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Cross Domain Image Matching in Presence of Outliers

Xin Liu Seyran Khademi Jan C. van Gemert

Computer Vision Lab, Delft University of Technology

Delft, The Netherlands

Abstract

Cross domain image matching between image collec-

tions from different source and target domains is challeng-

ing in times of deep learning due to i) limited variation of

image conditions in a training set, ii) lack of paired-image

labels during training, iii) the existing of outliers that makes

image matching domains not fully overlap. To this end, we

propose an end-to-end architecture that can match cross do-

main images without labels in the target domain and handle

non-overlapping domains by outlier detection. We leverage

domain adaptation and triplet constraints for training a net-

work capable of learning domain invariant and identity dis-

tinguishable representations, and iteratively detecting the

outliers with an entropy loss and our proposed weighted

MK-MMD. Extensive experimental evidence on Office [17]

dataset and our proposed datasets Shape, Pitts-CycleGAN

shows that the proposed approach yields state-of-the-art

cross domain image matching and outlier detection perfor-

mance on different benchmarks. The code will be made pub-

licly available.

1. Introduction

Cross domain image matching is about matching two im-

ages that are collected from different sources (e.g. photos of

the same location but captured in different illuminations,

seasons or era). It has wide application value in different

areas, with research in location recognition over large time

lags [3], e-commerce product image retrieval [8], urban en-

vironment image matching for geo-localization [20], etc.

Even using deep feature representation learning, the au-

tomated cross domain image matching task remains chal-

lenging mainly due to the following difficulties. First, it

is difficult to match varying observations of the same loca-

tion or object, in general. Second, often the paired-image

examples from two domains are not available for training

neural networks. Third, the image samples in two domains

may not fully overlap due to the existing of outlier images,

which affects the matching performance if such outliers are

not detected.
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Figure 1: Domain adaptation (DA) and image matching applied

on a 2D toy dataset generated with domain shift between source

and target domains. (a) Original distribution, (b) no outliers, (c)

with outliers, (d) our method. The result of (b) and (c) shows that

outliers affect the alignment of source samples and inlier target

samples. (c) and (d) show that our outlier detection helps separat-

ing the outliers from the aligned source samples and inlier target

samples.

In this work, we address the problem of domain adap-

tation for feature learning in a cross domain matching task

when outliers are present. As is common in domain adap-

tation, we only have labeled image pairs from the source

domain, but no labels from the target domain. To re-

solve the domain disparity between the train and the test

data, we are inspired from Siamese network [2] for image

matching and domain adaptation used in image classifica-

tion [13, 18, 22, 23, 26]. We propose a triplet constraints

network to learn the domain invariant and identity distin-

guishable representations of the samples. This is made pos-

sible by utilizing the paired-image information from the

source domain, a weighted multi-kernel maximum mean

discrepancy (weighted MK-MMD) method and an entropy

loss. The setting of the problem and experiment results of



our method are depicted on a 2D toy dataset in Figure 1.

To verify our method, we introduce two new synthetic

datasets as there are no publicly available datasets for our

problem setting. Moreover, we believe outlier-aware algo-

rithms are essential to design practical domain adaptation

algorithms as many real data repositories contain irrelevant

samples w.r.t. the source domain. In summary, our main

contribution is two-fold:

• Joint domain adaptation and outlier detection.

• Two new datasets, Pits-CycleGAN dataset and Shape

dataset, for cross domain image matching.

2. Related work

2.1. Image matching

Feature learning based matching methods become popu-

lar due to its improved performance over hand-crafted fea-

tures (e.g. SIFT [15]). Siamese network architectures [2]

are among the most popular feature learning networks, es-

pecially for pairs comparison tasks. We also adopt Siamese

network as part of our framework. The purpose is to

learn feature representations to distinguish matching and

unmatching pairs in the source domain, which assists the

network in learning to match cross domain images. In the

cross-domain image matching context, Lin et al. [11] inves-

tigated a deep Siamese network to learn feature embedding

for cross-view image geo-localization. Kong et al. [9] ap-

plied Siamese architecture to cross domain footprint match-

ing. Tian et al. [20] utilized Siamese network for matching

the building images from street view and bird’s eye view.

Unlike the existing works on cross-domain image match-

ing, we consider labeled paired-image information is only

available in the source domain.

2.2. Domain adaptation

Domain adaptation have been researched over recent

years in diverse domain classification tasks, in which adver-

sarial learning and statistic methods are main approaches.

Ganin et al. [4] proposed domain-adversarial training of

neural networks with input of labeled source domain data

and unlabeled target domain data for classification. In [26],

the authors proposed a deep transfer network (DTN), which

achieved domain transfer by simultaneously matching both

the marginal and the conditional distributions with adopt-

ing the empirical maximum mean discrepancy (MMD) [5],

which is a nonparametric metric. Venkateswara et al. [23]

applied MK-MMD [6] to a deep learning framework that

can learn hash codes for domain adaptive classification. In

this setting MK-MMD loss promotes nonlinear alignment

of data, which generates a nonparametric distance in Re-

producing Kernel Hilbert Space (RKHS). The distance be-

tween two distributions is the distance between their means

in a RKHS. When two data sets belong to the same distri-

bution, their MK-MMD is zero. Based on the successful

performance of MK-MMD loss, we also adopt it to adapt

different domains, this time for image matching task. This

requires the marriage of Siamese network with MK-MMD

loss, as we do later in our paper.

2.3. Outlier detection

Much work exists on outlier detection [1, 12, 16, 25].

Chalapathy et al. [1] proposed an one-class neural net-

work (OC-NN) encoder-decoder model to detect anomalies.

Sabokrou et al. [16] also applied the encoder-decoder archi-

tecture as part of their network for novelty detection. Zhang

et al. [25] proposed an adversarial network for partial do-

main adaptation to deal with outlier classes in the source

domain. Their network is for classification task, and they

do not have the assumption that outliers originate from low-

density distribution. Instead, we are inspired by the work of

Liu et al. [12] which uses a kernel-based method to learn,

jointly, a large margin one-class classifier and a soft la-

bel assignment for inliers and outliers. Using the soft la-

bel assignment, we implement outlier detection with cross

domain image matching in an iterative sample reweighting

way.

3. Domain adaptive image matching

3.1. Siamese loss

We introduce our proposal for domain adaptation for im-

age matching task once labeled data is not available in the

target domain. Let Xs denote the source domain image set.

A pair of images xi, xj ∈ Xs are used as input to part of

our network, as shown in Figure 2. xi, xj can be a matching

pair or an unmatching pair. The objective is to automatically

learn a feature representation, f(·), that effectively maps the

input xi, xj to a feature space, in which matching pairs are

close to each other and unmatching pairs are far apart. We

employ the contrastive loss as introduced in [7]:

L(xi, xj , y) =
1

2
yD2+

1

2
(1− y){max(0,m−D)}2, (1)

where y ∈ {0, 1} indicates unmatching pairs with y = 0
and matching pairs with y = 1, D is the Euclidean distance

between the two feature vectors f(xi) and f(xj), and m is

the margin parameter acting as threshold to separate match-

ing and unmatching pairs.

3.2. Domain adaptation loss

It is known that in deep CNNs, the feature representa-

tions transition from generic to task-specific as one goes up

from bottom layers to other layers [24]. Compared to the

convolution layers conv1 to conv5, the fully connected lay-

ers are more task-specific and need to be adapted before

they can be transferred [23].
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Figure 2: The network for cross domain image matching and outlier detection. The contrastive loss makes the network to learn paired-

image information from the source. The weighted MK-MMD loss trains the network to learn transferable features between the source and

the inliers of the target. The entropy loss helps distinguish inliers and outliers in the target domain.

Accordingly, our approach attempts to minimize the

MK-MMD loss to reduce the domain disparity between the

source and target feature representations for fully connected

layers, F = {fc6, fc7, fc8}. The multi-layer MK-MMD

loss is given by,

M(us, ut) =
∑

l∈F

d2k(u
l
s, u

l
t), (2)

where, ul
s = {us,l

i }ns

i=1
and ul

t = {ut,l
i }nt

i=1
are the set of

output representations for the source and target data at layer

l, u∗,l
i is the output representation of inuput image x

∗,l
i for

the lth layer. The MK-MMD measure d2k(·) is the multi-

kernel maximum mean discrepancy between the source and

target representations [6]. For a nonlinear mapping φ(·) as-

sociated with a reproducing kernel Hilbert space Hk and

kernel k(·), where k(x,y) = 〈φ(x,y)〉, the MK-MMD is

defined as,

d2k(u
l
s, u

l
t) = ||E[φ(us,l)]− E[φ(ut,l)]||Hk

. (3)

The characteristic kernel k(·), is determined as a convex

combination of κ PSD kernels, {km}κm=1, K := {k : k =
∑κ

m=1
βmkm,

∑κ
m=1

βm = 1, βm ≥ 0, ∀m}. In particu-

lar, we follow [14] and set the kernel weights as βm = 1/κ
.

4. Proposed method: Outlier-aware domain

adaptive matching

The task is to match images with the same content but

from different domains where the outliers are present in the

target domain. We assume that in the source domain there

are sufficient labeled image pairs and in the target domain

low-density outliers are present. As in conventional domain

adaptation setting labeled data is not available in the target

domain. We propose a deep triplet network which is com-

prised of three instances of the same feed-forward network

with shared parameters, as shown in Figure 2.

4.1. Importance weighted domain adaptation

In our implementation, the MK-MMD loss in subsec-

tion 3.2 is calculated over every batch of data points dur-

ing the back-propagation. Let n (even) be the number

of source data points us := {us
i}

n
i=1 and the number of

target data points ut := {ut
i}

n
i=1 in the batch. Then,

the MK-MMD can be defined over a set of 4 data points

zi = [us
2i−1,u

s
2i,u

t
2i−1,u

t
2i], ∀i ∈ {1, 2, ..., n/2}. Thus,

the MK-MMD is given by,

d2k(us, ut) =
κ
∑

m=1

βm
1

n/2

n/2
∑

i=1

hm(zi), (4)

where, κ is the number of kernels and βm = 1/κ is the

weight for each kernel. And we can expand hm(·) as,

hm(zi) = km(us
2i−1,u

s
2i) + km(ut

2i−1,u
t
2i)

− km(us
2i−1,u

t
2i)− km(us

2i,u
t
2i−1), (5)

in which, the kernel is km(x,y) = exp(−
||x−y||2

2

σm

).
With equations 4 and 5, we can interpret that in the min-

imum calculation unit (hm(zi)), two target domain images

contribute to MK-MMD loss calculation. When there are

outliers in the target domain, we only want the inliers to

contribute to the calculation, but not the outliers. There-

fore, we could assign the target samples with weights wi as

1 for inliers, and 0 for outliers. Because we have no ground

truth labels, we can only treat the weights as the probability

of the target samples to be inliers. Hence, we can introduce

the weighted MK-MMD as,

d2wk
(us, ut) =

κ
∑

m=1

βm
1

n/2

n/2
∑

i=1

w2i−1w2ihm(zi), (6)

where, w2i−1 and w2i are the weights of the target

data points u
t
2i−1 and u

t
2i in hm(zi) respectively, and

w2i−1, w2i ∈ [0, 1]. We will explain how to obtain the

weight for each target domain sample in next subsection.



4.2. Outlier detection

Since the inlier-outlier label is not available, we imple-

ment an entropy loss to iteratively reassign target domain

sample probability of being an inlier, which provides the

weights for the weighted MK-MMD.

We use the similarity measure 〈ui,uj〉 to learn discrim-

inative inlier-outlier information for the target domain data.

We define three classes of reference data ur for similarity

measure, the source domain class u1, the pseudo inlier class

u
2 and the pseudo outlier class u

3. An ideal target output

u
t
i needs to be similar to many of the outputs from one of

the classes, {uc
k}

K
k=1

. We assume K data points for every

class c, where c ∈ {1, 2, 3} and u
c
k is the kth output from

class c. Then the probability measure for each target sample

can be outlined as,

pic =

∑K
k=1

exp(ut
i
⊺
u
c
k)

∑C
c=1

∑K
k=1

exp(ut
i
⊺
u
c
k)

, (7)

where, pic is the probability that a target domain sample

xt
i is assigned to category c. When the sample output is

similar to one category only, the probability vector pi =
[pi1, ..., pic]

⊤ tends to be a one-hot vector. A one-hot vector

can be viewed as a low entropy realization of pi. Thus, we

introduce a loss to capture the entropy of the probability

vectors. The entropy loss can be given by,

S(ur, ut) = −
1

nt

nt
∑

i=1

C
∑

c=1

piclog(pic). (8)

In subsection 4.1, we discussed the weighted MK-MMD

loss with weights w2i−1 and w2i. With the sample probabil-

ities of target domain data calculated from equation 7, the

weights are calculated as,

wi =

{

pi1+pi2

pi1+pi2+pi3

if xt
i is classified as source

pi2

pi1+pi2+pi3

if xt
i is classified as others

. (9)

If a target domain sample is classified as ”source”, then

it has a high probability of being an inlier, and therefore

should contribute more to reducing the domain disparity.

So we calculate the weight of such a target domain sample

with the sum of pi1 and pi2.

Algorithm We iteratively update the target domain data

weights after each epoch during training, which works to-

gether with domain adaptation for guiding and correcting

the detection of outliers and inliers.

The proposed algorithm for outlier detection is showed

in the following. The proposed method is built upon the

intuitive assumption that outliers originate from low-density

distribution. Thus, we can assume that the ratio of outliers

to all the target domain data is no more than 50%.

Algorithm 1

Input: source domain and target domain training data

Output: target domain training data probabilities

1: Initialization i = 0, calculate the average Euclidean

distance of each target domain training sample between

all the source domain training samples, sort the dis-

tances in ascending order and initialize target domain

training samples’ weights according to the sorted dis-

tances, xi ∈ first half: wi = 0.7 (pseudo inlier class),

xi ∈ second half: wi = 0.3 (pseudo outlier class). In-

lier class consists of source domain training data, which

has the same number of samples with pseudo inlier and

pseudo outlier classes.

2: Repeat:

3: i = i+ 1
4: make new mini batches

5: minimize the overall loss function objective (10)

6: update the samples’ weights by equation 7 and 9

7: update the sets of pseudo inlier class and pseudo outlier

class

8: Until target samples’ probabilities are unchanged or

training time ends

4.3. Overall objective

We propose a model for cross domain image matching

and outlier detection, which incorporates learning image

matching information from source domain (1), weighted

domain adaptation between the source and the target (6) and

outlier detection (8) in a deep CNN. The overall objective

is given by:

minuJ = L(us) + γMw(us, ut) + ηS(ur, ut), (10)

where, u := {us

⋃

ut} and (γ, η) control the importance of

domain adaptation (6) and entropy loss (8) respectively.

5. Experiments

5.1. Datasets

There are no publicly available datasets for our task.

Therefore, we propose two datasets for evaluation. Sam-

ple images from the three datasets are shown in Figure 3.

Shape is one of the synthetic datasets we generate. It

contains 60k source domain images, 30k target domain im-

ages (including 2800 outliers). The outlier images are made

up of single alphabets or digits. The source domain and

inlier images are combinations of two geometric shapes,

drawn with black solid lines and colored dot lines, respec-

tively. We define two images are a matching pair if the com-

bination of shapes is the same.

Pitts-CycleGAN is the other synthetic dataset, which

contains 204k Pittsburgh Google Street View images from



Figure 3: Examples from Shape, Pitts-CycleGAN and Office sets.

Pittsburgh dataset [21] as the source domain, and 157k tar-

get domain images (including 52k outliers) generated by

applying CycleGAN [27] to the Pittsburgh images. So the

target domain images are in a painting style. The outliers

are sky images or city views not containing any useful land-

mark information.

Office [17] consists of 3 domains, Amazon, Dslr, We-

bcam. We choose Dslr as source domain and Amazon as

target domain. We make pairs with images from the same

category. The outliers come from two randomly chosen cat-

egories (’speaker’, ’scissors’) out of the 31 categories.

5.2. Implementation details

For our triplet network, the three sub-networks share the

same architecture and weights. Pre-trained AlexNet [10] is

used for the sub-networks. We finetune the weights of conv4

- conv5, fc6, fc7, fc8. For the weighted MK-MMD, we use

a Gaussian kernel with a bandwidth σ given by the median

of the pairwise distances in the training data. To incorporate

the multi-kernel, we vary the bandwidth σm ∈ [2−8σ, 28σ]
with multiplicative factor of 2 [23]. For performance evalu-

ation, we sort the Euclidean distance between the query and

all the gallery features (L2-normalized) to obtain the rank-

ing result. Moreover, we employ the standard metric mean

average precision (MAP).

5.3. Baseline methods

There are no available baselines to directly compare with

our method, thus, we separate our experiments to research

on domain adaptive image matching 5.4 and effectiveness

of outlier detection 5.5.

In the experiment on domain adaptive image matching,

we assume no outliers exist in the target domain. Our

method is to jointly learn the contrastive loss L(us) and

MK-MMD loss M(us, ut). It is trained with pairs from the

source domain and images from the target domain, we call

it SiameseDA.

For evaluating the effectiveness of outlier detection, the

target domain contains outliers. Our method is called

DA+OutlierDetection, which learns on the objective 10.

The baselines for each experiment are shown in Table 1.

Baseline Experiment

Domain adaptive image matching

SIFT + Fisher Vector [15, 19] trained on the source domain data

Siamese network [2] trained on the source domain image pairs

Effectiveness of outlier detection

SiameseDA (upper bound) trained without outliers

SiameseDAOut (lower bound) SiameseDA trained with outliers

Table 1: Baseline methods for our experiments.

5.4. Domain adaptive image matching

In this section, we assume the target domain does not

contain outliers. We explore if applying domain adaptation

improves the performance of cross domain image matching.

In this case, the learning objective is

minuJ = L(us) + γM(us, ut), (11)

where, the MK-MMD loss term M(us, ut) is the un-

weighted version as explained in subsection 3.2.

The MAP results are given in Table 2. Our method con-

sistently outperforms the baselines across all the datasets.

With applying MK-MMD loss for domain adaptation, the

performance of matching S → S decreases comparing to

that of Siamese method. This is within our expectation since

the network may need to learn less from the source domain

to be domain adaptive. Moreover, it is worth to notice that

our method also improves the in-domain image matching

(T → T ) of the target domain.

5.5. Effectiveness of outlier detection

Here we assume the target domain contains outliers,

which is to show if the presence of outliers reduces the ac-

curacy of cross domain image matching, and our method

could improve it.

The performance of our method (DA+OutlierDetection),

upper bound (SiameseDA) and lower bound

(SiameseDAOut) are given in Table 3. In terms of

testing, we only take the classified inliers in the query set in

calculation. From Table 3 we can see, our method outper-

forms the lower bound for all the three datasets, but is not

better than the upper bound (except for Pitts-CycleGAN) as

expected. It shows that the presence of outliers reduces the

accuracy of cross domain image matching, and our method

helps improve the performance in this case.

In Figure 4, we also show the retrieval performance in

terms of the trade-off between precision and recall at differ-

ent thresholds on our three datasets. The interpolated aver-

age precision is used for the precision-recall curves. We can

see that our method gains over the lower bound method.

Impact of outlier proportion We also report the F1-

score to measure the performance of outlier detection of



Method
Shape Office Pitts-CycleGAN

T → S S → S T → T T → S S → S T → T T → S S → S T → T

SIFT + Fisher Vector 2.5± 0.4 3.6± 0.3 3.4± 0.3 3.5± 0.2 12.0± 0.5 3.5± 0.1 0.04 0.8± 0.05 0.3± 0.03
Siamese 8.3± 0.1 95.0± 0.2 31.7± 0.6 10.7± 0.5 99.2± 0.2 77.2± 0.3 0.2± 0.01 81.3± 0.3 60.6± 0.5

SiameseDA 26.4 ± 0.2 53.1± 0.1 46.2± 0.1 29.1 ± 0.1 99.7± 0.1 77.5± 0.2 0.4 ± 0.01 80.4± 0.1 59.5± 0.1

Table 2: MAP performance for cross domain image matching and in-domain image matching experiments on three datasets. T means

target domain, S means source domain. T → S implies matching target domain images to source domain images, similar for S → S,

T → T . Our method SiameseDA outperforms the baselines across all the datasets.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
r
e
c
is

io
n

SiameseDA

DA+OutlierDetection

SiameseDAOut

(a) Shape

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
r
e
c
is

io
n

SiameseDA

DA+OutlierDetection

SiameseDAOut

(b) Office

0 0.2 0.4 0.6 0.8 1

Recall

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

P
r
e
c
is

io
n

SiameseDA

DA+OutlierDetection

SiameseDAOut

(c) Pitts-CycleGAN

Figure 4: Precision-Recall results of our method DA+OutlierDetection, SiameseDA and SiameseDAOut for the experiment of cross

domain image matching with outlier detection on the three datasets. Our method gains over the lower bound method.

Method (T → S) Shape Office Pitts-CycleGAN

SiameseDA 26.4± 0.2 29.1± 0.1 0.4± 0.01
DA+OutlierDetection 11.9 ± 0.1 15.9 ± 0.2 1.1 ± 0.03

SiameseDAOut 5.4± 0.1 6.8± 0.1 0.2± 0.01

Table 3: MAP performance for cross domain image matching with

outlier detection on our three datasets. The proportion of outliers

is 10%. Our method DA+OutlierDetection outperforms the lower

bound, but does not surpass the upper bound.

our method. Figure 5 shows the F1-score of our method

as a function of the portion of outlier samples for the three

datasets. As can be seen, with the increase in the number of

outliers, our method operates consistently robust.

It is important to notice the limitation of our method,

which classifies some inlier samples as outliers during train-

ing. This is mainly caused by the way of initializing the

probabilities of the target domain training data.

6. Conclusion

We have proposed a network that is trained for cross

domain image matching with outlier detection in an end-

to-end manner. The two main parts of our approach are

(i) domain adaptive image matching subnetwork with con-

trastive loss and weighted MK-MMD loss, (ii) outlier de-
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Figure 5: F1-scores for outlier detection on three datasets with

different outlier proportion in the target domain. Our method is

consistently robust.

tection with entropy loss by updating the probability of tar-

get domain data during training. The results on several

datasets demonstrate that the proposed method is capable of

detecting outlier samples and achieving cross domain image

matching at the same time. But our method still needs im-

provement to overcome the problem of wrongly classifying

inliers as outliers.
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