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Mathematical Notation and Abbreviations

Throughout the thesis we use lower case letters for scalars, caligraphic letters for sets, bold

lower case letters for vectors andbold upper case letters formatrices. Wehave the following

abbreviations and symbols:

Symbol Explanation

R,R+ set of real and positive real numbers

x data point, typically a vector containing the different node or edge values

x0 augmentation or contrast of a data point.

D set containing the observed data. Can contain data points, labels etc.

z embedding vector obtained by passing x through an encoder

z0 embedding vector obtained by passing x0 through an encoder

gw(x) function mapping x to some output parameterized byw, usually a neural network

f(z, z0) similarity function for two embedding. Usually the normalised cosine similarity

p(·) probability density of the argument

q✓(·) parameterized variational distribution used for approximation

L(·) loss or cost function that is being optimized

f � g composition of two functions f and g
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1 Introduction

Research on neural networks has made significant progress in improving their perfor-

mance on classification tasks. Nevertheless, they still perform poorly in scarce data set-

tings and do not use the information contained in unlabeled data (Alzubaidi et al., 2021).

To address this, researchers developed so-called contrastive learning (CL) methods that

alleviate the two issues (Jaiswal et al., 2021). These methods use positive and negative ex-

amples for each data point and train a neural network (the encoder) such that it maps the

positives close to each other and the negatives further apart in an embedding space (e.g.

Chen et al., 2020, He et al., 2020, Zhu et al., 2020, You et al., 2020). In image processing,

a positive example for a picture of a German Shepherd could be a Golden Retriever as they

stem from the same underlying latent class dog (Figure 1). A cat would be a negative exam-

ple. In most applications, data augmentations such as colour jittering or cropping of the

original data point (anchor) are used to generate the positive examples and the negative

ones are random samples from the data. Problem-specific knowledge can be imbued into

the learner via the augmentation design and the generated embeddings containing that

knowledge can then be fed into a downstream classifier. To optimize the parameters of the

encoder contrastive losses are used, among which the InfoNCE objective (van den Oord

et al., 2018) has been applied to train many of the best-performing models.

While the contrastive learning approach has been successful in a wide variety of domains,

ranging from graph classification to computer vision, understanding and extending it is

still a flourishing field of research (e.g. You et al., 2021, Bardes et al., 2022, Zbontar et al.,

2021). Two areas that have been largely unexplored are Bayesian interpretations of con-

trastive learning and the generalization of the developedmethods to topological structures

beyond graphs. Therefore, this thesis researches the InfoNCE objective with respect to

these two points. In particular, we investigate (1) how to implement Bayesian InfoNCE

learning and how to use it to measure uncertainties and (2) how InfoNCE learning can be

extended to a class of topological objects called simplicial complexes (SCs). A Bayesian

approach could facilitate the adoption of CL methods in high-risk applications such as the

medical field where accurate uncertainty quantification is indispensable. Furthermore,

SCs have been shown to be particularly useful for modelling flows (e.g., mass, energy, in-

formation, or trajectories) and incorporating them into a contrastive learning framework

promises to yield a method that can generate good representations for these kinds of data

(Barbarossa and Sardellitti, 2020, Roddenberry et al., 2022).

To enable the reader to read about each of these topics independently from each other, the
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thesis is divided into these two parts. While the methods developed in the first part are

of a general nature, we apply them to graphs and show that they can be used to achieve

improvements on existing baseline tasks in that domain. This results in the following con-

tributions that we make in the first part:

(i) We propose variational graph constrastive learning (VGCL), a Bayesian approach to

contrastive learning that incorporates the epistemic uncertainty in the weights in

a principled manner. It defines Gaussian priors over the network parameters and

learns the related posterior distributions. We further show that the approximating

variational family can be regularized to improve downstream accuracy for node clas-

sification tasks.

(ii) We propose a new approach for measuring uncertainty in contrastive learning based

on the disagreement between positive samples and call it the Contrastive Model Dis-

agreement Score (CMDS). In contrast to existingmethods, it can incorporateBayesian

uncertainty and is directly related to the likelihood of a probabilistic model of con-

trastive learning. On graphs, it can be used to outperform currently existing uncer-

tainty measures.

The contributions we make in the second part are:

(i) We propose Contrastive Learning on Simplicial Complexes (SCL), design related aug-

mentations and show that it can be used to generated effective representation for edge

flow data.

(ii) We design augmentation methods that are able to incorporate knowledge about the

spectral structure of simplicial complexes. This can be used to introduce information

related to the so-called Hodge decomposition of the spectrum into the embeddings.

The latter is foundational in numerous applications.

(iii) We introduce a reweighing of the negative examples based on the similarity of their

Hodge components to encourage a spectrally organized embedding space.
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Figure 1: A conceptual example of contrastive learning with animal images. Dogs are similar to

each other and mapped to the same place in the embedding space. Cats are mapped to a place

further away. The resulting embeddings reside in the euclidean space and are often separable by a

linear classifier (red line). They can for example be used in a subsequent classification task.

1.1 Structure of the Thesis

We divide this thesis into two parts (1) Variational Graph Contrastive Learning and (2)

Contrastive Learning on Simplicial Complexes. Each part contains a background section, a

methodology, experiments, results and related discussions. To read the second part knowl-

edge of contrastive learning and neural networks is required (Sections 2.1 and 2.3).
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Part I

Variational Graph Contrastive Learning



2 Background I

2.1 Neural Networks and their Bayesian Interpretation

2.1.1 Neural Networks

Many problems in machine learning boil down to approximating some ideal function g⇤

(Goodfellow et al., 2016). Usually, this is done by optimizing the parametersw of a surro-

gate mapping gw(x). For example, in a linear regression, the true relationship between the

data x 2 RF and the dependent variable y 2 RM is approximated with a linear function of

the form y = W x + b, b 2 RM is the offset or bias,W 2 RM⇥F is the weight matrix, and

w = (W,b).

Often the ideal function g⇤ is complex and nonlinear. Thus, to learn it accurately, the func-

tion gw(x) needs to be able to represent a sufficiently large function space. A strategy to

achieve this, is to take gw(x) to be a composition of K functions of the form gw[i] (x) =

�
�
W[i] x+ b[i]

�
with � being a nonlinear transformation. Hereby, the dimensions of the in

and outputs for each function can be freely chosen and the dimensions of the weightsW[i]

and biases b[i] are adjusted accordingly. This can be written mathematically as:

gw(x) = F(gw[K] � . . . � gw[2] � gw[1](x)) (1)

where F(x) is some function that transforms the output of the neural network into the

format that is required for the problem at hand andw = (w[1], ...,w[K]). This construction

of gw(x) is commonly known as a (deep) neural network with K (hidden) layers. If the

weights are visualised as connections between the different components of the data, it leads

to a network-like structure as displayed in Figure 2. The so-called activation function �(x)

is often taken to be the rectified linear unit (ReLU), the Sigmoid or the hyperbolic tangent

(Tanh).
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Figure 2: A two layered neural network which takes some input data x 2 R3 with three features.

The grey circles represent computational units (neurons), that arise from computing a weighted

sum of the input coupled with a nonlinear transformation. In this example the output is one-

dimensional and we model it as y = F(gw[2](gw[1](x))) with gw[1](x) : R3 ! R4, gw[2](x) : R4 ! R3

and F : R3 ! R1. The latter is the sum of the values in the final neural network layer, i.e.

F(x) = W[3] x+ b[3]. Such an output is for instance used in regression problems where the task is

to predict a single number.

A theoretical result that supports using neural networks to approximate g⇤ is the Univer-

sal Approximation Theorem (Hornik et al., 1989). It states that a neural network with a

single hidden layer and a sufficiently large number of neurons, coupled with certain mild

assumptions about the nonlinearity �, can approximate any continuous function defined

on a compact subsets of the real coordinate space. Nevertheless, in practice the number

of required neurons to approximate a complex function is often very large and it is more

computationally efficient to stack them in a layer-wise fashion, which gives rise to the con-

cept of deep neural networks. Universal approximation results for the arbitrary depth case

and for structures such as graphs exist (Lu et al., 2017, Brüel Gabrielsson, 2020).

2.1.2 Optimizing Neural Networks

To obtain a gw(x) that closely resembles the idealmapping g⇤ between the input and output

space, one needs to find suitable parametersw. The first step is to pick a differentiable cost

or loss function L(gw(x)) that evaluates the output of the neural network. Subsequently,
we try to find the parameters that minimize/maximize L(gw(x)) (Goodfellow et al., 2016).
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Commonly, the mean squared error (MSE) is used in regression settings and the cross-

entropy loss in classification settings. Here the labels are included in the calculation of the

loss and we could write L(gw(x),y). However, in unsupervised learning, loss functions are
used that do not depend on labels and we thus stick to the more general notationL(gw(x)).
Moreover, we simplify the notation and write L(w;x). The expected value of the loss over

the data D is used whenever applicable:

L(w;D) = Ex⇠p(D) [L(w;x)] . (2)

The parameters that minimize eq. (2) can be (approximately) found with a (stochastic)

gradient descent algorithm. The latter iteratively adjusts the parametersw in the opposite

direction of the gradient of the loss rL(w;x). The update step for one data point can be

formally written as:

w(t+1) = w(t) � ⌘ rL(w(t);x) (3)

where w(t) is the parameter vector at the current time step, w(t+1) denotes the parameter

vector at the next time step and ⌘ is the learning rate, that determines the step size during

each iteration. Training a neural network then consists of two steps that are repeated until

some criteria is met: (1) pass some data through the model to calculate the loss, (2) use

a form of gradient descent to update the weights. Hereby, the first step is often called

a forward pass and the second a backward pass. One iteration over the entire dataset is

called an epoch. While this introduces the basic mechanism behind gradient descent in

practice many challenges exit, such as increasing the speed of the algorithm or finding the

best parameter(s) ⌘, for which more sophisticated implementations have been developed

(Robbins, 1951, Kingma and Ba, 2015, Goodfellow et al., 2016).

2.1.3 Bayesian Neural Networks

Being Bayesian in a neural networkmeans that we do not only learn a point estimate for the

weights, but infer a posterior distribution (Jospin et al., 2022, MacKay, 1992, Neal, 1992).

By Bayes Theorem this distribution is defined as:

p(w | D) =
p(D | w) p(w)

p(D)
=

p(D | w) p(w)R
w0 p (D | w0) p (w0) dw0 (4)

where p(D | w) is the likelihood of the data under ourmodel and p(w) is a prior distribution

over the weights that can be designed to introduce problem-specific prior knowledge into

the network. Training the network results in posterior distributions over the weights that

reflect the uncertainty given the observed data. As a consequence, when we sample the
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weights of a Bayesian Neural Network (BNN) and input some data we obtain a sample

from the related output distribution. By repeated sampling, we can thus estimate relevant

uncertainty measures for our predictions. If the output of our neural network for a new

data point is y, then the so-called predictive distribution is:

p(y | D) =

Z

w

p(y | w) p(w | D) dw = Ep(w|D)[p(y | w)] (5)

where p(y | w) is the probability distribution that arises frompassing the data point through

the neural network. This probabilistic approach to machine learning comes with a cost as

the posterior distribution is usually intractable and has to be approximated. Traditionally,

this is done by eitherMarkov ChainMonte Carlo (MCMC)methods or variational inference

(VI) methods (Neal et al., 2011, Graves, 2011, Blundell et al., 2015). The first, are computa-

tionally expensive but provide asymptotically exact inference, while the second are faster

but are not guaranteed to converge to the true posterior. More recently, other cheap ap-

proximations of the posterior such as dropout or Laplace inference have also been shown

to yield good performance (Gal and Ghahramani, 2016, Daxberger et al., 2021).

2.1.4 Variational Inference in Bayesian Neural Networks

In variational inference, we model the posterior distribution of the weights of a neural

network p (w | D)with a (tractable) parameterized distribution q✓ (w). To find parameters

✓ under which the variational distribution resembles the posterior, we minimize the KL

divergence:

KL [q✓(w)kp(w | D)] :=

Z

w

q✓(w) log
q✓(w)

p(w | D)
dw

= Eq✓(w) [log q✓(w)� log p(w | D)] .

(6)

Nevertheless, doing this directly is impossible as we are not able to access the true poste-

rior. Instead we maximize a surrogate objective called the evidence lower bound (ELBO).

To derive it, we first rewrite the KL divergence as

KL (q✓(w)kp(w | D)) = Eq✓(w) [log q✓(w)]� Eq✓(w)[log p(w | D)]

= Eq✓(w) [log q✓(w)]� Eq✓(w)[log p(w,D)� log p(D)]

= Eq✓(w) [log q✓(w)� log p(w,D)] + log p(D)

= log p(D)� Eq✓(w)


log

p(w,D)

q✓(w)

�
.

(7)

If we rewrite the KL divergence like this it is easy to note that only the second part depends

on parameters that we can optimize. Thus by dropping the first term and averaging over
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the data we get the surrogate objective that we want to maximize:

L(✓;D) := ED,q✓(w)


log

p(w,D)

q✓(w)

�
. (8)

To see that we have access to p(w,D) and to gain some additional insight into what is

happening when a Bayesian Neural Network is trained with VI, rewrite the loss function

as:

L(✓;D) = ED,q✓(w) [log p(w,D)� log q✓(w)]

= ED,q✓(w) [log p(D | w) + log p(w)� log q✓(w)]

= ED,q✓(w) [log p(D | w)] + Eqw(w)


log

p(w)

q✓(w)

�

= ED,q✓(w) [log p(D | w)]�KL (p(w)kq✓(w)) .

(9)

From this, it can be seen that we maximize an empirical term (the Log-likelihood), that

depends on the data, while keeping the KL divergence between the prior and the varia-

tional distribution as small as possible. To optimize the (negative) objective with gradient

descent we need to compute the gradients of the parameters. Unfortunately, this is not a

simple task as we cannot move the gradient operator w.r.t. the parameters inside the ex-

pectation over the weights. To get around this the so-called reparametrization trick can be

used whichmoves the uncertainty from the parameters into an independent noise variable

(Kingma et al., 2015, Blundell et al., 2015).

2.2 ProcessingGraph-StructuredDatawithNeuralNetworks

In the following section the basic concepts behind Graphs are defined and an introduction

to processing graph-structured data with Neural Networks is provided. We approach the

material from a so-called spectral point of view and roughly follow Isufi et al. (2022). The

spectral perspective provides a mathematically thorough underpinning and a connection

to the frequency domain. The latter will be used in the second part of the thesis and in-

troducing it now will keep the document consistent. The other perspective on GNNs is

called spatial and a comparison between the two can be found in (Zhang et al., 2019). To

read the following section, an understanding of Neural Networks and their optimization is

required.

2.2.1 Graphs

A graph G is a mathematical object that consists of a set of N nodes V and a set of edges E
that connect pairs of nodes. The weights of the edges of a graph are stored in an additional

TU Delft 9



weight matrixW. For an undirected graph, the neighbourhood of a node i consists of all

the nodes that are are connected to it via an edge. Formally, we can write this as

Ni = {j 2 V : (i, j) 2 E}. (10)

The structure of G is usually represented in form of a generic matrix S 2 RN⇥N , called the

Graph Shift Operator (GSO), whose only required property is that

[S]ji = sji = 0 whenever (i, j) /2 E for i 6= j. (11)

Frequently used Graph Shift Operators are the adjacency matrix A with nonzero elements

[A]ji = aji = W(i,j) > 0 and the Laplacian L = D � A. In the latter case, D = diag(A1)

is the degree matrix that contains the degree of each node on the diagonal. We represent

data observed on top of a graph, such as node features, in form of a graph signal vector

x 2 RN where the i th entry [x]i = xi is the value at node i. Depending on the situation,

different graph-based tasks are performed using this data. The most-frequent ones that

include lables are:

• Node Classification: In this task, labels of a subset of nodes are given and we

attempt to predict the labels of the unlabeled ones. An example could be the inference

of the topic of papers in a citation network.

• Graph Classification: This task focuses on predicting a label for an entire graph

structure. Examples are the categorization of proteins or the classification of images

(in graph form).

• Signal Classification: Here, several different signals are given on a common un-

derlying graph structure. The task is then to classify these signals into different cat-

egories. An example is the categorization of different brain activity states in a pa-

tient. The underlying brain network remains the same for all states, while the activity

changes.

2.2.2 Graph Convolutional Filters

To process graph-structured data, Graph Convolutional Filters (GCFs) can be used. A GCF

is based on the shift operator S and operates on the node feature values x 2 RN . In its

most general form it can be written as:

z =
KX

k=0

hkSkx (12)
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with h = [h0, . . . , hK ]
T being the filter parameters and z 2 RN being the transformed node

values. The locality of such a filter depends on the orderK and multiplying the GSO once

with the graph signal spreads the information in the features by atmost 1-hop. To illustrate

this, if the shift operator was the binary adjacencymatrix, without self-loops, andwewould

multiply it it with x, then the output for a specific node would be the sum of the features of

the neighbouring nodes (Figure 3).

For a spectral interpretation of this filter the eigendecomposition of S = Udiag(�)U�1 can

be leveraged to define a Graph Fourier Transform (GFT) of the signal x, which is defined

as

x̃ = U�1x. (13)

This GFT of a graph signal can be interpreted as a projection onto the eigenspace of the

Graph Shift Operator S. Then we can use eq. (13) to map the filter into the frequency

domain :

z̃ = U�1z =
KX

k=0

hk diag
�
��k

�
x̃ (14)

with ��k 2 CN :
⇥
��k

⇤
i
:= �k

i
(details in appendix A). The value at index i then turns out

to be

z̃i =
KX

k=0

hk�
k

i
x̃i = ĥ(�i)x̃i (15)

with h̃(�) =
P

K

k=1 hk�k. Thus, the graph convolutional filter in the graph domain, can be

seen as a pointwise multiplication in the frequency domain (reminiscent of the convolu-

tional theorem). Furthermore, what we multiply the (fourier-transformed) signal with, is

the frequency-response of the filter h̃(�). In that sense, learning the filter parameters can

be seen as optimizing for a specific frequency-response.
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Figure 3: In this example 5 values on the nodes are observed, i.e x = [x1, x2, x3, x4, x5]. For a filter

z = Ax (K = 1, h0 = 1) without self-loops wewould have z1 = x2+x3+x4+x5. This filter is local in

the sense that each node only receives information from its immediate neighbours. Analysing and

designing filters in the graph domain as being done in this figure is called the spatial perspective,

as alluded to in the introduction to this section.

2.2.3 Graph Convolutional Neural Networks

Graph Convolutional Neural Networks (GCNNs) consist of multiple Graph Convolutional

Filters that are combined to be able to learn a larger variety of functions. Most of the pop-

ular GCNN architectures stack GCFs layer-wise and place a nonlinear activation function

� in between each layer. The output at each layer l can then be written as:

Z` = �

 
KX

k=0

Sk Z`�1H`k

!
(16)

here Z` 2 RN⇥Fl is a matrix that can contain multiple features for each node, the exact

number Fl depends on the layer. Correspondingly, we also have a matrix H`k for the lth

layer that contains the kth filter parameters. To give a specific example of such an archi-

tecture, let us consider the Graph Convolutional Network (GCN) introduced by Kipf and

Welling (2017). In their paper the authors choose S = D�1/2(I + A)D�1/2, K = 1 and

H`0 = 0. Thus, a 2-layered GCN is defined as:

Z1 = �
⇣
D� 1

2 (I+A)D� 1
2XH11

⌘

Z2 = �
⇣
D� 1

2 (I+A)D� 1
2Z1H21

⌘ (17)
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Figure 4: The basic structure of a Graph Neural Network (GNN). Often a number of dense layers

are added to transform the output or increase the expressivity of the network. They take the trans-

formed node features as inputs.

where Z2 contains the processed node features after the second layer. Furthermore, the

degree matrices D are introduced to normalise the adjacency matrix A. The GCN is local

in the sense that it only aggregates information from 2-hop neighbours for each node. In

a Graph Neural Network, the weights of the network are the filter parameters. However,

often additional dense neural network layers are added or a parameterised loss function

is used after the GCN layers (Figure 4). Therefore, we will refer to a general weight of a

neural network as w. Nevertheless, if we want to specifically emphasize that we are talking

about a filter parameter we refer to it as h as in the previous section.

To illustrate how aGCN can be trained in a supervised setting consider a node classification

task where we observe labels for V nodes. Then we can use the categorical cross-entropy

loss forC classes to optimize the parameters. The output of the GCNwould be a set of node

embeddings, which are subsequently passed through a softmax layer to generate probabil-

ities for each class. The related categorical cross-entropy loss is:

Lce = �
VX

n=1

CX

l=1

ynl lnpnl (18)

whereynl is the ground-truth label, andpnl is the predicted probability for nodenbelonging

to class l. This objective can the be optimized to train the model.
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Figure 5: The basic structure of a Graph Contrastive Learner (GCL). First augmentations of the

original data point are created which are then both passed through an encoder. Note that usually

the same neural network is used as an encoder and often one of the augmentations is the identity

augmentation (i.e. the original data point is encoded). Furthermore, this figure includes a projec-

tion head, which is usually discarded after training.

2.3 Contrastive Learning with the InfoNCE

The InfoNCE loss is an unsupervised objective and aims to train a neural network such that

it maps similar (positive) data points close to each other in an embedding space (van den

Oord et al., 2018). Embeddings generated in this way capture important latent informa-

tion of the data and provide a compact and meaningful representation. Importantly, the

embeddings exist in the euclidean space and can be used as features in a variety of down-

stream tasks (e.g. classification or clustering). For images an graphs, the positive examples

of an existing data point (anchor) are usually generated by using similarity-preserving data

augmentation methods.

2.3.1 The InfoNCE as a contrastive loss

In contrastive learning we encode a data point x and its positive example x0 with encoders

Q�1 , Q�2 (typically we share weights and use the same neural network, i.e. � = �1 = �2) to

obtain the embeddings z = Q�1(x) and z
0 = Q�2(x

0). To optimize the network parameters

we then minimize the InfoNCE loss:

L = �E
X

"
log

f⇢ (z, z0)

f⇢ (z, z0) +
P

M

j=1 f⇢
�
z, z0

j

�

#
(19)
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where f⇢ (z, z0) is a similiarity function (usually the cosine similarity) with parameters ⇢

andM (negative) examples are randomly sampled from the data. Optimizing this loss en-

courages the model to map the positive data points in the numerator close to each other in

the embedding space while the negative ones are pushed further apart. In fact, learning the

InfoNCE maximizes a lower bound on the mutual information I(x; z0) (derivation in Ap-

pendix C). This means, that we train amodel to generate embeddings that (approximately)

contain the shared information between x0 and x. As a consequence, if we design data aug-

mentations that destroy the irrelevant information the relevant parts will be encoded. A

more detailed discussion about the origin of the InfoNCE is deferred to Appendix B.

2.3.2 Contrastive Learning in Practice

The general framework of the InfoNCE introduced in the previous section is highly adapt-

able and has been shown to be effective in generating useful embeddings for images and

graphs (Jaiswal et al., 2021, Balestriero et al., 2023, Xie et al., 2023). In these applica-

tions one challenge is that in practice unlabled data is used and true positives are usually

not available. An efficient work-around are similarity-preserving data augmentation tech-

niques that generate (approximate) positive samples. For instance, on images this could

be changing the colour scheme of a data point (colour jittering) and it is useful when the

latent is invariant to the colour. For example, if we wanted to differentiate between cats

and dogs, then a brown cat should be mapped to a similar place in the embedding space

as a white cat. We want to preserve the information that is not the colour and can apply

colour jittering. For graphs, common augmentations are edge dropping, feature masking

or subgraph sampling. To illustrate why these are useful consider a graph with scientific

papers as nodes, words as features and citation links as edges. If the task is to predict a

subject label for each paper (node) then it might be more relevant which other papers they

cite and not which words they contain. Consequently, a feature masking augmentation

could be a good choice so that nodes with many common citations are mapped to the same

place, even if the used words are different.

Many works that use the InfoNCE on graphs and images use a dual-branch architecture

that creates two augmentations and compare them to each other, see Figure 5 (e.g., Chen

et al., 2020, Zhu et al., 2020, You et al., 2020). Varying the augmentation method used

in each of the branches can improve the performance of the learner. Furthermore, many

popular works alter the formulation of the loss function and the used architecture. Impor-

tantly, in this thesis we follow SimCLR (Chen et al., 2020) who popularized an additional
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temperature term ⌧ and use the similarity function:

f⇢ (z, z0) = exp
✓
csim(z, z0)

⌧

◆
(20)

where csim(zTz0) = zT z0

kzkkz0k . They also introduced a parametric map (the projection head)

g⇢(·) from the embeddings to the space where the loss is calculated (Figure 5). For theo-

retical derivations we can absorb it into the similarity function:

f⇢ (z, z0) = exp
✓
csim(g⇢(z), g⇢(z0))

⌧

◆
. (21)

We denote the representations inside the space in which the loss is calculated as h = g⇢(z)

and h0 = g⇢(z0).
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3 Uncertainty in Contrastive Learning

Despite the success of the InfoNCE for learning embeddings, research into probabilistic

approaches and uncertainty estimation is rare. A notable exception is thework of Aitchison

and Ganev (2023), which proposes a generative model for contrastive learning and derives

an evidence lower bound that can be used to train the encoder. In this chapter, we extend

this result to include distributions over the parameters of the model which naturally gives

rise to a notion of (Bayesian) epistemic uncertainty for contrastive learning. We implement

this approach by training a Bayesian Graph Neural Network with Gaussian priors as an

encoder and make the empirical finding that regularizing the approximating variational

family further improves the accuracy on downstream classification tasks.

Building up upon this, we propose a new uncertainty measure for contrastive learning

based on the disagreement in likelihood due to different positive examples. In contrast to

existing uncertainty measures, it has a principled probabilistic interpretation and incorpo-

rates the epistemic uncertainty in the weights when using a BNN. The proposed measure

is inspired by research on Bayesian Variational Autoencoders that uses a reconstruction

loss (Daxberger and Hernández-Lobato, 2019). We thus show how the probabilistic inter-

pretation of the InfoNCE can be used in practice to solve problems in contrastive learning

with methods inspired by the literature on generative models. This chapter is based on

the recent publication Uncertainty in Graph Contrastive Learning with Bayesian Neural

Networks (Möllers et al., 2023).

3.1 Variational Graph Contrastive Learning (VGCL)

3.1.1 Weight Uncertainty for Contrastive Learning

In the probabilistic contrastive learning model (Aitchison and Ganev, 2023) we observe

two correlated data points x and x0 generated by two latent variables z, z0. In this setting,

the likelihood is the joint distribution p (x,x0). The mapping between the data and the la-

tents is approximated with two probabilistic encoders Q(z | x,�1), Q(z | x,�2), usually

� = �1 = �2. To be Bayesian, we then learn distributions over the weights w = (�,⇢),

where ⇢ parameterizes the similarity function. We approximate these with a a Gaussian

variational family and pick Gaussian prior distributions, i.e. p(w) =
Q

j
N (wj | µ, �2) and

q(w | ✓) =
Q

j
N (wj | ✓) where each wj is a weight of either the encoder or the projection

head. Furthermore, following Blundell et al. (2015), we reparameterize the standard devi-

ation of the variational distribution as �v = log(1 + exp(a)) and the parameter set is thus

✓ = (µv, a). The parameters for this probabilistic model are then optimized by maximizing
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the ELBO ( Appendices D and E):

log p (x,x0) � EQ(z,z0|x,x0,w)q(w|✓)

"
log

f⇢ (z, z0)

f⇢ (z, z0) +
P

M

j=1 f⇢
�
z, z0

j

�

#
�KL(q(w | ✓) k p(w)).

(22)

The first part of this equation is, for a deterministic encoder and averaging over the data,

equivalent to the InfoNCE in eq. (19) while the second part encourages the variational fam-

ily to resemble the prior distribution. During trainingwe sample from q(w | ✓) and approx-
imate the expectation in eq. (22) with a Monte Carlo estimate.

Importantely, due to how we obtain the data x, x0 (e.g. via an augmentation), the probabil-

ity of observing two similar (positive) examples together is high. The empirical InfoNCE

term encourages the model to map these correlated examples to the same place. From the

generative model perspective, this leads to a mapping such that examples generated from

similar latents have a high probability of appearing together.

3.1.2 Regularizing theVariationalFamily inBayesianContrastiveLearning

In the last section we have seen how we can train a Bayesian self-supervised learner with

Gaussian Priors. In addition to that, we propose to regularise the variational family to

encourage larger variance in the weights. This might be beneficial because we are training

themodel on augmentations, which are only an approximation to the data thatwould be the

result of a generating process given the true latents. To overfitting on these augmentations

wewant themodel to bemore uncertain and incorporate this knowledge by regularizing the

variance. Wedo this by placingGaussianhyperpriors over the parameters of the variational

family:

µv ⇠ N (0, �2
0) , a ⇠ N (µa, �

2
a
) (23)

Hereby, we can place a Gaussian over a as it can be both negative or positive. We approx-

imate these hyperpriors with their MAP estimates. We refer to the resulting approach as

Variational Graph Contrative Learning (VGCL) in what is to follow.

3.2 The Contrastive Model Disagreement Score (CMDS)

3.2.1 Introducing the CMDS

Now that we can train a contrastive learner with a probabilistic encoder we want to equip

our model with uncertainty estimates that help us predict downstream performance. Ex-

isting work focuses on the embedding uncertainty of encoding one data point x, but the
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likelihood p(x,x0) is based on two data points and is approximated with the contrastive

loss. Our uncertainty measure should thus be related to this likelihood and additionally

include the epistemic uncertainty of the weight distribution when using a BNN. To incor-

porate the contrastive nature of the problem, we propose to quantify the uncertainty of

x by using the variation of p(x | x0) under samples x0 ⇠ p(x0 | z0) that are generated by
augmenting the original data point. If the model has learned a coherent explanation for

observing x in this context, then the likelihood it assigns for different positive examples

should be similar.

A related idea exists in the literature on Bayesian Variational Autoencoders (BVAE). In

that setting, Daxberger and Hernández-Lobato (2019) measure the disagreement in the

likelihood estimates of different models sampled from a learned weight distribution. The

intuition hereby is that for a data point with low uncertainty the models should agree in

their prediction. Analogously, in contrastive learning we can sample likelihood estimates

by drawing different positive samples. Combining this with samples from the weight dis-

tributions we obtain the Contrastive Model Disagreement Score (CMDS):

DCMDS (x) =
1

P
M

t=1 lt(x)
2

with lt(x) =
p (x | x0

t
,�t,⇢t)P

M

i=1 p (x | x0
i
,�i,⇢i)

, (24)

where we generateM samples from x0
t
⇠ p(x | z0) via augmentations and ⇢t,�t ⇠ q(w | ✓)

from the learned variational families. This score measures the disagreement between the

different sampled likelihood estimates. It is small when the normalised likelihood are dif-

ferent from each other and large when they are alike. In contrast to the measure proposed

by Daxberger and Hernández-Lobato (2019), the CMDS can be used for deterministic en-

coders and it is thus not limited to Bayesian Neural Network approaches.

3.2.2 Mathematical Interpretation of the CMDS

The first step when calculating the CMDS for a data point x is to normalise theM differ-

ent sampled likelihoods. By normalising we ensure that the variation between the like-

lihoods is independent of the absolute size. Otherwise, large variations would often oc-

cur for data points with high likelihoods which would make the measure unsuitable for

our purposes. From the normalisation step we obtain the set {lt(x)}Mt=1 which we can the

use to calculate the score DCMDS(x) 2 [1,M ]. This measure of uncertainty, assumes its

maximum when the sampled likelihoods are uniformly distributed. On the contrary it

will be small when the likelihoods are different from each other, with a few values be-

ing comparably large. In the extreme case, it is equal to 1. This happens when we have

{lt(x)}Mt=1 = {0, ..., 0, 1, 0, ..., 0}.
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To position the CMDS in the field of Bayesian Statistics, let us assume that we have ob-

served some data D, then the posterior distribution over the weights of the encoder and
projection head is:

p(w | D) =
p(D | w)p(w)

p(D)
=

p(D | w)p(w)R
w0 p (D | w0) p (w0) dw0 . (25)

Suppose we infer this distribution and subsequently observe a new pair of data points

x,x0
new

. Then the new posterior for the weights based on these new data points is:

p(w | D⇤) =
p(x,x0

new
| w) p(w | D)

p(x,x0
new

| D)
(26)

where D⇤ = D [ {x,x0
new

}. We can thus write:

p(w | D⇤) = lp(w | D) (27)

with l = p(x,x0new|w)
p(x,x0new|D) being the normalised likelihood. l can be interpreted as the change

between the the original posterior and the newposterior after observing the additional data

points. Taking the finite sample estimator shows that this directly relates to the quantity

lt used in the CMDS:

l =
p(x,x0

new
| w)

p(x,x0
new

| D)

=
p (x,x0

new
| w)

Ep(w|D) [p (x,x0
new

| w)]

' p (x,x0
new

| w)
1
M

P
M

i=1 p (x,x
0
new

| wi)

= Mlt.

(28)

To summarize, we have established a link between the new and the old posterior and then

we have shown that the quantity l that connects the two can be proportionally estimated by

the quantity lt used in the CMDS. Next, note that expectation for any function gw(x,x0
new

)

(could be a neural network) under p(w | D⇤) can be estimated by using:

Ep(w|D⇤)[gw(x,x
0
new

)] ' Ep(w|D) [Mltgw(x,x0
new

)] '
MX

t=1

ltgwt(x,x
0
new

). (29)

Here we are doing importance sampling with respect to the proposal distribution p(w | D)

and with importance weights lt. This estimate depends on how well the proposal distribu-

tion p(w | D) fits the distribution p(w | D⇤). In the literature for importance sampling one
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well-known measure for this is the effective sample size (ESS) and it is the CMDS:

ESS =
1

P
M

t=1 l
2
t

= DCMDS (30)

In that sense, the disagreement score can be viewed as ameasure that quantifies the change

in distribution between p(w | D) and p(w | D⇤), or ,equivalently, the informativeness of

observing a new pair of data points x and x
0
new

. If the new pair of data points is uninfor-

mative for the model and induces only a small changes in the weights then the model has

learned a coherent explanation and is certain about its prediction.

There are two ways to understand why including additional constrastive samples into the

CMDS is beneficial. First, it is an approximation to Ep(w|D⇤)[Ep(x0new|z0)[gw(x,x0
new

)]] which

gives a better estimate of uncertainty than simply taking one pair as a sample. For the

second, note that we can theoretically shift the probabilities of the augmentations to the

first-layer weights of the neural network. Encoding an augmented data point x0, can be

seen as encoding x but with an altered (dropout) distribution in the first layer. In that

sense, we can see the procedure of encoding x and x0 as equivalent to only encoding x but

with two neural networks, one of which has a dropout first layer. When looking at it from

that perspective, sampling augmentations can be interpreted as sampling weights in the

dropout layer of the model and is coherent with the motivation of the CMDS as a measure

for information gain.
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4 Experiments

4.1 Set-up

Datasets and Experimental Procedure We evaluate the proposed methods on the

Planetoid citation datasets (Cora, Citeseer, Pubmed) for node classification. The nodes of

these datasets are scientific publications while the edges are citation links. Moreover, the

features of each node are a sparse bag-of-words in form of a 0/1 vector. If an entry is 1, then

the corresponding word appears in the article. Based on the given data, the subject label

is inferred for each scientific article. For the Cora dataset we have a total of 2708 labled

scientific articles, for Citeseer 3327 and for Pubmed 19717.

In the experiments, we follow a standard transductive set-up for SSL to evaluate the meth-

ods (Zhu, Xu, Liu andWu, 2021). That means, that we train the self-supervised learner on

all available unlabeled data points and afterwards fit a l2-regularized logistic regression on

the obtained embeddings. Hereby, we use 10% of the data to train the linear classifier, 10%

for validation and 80% for the evaluation. For the Bayesian models the classifier is trained

on the average embedding over 100 samples. We repeat this evaluation procedure 20 times

and report the mean and standard error estimates. The likelihood is approximated with

the contrastive loss whenever required.

Implementation Details We use the same graph neural network to encode both data

points and choose a two-layered GCN as in eq. (17) to do so. Similar to Zhu et al. (2020)

we choose the hidden layer size to be 128 and use ReLU activation functions. The projec-

tion head, consists of two MLP layers with a hidden layer size of 128 and an ELU activa-

tion.

Training and Hyperparameters The models are trained for 150 epochs on the Cora

and Citeseer datasets and for 1500 epochs on Pubmed. Furthermore, we follow Zhu et al.

(2020) and augment the data by masking features and dropping edges. This is done via

Bernoulli dropout and we thus tune the related probabilities pf,1, pe,1, pf,2, pe,2 to gener-

ate two augmentations of the original graph. Following Zhu, Xu, Liu and Wu (2021),

we then compare these via the contrastive loss during training. All parameters are opti-

mized with the Adam algorithm (Kingma and Ba, 2015) and as loss function we choose

the temperature-scaled InfoNCE as introduced by Chen et al. (2020). For the probabilistic

encoders 20 samples are averaged to obtain a loss estimate.
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Table 1: Test accuracies for different unsupervisedmethods on the citation datasets. Our proposed

method outperforms all the baselines on all tasks.

Dataset Cora Citeseer Pubmed

Raw features 64.8 64.6 84.8

node2vec 74.8 52.3 80.3

DeepWalk 75.7 50.5 80.5

Deep Walk + Features 73.1 47.6 83.7

GAE 76.9 60.6 82.9

VGAE 78.9 61.2 83.0

DGI 82.6± 0.4 68.8± 0.7 86.0± 0.1

InfoNCE 81.9± 0.4 70.8± 0.1 85.0± 0.1

VI-InfoNCE 82.1± 0.3 71.0± 0.1 85.0± 0.1

VGCL (Ours) 83.5± 0.2 72.2± 0.1 86.3± 0.1

Evaluation andBaselines As baselines for the accuracies obtained with ourmodel we

consider several existing methods from the literature (see table 1). Among these, the ones

with acronyms are theGraphAutoencoder, theVariationalGraphAutoencoder (GAE,VGAE,

Kipf and Welling, 2017) and Deep Graph Infomax (DGI, Veličković et al., 2019). We im-

plemented the InfoNCE, VI-InfoNCE and VGCLmethods and took the results for the other

ones from Zhu et al. (2020) where the same datasets and experimental procedure are used

as in our work.

In addition to that, we compute a number of unsupervised uncertainty measures and com-

pare their performance to the CMDS. The baselines that we compute are the Per-Sample-

Feature-Variation (PSFV, Ardeshir and Azizan, 2022), the Average-Standard-Deviation of

the features (ASTD, Hasanzadeh et al., 2021), the expected likelihood under positive sam-

ples Ex0⇠p(x|z0) [p(x | x0)] and the related Watanabe-Akaike Information Criterion (WAIC)

Ex0⇠p(x|z0) [p(x | x0)]� Varx0⇠p(x|z0) [log p (x | x0)].

4.2 Results

In the experiments we observe that the accuracy obtained with a self-supervised learner

with variational inference (VI-InfoNCE) roughly matches the performance of the learner

trained with deterministic encoders. Nevertheless, the performance of the first can be

greatly improved by regularising the variational family. We see that the regularisation
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Figure 6: T-SNE plots of the embeddings generated by a deterministic encoder (left) in compari-

son to the embeddings generated by our probabilistic encoderwith hyperpriors (right). Ourmethod

generates a better separation between the classes in the embedding spaces, which might explain its

improved performance.

indeed leads to larger uncertainty in the weights (Figure 9) and that such a learner out-

performs the other methods which were trained with the InfoNCE by up to 1.4 percent

points (Table 1). Furthermore, a tsne-plot of the embeddings shows that VGCL seperates

the classes better than its deterministic counterpart, which is a likely reasons for the better

predictions of the downstream classifier (Figure 6).

For the uncertainty estimates one can see that already for deterministic encoders theCMDS

leads to a better ordering of the samples (Figure 7). This ordering can be further improved

by introducing uncertainty over the weights. Furthermore, the uncertainty estimates of a

Bayesian model with a regularized variational family are better calibrated than the ones

obtained with standard variational inference. Interestingly, considering distributions over

the weights seems to impact some uncertainty measures more than for others (Figure 8).

Hereby, we see larger changes in the measures that are calculated based on the contrastive

loss (Likelihood, WAIC, CMDS) and comparably smaller ones in the measures that focus

on the embedding space (ASTD, ASTD_Norm, PSVF). One reason for this could be, that

the first incorporate the epistemic uncertainty in the projection head, while the second can

only make use of the incomplete epistemic uncertainty in the encoders. We have added

additional results in appendix I.
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Figure 7: (Left) Error retention curves on Cora for different uncertainty measures for a determin-

istic model trained with the InfoNCE. The CMDS yields the best sorting. (Right) Performance of

the CMDS for probabilistic models (VI-InfoNCE, VGCL). Incorporating Bayesian epistemic uncer-

tainty into the CMDS improves the ordering. The error retention curves are generated by ordering

the test embeddings by increasing uncertainty and the mean accuracy is calculated over gradually

more samples. For a good uncertainty measure the mean accuracy is high for the most certain

samples and decreases as more uncertain data points are included.

5 Discussion

We introduced Variational Graph Contrastive Learning (VGCL) as a probabilistic method

for node classification and the ContrastiveModel Disagreement Score (CMDS) as a related

uncertainty measure. Employing VGCL has led to a significant increase in accuracy on the

investigated tasks. Especially, the choice of the prior over the weights and the regular-

ization of the approximating variational family has had a strong impact on the quality of

the embeddings. In the experiments, we have shown this improved performance for a stan-

dard InfoNCE learning setting from the literature. Despite this first very positive result, we

have to be aware that many different ways of generating augmentations, picking encoders

or selecting negative samples exist. It is not clear how the obtained results would change

when the setting is varied in that way. A further investigation in that direction would be in-

teresting and could also provide insights into whether the hypothesis that regularising the

variational family essentially prevents the learner to overfit on imperfect augmentations is

valid. For problems for which we can design very accurate augmentations we would then

expect the benefits of VGCL to be smaller.

After training a probabilistic contrastive learner the CMDS can be used to obtain an or-

dering of the data points by uncertainty. Our experiments have shown that this ordering

is remarkably effective for predicting the performance in subsequent downstream. This

could lead the CMDS to find applications in areas such as active learning (e.g., to mitigate
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the cold start problem) or unsupervised out-of-distribution detection. That being said,

note that while the CMDS consistently delivered superior unsupervised ordering in all our

experiments, it is not a one-size-fits-all solution. The Disagreement Score is not bound to

a distribution and serves as a proxy measure for test accuracy in downstream tasks, rather

than providing an uncertainty over the actual embedding. The relevance of this distinction

becomes clear in a scenario where labels have been collected to train a supervised learner

(not only for evaluation) on the embeddings. In such cases, the learner could utilize the

uncertainties in the features, potentially improving its own predictions and uncertainty es-

timates. For instance, by making predictions for different sampled embeddings and mea-

suring the variation in the predictions. The current formulation of the CMDS, which is not

being calculated in the embedding space, is not amenable to these types of tasks.

6 RelatedWork

Most research on uncertainty in contrastive learning focuses on embedding uncertainty.

That means, one data point is mapped into the embedding space and then the related un-

certainty is quantified there. That can either be done by calculating measures, such as the

standard deviation of the embedding features under different augmentations directly, or

by using surrogate distributions (e.g. GMM) in the embedding space (e.g. Ardeshir and Az-

izan, 2022,Wu andGoodman, 2020,Hasanzadeh et al., 2021). Another different approach

to estimating uncertainty is by using a proxy score. For instance, Zhang et al. (2021) realize

that the temperature parameter of the InfoNCE loss can give an indication about the hard-

ness of an example. They then learn it as an input-dependent variable for each data point

which results in an uncertainty score. To the best of our knowledge, none of the existing

works quantifies uncertainty with respect to a (unsupervised) likelihood of the data. This

stands in contrast to the CMDS, which is constructed upon the probabilistic model pro-

posed by Aitchison and Ganev (2023). Furthermore, we outperform other unsupervised

measures of uncertainty such as the ASTD in our experiments.

All that being said, there are a few works that employ Bayesian reasoning for contrastive

learning. For instance, Sharma et al. (2023) incorporate unlabeled data into (supervised)

Bayesian Neural Networks and use contrastive methods to set better priors. Different to

our work, they only do last layer inference and do not consider graphs. Furthermore,

Wang andYang (2022) calculate pseudo-labels and use a Bayesian non-parametricmethod

to learn embeddings that are more robust to noise. While they conduct experiments on

graphs, their methods and contributions are mostly unrelated from what is proposed in
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this thesis. Moreover, Liu andWang (2023) propose Bayesian Self-Supervised Contrastive

Learning which uses a Bayesian approach to learn parameters in a debiased InfoNCE loss.

In this work no inference over the weights of the network is performed. Last but not least

Hasanzadeh et al. (2021) use Bayesian inference coupled with Beta-Bernoulli priors and

obtain an improved performance by learning the parameters of the augmentations. As

mentioned before, they propose the ASTD. In contrast to their work we measure uncer-

tainty with respect to the likelihood of the probabilistic model and our performance im-

provements stem from a better regularization of the variational family. Moreover, we do

full network inference including the projection head.
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Figure 8: (Left) Retention Curves on CiteSeer for VI-InfoNCE. (Right) Retention Curves on Cite-

Seer for VGCL.

Figure 9: Parameters of the first layer weight distributions of VGCL under different regular-

izations of the variance of the variational family. To generate this plot we let a ⇠ N (0,�2
a) and

�2
a = {1, 0.001, 0.0000001} from left to right in the figure. At a = 0 the variance of the variational

family is 0.301, which is very large for networks weights. A stronger prior, i.e. smaller variance,

towards this value thus leads to the weight distributions to have larger standard deviations.
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Part II

Contrastive Learning on Simplicial Complexes



7 Background II

7.1 Processing Data on Simplicial Complexes

7.1.1 Simplicial Complexes

While graphs provide a powerful framework to represent systems that aremade up of inter-

acting entities, their usefulness is limited whenmodeling data that is not naturally defined

on nodes. To make up for this shortcoming simplicial complexes have been proposed as a

powerful tool to model edge flows. In the following the basic definitions related to simpli-

cial complexes will be reviewed (Schaub et al., 2021).

Definition 7.1 (p-simplex and simplicial complex). Given a set of vertices V a p-simplex

Sp is a subset of V of cardinality p+1. A simplicial complex S is a set of simplices such that

if Sp is in S then any subset of Sp must also be in S.

According to this definition, we can see nodes as 0-simplices, edges as 1-simplices and

(filled) triangles as 2-simplices. A co-face of a p-simplex Sp is a (p + 1)-simplex such that

Sp is its subset. Illustrating this, a triangle could be a co-face of an edge that is forming it.

A face of a p+1-simplex Sp+1 is a subset of Sp+1 with cardinality p. So the face of a triangle

(2-simplex) could be an edge (1-simplex).

Figure 10: An example of a simplicial complex (Schaub et al., 2021). The 2-simplex (5, 6, 7) is

a co-face of the 1-simplices (5, 6),(5, 7),(6, 7). An example of a simplicial complex is then S =

{(5, 6, 7), (5, 6), (5, 7), (6, 7), (5), (6), (7)}

For computational purposes simplices are endowed with an orientation. Usually this is

done by fixing an ordering of the vertices (e.g. {1, 2, 3, 4}) which then induces an orien-
tation. As an example consider Figure 10. Here the direction of all edges (1-simplices)
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corresponds to the ordering of the nodes e.g. (1 ! 4), (5 ! 7), (4 ! 5). Moreover, we can

observe a signal on top of a simplicial complex. This is formally defined as:

Definition7.2 (simplicial signal). A p�simplicial signalxp is amapping froma p�simplex
to the set of real numbers RNp , where Np is the total number of p�simplices. This can be
formalized in terms of a vector xp = [xp

1, . . . , x
p

Np
]>, with xp

i
being the signal on the ith

simplex.

An edge flow is denoted as x1 = [x1
1, . . . , x

1
N1
]> where x1

e
is the flow on the edge e = (m,n) in

S1. The experiments in this thesis focus on edge flows because of their wide applicability

and for ease of exposition we drop the superscript and denote them as x.

The relationship structure of a simplicial complex can be mathematically represented via

incidencematricesBp that encode the relationships between the p�1 and p simplices (with

B0 = 0). The entries of the edge to node incidence matrix B1 are defined as

Bie =

8
>>><

>>>:

1 e = [j,i]

�1 e = [i,j]

0 otherwise

. (31)

The incident matrices for the other dimensions can be defined similarly, and this gives the

following matrices for the simplices defined in Figure 4:

B1 =

(1, 2) (1, 3) (1, 4) (2, 3) (3, 4) (3, 6) (4, 5) (5, 6) (5, 6) (6, 7)0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

�1 �1 �1 0 0 0 0 0 0 0 1

1 0 0 �1 0 0 0 0 0 0 2

0 1 0 1 �1 �1 0 0 0 0 3

0 0 1 0 1 0 �1 0 0 0 4

0 0 0 0 0 0 1 �1 �1 0 5

0 0 0 0 0 1 0 1 0 �1 6

0 0 0 0 0 0 0 0 1 1 7

(32)
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B2 =

(1, 3, 4) (5, 6, 7)
0

BBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCA

0 0 (1, 2)

1 0 (1, 3)

�1 0 (1, 4)

0 0 (2, 3)

1 0 (3, 4)

0 0 (3, 6)

0 0 (4, 5)

0 1 (5, 6)

0 �1 (5, 7)

0 1 (6, 7)

. (33)

Based on these incidence matrices we can define higher-order analogs of the graph Lapla-

cian that are called the Hodge-Laplacians. The general case is defined as Lp = B>
p
Bp +

Bp+1B>
p+1 and for simplicial complexes of order 2 we have:

L0 = B1B>
1 ,

L1 = L1,` + L1,u := B>
1 B1 +B2B>

2 ,

L2 = B>
2 B2

(2)

where L0, L1, L2 encode the neighborhood relationships between nodes, edges, and trian-

gles, respectively. Note, that L0 coincides with the graph Laplacian. Furthermore, L1,u =

B2B>
2 is called the upper-Laplacian and it encodes edge adjacencies that are due to common

triangles, while the lower Laplacian L1,` = B>
1 B1 contains information about the relations

due to common vertices.

7.1.2 The Hodge Decomposition on Edge Flows

The Hodge Decomposition is a natural decomposition of the signal space RNp into three

orthogonal subspaces:

RNp = im (Bp+1)� im
�
B>

p

�
� ker (Lp) (34)

where im(·) and ker(·) are the image and kernels spaces of a matrix and � is the direct

sum of vector spaces. Thus, we can decompose any data on top of the complex, such as

an edge flow, into three parts each of them living in one of three orthogonal subspaces

x = xG + xC + xH. In the case of an edge flow each of these three components is a flow
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with a specific interpretable property. The flow xG 2 im
�
B>

1

�
is the gradient flow. Its

identifying property is that the sum of the flows going in and out of a node equals zero.

The flow xC 2 im (B2) is the curl flow and it contains components of local circulations. For

a simplicial complex that could be flows that go around triangles. The kernel space of the

Laplacians, ker (L1) is the harmonic space and the flows xH 2 ker (L1) represent all global

cyclic flows that can not be represented in terms of local curls. Figure 11 depicts an example

of such a decomposition.

Figure 11: The Hodge Decomposition of a flow on the edges of a simplicial complex (Schaub et al.,

2021).

Importantly, the eigenvectors of L1 span each of these three subspaces. As Hodge Lapla-

cians are positive semi-definite, L1 has non-negative eigenvalues which can be interpreted

as (non-negative) frequencies (sorted eigenvalues). The eigenvectors associated with the

zero eigenvalues span the harmonic space, the eigenvectors corresponding to the nonzero

eigenvalues of the upper laplacians L1,u span the curl space and the nonzero eigenvalues

of lower laplacian L1,l span the gradient space. We can thus decompose the sets of eigen-

values and eigenvectors of L1 as⇤1 = [⇤H ⇤G ⇤C] andU1 = [UH UG UC] respectively, with

the subscripts denoting harmonic, gradient and curl components. A flow x can then be

projected onto the spaces spanned by the eigenvectors. This gives rise to the following

embeddings:

x̃H = U>
Hx = U>

HxH 2 RNH , harmonic embedding

x̃G = U>
Gx = U>

GxG 2 RNG , gradient embedding

x̃C = U>
Cx = U>

CxC 2 RNC , curl embedding.

7.1.3 Filters on Simplicial Complexes

We can use the Hodge Laplacian to build filters and define a Fourier transform on more

general simplicial Complexes. In the same way as we have done with the shift operator on

Graphs we can eigendecompose the positive semi-definite Hodge Laplacian:

Lp = Up⇤pU>
p
=

NpX

k

�p,kup,ku>
p,k

(35)
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withUp =
⇥
up,1, . . . ,up,Np

⇤
being thenormalised eigenvectors and⇤p =diag

�
�p,1, . . . ,�p,Np

�

the associated eigenvalues. As this thesis considers the edge space we will drop the sub-

script p in what is to follow. When not specified differently we let U = U1, �k = �1,k,

uk = u1,k etc.. With respect to the Hodge Laplacian as a reference operator we can then

define a simplicial filter. A simplicial filter is an operator that acts separately on each of

the eigenspaces depending on its eigenvalue. That is any function:

h : C ! R

� ! h(�)
(36)

defines a filter

H =
X

k

h (�k)uku>
k
. (37)

To illustrate such a filter, consider a signal x written in terms of the eigenbasis i.e. x =
P

k
↵kuk. Then we have:

y = Hx =
X

k

h (�k)↵kuk (38)

In that sense a filter, attenuates or increases the importance of the components of the signal

depending on the eigenspace they lie in. The frequency response function that controls how

this is done is h (�k). To see how this can be used in practice, consider the Finite Impulse

Response (FIR) Filter for edge flows introduced by Yang et al. (2021):

HFIR = ✏I+
L1X

l1=0

↵l1(L1,l)
l1 +

L2X

l2=0

�l2(L1,u)
l2 (39)

where ✏, ↵ = {↵1, ...,↵L1} and � = {�1, ..., �L2} are the filter coefficients and L1, L2 specify

the order of the filter. The frequency response (appendix F) is:

h (�i) =

8
><

>:

✏, for �i 2 ⇤H

✏+
P

L1

l1=1 ↵l1�
l1
i
, for �i 2 ⇤G

✏+
P

L2

l2=1 �l2�
l2
i
, for �i 2 ⇤C

(40)
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By applying this FIR filter to a signal, we canmodulate the different frequency components

related to the Hodge decomposition. The parts of the signal that lie on each of these com-

ponents can have a physical meaning and removing or increasing the strength of them is

often beneficial to solve problems in real-world applications.

7.1.4 Simplicial Neural Networks

The FIR filter has a number of useful properties for processing signals on edge flows. As we

have seen, it can accuratelymanipulate theHodge information that is contained in the data.

Moreover, it has a constant number of parameters and linear computational complexity

in the number of edges (Yang et al., 2021). To also learn non-linear mappings, we can

stack a number of these filters and combine them with pointwise non-linearities to obtain

a simplicial convolutional neural network (SCNN) (Yang et al., 2022). Specifically, given

the SCNN input x0 := x, the propagation rule at each layer t is:

xt = �
�
HFIR

t
xt�1

�
(41)

where �(·) is the pointwise nonlinearity (e.g. ReLU).

7.2 The InfoMin Principle for Augmentations

In this section, we will discuss the InfoMin principle, a common principle based on which

augmentations are designed. Later on we will use it to design augmentations for simplicial

complexes.

Suppose that we generate two augmentations (or views) x0
1,x

0
2 from a data point x. Then

Tian et al. (2020) argue that the optimal augmentation depends on the downstream task

and can be theoretically reasoned about by considering the mutual Information of x and

its label y. There then exist the following alternative scenarios:

• I(x0
1;x

0
2) < I(x;y) performance is degraded because task-relevant information is dis-

carded in the views.

• I(x0
1;y) = I(x0

2;y) = I(x0
1;x

0
2) = I(x;y) only task-relevant information is shared

between the views and there is no irrelevant noise.

• I(x0
1;x

0
2) > I(x;y) irrelevant information is includedwhich potentially leads to worse

generalisation on the downstream task.

From this the InfoMin principle is derived which states that: ”A good set of views are those

that share the minimal information necessary to perform well at the downstream task”.
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It complements the InfoMax principle (the mutual information should be maximized) by

arguing that maximizing mutual information is only useful as long as it is task-relevant.

In general, it is impossible for us to know what exactly the task-relevant information is.

Nevertheless, we can try to approximate it by making use of our prior knowledge about the

task and design appropiate augmentations based on that.
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8 SpectralMethods forContrastiveLearningonSim-

plicial Complexes

Simplicial complexes offer a powerful inductive bias for edge flow data. Importantly, their

spectrum can be decomposed into three interpretable subspaces via theHodge decomposi-

tion capturing the gradient, curl and harmonic parts of a flow. Capitalizing on this spectral

decomposition, we introduce a contrastive self-supervised learning methodology to pro-

cess simplicial data. Building up upon that we design an augmentationmethod that gener-

ates positive contrastive examples with desirable spectral characteristics encouraging the

network to encode Hodge information into the embeddings. Additionally, we reweight the

negative examples in the contrastive loss based on the affinity of their Hodge components

to the anchor. This amplifies the separation between spectrally dissimilar instances. We

empirically validate the approach on two trajectory prediction tasks. This chapter is based

on the recent paperHodge-aware Contrastive Learning, which is currently under review

at ICASSP (Möllers et al., 2023).

8.1 Contrastive Learning on Simplicial Complexes (SCL)

To extend self-supervised learning to be able to process data on edges we make use of the

general contrastive learning framework introduced by (Chen et al., 2020) and adjust the

encoder and augmentations (Figure 12). Applied to an edge flow x, we create both pos-

itive and negative examples and train an SCNN as an encoder. As a loss function, the

temperature-scaled InfoNCE is used as introduced in eq. (19) and eq. (21). Negative sam-

ples are taken to be all other data points from the same batch. For the experiments, we take

an augmentation method from the graph domain (Node Feature Masking) and implement

what can be considered its counterpart on edge flows.

Node Feature Masking!Edge FlowMasking

Instead of masking node features on graphs, the edge features of a simplicial complex are

masked. This is implemented by sampling a mask from a uniform Bernoulli distribution.

Edge flow features are masked with probability p to generate a positive example. This pro-

cess can be written as x0 = T (x) := x � e where e is a random Bernoulli vector with entry

ei ⇠ Ber(pi) and � is the elementwise product. Usually the masking probability for all
edges is the same.
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g⇢(·) g⇢(·)

SCNN(·) SCNN(·)

T1(·) T2(·)

Figure 12: In Contrastive learning for simplicial complexes we augment the data point x (anchor)

with two transformations T1\2(·) to generate positive examples. The latter are then passed through
an SCNN encoder to generate the simplicial embeddings z. After that a projection head g⇢(·) is
applied and the InfoNCE loss is computed. The simplicial structure equips the encoderwith a useful

inductive bias to process edge flows.

8.2 Spectral Augmentations for Edge Flows

The task-relevant information on problems that are solved on simplices is different than

the one that is required for problems on graphs. One example are edge flow prediction

problems where the components of the Hodge Decomposition are inherently relevant. In

these problem settings we want to design simplicial augmentations that destroy informa-

tion on irrelevant Hodge embeddings and preserve it on the others (InfoMin principle).

In the following we present an optimization-based approach to tackle this problem, a less

effective alternative, relying on spectral filters, is deferred to Appendix G.

8.2.1 Spectrally-Optimized Dropout

We now show how the Edge Flow Masking augmentation can be made hodge-aware. To

do this, we formalize an optimisation problem that helps us find dropout probabilities p.

We optimize the expected value of the difference of the generated Hodge embeddings to

the embeddings of the anchor. More specifically, denote the Hodge embeddings gener-

ated via an Edge Flow Masking augmentation as x̃0
G = U>

Gx
0, x̃0

C = U>
Cx

0, x̃0
H = U>

Hx
0.

Then the expected quadratic differences LG(p) = E[kx̃G � x̃0
Gk

2
2], LC(p) = E[kx̃C � x̃0

Ck
2
2],

LH(p) = E[kx̃H � x̃0
Hk

2
2] can the be used to quantify how different each hodge component

of the augmentation is from the anchor. We can expand the expression for the gradient

embedding (the same holds for the others):

E[kx̃G � x̃0
Gk

2
2] = kx̃Gk22�Tr

�
UGx(x � p)>U>

G

�
�Tr

�
UG(x � p)x>U>

G

�
+Tr

�
UGPU>

G

�
(42)
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where P is a matrix with entries Pi,j = xixjpipj for i 6= j and Pi,j = (xi)2pi for i = j. To

obtain the above expression, it is important to recall the equality Tr
�
XX>� = kXk22 and that

E [x � e] = x � p. Based on this we can optimize p such that the distance to the anchor for
one or more of the augmented embeddings is small/large. For example, in applications in

which the the curl and harmonic embeddings are important we solve the following problem

to obtain p:

min
p

� LG(p) + LC(p) + LH(p) (43a)

subject to p 2 Gp := {p | p 2 [0, 1], kpk1  ✏p} , (43b)

where the set Gp puts a maximum budget ✏p on the masked edge values. By solving this

we obtain dropout probabilities p under which positive data points with similar curl and

harmonic components to the anchor are generated butwith a different gradient component

(in expectation). To obtain p we us a projected gradient descent algorithm, projecting the

solution onto the constraint set Gp after every step.

8.3 Hodge Aware Debiasing

In the previous sectionwedesigned augmentations to introduce knowledge about theHodge

Decomposition into the embedding space. To further encourage a spectral organization of

the latter, we shall also act on the negative samples. This is known as a debiasing technique

and consists of reweighting the denominator in the InfoNCE loss:

L = �E
X

"
log

f⇢ (z, z0)P
M

j=1 a(x,xj)f⇢ (xj, z0)

#
(44)

where a(x,x0
j) is a weighting term between the anchor x and the negative example xj. To

encourage a spectrally-organized embedding space these weights can be picked such that

spectrally different samples are pushed further away from the anchor. To do this we intro-

duce the weighted embedding similarity between two data points:

S(x,x0) = �H CD(x̃H, x̃0
H) + �G CD(x̃G, x̃0

G) + �C CD(x̃C, x̃0
C) (45)

with CD(x,x0) = 1 � x>x0

kxk2kx0k2
being the cosine distance and �H, �G, �C � 0 hyperparame-

ters. Importantely, the cosine distance assigns higher values to spectrally more dissimilar

examples. Lastly, to ensures that the loss terms for different data points are comparable

we normalize the similarity over theM negative samples and obtain a weight:
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a(x,xj) =
S(xi,x0

j)P
N

j=1 S(xi,x0
j)

(46)

Substituting (46) into (44) leads to a spectrally-reweighted contrastive loss. The hyperpa-

rameters can be used to control the specific notion of similarity. In the experiments in the

next section, it is known that data points with different harmonic embeddings should be

pushed away from each other. Therefore, we choose to calculate the weights based on the

latter and pick �G = 0, �C = 0, �H = 1.
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9 Experiments

9.1 Set-up

Datasets We evaluate all proposed methods on two edge flow classification tasks where

the flows are represented as signals on an oriented SC. The first is a synthetic dataset con-

sisting of trajectories that either pass through the bottom-right or top-left corner of a map

and the task is to distinguish these two classes (Figure 13). The second is a real-world

equivalent of this synthetic benchmark that contains ocean drifters moving around the is-

land of Madagascar between years 2011-2018. Here we attempt to differentiate between

clockwise and anti-clockwise moving drifters. A property of both datasets is that the in-

formation on the harmonic frequencies is important for classification due to holes in the

underlying Simplicial Complex. For the trajectory dataset we generate 200 training, 100

validation and 100 test data points while there are 160 training examples and 40 test data

points for the ocean drifter task. In addition to the result presented here we have also run

experiments on lifted graphs. These can be found in Appendix H.

Experimental Procedure To evaluate the methods on the datasets described in the

previous section we follow a standard transductive set-up introduced by (Zhu, Xu, Liu

and Wu, 2021). That is, we train the Simplicial self-supervised learner on all available

data points and afterwards train a linear support vector machine (SVM) on the generated

embeddings. For the ocean drifter task no validation set is available and a 10-fold cross-

validation is performed to estimate the hyperparamers. We evaluate themethod on 16 data

splits and report the mean accuracy.

Implementation & Training Details For the network architecture for the SCNN we

follow the settings from Bodnar et al. (2021) (who propose a supervised model) and use

a hidden-layer of size 64 and Tanh-activations. Furthermore, we optimize the number of

encoder layers under the edge drop augmentation, pick between [1, 2, 3]-number of layers

and add a projection head consisting of two-layers as in Chen et al. (2020). All parameters

are optimized with stochastic gradient descent using the Adam algorithm (Kingma and

Ba, 2015) and we grid search the learning rate and weight decay in the interval [10�5, 1]

in decimal steps. The augmentation probabilities for the edge drop augmentation p and

perturbation budged ✏p are chosen in the interval [0.1, 0.4] while for the Hodge Drop aug-

mentation the interval [0.1, 0.7] is searched.
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Baselines As baselines we employ a fully-supervised SCNN for the edge flow classifi-

cation tasks. Furthermore, we train a network that uses only lower Laplacian encoding

(SCLlow). By omitting the triangle relationships we are able to quantify the impact of the

Simplicial approach that includes these upper neighbourhoods. We complement all that

with a sensitivity analysis for different augmentations and parameters.

Figure 13: Trajectories as Edge Flows on a Simplicial Complex. The structure of the Simplicial

Complex represents a map with two holes (e.g. islands). The different cyclic movement of the two

displayed trajectories around these holes leads them to have different harmonic components that

can be used to distinguish them (Bodnar et al., 2021).

9.2 Results

The first observation that we make in our experiments is that the promising performance

of self-supervised learning extends to edge flows (Table 2). Notably, our proposed method

(SSCLSpec), that uses a reweighted loss function and spectrally optimized Edge FlowMask-

ing augmentations, achieves the best accuracy on both trajectory datasets. This experimen-

tally validates that our approach encourages the encoding of (harmonic) hodge information

into the embeddings. This aspect is underscored by Figure 14 that shows the embedding

distance for two different augmentation techniques (uniform edge feature masking and

proposed). The proposed approach generates more similar harmonic embeddings, which

is key to the obtained results for the task. Moreover, spectrally reweighing the loss func-

tions improves the performance of the learner independent of the augmentation quality

(Figure 15).

TU Delft 42



Table 2: Test Accuracies for the Trajectory and Ocean Drifter datasets. SCL denotes models

trained with the standard InfoNCE loss, while SSCL models are trained with spectrally reweighted

negatives from section 8.3. The subscript Spec denotes that the augmentation probablities are spec-

trally optimized.

Model Trajectory Task Ocean Drifters

SSCLSpec (ours) 97.9± 0.3 90.3± 1.4

SCNN (supervised) 95.2± 0.5 78.5± 1.1

SSCL 96.8± 0.4 89.1± 1.0

SCLSpec 98.2± 0.4 83.1± 1.1

SCL 96.1± 0.6 81.6± 1.6

SCLlow 91.0± 0.2 77.1± 1.2

Notably, even for a model that uses the standard InfoNCE loss, the spectrally optimized

augmentations (SCLSpec) yield better downstream accuracy than then ones with uniform

probabilities (SCL). This emphasizes that the spectral augmentations are a standalone fea-

ture that is also useful independent of the loss function. Furthermore, to evaluate the im-

pact of the simplicial structure we tested a learner that uses only lower Laplacian connec-

tions (SCLlow), omitting triangle relationships. Compared to its simplicial counterpart SCL

under identical conditions, SCLlow, manifests a noticeable decrease in performance. This

demonstrates that the structural advantages of simplicial networks to process flow data

transfer to the contrastive learning setting.

10 Discussion

We have shown that a simplicial contrastive learning framework is an effective method

for generating representations of edge flows that contain hodge information. Two impor-

tant factors for this are the useful inductive bias that the simplicial structure provides for

flow data and augmentations that respect spectral information. We designed the latter by

optimizing the probabilities of a dropout augmentation so that it preserves the harmonic

information in the data. One important aspect of this approach is that the augmented ex-

amples have spectrally desirable properties while being topological similar to the anchor

data point due to the dropout mechanism used. In that sense our approach considers both

the spectral and the spatial domain. Moreover, we introduced a weighting term into the

loss function that pushes spectrally different examples further apart and encourages an
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organisation of the embedding space that takes the hodge information into account. This

weighting is particularly beneficial in settings in which prior knowledge exists that dictates

which hodge information should be encoded into the embeddings. In these settings the

spectrally optimized loss shines and we can generate good embeddings even without opti-

mal augmentations. Our empirical evaluations validate the utility of our approaches and a

classifier using the optimized representations can outperform fully-supervised models in

edge flow classification tasks.

11 RelatedWork

To the best of our knowledge this is the first work that proposes contrastive learning for

simplicial complexes. It builds upon a flurry of recent advances that have enabled and

popularized the use of SCs for data processing (Battiston et al., 2020). Only recently, a

simplicial Fourier transform (Barbarossa and Sardellitti, 2020) and convolutional filters

(Isufi and Yang, 2022) have been developed and applied to neural networks (Ebli et al.,

2020, Roddenberry et al., 2021, Bodnar et al., 2021). These methods have proven par-

ticularly effective when applied to the processing of flow data (Barbarossa and Sardellitti,

2020, Roddenberry et al., 2022). Notably, Krishnan et al. (2023) use them to alleviate

the curse of dimensionality in autoregressive flow prediction for water networks and Isufi

and Yang (2022) leverage simplicial filters to remove arbitrage opportunities in currency

exchange markets.

The idea to optimize the dropout probabilities in contrastive learning to generate better ex-

amples is inspired by related work on graphs. Zhu, Xu, Yu, Liu, Wu andWang (2021) drop

nodes with high node centrality less frequently and mask task-irrelevant features more

often, while Liu et al. (2022) adjust augmentations on homophilic graphs such that the

change in high frequency information is less than the change in the more important low

frequency domain. Moreover, Lin et al. (2023) pick dropout probabilities such that they

maximize the spectral difference between the eigenvalues of augmented Laplacians and

show that this leads to an improved performance on downstream tasks.

The spectrally reweighted InfoNCE loss is related to the idea of debiasing in contrastive

learning. Debiasing methods reweigh the terms in the loss in order to reduce the impact of

false negatives in the denominator (Chuang et al., 2020, Sun et al., 2023, Liu et al., 2023).

To the best of our knowledge, no existing work uses this approach to encourage a spectral

organization of the embedding space.
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Figure 14: This plot is generated by augmenting data points by masking edge features. The distri-

bution of the difference between the hodge embeddings of the augmented examples and the anchor

is plotted. For an augmentation with spectrally optimized probabilities (orange) more probabil-

ity mass lies over smaller differences in the harmonic embedding and we are thus more likely to

generate samples with more similar harmonic components to the anchor than when using uniform

probabilities (blue).

Figure 15: Comparison of downstream accuracy between a model trained with a spectrally

reweighted loss (SSCL) and onewith trainedwith the standard loss (SCL) for anEdge FeatureMask-

ing augmentation. The SSCL outperforms the SCL irrespective of the augmentation quality.
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12 Conclusion

This thesis tackled two underexplored areas in the CL literature. It set out to (1) establish a

notion of uncertainty in contrastive learning and to (2) investigate how it can be extended

to simplicial complexes in order to generate useful representations for edge flow data. We

addressed the first challenge by leveraging a probabilistic interpretation of the InfoNCE

loss to train a (Bayesian) variational graph contrastive learner (VGCL). This equips the

model with a notion of epistemic uncertainty over the parameters. Building up upon that

we developed the contrastive model disagreement score (CMDS) that combines the epis-

temic uncertainty over the weights with the disagreement in likelihoods for different pos-

itive examples. We empirically evaluated the CMDS on standard node classification tasks

and showed that it leads to better calibrated uncertainties than existing methods. Partic-

ularly, it is a powerful indicator for downstream performance and could find applications

in active learning or out-of-distribution detection. In the second part of this thesis we then

developed a simplicial approach to contrastive learning. For this we employed a Simplicial

Convolutional Neural Network as an encoder and used it to generate representations for

edge flow data. Crucially, for flow data a lot of information lies on the components of the

so-called Hodge decomposition of the spectrum. To incorporate this into our approach

we designed a spectrally-optimized augmentation method that leaves relevant hodge in-

formation intact. Moreover, we reweighted the significance of negative examples in the

contrastive loss, considering the similarity of their Hodge components to the anchor. Do-

ing this encourages a stronger separation among less similar instances and it leads to an

embedding space that reflects the spectral properties of the data. We tested the proposed

approaches on two edge flow datasets and showed that they generate embeddings that con-

tain more relevant hodge information, leading to an improved accuracy in downstream

classification tasks.

Building up upon the methods developed in this thesis there are a number of avenues for

future exploration. Firstly, we have not investigated different approximation methods for

Bayesian Inference. Alternativemethods such asMarkovChainMonteCarlo or Laplace ap-

proximations have the potential to yield superior performance or reduce the computational

cost. The latter is of utmost importance in scenarios with vast and complex data, where

training times can extend over several days (e.g. on the Imagenet benchmark). Related

to this, another important point is the generalizability of the ideas proposed in this thesis.

While the experiments are limited to topological structures, the introduced probabilistic

methods are general and can easily be extended to other applications such as images or

time series. This is especially interesting as the InfoNCE has already shown promising re-
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sults in these domains. With respect to simplical contrastive learning, exploring additional

methods for data augmentation and conducting experiments with simplicial complexes of

varying dimensions remain as open research directions. Moreover, extending our opti-

mization approach to these different types of augmentations beyond dropout would lead

to a more diverse range of methods that can create positive examples with specific spectral

properties.

In a broader context, our work has implications for the way we understand and develop

contrastive learning. By successfully integrating a method for variational autoencoders

into the CL framework, we have demonstrated that the interpretation as a probabilistic

model allows for the transfer of established methods from the rich literature on generative

models to contrastive learning. This cross-pollination between the two fields opens up a

pathway for future exploration into how other probabilistic techniques can be ported to

enhance self-supervised models. Considering the limited amount of existing work on un-

certainty in CL and the growing popularity of these kinds of models, the importance of this

is not to be underestimated. On the spectral side, our work accentuates the pivotal role

that such a Hodge perspective can play, particularly when dealing with data on simplicial

complexes. While much of the existing research in the CL literature has been predom-

inantly focused on leveraging spatial features, our work serves as a critical reminder of

the untapped potential residing in the spectral domain. Especially in the context of edge

flows, the spectral space is rich with structured information and this thesis has demon-

strated that incorporating it is indispensable for generating high-quality representations

of the data.
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Appendix



A DerivationGraphFilter in theFrequencyDomain

Plugging the eigendecomposition of the shift operator S = Udiag(�)U�1 into the expres-

sion for the graph convolutional filter, eq. (12), gives:

z =
KX

k=0

hkSkx (47)

=
KX

k=0

hkUdiag
�
��k

�
U�1x (48)

=
KX

k=0

hkUdiag
�
��k

�
x̃ (49)

where ��k 2 CN :
⇥
��k

⇤
i
:= �k

i
. Then multiplying both sides byU�1 yields:

z̃ = U�1z =
KX

k=0

hk diag
�
��k

�
x̃ (50)
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B Motivation for the InfoNCE

To see how the InfoNCE originated let us suppose that we have obtained multiple data

points x1, ...,xM with one real (correct) xi ⇠ p(x | z0) and the other ones coming from
the marginal (noise) distribution p(x). Here, z0 is the latent variable that constitutes the

contrast/context/semantic class that we aim to identify and can be obtained by encoding

the context data point x0. If we now want to differentiate the real data point from the noise

and let d be the indicator variable for sample xi being the correct example, then the related

cross-entropy loss would be:

p (d = i | x1, ...,xM , z0) =
p (xi | z0)

Q
l 6=i

p (xl)
P

M

j=1 p (xj | z0)
Q

l 6=j
p (xl)

=

p(xi|z0)
p(xi)P

M

j=1
p(xj |z0)
p(xj)

(51)

where the density ratio p(x|z0)
p(x) quantifies howmuchmore likely a sample is given the contrast

than under the marginal. This ratio is non-negative and can be (proportionally) approxi-

mated via a score function. In the InfoNCE paper (van den Oord et al., 2018), this score

function is taken to be:

f⇢ (z, z0) = exp
�
zT⇢ z0

�
(52)

where z = Q(x) and ⇢ is a matrix that contains learnable weights. This function tends

to be large when the embedding of a data point and the contrast point are close in the

embedding space. Optimizing the cross-entropy loss based on f⇢ (x, z0) thus encourages

themodel tomapdata points close to each other that are likely to appear together. Plugging

the similarity function in the above equation for the cross-entropy we get:

p (d = i | x1, ...,xM , z0) =
p(xi|z0)
p(xi)P

M

j=1
p(xj |z0)
p(xj)

⇡ f⇢ (zi, z0)P
M

j=1 f⇢ (zj, z
0)
=

exp
�
zT
i
⇢ z0

�
P

M

j=1 exp
�
zT
j
⇢ z0

� (53)

Ifwenow take the log-probability and the expectation over the data of the above expression,

then the objective we want to minimize is called the InfoNCE:

L = �E
X

"
log

f⇢ (z, z0)
f⇢ (z, z0) +

P
xj2X f⇢ (zj, z0)

#
(54)

whithM � 1 negative examples coming from the marginal.
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C The InfoNCE As A Bound On TheMutual Informa-

tion

Appendix B is a prerequisite for the following derivation. Consider themutual information

between the data point x and the contrast data x0:

I(x;x0) � I(x; z0) =
X

x,z0

p(x, z0) log
p(x | z0)
p(x)

(55)

where the bound stems from the basic properties of mutual information (i.e. I(x;x0) �
I(x; g(x0)) for g being a deterministic function) andwe consider the contrast as given. When

looking at this expression, we can already realize that it depends on the density ratio that

is a vital part of the InfoNCE objective. In fact, when we train the model with this objective

wemaximise a lower bound on this mutual information. To see this, let us plug the density

ration back into the InfoNCE loss:

Lopt
M = �E

X

log

2

4
p(x|z0)
p(x)

p(x|z0)
p(x) +

P
xj2X

p(xj |z0)
p(xj)

3

5

= E
X

log

2

41 + p (x)
p (x | z0)

X

xj2X

p (xj | z0)
p (xj)

3

5

= E
X

log

2

41 + p (x)
p (x | z0)

(M � 1)

(M � 1)

X

xj2X

p (xj | z0)
p (xj)

3

5

⇡ E
X

log

1 +

p (x)
p (x | z0)(M � 1) E

xj


p (xj | z0)
p (xj)

��

= E
X

log

1 +

p (x)
p (x | z0)(M � 1)

�

� E
X

log


p (x)
p (x | z0)M

�
(because p (x | z0) > p (x))

= �I (x, z0) + log(M).

(56)

where then I (x, z0) � log(M)�Lopt
M is a bound wemaximize byminimizing the contrastive

loss Lopt
M . The version of the (approximate) proof of this presented here is a small alter-

ation of the one presented by van den Oord et al. (2018). A more general discussion on

variational bounds on the mutual information and a proof that does not rely on an approx-

imation can be found in Poole et al. (2019). As a consequence of this bound, we can use a
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model trained with the InfoNCE to generate an embedding for a data point x that (approx-

imately) contains the information we desire as long as we have a way to obtain a datapoint

x0 that shares this information with x.

D The ELBO For Contrastive Learning

In the probabilistic model (Aitchison and Ganev, 2023) of contrastive learning we observe

two correlated data points x and x0 generated by two latent variables z, z0. The mapping

between the data and the latents is approximated with two encoders Q(z | x,�1), Q(z |
x,�2) where the weights are usually shared, i.e, � = �1 = �2. To be Bayesian, we learn a

distribution over weights of the encoders and over parameters of the similarity function ⇢.

The data points are taken to be independent given the latents which leads to the following

decomposition of the joint probability of the statistical model:

p (x,x0, z, z0,�1,�2,⇢)

= p (x,x0, z, z0 | �1,�2,⇢) p (�1,�2,⇢)

= p (x|z,�1) p (x0|z0,�2) p (z, z0|,�1,�2,⇢) p (�1,�2,⇢)

(57)

Here, p (�1,�2,⇢) is a prior distribution over the model parameters, p (z, z0|,�1,�2,⇢) a

prior over the embeddings and p (x|z,�1), p (x0|z0,�2) are likelihoods. The latter can be

approximated by using the encoders:

p (x | z,�1) =
Q(z | x,�1) ptrue (x)

Q(z|�1)

p (x0 | z0,�2) =
Q(z0 | x0,�2) ptrue (x0)

Q(z0|�2)

(58)

where

Q (z | �1) =

Z
Q (z | x,�1) ptrue (x) dx

Q (z0 | �2) =

Z
Q (z0 | x0,�2) ptrue (x0) dx0

(59)

are normalizing constants. The true distribution over the data ptrue (x) is usually unknown,

but we will be able to optimize the model parameters anyways. We continue the deriva-

tion by introducing a variational distribution q(�1,�2,⇢ | ✓) over the parameters which
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yields:

log p (x,x0)

= log
Z

p (x,x0, z, z0 | �1,�2,⇢) p (�1,�2,⇢) d�1 d�2 d⇢ dz dz0

= log
Z
Q(z, z0 | x,x0,�1,�2) q(�1,�2,⇢ | ✓)

p (x,x0, z, z0 | �1,�2,⇢) p (�1,�2,⇢)

Q(z, z0 | x,x0,�1 �2) q(�1,�2,⇢ | ✓) d�1 d�2 d⇢ dz dz0

= logEQ(z,z0|x,x0,�1,�2)q(�1,�2,⇢|✓)


p (x,x0, z, z0 | �1,�2,⇢) p (�1,�2,⇢)

Q(z, z0 | x,x0,�1 �2) q(�1,�2,⇢ | ✓)

�

(60)

plugging in the approximate likelihoods from eq. (58) into eq. (57) and the result into

eq. (60) then gives:

log p (x,x0)

= logEQ(z,z0|x,x0,�1,�2)q(�1,�2,⇢|✓)


p (z, z0 | �1,�2,⇢) p (�1,�2,⇢)

Q (z0 | �2)Q (z | �1) q (�1,�2,⇢ | �2)

�
+ const

� EQ(z,z0|x,x0,�1,�2)q(�1,�2,⇢|✓)


log

p (z, z0 | �1,�2,⇢) p (�1,�2,⇢)

Q (z0 | �2)Q (z | �1) q (�1,�2,⇢ | ✓)

�
(61)

where we used Jensen’s inequality and the constant term comes from the true data dis-

tributions. Modelling the weights �1,�2,⇢ as independent from each other this can be

rewritten as:

log p (x,x0) � EQ(z,z0|x,x0,�1,�2)q(�1,�2,⇢|✓)


log

p (z, z0 | �1,�2,⇢)

Q (z0 | �2)Q (z | �1)

�

�KL(q(�1 | ✓)||P (�1))

�KL(q(�2 | ✓)||P (�2))

�KL(q(⇢ | ✓)||P (⇢))

(62)

This is an ELBO for a Bayesian Contrastive Learning model. In the next section we will see

how the right choice of prior over the embeddings leads to the InfoNCE (in a deterministic

setting).
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E The (Deterministic) ELBO Is The InfoNCE For A

Specific Prior

For a deterministic encoder (i.e. noweight uncertainty is taken into account) and averaging

over the data the ELBO for contrastive learning is (Aitchison and Ganev, 2023):

log p (x,x0) � EQ�1,�2
(z,z0)


log

p (z, z0)
Q�1(z) Q�2(z0)

�
+ const. (63)

This is equivalent to first part in eq. (62) when no distribution over the parameters is taken

into account. Based on this, we choose the same weights for both encoders (� = �1 = �2)

and plug in the following choice for the prior

p(z) = Q�(z)

p (z0 | z) = 1

Z�,⇢(z)
Q� (z0) f⇢ (z, z0)

(64)

with the normalising constant

Z⇢,�(z) =
Z
Q� (z0) f⇢ (z, z0) dz0 (65)

. Notably, this is a prior that is parametrized by the encoding neural network, a frequently

used trick in the literature (Aitchison and Ganev, 2023). The construction then gives us

the ELBO for the InfoNCE:

LInfoNCE (⇢,�) = EQ�(z,z0)

"
log

Q�(z) 1
Z⇢,�(z)

Q� (z0) f⇢ (z, z0)

Q�(z)Q� (z0)

#
+ const (66)

by cancelling we get:

LInfoNCE (⇢,�) = EQ�(z,z0)


log

f⇢ (z, z0)
Z⇢,�(z)

�
+ const (67)

= EQ�(z,z0)


log

f⇢ (z, z0)R
Q� (z0) f⇢ (z, z0) dz0

�
+ const (68)

at this point we already note the similarity with eq. (19), which is the (negative) finite-

sample estimator. Formally this can see be seen by rewriting the above expression as:

LInfoNCE (⇢,�) = EQ�(z,z0) [log f⇢ (z, z
0)]� EQ�(z)

⇥
logEQ�(z0) [f⇢ (z, z

0)]
⇤
+ const. (69)

This is up to a constant equivalent to the infinite-sample InfoNCE objective as derived by

(Wang and Isola, 2020, Li et al., 2021).
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F Derivation FIR Frequency Response

Note that that we can decompose a filterH as:

H = Uh(⇤)U> (70)

and then compute the frequency response as:

h(⇤) = U>HU (71)

Now, consider theFinite ImpulseResponse (FIR)Filter for edge flows (Yang et al., 2021):

H = ✏I+
L1X

l1=0

↵l1(L1,l)
l1 +

L2X

l2=0

�l2(L1,u)
l2 (72)

where ✏, ↵ = {↵1, ...,↵L1} and � = {�1, ..., �L2} are the filter coefficients and L1, L2 specify

the order of the filter. To derive the frequency response we first rewriteH:

H = ✏I+
L1X

l1=0

↵l1(U1 blkdiag (0,⇤G,0)U>
1 )

l1

+
L2X

l2=0

�j(U1 blkdiag (0,0,⇤C)U>
1 )

l2

= ✏I+
L1X

l1=0

↵l1U1 blkdiag (0,⇤G,0)
�l1 U>

1

+
L2X

l2=0

�l2U1 blkdiag (0,0,⇤C)
�l2 U>

1

where, we used that L1,` = U1 blkdiag (0,⇤G,0)U>
1 and L1,u = U1 blkdiag (0,0,⇤C)U>

1 .

This then allows us to compute the frequency response:

h(⇤) = U>
1HU1 (73)

= ✏I+
L1X

l1=0

↵l1 blkdiag (0,⇤G,0)
�l1 +

L2X

l2=0

�l2 blkdiag (0,0,⇤C)
�l2 (74)

and isolating the response for an individual eigenvalue we get:

h (�i) =

8
><

>:

✏, for �i 2 ⇤H

✏+
P

L1

l1=1 ↵l1�
l1
i
, for �i 2 ⇤G

✏+
P

L2

l2=1 �l2�
l2
i
, for �i 2 ⇤C

(75)
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G Spectral Augmentations via Simplicial Filters

One way to influence information in the spectral domain in a controlled way is by using a

suitable filter and designing its parameters such that it removes irrelevant frequencies. To

obtain a stochastic mechanism we consider a distribution over the filter parameters and

sample different filters to generate augmentations of the original data point. For Finite

Impulse Response Filter, eq. (39), with normally distributed parameters we can write the

resulting augmentation of a data point as:

x0 = T (x) = HFIRx =

 
✏I+

L1X

l1=0

↵l1(L1,l)
l1 +

L2X

l2=0

�l2(L1,u)
l2

!
x (76)

where we sample ✏ ⇠ N (µ✏, �2
✏
) , ↵l1 ⇠ N (µ↵l1

, �2
↵l1

), �l2 ⇠ N (µ�l2
, �2

�l2
).

To see how such an augmentation affects the spectral components of the data, recall the

deterministic frequency response of a FIR filter given in eq. (40). Based on this, the fre-

quency response for normally distributed parameters is normally distributed as well as the

sum of independent normals is again normal. This gives:

h (�i) ⇠

8
><

>:

N (µ✏, �2
✏
), for �i 2 ⇤H

N (µg, �2
g
), for �i 2 ⇤G

N (µc, �2
c
), for �i 2 ⇤C

(77)

with µg = µ✏ +
P

L1

l1=1 µ↵l1
�l1
i
, �g = �2

✏
+
P

L1

l1=1 �
2
↵l1

(�l1
i
)2 for the gradients and µc = µ✏ +P

L2

l2=1 µ�l1
�l2
i
, �c = �2

✏
+
P

L2

l2=1 �
2
�l2

(�l2
i
)2 for curl eigenvalues. From this we can see that the

parameters of the distributions can be chosen/tuned such that in probability we obtain an

augmentation that preserves or changes the signal’s gradients, curl or harmonic parts. To

be more specific, consider E
⇥
(h (�i)� 1)2

⇤
, the expected squared distance of the frequency

response to 1. The distance to 1 is appropriate, because if h (�i) = 1 then the specific

frequency of the signal is not changed. This expression can be expanded as:

E
⇥
(h (�i)� 1)2

⇤
= E

⇥
h (�i)

2⇤� 2E [h (�i)] + 1

= V [h (�i)] + E [h (�i)]
2 � 2E [h (�i)] + 1

(78)

and we can use this to calculate how we should pick the parameters of the normal distri-

butions from which we sample the filters. For instance, consider a FIR filter with L1 = 1,

L2 = 1 to reduce the number of parameters, and µ✏ = 1, µ↵l1
= 0, µ�l1 = 0 to keep the

change in response to be symmetric around 1 (while small in the harmonic component).

TU Delft 63



Table 3: Test Accuracies for the FIR augmentation (Appendix F).

Model Trajectory Task Ocean Drifters

SCLFIR 94.4± 0.8 82.0± 1.6

This then results in the following expected squared distances for the curl, gradient and

harmonic frequencies:

E
⇥
(h (�i)� 1)2

⇤
⇠

8
><

>:

�2
✏
for �i 2 ⇤H

�2
✏
+ �2

↵1
, for �i 2 ⇤G

�2
✏
+ �2

�1
, for �i 2 ⇤C

(79)

By picking suitable standard deviations for the filter parameters we can thus, in expecta-

tion, induce the desired change in the different frequency components of the Hodge De-

composition. We have designed an interpretable stochastic augmentationmethod that can

be used to,in probability, generate positive examples with specific spectral properties. We

have conducted experiments with augmentation and the results can be found in Table 3.

The spectrally optimized dropout augmentation from section 8.2.1 outperforms the Finite

Impulse Response (FIR) filter augmentation. A possible explanation for the better per-

formance of the first is that it is able to generate examples that are both topologically and

spectrally similar to the anchor, while the FIR approach focuses solely on spectral utility.

Nevertheless it should be highlighted that the filter augmentation comes with compelling

theoretical properties as its frequency response allows for the derivation of bounds and

guarantees that enhance our understanding of its operational scope and limitations.
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Table 4: Test Accuracies for the Proteins and MSRC21 Datasets.

Model Proteins MSRC-21

GIN (supervised) 76.2± 0.1 89.2± 0.2

SCNN (supervised) 74.1± 0.6 86.4± 0.9

SCLEFM 73.1± 0.3 84.1± 0.9

H Additional Experiments on Lifted Graphs

In addition to the trajectory prediction tasks we also evaluate the standard contrastive

learner without spectral optimization from section 8.1 on two graph classification tasks for

which a lifting transformation to edges is performed (Bodnar et al., 2021). That is, an edge

value is defined as themean value of two adjacent nodes. We use the a protein dataset (Pro-

teins) and a graph-based computer vision dataset (MSRC-21) from the TU Graph Bench-

mark (Morris et al., 2020). The Protein dataset contains 1113 examples and the MSRC-21

dataset 591 samples where we use 10% of the data for training, 10% as validation set and

80% for the final evaluation.For the network architecture for the SCNN we follow the set-

tings from Bodnar et al. (2021) (who propose a supervised model) and use a hidden-layer

of size 64, Tanh-activations for the trajectory tasks and ELU activations for the lifted graph

prediction.

On the lifted graph classification tasks , we are not able to outperform the baselineGINwith

a simplicial architecture, neither in the supervised nor in the contrastive learning setting

(Table 4). The reason for this is likely the loss of information resulting from the lifting

transformation, which involves computing themean andprocessing data only on the edges.

In future works on graph classification this could be resolved by using an architecture that

takes information from edges, nodes and triangles, such as in the work of Bodnar et al.

(2021). In that way, the information from the nodes could still be included.
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I Additional Results VGCL & CMDS

Figure 16: (Left) Retention Curves on Pubmed for a InfoNCEmodel. (Right) Retention Curves on

Pubmed for VI-InfoNCE.

Figure 17: (Left) Retention Curves on Cora for VI-InfoNCE. (Right) Retention Curves on Cora for

VGCL.
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