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Abstract: Background/Objectives: Tenosynovitis is a common feature of psoriatic arthritis
(PsA) and is typically assessed using semi-quantitative magnetic resonance imaging (MRI)
scoring. However, visual scoring s variability. This study evaluates a fully automated,
deep-learning approach for ankle tenosynovitis segmentation and volume-based quantifi-
cation from MRI in psoriatic arthritis (PsA) patients. Methods: We analyzed 364 ankle 3T
MRI scans from 71 PsA patients. Four tenosynovitis pathologies were manually scored
and used to create ground truth segmentations through a human-machine workflow. For
each pathology, 30 annotated scans were used to train a deep-learning segmentation model
based on the nnUNet framework, and 20 scans were used for testing, ensuring patient-level
disjoint sets. Model performance was evaluated using Dice scores. Volumetric pathology
measurements from test scans were compared to radiologist scores using Spearman correla-
tion. Additionally, 218 serial MRI pairs were assessed to analyze the relationship between
changes in pathology volume and changes in visual scores. Results: The segmentation
model achieved promising performance on the test set, with mean Dice scores ranging
from 0.84 to 0.92. Pathology volumes correlated with visual scores across all test MRIs
(Spearman p = 0.52-0.62). Volume-based quantification captured changes in inflamma-
tion over time and identified subtle progression not reflected in semi-quantitative scores.
Conclusions: Our automated segmentation tool enables fast and accurate quantification of
ankle tenosynovitis in PsA patients. It may enhance sensitivity to disease progression and
complement visual scoring through continuous, volume-based metrics.

Keywords: tenosynovitis; MRI; deep learning
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1. Introduction

Tenosynovitis, characterized by the inflammation of the tendon’s synovial sheath,
is a pivotal aspect in psoriatic arthritis (PsA) [1]. Its early detection and monitoring are
important for initiating timely treatment and preventing joint damage, thereby improving
the patient’s quality of life [2-5].

Imaging evaluation of tenosynovitis has advantages over clinical examinations of PsA
and can reflect prodromal phase of PsA [1,6]. The Outcome Measures in Rheumatology
(OMERACT) group developed the PsA MRI Scoring System (PsAMRIS), which includes
tenosynovitis among other features and uses a semi-quantitative scoring scheme [7,8].
Despite the establishment of PSAMRIS, its discrete nature complicates careful monitoring
of often subtle changes in disease activity [9,10]. Moreover, manually interpreting images
is time-intensive and relies on the individual judgment of the radiologist [3,11-13]. A study
by Glinatsi et al. validating the OMERACT PsAMRIS for the hand and foot in a randomized,
placebo-controlled trial reported poor baseline interreader reliability for tenosynovitis in the
foot (Intraclass Correlation Coefficient (ICC) 0.25-0.44), while good reliability was observed
for other PsAMRIS features (ICC 0.72-0.96) [8]. Jin et al. demonstrate how automated
segmentation can improve consistency [14].

Quantifying inflammatory features using volumetric and signal intensity-based met-
rics may offer a more continuous, objective alternative to discrete visual scoring. This
approach could be more sensitive to variations when assessing disease activity and re-
sponse to therapy over time.

In this study, we assess the feasibility of a fully automatic method for segmentation
and quantification of MRI tenosynovitis in the foot. We hypothesize that a fully automated
segmentation pipeline can serve as a reliable precursor to volume-based quantification of
tenosynovitis, offering more sensitive monitoring than visual scoring.

Previous studies have attempted automatic segmentation and quantification of in-
flammatory pathologies on MRI images. Haj-Mirzaian et al. summarized the feasibility
of computer-assisted quantification of MRI inflammatory arthritis pathologies as the re-
sponsiveness of scoring methods are limited by their discreet nature and that those systems
can be insensitive to early inflammatory changes [3]. They expect that artificial intel-
ligence (Al)-driven approaches, such as ones based on deep learning (DL) algorithms
may overcome these limitations [15,16]. Moreover, Momtazmanesh et al. surveyed the
used of Al in rheumatoid arthritis and found no studies using DL-based method for au-
tomatic segmentation of inflammatory pathologies [17,18]. Schlereth et al. used deep
learning for the classification of erosion, synovitis and osteitis in hand MRI of patients with
inflammatory arthritis [19]. Aizenberg et al. investigated the feasibility of automatic quan-
tification of tenosynovitis on MRI of the wrist in patients with early arthritis. They used
an atlas-based method for segmentation of tendons, extracted the ROIs around tendons
and applied fuzzy clustering to identify voxel intensities inside ROI that can be associated
with inflammation [20-22]. More recently, Hepburn et al. introduced a human-machine
workflow for semi-automatic segmentation and quantification of inflammation load in
spondyloarthritis [11]. To the best of our knowledge, no previous studies evaluated the
feasibility of DL-based, fully automatic segmenting of tenosynovitis from ankle MRI in
inflammatory arthritis.

In our study, we assess the feasibility of a fully automatic method for segmentation
and quantification of tenosynovitis on MRI. This method relies on automatic, DL-based
segmentation of tendons in the ankle instead of being reliant on manual expert pathology
segmentation for ground truth generation, which is a very time-consuming task.
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Patient Inclusion

2. Materials and Methods

This is a retrospective study to determine the feasibility of automatic segmentation and
quantification of ankle tenosynovitis. The quantification is done by automatic segmentation
of tenosynovitis and its regions of interest.

2.1. Data

Serial bilateral (left and right separately) ankle MRI data from 71 patients with PsA,
collected across multiple centers as part of the TOFA-PREDICT study (EudraCT Number
2017-003900-28), were utilized. All the patients included in this study provided written
consent and the study was approved by the Medical Research Ethics Committee in Utrecht,
Netherlands (MREC reference number: NL63439.041.17). Despite being multi-center, the
used images had been acquired from the same MRI machine manufacturer with approxi-
mately the same parameters. We note that most images were acquired using Philips Ingenia
3T scanners (Philips Healthcare, Best, The Netherlands) across different sites. One scan
acquired with a Siemens 1.5T scanner was excluded from analysis to maintain consistency
in field strength and acquisition protocol. The specifics of the study have been described in
prior publication [23].

A total of 364 3T T1-weighted Proton Density Spectral Adiabatic Inversion Recovery
(PD SPAIR) ankle MR images (coming from the 71 patients, each with multiple timepoints
and bilateral images) were analyzed for scoring and quantification purposes. Details on
the MRI parameters are reported in Table S1 of the Supplementary Material.

Quantification of tenosynovitis around 4 tendon regions, namely the tibialis pos-
terior tendon, flexor digitorum longus tendon, flexor halluces longus tendon, peroneal
longus/brevis tendon, was the topic of this study.

Two musculoskeletal radiologists (WF, IK) conducted scoring for tenosynovitis around
the abovementioned four specific tendon regions, following the guidelines of PsAMRIS,
which were adapted by the study team for assessment of tenosynovitis around the ankle
joint [7,8]. Tenosynovitis was assessed using semiquantitative assessment of fluid within the
tendon sheaths (0: none, 1: <1/2 tendon thickness, 2: >1/2 tendon thickness, 3: >1 tendon
thickness). In cases of disagreement regarding the tenosynovitis scores, the differences
were resolved through follow-up consensus readings.

Diagram of the workflow used in this study is as shown in Figure 1.

Human-Machine
Manual Scoring Model Training » ModelTesting
GT Generation

Figure 1. Workflow of the study.

2.2. Ground Truth (GT)

In order to automate the segmentation of tenosynovitis pathologies and validating this
process, a dataset of ground truth tenosynovitis segmentation was required. Tenosynovitis
ground truth segmentation as shown in Figure 2 was performed in a human-machine
workflow to speed up the generation of dataset and to increase the consistency across read-
ers. In the human-machine workflow, a radiologist (WF) supervised an image processing
pipeline that generates initial pathology segmentations. These segmentations were then
corrected by an MD researcher with 5 years of experience in orthopedics imaging (LC) and
approved by radiologist (WF).
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Figure 2. Human-machine workflow of creating ground truth pathology segmentation dataset.
(a—d): (a): tendons segmented (colors), (b): ROIs around tendons defined (green), (c): clustering
highlights regions (lighter regions), (d): highlighted regions inside ROISs selected (red).

The details of the human-machine workflow are as follows: In the first step, as foot
tenosynovitis pathologies are around any of 4 tendon regions, these 4 structures were
segmented. As peroneal tenosynovitis occurs around both peroneal longus and peroneal
brevis tendons, both these structures were segmented. This step is shown in Figure 2a. An
MD researcher with 5 years of experience in orthopedics imaging (LC) performed manual
segmentations of tendons on a set of 50 MRIs utilizing the 3D Slicer software, version 5.0.1.
All 50 tendon segmentations were then reviewed by one musculoskeletal radiologist (WF).

In the majority of cases, the initial segmentations generated by the pipeline were
visually plausible and required only minor boundary adjustments or removal of false
positives. In fewer cases (—20%), more substantial edits were needed to better capture the
extent of inflammation. The human-machine workflow significantly reduced annotation
time while ensuring consistency through expert oversight.

Those 50 MRIs (from different patients) were used for segmentation training/testing,
while the remaining scans were used for correlation and longitudinal analysis. In order
to automate this first step, an nnU-Net [24,25] was trained on 30 full segmentations and
tested on 20 full segmentations. nnUNet is a segmentation framework based on U-Net
framework [26] that automatically configures the hyperparameters based on the fingerprint
of the dataset. The segmentation of tendons is helpful as well in quantification of tenosyn-
ovitis, as according to PSAMRIS, tenosynovitis is scored based on inflammation thickness
proportionate to tendon thickness.

In step 2, ROIs around the segmented tendons were automatically extracted, as de-
picted in Figure 2b.

In step 3, fuzzy c-means clustering was applied to the image voxels with the assump-
tion of two clusters (brighter/darker voxels). Then, voxel intensities surpassing the higher
cluster center value inside ROI underwent a threshold optimization for probability of
those voxels belonging to the cluster. The illustrative result of this clustering method is
encapsulated in Figure 2c. The threshold values that yielded the highest correlation of
pathology volume with the radiologists” semi-quantitative pathology scores were taken
for further consideration by musculoskeletal radiologist (WF). The radiologist reviewed
potential threshold levels on a selection of 10 MRIs from training set, representing various
degrees of severity, to identify a probability threshold that most accurately captures the
presence of pathology. We applied the same threshold across all four tendon regions, as
the signal characteristics of tenosynovitis in these ROIs were visually consistent across
images acquired with the same MRI protocol. Importantly, all resulting segmentations
were reviewed and, if needed, corrected by an expert reader, ensuring validity regardless
of the initial threshold. This ensured that the final annotations used for model training
were consistent and accurate. While more advanced, adaptive thresholding techniques may
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improve automation further, our fixed-threshold approach provided sufficient accuracy for
the purposes of this feasibility study.

In step 4, using the chosen threshold value in previous step, inflammatory voxels were
automatically segmented and retained if situated within the disease-specific ROI from step
2 or emanated from within this defined area. This is shown in Figure 2d.

Finally, segmentations resulting from step 4 underwent a thorough review of 50 images
and any necessary adjustments by MD researcher with 5 years of experience in orthopedics
imaging (LC), instructed by a musculoskeletal radiologist (WF). The segmentations were
validated and approved by the radiologist (WF).

2.3. Data Portions

At the end of the workflow, for each tenosynovitis pathology, a dataset of 50 expert-
approved segmentation was thus ready for automation. Thirty segmentations were used for
training the segmentation model, and twenty were used for testing the model. To evaluate
the generalizability of our segmentation model, we employed a 2-fold cross-validation
approach. Specifically, our dataset of 50 labeled segmentations was divided into two folds.
For each fold, we used 30 segmentations for training and 20 segmentations for testing. This
ensured that all segmentations were used in both training and testing at least once. Each
segmentation was included in the testing set once at most, allowing us to obtain a mean
test result and assess the model’s performance across different subsets of the data. Data in
training and test sets were from different patients to avoid information leak.

2.4. Model Training

NnU-Net is inherently structured to compensate for the absence of testing data, em-
ploying a 5-fold cross-validation approach as its standard protocol [27]. Given that we
had access to an independent testing set within the same dataset, we bypassed this default
feature and conducted training using the entirety of the training data. We allocated a
distinct dataset for each pathology, processing each one separately. The semi-automatically
corrected segmentations were employed to train a deep learning nnU-Net network with
3D full resolution configuration for 1000 epochs using a Dice similarity coefficient with
Cross Entropy loss. To enhance the network’s resilience to the various MRI artifacts present
in the dataset, the TorchIO data augmentation library [28] was utilized to add noise, ghost-
ing effect or bias field inhomogeneity to images and create augmented image-segmentation
pairs. The nnU-Net framework automatically integrates optimal pre-processing and ar-
chitectural strategies by analyzing characteristics of the given dataset, such as modality,
spacing and dimensions of the scans [29].

We selected nnU-Net as our segmentation framework due to its demonstrated state-
of-the-art performance across diverse medical image segmentation tasks and its automatic
configuration of preprocessing, architecture and training parameters. In our feasibility
context with a limited dataset, nnU-Net provided a robust and reproducible pipeline
without the need for extensive manual tuning. Although alternative models such as
attention-based U-Nets or transformer architectures may offer improvements in specific
cases, these were not explored here due to the scope and focus of the study. A recent
comparative analysis found that nnU-Net outperformed attention U-Nets and Res-U-Nets
across tasks like tumor and polyp segmentation, particularly in recall and Dice score [30].

The code and models used in the study are available at https:/ /github.com/sarbabi/
TenosSeg accessed 1 April 2025.

2.5. Experiments

Evaluation of automated against semi-automated pathology segmentation.
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To assess the efficacy of the trained nnU-Net models, we used them to predict the
segmentation of the test scans and compared them with the semi-automatically generated
ground truth segmentations available. The training and test sets were selected in a way that
covers different scores of tenosynovitis. The test set did not have any patients in common
with the training set to avoid information leak. For quantitative evaluation of performance,
we employed the Dice coefficient. This indicates how well the trained model can segment
the pathology compared to the expert.

2.6. Evaluation of Automated Tendon Segmentation

The performance of automated segmentation of tendon regions directly affects the
segmentation of ROIs. So, in this part, we evaluate the tendon segmentation model’s
performance. The training and tests set were selected randomly from images. The model’s
accuracy was benchmarked against the 20 manually segmented MRIs, employing the Dice
similarity coefficient as a metric for comparison.

Evaluating human-machine workflow compared to manual method for pathology
ground truth segmentations.

To evaluate the consistency and accuracy of the radiologist-instructed pathology seg-
mentations using human-machine workflow, a comparison was made between fully man-
ual segmentations and human-machine workflow. A radiologist (WF) and a radiologist-
instructed MD researcher (LC) each performed manual segmentations of tibialis posterior
tenosynovitis on 10 randomly selected images from different severities of disease on
two separate occasions, one month apart to minimize recall bias. In addition, they each
conducted a single segmentation session where they refined machine-generated initial
pathology segmentations. The aim of this setup was to assess whether the human-machine
workflow might influence the consistency and accuracy of the segmentations as com-
pared to the traditional manual approach. The intra- and inter-observer agreement were
calculated using Dice similarity coefficient.

Evaluating correlations of pathology volumes with scores.

Spearman rank correlations between volumes extracted from automatic segmentation
of pathologies and the visual scores by radiologists were calculated, to indicate the level of
alignment between human qualitative scores and machine quantifications.

2.7. Comparing the Sensitivity of Quantifications to Change in Tenosynovitis Score

In order to provide insight into the sensitivity of our methods to detect changes over
time in comparison to semi-quantitative scores, the change of inflammation score and
volume were illustrated from baseline to week 16, and from week 16 to week 52, in patients
where the radiologists unanimously agree on the baseline score. The disease progress, in
terms of volume and score on 218 pairs of serial MRlIs in 71, patients was shown.

3. Results

The MRI parameters for the used PD SPAIR sequence of different centers are reported
in Table S1 of Supplementary Materials. A total of 71 patients evaluated using 3T MRI (all
centers except five) were included in this study. All included patients were evaluated on
MRI scanners from the same manufacturer and using approximately the same parameters
for the PD SPAIR sequence. The distribution of scores of radiologists is as depicted in
Table S2 of Supplementary Materials.

Performance of the tendon segmentation model.

A representative segmentation of four tendon regions is demonstrated in Figure 3.
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Original MRI slice

Overlaid automatically segmented tendons

Figure 3. Automatic segmentation of tendons. a: Tibialis posterior tendon, b: flexor digitorum tendon,
c: flexor halluces longus tendon, d: peroneal longus/brevis tendon.

Evaluating the model’s performance with the Dice coefficient on a test set of
20 images disjointed from the training set on the patient level (Table 1), showed that the
model achieved a Dice score of (mean =+ SD) (0.94 + 0.01) for the tibialis posterior tendon,
(0.93 £ 0.02) for the flexor digitorum longus, (0.91 £ 0.02) for the flexor halluces longus
tendon and (0.95 & 0.01) for the peroneal longus/brevis tendon, reflecting excellent seg-
mentation accuracy.

Table 1. Dice coefficients of automatic segmentation of tendons.

Tendon Dice Score
Tibialis posterior 0.94 £+ 0.01
Flexor digitorum longus 0.93 £ 0.02
Flexor halluces longus 0.91 £0.02
Peroneal longus/brevis 0.95 4 0.01

3.1. Automating Pathology Segmentation

The visual examples of the results of the automatic pathology segmentations for an
image are depicted in Figure 4.

Original MRI slice

Overlaid icall i tenosy

Figure 4. Example image overlaid with automatic segmentation of 4 tenosynovitis pathologies.
(a) Tibialis posterior tenosynovitis (score: 3), (b) flexor digitorum tenosynovitis (score: 1), (c) flexor
halluces longus tenosynovitis (score: 1), (d) peroneal longus/brevis tenosynovitis (score: 1).
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The trained models were used for predicting pathologies in the test set, and the
Dice scores reported the similarity of the predicted segmentation with the ground truth
segmentation. The accuracy of segmentation in terms of Dice score (mean =+ SD) is shown
in Table 2, with all pathologies showing mean Dice scores of >0.8.

Table 2. Dice scores on test set for different pathologies (mean + SD).

Pathology Test Dice

Tibialis posterior tenosynovitis 0.91 £ 0.04
Flexor digitorum tenosynovitis 0.84 £ 0.07
Flexor halluces longus tenosynovitis 0.85 £ 0.06
Peroneal longus/brevis tenosynovitis 0.92 £+ 0.04

These Dice scores indicate that the models are capable of reliably segmenting tenosyn-
ovitis pathologies in the ankle across different regions, with high overlap compared to
expert-validated reference segmentations.

3.2. Evaluation of Human—Machine Workflow Compared with Manual Segmentation

The ground truth segmentations for automating tenosynovitis segmentation were gen-
erated using a human—machine workflow. Figure 5 illustrates the enhancement in ground
truth pathology segmentation accuracy achieved with the aid of the human-machine work-
flow, quantified using Dice coefficients. For entirely manual segmentations carried out
independently by two observers, the inter-reader agreement in terms of Dice scores varied
widely, ranging from 0.25 to 0.81. The median Dice score for repeated segmentations by the
same observer (intra-reader agreement) was recorded at 0.66 and 0.62, while the median
for segmentations between different observers (inter-observer agreement) ranged from 0.56
to 0.61.

Semi-automated

Purely manual segmentation segmentation
. L : |
Intra-reader Dice Inter-reader Dice Inter-reader Dice
MW R11vsR12 W R21vsR22 M R11vsR21 W R11vsR22 [ R12vsR21 R12vsR22 B semi-automated (R1 vs R2)
09 09 09
0.8 | 0.8 0.8
0.7 0.7 07
06 7 06 - | = 06
05 05 . 05
0.4 J_ 0.4 | | 0.4
03 03 -+ 03
0.2 0.2 02
01 0.1 01
0 0 0

Figure 5. Fully manual and semi-automatic (human-machine) tibialis posterior tenosynovitis seg-
mentation performance. Rij denotes reader i in j-th repetition.

Upon the implementation of the human-machine collaborative workflow, there was a
noticeable improvement in the median inter-observer agreement Dice scores, rising to 0.89.
This shows a significantly higher agreement between readers for correcting segmentations
provided by algorithm than fully manual segmentation of pathology and thereby a need
for less refinement by the radiologist in dataset generation.
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3.3. Threshold Optimization Step

Figure S1 shows the results of the threshold optimization process for tibialis poste-
rior tenosynovitis. As we see, with threshold values between around 0.67 and 0.84, the
correlation between pathology volume and radiologist scores is stronger. The radiologist
further reviewed this range of thresholds for 10 images stratified from different severities
of pathology and based on a threshold value of 0.7 being chosen for tibialis posterior. The
same threshold was used for segmenting tenosynovitis in all four regions.

3.4. Assessing Correlation Between Scores and Volumes

Evaluating Spearman rank correlation between scores and pathology volume in each
ROl for all patients shows p = 0.62 for tibialis posterior, 0.58 for flexor digitorum longus, 0.52
for flexor halluces longus and 0.59 for peroneal longus /brevis, with p-values < 1 x 1071°,
showing a moderate to strong correlation. While moderate, these correlations suggest that
continuous volume-based measurements align meaningfully with expert semi-quantitative
assessments and may provide a more sensitive alternative for longitudinal monitoring.

3.5. Assessing Inflammation Dynamics Through Volume Feature and Score Variations

The disease progress in terms of volume and score on 218 pairs of serial MRIs were
evaluated for 71 patients. Figure 6 shows the changes in tibialis posterior tenosynovitis
volume and tibialis posterior tenosynovitis scores over time.

Inflammation Ratio vs. Score Change (Grid for All, Labels for 0-1 Only)

x x x x 1.00
0.75
.
0.50
°
0.25
L] . @
L g
o o [l ° s P E
e i =y , itoy '! """““Fh' ‘.W . 000 O
° L] (] 4
° . Qe @ Y . ° 5
L] ° L] w
% -0.25
C . il
~0.50
0.75
x x x x x x x =1.00

Foot ID and Timepoint Transition (labels omitted for clarity)

1,088 | 0->t1)

Figure 6. The changes in volume along with scores in all patients. Blue crosses indicate score changes
over time as scored by a radiologist, while green dots indicate volume changes as automatically
segmented. This figure also illustrates one image that shows negative change in the volume of
pathology between the two time-points while the score does not change. Also another example where
score negatively changes, but the change in volume is not big.

For patient 1_030_R, depicted in the bottom left of Figure 6, although at both times
the pathology is scored as 1 (score change is 0), the quantification suggests a decrease in
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inflammation volume from baseline to week 16. In the same way, for patient 1_088_L,
illustrated in the bottom right, the baseline score is 3, while at week 16, it is scored as 2.
While the overlaid automatic pathology segmentation also depicts this change in CO to C1,
it also indicates a possible increase in pathology shown in EO to E1.

In summary, the model achieved high segmentation performance across all target
pathologies, with Dice scores exceeding 0.8. Volume measurements derived from these seg-
mentations showed statistically significant moderate correlations with radiologist-assigned
visual scores. In the longitudinal analysis, volume changes were observed in cases with
and without changes in visual score, suggesting the potential sensitivity of continuous
quantification for tracking disease activity. These findings support the feasibility of using
deep learning-based volume quantification to complement conventional scoring methods.

4. Discussion

This research assesses the feasibility of the application of Al in evaluation and mon-
itoring of ankle tenosynovitis through MRI. The findings in this study indicate that the
developed automated system could augment the traditional semi-quantitative scoring
with more change-sensitive measurements of tenosynovitis, offering quicker results with
reduced dependence on human judgment. This is consistent with existing research, which
shows Al’s potential to address the challenges of subjective assessments by reducing human
error and bias in image analysis and offering continuous-scale measurements.

Although the automated segmentation models achieved Dice scores above 0.8 and
moderate to strong correlations with visual scoring, these metrics do not imply perfect
agreement or direct clinical interchangeability. The model-derived volume measures offer
a continuous, objective view of inflammation burden that complements—but does not
replace—expert assessment.

The implementation of a collaborative workflow integrating human expertise and
machine capabilities has markedly improved the uniformity with which various observers
pinpoint specific regions of interest in pathology images. This improvement implies that
the synergy between human knowledge and machine generation of initial segmentations
can substantially enhance the precision of data annotations. Our findings demonstrate that
the human-machine workflow not only expedited dataset creation but also significantly
improved consistency across readers. Compared to fully manual segmentation, which
showed a wide range of inter-observer agreement (Dice: 0.56-0.61), the collaborative review
of model-generated segmentations led to a much higher agreement (Dice: 0.89). We believe
that the model’s initial segmentation served as a stable reference, reducing subjective
variability and ensuring more reproducible delineation of pathology—particularly in cases
with subtle or borderline inflammation.

The automatic segmentation and volume quantification of tenosynovitis showed moder-
ate to strong correlation with visual scores of tenosynovitis. This shows that our automatic
quantification tool aligns favorably with human expert scores, while providing continuous
data, which enables more accurate evaluation of changes over time. While Spearman correla-
tions between visual scores and segmented pathology volumes ranged from 0.52 to 0.62, this
moderate strength is consistent with expectations given the fundamental differences in data
representation. Visual scores are discrete, semi-quantitative values with known inter-reader
variability, whereas automated volume quantification provides continuous measures of in-
flammation. These differences inherently limit perfect correlation. However, the observed
correlations—combined with longitudinal consistency—suggest that volume-based quantifi-
cation may serve as a useful complementary tool to visual scoring, with potential to improve
sensitivity in monitoring inflammation over time. Further validation is needed to determine
its ability to detect subtle or early changes.
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Furthermore, the Al model’s ability to detect volume changes in cases where visual
scores remain stable suggests potential sensitivity to subtle inflammatory dynamics. How-
ever, these volume fluctuations require further validation—such as radiologist re-scoring
or clinical outcome studies—to confirm their clinical relevance. Such enhancements com-
plement traditional radiological assessments, reducing the likelihood of overlooked cases.
This is especially evident in the case studies where the quantification of inflammation
showed changes over time that were not reflected in the tenosynovitis scores. However, the
clinical relevance of the subtle abnormalities and changes over time as provided by quan-
tifications needs further studies on minimally detectable changes and minimally clinically
important difference.

Our automated platform is capable of performing quick tenosynovitis pathology
segmentation and augmenting the scoring with segmentation for each image.

There are limitations to consider regarding this study. The main limitation is the small
pool of expert-validated images for training and testing, attributed to the limited availability
of expert validations. Future studies would benefit from a larger dataset. Despite this, the
method demonstrated encouraging outcomes across 20 validation sets for each pathology
and showed minimal signs of overfitting where there was no large unexpected difference
between mean Dice scores in the testing and training sets. Differences in mean dice score
between the training and testing sets were between 2.4% to 5.6% for different tenosynovitis
pathologies. Another limitation arises from the fact that only little heterogeneity is present
in our dataset. Although our data come from different sites, the MRIs are from the same
MRI machine model and were acquired with very similar parameters. Only site 5, with one
patient, had a different machine, which we did not include in analysis, since our inclusion
criterion had been 3T MR images. It remains to be investigated how well the method
performs on scans from other vendors. Further validation in independent cohorts and
across scanner vendors is required to confirm generalizability for clinical deployment.

An additional challenge encountered in this study was the presence of MRI artifacts,
including issues with fat suppression and the ghosting effect. However, assessment of fluid
within the tendon sheaths, which appear as hyperintense in the fluid-sensitive sequences
used, is not hampered by suboptimal fat suppression. In addition, we employed data
augmentation strategies to accommodate the image discrepancies caused by these artifacts.
The effects of the artifacts are therefore expected to be limited.

A further limitation stems from the two-stage image-scoring process, where radiol-
ogists first assess each MRI independently, followed by a consensus meeting in case of
differing opinions. Although this method helps standardize evaluations, it might inad-
vertently lead to an artificially high agreement rate due to a learning effect at the outset.
The act of collaborating to reach a consensus could produce a higher agreement rate than
in scenarios where consensus is reached only after all MRIs have been reviewed. As a
result, the inter-reader agreement rates reported might not accurately reflect the range of
variability that might be seen in routine clinical practice or other research environments.

These limitations highlight the need for a meticulous interpretation of the study’s
results and identify areas for improvement in future research.

As this was a feasibility study, our work focused on implementing and validating a
self-configuring segmentation pipeline using nnU-Net. While nnU-Net provides strong
baseline performance with minimal manual tuning, future work could explore alternative
architectures—such as attention-based U-Nets or transformer-based models—which may
offer enhanced sensitivity to small or ambiguous pathological features. In addition, bench-
marking against external segmentation frameworks and commercial or open-source tools
would help assess generalizability and identify areas where our pipeline may be improved
or adapted for broader clinical use.
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Despite these limitations, our results suggest that deep learning-based quantification
of tenosynovitis is feasible and potentially valuable as a complementary tool for objective
inflammation tracking in research settings. Further validation in independent cohorts and
expanded clinical studies is needed to confirm its robustness and applicability.

5. Conclusions

In conclusion, this study assessed the feasibility of augmenting tenosynovitis scoring
with Al-generated pathology segmentation. The findings from this feasibility research
highlight the potential of Al to automatically quantify ankle tenosynovitis on MRI with
accurate pathology segmentation masks. The deep learning-based method showed moder-
ate to strong agreement with visual scores and was able to track longitudinal changes in
inflammation. While this is promising, further validation on independent datasets, explo-
ration of clinical thresholds, and studies on reader reliability are needed before broader
clinical adoption.
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