the cost func-
tion, or if the optimization problem is constrained or unconstrained.

We define as 0-th order methods those which do not require information about the deriva-
tive of the cost (or objective) function. Examples are Nelder-Mead, Genetic Algorithms,
Particle Swarm ([40] Sections 7.1, 7.2). The obvious advantage of these methods is that they
can be used in problems where the objective function derivative is not known. In principle,
one can compute the gradient of a cost function with finite differences, but the cost asso-
ciated with it increases with the number of dimensions. In general, one could say that the
advantage of these methods is that they can always be applied treating the cost function as
a black box. As a consequence, these methods are extremely versatile and often very robust.
On the other hand, it is generally impossible to guarantee that the optimization approached
a minimum and a stopping criterion has to be set arbitrarily.

On the other hand, one example of a first-order method is a gradient descent algorithm,
when one computes the gradient of the objective function and moves in that direction, hence
the name steepest descent.

Classical Optimization for variational quantum algorithms

According to McClean, because the objective function is stochastic by nature, it is dif-
ficult to use gradient-based methods for its optimization [23]. An additional hurdle for
gradient-based methods is the noise in the objective function that derives from its calcula-
tion. Thus, the author has benchmarked a few gradient-free methods for a computational
chemistry problem: Nelder–Mead, TOMLAB/GLCLUSTER, TOMLAB/LGO, and TOM-
LAB/MULTIMIN [41]. For this test case, TOMOLAB library algorithms were shown to
perform far better. However, the author remarks that these methods need further testing
in larger design spaces, and a tailored algorithm for stochastic objective functions could be

15

beneficial.

Another brief review and performance comparison can be found in [35]. In this case, the
authors compare Powell’s algorithm, Constrained Optimization BY Linear Approximation
(COBYLA), Bound Optimization BY Quadratic Approximation (BOBYQA), Nelder- Mead,
Broyden-Fletcher-Goldfarb-Shanno (BFGS), and conjugate gradient (CG). This review is
more interesting because, in this case, derivative-free methods are compared to gradient-
based ones (BFGS, CG). Powell’s method consists of performing a single variable optimiza-
tion along a search direction per every variable. The direction of the ‘search’ is a linear
combination of the search vectors from the previous steps. For example, consider the case
with two design variables x1, x2. The first two iterations will move α1x1 and α2x2. Then,
the third search direction will be defined by α1x1 + α2x2, and so on. [42]. COBYLA and
BOBYQA are trust-region algorithms [43]. This means that the optimizer builds an approx-
imation of the objective function (often linear or quadratic) which is deemed acceptable only
within a certain region, called the trust region. BFGS is a quasi-Newton method, which
consists of using previous function and gradient evaluation to estimate the Hessian matrix
without the need to compute it ([40] section 6.3).

In the aforementioned study, La Rose et al. found that 0th order methods outperform
the gradient-based ones. This was attributed to the noise in the computation. Moreover,
Powell was found to outperform the other algorithms because it achieved a lower value of
the cost function, whereas COBYLA was the one that required fewer function evaluations
(13 times less than Powell’s) and therefore shorter run time. However, the authors highlight
that the effectiveness of a particular algorithm might be dependent on the ansatz or the type
of problem at hand. Therefore, it is unknown whether these results can be generalized to
other variational algorithms test cases.

The results above seem to be in contrast with [44], where the authors proved that for
some problems gradient descent algorithms (where the gradient can be directly measured)
significantly outperform 0th order methods. On the other hand, this theoretical study does
not take noise into account which likely caused gradient-based methods to fail in [35]. In [28]
and [29] gradient descent was used when solving linear equations with variational algorithms.

2.3 Application of Variational algorithms to Linear equa-

tions

To the best of the author’s knowledge, there are only two instances in literature of variational
algorithms applied to linear equations: Bravo-Prieto et al. [28] and Xu et al. [29]. In
particular, the first was implemented on a quantum computer for a simple test case as well
as a simulator, whereas the latter was tested on a simulator only using the Quantum Exact
Simulation Toolkit (QuEST) package [45]. In both works, the underlying idea is to transform

16

a system of equation into a Hamiltonian whose expectation value is the optimization cost. In
particular, solving a linear system consist in finding x such that Ax = b. When implemented
into a quantum computer, the above becomes A |x〉 = |b〉, where |x〉 = x/||x||. As it was
explained above, the solution or ‘guess’ vector is parametrized according to a vector θ, such
that |x〉 = V (θ) |0〉 (see section 2.2.2). While the error of the solution guess, which is
the distance of |x〉 with respect to |x0〉 cannot be directly measured, one can measure the
projection of A |x〉 = |ψ〉 on the subspace orthogonal to |b〉. If the projection is 0, then A |x〉
is linearly dependent on |b〉, which means |x〉 is the solution. Thus, the cost function is set
up as

Ĉ(θ) = Tr
(
A |x〉 〈x|A†(I − |b〉 〈b|)

)
= Tr(|ψ〉 〈ψ| (I − |b〉 〈b|)) (2.16)

moreover, because the trace is invariant under cyclic permutations Tr(ABC) = Tr(BCA) 6=
Tr(ACB)

Ĉ(θ) = Tr
(
〈x|A†(I − |b〉 〈b|)A |x〉

)
= 〈x|H |x〉 (2.17)

where H = A†(I − |b〉 〈b|)A. One further remark is that the cost could be low also when
A |x〉 is small, which is not desirable since the objective is to find when A |x〉 is orthogonal
to (I − |b〉 〈b|). Thus, it is useful to normalize the cost function starting from (2.17) and
|ψ〉 = A |x〉:

C(θ) =
Ĉ(θ)

〈ψ|ψ〉
=
〈ψ| (I − |b〉 〈b|) |ψ〉

〈ψ|ψ〉
=
〈ψ|ψ〉 − 〈ψ|b〉 〈b|ψ〉

〈ψ|ψ〉
= 1− | 〈b|ψ〉 |

2

〈ψ|ψ〉
(2.18)

Variational Quantum Linear Solver

The Variational Quantum Linear Solver is a hybrid quantum algorithm developed by
Bravo-Prieto et al. to use the techniques from variational quantum computing and use them
to solve linear systems of equations. On a high level, the workflow of this algorithm is similar
to any variational algorithm as explained in Section 2.2.1.

The authors tested the algorithm using both a hardware efficient ansatz and a Quantum
Alternating Operator Ansatz (QAOA) [45]. QAOA evolves the initial superposition state
H⊗n |0〉 using two Hamiltonians which are applied alternatively. The two Hamiltonians are
usually called driver (HD) and mixer (HM): the authors chose HD = A†(I − |b〉 〈b|)A and
HM =

∏n
i=1 Xi were Xi is the Pauli X gate on the ith qubit. The time evolution is obtained

by exponentiating the Hamiltonians which yields a unitary operator UM(θj) = e−iHMθj .
Thus, the state preparation sequence is obtained alternating the unitary operators:

V (θ) = e−iHMθ2pe−iHDθ2p−1 . . . e−iHMθ2e−iHDθ1 (2.19)

to handle to problem of the vanishing gradient (see Section 2.2.3), a local cost function CL
can also be introduced, as

CL =
〈x|HL |x〉
〈ψ|ψ〉

(2.20)

17

where

HL = A†U

(
I− 1

n

n∑
j=1

|0j〉 〈0j| ⊗ Ij̄

)
U †A (2.21)

and |0j〉 is the 0th state on the jth qubit and Ij̄ is the identity on all the others qubits.
U is the unitary that prepares the state |b〉 = U |0〉. Because one can show that CL ≤ C,
CL = 0↔ C = 0, CL is a valid cost function.

As shown in equation (2.18), to estimate the cost it is necessary to compute 〈ψ|ψ〉.
Assuming A is Hermitian (it is always possible to transform it into an Hermitian by cre-

ating

[
0 A
A† 0

]
), one can decompose it into the linear combination of unitary matrices

A =
∑L

l=1 clAl, where Al themselves can be expressed using quantum gates. Thus,

〈ψ|ψ〉 = 〈0|V †A†AV |0〉 =
N∑
l=1

N∑
l′=1

clc
∗
l′ 〈0|V †A

†
l′AlV |0〉 (2.22)

which means that L(L− 1)/2 terms need to be evaluated. Equation (2.22) can be evaluated
with an Hadamard test. To successfully compute equation (2.18), one also needs:

| 〈b|ψ〉 |2 = | 〈0|U †AV |0〉 |2 =
L∑
l=1

L∑
l′=1

clc
∗
l′ 〈0|U †AlV |0〉 〈0|V †A

†
l′U |0〉 (2.23)

for this, one can use the Hadamard test, or the Hadamard overlap test, that implies using
double the amount of qubits but requires less connectivity because it is not necessary to
apply a controlled V and U (see [28] for more details). In a similar way, the cost of the local
cost function is estimated as:

CL =
L∑
l=1

L∑
l′=1

clc
∗
l′ 〈0|V †A

†
l′U(|0j〉 〈0j| ⊗ Ij̄)U †AlV |0〉 (2.24)

and can be measured through Hadamard or Hadamard overlap test. Because of the heuristics
component of this algorithm, it is not possible to derive a theoretical runtime bound, but
rather a heuristic one. The metric chosen by the author is the run per success, which are
the iteration necessary to achieve the required tolerance. When using a Hardware efficient
ansatz, the algorithm seems to be scaling linearly and sub-linearly in κ and ε. On the other
hand with QAOA the scaling is sub-exponential in κ and logarithmic in 1/ε.

18

Chapter 3

Pre-processing and feasibility of
VQLS

The Variational Quantum Linear solver (VQLS) is the quantum algorithms chosen for prac-
tical implementation attempts for two main reasons: the promise of a short term practical
implementation and the possibility of obtaining a full solution of the linear system. The
main hurdles of practical implementations of this algorithm are preparing the solution state
efficiently using an ansatz, decomposing the linear system matrix into a linear combination
of unitaries, and efficiently preparing the right-hand side vector |b〉.

In particular, this chapter focuses on the decomposition of the linear system matrix
and contains a methodology explanation, decomposition results for different discretization
schemes and a study of the shot noise. Section 3.1 introduces the concept of unitary decom-
position and a general methodology to decompose a matrix given an set of quantum logic
gates forming a basis. Then, Section 3.2 shows decomposition result for first order finite
element discretization in different bases, listing number of terms and exact gate sequences,
including generalization to higher dimension. Section 3.3 explains why higher order dis-
cretizations could be beneficial and are worth pursuing. Section 3.4 extends the analysis by
looking at the decomposition in unitaries of a hybrid finite element discretization matrix.
Finally Section 3.5 provides analytical and numerical estimation of the noise in cost function
evaluation due to finite sampling of a quantum circuit.

3.1 Introduction to matrix decomposition

One way to apply quantum computing to differential equations is to look for discretization
schemes whose resultant matrix A can be efficiently decomposed, and then use VQLS to
tackle those linear systems. In general, all operations on a quantum computer must be
unitary and any matrix A can be represented as a linear combination of unitary matrices.
Therefore, to input a linear system in a quantum computer one just needs to find those
unitaries and the combination of gates corresponding to them.

19

As a direct consequence, given n qubits, only linear systems of size N = 2n can be solved
with this approach. Moreover, this implies overall runtime and efficiency of the VQLS is
tightly related to the number of terms that make up the decomposition of the matrix A.
In particular, as shown in (2.22) and (2.23), each equation requires at least L(L − 1)/2
distinct quantum circuits evaluations, where L is the number of unitaries in A =

∑L
l=1 clAl.

Therefore, if L is exponential in n, it would most likely compromise the quantum advantage,
since at every step of the minimization one has to run an exponential number of distinct
circuits. (see Section 3.2 for more details)

Method

Decomposing an arbitrary matrix into a linear combination of unitaries is somewhat con-
ceptually similar to decomposing a vector along a basis using Gram–Schmidt. In that case,
one chooses a linearly independent set of vectors and projects a vector along each of these
directions. Similarly, a set of unitaries that covers the entire space spanned by a matrix of
dimension N×N is necessary to perform the decomposition. Naturally, a basis for this space
must have N2 unitaries, each corresponding to a “degree of freedom” of the matrix that has
to be decomposed.

In principle, any set of orthogonal unitaries is suitable as a basis. However, a natural
choice is to use Pauli matrices. Although these are not necessarily hardware-native gates,
they are widely used and recognized. Moreover, these gates can be readily inputted in sev-
eral providers hardware (either because a built-in decomposition exists or they are native),
whereas hardware-native gates often depend on the hardware provider. For example, native
gates for ibmq athens are CNOT, Rz,

√
X, X [46].

For a 2 × 2 matrix, Pauli gates (X, Y , Z) and the identity I form a complete set.
These matrices are unitary, and one can easily prove that they are orthogonal by verifying
the products Tr

(
XY †

)
= Tr(XY) = 0. For all other 2n × 2n matrices, all the possible

combinations of tensor product of the four gates mentioned above form a basis so that any
matrix A is decomposed as:

A =
∑

j1,j2,...,jn

hj1j2...jn · σj1 ⊗ σj2 ⊗ ...⊗ σjn (3.1)

where

hj1j2...jn =
1

2n
Tr
(
(σj1 ⊗ σj2 ⊗ ...⊗ σjn)A

)
. (3.2)

Because the initial set has four matrices, all possible combinations of tensor products will
have 4n = N2 orthogonal matrices, which is enough to form a basis.

It is worth mentioning that, although this decomposition method is helpful for case study
implementations of a matrix, in practical applications, this decomposition quickly becomes

20

costly, so that it is probably more expensive than solving the linear system classically. The
main reason is that a decomposition requires taking N2 tensor products operations, matrix
products, and trace calculation. Based on these considerations, most likely, any practical
implementation of a variational linear solver will require a priori knowledge of the decompo-
sition of a matrix in a set of unitaries.

3.2 First order finite element discretization matrix de-

composition

This section is dedicated to decomposing a first-order finite element discretization matrix of
a one dimensional Laplacian. This numerical scheme was chosen as a test case because of its
simplicity and wide applicability. Firstly, the matrix is decomposed in the Pauli gates basis
and a pattern that allows predetermining its decomposition without expensive calculations
is explained. Secondly, a more efficient decomposition using multi-qubit gates is introduced.
The Laplacian operator with Dirichlet boundary conditions is discretized as:

L =



2 −1 0 . . .
−1 2 −1 0 . . .
0 −1 2 −1
...

.

−1 2 −1
0 0 0 . . . −1 2


(3.3)

3.2.1 Decomposition in Pauli Basis

For N = 4, it is trivial to compute L = 2II − 1IX − 0.5XX − 0.5Y Y , where I is the
identity X, Y, Z are Pauli gates, and the tensor product sign between the matrices is omitted
for a more concise notation. In a similar way, for N = 8, L = 2III − 1IIX − 0.5IXX −
0.25XXX−0.25Y Y X−0.25Y XY −0.5IY Y +0.25XY Y . Figure 3.1 illustrates these results

21

I I I I

I I I I I I X

I I I I X I I X X

I I X I X X I X X X

X X X X X X X X X X

Y Y Y Y X Y Y X X

Y X Y Y X Y X

I Y Y I Y Y X

X Y Y X Y Y X

Y X X Y

I Y X Y

X Y X Y

I I Y Y

I X Y Y

X X Y Y

Y Y Y Y

N=2 N=4 N=8 N=16

Figure 3.1: Illustration of the sequence of Pauli gates (without coefficients) that results in
the operator of (3.3). For every N , each row is a tensor product of the gates listed and the
overall matrix is obtained by linear combination of the rows unitaries. Every gate instruction
can be created in a recursive manner starting from the previous.

It is noteworthy that in this basis the number of unitaries forming the decom-
position is exponential in the number of qubits, and more precisely, it is exactly N .
This was verified numerically up the computational power available (N = 1024), but because
(3.3) is kept unchanged in its structure and just increased in size, it is reasonable to expect
this result to hold for any size.

Moreover, as illustrated in Figure 3.1 it is possible to find a pattern: a sequence of Pauli
is recursively assembled starting from N = 2. More precisely, every new power of 2 is formed
by adding a row of identities, multiplying the previous power by the X matrix (to the right),
then the 2n−2 sequence by Y ⊗Y , the 2n−3 by Y ⊗X⊗Y , all the way to Y ⊗X⊗ ...⊗X⊗Y .
So in the example above, N = 16 is formed multiplying N = 8 by X, N = 4 by Y ⊗ Y ,
N = 2 by by Y ⊗X ⊗ Y and N = 1 (which degenerates from a matrix to just a coefficient)
by Y ⊗X ⊗X ⊗ Y . Naturally, also the coefficients multiplying the sequence of Pauli gates
follow the same pattern so that the resultant decomposition formula is:

Dn = 2I +
1

2
(Dn−1 − 4In−1)⊗X −

n−2∑
k=0

1

2k+2
Dn−2−k ⊗ Y

k⊗
X ⊗ Y (3.4)

where Y
⊗kX ⊗ Y means Y ⊗X ⊗X...⊗X ⊗ Y with X products repeated k times.

22

In principle, because the conjugate gradient method can solve sparse linear systems in
O(Nsκ), using Paulis as a basis implies that VQLS cannot meaningfully outperform a clas-
sical algorithm in this setting. As mentioned above, every cost function evaluation in VQLS
takes at least 2L(L − 1) ≈ O(L2), where L is the number of unitaries decomposing A. In
this case, this would mean every function evaluation of the optimization procedure requires
O(N2) distinct circuit evaluations. Although a possible quantum advantage would depend
on the speed of the iteration itself and the optimization procedure, it is clear that this ex-
ponential scaling of unitaries is a significant hurdle.

However, these results are problem-specific and only valid for this decomposition ob-
tained using Pauli matrices and are not representative of the overall efficiency of VQLS.
For example, using another basis might generate a more efficient decomposition, or other
discretization schemes might yield more suitable matrices. Moreover, the discretization ma-
trix changes for higher-dimensional problems and could be better suited for this application.
Finally, it is worth investigating whether it is possible to neglect the smallest terms of this
decomposition without significantly impacting the accuracy of the calculations.

Magnitude of coefficients and possibility of neglecting them

Figure 3.2a shows the occurrence of different coefficient values for the decomposition
mentioned above. The most numerous bucked (with N/2 or 2n−1 coefficients) is the one
corresponding to the lowest coefficient value: 1/2n−1. This implies that the smallest terms
of the decomposition are also the most frequent and become increasingly smaller for larger
matrices. For example for N ≈ 106 the smallest term is 2−19 ≈ 2 · 10−6. In principle, one
might think that this would make these terms negligible, effectively making the decompo-
sition N/2 instead of N terms and thus more efficient. However, this is not necessarily
the case: although each term might be negligible, to understand their weight, one should
compute their cumulative value, i.e. the product of the value of a single term times its
occurrence. Because every bucket of value 1/2i has exactly 2i terms, the result is that the
sum of the absolute value of all the contributions of every bucket will always sum to 1, which
means they all are equally important.

23

Occurences of coefficient values in the decomposition for N=64

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Values

0

5

10

15

20

25

30

35
O

cc
ur

en
ce

s

(a) List of occurrences of the absolute value of
the coefficient for n = 6. The numbers 1 and
2 occur just one time and are not displayed for
ease of illustration. In general, all the coeffi-
cients are 1/2i where i are integers i < n. A
coefficient of value 1/2i occurs 2i times.

100 102 104 106

Size of the matrix decomposed

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
um

ul
at

iv
e

of
 lo

w
es

t /
 T

ot
al

 c
um

ul
at

iv
e

Fraction of coefficient values represtented by the lowest N/2 terms

(b) The cumulative values of the bottom N/2
coefficients of the decomposition (represented by
the leftmost bar in figure 3.2a) are plotted as a
fraction of the cumulative value of all the coeffi-
cients forming the decomposition.

Figure 3.2

In this framework, to measure for the weight of the smallest values with respect to the
overall system it is necessary to compute the ration

∑N2

i=1 |c
(min)
i |/

∑N
i=1 |ci|, where |c(min)

i |
are the smallest coefficients (in absolute value) of the set ci. Figure 3.2b shows the afore-
mentioned ration as a function of the system size N . Although the weight of the smallest
coefficients decreases with the system size, it is still about 4% for extensive systems such as
N = 106. Note that this is not the error one commits on the solution of the final system,
rather just in the representation of the matrix.

Assuming the aforementioned error is acceptable, to evaluate what would happen if one
neglects the bottom N/2 altogether it is interesting to look at the sparsisty plot of the
resultant matrix, represented in Figure 3.3.

24

0 5 10 15

nz = 44

0

2

4

6

8

10

12

14

16

Sparsity plot obtained when neglecting the smalles N/2 for N=16

Figure 3.3: Sparsity plot of L if the smallest N/2 terms are neglected

As shown in Fig. 3.3 the N/2 smallest terms are responsible for implementing the entries
AN/2,N/2+1 and AN/2+1,N/2 in the minor diagonal, and neglecting would result in two uncou-
pled systems.

To summarize, this analysis suggests a limited possibility of improvements in efficiency
by neglecting the smallest term of the matrix decomposition.

3.2.2 Decomposition with high entanglement

As introduced above, Pauli matrices are among the most straightforward bases one can
employ because they do not include controlled gates or multi-controlled gates. Such de-
compositions are better suited for near-term quantum computers because they pose less
stringent connectivity and noise requirements. However, for the sake of completeness but
also to evaluate possibilities on future hardware, it is interesting to look at more advanced
decompositions of the tridiagonal matrix in (3.3). In [3], the author proposed a decomposi-
tion routine partially based on [47] for the Hamiltonian simulation of a tridiagonal matrix.
The same method is adapted here for variational algorithms.

First, it is necessary to introduce the notion of a graph, which is a pair G = (V,E) where
V = {v1, ..., vn} is a set of vertices and E are pair of vertices E = {(v1, v2), ..., (vn−1, vn)},
simply called edges. Given a graph with a set of vertices V = {v1, ..., vn}, an adjacent matrix
A is a symmetric matrix whose entries are:

aij =

{
1 if (vi, vj) ∈ E
0 otherwise.

(3.5)

25

Essentially, A is non-zero only at the position i, j that have a corresponding (vi, vj) entry in
the edges set. Naturally, every symmetric matrix of zeros and ones which is null along the
main diagonal can be considered an adjacent matrix of a specific graph. In this case, the
vertices of the graph are also the row or column indices equivalently. Alternatively, one can
pick a matrix to decompose and find the graph associated with it.

By definition, every couple of matrix elements within the same row or column connects
to the same vertex. To proceed with the decomposition, one can employ a graph colouring
rule, which consists of labelling graph edges following a specific logic. In this case, we choose
that all the edges sharing a vertex must have a different colour. As explained above, all
matrix entries with the same colour or row will share a vertex, which means this rule allows
to group all those entries that do not have the same column index. Now, every group of
edges with the same colour forms a different matrix of the decomposition set.

The power of this rule is that it ensures that for every matrix of the decomposition, all the
rows and columns that are not the zero vector will be linearly independent and with norm
one because they are 1-sparse always at “different locations”. To ensure full rank, we can
add a 1 in the main diagonal in correspondence of the null rows. Thus, we obtain matrices
with orthonormal rows, which implies they are unitary and form a proper gate decomposition.

When applied to (3.3), this procedure results in:

L = 2IN − L1 − L2 = 2IN −



0 1
1 0

. . .
. . .

0 1
1 0


−



0
0 1
1 0

.

0 1
1 0

0


(3.6)

In this decomposition, L1 is trivial to implement because it is block-diagonal. In particular,
it is formed by the repetition of the X Pauli matrix along the main diagonal:

L1 = I2n−1 ⊗X (3.7)

which means the circuit that implements it is just an Pauli X on the first qubit (rightmost
in the tensor product). On the other hand, L2 cannot be directly implemented because it is
not unitary: this is easily verified since one propriety of a unitary matrix is that all rows are
linearly independent, and in this case, the first and last row are null. Thus, the suggested
modification is to add a 1 in positions (1, 1) and (N,N). For this point, in the text, L2 will
refer to the modified version just mentioned. For a 4× 4 matrix, its implementation is easy

26

and corresponds to the swap matrix

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.8)

=

Figure 3.4: Implementation of L2 for N = 4

However, for higher dimensions more complex routines are necessary. In general, the
procedure of flipping the central element as in (3.4) for an arbitrary matrix size 2i is equivalent
of devising a gate that flips the binary registers:

011...1→ 100...0 (3.9)

(where the leftmost bit is the most significant one). To do so, one needs to flip all the qubits
if the most significant is 0, which corresponds to the chain of nCNOT in Figure 3.5, so that
01...1 → 00...0. Then, the most significant bit is flipped if and only if all the others are
0, which corresponds to the multi controlled gate in the middle of Figure 3.5, and results
in 00...0 → 10...0. In this case, the following chain of gates does not affect the statevector
because the control is now 1.

For any other state that is not 011...1, 100...0, it is trivial to prove this gate accounts to
identity: if the first bit is 0, but the others are not all 1, the multi controlled nCNOT will
not be applied, and the two sets of nCNOT will reduce to identity. If the first qubit is 1 and
the others are not all 0, no gate is active.

...
...

. . .

Figure 3.5: Detailed circuit representation of Cn−1

27

To implement all the other diagonal terms, Vazquez [3], who devised a similar unitary,
suggests arranging this gate along the diagonal as illustrated in Figure 3.6.

. . .

C1

C2

Cn−1

Figure 3.6: Circuit implementation of L2 [3]

In this structure, every block flips some elements along the diagonal. In particular, C1

and n− 2 adjacent empty wires is equivalent to In−2 ⊗ SWAP, which means SWAP is iden-
tically repeated along the diagonal and effectively ‘flips’ every other pair. The functioning
of the other block is similar: Every Ci ‘flips’ progressively less pairs until Cn−1 that is re-
sponsible for the elements in the minor diagonal (2n−1, 2n−1 + 1) and (2n−1 + 1, 2n−1) only.
Note that these are the same entries requiring the sum of 2n−1 distinct unitaries when using
Pauli as a base.

For example, for n = 3, applying C1 and C2 separately yields

C1 =



1
0 1
1 0

1
1

0 1
1 0

1


and C2 =



1
1

1
0 1
1 0

1
1

1


(3.10)

and their joint application is L2. Note that, as was already mentioned, L2 has one unwanted
non-zero term at positions (1, 1) and (N,N), which is necessary to guarantee it is a valid
unitary (full rank). However, this implies (3.6) would not be satifyied unless an additional

28

term is added to correct it. This is done via the unitaries

L3 =


1 0
0 1

. . .

1
−1

 , L4 =


−1 0
0 1

. . .

1
1

 (3.11)

so that

IN −
1

2
(L3 + L4) =


1 0
0 0

. . .

0
1

 (3.12)

The circuits that implement L3 and L4 are relatively straightforward and correspond to:

...

Z

(a) Circuit implementation of L3. It requires a
Z on the most relevant qubit controlled on all
other qubits (n− 1 times).

...

X Z X

(b) Circuit implementation of L4. It requires a
Z on the least relevant qubit controlled on all
other qubits (n− 1 times)

Figure 3.7

Moreover, these gates are a powerful and straightforward way of changing the boundary
conditions as they can arbitrarily change the (1, 1) and (N,N) elements.

Therefore, the resultant equation for (3.3) is:

L = 3I − L1 − L2 −
1

2
(L3 + L4) (3.13)

which implies that it is possible to express (3.3) efficiently as a linear combination of only 5
unitaries for any n. It directly follows that VQLS could be efficient when solving for a one-
dimensional Poisson equation, in line with Bravo-Prieto et al. claim [28] (based on [47]) that
every q-sparse (at most q non-null row entries) Hamiltonian has an efficient implementation.

29

However, it is important to mention that, although this decomposition would greatly
increase the efficiency of VQLS, it goes against its raison d’etre because it requires intercon-
nectivity between qubits and relatively deep circuits. In particular, every Ci requires 2i+ 1
gates, so in total L2 requires

n−1∑
i=1

2i+ 1 = n2 − 1

which is still polynomial in the number of qubits. On the other hand, a system of 10 qubits
would already have a gate count of 99 for this unitary, which could be a problem because
of noise in real hardware. Moreover, this gate count neglects that in real hardware, multi-
controlled gates need to be decomposed, which increases the gate count even further. In par-
ticular, a decomposition for CnNOT requires (12n−10)CNOT+(20n−16){one qubit gate}
and (n− 1){ancilla qubits} [3, 24], which adds a significant overhead both in terms of gates
count but also connectivity requirements.

Following the logic of variational approaches, one could decompose the circuit of Figure
3.6 in a separate block whose linear combination still yields L2. This would require more
terms (hence a less efficient algorithm) but could make the implementation easier because
the decomposed gate sequence will at most be 2n− 1 long instead of n2 − 1, a considerable
improvement. The sum of those unitaries yields:

n−1∑
i=1

Ci =



(n− 1)
(n− 2) 1

1 (n− 2)

. . .

(n− 2) 1
1 (n− 2)

(n− 1)


. (3.14)

This is because, as explained above, every matrix is responsible for ‘flipping a different pair’
(3.10), which means that every unitary will have a 1 along the main diagonal at all other
‘non-flipped’ locations. Since there are n − 1 unitaries, this results in a n − 2 along the
diagonal and a n− 1 at (1, 1), (2n, 2n) where all unitaries are equal to 1. Then

L2 =
n−1∑
i=1

Ci − (n− 2)I (3.15)

and renaming Ci = L2,i yields a new decomposition of L

L = (n+ 1)I − L1 −
n−1∑
i=1

L2,i −
1

2
(L3 + L4) (3.16)

30

where the decomposition accounts to a total of n + 3 terms, which is still polynomial in n,
hence efficient.

In conclusion, it is possible to efficiently decompose L in only n+ 3 distinct terms, how-
ever, this requires a deep circuit, up to a total (14n−12)CNOT + 24(n−1){one qubit gate}
for Li. Moreover, a complete implementation of VQLS requires two Li in the same circuit, the
ansatz and |b〉, which sum up to an even deeper circuit. In addition to depth requirements,
this implementation also requires n ancillas and high qubit interconnectivity. Therefore, it
is deemed unlikely that such implementation will be possible in the short term.

As a reference, Figure 3.8 compares the circuit depth for VQLS using the aforementioned
unitaries and HHL. Although gate count for VQLS seems to scale exponentially, this test case
was run using Qiskit built-in transpiler, which probably does not make use of the routine
in [24] (Section 4.3) to efficiently transpile the CnNOT gates. Nonetheless, the obtained
circuit is still approximately four times shallower than HHL for the same test case. Because
compared to HHL a variational algorithm requires many iterations to convergence, such a
depth is hardly justifiable which suggests the use of ancillary qubits in the decomposition
will be necessary.

4 6 8 10 12 14 16
N

0

10000

20000

30000

40000

50000

60000

70000

80000

Ga
te

 c
ou

nt

VQLS Gate Count
HHL Gate Count

Figure 3.8: Depth requirement comparison of HHL [4] (section 4.1.1) and VQLS as imple-
mented by the Qiskit compiler. VQLS is measured in the worst-case scenario (i.e. with
the deepest of the unitaries applied). Circuits were transpiled based on Ibmq 16 Melbourne
layout, qiskit version 0.26.2, and default transpiling optimization level 1 (light optimization)

3.2.3 Generalization to higher dimensions

An interesting propriety of a higher dimension discrete Laplacian operator with Dirichlet
boundary conditions is that it can be obtained starting from a one-dimensional discretization

31

matrix and using what is commonly known as Kroner sum. In particular, a two dimensional
Laplacian with Dirichlet Boundary conditions can be computed as:

L(2) = Dxx ⊕Dyy = Dxx ⊗ I + I ⊗Dyy (3.17)

similarly,

L(3) = Dxx ⊕Dyy ⊕Dzz = Dxx ⊗ I ⊗ I + I ⊗Dyy ⊗ I + I ⊗ I ⊗Dzz (3.18)

where Dxx, Dyy, Dzz stands for the one-dimensional discrete Laplacian along the x, y, z
axes whereas I is identity matrix of appropriate size (e.g. same size of Dxx when multiplied
to Dyy and vice versa). This result is interesting because it implies that the efficiency of
unitary decompositions increases with the increase in the number of dimensions. As shown
before, a one-dimensional matrix requires N terms for its decomposition in a Pauli Base,
whereas according to equations (3.17, 3.18) a 2D and 3D Laplacians will have respectively
2N and 3N terms with matrices size of N2 and N3. In other words, if by N we refer to
the size of the resultant matrices, than L(2) requires 2

√
N unitaries, whereas L(3) requires

3 3
√
N . This decomposition is valid for an arbitrary number of dimensions, and it becomes

progressively more efficient when increasing the dimension numbers. Possibly, VQLS could
find applications for problems where a Laplacian is discretized in a large number of dimen-
sions.

Because with VQLS each cost of one function evaluation using Pauli basis requires O(L2)
circuits, a two dimensional case will require a total of O(N) circuits, whereas a L(3) will

require O
(

3
√
N2
)

. Similarly a k-dimensional problem requires O
(

k
√
N2
)

, which is sub-

exponential and potentially advantageous. Finally, it is necessary to remark that solving a
system with VQLS requires this amount of function evaluation per every step of the opti-
mization problem, which will add a significant overhead to the total cost.

In conclusion, although solving for a higher number of dimensions results in more efficient
decompositions, using Pauli as a base, the number of terms is sub-exponential and not
polynomial in n. On the other hand, this generalization is also valid for higher entanglement
basis to add a helpful generalization feature to an already efficient decomposition. Thus, it
is still an open question whether this can provide any advantage, which would depend on
the efficiency of the ansatz and the ease of optimization.

3.3 Generalization to higher order finite element schemes

Provided the problem is sufficiently smooth, finite element methods allow for higher-order
basis functions than the linear discussed in the previous chapter. Roughly speaking, higher-
order methods generate less sparse discretization matrices, and therefore harder to solve
efficiently. However, this is not necessarily true for the variational quantum linear solver.
Section 4.2 shows that as problem dimensionality rises (larger N) so does the difficulty in

32

obtaining a meaningful solution. Therefore, it interesting to investigate decomposition for
higher-order basis functions and evaluate whether those can lead to better results.

Assuming an exponentially deep ansatz is necessary to obtain a precise solution, the cost
of a variational solver will be ∝ kNm · hL2, where k,m, h are problem dependent constant
and L is the number of terms in the decomposition of A. Therefore, based on these coeffi-
cients, there could be a tangible advantage in higher-order methods, which (with comparable
precision) could potentially decrease N while increasing L (fuller matrices generally require
more terms to be decomposed).

3.4 Hybrid finite element method

While the previous section is dedicated to understanding the most efficient decomposition
technique given a specific discretization matrix, the focus is shifted towards the matrix in this
section. In particular, the hybrid finite element discretization matrix is analyzed similarly
to the first-order matrix from the previous chapter to understand if this numerical technique
is more suitable for a quantum computing implementation.

Hybrid formulations allow dividing the domain into several interlinked smaller systems of
equations so that one can solve many local systems instead of a large one [48]. In particular,
these subdomains connect by local variables that ensures continuity, often called Lagrange
multipliers. Thus, if one solves for the Lagrange multipliers, the result is a set of indepen-
dent linear systems where the Lagrange multiplier acts as a boundary condition for the local
system. In the framework of spectral element methods, the proprieties of a local system are
determined by the polynomial degree chosen to approximate that element of the domain.

In the simplest case, one can solve Poisson’s equations on a one-dimensional domain
divided in K non-overlapping uniform elements of size h = b−a

K
. Using linear basis functions

results in the following matrices for one local domain:

M =
h

6

[
2 1
1 2

]
, E =

[
−1 1

]
(3.19)

The resultant discretization of a local domain is therefore obtained as :

Ak =

[
M ET

E 0

]
=

h/3 h/6 −1
h/6 h/3 1
−1 1 0

 (3.20)

33

Then, one assembles these K local systems in a block diagonal matrix to obtain:

A =



M1 ET

E 0
M2 ET

E 0
.
.

MK ET

E 0


(3.21)

Because the matrix A is block-diagonal, the K local systems are not connected by any equa-
tions, and if one solves this system, it is not possible to guarantee a continuous solution, but
only disjoint local solutions. Thus, we introduce the connectivity matrix, which substan-
tially contains the equation connecting the elements. In this example, one needs to ensure
the right velocity component of one sub-domain is equal to the leftmost of the adjacent one.
In other words, if the unknowns of an element are u1, u2, and p, then u2,K−1−u1,K = 0. For
example, for K = 2 two points are connecting the three elements, which results in

EN =

[
0 1 0 −1 0 0 0 0 0
0 0 0 0 1 0 −1 0 0

]
(3.22)

Thus, the final system is assembled as:[
A EN

T

EN 0

] [
X
λ

]
=

[
F
0

]
(3.23)

where X is the unknowns vector, λ contains the variables connecting the elements (Lagrange
multipliers), and F is just the right-hand side of the system with the known terms.

Naturally, the first question is whether this matrix has an efficient decomposition in the
Pauli basis. When using a first-order discretization, each block has dimension 3, which means
the resultant matrix is always 3K + K − 1 = 4k − 1 in size, which by definition is never a
multiple of 2. On the other hand, only matrices of size N = 2n can be decomposed with the
mentioned method. Therefore, to match the necessary matrix size, the proposed solution
was to add rows of dummy variables where the matrix has ones along the identity to reach
the closest power of 2 and 0 on the right-hand side.

34

0 50 100 150 200 250 300

Linear system size (excluding dummy variables)

0

5

10

15

20

25

30

35

N
um

be
r

of
 te

rm
s/

N

(a) Number of terms of the decomposition di-
vided by matrix size N generated by this dis-
cretization in the Pauli basis.

0 10 20 30 40 50 60

nz = 181

0

10

20

30

40

50

60

(b) Sparsity plot of the resultant matrix
of this discretization scheme.

Figure 3.9: Number of decomposition terms and sparsity plot for hybrid finite element
method on a one dimensional domain and linear basis functions

This initial assessment suggests that when decomposing this discretization matrix in the
Pauli basis, the result has an exponential number of terms, hence inefficient. Moreover,
as shown in Figure 3.9a, the number of terms is not a fixed multiple of the system size,
nor seems to follow a discernible pattern, which implies the a-priori determination of its
decomposition in Pauli is challenging to obtain. Possibly, this oscillating behaviour can be
explained by the fact that the matrix is not self-identical: as system size grows, one has to
add a different amount of dummy variables to match the closest power of 2.

Interestingly, in the global system above one can solve directly for the vector of the
Lagrange multipliers as

λ = (ENA−1EN
T)−1(ENA−1F). (3.24)

The advantage of this decomposition is that it allows to parallelize and solve the problem
efficiently. Firstly, A is block-diagonal, which means it can be easily inverted, and secondly,
once (3.24) is solved, one only needs to solve smaller and decoupled local systems to get the
final solution. Once again, it is interesting to look at the shape and possible decompositions
of ENA−1EN

T to investigate possible speed-ups using quantum algorithms. For this specific
case and discretization, the result of this product is precisely the matrix already the same
of (3.3), which is a second-order finite difference discretization of Poisson.

In conclusion, in these settings hybrid finite element method underperforms first order
finite element method when decomposed in the Pauli basis, with respectively ∝ N2 and
∝ N unitaries. Given the exponential number of terms in this decomposition, this numerical

35

scheme does not seem to be compatible with VQLS and it is unlikely it could lead to any
advantage with respect to classical methods. Future works could extend the validity of this
analysis to different unitary bases and higher order basis functions to asses the performance
of this method more comprehensively.

3.5 Accuracy on the function evaluation

One of the building blocks of variational algorithms is the classical optimization procedure
in between successive cost function evaluations of the quantum circuit. Optimizing entails
several challenges, for example, the ‘curse of dimensionality’, which means optimizing gets
progressively more troublesome in higher dimensions and the noise in the objective function
evaluation.

In particular, the latter has two primary sources: errors stemming from the execution
on physical hardware and errors due to finite sampling of circuit output. Imperfections in
logical operations on current hardware cause the first, whereas the second derives from the
fact that the result of a quantum circuit is always probabilistic, and its accuracy depends on
how many times one samples the circuit (number of shots). Note that this has nothing to
do with hardware, and it is an intrinsic propriety of the functioning of quantum algorithms.
Thus, one could ask what is an appropriate number of runs for a quantum circuit, assuming
no hardware-related noise.

For simplicity and without loss of generality, assume that we want to measure a single
qubit. After Nr runs, the raw output is just a sequence of 0s and 1s, and their average
is what one is generally seeking. Clearly, it is just s/Nr where s denotes the amount of 1
obtained, whereas f will denote the total number of 0s. However, one might be interested
in other properties, such as the degree of confidence in this solution. In other words, the
probability density function given a set of data (s, f), which is a perfect application of Bayes
theorem [49]:

P (p | (s, f)) =
P ((s, f) | p)P (p)

P (s, f)
. (3.25)

Here P (p | (s, f)) denotes the conditional probability, or the probability of p given that (s, f)
happened. P (s, f) is trivially obtained as the probability of measuring 1 s times (which is
ps), multiplied the probability of measuring 0 f times for all possible combinations.

P ((s, f) | p) =

(
s+ f

s

)
ps(1− p)f . (3.26)

Because there is no preferential value of p (i.e 0 and 1 are equally probable without
considering the dataset) we assume a constant priori distribution which yields P (p) = 1.
On the other hand, P (s, f) is just the probability of obtaining that data set, regardless of a
specific probability. This is computed as the integral of all possible probabilities times their

36

conditioned probabilities∫ 1

0

P ((s, f) | t)P (t)dt =

∫ 1

0

P ((s, f) | t)dt (3.27)

where the latter simplification is because above we assumed P (p) = 1 ∀ p. Plugging in
(3.25), (3.26) yields ∫ 1

0

P ((s, f) | t)dt =

∫ 1

0

(
s+ f

s

)
ts(1− t)fdt (3.28)

and simplifying the binomial:

P (p | (s, f)) =
ps(1− p)f∫ 1

0
ts(1− t)fdt

. (3.29)

Note that the above is simply the beta distribution with (α, β) = (s + 1, f + 1). Thus, one
can express its variance as a function of sample average and size [50]

Var(X) =
µ(1− µ)

1 +Nr

. (3.30)

Variance is maximized when µ = 1/2 and thus this can be considered the worst case scenario.
Then, the standard deviation for a large number of shots and in worst case scenario is

σ =
1

4
√

1 +Nr

≈ 1

4
√
Nr

. (3.31)

This result indicates that when running a quantum circuit the standard deviation of the
probability distribution that encodes the solution varies with the inverse square root of the
number of shots. For example, if one wants to evaluate the cost function with a precision
ε, a fair assumption would be that 2σ on the probability distribution is smaller than the
requested precision, yielding

Nr ≥
1

2ε2
. (3.32)

Note that a less arbitrary threshold can be set by computing the cumulative β distribution
and solving numerically to find the exact number of Nr one needs for a specific confidence
level.

When solving a linear system with a variational quantum algorithm, the cost function
measures the orthogonality between Ax and b (see (2.16)). Similarly, classical solvers of
linear equations such as the conjugate gradient method solve for a residual ||Ax − b|| that
can get close to machine precision. In these cases, the error on the solution vector depends on
the eigenvalues of A, which are generally unknown. This analysis suggests that a variational
quantum algorithm can never achieve this level of precision: for instance, if one wants to

37

solve for a cost function C(θ) = 10−10 (which is larger than typical machine precision 10−16),
this would require O(1020) circuit runs per function evaluations. Thus, quantum variational
solvers are limited to applications where a lower precision on the residual estimation is al-
lowed.

Similarly, (3.30) can be applied to a Hadamard test, one of the most commonly used rou-
tines in variational algorithms to measure the expectation value of a unitary and fundamental
to the VQLS. In this case, one is generally interested in P (0) − P (1) = 1 − 2P (1) or using
the notation above 1− 2s. For a random variable X and a constant c, Var(cX) = c2Var(X)
which implies that the variance associated with a Hadamard test is in fact four times that
of a single qubit measurement P (1) as in (3.30):

Var(X) =
4µ(1− µ)

1 +Nr

. (3.33)

Clearly, in the most general case µ is not known before running the experiment, however,
it is possible to estimate the variance a priori computing the worst case scenario µ = 1

2
→

Var(X) = 1
1+Nr

, a typical instance µavg =
∫ 1

0
µ(1− µ)dµ = 1/6→ Var(X) = 5

9(1+Nr)
.

These results have been numerically validated with Qiskit QuasmSimluator 1 by running
a simple circuit that computes the inner product between two vectors. This is done by
assembling two unitaries U and Ũ such that U |0〉 = |ψ〉 and Ũ |0〉 = |ψ̃〉, and running a
Hadamard test as in Figure 3.10, whose result is 〈ψ̃ |ψ〉.

|0〉 H H

|0〉⊗n U Ũ †

Figure 3.10: Circuit implementation of the Hadamard test that computes 〈0| Ũ †U |0〉

Figure 3.11 shows good agreement between numerical data and analytical predictions.

1Statevector method:“A dense statevector simulation that can sample measurement outcomes from ideal
circuits with all measurements at end of the circuit.” https://qiskit.org/documentation/stubs/qiskit.

providers.aer.QasmSimulator.html

38

102 103 104 105

Number of shots

10 5

10 4

10 3

10 2

Va
ria

nc
e

Upper bound = 1/2
Typical instance = 1/6
Exact mean 1/3
Numerical Runs

Figure 3.11: Numerical runs are obtained measuring the variance of a sample of 100 runs
per each different number of shots. Upper bound, typical instance and “Exact mean” are
obtained plugging different values in (3.33), respectively µ = 1/2, µ = 1/6 and µ ≈ 1/3
which is the actual average value for this specific run. The slope of the logarithmic fit is -1,
as suggested by (3.33).

3.5.1 Shot noise in the VQLS algorithm

A similar discussion can be done concerning the VQLS algorithm. However, when considering
a normalized cost function, its value is computed as the division of two different factors:

C(θ) = 1− | 〈b|ψ〉 |
2

〈ψ|ψ〉
, (3.34)

where both the numerator and the denominator are the results of the sum of independent
measurements. Since the variance of the sum of independent distribution is the sum of the
single variances, it is reasonable to expect a decrease in precision proportional to the number
of terms L in the decomposition of A. Thus, this section aims to understand the relation
between noise and L in VQLS and its implications for the overall algorithm.

Variance of 〈ψ|ψ〉

This paragraph is dedicated to understanding the variance of 〈ψ|ψ〉 and providing an
upper bound for it, based on the results for a single noiseless measurement as in (3.30).
〈ψ|ψ〉 is computed as the sum of L(L − 1)/2 independent terms, where L is the number
of unitaries in the decomposition of the linear system matrix A. To compute it we recall

39

equation (2.22):

〈ψ|ψ〉 = 〈0|V †A†AV |0〉 =
L∑
l=1

L∑
l′=1

clc
∗
l′ 〈0|V †A

†
l′AlV |0〉 .

Obviously, 〈0|V †A†l′AlV |0〉 = 〈0|V †A†lAl′V |0〉 and 〈0|V †A†lAlV |0〉 = 1, which is why only
L(L− 1)/2 quantum circuit are necessary. Thus, (2.22) is simplified as

〈ψ|ψ〉 =
L∑
l=1

L∑
l′=l+1

2clc
∗
l′ 〈0|V †A

†
l′AlV |0〉 . (3.35)

Two basic proprieties of the variance are that for a constant c, and a random variable X,
Var(cX) = c2Var(X) and that Var(X + Y) = Var(X) + Var(Y) if the two variables are
uncorrelated. Using these proprieties, as well as (3.33), resulting variance is:

Var(〈ψ|ψ〉) =
L∑
l=1

L∑
l′=l+1

4c2
l c
∗
l′

2Var(Xll′) =
L∑
l=1

L∑
l′=l+1

16c2
l c
∗
l′

2µll′(1− µll′)
(1 +Nr)

. (3.36)

Clearly, there the variance of the sum will depend on the output of a single experiment µll′ =
〈0|V †A†l′AlV |0〉. However, as proposed in the previous section, this problem is bypassed by
computing an upper bound µll′ = 1/2 ∀ l, l′, so that µll′(1− µll′) = 1/4:

Var(〈ψ|ψ〉) =
4

1 +Nr

L∑
l=1

L∑
l′=l+1

c2
l c
∗
l′

2 (3.37)

and a typical instance µll′ = 1/6 ∀ l, l′:

Var(〈ψ|ψ〉) =
20

9(1 +Nr)

L∑
l=1

L∑
l′=l+1

c2
l c
∗
l′

2. (3.38)

Once again, these results are shown to be in good agreement with numerical runs of 〈ψ|ψ〉
in Figure 3.12.

40

103 104 105

Number of shots

10 2

10 1

va
ria

nc
e

Upper bound (3.37)
Analytical prediction (3.38)
Numerical Runs

Figure 3.12: Numerical validation of (3.37) and (3.38), respectively upper bound and ana-
lytical prediction in the legend. Variance is computed with N = 80 separate measurement
for each data point. Test case is for 3 qubits and a polynomial decomposition of A (L ∝ n)

Variance of | 〈b|ψ〉 |2

In a similar way, the variance of | 〈b|ψ〉 |2 can be computed as a function of L and the
number of shots. For this discussion | 〈b|ψ〉 |2 is computed as:

| 〈b|ψ〉 |2 = | 〈0|U †AV |0〉 |2 =

(
L∑
l=1

cl 〈0|U †AlV |0〉

)2

(3.39)

In principle, | 〈b|ψ〉 | is trivial, and can be obtained in a similar manner as (3.38):

Var(〈b|ψ〉) =
5

9(1 +Nr)

L∑
l=1

c2
l . (3.40)

However, here it is necessary to find the variance of a squared random variable, which in the
most general case is:

Var(X2) = E[X4]− E[X2]2 (3.41)

which requires the knowledge of the expectation values of the squared distribution. To sim-
plify the discussion, one can assume each measurement to be a symmetric beta distribution
(µ = 1/2). Under this hypothesis, it can be proven that for a large sample size, a symmetric

beta fX(x) = Γ(2b)xb−1(1−x)b−1

Γ(b)Γ(b)
can be approximated with a normal distribution (see Appendix

C). Then, since the sum of normal distributions is still a normal distribution, summing each
measurement yields

f〈b|ψ〉 = N (µ, σ) = N

 L∑
l=1

cl,

√√√√ 1

(1 +Nr)

L∑
l=1

c2
l

 (3.42)

41

Luckily, moments of a normal distribution are known: E[X4] = µ4 + 6µ2σ2 + 3σ4, E[X2] =
µ2 + σ2 [51], so that:

Var(X2) = 4µ2σ2 + 2σ4 (3.43)

In this case, analytical prediction does not seem to match numerical data precisely, perhaps
because approximating β with a normal distribution is accurate only when µ = 1/2, which is
not necessarily the case for all measurements. Further studies could improve the accuracy of
this estimation by devising a proof that does not rely on approximating the β with a normal
distribution.

103 104 105

Number of shots

10 7

10 6

10 5

10 4

10 3

v
a
ri

a
n
ce

Using Average (3.43)

Typical Instace (3.42, 3.43)

Numerical data

Figure 3.13: Numerical runs obtained measuring the variance of a sample of 150 runs for
each number of shots point. Typical instance is obtained using (3.42) and the average as
from (3.43) whereas a ”Using average” is obtained plugging in the actual experiment average
in (3.43)

Numerical Variance of C(θ)

Finally, the variance associated with the whole cost function (3.34) is evaluated numer-
ically at a random point of the domain, using the same test case introduced in Sections
4.1, 4.2, for which the number of unitaries is linear in the number of qubits (L ∝ n) and∑L

l=1 cl = 0. Figure 3.14 suggest Var(C) ∝ kN−1
r , showing a similar trend as Var(〈ψ|ψ〉),

with a coefficient k ≈ 1.54, 0.31, 0.33, 0.15 for respectively 2, 3, 4, 5 qubtis configuration of
the same run.

42

103 104 105 106 107

Number of shots

10 9

10 8

10 7

10 6

10 5

10 4

10 3

Va
ria

nc
e

2 qubits
3 qubits
4 qubits
5 qubits

Figure 3.14: Numerical runs are obtained measuring the variance of a sample of 80 runs at
each number of shot point. 2, 3, 4 qubits fits very precisely Var(C) ∝ kN−1

r , whereas for
5 qubits Var(C) ∝ kN−1.36

r , which is more likely due to under-sampling at low number of
shots. The test case utilized is explained in sections 4.1 and 4.2.

However, as opposed to Var(〈ψ|ψ〉), the variance seems to decrease for a higher qubit
number, whereas in (3.38) Var(〈ψ|ψ〉) ∝ L∝n2. Perhaps, this scaling should be ascribed to
(3.43), which claims Var(| 〈b|ψ〉 |2) also depends on the average of the distribution measured.

In fact, for this test case C(θ) is larger for higher qubits, hence |〈b|ψ〉|
2

〈ψ|ψ〉 is smaller (Figure

3.15a). Similarly, this relation also explain why 3 and 4 qubits seems to coincide: this is
a mere coincidence as the standard deviation measurement depends on the average of the
random point in which it was measured and it may cause lines to randomly align.

To avoid the cost function value at the measurement point perturbing the measurement,
Figure 3.15b shows the ratio of the standard deviation over the value measured, which is a
more representative metric for the purposes of this section. This ratio is conceptually similar
to measuring noise to signal ratio. Worryingly, noise to signal increases for higher qubits,
potentially threatening the scaling of VQLS.

43

103 104 105 106 107

Number of shots

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
M

ea
n

m
ea

su
re

d

2 qubits
3 qubits
4 qubits
5 qubits

(a) Cost function value at measurement point

103 104 105 106 107

Number of shots

10 2

10 1

100

101

102

ST
D

/ A
ve

ra
ge

2 qubits
3 qubits
4 qubits
5 qubits

(b) Ratio between standard deviation and mea-
sured a value

Figure 3.15

One reasonable hypothesis for the decrease in signal-to-noise ratio would be that while
standard deviation scales with

∑L
l=1 c

2
l , which monotonically increases with L, µ〈b|ψ〉 ∝∑L

l=1 µlcl, assuming µl uniformly distributed and L large will tend to µavg
∑L

l=1 cl → 0,

given that for the decomposition of A of this test case,
∑L

l=1 cl = 0 ∀ n. These results might
also explain the gradient vanishing measured in Section 4.3.

Finally, whilst results for Var(〈ψ|ψ〉) and Var(| 〈b|ψ〉 |2) are valid for all problems using
the aforementioned VQLS evaluation routines, these results for Var(C(θ)) are problem-
specific. They depend on the matrix decomposition considered and the cost function routine
utilized because they have been computed numerically for this test case rather than derived
analytically.

44

Chapter 4

Numerical Experiments of VQLS

Whilst the previous chapters focus on the theoretical background and the pre-processing
necessary to apply VQLS to FEM discretization of one dimensional Poisson equation, this
chapter is dedicated to its implementation on a quantum computer simulator and discussion
of results.

Section 4.1 defines the test case for the numerical experiments of this chapter, focus-
ing on the differential equation studied and the discretization used. Instead, Section 4.2
epxlains the details of the implementation on a quantum simulator, including results and
issues. Specifically, sub-section 4.2.1 explains the simulator setup, including ansatz, matrix
decomposition and optimization algorithm utilized. Sub-section 4.2.2 gives an overview of
the results of the experiments, showing solution accuracy, iterations and scaling challenges.
Sub-section 4.2.3 and 4.2.4 illustrates different techniques to improve the convergence of
VQLS and evaluates their performance, respectively focusing on the ansatz and on the cost
function. Sub-section 4.2.5 briefly compares the effectiveness of classical optimizers. Finally,
Section 4.3 summarizes the main challenges and issues observed through these experiments,
including the interplay of shot noise and vanishing gradients.

4.1 Definition of the test case

As a proof of concept, the selected test case is the one dimensional Poisson equation with
Dirichlet boundary conditions because of its simplicity, relevance and ease of implementation

−∆u = k, u ∈ (0, 1)

u(0) = u(1) = 0
(4.1)

where k is set to be constant throughout the domain. This allows to use the discretization
strategies derived in Section 3.1, prove their functioning and verify if they converge. Once

45

again, first-order FEM discretization is used

A =



2 −1 0 . . .
−1 2 −1 0 . . .
0 −1 2 −1
...

.

−1 2 −1
0 0 0 . . . −1 2


(4.2)

whereas k is represented by the constant vector b = (1/N2, ..., 1/N2). The implementation
of b/||b|| on a quantum computer is straightforward and is obtained as realized through the
operator H⊗n |0〉.

4.2 Implementation on a Quantum Computer simula-

tor

This section illustrates the implementation of VQLS applied to Poisson’s equation on a
Quantum computer simulator. The main objectives are to understand whether this technique
is feasible, if it converges to a meaningful result, implementation hurdles and prospects.

4.2.1 Setup

Given a specific linear system one wants to solve, it is now necessary to input the required
data in a Quantum computer accordingly. In particular, one has to represent a guess vector
x as well as the linear system matrix A. In variational algorithms, the inital guess (or
solution) vector is implemented through an ansatz (see Section 2.2.2), whereas A needs to
be decomposed in a set of unitaries (see Sections 3.1, 3.2). In particular, for this test case,
the setup used is as follows:

• Hardware efficient ansatz: in the most general case, the shape of a solution vector
cannot be determined a priori. In other words, there are no physical insights that allow
to determine a specific ansatz configuration and restrict the portion of the solution
space that should be explored.

– An exponentially deep ansatz has 2n control parameters (where n is the number
of qubits) so that it can represent an arbitrary vector of dimension 2n. It allows
to achieve a numerically exact solution but scales poorly and is not feasible for a
higher number of qubits because the circuit becomes exponentially deep

– An ansatz where the number of input variables is smaller than 2n is easier to
optimize and implement, but might not be able to represent the solution vector
accordingly

46

• Polynomial matrix decomposition: The linear system matrix (4.2) is decomposed
using the efficient high-entanglement decomposition presented in Section 3.2.2. Clearly,
this decomposition cannot be implemented on real quantum hardware, however, be-
cause of its efficiency and scaling, it could serve as a proof of concept to understand
future capabilities on more robust quantum computers.

• Powell optimization algorithm [42] was utilized for most of the runs unless indi-
cated otherwise. This choice is based on literature, where Powell was indicated as the
best optimization technique for variational algorithms among those investigated [35]
as well as preliminary comparisons on the current test case.

4.2.2 Solution overview

By definition, the solution vector obtained by VQLS is normalized to 1 (|| |x〉 || = 1), however
this is not necessarily true for an arbitrary solution vector x. Therefore, it is necessary to
change its norm to match the exact one. Luckily, this is a simple process and can be done
by computing the ratio between one component of b and A |x〉. Given a random component
i

x = r |x〉 with r =
bi
ψi

(4.3)

and ψ = A |x〉. In this specific case, the right hand side vector was set as bi = 1/N2, and
given the sparsity of A the ration is given by the simple expression

r =
1

N2(−ψi−1 + 2ψi − ψi+1)

=
1

N2(−Aii−1 |x〉i−1 + 2Aii |x〉i − Aii+1 |x〉i+1)

(4.4)

which is straightforward to compute.

47

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

numerical results
analytical solution

(a) Un-normalized solution as for VQLS output

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

numerical results
analytical solution

(b) Normalized solution rescaling VQLS output
with (4.4)

Figure 4.1: Numerical results for Poisson’s equation with n = 2 qubits (internal points
N = 4), number of shots=106 and c ≈ 0, exponentially deep ansatz.

In Figure 4.1 it can be seen that VQLS is able to produce meaningful solutions for small
problem instances. Moreover, the re-normalization procedure is not perfectly accurate: al-
though the cost achieved is close to 0, an inaccurate rescaling of the solution implies a slightly
inaccurate final result. Even if rescaling is more accurate if (4.4) is averaged over more terms,
this source of error on the final solution should be taken into account and evaluated in futures
studies.

Similarly, Figure 4.2 shows the solution obtained for a three-qubit configuration (n =
3). While a finer discretization generally implies more accurate results for a convergent
discretization, using VQLS with exponentially deep ansatz results in a higher number of
optimization variables, which hinders convergence and affects the accuracy of the solution
obtained.

48

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

numerical results
analytical solution

(a) Un-normalized solution

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

numerical results
analytical solution

(b) Normalized solution

Figure 4.2: Numerical results for Poisson’s equation with n = 3 qubits (internal points
N = 8), number of shots=1.2 · 107, c ≈ 0.1, exponentially deep ansatz.

Given that VQLS can converge to a solution, it is interesting to understand how quickly
it converges, if it scales favourably and could outperform classical methods in the future.
As the number of qubits rises, so does the number of variables that needs to be optimized,
making convergence of the optimization loop harder. In particular, as show in Figure 4.3a,
runs with two qubits (4 optimization variables) converged for all data points evaluated. On
the other hand, only a few runs converged to a solution with three qubits, whereas four qubits
never converged, hence, the high average cost function. This analysis seems to suggest that
VLQS is prone to vanishing gradient and dimensionality curse and these problems onset
already at very low n.

49

0.2 0.4 0.6 0.8 1.0 1.2
Number of shots 1e7

0.0

0.2

0.4

0.6

0.8

Co
st

 a
t c

on
ve

rg
en

ce

2 qubits
3 qubits
4 qubits

(a) Average minimum cost function achieved,
averaged over 4 runs per number of shots data
point with an exponentially deep ansatz

4 6 8 10 12 14 16
N

0

2000

4000

6000

8000

10000

12000

14000

16000

Ite
ra

tio
ns

/(1
-C

os
t)

Numerical Runs
Best Classical

(b) Iteration to solutions averaged over 4 runs
per data point as a function of N = 2n data
point, with an exponentially deep ansatz

Figure 4.3: Averaged convergence performance with exponential ansatz

Figure 4.3b shows how iterations-to-success scales with respect to the linear system size
N . Because many runs did not converge to zero, in Figure 4.3b the iteration number is
divided by 1 − Cfinal which is the cost achieved at the end of the optimization procedure.
Somehow, this measure tries to account for the heuristic of the optimization procedure where,
for example, some runs might get stuck in local minima and fail to converge. When counting
iterations to success, using those runs would be misleading as they did not reach a solution.
However, increasing the number of iteration obtained by dividing for “distance to success”
can give a qualitative measure of scaling prospects. For example, if Cfinal = 0.5 on average,
then the average expected number of iterations to success is double the average Niterations.
This scaling is by no means guaranteed and should only be considered a qualitative measure.
Furthermore, it becomes progressively less reliable as Cfinal → 1 because those runs might
never converge or require far more trials than predicted.

As a comparison, Figure 4.3b reports the scaling of the best known classical algorithm,
the conjugate gradient method, which scales with

√
κN given that A is positive definite. It

is noteworthy that VQLS scales more poorly than represented because one iteration requires
several circuit queries to compute the cost function and complete one iteration. However,
this becomes less relevant as n rises, given that the decomposition studied scales logarith-
mically in N , polynomial in n. Furthermore, it is important to mention that this scaling
is qualitative and not rigorous. The number of iterations also depends on the optimization
technique employed and has some degree of randomness but is not mathematically bounded.
Moreover, it is crucial to remark these results are preliminary as a more solid analysis of
scaling prospects would require a more extensive n range.

50

4.2.3 Ansatz optimization strategies

In this subsection, several techniques to improve convergence by acting on the ansatz are
discussed. In general, the overarching idea is to ease optimization by reducing the dimen-
sionality of the optimization problem. This can be done by either reducing the ansatz’s
depth or optimizing it in a stepwise manner.

Shallow ansatz configuration

Because convergence strongly depends on the problem dimensionality, it is relevant to
investigate if shallower ansatzes reduce dimensionality without excessively compromising ac-
curacy. Ideally, one would like a tailored ansatz that only explores a small portion of the
vector space containing the solution, though this is generally problem-dependent and diffi-
cult to find out. In our test case, one can blindly try to shrink the hardware efficient ansatz
to a single rotation layer and evaluate the result.

This shallow configuration is appealing because it reduces implementation complexity
(does not require 2-qubit gates) and gate count.

...

|0〉 Ry(θ0)

|0〉 Ry(θ1)

|0〉 Ry(θn−1)

Figure 4.4: Single layer rotation ansatz

Consequently, degrees of freedom of the solution guess are reduced, and there is no
guarantee that this configuration will allow achieving meaningful results. In fact, Figure 4.5
shows poor results obtained using this ansatz.

51

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

numerical results
Analytical discretized

(a) 2 qubits, compared to analytical solution
discretized and normalized

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

numerical results
analytical solution
exact numerical

(b) 3 qubits (rescaled manually), compared to
exact analytical solution

Figure 4.5: Numerical results with a single rotation ansatz, 8 · 106 shots. “Exact numerical”
was obtained using a statevector simulation to make sure poor results were only due to the
ansatz and not poor convergence in the optimization process

The performance of single-layer and exponential ansatzes for this test case are compared
in Figure 4.6, both in terms of total number of iterations and best cost achieved. First of
all, in Figure 4.6a one immediately notices that a single layer ansatz consistently underper-
forms, but the gap decreases as the number of qubits rises. Since for a single layer ansatz
the number of optimization parameters grows linearly in n, whereas it is exponential for the
exponentially deep ansatz, it is no surprise that the latter’s performance deteriorates faster
because of increasing problem dimensionality. Nevertheless, this comes at a slight tangible
advantage since they both fail to provide a meaningful solution. Moreover, a single layer
ansatz seems to be more resilient to noise, showing little to no variation with decreasing
number of shots. In these cases, although noise is still persistent, for the number of shots
examined, precision is enough to reach the best solution achievable with the given ansatz.
While not shown in Figure 4.6a, noise would start to affect convergence at a lower number
of shots.

Similarly, it is noteworthy in 4.6b a shallower ansatz leads to a smaller number of itera-
tions, though that comes at the expense of precision.

52

0.0 0.2 0.4 0.6 0.8 1.0
Number of shots 1e7

0.0

0.2

0.4

0.6

0.8

Co
st

 a
t c

on
ve

rg
en

ce

exp. ansatz
2 qubits
3 qubits
4 qubits

(a) Average minimum cost function achieved

4 6 8 10 12 14 16
N

0

2000

4000

6000

8000

10000

Ite
ra

tio
ns

/(1
-C

os
t)

Numerical Runs exp. ansatz
Numerical Runs sing. layer
Best Classical

(b) Iteration to solutions as a function of N =
2n

Figure 4.6: Comparison of convergence performance between single layer and exponentially
deep ansatz (dotted lines)

Because the effectiveness of an ansatz is problem-specific, this analysis only shows it is
not appropriate for this test case and that it is generally not effective in all situations. How-
ever, there could be cases when a single layer or a polynomial number of layers is sufficient
to represent the solution vector.

Given that the necessary ansatz depth is not known a priori and that optimization be-
comes progressively difficult as the number of parameters increases, instead of attempting
to guess the required depth, one could start with a shallow ansatz and progressively add
layer optimizing at each step. In this case, one can check if C ≈ 0 at each stage and stop
optimizing when appropriate, hopefully with fewer layers than exponential. Moreover, this
approach was also proposed in the literature to overcome the issue of vanishing gradient and
help the optimization procedure [34, 35]. Hence, it seems a reasonable way forward to tackle
both problems.

Progressive layer optimization: one layer at the time

When optimizing layer by layer, one key question is the degree of independence between
each layer. In other words, it would be convenient if independently optimizing one layer at a
time could achieve a solution because it would consist of sequential optimization with fewer
variables (polynomial in n) rather than one optimization with many variables. To address
this question, this paragraph illustrates results obtained optimizing only each ansatz layer
at the time independently.

53

|0〉 Ry(θ0)

|0〉 Ry(θ1)

|0〉 Ry(θ2)

(a) First optimization step

|0〉 Ry(θ0) Ry(θ3)

|0〉 Ry(θ1) Ry(θ4)

|0〉 Ry(θ2) Ry(θ5)

(b) Second optimization step

|0〉 Ry(θ0) Ry(θ3) Ry(θ6)

|0〉 Ry(θ1) Ry(θ4) Ry(θ7)

|0〉 Ry(θ2) Ry(θ5) Ry(θ8)

(c) Third optimization step

Figure 4.7: Example of gradual optimization for three qubits. At each step, only the boxed
parameters are optimized. Once a local minimum is achieved, the optimizer moves to the
next set of parameters and those from previous steps (e.g. θ0, θ1, θ2 in step 2) are left
untouched. New parameters are initialized as θi = 0 so that Ry(θi) = I.

The optimization procedure is illustrated in Figure 4.7, whereas convergence results are
displayed in Figure 4.8. In particular, as shown in Figure 4.8a, optimizing layer by layer
seems less effective compared to exponential ansatzes, especially for fewer qubits. Similarly
to a single rotation ansatz, the gap progressively shrinks as the number of qubit rises, since
both runs fail to converge to meaningful results. For this test case, these results indicate
that optimizing independently single ansatz layers does not provide good results. Intuitively,
this makes sense, as each entry of the solution vector depends on all ansatz layers and there
are no “local” effects, in the sense that none of the statevector entries depends on one ansatz
parameter only.

54

0.0 0.2 0.4 0.6 0.8 1.0
Number of shots 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Co

st
 a

t c
on

ve
rg

en
ce

exp. ansatz
2 qubits
3 qubits
4 qubits

(a) Comparison of gradual optimization vs expo-
nentially deep ansatz

0.0 0.2 0.4 0.6 0.8 1.0
Number of shots 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

 a
t c

on
ve

rg
en

ce

sing. layer ans.
2 qubits
3 qubits
4 qubits

(b) Comparison of gradual optimization ansatz
vs single layer of rotation ansatz

Figure 4.8: Comparison of convergence performance between different ansatzes as a function
of the number of shots and number of qubits

On the other hand, in Figure 4.8b it is interesting to see how for 3 and 4 qubits, gradual
optimization performs worse than a single rotation layer. Intuitively, this should not be the
case: even if optimizing one layer at a time might not work because of qubits independence,
it should be at least equal to single rotations.

0 50 100 150 200 250
Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
st

2

(a) 2 qubits

0 200 400 600
Iterations

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Co
st

2 3

(b) 3 qubits

Figure 4.9: Cost function as a function of the number of iterations. Dotted lines indicate
where a new ansatz layer is added, with the optimizer moving to the next set of parameters.

Perhaps, poor performance is caused by the addition of new layers to the cost function.
As shown in Figure 4.9b, after the second layer is added, there is a sudden jump of the cost
function (marked by a red ellipse). The reason for this discontinuity is shown in Figure 4.7:

55

adding a new layer “perturbs” the ansatz, leading to a different statevector than the result
of the optimization. In particular, although Ry(θ) are initialized with θ = 0 to avoid this
issue, the entangler gates that follows are sufficient to alter the statevector optimized in the
previous step. As further confirmation, when adding the third layer in Fig. 4.9b and the
second in Fig. 4.9a, no discontinuity in the cost function appears because those are last
layers that are not followed by an entangler gate (see Figure 4.7c). The latter could also
explain why gradual optimization outperforms a single layer only for two qubits when this
type of discontinuity does not happen.

Some strategies exist to mitigate this issue: for example, to avoid a gradient plateau,
Grant et al. [34] suggested initializing the ansatz as a series of blocks, each containing a
gate sequence and its inverse so that each block reduces to identity before being optimized.
This structure would also prevent the issue mentioned above but requires either changing the
ansatz structure or deeper ansatzes. This is because, with the current design, two different
entangler gates alternate (see Figure 2.2 for example), which would require at least a depth
of 4 layers to reduce a single block to identity. Alternatively, one could start the optimization
procedure with the whole ansatz implemented with all Ry(0) and progressively optimize the
rotation gates while the entanglers are left untouched. However, this solution comes with
two drawbacks: firstly, the ansatz depth is fixed instead of progressively increasing only if
necessary. Secondly, although this approach helps to reduce problem dimensionality, if the
ansatz is deep, it might experience vanishing gradients because of the large number of en-
tangler gates at initialization.

Finally, Figure 4.10 shows the iterations to the local minimum. Noteworthy is that
gradual optimization requires fewer iterations on absolute value but underperforms when
taking the average cost into account.

4 6 8 10 12 14 16
N

0

2500

5000

7500

10000

12500

15000

17500

Ite
ra

tio
ns

/(1
-C

os
t)

Numerical Runs gradual
Numerical Runs exp. ansatz
Best Classical

4 6 8 10 12 14 16
N

0

250

500

750

1000

1250

1500

1750

2000

Ite
ra

tio
ns

Numerical Runs gradual
Numerical Runs exp. ansatz
Best Classical

Figure 4.10: Number of iterations to local minimum

56

Overall optimization after gradual optimization

In previous paragraphs, it was shown that, for this test case, gradual layer optimization
performs quite poorly, failing to outperform both a single layer ansatz and an exponential
setup. However, it is still interesting to investigate whether a progressive layer optimization
could provide a more advantageous starting point for the overall optimization of an expo-
nential ansatz.

The results for this test case are reported in Figure 4.11. In general, this approach seems
to yield no advantage, with a very similar final cost compared to a simple optimization of an
exponential ansatz and a minor increase in noise resilience (shown in Figure 4.11a). Moreover,
the standard deviation associated with the final results is smaller compared to previous test
cases. Although this is advantageous in those cases when the optimizer can achieve a good
final result, it also implies this approach could end up blocked in local minima more often, as
shown in the three qubits test case. As shown in Figure 4.11b gradual optimization approach
accounts for a higher iteration count coherently with the fact that the optimization procedure
requires more steps, which implies this optimization procedure is not advantageous.

0.0 0.2 0.4 0.6 0.8 1.0
Number of shots 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

 a
t c

on
ve

rg
en

ce

exp. ansatz
2 qubits
3 qubits
4 qubits

(a) Cost at convergence as a function of number
of shots and number of qubits

4 6 8 10 12 14 16
N

0

5000

10000

15000

20000

25000

Ite
ra

tio
ns

/(1
-C

os
t)

Numerical Runs gradual Overall
Numerical Runs exp. ansatz
Best Classical

(b) Iterations normalized by quality of results

Figure 4.11: Result of overall optimization using as a starting point the results of gradual
optimization vs exponential ansatz baseline case. Powell was used for all data points.

Gradual optimization of exponentially deep ansatz

The previous section showed a gradual (layer by layer) optimization of the ansatz to under-
perform an exponentially deep ansatz. Even when an overall optimization is performed after
a gradual procedure, similar results are achieved but with more iterations. One cause could
be the discontinuity in the cost value introduced by adding a layer and the interdependence
of all optimization parameters, which prevents achieving a good solution when only a subset

57

is optimized.

To test these hypotheses, in this subsection the same gradual optimization procedure is
applied with a different approach: optimization starts with an exponentially deep ansatz
already at the first iterations, and non-active layers initialized as θi = 0. The first step is
illustrated in Figure 4.12, where θ0, θ1, θ2 are optimized, successively θ3, θ4, θ5 and so on.

|0〉 Ry(θ0) Ry(θ3 = 0) Ry(θ6 = 0)

|0〉 Ry(θ1) Ry(θ4 = 0) Ry(θ7 = 0)

|0〉 Ry(θ2) Ry(θ5 = 0) Ry(θ8 = 0)

Figure 4.12: Gradual optimization of an exponentially deep ansatz

Compared to 4.7, this ansatz aims to retain the advantages of gradual optimization
(smaller problem dimensionality) while avoiding the cost function discontinuities caused by
adding new layers as in Fig. 4.9b. Moreover, this also allows testing whether these discon-
tinuities are responsible for poor performance or if the main cause is the interdependence of
optimization parameters. One main drawback is that one has to assume a priori that the
ansatz is exponentially deep. In contrast, in the ansatz of Figure 4.7 it is possible to stop at
a shallower depth in case convergence is achieved

0.0 0.2 0.4 0.6 0.8 1.0
Number of shots 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

 a
t c

on
ve

rg
en

ce

exp. ansatz
2 qubits
3 qubits
4 qubits

(a) Gradual optimization of exponentially deep
(Fig. 4.12) vs exponentially deep ansatz

0 2 4 6 8
Number of shots 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

 a
t c

on
ve

rg
en

ce

gradual
2 qubits
3 qubits
4 qubits

(b) Gradual optimization of exponentially deep
(Fig. 4.12) vs layer by layer (Fig. 4.7c)

Figure 4.13: Cost at convergence as a function of number of shots and number of qubits for
different ansatz

58

Similarly to 4.8a, in 4.13a, gradual optimization of an exponentially deep ansatz under-
performs the exponentially deep ansatz baseline case for all qubits configurations. In 4.13b
it is noteworthy that between the two gradual optimization techniques, there is no tangi-
ble difference in the quality of the final results, suggesting the aforementioned issue of cost
function discontinuities does not play a relevant role when evaluating minimum cost achieved.

Finally, likewise Figure 4.11, using the results above as a starting point for an overall
optimization is not advantageous when compared to the optimization of an exponential
ansatz with a random starting point (see Figure 4.14).

0.0 0.2 0.4 0.6 0.8 1.0
Number of shots 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

 a
t c

on
ve

rg
en

ce

exp. ansatz
2 qubits
3 qubits
4 qubits

(a) Gradual optimization of exponential ansatz
vs exponentially deep ansatz

0.0 0.2 0.4 0.6 0.8 1.0
Number of shots 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

 a
t c

on
ve

rg
en

ce

exp. ansatz
2 qubits
3 qubits
4 qubits

(b) Gradual optimization of exponential ansatz
vs gradual optimization layer by layer

Figure 4.14: Cost at convergence as a function of number of shots and number of qubits

Concluding Remarks on Ansatz optimization strategies

Overall, different optimization strategies of the ansatz did not lead to meaningful ad-
vantages compared to the baseline case. Moreover, for this test case and possibly most FE
systems of equations, an exponentially deep ansatz seems necessary to achieve a precise so-
lution. This issue poses a serious threat to the scalability of this algorithm, as exponentially
deep ansatzes are harder to optimize and lead to circuits beyond current hardware capabili-
ties because of their depth.

Future efforts could focus on devising an ansatz that is better suited to the problem at
hand. Generally speaking, this is not possible for linear systems of equations as the solution
vector can be of arbitrary shape depending on b. However, perhaps in some practical
application, knowledge of the problem’s physics could allow better tailoring of the ansatz.

59

4.2.4 Cost function improvement strategies

As seen in the previous sections, VQLS has a troublesome convergence when solving for this
test case. Moreover, different optimization strategies of the ansatz did not lead to any better
convergence. Thus, in this section, the focus is shifted on the objective function itself to
understand if modifications to its formulation can lead to better convergence behaviour.

Non-normalized cost function

When VQLS was introduced, Bravo-Prieto et al. [28] proposed different formulations
of the cost function, each with different proprieties. In particular, a non-normalized and
normalized cost function are defined respectively as:

Ĉ(θ) = 〈ψ|ψ〉 − | 〈b|ψ〉 |2, C(θ) = 1− | 〈b|ψ〉 |
2

〈ψ|ψ〉
(4.5)

where ψ = A |x(θ)〉. Essentially these function both measure if Ax is linearly dependent
of b. The main difference between these two formulations is that Ĉ(θ) becomes small both
when 〈ψ|ψ〉 = | 〈b|ψ〉 |2 (which is the solution), but also when the norm of ψ is small, which
is not necessarily the solution point, whereas C(θ)→ 0 only at the solution point.

Figure 4.15a shows average and mean partial derivative resulting from a random sampling
across the domain for a non Normalized cost function, notably larger in magnitude compared
to the normalized case. Moreover, similar values of median and mean suggest a less skewed
distribution, indicating a “smoother” cost function as opposed to plateaus and steep wells
for the normalized one. These hypotheses are validated in Figure 4.15b, which displays the
results of the non-Normalized cost function, showing markedly lower cost function values
achieved compared to normalized cost function runs from previous sections.

60

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of qubits

0.0

0.2

0.4

0.6

0.8

Pa
rti

al
 d

er
iv

at
iv

e
m

ag
ni

tu
de

Mean
Median
Normalized Mean

(a) Partial derivative average and mean values
for a non normalized cost function

0 2 4 6 8
Number of shots 1e6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Co
st

 a
t c

on
ve

rg
en

ce

2 qubits
3 qubits
4 qubits

(b) Ĉ(θ) at convergence as a function of the num-
ber of shots and the number of qubits

Figure 4.15: Cost landscape and cost at convergence for a non normalized cost function

However, as mentioned above, small cost function values do not necessarily imply the
algorithm converged to a valid solution. To check for this, C(θ) is calculated using the
solution’s parameters and compared to results obtained optimizing a normalized cost func-
tion in Figure 4.16a. Firstly, it is noteworthy overall convergence improved, especially for
the three-qubits configuration. In particular, the average cost function is lower but with
a higher standard deviation. The latter is because if Ĉ(θ) ≈ 0 either solution is achieved
and C(θ) = 0, or the norm of 〈ψ|ψ〉 is small, which results in neatly distinct outcomes of
the normalized cost function. This also implies that although average values are similar,
minimum values achieved are markedly smaller when optimizing Ĉ(θ).

On the other hand, for four qubits, results are in line with the normalized case despite
the small cost achieved in Figure 4.15b, suggesting in this case minimization of 〈ψ|ψ〉 is most
likely the reason for Ĉ(θ) ≈ 0. In general, iterations to convergence do not depend on the
cost function choice when using the same optimization algorithm.

61

0.0 0.2 0.4 0.6 0.8 1.0
Number of shots 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Co

st
 a

t c
on

ve
rg

en
ce

Normalized
2 qubits
3 qubits
4 qubits

(a) Cost at convergence as a function of number
of the shots and qubits

4 6 8 10 12 14 16
N

0

2500

5000

7500

10000

12500

15000

17500

Ite
ra

tio
ns

/(1
-C

os
t)

Numerical Runs Normalized
Numerical Runs Not Norm.
Best Classical

(b) Iterations to convergence

Figure 4.16: Result of overall optimization of Ĉ(θ) (non Normalized) vs C(θ) (normalized).
Powell was used for all data points.

Linear combination of cost functions

As introduced above, the normalized cost function is harder to optimize but only con-
verges to the “real” solution. In contrast, a non-normalized converges easier but not always
to the right results. Thus, it is interesting to explore if a linear combination of these functions
could retain ease of optimization while converging to the actual solution. The cost function
is then defined as:

C̃(θ) = αĈ(θ) + βC(θ). (4.6)

Figure 4.17, 4.18 show results obtained with α, β = 1/2. In 4.17a it is noteworthy that
adding Ĉ(θ) to C̃(θ) makes the overall cost landscape harder to optimized because all runs
converged to a higher costs. Consequently, in 4.17b the linear combination approach is shown
to perform worse compared to Ĉ(θ). On the other hand, adding C(θ) seem to help avoiding
minimization of | 〈ψ|ψ〉 | because for C̃(θ) the difference between Figure 4.17a and 4.17b is
less marked, implying C̃(θ) converged to that result less often.

62

0 2 4 6 8
Number of shots 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Co

st
 a

t c
on

ve
rg

en
ce

Not Normalized
2 qubits
3 qubits
4 qubits

(a) C̃(θ) and Ĉ(θ) as resulting from the opti-
mization process

0 2 4 6 8
Number of shots 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

 a
t c

on
ve

rg
en

ce

Not Normalized
2 qubits
3 qubits
4 qubits

(b) Normalized cost for C̃(θ) and Ĉ(θ).

Figure 4.17: Cost at convergence as a function of number of shots and number of qubits
for C̃(θ) (linear combination with α, β = 1/2) vs Ĉ(θ) (referred as “not Normalized” in the
plots). Powell was used for all data points.

As shown by Figure 4.18, optimizing C̃(θ) seems to provide a limited advantage compared
to the baseline C(θ) case, both in terms of iterations number and quality of results. Using
this linear combination transform the cost landscape such that there is a local minimum in
| 〈ψ|ψ〉 | = 0 and a global minimum at the solution point. Perhaps, optimization is more
likely to get stuck in local minima rather than reaching the global, negatively impacting
performance.

0.0 0.2 0.4 0.6 0.8 1.0
Number of shots 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

 a
t c

on
ve

rg
en

ce

Normalized
2 qubits
3 qubits
4 qubits

(a) Cost at convergence as a function of the num-
ber of shots and qubits

4 6 8 10 12 14 16
N

0

2500

5000

7500

10000

12500

15000

17500

20000

Ite
ra

tio
ns

/(1
-C

os
t)

Numerical Runs Normalized
Numerical Runs linear comb.
Best Classical

(b) Iterations to convergence

Figure 4.18: Result of overall optimization of C̃(θ) (linear combination with α, β = 1/2) vs
C(θ) (normalized). Powell was used for all data points.

63

Concluding Remarks on cost function improvement strategies

In general, there seems to be a noticeable advantage in using a non-normalized cost func-
tion compared to a normalized one, though this advantage wears off at four qubits. Although
this method does not guarantee a meaningful solution when converged, better results are
achieved with a suitable number of repetitions. On the other hand, a linear combination of
these two cost functions did not seem to yield any advantage with respect to a non Normal-
ized cost function.

As opposed to ansatz optimization strategies tested, acting on the cost function itself
seemed effective in improving results. Therefore, it is recommended future studies focusing
on this aspect of VQLS when studying convergence in these settings. In particular, the
authors suggested the usage of a Local cost function which they claim improves convergence
[28]. Testing this type of cost function would be the most logical next step following this
work.

4.2.5 Comparison of classical optimization algorithms

In [35], La Rose et al. compare the effectiveness of some classical optimization algorithms
applied to variational algorithms. Among the algorithms studied, Powell [42] achieved the
best results (i.e. lowest cost function), whereas COBYLA was the algorithm requiring fewer
iterations. Because these results can be problem-specific, these algorithms are compared for
this test case in this section. The reader can consult a more comprehensive review of classical
optimization for variational quantum linear solver at [52].

For this test case, Figure 4.19a shows Powell achieves better results than COBYLA for
all data points. Moreover, it appears COBYLA is more susceptible to noise, with results
quickly deteriorating for fewer shots, particularly for the two qubits case. On the other
hand, COBYLA requires substantially fewer iterations, as shown in Figure 4.19. Given the
difficulty of obtaining a meaningful solution, Powell is a more appropriate choice for this test
case. In other settings, one could try to run COBYLA at first and then switch to Powell
only if necessary.

64

0.0 0.2 0.4 0.6 0.8 1.0
Number of shots 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Co

st
 a

t c
on

ve
rg

en
ce

Powell
2 qubits
3 qubits
4 qubits

(a) Cost at convergence as a function of the num-
ber of shots and qubits

4 6 8 10 12 14 16
N

0

2000

4000

6000

8000

10000

12000

14000

Ite
ra

tio
ns

/(1
-C

os
t)

Numerical Runs Powell
Numerical Runs cobyla
Best Classical

(b) Iterations normalized by quality of results

Figure 4.19: Comparison of Powell and Cobyla optimizers

Comments on gradient based methods

Because 0-th order methods struggle to find meaningful solutions, it is interesting to
investigate whether gradient-based algorithms could bring any advantage. To answer this
question, Figure 4.20, 4.21 show the results of partial derivative computation as a function
of step size and the number of shots, obtained using central finite difference. Clearly, in both
cases, noise makes a reliable determination of a partial derivative unfeasible to the point
where often not even a correct sign for the derivative can be determined. As predictable,
finite difference measurement becomes increasingly less reliable for higher n mostly because
partial derivatives are, on average, smaller in magnitude.

65

10 4 10 3 10 2 10 1

Finite difference step size

15

10

5

0

5

10
Fin

ite
 d

iff
er

en
ce

 d
er

iv
at

iv
e

N. shots 1e6
N. shots 2e6
N. shots 4e6
N. shots 8e6
Noiseless

(a) Overall

10 1

Finite difference step size

0.20

0.15

0.10

0.05

0.00

Fin
ite

 d
iff

er
en

ce
 d

er
iv

at
iv

e

N. shots 2e6
N. shots 4e6
N. shots 8e6
Noiseless

(b) Detail

Figure 4.20: Finite difference partial derivative as a function of step size and number of shots
for a 2 qubit configuration

10 4 10 3 10 2 10 1

Finite difference step size

0.3

0.2

0.1

0.0

0.1

0.2

Fin
ite

 d
iff

er
en

ce
 d

er
iv

at
iv

e

N. shots 1e6
N. shots 2e6
N. shots 4e6
N. shots 8e6
Noiseless

(a) Overall

10 1

Finite difference step size

0.0010

0.0005

0.0000

0.0005

0.0010

Fin
ite

 d
iff

er
en

ce
 d

er
iv

at
iv

e

N. shots 2e6
N. shots 4e6
N. shots 8e6
Noiseless

(b) Detail

Figure 4.21: Finite difference partial derivative as a function of step size and number of shots
for a 3 qubit configuration

In [28], Bravo Prieto et al. suggest a quantum subroutine to compute the gradient.
In principle, because this routine requires two circuit evaluations per variable, it seemed to
bring a limited advantage compared to finite differences. However, because this analysis hints
finite difference is unfeasible, this implementation could lead to tangible benefits. Therefore,
for future works it is suggested similar studies are carried out on this routine to assess its
feasibility.

66

4.3 Implementation challenges

In general,three factors prevent convergence:

• Numerical noise on cost function evaluation, which depends on the number of shots

• Vanishing gradients for the cost function as the number of qubit rises. This problem
is also reported in the literature for hardware efficient ansatzes [31]

• Curse of dimensionality: optimization generally becomes more difficult as the num-
ber of variables increases because the optimization domain gets progressively larger and
harder to explore with each new variable

Partially, these phenomena can be evinced by results plots such as Figure 4.3a. For most
test cases, increasing the number of shots allows for more accurate cost function evalua-
tion, leading to easier convergence, as shown by the decreasing average cost at convergence.
Furthermore, it is interesting to point out these gains are less prominent for higher qubit
numbers.

The issue of vanishing gradient for this test case is illustrated in Figure 4.22, which shows
the average norm of the gradient sampled at different points across the domain. Figure
4.22a shows average and median gradient decreasing markedly as a function of the number
of qubits. Interestingly, this issue seems to onset at a relatively low number of qubits,
threatening the scaling of VQLS for this application. To evaluate optimization difficulties,
perhaps a better metric is the median value of the partial derivatives rather than the overall
gradient norm, as represented in Figure 4.22b. This metric is more illustrative because
each partial derivative is necessary to define the direction of the gradient vector, which is
as crucial as its magnitude when optimizing. Unfortunately, partial derivatives vanish even
faster with exponential ansatzes because the gradient dimensionality scales with 2n. For this
test case, random sampling found median values of partial derivatives for 3 and 4 qubits to
be O(10−3), which could explain the difficulty in convergence.

67

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of qubits

10 3

10 2

10 1

Av
er

ag
ed

 G
ra

di
en

t n
or

m

Mean
Median

(a) Gradient norm

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of qubits

10 4

10 3

10 2

10 1

Av
er

ag
ed

 G
ra

di
en

t C
om

po
ne

nt
 v

al
ue Median

Mean

(b) Average value of partial derivatives

Figure 4.22: Average gradient norm and components value as obtained by random sampling
of the optimization domain at 3.6 · 104 points with an exponentially deep ansatz

The discrepancy between mean and median in Figure 4.22 suggest the distribution of
gradients values is not symmetrical. For example, it could be flat with steep, sudden wells.
Moreover, a low average is not necessarily enough to prove large plateaus in the cost landscape
because a cost function could be concave with a constant but slight gradient. Thus, to get
a more accurate representation, Figure 4.23 shows occurrences of different gradient norms
magnitude obtained with random sampling. These results appear to prove the gradient does
indeed suffer from large plateaus as the lowest value bucket has the highest frequency. As
the number of qubits rises, this problem is more marked: while for two qubits, gradient norm
smoothly tapers off from smaller to higher values, the transition becomes increasingly shaper
for higher n. For five qubits (Fig. 4.23d), almost all occurrences happen at the lowest value,
while stronger gradients (possibly close to the solution point) occur rarely.

68

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Gradient Norm values

0

500

1000

1500

2000

2500

3000
In

st
an

ce
s

0.0 0.5 1.0
0

100

200

(a) 2 qubits

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Gradient Norm values

0

2000

4000

6000

8000

10000

12000

14000

In
st

an
ce

s

0.0 0.5 1.0
0

100

200

(b) 3 qubits

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Gradient Norm values

0

2500

5000

7500

10000

12500

15000

17500

In
st

an
ce

s

0.0 0.5 1.0
0

100

200

(c) 4 qubits

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Gradient Norm values

0

10000

20000

30000

40000

In
st

an
ce

s

0.0 0.5 1.0
0

100

200

(d) 5 qubits

Figure 4.23: Gradient norm instances from random sampling of the cost function. Each
figure is obtained sampling 3.6 · 104 points. (5 · 104 points for 5 qubits)

Shot noise and average gradient

Finally, Figure 4.24 relates shot noise on the cost function with the median partial deriva-
tive across the domain. In particular, Figure 4.24a shows the shots required to ensure with
95% confidence that the sign of the partial derivative measured is correct. On the other
hand, Figure 4.24b shows the scaling of the necessary shots as a function of qubits given a
precision requirement. Three arbitrary precision levels are suggested, up to 95% confidence
that the error is within 10% of the value of the median partial derivative. Noteworthy is
is that, given a precision level, the number of shots required is already high at a low qubit
number and scales exponentially with the number of qubits, quickly becoming unfeasible.

69

103 104 105 106 107

Number of shots

10 4

10 3

10 2

St
an

da
rd

 d
ev

ia
tio

n
2 qubits
3 qubits
4 qubits
5 qubits

(a) Standard deviation as a function of the num-
ber of shots compared with double the median
value of the partial derivative (dotted line). In-
tersection point determines at which number of
shots 2σ is equivalent to the partial derivative
median

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Qubits

104

105

106

107

108

Ne
ce

ss
ar

y
sh

ot
s

2 = f
x /1

2 = f
x /2

2 = f
x /10

(b) The number of shots necessary to meet the
required level of precision as a function of qubit
number. “Precision levels” are based on the ac-
curacy one wants to achieve on a partial deriva-
tive, i.e. 2σ = ∂f

∂x implies 95% confidence of
estimating at least the sign of the gradient cor-
rectly

Figure 4.24: Relationship between shot noise and median partial derivative across the domain
for a normalized cost function

Concluding remarks on implementation challenges

It is necessary to remark that these results are problem-specific. In particular, they could
vary based on:

• Ansatz utilized: ansatzes that are not exponentially deep entail higher partial deriva-
tives value for the same gradient magnitude

• Cost function structure: Other cost functions might suffer less plateau and therefore
larger partial derivative

• Test-case specific: the cost landscape is expected to vary for different matrix and
matrix decomposition

• Optimizer specific: 0-th order methods and noise specific optimizer might be able to
cope with higher noise.

In particular, it is hard to judge a priori how much noise 0th-order optimization methods
could tolerate. However, this problem is deemed relevant even if the optimizer does not
directly measure the gradient because the cost itself plateaus. Nonetheless, it is suggested
that future research carries out a similar analysis for other applications and different cost

70

function structures.

Finally, these results are for a quantum simulator: noise levels on current hardware are
much larger than shot noise, and such precision levels are practically unfeasible. Thus, this
analysis concludes that this test case is unlikely to succeed both on current hardware at a
small scale and on future hardware at a larger scale.

71

Chapter 5

Conclusion and recommendations

Fluid dynamics is notoriously expensive to solve computationally, and while researchers made
notable progress through simplified models of Navier Stokes equations, significant challenges
remain. In this research, instead of acting on the equations themselves, it is attempted to
speed up calculations by changing the computational medium from a classical to a quan-
tum computer. Although quantum computers are still in their infancy and yet to achieve
any results of practical use, it is theoretically proven that this technology could drastically
outperform existing computers in some settings (for example [15]). Moreover, possible ap-
plications and algorithms are currently being investigated and discovered, contributing to a
flourishing research branch. While many algorithms are decades away from implementation,
a class of algorithms, called variational solvers, has been purposely designed to work with
current hardware and achieve early results.

In this work, instead of trying to devise a new quantum algorithm for fluid dynamics,
the feasibility of casting current discretization methods into existing quantum algorithms
is investigated. In particular, different discretization techniques are used to transform dif-
ferential equations into linear equations, and their feasibility is tested on the Variational
Quantum Linear Solver (VQLS), a recently proposed quantum algorithm for solving linear
systems of equation.

Matrix Decomposition Results

In particular, the studied test case is a 1D Laplacian with Dirichlet boundary conditions,
discretized using finite element method with linear basis function (tri-diagonal) and hybrid
finite element method. These matrices were decomposed into unitaries, an essential step to
implement linear systems in quantum computers. The potential for near term applications
was evaluated by finding single qubits gates decompositions (Pauli) of the aforementioned
matrices.

In these settings, the hybrid finite element matrix is inefficiently decomposed withO(Nm>1)

72

terms, without a clear pattern that allows determining the gate sequence a priori. These
hurdles are most likely caused by “irregularities” in the matrix structure, which needs ad-
ditional dummy variables along the diagonal to match the closest 2n. Using the same base,
a trigonal is also inefficient and requires exactly N = 2n distinct unitaries and presents a
clear pattern that allows a priori determination of the gate sequence for any N . Noteworthy
is that the decomposition of a tridiagonal matrix can be extended to an arbitrary number
of dimensions d (only with Dirichlet boundary conditions), and increases in efficiency while

doing so, with O
(
d d
√
N
)

unitaries. Thus, solving for higher dimensions could prove advan-

tageous.

Both cases are deemed unlikely to bring any quantum advantage. While a classical solver
can find a solution in O(κN) steps (κ is the condition number), this decomposition implies
each step of the solution process will require at least O(N2) distinct quantum circuit evalua-
tions. Although these evaluations could be completely parallelized, this would require many
parallel quantum processors outside the realm of near-term applications.

On the other hand, it is possible to efficiently decompose a tridiagonal matrix in n + 3
gates using multi-controlled quantum gates. Given the highly efficient decomposition, this
method could achieve quantum advantage, although that would depend on scaling of opti-
mization iterations and ansatz depth. Noteworthy is that using multi controlled gates allows
extending this decomposition to other boundary conditions with a minor overhead. How-
ever, CmNOT gates require more advanced hardware than currently available. Nonetheless,
it is shown this decomposition requires a far shallower circuits compared to HHL, suggesting
easier implementation.

To summarize, it was impossible to find a gate decomposition both efficient and with lim-
ited hardware requirements: a simple decomposition requires exponentially many unitaries,
whereas an efficient one requires complex multi controlled gates.

Practical implementation of VQLS

To validate these decompositions, assess feasibility and find some preliminary performance
estimates, VQLS was run using the high entanglement decomposition of the aforementioned
tri-diagonal matrix. While this implementation is not yet feasible on current quantum hard-
ware, this approach has been tested on a quantum simulator to assess the potential of future
capabilities, given that simpler bases are unlikely to ever outperform classical computations.
In general, numerical runs highlighted substantial difficulties in obtaining a meaningful re-
sult. While for n = 2 qubits VQLS successfully converged most cases, n = 3 was far less
likely to succeed, and n = 4 never converged to meaningful results. In all cases, the total
number of iteration was far larger compared to best classical methods. Thus, several strate-
gies were attempted to ease optimization by acting on the ansatz, the cost function and the

73

optimization procedure.

Firstly, to reduce the problem’s dimensionality, an ansatz with a single layer of Ry gate
was attempted. This approach does indeed reduce optimization complexity and lead to
lower iteration count. However, the quality of the solution deteriorates, showing a shallow
(hardware efficient) ansatz is not capable of achieving satisfactory results for this test case
and leads to errors hardly acceptable in typical fluid dynamics applications. Furthermore,
gradual ansatz parameters optimization was attempted but resulted in no improvement in
overall results, indicating high interconnection between ansatz parameters does not allow in-
dependent optimization. Overall, while an efficient matrix decomposition was found, ansatz
optimization remains one of the main hurdles preventing successful implementation. If no
problem-specific ansatz can be devised, optimization complexity and circuit depth increase
exponentially, making a quantum advantage unlikely.

Secondly, a tangible improvement was detected when using a non normalized cost func-
tion with respect to a normalized one. Although this does not guarantee a solution when
the cost is null, this can be easily verified and re-attempted until a solution is found. On the
other hand, a linear combination of non-normalized and normalized cost functions did not
bring any advantage compared to the normalized case. Thirdly,a brief comparison of classi-
cal optimizers (Powell and Cobyla) showed Cobyla requires far fewer iterations but achieves
worse results and is more susceptible to numerical noise. Sensibility analysis showed incom-
patibility of numerical differentiation schemes because of numerical noise, making analytical
gradient measurement indispensable if gradient-based methods are chosen.

To summarize, at the current state of the art, VQLS can solve simple FE problems for
n = 2, but fails to scale to larger problems successfully. The main issues preventing a so-
lution were large plateaus in the cost function, shot noise in cost evaluation and curse of
dimensionality. In particular, random sampling of the domain revealed a worrisome expo-
nential decline of gradient and median partial derivative value, which would explain the
difficulties encountered in optimizing. When comparing noise with median partial deriva-
tive, it is shown numerically that for this test case, maintaining the same level of precision
in median derivative measurement would require an exponential increase of the number of
shots for increasing qubit number. In a real hardware setting, vanishing gradient is even
more problematic as one has to add hardware noise to shot noise, which would make this
test case quickly unfeasible as n scales up. However, these results are limited to this test
case, and different cost function formulations might help avoid this issue.

5.1 Recommendations for future work

While this research identified several roadblocks to the practical implementation of VQLS
for discretized differential equations, future research will be necessary to either make these
results more conclusive or find alternative solutions.

74

Matrix Decomposition

When considering Pauli Decomposition of a tridiagonal matrix, although a rigorous pat-
tern was inferred, a proof by induction would help to formalize the result that a tridiagonal
matrix always require N unitaries. In addition, the central matrix element that is responsi-
ble for the mapping 011...1 → 10...0, was shown to require exactly N/2 Pauli in Figure 3.3
whereas just one unitary when Cn−1NOT gates are used (see Fig. 3.5). One could speculate
that, because all bits are flipped at once and only for this specific string, this type of binary
mapping always requires either n−1 control or an exponential number of single-qubit gates.
If a rigorous proof of this idea can be devised, it would imply that an efficient single-qubit
gate decomposition does not exist for the matrix analyzed.

Secondly, given the methods explained in this research, it is relatively straightforward
to devise an efficient decomposition (with high entanglement) of higher-order FE discretiza-
tion schemes. In this case, it would be interesting to evaluate differences in cost function
ease of optimization and if the increase in accuracy outweighs the increment in the number
of unitaries in the matrix decomposition. Similarly, one could attempt to use a high en-
tanglement decomposition on the hybrid discretization matrix to evaluate if this leads to a
better-behaved cost function. Furthermore, increasing the number of unitaries while decreas-
ing total iterations might be advantageous because unitary evaluations can be parallelized,
whereas the optimization processes generally proceed sequentially.

Shot noise

While this research provided an analytical prediction of shots noise for 〈ψ|ψ〉, a similar
prediction for | 〈b|ψ〉 |2, perhaps due to excessive approximation, does not match numerical
data as well. Future studies could improve the accuracy of this estimation. More impor-
tantly, Var(C(θ)) was only determined numerically. Based on the matrix decomposition and
its coefficients, an analytical law would be highly beneficial to give a more general assessment
to the problem of shot noise for variational algorithms.

Practical implementation of VQLS

All the results obtained suggest that, from an implementation point of view, a local cost
function as proposed by [28] is the most logical next step following this research. The van-
ishing gradient in the cost function was the biggest obstacle to successful implementation,
and Bravo Prieto et al. found this formulation helps alleviate this issue. Moreover, while
different ansatz optimization techniques did not lead to significant improvements, using a
non Normalized cost function did improve convergence, suggesting acting on the cost func-
tion is an effective lever. Similarly, Hamiltonian morphing as introduced in [29] could be an
effective solution.

75

Furthermore, because the exponential scaling of the necessary number of shots is mostly
driven by the gradient vanishing rather than a precision loss for higher qubits, evaluating a
local cost function (or other different formulations) would be crucial to understanding if this
problem persists.

In addition, if the ansatz is exponentially deep, it is reasonable to expect scaling to a
high number of qubits (hence thousands of optimization variables) would require gradient
measurement to converge to a solution successfully. Therefore, implementation and testing
of pre-existing routines for analytical gradient measurement [28], especially to evaluated fea-
sibility and resilience to noise, is a logical next step.

Finally, devising an efficient ansatz (i.e. precise but not exponentially deep) is a funda-
mental step for successful practical applications and scalability. However, while there are
examples of efficient ansatzes in the literature, in the most general case, a solution for a
discretized FE can have an arbitrary shape, which makes tailoring an ansatz very difficult
since reducing the number of variables decrease its degrees of freedom.

Other prospects

While many aspects are still yet to be evaluated, the author’s preliminary assessment
is that approximating differential equations with classical discretization methods to solve
them with VQLS does not seem a successful approach. In the literature, Lubash et al.
[53, 54] showed a variational circuit capable of solving differential equations that rely on
specific quantum routines to approximate a derivative operator. Therefore, the author sug-
gests comparing these methods to the results presented in this research when planning future
studies.

76

Appendix A

Quantum computing fundamentals
and theoretical backgroud

This appendix briefly explains some fundamental concepts of quantum computing and is
mostly based on [24] where a more in-depth discussion can be consulted.

A.1 Fundamentals

In quantum computing a commonly used notation is Dirac notation or bra-ket notation. In
simple terms, a ket |x〉 is a column vector and bra 〈x| a row vector such that:

|x〉 =


x1

x2
...
xN

 , 〈x| = |x〉† =
[
x∗1 x∗2 . . . x∗N

]
(A.1)

where † indicates the conjugate transpose and ∗ the complex conjugate. It directly follows
that the matrix multiplication 〈a|b〉 is equivalent to a inner product between two vectors
(resulting in a scalar) and |a〉 〈b| the outer product (resulting in a matrix).

Qubits and superposition

Similarly to classical computation, a qubit (or quantum bit) is the fundamental unit of
information. The key difference between a classical and quantum bit is that while a the first
can only be either 1 or 0, a qubit can be in a state of “superposition” which means it is
possible to form a linear combination of the two states. Therefore, the state of an arbitrary
qubit |ψ〉 can be described as:

|ψ〉 = α |0〉+ β |1〉 = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
(A.2)

77

where |0〉 and |1〉 are the computational basis states. In other words, if a qubit is in a
superposition state it is somehow “both 0 and 1”. However, once the qubit is measured,
it collapses in either of the two states with probability |α|2 for 0 and |β|2 for 1. Note that
probabilities have to sum to 1, which means |α|2 + |β|2 = 1.

Superposition is at the core of quantum computing and is the driver behind the surprising
computing capabilities of this technology. This becomes evident once multiple qubits are
considered: for example, let us compare two classical bits and two qubits. Since a classical
bit can only be either 0 or 1, a two components vector is enough to represent all the possible
states of the classical register 00, 01, 10, 11. However, because a qubit can exist in a
superposition of 0 and 1, a vector representing the state of two qubits must have four
components to accommodate a linear combination of all possible states.

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1

 . (A.3)

In fact, describing a superposition of these 4 possible states requires 4 coefficients

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 =


α
β
γ
δ

 . (A.4)

It is clear the vector that describes a qubit register quickly scales up in the number of qubits:
the state of three bits can be described by a vector of length three, whereas, since 23 = 8
possible combinations exist for a three bits register, a quantum state can only be fully de-
scribed by a vector of length 8, which would take into account the possible superposition of
these states (c1 |000〉+ c2 |001〉+ c3 |010〉+ c4 |011〉+ c5 |100〉+ c6 |101〉+ c7 |110〉+ c8 |111〉).

Effectively, the state vector size doubles every time a qubit is added (because so does the
number of bits combinations), explaining why a relatively small number of qubits can encode
large registers. Formally, the state of a qubit register is computed by the tensor product of
the qubits, so that |00..0〉 is a short notation for |0〉 ⊗ |0〉 ⊗ . . .⊗ |0〉.

Quantum circuits and gates

The sequence of logical operations making up a quantum algorithm is usually visual-
ized through quantum circuits, as shown in Figure A.1. The horizontal lines are “wires”
along which the logical operations are performed sequentially and each wire corresponds to
a qubits. In this example, qubits are initialized as |0〉 state (as shown in the left-hand side
of the circuit) so that the overall initial state is |00〉.

78

|0〉 X

|0〉 H

Figure A.1: Example of quantum circuit

Qubits are manipulated through quantum gates, represented as X and H . These

are unitary matrices (meaning their adjoint is also their inverse UU † = I) that alter the
state of a qubit. In this example

X =

[
0 1
1 0

]
and H =

1√
2

[
1 1
1 −1

]
. (A.5)

The way these operations are performed is matrix multiplication. For example, X (sometimes
called NOT) is responsible for flipping a qubit for |0〉 to |1〉 and vice versa:

X |0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉 . (A.6)

similarly, H allows to create the aforementioned superposition state

H |0〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
. (A.7)

In this work, the convention used is that the top wire represents the rightmost bit of the
tensor product defining the quantum state. Therefore, before measurement, the circuit in
Figure A.1 results in the quantum state

|ψ〉 =
1√
2

[
1
1

]
⊗
[
0
1

]
=

1√
2


1

[
0
1

]
1

[
0
1

]
 =

1√
2


0
1
0
1

 . (A.8)

Measurements

In Figure A.1, represents a measurement operation after which the superposition

of a qubit is destroyed, and the qubit collapses in one of the two states of the basis used to
measure (in the simplest case, either 0 or 1). Since superposition is destroyed by measure-
ment, this operation cannot be carried out in the middle of the circuit but is always the last
operation that allows for output readout.

Often, one measurement gives little information about the state of a qubit: it is nec-
essary to repeat the circuit many times and the output of each experiment to obtain an

79

accurate measurement. For example, if the results of a series of experiments is 800 times
1 and 200 times 0, one can estimate the probabilities P (1) = 800/1000 = 4/5 = |β|2 and
P (0) = 1/5 = |α|2.

In Figure A.1 one would measure P (1) = 1 for the first wire because its state is

[
0
1

]
. On

the other hand, the second qubit will have P (0) = P (1) = 1/2, so that the system as a whole
will collapse with probabilities P (10) = P (11) = 1/2, which is in line with (A.8), (A.4).

Entanglement

Quantum logic gate can also be multi-qubit, meaning they affect more than one qubit.
Figure A.2 shows a circuit with a Hadamard (single qubit gate mentioned before) and a
CNOT (controlled not) which essentially is a multi-qubit gate that flips the target if and
only if the control is 1.

|0〉

|0〉 H

Figure A.2: Quantum circuit with entangled qubits

This means that a CNOT will map |01〉 → |11〉 and |11〉 → |01〉, but will keep unchanged
|00〉, |10〉. Therefore, in Figure A.2:

|00〉 H−→ |00〉+ |10〉√
2

CNOT−−−→ |00〉+ |11〉√
2

. (A.9)

The final state of (A.9) is called Bell State and is a famous example of entangled qubits.
What makes this state peculiar is that the outcome of one qubit will affect the other even if
the other is left untouched. In other words, since the system can only be |00〉 or |11〉, if one
of the qubit is measured and collapses in 0 the other must be also 0 and vice-versa. Note
that what is so peculiar is not that the two qubits have the same measurement outcome,
but that one affects the other even if the interaction happened “in the past”: for instance,
adding a X gate to the first qubit before measurement would imply that one qubit is 1 when
the other is 0 and vice-versa, but the entanglement would be equally valid.

A.2 Theoretical background of variational quantum solvers

In this section some general concepts regarding the theoretical framework underlying varia-
tional solvers will be introduced, such as operators and measurements, Hamiltonian and the
variational principle of quantum mechanics. This summary is largely based on a paper from
McClean et al. [23] and a book from Feynman [55], which clearly explains most of these
concepts.

80

Operators and measurements

In physics, an operator can be used to describe the evolution of a system: substantially, it
maps a physical system from one state to another. As any pure quantum state can be repre-
sented by a normalized vector |ψ〉 in the Hilbert space, and a linear operator is represented
by a matrix Â, this mapping is simply expressed as:

|φ〉 = Â |ψ〉 (A.10)

This might sound very abstract, but a simple example could be the rotation of the state
vector. Moreover, a state vector can be decomposed as a linear combination of base states
as:

|ψ〉 =
∑
i

Ci |i〉 =
∑
i

〈i|ψ〉 |i〉 (A.11)

where Ci are complex numbers, and
∑

i |i〉 form an orthonormal basis. Because |ψ〉 is nor-
malized,

∑
iC

2
i = 1. Note that as C2

i represents the probability of the state vector being in
the basis state |i〉, it makes perfect sense that those coefficients sum up to unity.

Now, it is necessary to introduce the concept of expectation value for a random variable
with finite outcomes as:

〈A〉 =
∑
i

piai (A.12)

where ai are the different outcomes and pi the different probabilities associated with them.
In simple terms, the expectation value is just a weighted average of the possibles outcomes
of a variable. One example could be that ai correspond to some energy state and pi the
probability that the system is in that state.

Suppose we want to perform a measurement on the state vector |ψ〉. If one wants to know
the expectation value of any of its proprieties, it is necessary to compute equation (A.12).
In general, every ai in (A.12) will correspond to a specific state |i〉. As introduced above,
the probability of |ψ〉 being in the state |i〉 is given by the projection 〈i|ψ〉 squared. Thus,
we can rewrite (A.12) as:

〈A〉 =
∑
i

C2
i ai =

∑
i

C∗i Ciai =
∑
i

〈ψ|i〉 〈i|ψ〉 ai (A.13)

where |i〉 for a orthonormal basis and ∗ indicates the complex conjugate. Then, there is a
matrix Â for which

Â |i〉 = ai |i〉 (A.14)

that is to say the vectors |i〉 are its eigenvectors and ai its eigenvalues. Remember that ai is
a scalar, so with a suitable reformulation we can write

〈A〉 = 〈ψ|
∑
i

Â |i〉 〈i|ψ〉 = 〈ψ| Â
∑
i

|i〉 〈i|ψ〉

81

that can be simplified as:
〈A〉 = 〈ψ| Â |ψ〉 (A.15)

which was obtained using the completeness relation∑
i

|i〉 〈i| = I (A.16)

To summarize, in (A.15) we proved that the expectation value of a propriety of a physical
system can be computed as a multiplication of the state vector with a suitable matrix. In
general, a quantity that can be measured (also called observable), can be expressed by an
operator, and the result of that measurement is computed as in (A.15).

Hamiltonian

The Hamiltonian is a recurrent concept in classical mechanics and quantum physics. It is
used to describe a physical system and it is generally associated with the total energy of the
system. In quantum mechanics and many classical mechanics applications, the Hamiltonian
is just the sum of the potential and kinetic energy of the particles composing the system.
Moreover, it is possible to rewrite a linear system as the minimization of a Hamiltonian (see
Section 2.3, (2.17)).

Variational principle of quantum mechanics

Let us consider a Hamiltonian M on a system Q and a quantum system S with n qubits.
The Hamiltonian can be directly derived from a physical system or used to encode an op-
timization problem. Given any quantum state |ψ〉, the variational principle of quantum
mechanics states that the expectation value of H is always larger than its smallest eigen-
value λ1.

〈H〉|ψ〉 = 〈ψ|H |ψ〉 ≥ λ1 (A.17)

Of course, 〈H〉|ψ〉 = λ1 when |ψ〉 is the corresponding eigenvector of H. Before proceeding
to the proof, it is interesting to point out why this matters: because the expectation value
is always larger than the smallest eigenvalue, we know that it is sufficient to find |ψ〉 that
minimize 〈H〉|ψ〉 to find the corresponding eigenvector In summary, this result because it is
the theoretical basis upon which variational solvers are based.

Equation (A.17) can be easily proven by recalling (A.15) and the start of its proof in
(A.13):

〈H〉|ψ〉 = 〈ψ|H |ψ〉 =
∑
i

C2
i λi ≥ λ1

∑
i

C2
i = λ1 (A.18)

where the fact that
∑

iC
2
i = 1 has been used. Furthermore the inequality is justified by the

fact that λ1 < λ2 < ... < λn by definition, thus
∑n

i=1 λi ≥ nλ1.

82

Appendix B

Glossary of quantum gates

This appendix contains a brief explanation of the quantum logic gates mentioned in the text.
For a more comprehensive review of the basics, please refer to [24].

Quantum gates are logic operations acting on qubits and are used as building blocks for
quantum circuits. Any valid quantum gate is reversible and can described by an unitary
matrix with respect to a computational basis. Quantum gates can be single or multi qubit
depending on how many qubits they act on.

Well known quantum gates are Pauli Gates X, Y, Z, that for 2 × 2 matrix space when
identity is added.

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
(B.1)

Each gate performs a specific manipulation on a qubit, for example X flips a qubit from |0〉
to |1〉 and vice versa:

X ⊗ |0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉 . (B.2)

Another commonly used gate is Hadamard, which can casts a qubits into superposition state,
for example H |0〉 = |0〉+|1〉√

2
,

H =
1√
2

[
1 1
1 −1

]
. (B.3)

A generalization of single qubit gates are rotation gates, which allow for an arbitrary rotation
along one of the three axis of the Bloch Sphere.

Rx(θ) = exp(−iXθ/2) =

[
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

]
Ry(θ) = exp(−iY θ/2) =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
Rz(θ) = exp(−iZθ/2) =

[
exp(−iθ/2) 0

0 exp(iθ/2)

] (B.4)

83

In particular, Ry is often used in variational circuit ansatzes because it allows for an arbitrary
rotation within the real numbers domain.

Other gates sometimes referenced in the literature are the continuously parametrized
U1(λ), U2(λ, φ), and U3(λ, φ, θ), defined as:

U1(λ) =

(
1 0
0 eiλ

)
, U2(λ, φ) =

1√
2

(
1 −eiλ
eiφ ei(λ+φ)

)
, U3(λ, φ, θ) =

(
cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) ei(λ+φ) cos(θ/2)

)
(B.5)

Another fundamental class of gates are controlled gates. These are acting on more than one
qubit where some are used as control. Below is the example of a CNOT, or controlled X
gate which acts as X on the target qubit (indicated by

⊕
) when the control is |1〉.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (B.6)

An example of multi controlled gate is the CCNOT, also known as Toffoli gate, which is
essentially a CNOT with two controls

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(B.7)

Clearly, one can generalize a CCNOT to an arbitrary number of control qubits. This gate is
named CmNOT in this text, where m is the number of control qubits.
On the other hand, a CNOT with negative control is just a CNOT that acts when the control
is |0〉 instead of |1〉:

X X

= nCNOT =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (B.8)

Lastly, noteworthy is also the SWAP gates that, as the name suggests, swaps out the states
of two qubits:

84

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (B.9)

85

Appendix C

Proof of convergence of Beta
distribution to Gaussian

This section contains a simple proof that a symmetric beta distribution converges to the
normal distribution for the limit of the number of sample b→∞.1

Let the random variable X be described by the beta β(b, b) distribution with probability
density function

fX(x) =
Γ(2b)xb−1(1− x)b−1

Γ(b)Γ(b)
0 < x < 1

where b is a real, positive parameter half the sample size and Γ represents the gamma
function. The mean of X is E[X] = 1/2 and the variance of X is V [X] = 1/4(2b+1). Before
taking the limit, it is convenient to subtract the mean and divide by the standard deviation.
This is easily done with the transformation Y = g(X) = 2

√
2b+ 1(X − 1/2), which is a

one-to-one transformation from A = {x | 0 < x < 1} to B = {y | −
√

2b+ 1 < y <
√

2b+ 1}
with inverse X = g−1(Y) = Y/2

√
2b+ 1 + 1/2 and Jacobian

dX

dY
=

1

2
√

2b+ 1

Thus, the probability density function of Y is

fY (y) =
1

2
√

2b+ 1
fX

(
y

2
√

2b+ 1
+

1

2

)
=

1

2
√

2b+ 1
· Γ(2b)

Γ(b)2

(
1

2
+

y

2
√

2b+ 1

)b−1(
1

2
− y

2
√

2b+ 1

)b−1

=
1

2
√

2b+ 1
· Γ(2b)

Γ(b)2

(
1

4
− y2

4(2b+ 1)

)b−1

−
√

2b+ 1 < y <
√

2b+ 1

1This proof is reported almost exactly as written in the lecture notes of Professor Robin Ryder (Ceredame
at Université Paris Dauphine) and the author of this thesis takes no credit for this work, which is reported
only for the sake of reader’s understanding. Original notes are freely available at http://www.math.wm.

edu/~leemis/chart/UDR/PDFs/BetaNormal.pdf

86

By applying Stirling’s approximation of Gamma Γ(z) =
√

2π/z(z/e)z(1 + O(1/z)) one ob-
tains

fY (y) =
1

2
√

2b+ 1
·

√
2π
2b

(
2b
e

)2b

2π
b

(
b
e

)2b

(
1 +O

(
1

b

))(
1

4
− y2

4(2b+ 1)

)b−1

=
b√

2b
√

2b+ 1
· 22b

2
√

2π

(
1 +O

(
1

b

))(
1

4
− y2

4(2b+ 1)

)b−1

=
1√
2π

4b−1

(
1 +O

(
1

b

))(
1

4
− y2

4(2b+ 1)

)b−1

=
1√
2π

(
1− y2

2b+ 1

)b−1(
1 +O

(
1

b

))
=

1√
2π

exp

(
−y

2

2

)(
1 +O

(
1

b

))
−
√

2b+ 1 < y <
√

2b+ 1

Thus, in the limit b→∞, fY (y) converges to the probability density function of a standard
normal random variable.

87

Bibliography

[1] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink,
Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigen-
solver for small molecules and quantum magnets. Nature, 549(7671):242–246, 2017.

[2] Carlos Bravo-Prieto, Josep Lumbreras-Zarapico, Luca Tagliacozzo, and José I. Latorre.
Scaling of variational quantum circuit depth for condensed matter systems. pages 1–12,
2020.

[3] Almudena Carrera Vázquez, Stefan Wörner, and Ralf Hiptmair. Quantum Algorithm
for Solving Tri-Diagonal Linear Systems of Equations. 2018.

[4] Yael Ben-Haim Sergey Bravyi Lauren Capelluto Almudena Carrera Vazquez Jack Ceroni
Richard Chen Albert Frisch Jay Gambetta Shelly Garion Leron Gil Salvador De La
Puente Gonzalez Francis Harkins Takashi Imamichi David McKay Antonio Mezzacapo
Zlatko Minev Ra Abraham Asfaw Luciano Bello. Learn Quantum Computation Using
Qiskit, 2020.

[5] Joel H. Ferziger, Milovan Peric, and Anthony Leonard. Computational Methods for
Fluid Dynamics. Physics Today, 50(3):80–84, mar 1997.

[6] P. R. Spalart. Strategies for turbulence modelling and simulations. International Journal
of Heat and Fluid Flow, 21(3):252–263, 2000.

[7] Pierre Sagaut. Large Eddy Simulation for Incompressible Flows. An Introduction, vol-
ume 12. 2001.

[8] René Steijl and George N. Barakos. Parallel evaluation of quantum algorithms for
computational fluid dynamics. Computers and Fluids, 173:22–28, 2018.

[9] René Steijl. Quantum Algorithms for Fluid Simulations. Advances in Quantum Com-
munication and Information, pages 1–15, 2019.

[10] Guanglei Xu, Andrew J. Daley, Peyman Givi, and Rolando D. Somma. Turbulent
mixing simulation via a quantum algorithm. AIAA Journal, 56(2):687–699, 2018.

88

[11] Paul Benioff. The computer as a physical system: A microscopic quantum mechan-
ical Hamiltonian model of computers as represented by Turing machines. Journal of
Statistical Physics, 22(5):563–591, 1980.

[12] Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6-7):467–488, 1982.

[13] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando G.S.L. Brandao, David A. Buell,
Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Court-
ney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney,
Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan,
Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble,
Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Ju-
lian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David
Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R.
McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud
Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen
Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel,
Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyan-
skiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga,
Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M.
Martinis. Quantum supremacy using a programmable superconducting processor. Na-
ture, 574(7779):505–510, 2019.

[14] Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, and Robert Wisni-
eff. Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits. pages
1–39, 2019.

[15] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.

[16] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man Hong Yung, Xiao Qi Zhou,
Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue
solver on a photonic quantum processor. Nature Communications, 5(May), 2014.

[17] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe,
and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–202, 2017.

[18] Román Orús, Samuel Mugel, and Enrique Lizaso. Quantum computing for finance:
Overview and prospects. Reviews in Physics, 4(January), 2019.

[19] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan.
Quantum computational chemistry. Reviews of Modern Physics, 92(1):15003, 2020.

89

[20] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical Review Letters, 103(15):1–4, 2009.

[21] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2(July):79,
2018.

[22] N. Cody Jones, James D. Whitfield, Peter L. McMahon, Man Hong Yung, Rodney Van
Meter, Alán Aspuru-Guzik, and Yoshihisa Yamamoto. Faster quantum chemistry sim-
ulation on fault-tolerant quantum computers. New Journal of Physics, 14, 2012.

[23] Jarrod R. McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The
theory of variational hybrid quantum-classical algorithms. New Journal of Physics,
18(2), 2016.

[24] Michael a. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. 2011.

[25] Andrew G. Taube and Rodney J. Bartlett. New perspectives on unitary coupled-cluster
theory. International Journal of Quantum Chemistry, 106(15):3393–3401, 2006.

[26] Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall. An
adaptive variational algorithm for exact molecular simulations on a quantum computer.
Nature Communications, 10(1), dec 2019.

[27] Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti. Quantum circuit struc-
ture learning. arXiv, pages 1–11, 2019.

[28] Carlos Bravo-prieto, Ryan Larose, M Cerezo, Yiğit Subaşı, Lukasz Cincio, and Patrick J
Coles. Variational Quantum Linear Solver: A Hybrid Algorithm for Linear Systems.
pages 1–16.

[29] Xiaosi Xu, Jinzhao Sun, Suguru Endo, Ying Li, Simon C. Benjamin, and Xiao Yuan.
Variational algorithms for linear algebra. 2(2):1–10, 2019.

[30] Christopher M. Dawson and Michael A. Nielsen. The Solovay-Kitaev algorithm. Quan-
tum Information and Computation, 6(1):081–095, 2006.

[31] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hart-
mut Neven. Barren plateaus in quantum neural network training landscapes. Nature
Communications, 9(1):1–6, 2018.

[32] Sandu Popescu, Anthony J. Short, and Andreas Winter. Entanglement and the foun-
dations of statistical mechanics. Nature Physics, 2(11):754–758, 2006.

[33] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. John-
son, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P.D.
Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. Quantum Chemistry in the
Age of Quantum Computing. Chemical Reviews, 119(19):10856–10915, 2019.

90

[34] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello Benedetti. An
initialization strategy for addressing barren plateaus in parametrized quantum circuits.
Quantum, 3:214, 2019.

[35] Ryan LaRose, Arkin Tikku, Étude O’Neel-Judy, Lukasz Cincio, and Patrick J. Coles.
Variational quantum state diagonalization. npj Quantum Information, 5(1), 2019.

[36] Tameem Albash and Daniel A. Lidar. Adiabatic quantum computation. Reviews of
Modern Physics, 90(1):15002, 2018.

[37] Kosuke Mitarai and Keisuke Fujii. Methodology for replacing indirect measurements
with direct measurements. Physical Review Research, 1(1):1–3, 2019.

[38] Miroslav Dobš́ıček, Göran Johansson, Vitaly Shumeiko, and Göran Wendin. Arbitrary
accuracy iterative quantum phase estimation algorithm using a single ancillary qubit:
A two-qubit benchmark. Physical Review A - Atomic, Molecular, and Optical Physics,
76(3):1–4, 2007.

[39] Enrico Cappanera. Quantum linear solvers for computational fluid dynamics: a litera-
ture review. Literature Study, Delft University of Technology, 2021.

[40] Panos Y. Papalambros and Douglass J. Wilde. Principles of Optimal Design. Cambridge
University Press, jan 2017.

[41] Luis Miguel Rios and Nikolaos V. Sahinidis. Derivative-free optimization: A review of
algorithms and comparison of software implementations. Journal of Global Optimiza-
tion, 56(3):1247–1293, 2013.

[42] M J D Powell. A fast algorithm for nonlinearly constrained optimization calculations
BT - Numerical Analysis. pages 144–157, Berlin, Heidelberg, 1978. Springer Berlin
Heidelberg.

[43] Mjd Powell. The BOBYQA algorithm for bound constrained optimization without
derivatives. NA Report NA2009/06, page 39, 2009.

[44] Aram Harrow and John Napp. Low-depth gradient measurements can improve conver-
gence in variational hybrid quantum-classical algorithms. pages 1–45, 2019.

[45] Tyson Jones, Anna Brown, Ian Bush, and Simon C. Benjamin. QuEST and High
Performance Simulation of Quantum Computers. Scientific Reports, 9(1):1–11, 2019.

[46] IMB Quantum. https://quantum-computing.ibm.com/, 2021.

[47] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and
Daniel A. Spielman. Exponential algorithmic speedup by a quantum walk. Conference
Proceedings of the Annual ACM Symposium on Theory of Computing, pages 59–68,
2003.

91

[48] Daniele Boffi, Franco Brezzi, and Michel Fortin. Mixed Finite Element Methods and
Applications, volume 44 of Springer Series in Computational Mathematics. Springer
Berlin Heidelberg, Berlin, Heidelberg, sep 2013.

[49] Maurice George Kendall, Alan Stuart, and John Keith Ord. Kendall’s advanced theory
of statistics. London, 6th ed. edition, 1994.

[50] Rodney Coleman, N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate
Distributions. Journal of the Royal Statistical Society. Series A (Statistics in Society),
159(2):349, 1996.

[51] Athanasios Papoulis. Probability, Random Variables and Stochastic Processes. McGraw-
Hill Higher Education, fourth edition, 2017.

[52] Aidan Pellow-Jarman, Ilya Sinayskiy, Anban Pillay, and Francesco Petruccione. A com-
parison of various classical optimizers for a variational quantum linear solver. Quantum
Information Processing, 20(6), 2021.

[53] Michael Lubasch, Jaewoo Joo, Pierre Moinier, Martin Kiffner, and Dieter Jaksch. Vari-
ational quantum algorithms for nonlinear problems. Physical Review A, 101(1):10301,
2020.

[54] Michael Lubasch, Jaewoo Joo, Pierre Moinier, Martin Kiffner, and Dieter Jaksch. Sup-
plemental Material: Variational quantum algorithms for nonlinear problems. arXiv,
1(c):1–7, 2019.

[55] Feynman. The Feynman Lectures on Physics, Vol. III: The New Millennium Edition:
Quantum Mechanics. 2011.

92

