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[1] Two physical mechanisms leading to lateral accumulation of sediment in tidally
dominated estuaries are investigated, involving Coriolis forcing and lateral density gradients.
An idealized model is used that consists of the three-dimensional shallow water equations
and sediment mass balance. Conditions are assumed to be uniform in the along-estuary
direction. A semidiurnal tidal discharge and tidally averaged density gradients are
prescribed. The erosional sediment flux at the bed depends both on the bed shear stress and on
the amount of sediment available in mud reaches for resuspension. The distribution of mud
reaches over the bed is selected such that sediment transport is in morphodynamic
equilibrium, that is, tidally averaged erosion and deposition of sediment at the bed balance.
Analytical solutions are obtained by using perturbation analysis. Results suggest that in
most estuaries lateral density gradients induce more sediment transport than Coriolis forcing.
When frictional forces are small (Ekman number £ < 0.02), the Coriolis mechanism
dominates and accumulates sediment on the right bank (looking up-estuary in the Northern
Hemisphere). On the other hand, when frictional forces are moderate to high (£ > 0.02),
the lateral density gradient mechanism dominates and entraps sediment in areas with fresher
water. Results also show that the lateral sediment transport induced by the semidiurnal
tidal flow is significant when frictional forces are small (£ ~ 0.02). Model predictions are
in good agreement with observations from the James River estuary.
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1. Introduction

[2] Estuaries receive sediments from both fluvial and
marine sources. Locally, large concentrations of suspended
sediments are observed in many estuaries. These elevated
suspended sediment concentrations appear in the vicinity of
so called “mud reaches,” which are pools of easily erodible
sediments on the bed [Geyer, 1993; Sanford et al., 2001,
Woodruff et al., 2001; North et al., 2004].

[3] Previous research on elevated suspended sediment
concentrations has mainly focused on the along-estuary
convergence of sediments. Many primarily observational
studies [Geyer et al., 2001; Kappenberg and Grabemann,
2001; Lin and Kuo, 2001; North et al., 2004], report the
presence of an estuarine turbidity maximum, which is a
region containing the largest (cross-sectionally averaged)
suspended sediment concentration [Festa and Hansen,
1978]. Relevant to the trapping of sediments in the along-
estuary direction are river discharge [Festa and Hansen,
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1976; North et al., 2004], gravitational circulation [Hansen
and Rattray, 1965; Festa and Hansen, 1978], tidal elevation
and tidal velocity asymmetries [Geyer, 1993; Jay and
Musiak, 1994; Prandle, 2004], wind [North et al., 2004],
bathymetry [Festa and Hansen, 1976], mud pools [Uncles
and Stephens, 1993; Sanford et al., 2001; Jay and Musiak,
1994; Geyer et al., 1998] and flocculation [Winterwerp,
2002].

[4] In addition to along-estuary sediment trapping, most
estuaries exhibit cross-channel variations in sediment con-
centration and bottom sediment type. For example, Nichols
[1972] observed lateral sediment entrapment along the
south channel shoulder of the James River. He also found
that the grain size distribution varied widely from silty clay
over the south channel shoulder to sand on the shoals.
Geyer et al. [1998] and references therein reported accu-
mulation of sediment along the shallow western bank of the
Hudson estuary. Numerical simulations suggested this was
partially caused by the convergence of near-bottom lateral
currents driven by a lateral baroclinic pressure gradient and
Coriolis accelerations.

[5] In this paper, we develop an idealized, process-
oriented model to examine the effects of Coriolis forcing
and lateral density gradient forcing on sediment entrapment
in tidally dominated estuaries with arbitrary lateral bathym-
etry. Idealized models are appropriate for gaining funda-
mental physical understanding. Individual forcing
mechanisms can be isolated, and their effects can be
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investigated in a systematic way. Moreover, solutions to
idealized models are (semi)analytical, so that studying a
problem under different parameter settings is straightforward.

[6] The model is two-dimensional in the lateral and
vertical coordinate (analogous to the approach used by
Officer [1976], Kasai et al. [2000], Schramkowski and
de Swart [2002] and Valle-Levinson et al. [2003]), and is
based on the shallow water equations, and the mass balance
of sediments in suspension and at the bed, as described in
Section 2. Motivated by Friedrichs et al. [1998], the
distribution of easily erodible sediment in mud reaches at
the bed is described by introducing a laterally varying
erosion coefficient. Zero (large) values of the erosion
coefficient represent no (a thick) mud reach at that location.
More sediment is eroded from the bed if the erosion
coefficient is larger or the bed shear stress increases. The
erosion coefficient is selected such that lateral sediment
transport is in morphodynamic equilibrium, that is, tidally
averaged erosion of sediment balances deposition.

[7] A scaling and perturbation analysis is performed in
section 3 to obtain a reduced and consistent set of model
equations. Solving the equations analytically yields approx-
imate solutions for the semidiurnal tidal flow, the mean
(tidally averaged) flow and the mean suspended sediment
concentration. Also, a semidiurnal correction to the mean
sediment concentration is obtained, representing M,-tidal
variations in sediment concentration. In section 4, the
effects of Coriolis deflection and lateral density gradients
on the lateral entrapment of sediment in tidal estuaries are
investigated. Also, the entrapment mechanisms are inter-
preted in terms the Ekman number. Model results are
compared to observations in the James River estuary in
section 5.

2. Model

[8] The model estuary is infinitely long with an arbitrary
bottom profile of z = —H(y) and a constant width B (see
Figure 1). The maximum and minimum depth are denoted
by Hnax and H,;,, respectively. The water motion is driven
by an external M,-tide with cross-sectional average velocity
amplitude U ~ 1 m s~ ' and angular frequency w = 1.4 x
10~*s~". Moreover, along-estuary density gradients induce
a mean flow with typical velocity U, ~ 0.1 m s~ '. Lateral
density gradients and Coriolis forcing cause lateral veloci-
ties with typical magnitude ¥ ~ 0.1 m s~'. For tidally
dominated estuaries, typical river discharge velocities
(~0.001-0.01 m s~ ") are small compared to density driven
velocities, and are therefore neglected here.

[o] The sediment is assumed to consist of a single class of
fine particles, which are transported as suspended load. The
particles are assumed to be noncohesive. Sediment in
suspension settles and deposits in the mud reach, which is
a layer of erodible sediments on top of the nonerodible
bottom at z = —H(y). Conversely, this sediment is brought
into suspension by bed shear stresses. We assume that the
flow field is unaffected by the sediments. This requires that
the erodible layer is thin compared to the water depth and
that the sediment concentration (~10—100 mg L™") does
not alter water density significantly.

[10] To focus on lateral processes, a local model descrip-
tion is used which describes a portion of the estuary of
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Figure 1. Sketch of the model geometry. A Cartesian
coordinate system (x, y, z) is used, where the x axis points
seaward, the y axis points to the left if looking seaward, and
the z axis points upward. The bottom profile of the estuary
is arbitrary in the lateral coordinate and extends uniformly
in the along-estuary direction. The variables are introduced
in the main text.

length L (Figure 1). The length L ~ 1 km is small compared
to along-estuary length scales, such as tidal wavelength
~400 km, tidal excursion length ~10 km, and geometric
length scales ~5-40 km [Friedrichs and Aubrey, 1994].
The model description is uniform along the estuary, which
means that the model is essentially two-dimensional with
lateral and vertical coordinates. Because the length of the
portion is much smaller than the tidal wavelength, variations
in surface elevation are neglected, but barotropic pressure
gradients are retained (rigid lid approximation [see, e.g.,
Gill, 1982]).

2.1. Hydrodynamics

[11] The governing equations for the hydrodynamics are
the shallow water equations on the f~plane for along-estuary
uniform conditions [Schramkowski and de Swart, 2002],

ou  Ju du g 0p on 0 ou
o Vay T e ST a\ %) (19)
av  Ov v g Op on 0 ov
v 890, gL (1)
o oy TV T 5t g0y+az( az) (16)
v Ow
8—y+5—0. (1c)

Here u, v, and w denote the along-estuary, lateral and
vertical velocity components (see Figure 1), ¢ is time,
f~ 107 s7! is the Coriolis parameter, g ~ 10 m s~ is
gravitational acceleration, and py ~ 1020 kg m > is a constant
reference density. The along-estuary and lateral mean
(tidally averaged) density gradients are prescribed and denoted
by dp/Ox and Op/dy, respectively (both ~107° kg m™%).
Focusing on partially to well-mixed estuaries, variations of
both density gradients over depth are assumed to be
negligible. The two components of the surface gradient,
On/Ox and On/0y, are determined by the internal dynamics of
the system (see conditions (3c) and (3d)). The vertical eddy
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viscosity coefficient 4, is parameterized using the formula-
tion of Munk and Anderson [1948],

A. = Ao(1 + 10R)) V2. (2)

Adopting the formulation of Bowden et al. [1959], the
vertical eddy viscosity coefficient in the absence of
stratification 4y = 2.5 - 1073UH0 ~ 107° m? sfl, and
Hy ~ 3 m is half of the average depth. The Richardson
number is taken as Ri = g(Ap/po) Ho/U* ~ 0.5, where Ap
is a typical density difference between bed and surface
[Dyer, 1973]. Hence Ri and therefore A, are constants.

[12] At the surface, we assume that the water motion is
stress free and satisfies the kinematic boundary condition.
Applying the rigid lid approximation yields

Ou ov
A 5= A 5=

At the bottom, we assume no slip and impermeability of the
bottom,

0, w=0 at z=0. (3a)

u=v=w=0 at z=-H. (3b)

At the side boundaries, we assume that there is no lateral
transport of water. As explained in auxiliary material Text
S1', this implies that there is no lateral transport of water at
any lateral location y,

0
/ vdz =0 forall y.
-H

(3¢)

Hence the lateral water flux vanishes everywhere in the
domain. Finally, a semidiurnal tidal discharge with
amplitude O = AU and frequency w is imposed by

1 B 0
- / / udzdy = U cos(wt),
A Jo J-n

where 4 is the area of the cross section and B is the width of
the estuary. Note that conditions (3¢) and (3d) ensure mass
conservation (see auxiliary material Text S1). By imposing
these two conditions, the along-estuary and lateral surface
gradients On/Ox and On/dy are determined.

(3d)

2.2. Sediment Dynamics

[13] The sediment dynamics of the model are governed
by the sediment mass balance equation for along-estuary
uniform conditions,

dc 0 Jdc ad Jdc
E+67y<V67KyCrTy)+&((W7WS)07KZE) =0. (4)

Here ¢ denotes the suspended sediment concentration, w is
the settling velocity (~1 mm s~ ') and K, and K. are
constant lateral and vertical eddy diffusivity coefficients.
Fischer et al’s [1979, section 7.3] work has been used to
select K, = 5 m? s~', and K. is parameterized following
Munk and Anderson [1948]

K. = Ko(1 +3.33Ri) 2, (5)

'Auxiliary materials are available in the HTML. doi:10.1029/
2006JC003615.
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where K = A, is the vertical eddy diffusivity coefficient in
the absence of stratification.

[14] We require that the lateral sediment transport van-
ishes at the side boundaries (in agreement with no lateral
transport of water at the side boundaries, see equation (102)
in auxiliary material Text S1),

0 80)
ve—K,—|dz=0 at y=0, B.
/—H( "oy

At the surface, the diffusive and settling sediment flux
balance,

(62)

wSc—O—Kz%zo at z=0. (6b)
0z

Furthermore, the flux of sediment normal to the bed induced
by erosion, £, is modeled as

dc dc

a—yny szanZ = wc, at

E, = -K, z=-H, (6¢)

where n = (0, n,, n.) is the upward unit vector that is normal
to the bottom and c, is a reference concentration. The
reference concentration is determined by the density of the
sediment p,, a (dimensionless) bed shear stress, T,/(pog'd,),
and a (dimensionless) laterally varying erosion coefficient
a(y), modeling the amount of sediment at the bed available
for resuspension,

_ )|

¢y (1) = py ol a(y). (7)
Here d, denotes the grain size of the sediment, g’ = g(p, —
p0) po 1s the reduced gravity, and

Ou
T = pOAZE at

z=-H, (8)
where u = (u, v, w). The bed shear stress is assumed to be
much larger than the critical bed shear stress for erosion of
sediments. For the sediments under consideration (coarse
silt), typical values are p, = 2650 kg m >, g’ =16 m s % and
d; =20 pm. The erosion coefficient a(y) ~ 10> models the
lateral distribution of easily erodible sediment in mud
reaches in a simplified way: A larger value of the erosion
coefficient indicates a thicker mud reach. Hence, when more
sediment is available for erosion or the bed shear stress is
larger, more sediment is eroded into the water column (by
equation (7)).

[15] At this point, the vertical and temporal structure of
the suspended sediment concentration is fully determined.
In the next section, the lateral structure of the sediment
concentration is determined as well by deriving an equation
for the erosion coefficient a(y).

2.3. Mud Reaches at Morphodynamic Equilibrium
[16] A typical timescale over which the easily erodible
sediment redistributes after the forcing has changed (for
example increased river discharge during spring) is much
smaller (~days) than the typical timescale over which the
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Table 1. Default Parameter Values Representative for a Typical
Tidal Estuary

Quantity Symbol Value
Maximum water depth Hiax 12 m
Minimum water depth Hin Im
Average half depth H, 3m
Width of transect B 5 km
Average tidal velocity amplitude U 04ms !
Angular tidal frequency w 14 x 107*s!
Coriolis parameter f 8.8 x 105!
Gravitational acceleration g 10ms 2
Reference density 1020 kg m 3
Along-estuary density gradient Oplox 0.5x 10 kgm*
Lateral density gradient dpldy 1 x10%kgm™
Bed to surface density difference Ap 2kgm’
Fall velocity Wy 03mms '
Reference erosion coefficient a 4x10°°

forcing remains in the new situation (~weeks—months).
Therefore we consider a system in which there is no mean
evolution of the bed, (9z,/0t), where z, is the position of the
bed and the angular brackets (-) denote a tidal average or
mean. This is referred to as a system in morphodynamic
equilibrium.

[17] An equation for the time evolution of the bed [Van
Rijn, 1993] is given by

8zb7
ps(l _p)E_D_ES? (9)

where p, and p are the density and porosity of the sediment,
and D is the depositional sediment flux normal to the
bottom defined by

D=wxen, at z=—H. (10)
No mean evolution of the bed requires a mean
balance between deposition and erosion, (D) — (E;) = 0
(equation (9)).

[18] A relation between mean deposition minus erosion
and mean lateral sediment transport can be obtained by
integrating sediment mass balance equation (4) over
depth, and exchanging integration and differentiation using
Leibniz rule. Also, boundary conditions (3a), (3b) and (6b)
are used, as well as definitions (6¢) and (10) for £ and D,
and the result is averaged over a tidal period.

[19] Using the relation between erosion minus deposition
and transport derived in the previous paragraph as well as
(6a) shows that a mean balance between deposition and
erosion requires a mean balance of the advective and
diffusive sediment transport in the lateral direction,

/; ((vc> —Ky<g—;>)dz =0 forall y.

This condition is referred to as the morphodynamic
equilibrium condition.

[20] By (6¢) and (7), the sediment concentration varies
linearly with the erosion coefficient. Hence the morphody-
namic equilibrium condition (11) can be rewritten into a
first-order linear differential equation for the erosion coef-
ficient a(y),

(11)

da
L —+bha=0. 12
]dy+ ha (12)
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Here [; and I, are known integrals given by

0
I = /7H —K,(c/a)dz,

b= [ 1 <(v(c/a)> —Kyagca))dz.

To determine the integration constant which arises in
solving equation (12), an additional condition is required,

(13)

1 B
E/() a(y)dy=a,,.

Hence the shape of the erosion coefficient determined by
(12) ensures a morphodynamic equilibrium. The average
amount of sediment available in mud reaches for resuspen-
sion is modeled by imposing a reference value a, ~ 107> by
condition (14). Hence a.. is prescribed such that the desired
order of magnitude of sediment concentration values are
obtained.

(14)

3. Perturbation Analysis and Solutions

[21] In this section, perturbations solutions to the system
of equations presented in section 2 are obtained which are
applicable to a typical tidal estuary. The relative order of
magnitude of the terms in the model are found by
performing a scaling analysis, which is described in auxil-
iary material Text S2, and using the default parameter
values given in Table 1 (see section 4 for a description of
the default estuary). A small parameter ¢ = V/U ~ 0.1 is
introduced comparing a typical scale for the lateral velocity
V ~ 0.1 ms ' tothe average tidal velocity amplitude U.
Besides, eight nondimensional parameters characterizing
the system are identified, and their magnitude relative to
the small parameter ¢ are estimated. These parameters and
their order of magnitude in a typical tidally dominated
estuary are given in Table 2. Solutions to the scaled system
of equations are constructed as perturbation series in powers
of the small parameter up to order ¢,

@=®0+6@1, (15)
with U being any of the variables u, v, w, dn/0x, On/dy or c,
a tilde (7) denoting a dimensionless variable, and the

Table 2. Order of Magnitude of Nondimensional Parameters As
Assumed in the Scaling Analysis in Auxiliary Material Text S2,
and Their Actual Value Using the Parameter Values Given in
Table 1

Nondimensional Parameter Assumption Value
e= VU 0(0.1) 0.1
flw o) 0.6
A(wHy?) o) 1
K/wHy?) o(1) 0.7
wy/(wHo) o) 0.7
0pldyl(0plOx) o(1) 2
K,/(VB) 0(0.1) 0.03
U,Ju 0(0.1) 0.3
V/(wB) 0(0.01) 0.06
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subscript denoting the order of the component. By
substituting this expansion in the scaled system of equations
and collecting terms with equal powers of ¢, a dominant
order system of equations (¢° terms) and a higher-order
system of equations (¢' terms) are obtained. The resulting
reduced systems of equations and morphodynamic equili-
brium condition are given in sections 3.1, 3.2 and 3.3,
respectively. The dominant and higher-order system of
equations are solved analytically. See auxiliary material
Text S2 for the solution methods and analytical solutions.

3.1. Dominant Order System of Equations
[22] The O(°) equations for the flow field are given by

Oug o 0*up
o Cax T (162)
0 v
fuo —gaiyo“'AzaTZO» (16b)
%, % —0. (16¢)

The flow component at dominant order satisfies no slip and
no normal flow at the bottom, stress free surface, no normal
flow through the surface, no lateral transport of water, and is
forced by the external M,-tide analogous to (3). For
convenience, a second subscript is introduced to denote at
what tidal harmonic a particular term oscillates. Hence the
tidal flow at dominant order can be specified by ug,. The
resulting along-estuary flow is the consequence of a balance
between local accelerations, surface gradient forcing and is
damped by turbulent friction. Note that this scaling indicates
that the lateral flow is forced at the semidiurnal frequency
by the Coriolis forcing, but not by the local acceleration.
The lateral surface gradient responds to the forcing, and
frictional effects are present again.

[23] The suspended sediment concentration at dominant
order is determined by the balance between local inertia,
vertical settling and diffusive effects,

Ocy Ocy d*co

o M K =0

(17)

Boundary conditions at dominant order are no sediment flux
through the surface analogous to (6b), and the erosional
sediment flux at the bottom prescribed by

dey 75l
G
: 82 WsPs pogldx

a at z=-—H.

(18)

Here the zeroth order component of the absolute value of
the bed shear stress |74|o is related to the tidal flow by

8u02

t z=-H.
9z at z

(19)

ITblo= poA:

Hence the sediment concentration at dominant order results
from tidal resuspension of sediment during ebb and flood,
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and deposition of sediment during the slack tides in
between.

[24] Harmonic analysis of (19) shows that the dominant
order sediment concentration can be written as a Fourier
series which contains a mean term and the even overtides of
the semidiurnal tide, such that

co=Coo+Cos+ ... . (20)
3.2. Higher-Order System of Equations

[25] The O(¢') equations for the flow field are governed
by

Ouy gop_ o  Pu

I gy =8P, (T, T 21

ot o Do ox” Sox * 022 (21a)

o g Jdp on, v

Moy g =8P GO O 21b

ot i Do ayz g dy 07> (215)
0= aa—vy‘ + %, (21c)

subject to no slip and no normal flow at the bottom, stress
free surface and no normal flow through the surface and no
lateral transport of water, similar to (3a)—(3c). Also, the
cross-sectionally averaged mean flow vanishes analogous to
(3d), but the right hand side is zero. Hence the higher-order
flow component experiences a mean forcing by horizontal
density gradients and is also forced at the M, frequency by
the zeroth-order tidal flow. Thus the solution of the first-
order velocity field can be written as u; = ujo + uy;.

[26] The equation and boundary conditions for the sus-
pended sediment concentration at first order are equivalent
to those at zeroth order, with the first-order component of
the absolute value of the bed shear stress,

duy Ju
|7'b|1: PoAz<aZO'aZ]>/

Hence the first-order sediment concentration results from
the interaction of the dominant order tidal flow (ug) and the
higher-order flow (u,).

[27] Harmonic analysis of (22) shows that the first-order
sediment concentration consists of all tidal constituents, i.e.,

(23)

allo

— t z=—-H.
0z at z

(22)

cp=cy+cp+....

Here the residual component and the even overtides of M,
result from the semidiurnal part of the higher-order flow,
U, and include the nonlinear part of the bed shear stress
caused by the semidiurnal tidal flow. On the other hand, the
M, constituent and its odd overtides are caused by the
residual part of the higher-order flow, u;(, and thus emerge
from tidal asymmetries in the flow.

3.3. Morphodynamic Equilibrium Condition
[28] The morphodynamic equilibrium condition up to
O(e) is given by

/(; (<v0c0> + (vico) + (voc1) — Ky<%_i?>)dz =0 forally.
- (24)
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Substituting vy = vgs, Vi = vig T V1o, (20) and (23) for the
dominant and higher-order flow and sediment concentration
yields

0
Oc
Twm, + T, + Taier = / <V1oCoo + (voaci2) — 0O)dz =0.
—H

K
(25)

Hence the system is in morphodynamic equilibrium if the
mean lateral sediment transport induced by the mean flow,
T\, by the semidiurnal flow ugs, Twv,, and by diffusion,
T4irr, balance.

[20] Note that in estuarine studies, mean transport in-
duced by tidal flow is often ignored or modeled as turbulent
diffusion, whereas this work suggests that mean transport
induced by tidal flow can be quite important. This result is
supported by for example Jay and Smith [1990], who
showed the importance of accounting for tide-induced salt
fluxes in partially mixed estuaries. Crucial for its impor-
tance is the phase difference between the lateral tidal
velocity and the semidiurnal sediment concentration. The
more these two quantities are in phase, the larger their
contribution to the mean lateral sediment transport.

4. Lateral Sediment Entrapment Mechanisms

[30] In this section, the model is used to identify two
physical mechanisms leading to lateral sediment entrapment
in weakly nonlinear, tidally dominated estuaries. The mech-
anisms are related to Coriolis deflection of along-estuary
flow (section 4.1), and lateral density gradients (section 4.2),
respectively. In section 4.3, the relative importance of the
two mechanisms is related to the Ekman number.

[31] The default parameter values used in this section are
given in Table 1, and represent a typical tidal estuary such
as the lower James River Estuary in Virginia, USA [Valle-
Levinson et al., 2000; Nichols, 1972]. The model estuary
consists of a main channel in the middle, that is flanked by
relatively narrow shoals (depths of 12 and 1 meter, respec-
tively). The width is 5 kilometers and the model bathymetry
is symmetric about the mid-axis,

1 2
H = Hipay eXp {— (y - EB) /12] ;

where / is 0.3B. A semidiurnal external tidal constituent is
imposed with an average velocity amplitude of 0.4 m s~ '.
The Coriolis parameter is 8.8 x 107> s~ ', which means that
the estuary is in the Northern Hemisphere and flow is
deflected to the right by Coriolis forcing. The mean (tidally
averaged) along-estuary and lateral density gradient is
0.5 and 1 kg m> per kilometer, respectively. Hence
water density increases linearly from the river toward the
sea, and from the left shore toward the right shore (looking
up-estuary). The bed to surface density difference is taken
2 kg m >, which yields a bulk Richardson number of 0.4 (see
section 2.1) and 4, = 0.001 m* s~ " and K. = 0.0009 m?* s '
(see equations (2) and (5)). The sediment under considera-
tion is silty clay with a settling velocity of 0.3 mm s
[Dyer, 1986]. The reference erosion coefficient @, is chosen
such that the maximum of the resulting mean sediment

(26)
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Lateral distance (km)

Figure 2. Results for the Coriolis mechanism showing the
along-estuary (contours) and transverse (arrows) compo-
nents of the (a) semidiurnal tidal flow at maximum flood
and (b) mean (tidally averaged) flow. Parameter values are
as given in Table 1, but dp/Jdy = 0. Orientation of this and
subsequent figures is looking into the estuary. Negative
values (dark gray) denote inflow, whereas positive values
(light gray) denote outflow. Contour interval is 10 cm s~ '
for Figure 2a and 2 cm s~ ' for Figure 2b, and largest arrow
in the lower part of the water column represents lateral flow
of —6 cm s—! in Figure 2a and 2 cm s—! in Figure 2b. Note
the difference in scale between the lateral and vertical axis.
The semidiurnal component at maximum flood (Figure 2a),
and the mean component (Figure 2b) of the lateral surface
gradient are added as well.

concentration is approximately 20 mg L™~'. The order of
magnitude of the nondimensional parameters corresponding
to the default parameter values in Table 1 are as assumed in
the scaling analysis (Table 2), except that V/(wB) is an order
of magnitude larger than assumed, as discussed in auxiliary
material Text S2.

4.1. Coriolis Mechanism

[32] In many estuaries, an external semidiurnal tide and a
mean (tidally averaged) along-estuary density gradient
induce along-estuary flows (a tidal flow and an estuarine
gravitational circulation, respectively). In this section, we
investigate how Coriolis deflection of these flows effects the
mean lateral entrapment of sediment. The effects of a lateral
density gradient on sediment entrapment are excluded here
by taking dp/0y = 0 (remaining values are as displayed in
Table 1).

[33] Figure 2a shows the tidal flow field and the lateral
surface gradient at maximum flood. The figure shows that
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(b) Tidal correction
(a) Mean concentration at flood
10r 107 ‘ ‘ ‘ ‘ 1 ‘ 4x10
L =
8 5 g
o E
3 -
4r 3
oL r \\ /' . 1-2 f‘;
(c) Erosion coeffjefent (d) Transport L
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showing (a) the tidally averaged suspended sediment

concentration cqg, (b) a semidiurnal correction to the mean sediment concentration, c;,, at flood, (c) the
erosion coefficient, and (d) mean lateral sediment transport induced by the mean flow (solid line), tidal
flow (dashed line) and diffusion (dotted line). Contour interval in Figures 3a and 3b is 1 mg L™". In
Figure 3c, a larger value of the erosion coefficient indicates a thicker mud reach at that location.

the along-estuary tidal flow increases from bed to surface
with maximum values of 65 cm s~ above the deep channel.
The transverse tidal flow shows a circulation pattern with
velocities up to 6 cm s~ ': At maximum flood, a positive
lateral flow is induced by Coriolis deflection of the along-
estuary tidal flow [see Lerczak and Geyer, 2004]. Super-
imposed on that, there is a negative barotropic flow induced
by the lateral surface slope which ensures mass conserva-
tion. The circulation pattern persists during slack tide and
reverses during the ebb (not shown).

[34] Figure 2b shows the mean (tidally averaged) flow and
lateral surface slope. The along-estuary component can be
considered as part of the estuarine gravitational circulation
[see, e.g., Van de Kreeke and Zimmerman, 1990] with mean
landward flow over the deep channel and mean seaward flow
over the shallow sides. Maximum velocity is —16 cms~'. A
circulation cell with velocities up to 2 cm s~ ' is present in the
transverse plane. This secondary circulation pattern results
from Coriolis deflection of the along-estuary mean flow
(negative lateral velocities in the outflow regions over the
sides and positive lateral velocities in the inflow region over
the deep channel) and lateral surface gradient forcing, which
ensures mass conservation.

[35] Sediment distributions and transport in morphody-
namic equilibrium are displayed in Figure 3. The dominant
component of the mean (tidally averaged) distribution of
suspended sediment, coo (see equations (15) and (20)), is
displayed in Figure 3a, showing that sediments are trapped
over the right bank (looking up-estuary). Figure 3b shows a
small semidiurnal correction, c¢;, (see equations (15) and
(23)) to this mean sediment concentration, displayed at
maximum flood. Hence Figures 3a and 3b show that
sediment concentrations during flood (ebb) increase
(decrease) with at most 7 mg/L compared to mean concen-
trations of up to 15 mg/L. The erosion coefficient is
displayed in Figure 3c, showing the presence of a mud

reach on the right side (a(y) large). Figure 3d shows that the
mean flow transport 7y, toward the right is balanced by the
tidal flow transport Ty, and the diffusive transport Tger
toward the left. Note that the lateral distribution of the
erosion coefficient was selected by requiring no mean
lateral sediment transport (see morphodynamic equilibrium
condition (12)). Ty, is positive, as the mean suspended
sediment concentration decreases with distance from the
bed (Figure 3a), such that the majority of the sediment
transport is induced by the lateral flow in the lower part of
water column, which is toward the right (Figure 2a). Ty, is
negative, as semidiurnal concentrations at maximum flood
are positive (Figure 3b) and lateral near-bed flow is leftward
(Figure 2). This situation persists at slack tide after the flood
(not shown). During ebb and slack tide after the ebb,
transport is still leftward, as both flow and semidiurnal
concentrations are of opposite sign (not shown).

4.2. Lateral Density Gradient Mechanism

[36] In many estuaries, mean (tidally averaged) density
gradients are observed in the lateral direction. In this
section, we investigate how these lateral density gradients
effect the mean lateral entrapment of sediment. The effects
of lateral density gradients are isolated from the effects of
Coriolis deflection of along-estuary flows (section 4.1) by
taking f'= 0. Two characteristic distributions of density over
the lateral direction are considered. First, water is saltier at a
side, which is prescribed by a constant lateral density
gradient (default value given in Table 1). For a symmetric
bed profile and in the absence of Coriolis forcing, such a
gradient could result from inflow of fresh water from a
tributary at a side. Second, water is saltier in the channel, or
the mean density is distributed parabolically over the lateral
direction. Such a distribution is imposed by a linear lateral
density gradient with average magnitude being the default
value given in Table 1. Without Coriolis forcing or asym-
metries in the bed profile, such a gradient could result from
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advection of salt by the mean gravitational circulation:
Tidally averaged, saltier water is advected up-estuary over
the deep channel, whereas fresher water is advected down-
estuary over the shoals (see contours in Figure 2b). Alter-
natively, saltier water being over channel could result from
differential advection of salt because the tidal wave prop-
agates faster over deeper areas and stratification varies over
a tidal cycle as described by Lerczak and Geyer [2004]. The
remaining parameter values are as given in Table 1.

[37] Figure 4 shows the mean flow and mean lateral
surface gradient for (Figure 4a) a constant and (Figure 4b)
a linearly increasing density gradient. The along-estuary
mean flow (contours in Figure 4) and semidiurnal tidal flow
(not shown) are identical to Figure 4 because the same
along-estuary forcing (tides and along-estuary density gra-
dient) are applied. There is no transverse semidiurnal flow,
as Coriolis forcing is neglected here. The arrows in Figure 4
represent the mean cross-sectional flow. If water is denser at
the right, a single circulation cell emerges across the estuary
with velocities up to 17 cm s~ ' (Figure 4a). If water is
saltier in the channel than over the shoals (Figure 4b), two
counter-rotating circulation cells are generated across the
estuary. Maximum velocity of this two-cell circulation
pattern is about 6 cm s~ ' with convergent surface flow
and divergent bottom flow.

[38] The transverse circulation cells in Figure 4 are
induced by a mechanism similar to the vertical gravitational
circulation in the along-estuary direction: Averaged over
depth, the baroclinic pressure gradient force induced by the
lateral density gradient is balanced by a barotropic pressure
gradient force induced by the lateral surface slope (the
lateral surface slope arises to ensure mass conservation).
In the lower part of the water column, the baroclinic forcing
dominates over the barotropic forcing, resulting in a mean
flow from the saltier toward the fresher water. In the upper
part of the water column the barotropic forcing dominates
such that mean flow is in the opposite direction.

[39] The transverse flow induced by a lateral density
gradient is fundamentally different from the transverse flow
induced by Coriolis deflection of along-estuary flow. The
lateral density gradient directly forces a transverse circula-
tion, which implies that transverse velocities (Figure 4) are

relatively strong compared to the indirectly induced trans-
verse velocities by the Coriolis forcing (Figure 2).

[40] Figures 5 and 6 display how a constant and linear
density gradient affect the sediment distributions and trans-
port. Sediments are entrapped in areas with fresher water
(Figures 5a and 6a and Figures 5c and 6¢). The direction of
the mean lateral flow near the bed determines the direction
of the transport by the mean flow (see near-bed arrows in
Figure 4) and Ty, in Figures 5d and 6d). Since there is no
lateral semidiurnal flow, the semidiurnal tidal concentration
shown in Panels b do not affect the mean lateral transport of
sediment (7, = 0 in Figures 5d and 6d). The diffusive
transport Ty balances Ty,

4.3. Trapping Mechanisms in Terms of
Ekman Number

[41] The previous subsections showed that the Coriolis
mechanism competes against (or reinforces) the lateral
density gradient mechanism if they are both present: Cori-
olis deflection of along-estuary flow entraps sediments over
the right bank (looking up-estuary in the Northern Hemi-
sphere), whereas lateral density gradients trap sediments in
relatively fresh water. Moreover, it was shown that both the
mean flow (by means of both mechanisms) and the semi-
diurnal tidal flow (by means of the Coriolis mechanism
only) contributed to the mean lateral sediment transport. In
this section, the relative importance of the two mechanisms
is explored in terms of the Ekman number. First, we focus
on the sediment transport induced by the mean flow Ty,
The importance of the sediment transport induced by
the semidiurnal tidal flow Ty, is discussed later in this
subsection.

[42] By separating Ty, into a contribution caused by the
Coriolis mechanism

0
Tw,, r = /Hvloﬁ/ coo dz,

and a contribution caused by the lateral density gradient
mechanism

0
Tnig,0p/0y = / V10,0p/0y Coo dz,
H
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Figure 5. Effects of a constant lateral density gradient representing saltier water on the right on (a) the

tidally averaged suspended sediment concentration,

(b) a semidiurnal correction to the mean sediment

concentration at flood, (c) the erosion coefficient, and (d) the mean lateral sediment transport. Contour
interval is 1 mg L™' in Figure 5a and 0.1 mg L™ in Figure 5b.

the relative importance of both mechanisms can be studied.
Here viq,_ris the mean lateral flow induced by the Coriolis
mechanism and vy 9,5, is the mean lateral flow induced by
the lateral density gradient mechanism. Both of them can be
obtained from the solution for the total mean lateral flow
(see auxiliary material Text S2). The ratio of these two
velocities is a good approximation for the relative
importance of the sediment transport contributions (which
can be seen from the solution for the mean sediment
concentration in auxiliary material Text S2 and the
expressions for the transport contributions given above).
Using these solutions, the approximation for the relative

Depth (m)

(a) Mean concentration
2 | .

L(b) Tidal correction

importance of the sediment transport contributions can be
expressed in terms of the Ekman number and the ratio of the
horizontal density gradients, i.c.,

Tvo op/ey  Vioopjoy .0/ Oy
Twy, Op/ox’

27
Yoy (27)

where E = A/(f Hxa) is the vertical Ekman number.
Hence, according to the model, the expression on the right
hand side is crucial in determining whether sediments
accumulate over the right or left bank. Moreover, data from

at flood
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Figure 6. Effects of a linear lateral density gradient representing saltier water in the channel on (a) the
mean suspended sediment concentration, (b) a semidiurnal correction to the mean concentration at flood,
(c) the erosion coefficient, and (d) the mean lateral sediment transport. Contour interval is 1 mg L™ in

Figure 6a and 0.2 mg L' in Figure 6b.
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Figure 7. Dependence of the ratio of the horizontal
density gradients on the Ekman number. The crosses
represent data from five different estuaries (Reloncavi Fjord
is stratified and deep, the Gulf of Fonseca is weakly
stratified but deep, the Chesapeake Bay mouth is partially
stratified and moderately deep, James River is partially
mixed and shallow, and Guaymas Bay is a vertically
homogeneous, shallow coastal lagoon; see Valle-Levinson
and Bosley [2003], Valle-Levinson and Lwiza [1997], Valle-
Levinson et al. [2000, 2001], and A. Valle-Levinson et al.,
Spatial structure of hydrography and flow in a Chilean
Fjord, Estuario Reloncav, submitted to Estuaries, 2006).
The solid line is fitted to the observations and suggests a
square root dependence of the ratio of the density gradients
on the Ekman number. The circles represent the combina-
tion of values selected for the experiments in which the
Ekman number was varied. The Coriolis and the lateral
density gradient regime (see main text) are indicated by I
and II, respectively.

five estuaries ranging from low to highly frictional suggest
that the estimate of the transport ratio (right-hand side of
(27)) is determined by the Ekman number only, since the
ratio of the horizontal density gradients seems to depend on
the Ekman number by a square root dependence (Figure 7).

[43] The following experiment was performed. Adopting
the square root dependence suggested by the data in
Figure 7, parameter settings yielding Ekman numbers
0.01, 0.02 and 0.1 (circles in Figure 7) representing Ekman
number regimes Ia, Ib and II (see Figure 7). Fixed values for
the Coriolis parameter, maximum water depth and along-
estuary density gradient were used (default values given in
Table 1, except for dp/0x =1 x 10~* kg m~*), the vertical
eddy viscosity coefficient 4, was chosen to obtain the
selected Ekman numbers, and the lateral density gradient
was determined from the square root dependence. The
vertical eddy diffusivity coefficient was estimated by simply
taking K, = 4..

[44] Results for the mean suspended sediment concentra-
tion and mean lateral sediment transport for the three
selected Ekman numbers are shown in Figure 8. Figures
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8a—8c show that the position of the trapped sediments
indeed changes from right to left with increasing friction.
The associated increase in the eddy diffusivity coefficient is
reflected in an increase of the e-folding length scale of the
suspended sediment concentration. Figures 8d and 8f show
that the sediment is mainly transported laterally by the mean
flow (Tv,) and by diffusive processes (7girr) in regime la
and II, whereas the contribution by the tidal flow Ty, is
small. However, in regime Ib (Panel (e)) the transport Ty, is
dominant. This is caused by a relatively low contribution of
the transport by the mean flow Ty, (compared to regime la
and II), as T,,9,/9y and Ty, o cancel each other to a large
extent. Therefore the Coriolis regime (I) can be divided into
two subregimes: In regime Ia, the sediment transport by the
flow is mainly caused by Coriolis deflection of a mean flow
(Tm,,p), whereas in regime Ib, the transport by the tidal flow
Ty, is important as well. Note that the values for the Ekman
number indicating transition from one (sub)regime to an-
other as indicated in Figure 7 would change if the suggested
relation between the ratio of the horizontal density gradients
and the Ekman number would not be adopted or would be
changed (as can be seen from (27)).

5. Comparison to Observations

[45] In this section, we illustrate how the model can be
applied to a real estuary to gain insight in the effects of a
particular forcing on the flow field and to identify the
mechanisms causing lateral entrapment of sediment in that
estuary. Also, we show how model results compare to
observations.

[46] We consider a cross section of the James River,
Virginia, where detailed observations of flow and acoustic
backscatter (a proxy for sediment concentration) profiles
were obtained in October 1996 during two spring tidal
cycles (see Valle-Levinson et al. [2000] for details). The
default parameters values (see Table 1) are used, as they
apply to this transect. In particular, the lateral density
gradient observed in the James River cross section is
characterized by a constant value representing saltier water
at the right. Note that for the observed asymmetric transect,
this is equivalent to saltier water being in the channel, as the
right shoal is very small. Hence the mechanisms suggested
in section 4.2 inducing the two typical lateral distributions
of density in the absence of Coriolis forcing may apply to
the James. Another possible mechanism causing the
observed lateral density gradient is Coriolis forcing [Valle-
Levinson et al., 2000]. As the default parameter values
apply to the James River transect, Table 2 shows that the
model assumptions are also reasonably satisfied for this
transect. The bathymetry observed in the James River cross
section as shown in Figure 9 is used. Hence comparing the
results presented in this section to the appropriate results
shown in the previous section yields insight in effects on the
flow and sediment distributions caused by asymmetries in
the bed profile.

[47] Model results reproduce the essential features of the
observed semidiurnal tidal current amplitude (Figure 9).
Largest amplitudes appear in the channel and the isopaches
follow the bathymetry in response to frictional effects. The
mean flow obtained analytically also resembles the obser-
vations closely (Figure 10). Mean inflow is restricted to the
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channel and occupies the entire water column, whereas
mean outflows appear over a depth of ~6 m. The mean
lateral flows feature near-surface flow from left to right
(looking into the estuary in Figure 10) and near-bottom flow
toward the left bank. The lateral distribution of the mean
flow suggests a moderate Ekman number [Valle-Levinson et
al., 2003], indicating the importance of frictional effects in
producing such flows (£ = 0.1 in the James River). Indeed,
the mean lateral circulation predicted by the model is caused
by the lateral density gradient mechanism, which was
suggested in the previous section to be dominant in a
moderate to highly frictional regime.

[48] In order to compare suspended sediment concentra-
tions obtained from the model with observations in the
James River, acoustic backscatter data were used to obtain a
proxy for the sediment concentration. The conversion from
mean acoustic backscatter data BK to mean suspended
sediment concentration C was effected with the relationship
C=0.03 mg L™" exp(0.097 BK), derived from a calibration
for this estuary [Battisto and Friedrichs, 2003]. Although
this relationship may not exactly apply to the observations
obtained in 1996, the functionality of the relationship has
remained consistent in different parts of Chesapeake Bay
[Friedrichs et al., 2003]. Therefore the distribution of C
displayed in Figure 11 may not be quantitatively correct but
should qualitatively represent appropriate C distributions
across the estuary. The pattern thus obtained compares very
well with that predicted by the model and is also in

Depth (m)

(b) Observations of tidal amplitude

0 1 2 3 4
Lateral distance (km)

Figure 9. Comparison of (a) model predictions and
(b) observations of the amplitude of the along-estuary
semidiurnal tidal flow for a transect in the James River
estuary. Contour interval is 10 cm s™'. No observations are
available in the upper 2 meters and in the lowest 15 percent
of the water column. The dashed line in Figure 9a and
subsequent figures indicates the area of observations.
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Figure 10. Comparison of (a, c) model predictions and (b, c) observations of the (a, b) along-estuary
and (c, d) lateral mean flow for a transect in the James River estuary. Contour interval is 2 cm s~ ' in

Figures 10a—10c and 1 cm s~ in Figure 10d.

agreement with observations reported by Nichols [1972].
Hence the model suggests that the mud reach found along
the left bank of the James River (£ = 0.1) result from the
lateral density gradient mechanism, which is in agreement
with the analysis for the moderate to high Ekman number
regime as presented in section 4.3.

6. Discussion

[49] The results presented in section 4 showed that both
Coriolis deflection of the along-estuary flow (mechanism 1)
and lateral density gradients (mechanism 2) cause lateral
entrapment of sediment. Coriolis deflection of the estuarine
gravitational circulation (mechanism 1a) resulted in a mean
transverse circulation cell. The cell transports the mean
sediment concentration laterally into the direction of the
near-bed flow. Similarly, Coriolis deflection of the along-
estuary semidiurnal tidal flow (mechanism 1b) induced a
semidiurnal circulation in the cross section. Because of tidal
asymmetries in the sediment concentration (represented by a
semidiurnal correction to the mean sediment concentration),
the time-oscillating transverse circulation cell induces mean
lateral sediment transport as well. Its direction and magni-
tude depended on the direction of the near-bed semidiurnal
flow and its phase difference with the semidiurnal contri-
bution to the concentration. The amount of sediment trans-
ported laterally by Coriolis deflection of the along-estuary
tidal flow was comparable to the amount transported by
Coriolis deflection of the mean along-estuary flow. A
laterally varying erosion coefficient (modeling the distribu-
tion of mud reaches over the bed) was selected such that the
mean lateral sediment transport by diffusion and advection
balanced and a morphodynamic equilibrium situation was
obtained. Coriolis deflection of along-estuary flow resulted
in equilibrium mud pools and elevated sediment concen-
trations over the right bank (looking up-estuary in the
Northern Hemisphere).

[s0] A constant (linear) lateral density gradient
(mechanism 2) caused a single (two counter-rotating) mean
transverse circulation pattern(s). Mud pools and elevated
sediment concentrations were found in the cross-sectional
region(s) with relatively fresh water.

[5s1] The two transport mechanisms reinforce each other
or compete, depending on the lateral distribution of the
density and the Hemisphere in which the estuary is situated.
However, the lateral density gradient mechanism is
expected to be more important than the Coriolis mechanism

Depth (m)

(a) Model prediction of mean sediment concentration
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(b) Observions of mean sediment concentration (estimate)
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Figure 11. Comparison of (a) model predictions and
(b) observations (approximation based on backscatter data)
of the mean suspended sediment concentration for a transect
in the James River estuary. The contour interval is 1 mg L™
in Figure 11a and 10 mg L™ in Figure 11b.
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in many tidal estuaries. This is because a lateral density
gradient directly induces lateral flow (and hence lateral
sediment transport), whereas Coriolis deflection of along-
estuary flow induces lateral flow only indirectly. Explaining
the relative importance of the two mechanism in terms of
the Ekman number (see section 4.3) also supports the
dominance of the lateral density gradient mechanism, as
many estuaries are in the lateral density gradient regime
(Regime II in Figure 7 with Ekman number £ > 0.02). Note
that, although Coriolis deflection of the along-estuary flow
seems to play a minor role in many tidal estuaries, the
along-estuary flow is crucial for lateral transport of sedi-
ment, as it creates a substantial part of the bed shear stress
that resuspends the bed sediments.

[52] Even though the model seems to represent the
essential features of the flow and sediment deposition in
the James, some physical mechanisms are not represented
yet. Among these are nonlinear advective terms, curvature
of riverbanks, sediment resuspension by wind waves, crit-
ical bed shear stress, wind stress, and temporal and spatial
variations in stratification and mixing conditions (caused by,
e.g., tidal straining).

7. Conclusions

[53] In this paper, the effects of individual physical
forcing (by tides and horizontal density gradients) on flow
and lateral sediment entrapment in a cross section of a
tidally dominated, weakly nonlinear estuary have been
studied in a systematic way. A two-dimensional idealized
model was obtained using a scaling and perturbation anal-
ysis. Resuspension of sediment at the bed depends both on
the bed shear stress and on the amount of sediment available
in mud reaches for resuspension. The distribution of mud
reaches over the bed is selected such that sediment transport
is in morphodynamic equilibrium, that is, tidally averaged
lateral transport of sediment by advection by the flow and
by diffusion balance.

[s4] Lateral sediment entrapment mechanisms related to
Coriolis deflection of along-estuary flows and lateral den-
sity gradients were identified. On the basis of model results
and data, it was suggested that which forcing dominates the
entrapment of sediment across an estuary (and the genera-
tion of mean lateral flow) is characterized in terms of the
Ekman number E. The Coriolis mechanisms is dominant for
low Ekman numbers (£ < 0.02), resulting in mean accu-
mulation of sediment on the right slope of the channel
(looking into a Northern Hemisphere estuary). On the other
hand, the lateral density gradient mechanism dominates for
Ekman numbers larger than 0.02, resulting in sediment
entrapment in the cross-sectional regions with relatively
fresh water. Results also showed that for very low Ekman
numbers (£ < 0.01), the dominant sediment transport is
induced by Coriolis deflection of the estuarine gravitational
circulation, whereas for low Ekman numbers in the range
0.01 < E < 0.02 the dominant transport is induced by
Coriolis deflection of the tidal flow. It is likely that in most
systems the lateral density gradient mechanism dominates.
Therefore sediment entrapment tends to occur over the
regions with relatively fresh water.

[55] A comparison of model results to observations in the
James River estuary (E = 0.11) showed that the model
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predictions are qualitatively in good agreement with data.
Moreover, it showed that the lateral density gradient mech-
anism indeed dominates the Coriolis mechanism in the
James River transect and causes accumulation of sediments
on the left side (looking into the estuary), as observed.

[56] Acknowledgments. We are grateful to Stefan Talke for his help
in improving the manuscript.
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