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 A B S T R A C T

In this work, we present a novel data-driven tuning framework for a class of nonlinear controllers, namely those 
based on the so-called hybrid integrator-gain system (HIGS). In particular, we focus on minimizing the settling 
time in point-to-point tasks, i.e., the time required for the error to converge and settle within a desired error 
bound after the task has finished. The proposed approach is based on sampled-data extremum-seeking control 
and allows simultaneous tuning of both linear and nonlinear parts of the controller, while guaranteeing input-
to-state stability based solely on non-parametric frequency-response function data of the plant. These stability 
properties are guaranteed by a newly developed procedure for the data-driven verification of existing stability 
criteria. The efficacy of the proposed approach in tuning HIGS-based controllers for improving the settling 
time is validated extensively with a case study on an industrial wire bonder showing significant improvements 
in the worst-case settling time compared to LTI control.
1. Introduction

With the continuously rising demand for high accuracy and in-
creased throughput in many industrial applications, the importance 
of improving the transient performance of control systems has be-
come more and more evident. For the past decades, linear time-
invariant (LTI) control strategies have often been the standard so-
lution in industrial practice. The reason for the widespread use of 
LTI controllers stems from its low implementation cost, simplicity, 
predictability regarding stability and performance, and the availability 
of well-established feedback control methods such as proportional–
integral–derivative (PID) control. These well-established methods en-
sure the existence of intuitive synthesis and tuning techniques widely 
used in industry, such as manual loop-shaping (Skogestad & Postleth-
waite, 2005, Ch. 2), frequency-based auto-tuners (Grassi et al., 2001), 
and 𝐻∞-design (Zames, 1981). Despite these advantages, LTI con-
trollers have some fundamental limitations leading to design trade-offs 
that are often undesirable and pose a challenge in high-precision 
control applications.

One such limitation is Bode’s sensitivity integral (Chen, 1995), 
which states that an increase in error suppression, i.e., a decrease 
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in sensitivity in some frequency range, comes at the cost of error 
amplification in another range. This limitation is closely coupled with 
the limitation posed by the Bode gain-phase relation that states that 
the gain and phase cannot be shaped independently (Freudenberg et al., 
2000). Furthermore, in addition to these frequency-domain limitations, 
a time-domain oriented limitation concerns the trade-off between the 
rise time and the amount of overshoot of a system’s step-response. 
Numerous nonlinear and/or hybrid control techniques aimed at over-
coming these limitations have been proposed. Examples of such control 
techniques are variable gain control (Hunnekens et al., 2016; Van de 
Wouw et al., 2008), reset control (Beker et al., 2001; Van Loon et al., 
2017; Zhao et al., 2019), nonlinear integrators (Heertjes et al., 2024; 
Van den Eijnden, Heertjes, Heemels et al., 2020; Van Dinther et al., 
2021; Wang et al., 2024), and sliding mode control (Abidi & Sabanovic, 
2007).

However, overcoming the limitations of LTI control with nonlin-
ear and/or hybrid control techniques typically comes at the cost of 
increased design complexity. This increased complexity stems for ex-
ample from the fact that the superposition principle does not hold for 
these types of controllers, which means that frequency-domain tuning 
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as common in well-established LTI design approaches is generically 
not applicable. As a result, the design of nonlinear and/or hybrid 
controllers is often time-consuming and requires a high level of control 
engineering expertise. This limits the widespread adoption of such 
controllers, especially in industrial applications where high throughput 
and accuracy demands necessitate tuning on an individual machine 
basis, e.g., to account for possible machine-to-machine variations.

Data-driven tuning approaches potentially allow overcoming the 
time-consuming nature of and need for expertise in controller design 
by updating controller parameters based solely on measured perfor-
mance data. Examples of such approaches include extremum seeking 
control (ESC) (Ariyur & Krstic, 2003; Khong, Nešić, Tan et al., 2013), 
iterative feedback tuning (IFT) (Hjalmarsson et al., 1998), and iterative 
learning control (ILC) (Ahn et al., 2007). However, a challenge in using 
these approaches for the design of nonlinear and/or hybrid feedback 
controllers arises from the absence of closed-loop stability guarantees 
in IFT and ESC, which are crucial in feedback control design, whereas 
ILC mostly addresses feedforward design. Therefore, the goal of this 
work is to develop a data-driven tuning algorithm for nonlinear and/or 
hybrid controllers, optimizing settling performance while warranting 
closed-loop stability.

In particular, we focus on controllers containing a hybrid integrator-
gain system (HIGS) (Deenen et al., 2017). HIGS controllers have shown 
the ability to address the inherent limitations of LTI controllers in 
terms of transient performance, as proven by Van den Eijnden, Heertjes, 
Heemels et al. (2020). Additionally, they benefit from the availability 
of tools to verify whether the system is input-to-state stable (ISS), even 
in the presence of multiplicative plant uncertainties, based solely on 
(measured) frequency-response function (FRF) data of the plant (Van 
den Eijnden, 2022; Van den Eijnden et al., 2024, Ch. 4). The existence 
of such tools is crucial in tuning for machine-to-machine variation, 
as it allows for stability guarantees without the need for a detailed 
parametric model of the plant.

The three main contributions of this paper are therefore as follows. 
The first contribution is the development of a framework that facilitates 
data-driven tuning of HIGS-based controllers to optimize transient sys-
tem performance characterized by the settling time. In contrast to the 
approach presented by Heertjes et al. (2019) for data-driven tuning of 
a HIGS, the proposed approach allows simultaneous tuning of both the 
HIGS parameters and the linear part of the HIGS-based controller. The 
second contribution is the development of an automated, data-driven 
stability check for HIGS-based controllers, based on the frequency-
domain conditions derived in Van den Eijnden et al. (2024), which 
solely requires (measured) FRF data of the plant. This stability check 
can be used to provide guarantees on input-to-state stability of the 
system in data-driven tuning frameworks. The third contribution is a 
case study on an industrial wire bonder system used in the semiconduc-
tor industry, showcasing the real-world applicability of the proposed 
tuning approach in tuning input-to-state stable HIGS-based controllers 
for improved transient performance.

The remainder of this paper is organized as follows. In Section 2, we 
describe how HIGS-based controllers can be constructed and formulate 
the transient performance optimization problem that we aim to solve. 
In Section 3, we present the developed automated, data-driven stability 
check and the proposed approach to solve the transient performance 
optimization problem. The results of the industrial case study are 
presented in Section 4, and concluding remarks are given in Section 5.

2. System description and problem formulation

In this section, we first describe the design of HIGS-based controllers 
and discuss existing frequency-domain conditions based on (measured) 
FRF data that can be used to verify whether the closed-loop sys-
tem is ISS. Next, we introduce the transient performance optimization 
problem that we aim to solve.
2 
2.1. HIGS-based controller design

The HIGS is a nonlinear control element first introduced by Deenen 
et al. (2017) and is inspired by the Clegg integrator (Clegg, 1958). It 
is mathematically defined as the piecewise-linear system (see, e.g., Van 
den Eijnden et al. (2024)): 

 ∶

⎧

⎪

⎨

⎪

⎩

𝑥̇ℎ(𝑡) = 𝜔ℎ𝑧(𝑡),  if (𝑧(𝑡), 𝑢(𝑡), 𝑧̇(𝑡)) ∈ 1,

𝑥ℎ(𝑡) = 𝑘ℎ𝑧(𝑡),  if (𝑧(𝑡), 𝑢(𝑡), 𝑧̇(𝑡)) ∈ 2,

𝑢(𝑡) = 𝑥ℎ(𝑡)

(1)

with state 𝑥ℎ(𝑡) ∈ R, input 𝑧(𝑡) ∈ R, and output 𝑢(𝑡) ∈ R at time 
𝑡 ≥ 0. Two operating modes can be recognized in (1). In the first 
mode, the integrator mode active in the set 1 ∶= {(𝑧, 𝑢, 𝑧̇) ∈ R3 ∣
𝑘ℎ𝑧𝑢 ≥ 𝑢2 ∧ (𝑧, 𝑢, 𝑧̇) ∉ 2}, the HIGS behaves like a linear integrator 
with integrator frequency 𝜔ℎ ∈ R>0. In the second mode, the gain mode 
active in the set 2 ∶= {(𝑧, 𝑢, 𝑧̇) ∈ R3 ∣ 𝑢 = 𝑘ℎ𝑧∧𝜔ℎ𝑧2 > 𝑘ℎ𝑧̇𝑧}, the HIGS 
represents a static gain 𝑘ℎ ∈ R>0. The sets 1 and 2 are constructed 
as to keep the input–output pair (𝑧, 𝑢) contained in the [0, 𝑘ℎ]-sector 
defined by  ∶= {(𝑧, 𝑢, 𝑧̇) ∈ R3 ∣ 𝑘ℎ𝑧𝑢 ≥ 𝑢2} = 1 ∪ 2 (see, e.g., Deenen 
et al. (2017)), which ensures that the sign of 𝑢 remains aligned with 
the sign of 𝑧; similar to the Clegg integrator (Clegg, 1958) described by 
(see, e.g., Zaccarian et al. (2005)) 

 ∶

⎧

⎪

⎨

⎪

⎩

𝑥̇𝑟(𝑡) = 𝜔𝑟𝑧(𝑡),  if 𝑧(𝑡)𝑢𝑟(𝑡) ≥ 0,

𝑥𝑟
(

𝑡+
)

= 0,  if 𝑧(𝑡)𝑢𝑟(𝑡) ≤ 0,

𝑢𝑟(𝑡) = 𝑥𝑟(𝑡)

(2)

with state 𝑥𝑟(𝑡) ∈ R, input 𝑧(𝑡) ∈ R, output 𝑢𝑟(𝑡) ∈ R, and integrator 
frequency 𝜔𝑟 ∈ R>0. In the Clegg integrator, the output is reset to 
zero when a sign change of its input is detected, which potentially 
causes excitation of lightly-damped plant resonances. In contrast, the 
two operating modes of the HIGS in (1) ensure the signs of 𝑢 and 𝑧
remain aligned while also ensuring that 𝑢 remains continuous, which 
reduces such detrimental excitation.

The difference between the Clegg integrator and the HIGS is il-
lustrated by their time responses subject to a sinusoidal input 𝑧(𝑡) =
sin (𝜔𝑡) with 𝜔 = 1 rad/s in Fig.  1. Initially, the responses of both 
the Clegg integrator and the HIGS are identical to the response of a 
linear integrator. However, the responses start to deviate when the 
HIGS switches to the gain mode when its output 𝑢 equals the scaled 
input 𝑘ℎ𝑧, at around 𝑡 ≈ 0.7𝜋∕𝜔 in Fig.  1. This switch to the gain-
mode causes the zero crossing of the output of the HIGS to occur at 
the same time as the zero crossing of its input, while the output of a 
linear integrator would lag 90 degrees behind its input, leading to a 
reduction in phase lag for the HIGS compared to a linear integrator. 
Note that such a reduction in phase lag can potentially aid in reducing 
overshoot and settling time of the transient response (Van den Eijnden, 
Heertjes, Heemels et al., 2020; Van Dinther et al., 2021). Fig.  1 also 
shows how a similar reduction in phase lag is obtained for the Clegg 
integrator by a hard reset of its output to zero at 𝑡 = 𝜋∕𝜔.

It is useful to analyze the (approximate) frequency-domain char-
acteristics of the HIGS to understand how to take advantage of this 
reduction in phase lag. This approximate analysis can be performed 
using the so-called describing function 𝐷 (𝜔) of the HIGS (Van den 
Eijnden, Heertjes, Heemels et al., 2020), which describes the relation 
between harmonic excitation of the HIGS input 𝑧 and the first harmonic 
of the HIGS output 𝑢. This describing function is given by

𝐷 (𝜔) =
𝜔ℎ
𝑗𝜔

(

𝛾(𝜔)
𝜋

+ 𝑗 𝑒
−2𝑗𝛾(𝜔) − 4𝑒−𝑗𝛾(𝜔) + 3

2𝜋

)

+ 𝑘ℎ

(

𝜋 − 𝛾(𝜔)
𝜋

+ 𝑗 𝑒
−2𝑗𝛾(𝜔) − 1

2𝜋

)

(3)

with 𝛾(𝜔) = 2 arctan (𝑘ℎ𝜔∕𝜔ℎ), which follows for example from Heertjes 
et al. (2019, Eqs. (13) and (14)) using Euler’s formula. Plotting the 
magnitude- and phase-characteristics of (3) shows that the HIGS has 
approximate magnitude characteristics similar to those of a linear low-
pass filter, as illustrated in Fig.  2, with asymptotes lim 𝐷 (𝜔) = 𝑘
𝜔→0  ℎ
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Fig. 1. Comparison of time responses of a linear integrator, a Clegg integrator, 
and the HIGS, for a sinusoidal input 𝑧(𝑡) = sin (𝜔𝑡) with 𝜔 = 1 rad/s, 𝜔𝑟 = 𝜔ℎ =
0.5𝜔, and 𝑘ℎ = 1. While both the Clegg integrator and the HIGS keep the sign 
of their outputs aligned with the sign of their inputs to reduce their phase 
lag compared to a linear integrator, the HIGS does so in a continuous fashion 
instead of via a hard reset for the Clegg integrator.

Fig. 2. Comparison of the magnitude and phase characteristics of the describ-
ing function 𝐷 (𝜔) in (3), the describing function 𝐷𝑖

(𝜔) of a HIGS-based 
integrator 𝑖 (𝜔ℎ = 200𝜋 rad/s and 𝑘ℎ = 1), and a linear integrator 𝐶𝑖(𝑠)
(𝜔𝑖 = 3𝜔𝑐). While the magnitude characteristics of 𝐷𝑖

 and 𝐶𝑖 are similar, 𝐷𝑖

shows a significant reduction in phase lag.

and lim𝜔→∞ 𝐷 (𝜔) = 𝜔ℎ(1+4𝑗∕𝜋)∕(𝑗𝜔). However, in contrast to a linear 
low-pass filter, 𝐷 only shows a phase lag of around 38 degrees, instead 
of 90 degrees.

An example of how this reduction in phase lag can be exploited in 
control design is by using quasi-linear reasoning to design a HIGS-based 
version of a given LTI controller 𝐶∗ based on the describing function in 
(3). To this end, we adopt ideas proposed in Van den Eijnden, Heertjes, 
Heemels et al. (2020) and Van den Eijnden, Heertjes, Nijmeijer (2020): 
we place the HIGS in front of the LTI filter 𝐶∗ and pre-filter the input to 
the HIGS with an LTI filter 𝐻−1 aimed at ‘compensating’ the magnitude 
characteristics of (3). Given the aforementioned approximate magni-
tude characteristics of the HIGS, we choose the transfer function 𝐻(𝑠)
as 

𝐻(𝑠) = 𝑘ℎ

(

𝜔𝑐
)

(4)

𝑠 + 𝜔𝑐

3 
with 𝜔𝑐 = |1 + (4𝑗∕𝜋)|𝜔ℎ∕𝑘ℎ rad/s the crossover frequency (i.e., the 
point where the aforementioned asymptotes of the magnitude charac-
teristics cross) and 𝑠 ∈ C the Laplace variable. This causes 𝐻 to have 
similar magnitude characteristics as (3). As a result, the pre-filter 𝐻−1

thus compensates for the (approximate) magnitude characteristics of 
the HIGS, and provides an additional phase lead, while post-filtering 
the HIGS output by 𝐶∗ serves to shape the overall magnitude char-
acteristics to be similar to those of the LTI controller 𝐶∗. Note that 
for practical implementation of the non-proper filter 𝐻−1, its transfer 
function can be multiplied by (𝜖𝑠 + 1)−1 with 𝜖 > 0 small, while in 
addition multiplying the transfer function of 𝐶∗ with (𝜖𝑠 + 1) to not 
change the overall frequency characteristics of the describing function. 
To illustrate the resulting phase benefits of the HIGS-based control 
element, consider the case where the LTI filter 𝐶∗ is a linear integrator 
with the transfer function 𝐶𝑖(𝑠) = 𝜔𝑖∕𝑠 with integrator frequency 𝜔𝑖 ∈
R>0, resulting in a HIGS-based integrator 𝑖. Comparing the magnitude 
and phase characteristics of the describing function 
𝐷𝑖

(𝜔) = 𝐻−1(𝑗𝜔)𝐷 (𝜔)𝐶𝑖(𝑗𝜔) (5)

of 𝑖 to those of a linear integrator shows that the magnitude responses 
are similar, while the phase lag is reduced from 90 degrees for the 
linear integrator to 38 degrees for 𝐷𝑖

 for frequencies sufficiently 
higher than 𝜔𝑐 , as shown in Fig.  2.

Despite the usefulness of the describing function in an analysis of the 
controller structure, it is important to note that the exclusive reliance 
on the first harmonic overlooks the effect of higher-order harmon-
ics (Van Eijk et al., 2023). The exclusion of higher-order harmonics, 
in combination with the lack of the superposition principle, means that 
the describing function provides an incomplete representation of the 
true response. It is therefore crucial to recognize these limitations when 
employing the describing function for analysis or controller design. This 
limitation also means that a frequency-based tuning approach based on 
the describing function might result in suboptimal performance, which 
once more motivates a time-domain tuning approach as we present in 
Section 3.

2.2. Pre- and post-filtering

The lack of the superposition principle due to the nonlinear na-
ture of the HIGS potentially introduces undesirable effects caused by 
input-dependent phenomena. One such undesirable effect happens for 
example when a high-frequency component with a relatively large 
amplitude is present next to a low-frequency component, as illustrated 
in Fig.  3. This high-frequency component in the input induces high-
frequency switching behavior of the HIGS, which reduces the amplitude 
of the HIGS output (Chu et al., 2024; Heertjes et al., 2021). This 
reduced amplitude, in turn, translates to a decrease in effective gain, 
leading to compromised disturbance rejection capability of the low-
frequency component in the input. To prevent this rapid switching, an 
LTI frequency lifting pre-filter 𝑊  can be introduced before the HIGS 
to reduce (unwanted) frequency content in the input to the HIGS (see 
Fig.  3), while its inverse 𝑊 −1 is used as a post-filter to compensate for 
the magnitude and phase characteristics of 𝑊  (Heertjes et al., 2009, 
2021). Possible design choices for 𝑊  include notch filters, low-pass 
filters, and bandpass filters. By including these frequency lifting filters, 
the final HIGS-based version ∗ of an LTI controller 𝐶∗ is obtained 
as illustrated in Fig.  4. Note that by combining the lifting filter 𝑊
with its inverse, their effect is not visible in the describing-function-
based frequency-domain characteristics of the HIGS-based controller 
∗, as their frequency-domain characteristics cancel out. Consequently, 
the tuning of this lifting filter using the describing function in (3) is 
impossible, motivating a time-domain tuning framework. Furthermore, 
we care to stress that the controller structure in Fig.  4 is just one 
of possibly many ways in which the HIGS can be used in control 
design, and that the question which controller structure leads to the 
best performance is still an open research question that is outside the 
scope of this work, which focusses on data-driven controller tuning for 
a given structure.
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Fig. 3. Scaled HIGS response with HIGS parameters 𝜔ℎ = 1 and 𝑘ℎ = 1.5, and 
scaling factor 1∕𝑘ℎ (top), and switching behavior (bottom) without lifting filter 
𝑊  (left) and with lifting filter 𝑊  (right). The input signal is the sinusoidal 
signal 𝑧(𝑡) = 2 sin (𝑡) + 0.5 sin (3𝑡) + 0.5 sin (8𝜋𝑡). Filtering out the high-frequency 
component prevents rapid switching of the HIGS, resulting in an increased 
effective gain.

Fig. 4. Illustration of a HIGS-based version ∗ of an LTI controller 𝐶∗, 
including a frequency lifting filter 𝑊 .

2.3. Frequency-domain conditions for stability

Input-to-state stability (Sontag & Wang, 1995, Definition 2.1) of the 
closed-loop system is important for the successful application of HIGS-
based controllers. Therefore, consider a closed-loop system consisting 
of a plant 𝑃  and a HIGS-based feedback controller ∗ as discussed in 
the previous section. Let 𝐺 be a generalized plant consisting of all LTI 
components of this closed-loop system, with input channels 𝑤 ∶= [𝜃𝑇 𝑟]𝑇
and 𝑢, and output channel 𝑦, as illustrated in Fig.  5 (an example of 𝐺
will be given in the industrial case study in Section 4). We describe this 
generalized plant using the minimal state-space representation 

𝐺 ∶

{

𝑥̇𝑔(𝑡) = 𝐴𝑔𝑥𝑔(𝑡) + 𝐵𝑔𝑢(𝑡) + 𝐵𝑤𝑤(𝑡),

𝑦(𝑡) = 𝐶𝑔𝑥𝑔(𝑡)
(6)

with state vector 𝑥𝑔(𝑡) ∈ R𝑛𝑥 . Furthermore, we denote the transfer 
functions from 𝑢 to 𝑦 and from 𝑤 to 𝑦 as 
[

𝐺𝑦𝑢(𝑠) 𝐺𝑦𝑤(𝑠)
]

= 𝐶𝑔(𝑠𝐼 − 𝐴𝑔)−1
[

𝐵𝑔 𝐵𝑤
]

. (7)

A sufficient frequency-domain condition to guarantee that the feedback 
interconnection of the generalized plant 𝐺 and the HIGS  is ISS is 
derived by Van den Eijnden et al. (2024) and given by the following 
theorem.

Theorem 1.  Suppose that the matrix 𝐴𝑔 − 𝑘ℎ𝐵𝑔𝐶𝑔 is Hurwitz. If there 
exist parameters 𝜆 ≥ 0 and 𝑘 ≥ 1, such that, for all 𝜔 ∈ R ∪ {∞}, the 
frequency-domain inequality 
1 +𝑋(𝜔, 𝑘) − 𝜆𝑌 (𝜔, 𝑘) > 0 (8)

is satisfied, where

𝑋(𝜔, 𝑘) = Re
{(

(𝜔ℎ − 𝑘ℎ𝑗𝜔)𝑆(𝑗𝜔) − 𝑘
𝜔ℎ

)

𝐿(𝑗𝜔)
}

, (9)

𝑘ℎ

4 
Fig. 5. Feedback interconnection of a generalized plant 𝐺 consisting of all LTI 
components in the closed-loop system, and the HIGS .

𝑌 (𝜔, 𝑘) = Re
{(

𝑘𝑘ℎ𝑆(𝑗𝜔) + (1 − 𝑘)
)

𝐿(𝑗𝜔)
}

(10)

with 𝑆(𝑗𝜔) ∶=𝐺𝑦𝑢(𝑗𝜔)
(

1 + 𝑘ℎ𝐺𝑦𝑢(𝑗𝜔)
)−1 and 𝐿(𝑗𝜔) ∶= (

𝑗𝜔 + 𝑘𝜔ℎ∕𝑘ℎ
)−1, 

then the overall closed-loop system shown in Fig.  5 is ISS.
As remarked in Van den Eijnden et al. (2024), checking whether the 

matrix 𝐴𝑔 − 𝑘ℎ𝐵𝑔𝐶𝑔 is Hurwitz can be done by counting the number 
of times the Nyquist contour of the open-loop characteristics with the 
HIGS in the gain mode, i.e., the Nyquist contour of 𝑘ℎ𝐺𝑦𝑢(𝑗𝜔), encircles 
the critical point (−1, 0) (Franklin et al., 2015, Sec. 6.3). Furthermore, 
satisfaction of (8) can be verified graphically by checking whether the 
(𝑋, 𝑌 )-curve lies fully to the right of the line 1+𝑋−𝜆𝑌 = 0 in a Popov-
like plot. This is illustrated in Fig.  6, where the dashed line denotes 
1+𝑋−𝜆𝑌 = 0, and the colored lines denote the (𝑋, 𝑌 )-curve for various 
values of 𝑘. In this figure, (8) holds for 𝑘 = 𝑘2 since the orange curve 
is fully to the right of the dashed line.

However, while Fig.  6 illustrates that satisfaction of (8) can easily be 
checked graphically for given values of 𝜆 and 𝑘, verifying automatically 
whether there exist 𝜆 ≥ 0 and 𝑘 ≥ 1 for which (8) is satisfied is 
not a trivial task. Since in an automated tuning framework for HIGS-
based controllers it needs to be verified automatically if the closed-loop 
system is ISS, we therefore present in Section 3.1 a novel automated 
approach to verify whether the conditions of Theorem  1 are satisfied.

2.4. Performance optimization problem formulation

Let 𝐶{} denote a controller consisting of a HIGS-based element 
∗ as in Fig.  4, and in addition possibly some other LTI filters (an 
example will be given in the industrial case study in Section 4). By 
parametrizing 𝐶{} with tunable parameters 𝜽 ∈ R𝑛𝜽 , and using it as a 
feedback controller for an LTI plant 𝑃  to track a time-varying reference 
profile 𝑟(𝑡) ∈ R, we obtain a multi-input-single-output system 𝛴 with 
inputs 𝑟(𝑡) and 𝜽, and error output 𝑒(𝑡,𝜽) ∈ R, as illustrated in Fig. 
7. Here, 𝑒(𝑡,𝜽) ∶= 𝑟(𝑡) − 𝑦𝑝(𝑡,𝜽), with 𝑦𝑝(𝑡,𝜽) ∈ R the output of the 
plant 𝑃 , denotes the tracking error resulting from tracking the reference 
𝑟(𝑡). We task this closed-loop system 𝛴 with performing point-to-point 
tasks from an initial plant output 𝑟0 to a desired (constant) plant output 
𝑟𝑑 . The total duration 𝑇  of each point-to-point task is at least the sum 
of the tracking time 𝑡𝑟, the settling time 𝑡𝑠(𝜽), and the action time 𝑡𝑎. 
The tracking time 𝑡𝑟 is the time required by the reference to transition 
from 𝑟0 to 𝑟𝑑 . Ideally, the plant output 𝑦𝑝(𝑡,𝜽) remains constant at the 
desired output 𝑟𝑑 at 𝑡 = 𝑡𝑟, however, in general, some transient response 
remains. This transient response converges, until the absolute value of 
the tracking error 𝑒(𝑡,𝜽) remains within a desired error bound 𝑒𝑏. The 
time required before the error no longer violates the error bound after 
𝑡 = 𝑡𝑟 constitutes the settling time 𝑡𝑠(𝜽), i.e., 
𝑡𝑠(𝜽) ∶= min

𝜏∈[0,𝑇−𝑡𝑟]
𝜏 (11a)

s.t. |𝑒(𝑡,𝜽)| ≤ 𝑒𝑏 ∀𝑡 ∈ [𝑡𝑟 + 𝜏, 𝑇 ]. (11b)

The action time 𝑡𝑎 is the time required to perform a given action after 
the error has settled, e.g., to perform a machine operation that requires 
the level of accuracy specified by the error bound 𝑒𝑏. Given the high 
throughput demands in industrial applications, it is desired to choose 
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Fig. 6. Illustration of the Popov-like plot that can be used to verify satisfaction 
of (8) graphically. The different colors illustrate that (8) is satisfied for 𝑘 = 𝑘2, 
since the orange (𝑋, 𝑌 )-curve is fully to the right of the dashed line.  (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 7. Block scheme illustrating the feedback interconnection of a HIGS-based 
controller 𝐶{} parametrized by tunable parameters 𝜽, and an LTI plant 𝑃 , 
resulting in a closed-loop multi-input-single-output system 𝛴 with inputs 𝑟(𝑡)
and 𝜽, and output 𝑒(𝑡,𝜽).

𝑇  as small as possible. Since 𝑇  must be at least the sum of 𝑡𝑟, 𝑡𝑠(𝜽), 
and 𝑡𝑎, i.e., 𝑇 ≥ 𝑡𝑟 + 𝑡𝑠(𝜽) + 𝑡𝑎, and since 𝑡𝑎 is typically fixed due to the 
to-be-performed action, one can optimize either the reference 𝑟(𝑡) or 
minimize the settling time 𝑡𝑠(𝜽). In this work, we assume the reference 
𝑟(𝑡) to be predefined, and hence aim to minimize the settling time 𝑡𝑠(𝜽). 
That is, we aim to solve the following optimization problem 
𝑡∗𝑠 ∶= min

𝜽∈𝛩
𝑡𝑠(𝜽), (12)

where 𝛩 denotes the set of all parameter combinations for which the 
closed-loop system 𝛴 is ISS with respect to the reference 𝑟(𝑡). Note that 
a subset of this set can be characterized by the conditions in Theorem 
1.

Solving (12) directly, however, is challenging due to the discontinu-
ous dependence of 𝑡𝑠(𝜽) on 𝜽. This discontinuous nature of 𝑡𝑠(𝜽) means 
that small changes in 𝜽 can lead to large changes in the settling time, as 
illustrated in Weekers et al. (2025). To circumvent this extreme sensi-
tivity of the settling time to changes in 𝜽 when solving (12), a problem 
reformulation was proposed in Weekers et al. (2025) in which (12) is 
reformulated as a cascade of two optimization problems with contin-
uous cost functions. While the continuous nature of the cost functions 
in this reformulation facilitated devising a solution strategy for solving 
(12), the method devised in Weekers et al. (2025) only considers LTI 
controllers. The main limitation challenging a natural extension of the 
work of Weekers et al. (2025) to HIGS-based controllers is the reliance 
5 
on the Nyquist stability criterion to guarantee stability of the closed-
loop system between iterations of the optimization algorithm based on 
(measured) FRF data of the plant. Due to the inherent nonlinear nature 
of HIGS-based controllers, closed-loop stability properties cannot be 
guaranteed on the basis of such a traditional frequency-domain tool 
for LTI controllers alone. Therefore, in the next section, we develop 
a solution strategy inspired by the solution strategy in Weekers et al. 
(2025) for solving (12) when there is a HIGS element in the system.

3. A data-driven tuning framework for HIGS-based controllers

In this section, we present a novel automated procedure for ver-
ifying the stability conditions outlined in Theorem  1. Subsequently, 
we present our approach for solving (12) that includes this automated 
procedure.

3.1. Automated, data-driven verification of stability conditions

To verify the conditions of Theorem  1 in an automated framework, 
we assume that (i) (measured) data of 𝐺𝑦𝑢(𝑗𝜔) is available for a suf-
ficiently wide range of frequencies, (ii) the frequency resolution of 
the data is sufficiently high, (iii) the number of integrators in 𝐺𝑦𝑢 is 
known, and (iv) 𝐺𝑦𝑢(𝑗𝜔) → 0 as 𝜔 → ∞. As mentioned before, checking 
whether the matrix 𝐴𝑔 − 𝑘ℎ𝐵𝑔𝐶𝑔 is Hurwitz is then relatively straight-
forward. Namely, by drawing the Nyquist contour of 𝑘ℎ𝐺𝑦𝑢(𝑗𝜔) based 
on (measured) frequency-response data and interpolating between data 
points, the number of up- and downward crossings of the negative real 
axis to the left of the critical point (−1, 0) can be determined. The net 
number of downward crossings corresponds to the number of times 
the critical point is encircled in the counterclockwise direction, which 
allows drawing conclusions about stability (see, e.g, Franklin et al. 
(2015, Sec. 6.3)) of the feedback interconnection of the generalized 
plant 𝐺 and the HIGS  with the HIGS in gain mode.

If the matrix 𝐴𝑔 − 𝑘ℎ𝐵𝑔𝐶𝑔 is Hurwitz, it remains to be verified 
whether there exist constants 𝜆 ≥ 0 and 𝑘 ≥ 1 such that (8) is 
satisfied. Verification of the conditions in Theorem  1 can be simplified 
by recognizing that 𝑋(𝜔, 𝑘) and 𝑌 (𝜔, 𝑘) in (9) and (10) are independent 
of 𝜆, leaving 𝜆 as a free variable to satisfy (8). Furthermore, note that 
arctan (1∕𝜆) is the positive angle between the horizontal axis and the 
line 1 + 𝑋 − 𝜆𝑌 = 0, showing that decreasing 𝜆 to zero results in a 
vertical line, and increasing 𝜆 to ∞ corresponds to a horizontal line. 
Consequently, for any given value of 𝑘, the (𝑋, 𝑌 )-curve is fully to 
the right of the line 1 + 𝑋 − 𝜆𝑌 = 0 if the largest angle that the 
lines connecting the point (−1, 0) to points on the curve make with the 
horizontal axis is (i) smaller than 𝜋∕2 and (ii) smaller than the smallest 
angle plus 𝜋. Since (8) is satisfied if the (𝑋, 𝑌 )-curve is fully to the right 
of the line 1 + 𝑋 − 𝜆𝑌 = 0, it thus remains to verify for a given value 
of 𝑘 whether there exists a 𝜆 ≥ 0 such that this is indeed the case. To 
this end, let 

𝜙(𝜔, 𝑘) ∶= arctan
(

𝑌 (𝜔, 𝑘)
𝑋(𝜔, 𝑘) + 1

)

(13)

denote the angle between the horizontal axis and the line connecting 
(𝑋(𝜔, 𝑘), 𝑌 (𝜔, 𝑘)) to the point (−1, 0). Then, verifying whether there 
exists a 𝜆 ≥ 0 such that (8) is satisfied for a given value of 𝑘 thus 
amounts to verifying whether 

max
𝜔∈R

𝜙(𝜔, 𝑘) < min
{

𝜋
2
,min
𝜔∈R

(𝜙(𝜔, 𝑘) + 𝜋)
}

. (14)

While (14) simplifies verifying whether a 𝜆 ≥ 0 exists for a given 
value of 𝑘 to verifying satisfaction of a single inequality, checking it 
for many values of 𝑘 ≥ 1 is still computationally expensive. In addition, 
depending on the frequency resolution of the frequency-response data, 
the number of times (13) needs to be evaluated can be large, meaning 
that verifying (14) for many values of 𝑘 can be both computationally 
expensive and time-consuming. However, the following observations 
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can be made to reduce the computational burden for a given value of 
𝑘. Define 
 ∶= {(𝑋(𝜔1, 𝑘), 𝑌 (𝜔1, 𝑘)),… , (𝑋(𝜔𝑁𝜔

, 𝑘), 𝑌 (𝜔𝑁𝜔
, 𝑘))} (15)

with 𝜔𝑗 , 𝑗 = 1, 2,… , 𝑁𝜔, the frequencies for which the frequency 
response has been measured/constructed. Furthermore, let
𝑄1 ∶=

{

(𝑋, 𝑌 ) ∈ R2 ∣ 𝑋 > −1, 𝑌 > 0
}

, (16)

𝑄2 ∶=
{

(𝑋, 𝑌 ) ∈ R2 ∣ 𝑋 ≤ −1, 𝑌 ≥ 0
}

, (17)

𝑄3 ∶=
{

(𝑋, 𝑌 ) ∈ R2 ∣ 𝑋 < −1, 𝑌 < 0
}

, (18)

denote, respectively, the first, second and third quadrant around the 
point (−1, 0) of the Popov-like plot as illustrated in Fig.  6. Clearly, if 
any of the points in  lies in 𝑄2, there exists no 𝜆 ≥ 0 such that (8) is 
satisfied, i.e., (14) is not satisfied for a given value of 𝑘 if  ∩ 𝑄2 ≠ ∅
for that value of 𝑘. Furthermore, (14) trivially holds for a given value 
of 𝑘 if either  ∩ (𝑄1 ∪𝑄2) = ∅ or  ∩ (𝑄2 ∪𝑄3) = ∅ for that value of 𝑘, 
since in these cases all points are below/to the right of the lines 𝑌 = 0
and 𝑋 = −1, respectively. Finally, if none of these previous conditions 
hold, it holds that  ∩𝑄2 = ∅,  ∩𝑄1 ≠ ∅, and  ∩𝑄3 ≠ ∅. Hence, the 
point on the (𝑋, 𝑌 )-contour corresponding to the largest angle 𝜙(𝜔, 𝑘)
is contained in 𝑄1, while the point on the (𝑋, 𝑌 )-contour corresponding 
to the smallest angle 𝜙(𝜔, 𝑘) is contained in 𝑄3. Therefore, in this case, 
it suffices to determine the largest angle 
𝜙max ∶= max

𝜔∈R
𝜙(𝜔, 𝑘) (19a)

s.t. (𝑋(𝜔, 𝑘), 𝑌 (𝜔, 𝑘)) ∈  ∩𝑄1 (19b)

of the lines connecting the point (−1, 0) to any of the points in 𝑄1, and 
the smallest angle 
𝜙min ∶= min

𝜔∈R
𝜙(𝜔, 𝑘) (20a)

s.t. (𝑋(𝜔, 𝑘), 𝑌 (𝜔, 𝑘)) ∈  ∩𝑄3 (20b)

of the lines connecting the point (−1, 0) to any point in 𝑄3, and to verify 
whether 𝜙max < 𝜙min + 𝜋 to verify if (14) is satisfied. In our experience, 
this approach results in a significant reduction of the computational 
burden, as  ∩𝑄2 ≠ ∅ for many values of 𝑘.

With the above approach for verifying for given values of 𝑘 whether 
there exists a 𝜆 ≥ 0 such that (8) is satisfied, it remains to be verified if 
there exists a 𝑘 ≥ 1 such that these conditions are satisfied. To this end, 
we adopt an iterative approach in which 𝑘 is incremented by a fixed 
value 𝛥𝑘, starting from 𝑘 = 1, and the above procedure for verifying 
satisfaction of (14) for the current value of 𝑘 is performed until either 
(14) is satisfied or 𝑘 reaches a specified upper bound 𝑘̄. The resulting 
algorithm for verifying satisfaction of the conditions of Theorem  1 
is given in Algorithm 1. Note that iterating over values of 𝑘 may 
introduce some additional conservativeness to the sufficient conditions 
from Theorem  1 for guaranteeing that the feedback interconnection of 
𝐺 and  is ISS. For example, choosing the increment 𝛥𝑘 too large or 
the upper bound 𝑘̄ too small might result in failure of finding a value 
of 𝑘 for which the conditions are satisfied even if such a 𝑘 exists.

Remark 1.  In Van den Eijnden (2022, Sec. 4.4), an extension of 
the frequency-domain conditions discussed in Section 2.3 for verifying 
input-to-state stability of the closed-loop system is provided, which 
allows taking multiplicative plant uncertainties in 𝐺𝑦𝑢 into account. 
This extension amounts to

(i) checking whether the matrix 𝐴𝑔 − 𝑘ℎ𝐵𝑔𝐶𝑔 is Hurwitz;
(ii) checking whether the matrix 𝐴𝑔 −𝑘ℎ𝐵𝑔𝐶𝑔 is also Hurwitz for all 

possible realizations of the uncertainty, by checking whether 
‖𝑘ℎ𝑊 (𝑗𝜔)𝐺0(𝑗𝜔)‖ < ‖1 + 𝑘ℎ𝐺0(𝑗𝜔)‖ ∀𝜔 ∈ R (21)

with ̃𝑊  a stable and proper weighting filter that captures magni-
tude information about the uncertainty and 𝐺0(𝑗𝜔) the nominal 
frequency-domain characteristics of 𝐺 ;
𝑦𝑢
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(iii) drawing uncertainty ellipses around the (𝑋, 𝑌 )-contour (cf. Van 
den Eijnden (2022, Eq. (4.48))) and verifying whether the hull 
of those ellipses is fully to the right of the line 1 +𝑋 + 𝜆𝑌 = 0.

Note that our procedure in Algorithm 1, with some slight modifications, 
can also be used to perform these three tasks. First, (i) can be performed 
by replacing the open-loop characteristics 𝐺𝑦𝑢(𝑗𝜔) in lines 2–4 of Al-
gorithm 1 by the nominal open-loop characteristics 𝐺0(𝑗𝜔). Next, for 
(ii), it can be verified whether the inequality in (21) is satisfied for 
frequencies 𝜔1,… , 𝜔𝑁𝜔

 for which the frequency response 𝐺0(𝑗𝜔) has 
been measured/constructed. Under the assumptions mentioned at the 
beginning of this section, this gives a good indication whether (21) is 
satisfied for all 𝜔 ∈ R. Finally, (iii) can be performed by construct-
ing each uncertainty ellipse using 𝑁𝑒𝑙𝑙𝑖𝑝𝑠𝑒 equally spaced points (with 
𝑁𝑒𝑙𝑙𝑖𝑝𝑠𝑒 sufficiently large), and changing  in (15) to
 = ∪𝑖=1,…,𝑁𝑒𝑙𝑙𝑖𝑝𝑠𝑒

{(𝑋𝑖(𝜔1, 𝑘),𝑌𝑖(𝜔1, 𝑘)),… ,

(𝑋𝑖(𝜔𝑁𝜔
, 𝑘), 𝑌𝑖(𝜔𝑁𝜔

, 𝑘))}. (22)

Here, 𝑋𝑖(𝜔, 𝑘) and 𝑌𝑖(𝜔, 𝑘) denote, respectively, the 𝑥- and 𝑦-coordinates 
of the 𝑖th point on the uncertainty ellipse around the point (𝑋(𝜔, 𝑘),
𝑌 (𝜔, 𝑘)).

Algorithm 1: Data-driven verification of the conditions of Theorem  1.
Input: HIGS gain 𝑘ℎ, HIGS integrator frequency 𝜔ℎ, open-loop charac-

teristics 𝐺𝑦𝑢(𝑗𝜔), process sensitivity with HIGS in gain mode 𝑆(𝑗𝜔), 
 as in (15), increment 𝛥𝑘, upper bound 𝑘̄

Output: ISSguaranteed 
1: 𝑘 ← 1, ISSguaranteed ← false 
2: By counting the number and direction of sign changes, determine 
the number of times the Nyquist contour of 𝑘ℎ𝐺𝑦𝑢(𝑗𝜔) crosses the 
negative real axis to the left of (−1, 0) in the up- and downward 
directions. 

3: Determine the net number of times the point (−1, 0) is encircled 
in the counterclockwise direction by subtracting the number of 
upward crossings from the number of downward crossings. 

4: Based on the number of times the point (−1, 0) is encircled in coun-
terclockwise direction, conclude whether the matrix 𝐴𝑔 −𝑘ℎ𝐵𝑔𝐶𝑔 is 
Hurwitz (see, e.g., (Franklin et al., 2015, Sec. 6.3)). 

5: if the matrix 𝐴𝑔 − 𝑘ℎ𝐵𝑔𝐶𝑔 is Hurwitz then 
6: while 𝑘 < 𝑘̄  and not  ISSguaranteed do 
7: if  ∩𝑄2 = ∅ then 
8: if  ∩𝑄1 = ∅ or  ∩𝑄3 = ∅ then 
9: ISSguaranteed ← true
10: else 
11: Calculate 𝜙max and 𝜙min as in (19) and (20), respectively 
12: if 𝜙max < 𝜙min + 𝜋 then 
13: ISSguaranteed ← true
14: end if
15: end if
16: end if
17: 𝑘 ← 𝑘 + 𝛥𝑘
18: end while
19: end if
20: return  ISSguaranteed

3.2. Optimization problem solution strategy

The procedure for verifying the conditions of Theorem  1 in Al-
gorithm 1, to verify whether the closed-loop system is ISS for given 
parameters 𝜽, allows devising a data-driven approach for solving the 
settling time optimization problem (12). To this end, inspired by the 
approach in Weekers et al. (2025), we break down the optimization 
problem into a cascade of two optimization problems with continuous 
cost functions to circumvent the extreme sensitivity of the settling time 
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𝑡𝑠(𝜽) to changes in the parameters 𝜽. In this cascaded optimization 
approach, the inner optimization loop is aimed at solving 
𝜽∗(𝜏) ∶= argmin

𝜽∈𝛩
𝐽 (𝜏,𝜽) (23a)

s.t. max
𝑡∈[𝑡𝑟+𝜏,𝑇 ]

|𝑒(𝑡,𝜽)| ≤ 𝑒𝑏, (23b)

where 𝐽 (𝜏,𝜽) is a cost function continuous in 𝜽 for any fixed value of 
𝜏, that will be defined shortly. The outer optimization loop is aimed at 
minimizing the settling time by minimizing 𝜏 subject to the constraint 
that the problem in (23) is feasible, i.e., subject to the constraint that 
there indeed exist parameters 𝜽 such that the error 𝑒(𝑡,𝜽) satisfies 
the desired error bound 𝑒𝑏 for all 𝑡 ∈ [𝑡𝑟 + 𝜏, 𝑇 ]. That is, the outer 
optimization loop is aimed at solving 
𝜏∗ ∶= argmin

𝜏∈
[

0,𝑇−𝑡𝑟
]

𝜏 (24a)

s.t. (23) has a feasible solution. (24b)

Note that solving the reformulated problem (23)–(24) is equivalent to 
solving the original settling time optimization problem (11)–(12), as 
given by the following proposition. 

Proposition 1.  For the original problem (11)–(12), and the reformulated 
problem (23)–(24), it holds that 𝜏∗ = 𝑡∗𝑠 .

Proof.  By definition of 𝑡∗𝑠 in (11)–(12), there exists a 𝜽′ ∈ 𝛩 such that 
max𝑡∈[𝑡𝑟+𝑡∗𝑠 ,𝑇 ] |𝑒(𝑡,𝜽

′)| ≤ 𝑒𝑏. Hence, (23) is feasible for 𝜏 = 𝑡∗𝑠 , and thus 
𝜏∗ ≤ 𝑡∗𝑠 by (24). Moreover, by definition of 𝑡∗𝑠 in (11)–(12) it follows 
that max𝑡∈[𝑡𝑟+𝜏,𝑇 ] |𝑒(𝑡,𝜽)| > 𝑒𝑏 for any 𝜽 ∈ 𝛩 if 𝜏 < 𝑡∗𝑠 . Therefore, (23) 
is not feasible for any 𝜏 < 𝑡∗𝑠 , showing that 𝜏∗ ≥ 𝑡∗𝑠 . Since it holds both 
that 𝜏∗ ≤ 𝑡∗𝑠 and that 𝜏∗ ≥ 𝑡∗𝑠 , it follows that 𝜏∗ = 𝑡∗𝑠 , which completes 
the proof. □

Since the cost functions in (23a) and (24a) are continuous in their 
respective optimization variables, the extreme sensitivity of the opti-
mization variables to the cost function is mitigated by solving the refor-
mulated problem (23)–(24) instead of the original problem (11)–(12). 
Moreover, note that the reformulated problem is independent of the 
chosen cost function 𝐽 (𝜏,𝜽). This cost function therefore mainly serves 
to guide the search direction for a feasible solution, and to indicate 
which parameters 𝜽 to favor in case finding the exact solution to the op-
timization problem might not be possible (common in practice, where 
optimization problems are typically only solved to a desired tolerance). 
To exploit the overshoot-reducing capabilities of the HIGS (Van den 
Eijnden, Heertjes, Heemels et al., 2020; Van Dinther et al., 2021), we 
define 𝐽 (𝜏,𝜽) as 

𝐽 (𝜏,𝜽) ∶= ∫

𝑡𝑟+𝜏

𝑡𝑟
|𝑒(𝑡,𝜽)|d 𝑡, (25)

i.e., as the absolute integral error over a time interval of duration 𝜏
after the reference motion has finished. This cost function penalizes 
overshoot, and thus steers the optimization algorithm more quickly 
towards solutions with lower overshoot, which is often beneficial for 
faster settling times.

The main challenge in solving the reformulated problem in (23)–(24)
is in verifying satisfaction of the constraint (24b). This challenge results 
from the fact that it is a priori unknown for a given value of 𝜏 if, and 
for which 𝜽 ∈ 𝛩, it holds that 𝑡𝑠(𝜽) ≤ 𝜏, i.e., that the constraint (23b) 
is satisfied. Furthermore, the inner optimization (23) is not necessarily 
convex. Therefore, to assess the feasibility of (23), we choose to use 
(a modified version of) the DIRECT algorithm (Jones & Martins, 2021; 
Jones et al., 1993) as it is a global optimization algorithm that is well-
suited for optimizing non-convex and non-smooth cost functions. This 
optimization algorithm repeatedly samples points from the search space 
𝛺 ∶= {𝜽 = [𝜃1,… , 𝜃𝑛𝜃 ] ∶ 𝜃𝑖 ∈ [

̄
𝜃𝑖, 𝜃̄𝑖]⊺, 𝑖 = 1,… , 𝑛𝜃}, where ̄𝜃𝑖 and 𝜃̄𝑖, 𝑖 =1,… , 𝑛 , denote, respectively, lower and upper bounds on the elements 
𝜃
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𝜃𝑖 of 𝜽, and divides it into progressively smaller hyperrectangles to 
balance between local and global search, in an attempt to solve the 
optimization problem in (23) (for visualizations of the algorithm the 
reader is referred to Jones et al. (1993) and Jones and Martins (2021)). 
In doing so, the points sampled by the DIRECT algorithm form a 
dense subset of 𝛺 as the number of iterations approaches infinity (see, 
e.g., Jones et al. (1993)), meaning that for any 𝜽 ∈ 𝛺, and any 𝛿 > 0, 
a point within a distance 𝛿 from 𝜽 will be sampled eventually. Under 
the assumption that for a given value of 𝜏, if (23) is feasible, there 
exist a point 𝜽′ ∈ 𝛩 and a 𝛿 > 0 such that (23) is feasible for any 𝜽
within a distance 𝛿 from 𝜽′, such feasible point will thus be found with 
a sufficiently large number of iterations. Hence, if no feasible solution 
is found to (23) after a sufficiently large number of iterations, it can be 
concluded that (23) is not feasible.

The modified version of the DIRECT algorithm used to solve the 
inner optimization problem, which is given in Algorithm 2, is largely 
aligned with the modified version of the algorithm used in Weekers 
et al. (2025). However, the following two modifications to the version 
of Weekers et al. (2025) can be recognized in Algorithm 2:

(i) While the constraint handling approach for the feasibility con-
straint 𝜽 ∈ 𝛩 is the same as in Weekers et al. (2025) (i.e., as-
signing a surrogate cost value 𝐽 determined using the strategy 
in Gablonsky (2001, Sec. 3.4.3) instead of performing a mea-
surement when the constraint is not satisfied), the method for 
verifying the condition in lines 2 and 17 are different: instead 
of drawing the Nyquist contour and evaluating the maximum 
value of the sensitivity function to verify whether the closed-loop 
system is asymptotically stable with sufficient robustness margin 
to plant uncertainties, here we use Algorithm 1 to verify whether 
the closed-loop system is guaranteed to be ISS for the to-be-
evaluated parameters 𝜽, to ensure that measurements are only 
performed with parameters for which the closed-loop system is 
guaranteed to be ISS.

(ii) In Weekers et al. (2025), a stopping condition of the form 
𝐽 ∗(𝜏) ≤ 𝑒𝑏 with 𝐽 ∗(𝜏) ∶= 𝐽 (𝜏,𝜽∗) the optimal cost for the inner 
optimization problem (23), is used to prevent unnecessary func-
tion evaluations in case the constraint (24b) is already known to 
be satisfied (and thus 𝜏 can be decreased in the bisection search 
from Algorithm 3 below). Since we use a different cost function 
(25) than in Weekers et al. (2025), we cannot use the same 
condition to evaluate whether the constraint (24b) is satisfied. 
Therefore, instead, we use a different stopping condition of the 
form max𝑡∈[𝑡𝑟+𝜏,𝑇 ]|𝑒(𝑡,𝜽)| ≤ 𝑒𝑏 in lines 4–7 and lines 19–22 in 
Algorithm 2 below (we have highlighted modifications (i) and 
(ii) in gray).

Algorithm 2: Modified DIRECT algorithm for solving the inner opti-
mization problem (23), (25). Modifications with respect to Weekers 
et al. (2025) are highlighted in gray.
Input: lower bounds 

̄
𝜃𝑖 and upper bounds 𝜃̄𝑖, 𝑖 = 1, 2,… , 𝑛𝜽, on the 

parameters 𝜽 = [𝜃1 ⋯ 𝜃𝑛𝜽 ]
⊺, cost function (25), function evalu-

ation budget 𝑁 , iteration budget 𝑀 , parameter 𝜀 > 0 indicating 
the desired relative accuracy of the solution (e.g., 10−4) (Jones & 
Martins, 2021), error bound 𝑒𝑏, current value of 𝜏, and lookup table 
 containing previous inputs 𝜽 and corresponding outputs 𝑒(𝑡,𝜽)
obtained during previous iterations of solving the problem in (23), 
(25), or initialized as an empty list if not available.

Output: found optimal parameters 𝜽∗(𝜏) and updated lookup table  . 
1: Take 𝜽1 to be the center of the search space 𝛺 ∶=

{𝜽 = [𝜃1,… , 𝜃𝑛𝜽 ]
⊺ ∶ 𝜃𝑖 ∈ [

̄
𝜃𝑖, 𝜃̄𝑖], 𝑖 = 1, 2,… , 𝑛𝜽}.

2: if ISSguaranteed for 𝜽1 then // Algorithm 1
3:  Evaluate (25) by obtaining 𝑒(𝑡,𝜽 ) from the lookup table
1
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  if 𝜽1 ∈  , or from a measurement if 𝜽1 ∉  : 
 𝐽1 ← 𝐽 (𝜏,𝜽1). Add 𝜽1 and 𝑒(𝑡,𝜽1) to  if 𝜽1 ∉  . 

4:  if max𝑡∈[𝑡𝑟+𝜏,𝑇 ] |𝑒(𝑡,𝜽1)| ≤ 𝑒𝑏 then 
5:   Save the current best cost 𝐽 ∗ ← 𝐽1 and correspond-

  ing parameters 𝜽∗(𝜏) ← 𝜽1. 
6:   Jump to line 31. 
7:  end if
8: else 
9:  Assign a surrogate cost value according to the strategy

 in (Gablonsky, 2001, Sec. 3.4.3): 𝐽1 ← 𝐽 . 
10: end if 
11: Initialize the function evaluation and iteration counters 𝑛 ← 1, 

𝑚 ← 0, and save the current best cost 𝐽 ∗ ← 𝐽1. 
12: while 𝑛 < 𝑁 and 𝑚 < 𝑀 do 
13: Identify the set  of all indices 𝑠 ∈ {1, 2,… , 𝑛} for which there 

exists a 𝐾 > 0 such that, ∀𝑗 ∈ {1, 2,… , 𝑛}, 
𝐽𝑠 −𝐾𝑑𝑠 ≤ min{𝐽 ∗ − 𝜀|𝐽 ∗

|, 𝐽𝑗 −𝐾𝑑𝑗},

where 𝑑𝑗 is the longest side length of hyperrectangle 𝑗. 
14: for all 𝑠 ∈   do 
15: for 𝑘 = 1 to 2 do 
16: Take 𝜽̃𝑘 ← 𝜽𝑠 +

1
3 (−1)

𝑘𝑑𝑠𝝈 to be the new to-be-evaluated 
point, where 𝜽𝑠 denotes the center of hyperrectangle 𝑠, and 
𝝈 the unit vector in the direction along which the hyperrect-
angle has length 𝑑𝑠. If the hyperrectangle 𝑠 has multiple sides 
of length 𝑑𝑠, choose the direction with the smallest number 
of total subdivisions. 

17: if ISSguaranteed for ̃𝜽𝑘 then // Algorithm 1
18:  Evaluate (25) by obtaining 𝑒(𝑡, 𝜽̃𝑘) from the

 lookup table  if ̃𝜽𝑘 ∈  , or from a measurement
 if ̃𝜽𝑘 ∉  : 𝐽𝑛+𝑘 ← 𝐽 (𝜏, 𝜽̃𝑘). Add ̃𝜽𝑘 and 𝑒(𝑡, 𝜽̃𝑘) to
  if ̃𝜽𝑘 ∉  .

19:  if max𝑡∈[𝑡𝑟+𝜏,𝑇 ] |𝑒(𝑡, 𝜽̃𝑘)| ≤ 𝑒𝑏 then 
20:   Save the current best cost 𝐽 ∗ ← 𝐽𝑛+𝑘 and cor-

  responding parameters 𝜽∗(𝜏) ← 𝜽̃𝑘. 
21:   Jump to line 31. 
22:  end if
23: else 
24:  Assign a surrogate cost value according to the

 strategy in (Gablonsky, 2001, Sec. 3.4.3):
 𝐽𝑛+𝑘 ← 𝐽 . 

25: end if
26: end for
27: Increment function evaluation counter 𝑛 ← 𝑛 + 2, and trisect 

hyperrectangle 𝑠 along the direction 𝝈.
28: end for
29: Increment iteration counter 𝑚 ← 𝑚+1, and save the current best 

cost 𝐽 ∗ ← min{𝐽𝑗 ∶ 𝑗 = 1, 2,… , 𝑛} and corresponding parameters 
𝜽∗. In case multiple evaluations resulted in the same cost 𝐽 ∗, take 
the parameters corresponding to the evaluation with the lowest 
index.

30: end while
31: return  parameters 𝜽∗(𝜏) and the updated lookup table  .

Besides this modified DIRECT algorithm to solve the feasibility 
problem, we adopt a bisection search to solve the outer optimization 
problem (24) up to a desired precision 𝛥𝜏, similar to Weekers et al. 
(2025). In this bisection search, the inner optimization problem (23), 
(25) is solved at each iteration of the search to evaluate the constraint 
(24b), as illustrated in Algorithm 3.

Algorithm 3: Bisection search for solving the outer optimization 
problem (24).
Input: initial lower bound ̄𝜏 and upper bound 𝜏 on 𝜏, desired precision 

𝛥𝜏, and error bound 𝑒 .
𝑏
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Output: found optimal value 𝜏∗ and corresponding parameters 𝜽∗(𝜏∗). 

1: while |𝜏 −
̄
𝜏| > 𝛥𝜏 do 

2: 𝜏 ← (𝜏 +
̄
𝜏)∕2. 

3: Evaluate satisfaction of the constraint (24b) by solving the prob-
lem in (23), (25). // Algorithm 2. 

4: if (24b) is satisfied then 
5: 𝜏 ← 𝜏.
6: else 
7:

̄
𝜏 ← 𝜏.

8: end if
9: end while
10: 𝜏∗ ← 𝜏. 
11: return  found optimal value 𝜏∗ and corresponding parameters 

𝜽∗(𝜏∗).

The interconnection of the (modified) DIRECT algorithm with the 
closed-loop system 𝛴 forms a sampled-data extremum-seeking control 
(ESC) loop in the spirit of Khong, Nešić, Manzie et al. (2013), Khong, 
Nešić, Tan et al. (2013). Hence, the addition of the bisection search 
results in a cascaded ESC loop.

4. Industrial case study

In this section, we perform an industrial case study of the proposed 
cascaded ESC approach for HIGS-based controller tuning on a wire 
bonder system. First, in Section 4.1, we describe the use case and define 
the controller structure. Then, in Section 4.2, we apply the proposed 
approach to an industrial wire bonding machine.1

4.1. Wire bonder system

Wire bonders are systems used in the manufacturing process of 
semiconductors to create wired interconnections between integrated 
circuits and their packaging. These interconnections are made by per-
forming rapid point-to-point movements along the wire bonder’s 𝑥-, 𝑦-, 
and 𝑧-motion axes illustrated in Fig.  8. To ensure satisfactory quality 
of the finished product, the positioning error of the wire bonder should 
not exceed an error bound 𝑒𝑏 at the moment that the wired connection 
is made. This error bound is typically in the micrometer range, so 
that the wires are positioned correctly and do not touch each other. 
Furthermore, the high throughput demands of placing in the order of 
ten wires per second require this accuracy to be reached as quickly as 
possible. Hence, as is the case in many industrial use cases, the goal is 
to minimize the settling time 𝑡𝑠(𝜽) in order to increase throughput. In 
particular, we take the dynamics of the wire bonder along the 𝑥-axis as 
our plant 𝑃 . 

Remark 2.  By considering only a single motion axis, the plant 𝑃  forms 
a single-input-single-output (SISO) system. This choice is motivated by 
the fact that in practice the wire bonder motion axes are sufficiently 
decoupled to consider them as SISO systems. The main challenge in ex-
tending our framework to multi-input-multi-output (MIMO) systems is 
in guaranteeing input-to-state stability of the closed-loop system, since 
the stability conditions of Theorem  1 and consequently the procedure 
in Algorithm 1 are only valid for SISO systems. An extension towards 
MIMO systems, e.g., using the frequency-domain conditions presented 
in Beerens et al. (2024), could therefore be an interesting research 
direction for future work.

The motion axes of a wire bonder are typically controlled using 
linear PID control, combined with low-pass filtering and notch filters. 
However, given the potential performance benefits of using HIGS-based 

1 Some results in this section are normalized for confidentiality reasons.
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Fig. 8. The wire bonder motion stage consisting of an 𝑥-motion axis, a 𝑦-
motion axis, and a 𝑧-motion axis stacked on top of each other.

controllers, here we replace this linear controller by a HIGS-based 
counterpart. For ease of exposition, we omit the notch filters and use 
only a first-order low-pass filter in addition to the PID components. The 
used HIGS-based controller is constructed by a linear lead–lag filter 

𝐶𝑙𝑙(𝑠) = 𝑘𝑝
𝜔𝑝𝑙𝑙 (𝑠 + 𝜔𝑧𝑙𝑙 )
𝜔𝑧𝑙𝑙 (𝑠 + 𝜔𝑝𝑙𝑙 )

(26)

with gain 𝑘𝑝, lead frequency 𝜔𝑧𝑙𝑙 , and lag frequency 𝜔𝑝𝑙𝑙 , and a HIGS-
based integrator 𝐶𝑖{} as illustrated in Fig.  4, with 𝐻(𝑠) as in (4) and 
𝐶∗(𝑠) = 𝐶𝑖(𝑠) = 𝜔𝑖∕𝑠. The frequency-lifting filter 𝑊  is chosen to be 
a proper filter that acts as a second-order low-pass filter to minimize 
high-frequency switching of the HIGS and is chosen as 

𝑊 (𝑠) =
𝜔2
𝑝(𝑠 + 𝜔𝑧)2

𝜔2
𝑧(𝑠 + 𝜔𝑝)2

(27)

with zeros 𝜔𝑧 and poles 𝜔𝑝. The resulting2 closed-loop system with 
HIGS-based controller 𝐶{} is illustrated in Fig.  9, and has eight 
tunable parameters, namely: the parameters 𝑘𝑝, 𝜔𝑧𝑙𝑙 , and 𝜔𝑝𝑙𝑙  of the 
lead–lag filter 𝐶𝑙𝑙, the HIGS parameters 𝑘ℎ and 𝜔ℎ, the integrator 
frequency 𝜔𝑖 of 𝐶𝑖, and the zeros 𝜔𝑧 and the poles 𝜔𝑝 of the frequency-
lifting filter 𝑊 . However, due to the factor 1∕𝑘ℎ in the pre-filter 𝐻−1

(cf. (4)), 𝑘ℎ only affects the combination of 𝐻−1 and the HIGS  in the 
ratio 𝜔ℎ∕𝑘ℎ determining the corner frequency of the HIGS. Hence, we 
can choose 𝑘ℎ = 1 without loss of generality. Furthermore, the zeros 
𝜔𝑧 of the frequency-lifting filter 𝑊  mainly serve to make 𝑊  bi-proper, 
and can thus remain fixed and chosen sufficiently large to not influence 
the desired low-pass characteristics of 𝑊 . In our case we have chosen 
𝜔𝑧 = 𝜋𝑓𝑠∕4, with 𝑓𝑠 the sample frequency in Hertz (typically in the 
order of several kilohertz) as decreasing 𝜔𝑧 results in reduced error 
suppression while increasing 𝜔𝑧 gives no further benefits. With these 
observations, the remaining six parameters 𝜽 ∶= [𝑘𝑝 𝜔𝑧𝑙𝑙 𝜔𝑝𝑙𝑙 𝜔ℎ 𝜔𝑖 𝜔𝑝]⊺

serve as the parameters to be tuned by the proposed cascaded ESC 
algorithm.

To evaluate the efficacy of the proposed ESC framework in min-
imizing the settling time, we compare the settling performance of a 
HIGS-based controller tuned using the proposed ESC framework to 
both a HIGS-based controller and a linear controller in which the 
parallel path containing the HIGS in Fig.  9 is replaced by a lin-
ear integrator, which are tuned using a proprietary state-of-the-art 

2 The actual implementation on the system is done using Tustin 
discretization of the continuous-time filters presented in this section.
9 
frequency-based auto-tuner (FBA) used in industry. This FBA tunes con-
trollers based on (measured) FRF data of the plant 𝑃 , by using particle 
swarm optimization to maximize the bandwidth given a user-defined 
frequency-dependent upper bound on the sensitivity function. Since 
such a sensitivity function is not available for HIGS-based controllers, 
due to the nonlinear nature of the HIGS, an approximation based on the 
describing function of the HIGS in (3) is used instead. We care to stress 
that by using such an approximation without additional stability checks 
such as Algorithm 1, the FBA is unable to guarantee that the closed-
loop system is ISS for the resulting controller (see also the discussion 
at the end of Section 2.1). Moreover, due to the reliance on the 
describing-function-based approximation in the FBA, the parameters 𝜔𝑧
and 𝜔𝑝 of the frequency-lifting filter 𝑊  cannot be tuned using the FBA, 
as the influence of 𝑊  is not visible in the describing-function-based 
approximation of the frequency domain characteristics (cf. Section 2.2). 
Therefore, we omit the frequency-lifting filter 𝑊  for the controllers 
tuned by the FBA. It is important to keep these differences in structure, 
tuning possibilities, and potential robustness in mind when comparing 
the respective controllers.

4.2. Experimental validation

Next, we compare the performance of the three different controllers. 
We will refer to the controller tuned using our ESC framework as 
the ESC HIGS controller, and to the HIGS-based and linear controllers 
tuned using the FBA, respectively, as the FBA HIGS and FBA linear 
controllers. We set all lower bounds on the controller parameters to 
zero for the ESC HIGS controller, and use the values shown in Table 
1 as upper bounds. These upper bounds are based on engineering 
insights obtained by results from the FBA, and a trade-off between 
sufficient room for optimization and the available amount of function 
evaluations. Note that the upper bounds on 𝜔ℎ and 𝜔𝑖 are both chosen 
lower than the parameters of the FBA HIGS controller; the reason 
for this is the observation that such higher values in general did not 
pass the stability check of Algorithm 1 and are therefore excluded 
to reduce the size of the search space 𝛺. We choose the increment 
𝛥𝑘 = 1 until 𝑘 = 50, and 𝛥𝑘 = 10 thereafter until 𝑘 = 𝑘̄ = 500
in Algorithm 1. Furthermore, we use an upper bound of 8 dB on the 
(describing function-based approximation of the) sensitivity function 
for frequencies up to 0.05625𝑓𝑠 (around the first resonance) and 2.5 dB 
thereafter in the FBA, and opt to include the same constraint on the 
describing-function-based approximation of the sensitivity function in 
our framework to allow a fairer comparison. This constraint is handled 
in the same way as the sensitivity constraint in Weekers et al. (2025). 
The reference motion consists of a cycloidal (Biagiotti & Melchiorri, 
2008, Sec. 2.2.2) forward and backward movement of four millimeters 
along the 𝑥-axis, and the constraint (24b) is only said to be satisfied 
for a given value of 𝜏 in case it is satisfied for both motion directions. 
By only considering the constraint (24b) to be satisfied for a given 
value of 𝜏 if it is satisfied for both motion directions, we essentially aim 
to minimize the worst-case settling time over both motion directions. 
The initial lower bound 

̄
𝜏 and upper bound 𝜏 on 𝜏 for the bisection 

search are chosen as 80∕𝑓𝑠 and 240∕𝑓𝑠, respectively, for the ESC HIGS 
controller based on insights of settling time of the FBA HIGS controller.

We choose the function evaluation budget 𝑁 and the iteration 
budget 𝑀 both equal to 10 000. Furthermore, we choose the desired 
precision of the bisection search equal to ten samples, i.e., 𝛥𝜏 = 10∕𝑓𝑠, 
resulting in four iterations of the bisection search to be performed. 
During these four iterations, in total 34 698 function evaluations were 
performed. Of these function evaluations, only 960 resulted in real 
motion experiments, due to the use of the lookup table  and motion 
experiments only being performed if the closed-loop system is guaran-
teed to be ISS. With the duration of the motion experiments being in 
the order of hundreds of milliseconds, the total optimization time was 
thus in the order of ten minutes.
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Fig. 9. Block scheme illustrating the generalized plant 𝐺, consisting of the plant 𝑃 , and lead–lag controller 𝐶𝑙𝑙, integrator 𝐶𝑖, frequency-lifting filter 𝑊 , and 
magnitude filter 𝐻 parametrized by tunable parameters 𝜽. The feedback interconnection of 𝐺 and a HIGS (𝜽) parametrized by 𝜽 forms a multi-input-single-output 
system 𝛴 with inputs 𝑟 and 𝜽, and output 𝑒.
Table 1
Parameter upper bounds and values for each controller for the experimental 
case study.
 Bound ESC HIGS FBA HIGS FBA linear 
 𝑘𝑝 0.715 0.34573 0.44286 0.60369  
 𝜔𝑧𝑙𝑙 0.015𝜋𝑓𝑠 0.00639𝜋𝑓𝑠 0.01205𝜋𝑓𝑠 0.01351𝜋𝑓𝑠 
 𝜔𝑝𝑙𝑙 0.13125𝜋𝑓𝑠 0.05590𝜋𝑓𝑠 0.07542𝜋𝑓𝑠 0.07343𝜋𝑓𝑠 
 𝜔ℎ 0.01𝜋𝑓𝑠 0.00438𝜋𝑓𝑠 0.01036𝜋𝑓𝑠 N/A  
 𝜔𝑖 0.01𝜋𝑓𝑠 0.00907𝜋𝑓𝑠 0.01024𝜋𝑓𝑠 0.00595𝜋𝑓𝑠 
 𝜔𝑝 0.25𝜋𝑓𝑠 0.01389𝜋𝑓𝑠 N/A N/A  

Table 2
Settling times 𝑡𝑠(𝜽) (worst-case over 5 repetitions) for each controller and 
motion direction.
 Forward movement Backward movement 
 ESC HIGS 168∕𝑓𝑠 205∕𝑓𝑠  
 FBA HIGS 146∕𝑓𝑠 260∕𝑓𝑠  
 FBA linear 142∕𝑓𝑠 260∕𝑓𝑠  

The resulting parameters of all three controllers are given in Table  1. 
With these parameters, the ESC HIGS controller results in a significantly 
faster worst-case settling time (considering five validation runs for each 
respective controller in both motion directions) than both the FBA 
HIGS and the FBA linear controller (205∕𝑓𝑠 instead of 260∕𝑓𝑠, i.e., a 
reduction of more than 21%), as illustrated by the dashed colored 
vertical lines in Fig.  10 and the values in Table  2. This reduction in 
worst-case settling time is mainly the result of the error response for 
the ESC HIGS controller satisfying the error bound around 𝑡 = 410∕𝑓𝑠
during the backward motion, while the responses for the FBA HIGS 
and the FBA linear controllers violate the error bound around this time 
instance. However, while the response for the ESC HIGS controller 
satisfies the error bound around this time instance, it is close to this 
bound. This can be seen from the jump in the settling time from 
around 205∕𝑓𝑠 to around 251∕𝑓𝑠 that occurs for the ESC HIGS controller 
when decreasing the error bound to below 0.98𝑒𝑏, as shown in Fig.  11. 
This jump in settling time illustrates its discontinuous nature discussed 
before. Nevertheless, despite this jump in settling time, the worst-
case settling time for the ESC HIGS controller remains still around 
3.5% lower than the worst-case settling time for the FBA controllers 
in this case. In fact, the backward motion is the limiting factor for 
the worst-case settling time for the whole error bound range shown 
in Fig.  11, and the ESC HIGS controller has the lowest settling time 
for nearly the whole range. In addition, the ESC HIGS controller has 
the additional benefit that the closed-loop system is guaranteed to be 
ISS based on Theorem  1; something which is not the case for the 
FBA HIGS controller. Despite the fact that the FBA HIGS controller 
10 
Fig. 10. Real servo error 𝑒(𝑡,𝜽) obtained for the three controllers during five 
repetitions of the forward (top) and backward (bottom) motion. The worst-case 
settling time for the ESC HIGS controller (considering all repetitions in both 
motion directions) is significantly (21%) shorter, as illustrated by the distance 
between the dashed black vertical line indicating the end of the motion (𝑡𝑟), 
and the dashed colored vertical lines indicating the time instances where the 
error last violates the error bound 𝑒𝑏.  (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this 
article.)

seems to result in stable system behavior, as illustrated by the response 
shown in Fig.  10, it does not pass the test in Algorithm 1 to guarantee 
that the closed-loop system with this controller is ISS. A potential 
direction for future research could therefore be to investigate whether 
(i) this illustrates conservatism in Algorithm 1 for the satisfaction of 
the conditions of Theorem  1, (ii) this illustrates conservatism in the 
conditions of Theorem  1 for guaranteeing input-to-state stability, or (iii) 
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Fig. 11. Settling times obtained with different error bounds 𝑒𝑏 for the three 
controllers during five repetitions of the forward (left) and backward (right) 
motion. The large jumps in settling time clearly illustrate the discontinuous 
nature of the metric.

the closed-loop system is not ISS for the HIGS-based controller tuned 
by the FBA.

It is important to note that in the case where a linear integrator 
would give better results, the ESC tuning algorithm would be able to 
choose 𝜔ℎ large to ensure the response of the HIGS-based integrator 
approaches that of a linear integrator, since in this case the HIGS 
will remain in gain mode with gain 𝑘ℎ = 1. We can evaluate if this 
is the case for the ESC HIGS controller by looking at the switching 
characteristics of the HIGS shown in Fig.  12. The HIGS output is 
divided into the two responses: the gain-mode response is illustrated 
in green and the integrator mode in red. From Fig.  12, it becomes 
apparent that 𝜔ℎ is chosen sufficiently small such that the HIGS is 
indeed switching between the integrator mode and the gain mode. The 
input of the HIGS in Fig.  12 also indicates that, despite the use of the 
lead filter 𝐻−1 that amplifies high-frequency signals before the HIGS, 
the HIGS input is a clean signal without high-frequency contributions 
with large amplitudes, illustrating the success of the proposed pre- and 
post-filtering technique of Section 2.2.

An alternative analysis of the performance of the controllers be-
sides the settling time performance measure is often done using the 
cumulative energy spectral density (CSD) of the tracking error, as it is 
directly correlated to the cumulative root-mean-square of the error and 
therefore provides a good indication of the overall disturbance rejection 
capabilities of the controllers. From the CSD for the three controllers, 
it can be concluded that the HIGS-based controllers have more distur-
bance rejection compared to the linear controller, as shown in Fig.  13. 
Furthermore, Fig.  13 shows that the ESC-tuned HIGS-based controller 
results in a lower CSD compared to the FBA-tuned HIGS-based con-
troller. This reduction in CSD indicates that the proposed data-driven 
time-domain tuning approach in this case not only improves settling 
time performance, but also improves disturbance rejection capabilities.

5. Conclusions

In this work, we developed a data-driven approach based on
sampled-data extremum-seeking control for tuning of controllers based 
11 
Fig. 12. HIGS input/output of the forward motion (top) and backward motion 
(bottom) with gain-mode illustrated in green and integrator mode illustrated in 
red. The switching points between the two modes are indicated at the bottom 
in black.  (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 13. Cumulative energy spectral density of the error of the five motions 
of the different controllers, with the FBA-tuned HIGS-based controller (FBA 
HIGS), FBA-tuned linear controller (FBA linear) and the ESC-tuned HIGS-based 
controller (ESC HIGS).

on so-called hybrid integrator-gain systems. In particular, the proposed 
approach is aimed at optimizing the settling time in point-to-point 
tasks. This work was motivated by (i) the potential performance ben-
efits of nonlinear and/or hybrid controllers for the performance of 
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linear (motion) systems, (ii) the lack of industrial adoption of nonlinear 
and/or hybrid controllers due to their increased design complexity, 
and (iii) the time-consuming nature of (nonlinear) controller design 
(especially, e.g., in the presence of machine-to-machine variations). To 
facilitate the data-driven tuning approach, we in addition developed 
an automated procedure for guaranteeing that the closed-loop system 
is ISS throughout and after the tuning process, based solely on non-
parametric (measured) frequency-response function data of the plant. 
The proposed approach is tested with a case study on an industrial wire 
bonder system, in which the framework is able to tune a HIGS-based 
controller that results in stable responses with improved settling times 
when compared to tuning methods currently used in industry. Future 
work could consider application to higher-order controllers or other 
nonlinear techniques, e.g., variable-gain control.
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