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Abstract—Voltage imaging enables high resolution recordings
of neuronal activity but suffers from low signal-to-noise ratios
(SNR), primarily due to photon shot noise. Traditional denoising
methods like VST-GAT and Penalized Matrix Decomposition
(PMD) offer effective noise reduction but often trade off temporal
and spatial resolution. Recently, deep learning-based denoising
methods, such as CellMincer, have emerged as promising
alternatives due to their ability to learn complex signal models
without requiring clean training data. This paper compares
the performance of traditional and deep learning methods for
denoising voltage imaging data using both synthetic and in
vivo datasets. Metrics such as SNR, PSNR, and tSNR were
used to evaluate performance. The results show that CellMincer
outperforms traditional methods on synthetic data and performs
competitively on real in vivo recordings, suggesting the viability
of self-supervised deep learning for voltage imaging denoising.
PMD remains a strong baseline with robust performance across
datasets. This comparative study highlights both the potential
and current limitations of deep learning approaches and suggests
directions for future improvement.

Index Terms—Voltage imaging, denoising, deep learning,
signal-to-noise ratio, CellMincer, PMD, VST-GAT, BM3D

I. INTRODUCTION

THE brain is one of the most complex biological systems
of the body, and while the physical and cellular properties

are now well documented, the inner workings of the machine
that controls us is still a large question mark. The last
years our ability to observe the brain has made exciting
progressions. By using positron emission tomography (PET) it
was possible to map regions of brain activation by measuring
glucose consumption [9]. Later, the resolution of measuring
brain activity by region was increased by using magnetic
resonance imaging (MRI) [2]. These techniques allow for the
functional mapping of the brain, however they are constrained
by their low spatial resolution. Both PET and MRI can only
measure the average neuron activation for a given area, which
may consist of many thousands of neurons. To observe the
much smaller individual neuron circuitry a more sensitive
method is required. While it is possible to use an array
of electrodes to measure individual neuron activation such
setups are unpractical because of their size and placement
[10]. The use of fluorescence voltage indicators was first
demonstrated in 1968 [20] and the ability to measure multiple
neurons simultaneously has first been pioneered in 1977 [19].
Since 1977 the most significant improvements to voltage
imaging have been in photo sensors and the Genetic Encoded
Voltage Indicators (GEVI’s). GEVI’s are fluorescent proteins
that change their level of photon emission based on the
voltage. Camera sensors, which are commonly available, have
made revolutionizing improvements in resolution and ability
to capture at high speed required for voltage imaging [7].

The largest contributor of noise for fluorescence voltage
imaging as discussed in [19] is the so called shot noise. This
comes from the fact that when a light source is sampled by
only measuring a low number of photons the resulting signal
will represent a Poisson distribution. The most common ways
of eliminating shot noise often involves temporal and spatial
averaging. This is not suitable for voltage microscopy because
the loss in temporal and spatial resolution makes the action
potential signal extraction of the neurons less accurate [13].

Therefore, different noise suppression methods that boost
the signal-to-noise ratio (SNR) are required that better preserve
the spatial and temporal resolution. Over the years multiple
algorithms have been developed that have shown very good
results. More recently deep learning methods have claimed
to achieve even higher SNR’s. This paper tries to explain
the different approaches taken by traditional methods and the
new deep learning based ones. This paper will also perform a
comparative study to show how well these methods generalize
and wether they achieve their claimed results. This goal is
achieved by answering the main research question for this
paper:

What deep learning-based denoising methods can
be effectively applied to microscopy and voltage
imaging, and how do they compare to traditional
techniques?

To answer the main question, the following sub-questions will
be addressed:

1) What traditional denoising methods are used for
denoising voltage imaging?

2) What deep learning-based denoising methods can be
used for denoising of voltage imaging?

3) How do deep learning-based and traditional methods
perform in denoising voltage imaging data, as measured
by improvements in signal-to-noise ratio?

This papers main contributions are:
• Comparison between the performances and evaluation of

PMD, VST-GAT and CellMincer.
• Evaluation of tSNR as a metric for denoising methods.
• Comparison between real and synthetic voltage imaging

data.

II. BACKGROUND

Voltage imaging data is unique due to the presence
of structured noise and fast, spatially correlated, activity
patterns. As a result, general-purpose denoising techniques
may not perform optimally. The low SNR characteristic of
voltage imaging can obscure biologically meaningful signals,
complicating downstream analyses. This section provides an
overview of the main challenges and recent advances in
denoising voltage imaging data.

A. Sources of Noise in Voltage Imaging
In voltage imaging, noise arises from several sources,

including:
• Photon shot noise due to the stochastic nature of photon

emission and detection
• Instrumental noise from the imaging hardware (e.g.,

detectors, scanners)
• Biological variability and motion artifacts
These noise sources result in fluctuations that can be

difficult to separate from the true neural signal, motivating
the need for robust denoising methods.

B. Existing Denoising Approaches
Several approaches have been used to improve the quality

of voltage imaging data:
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a) Traditional methods: Traditional denoising methods
for voltage imaging typically rely on statistical assumptions
about the noise and signal. Common techniques include
variance-stabilizing transformations (VST), wavelet filtering,
and Gaussian smoothing. These methods are lightweight and
interpretable, but are limited by their reliance on hand-crafted
models that may not generalize well across datasets with
different noise or signal characteristics.

b) Deep learning methods: Deep learning methods have
high representational capacity and can learn arbitrary signal
models [11]. This makes them particularly effective for
modeling complex, high dimensional data. The ability to learn
the signal model themselves can be a major advantage over
traditional methods as deep learning models do not require
the creation of statistical models specifically tuned for voltage
imaging.

However, until recent advances in self-supervised learning,
using such models for the purpose of denoising voltage
imaging remained a challenge due to the absence of
clean training data. Self-supervised models exploit statistical
redundancies in the data itself to learn signal-preserving
denoisers. In particular, self-supervised approaches such as
Noise2Noise [15] first demonstrated this ability.

III. METHODOLOGY

This section will explain the setup of the experiment. It will
give an explanation of the algorithms considered and why they
were chosen. Equally as important this section will explain the
datasets and metrics that are used to evaluate the denoising
algorithms.

A. Algorithms

Due to time constrains not all traditional and deep learning
methods could be included in this paper. therefore a selection
was made. For traditional methods VST-GAT and PMD were
selected because of their relevance in the field of voltage
imaging and their claimed performance. For deep learning
methods CellMincer was selected. Cellmincer was selected
because it was only recently published and claims higher
denoising performance of very prominent denoising algorithms
such as SUPPORT [12] and DeepCad-RT [16]. A more
detailed explanation of the methods is given below:

• VST-GAT: Variance Stabilizing Transformation with
the Generalized Anscombe Transformation [17]

Variance stabilization has commonly been used for
denoising and it lends itself especially well for the denoising
of voltage imaging. Because the noise is mostly signal-
dependent, the observed photons from the GEVI are modeled
with a Poisson distribution. This gives us the following
properties of the observed signal Y : Y ∼ Poisson(λ),
E[Y ] = λ, and Var(Y ) = λ. It breaks with the common
convention assumed about noise, namely that it is constant.
This means brighter regions will have more noise than dimmer
regions. VST attempts to decouple the noise dependence on
the signal, thereby giving it a constant variance that can
be modeled to a Gaussian distribution [22] [17]. VST-GAT

uses the Generalized Anscombe Transformation for variance
stabilization.

This has the benefit that denoising Gaussian noise is a very
well studied topic with many good performing algorithms to
choose from. In [17] multiple Gaussian denoising methods
were evaluated. They found that BM3D [4] achieved the
highest SNR when denoising images of fluorescent cells.
Fluorescent cells imaging exhibit many of the same challenges
of voltage imaging, mostly that the signal follows the Poisson
distribution. Therefore the combination of VST-GAT with
BM3D was used, which will be called VST from this point
onward.

• PMD: Penalized Matrix Decomposition [3]
PMD has been the latest notable traditional algorithm

for voltage imaging developed. Even though PMD is a
traditional method, newly developed deep learning still
compare their denoising performance to PMD (SUPPORT,
DeepInterpolation, CellMincer) [6] [14] [21]. PMD has
achieved remarkable denoising performance and is specifically
designed for voltage imaging. PMD works by taking advantage
of three key observations about voltage imaging [3]:

1) The signal sources are spatially local.
2) The signal is structured both temporally and spatially,

whereas noise is temporally and spatially uncorrelated.
3) The signal is low-rank.

This statistical model of the signal and noise allows for a
decomposition of the original matrix Y of shape d×T , where
d is the number of pixels in a frame and T is the number
of frames. PMD converts Y into a low rank approximation
Ŷ = UV where U contains the spatial information of the
signal and V contains the temporal information e.g. neuron
activation. U and V are iteratively optimized so that the
residual not captured information by U and V represents
unstructured noise. This comes with the important assumption
that neurons stay spatially static in the movie, which does not
hold for all the data as seen in subsection III-B.

• CellMincer: A U-Net based deep learning model [21]
CellMincer is a relatively new proposed method for

denoising voltage imaging. The model architecture consists
of two main components: a spatial feature extractor based on
a modified U-Net and a temporal post-processor that performs
pixel-wise denoising over time.

The U-Net, originally introduced in [18], is used here
as a frame wise encoder decoder network. It operates on
individual frames to extract high resolution spatial features
through a contracting path (encoder) and reconstructs spatially
detailed embeddings via an expanding path (decoder). In
CellMincer, these embeddings represent the spatial structure
of the neuronal activity in each frame. In Figure 1 is a
visualization given of how the U-Net performs the contracting
and expanding. The green layer indicates the global feature
map which is extracted in a pre-processing step and contains
spatial temporal information of the pixels.

The output embeddings from a short sequence of
consecutive frames are then fed into a 1D temporal
convolutional module, which processes the time series of
embeddings for each pixel independently. This temporal
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post-processor predicts the denoised value for the center
frame in the sequence, leveraging temporal correlations while
preserving unique frame specific signals.

Fig. 1: A visualization of CellMincer’s U-Net, where blue
indicates a frame and green indicates the global feature map.
Taken from [21]

.

For the purpose of this research a pre-trained model of
CellMincer was used. This model was trained on data similar
to that of the Optosynth dataset, the effects of this on the
results is discussed in section VI.

B. Datasets

For this paper two datasets were selected: HPC2 and
Optosynth. HPC2 is a real in vivo dataset of voltage imaging
and Optosynth is a synthetic dataset that is generated by the
Optosynth framework. Real in vivo voltage imaging data is not
abundantly available as the data requires a complex setup to
be collected [1]. Therefore synthetic data is used in this paper
to increase the ability to evaluate the methods. Synthetic data
also has the benefit of having a ground truth available. With
the ground truth much more established evaluation metrics
become available, these are discussed more in the Evaluation
section. A more detailed description of the datasets is given
below:

• HPC2 [1]
The HPC2 dataset was collected from the hippocampus of a
mouse. As common with voltage imaging the mouse was put
in fixed position where through a small hole in its cranium a
laser illuminates the GEVI. The HPC2 dataset is a collection
of movies with a 498 x 116 pixel resolution, where each movie
has 15,000 frames. A sample frame of the dataset is displayed
in Figure 2. For this paper two movies were selected due to
the large size of the total dataset. In section VI the effects on
the results of using only a subset of the dataset are discussed.

Fig. 2: A sample of from the HPC2 dataset

• Optosynth [21]
Synthetic voltage imaging tries to be as closely resembling to
in vivo voltage imaging as possible. This means modeling the
physical properties of neurons such as their action potential
propagation and spatial distribution in the brain. Optosynth

uses the Allen Brain Atlas, a database containing properties
of brain areas [8], to create a realistic simulation of a mouse
primary visual cortex. The Optosynth dataset contains multiple
movies that are 512 x 180 pixels with each sample containing
7,000 frames. The dataset contains multiple samples of each
movie where each sample contains a different level of noise.
For this paper only the samples with the highest noise level
were considered. The denoising performance of the methods
on lower levels of noise is not within the topic of this research.
This decision was made to preserve time and denoising low
SNR movies is much more of a challenge. The effects of this
decision on the results are discussed in section VI.

Fig. 3: A sample from the Optosynth dataset

Some notable differences between the HPC2 and Optosynth
datasets are the amount of neurons a single frame contains.
The Optosynth has a much wider field of view Figure 3 and
shows 485 neurons [21] while HPC2 only shows a couple of
neurons. Another key difference is that HPC2 contains some
significant motion artifacts and sometimes the camera loses
focus. Optosynth does not simulate these phenomena, however
they appear very common in voltage imaging.

C. Evaluation

To evaluate the performance of the denoising algorithms the
whole denoised image was evaluated. Other papers sometimes
analyze the neuron activation traces after denoising. While
they are closely related and better image denoising should
result in better neuron activation traces, it is worth to mention
the difference. The following metrics were used to measure
the performance of the algorithms:

• SNR (Signal-to-Noise Ratio)
• PSNR (Peak Signal-to-Noise Ratio)
• tSNR (Temporal Signal-to-Noise Ratio)

All these metrics measure a form of a signal to noise ratio.
Therefore, a higher ratio indicates a greater performance of
the denoising algorithm.

• SNR and PSNR
SNR and PSNR are the most commonly used metrics for
assessing image quality and denoising performance. SNR
and PSNR measure how close the denoised output is to the
clean ground truth. The main difference between the two
is that PSNR is insensitive to the brightness of the signal.
For images of high average pixel brightness high levels of
noise can still report high SNR. SNR and PSNR can only be
measured on the syntethic dataset and not the in vivo becuase
of the need for a ground truth.
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SNR and PSNR are defined as:

SNR = 10 log10

( ∑N
i=1 y

2
i∑N

i=1(xi − yi)2

)

PSNR = 10 log10

(
MAX2

1
N

∑N
i=1(xi − yi)2

)
Where xi is the denoised output, yi is the clean ground truth,
and N is the total number of pixels in the movie. MAX denotes
the maximum possible pixel value.

• tSNR
For real in vivo data SNR and PSNR cannot be calculated
due to the absence of a ground truth, therefore tSNR is used
as substitute metric. tSNR is commonly used as an MRI
performance metric [5] and indicates the stability of the
signal. A higher tSNR indicates a more temporally stable
signal. Here the assumption is made that low SNR data
contains an unstable signal and high SNR data a stable signal.

tSNR is defined as:

tSNR = 10 log10

(µ
σ

)
Where µ is the temporal mean of the signal at a given pixel
across frames, and σ is the corresponding standard deviation.
To allow for evenly scaled metrics tSNR is calculated in
decibels.

This combination of metrics allows us to evaluate
both absolute performance on synthetic data and relative
improvements in stability on the in vivo data, providing a
comprehensive assessment of the denoising methods.

IV. RESULTS

This section will give an overview of the performance of the
denoising methods. Table I and Table II show the results for
the performed methods together with the baseline performance
of the original noisy data for comparison. Table I shows the
results for the synthetic dataset, and Table II for the in vivo
dataset.

TABLE I: Quantitative performance on the Optosynth dataset

Method SNR PSNR tSNR

VST 30.74 66.87 29.59
PMD 49.48 85.6 31.47
CellMincer 58.28 94.39 29.63
Original 33.12 69.23 16.63

For the Optosynth dataset, CellMincer performed
significantly better at the SNR and PSNR metrics. It
outperformed the other metrics on SNR and PSNR which are
considered the most reliable metrics. PMD did perform better
on tSNR than CellMincer indicating a more stable signal.
Overall, VST performed the worst all the methods.

Figure 4 shows a sample frame of the original noisy
image. To visualize the different results between the denoising
methods a zoomed in section marked by the red rectangle of

their output of that frame is shown below. The higher pixel
values indicate excitement of the neuron. Figure 4 shows that
CellMincer (c) and PMD (b) have a very close resemblance
to the ground truth. VST (a) did struggle more with the high
levels of detail as the resulting image is quite blurry, which
corresponds to the low SNR and PSNR values.

(a) (b) (c) (d)
Fig. 4: Comparison of different methods: (a) VST, (b) PMD,
(c) CellMincer and (d) the ground truth.

TABLE II: Quantitative performance on the HPC2 dataset

Method tSNR

VST 19.96
PMD 20.68
CellMincer 21.0
Original 13.98

For the HPC2 dataset, only the tSNR could be calculated
because of the absence of the ground truth. CellMincer did
achieve the highest tSNR score. However as shown in Figure 5,
PMD (b) did result in a sharper image with more details
retained. VST (a) again performed the worst of the three
methods. In contrast to the Optosynth dataset VST did not
result in a blurry image. However, Figure 5 shows that VST
did struggle to deal with the high noise level of the HPC2
dateset. The resulting sample still has some noise left where
PMD and CellMincer (c) achieved a smoother image.

(a) (b) (c) (d)
Fig. 5: Comparison of different methods: (a) VST, (b) PMD,
(c) CellMincer, (d) the noisy original.
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V. RESPONSIBLE RESEARCH

For this paper, only publicly accessible data and code were
used. Almost all papers publicate their code and often also
their models. This has been essential this research as re-
implementing and training the selected methods would require
more time then is available. While the code is often easily
available, the datasets are much more locked down. Many
papers will share their data only after a signed contract
confirms the intent and authenticity of the requester. While
this is understandable, it does limit how easy a study can be
reproduced. Due to time constrains and the previously stated
issue only freely accessible datasets were used in this paper.
Furthermore, to make the results of this paper as trustworthy as
possible all code has been made publicly available1, together
with the code to generate the figures.

VI. CONCLUSION & DISCUSSION

The main goal of this research was to identify the
differences in performance between traditional and deep
learning methods for denoising voltage imaging data. The
results show that deep learning models can outperform
traditional statistical models, even when these deep learning
models are only trained on noisy synthetic data. Below a more
in depth analysis of the results and findings of this paper can
be found.

A. Methods

The fact that CellMincer showed strong results on the
Optosynth dataset, but performed worse on the HPC2 dataset
was expected. The model was trained on data similar to that
of Optosynth, which explains its better performance there.
On the HPC2 dataset, CellMincer did manage to remove a
significant amount of noise, but it may have done so at the
cost of image sharpness as seen in Figure 5. Nevertheless, its
ability to generalize to previously unseen real in vivo data
demonstrates the viability of this method. It also suggests
that further improvements are possible if the model is trained
directly on real in vivo data.

PMD performed consistently well on both the Optosynth
and HPC2 datasets. Although it scored lower on SNR
and PSNR compared to CellMincer, its results were still
impressive. PMD’s ability to preserve sharp edges while
handling high levels of noise in real in vivo data even
surpassed that of CellMincer. It is clear why PMD is still
often used as a baseline for comparing new methods since
its performance remains competitive. PMD does not require
a training phase or extensive hyperparameter tuning, making
it easy to apply. This means it can be used without a deep
understanding of its internal mechanics and still produce high-
SNR voltage imaging data.

VST performed the worst of all the methods. The fact that
VST performed worse than newer methods like PMD and
CellMincer is not surprising. However, the only metric where
it out performed the original noisy data is tSNR. As can be
seen in Table I it even degraded the SNR and PSNR scores

1https://github.com/JanDeDinoMan/Research-Project

compared to the original noisy data. This means it is not a
suitable technique for denoising voltage imaging. The very bad
performance can be explained by the fact that it was originally
not specifically designed for denoising voltage imaging. In the
research that introduced VST, BM3D was found to be the best
performing method on pictures of fluorescent cells. Apparently
this did not generalize well to movies of voltage imaging.
Another factor that can explain its lack in performance is
that BM3D only processes one frame at the time. Therefore
it did not take advantage of temporal structures in the data,
while both CellMincer and PMD extensively use temporal
information.

B. Datasets

The Optosynth dataset provides a useful and flexible
synthetic benchmark for evaluating denoising algorithms.
Unlike real in vivo data, it includes clean ground truth, which
enables direct quantitative comparisons using metrics such
as SNR and PSNR. However, it lacks several real-world
properties, such as tissue movement, neuron displacement,
and motion blur. These aspects are common in in vivo
recordings and pose significant challenges for denoising
methods. Despite these limitations, the utility of Optosynth
remains substantial. The ability to generate large volumes of
data under controlled conditions, with adjustable noise levels
and a known ground truth, makes it an indispensable tool
for benchmarking and development. This paper finds that the
flexibility and reproducibility of Optosynth dataset offsets its
lack of full biological realism. Optosynth allows for systematic
and interpretable performance evaluations that are not possible
with real datasets alone.

As the combined complete Optosynth and HPC2 datasets
contain over 200,000 frames, only a subset was used for
evaluation due to time and computational constraints. This
selective sampling is unlikely to have introduced significant
bias, as frame-to-frame variation within each dataset was
found to be relatively minor and consistent.

C. Metrics

For this research, SNR, PSNR, and tSNR were used as
evaluation metrics. When assessing denoising performance
with access to ground truth, SNR and PSNR are widely
regarded as standard metrics. Their individual usefulness is
well established and largely undisputed. PSNR alone is often
considered sufficient for evaluating image quality, while SNR
remains valuable due to its broad adoption, which facilitates
comparison across studies. A known limitation of SNR is its
sensitivity to absolute pixel intensity, which can lead to inflated
values in brighter images. However, this issue does not apply
in this study, as all images used had comparable maximum
pixel values. tSNR was employed as an alternative metric for
in vivo data, where ground truth is not available. While it
is a convenient and widely used measure of temporal signal
stability, it did not show a strong correlation with SNR and
PSNR. Although useful, tSNR alone was found to not fully
capture the performances of denoising methods.
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D. Comparison

Direction comparisons between this research and that
of Ioan Leolea is not possible due to differences between
evaluation methods. As discussed in subsection III-C there are
multiple ways to measure SNR, PSNR and tSNR. However, in
the research of Ioan, the method AP-BSN performs the worst
on the metric PSNR while performing when considering
tSNR. This reinforces the idea that tSNR is not a reliable
metric to measure the denoising performance.

To conclude, CellMincer performed the best on the synthetic
data, with a close second on real in vivo data. Considering
its current performance and the fact that CellMincer was
only trained on synthetic data means its performance is
impressive. This performance also shows the viability of
deep learning methods for denoising voltage imaging data.
Therefore CellMincer is concluded to be the best performing
denoising method researched in this paper.

VII. FUTURE RECOMMENDATIONS

In this paper three points were identified which could be
further researched:

• The CellMincer model used in this study was trained
solely on synthetic data. To fully evaluate its potential,
CellMincer should be trained on in vivo data similar to
the datasets on which it is tested. We expect this could
lead to significant improvements in performance.

• VST showed poor performance on voltage imaging data,
though this may be partly due to the choice of BM3D
as the denoising algorithm. Future work could explore
replacing BM3D with a method more suitable for voltage
imaging. Particularly one that incorporates temporal
information which may yield considerably better results.

• While Optosynth provides a valuable synthetic
benchmark, it does not simulate several key physical
phenomena that contribute to noise in real voltage
imaging, such as fluid motion and sensor instability.
Extending Optosynth to model these effects could
significantly enhance its utility as a dataset for evaluating
denoising methods.

REFERENCES

[1] Yosuke Bando, Ramdas Pillai, Atsushi Kajita, Farhan Abdul Hakeem,
Yves Quemener, Hua-an Tseng, Kiryl D. Piatkevich, Changyang Linghu,
Xue Han, and Edward S. Boyden. Real-time Neuron Segmentation
for Voltage Imaging. In 2023 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), pages 813–818, December
2023. arXiv:2403.16438 [eess].

[2] J. W. Belliveau, D. N. Kennedy, R. C. McKinstry, B. R. Buchbinder,
R. M. Weisskoff, M. S. Cohen, J. M. Vevea, T. J. Brady, and B. R.
Rosen. Functional Mapping of the Human Visual Cortex by Magnetic
Resonance Imaging. Science, 254(5032):716–719, November 1991.
Publisher: American Association for the Advancement of Science.

[3] E. Kelly Buchanan, Ian Kinsella, Ding Zhou, Rong Zhu, Pengcheng
Zhou, Felipe Gerhard, John Ferrante, Ying Ma, Sharon Kim, Mohammed
Shaik, Yajie Liang, Rongwen Lu, Jacob Reimer, Paul Fahey, Taliah
Muhammad, Graham Dempsey, Elizabeth Hillman, Na Ji, Andreas
Tolias, and Liam Paninski. Penalized matrix decomposition for
denoising, compression, and improved demixing of functional imaging
data, January 2019. Pages: 334706 Section: New Results.

[4] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen
Egiazarian. Image Denoising by Sparse 3-D Transform-Domain
Collaborative Filtering. IEEE Transactions on Image Processing,
16(8):2080–2095, August 2007.

[5] Beatriz Dionisio-Parra, Florian Wiesinger, Philipp G. Sämann,
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