
Synchronized
quantum network
emulator using
discrete event
simulation

by

Leon Wubben
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday August 29, 2019 at 9:00.

Student number: 4201388
Thesis committee: Prof. dr. S. Wehner, TU Delft, supervisor

Dr. D. Elkouss, TU Delft
Dr. P. Pawełczak TU Delft

Daily supervisor: A. Dahlberg TU Delft
Master program: Computer Science
Track: Software Technology
Specialization: Quantum information & Computing

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

The thesis currently in front of you is written as part of my MSc degree Computer
Science at Delft University of Technology, The Netherlands. The project was done
at and for Qutech, a research center for Quantum Computing and Internet and col-
laboration between Delft University of Technology (TU Delft) and the Netherlands
Organization for Applied Scientific Research (TNO).
In this thesis I have build a piece of software that makes emulation of quantum net-
works possible.
Within the backend of the emulation the NetSquid simulator runs. NetSquid is a dis-
crete event simulator for quantum networks, developed and maintained by QuTech.
This simulator receives messages from ’the real world’ in the so called CQC format.
This format is designed and developed by Axel Dahlberg and Stephanie Wehner at
QuTech.
I have build an interface that synchronizes the times in the real world and the simu-
lation world, so that those two worlds can interact with each other.

The thesis is to be defended on Thursday 29 August 2019 at 9:00 at the building of
Applied Physics at TU Delft.
The members of the thesis committee are:

Prof. dr. Stephanie Wehner, QuTech, TU Delft, supervisor
Dr. David Elkouss, QuTech, TU Delft
Dr. Przemysław Pawełczak Embedded and Networked Systems, TU Delft

And my daily PhD student supervisor, Axel Dahlberg.

I thank Axel and Stephanie for the guidance throughout the thesis. You are great su-
pervisors and I could not have asked for anyone better. The discussions we had were
insightful and kept me on the right track.
I would personally like to thank Kanvi and Constantijn for the support we gave each
other during our master theses.
Rob and Loek, for the help with NetSquid and the opportunity for me to continue
working with you on NetSquid after my masters.
Thank you to Stephanie, Przemysław and David for being my committee and the ad-
vice and support you have given me.
And everyone else within the group I have worked with during my thesis. The list is

1

2

long and the fear of forgetting to mention someone is high, I truly have had a won-
derful time with all of you.
Mam, pap, Dennis, Nicole en Stefan. Het heeft even geduurd, maar het is toch ein-
delijk af. Dank jullie voor mij blijven steunen toen ik het wat lastiger had. Ook al
zag ik af en toe door de bomen het bos niet meer, de steun had ik nodig om door te
blijven werken.
Amy, jouw komst heeft me denk ik de grootste motivatieboost gegeven om eindelijk
door te schrijven. Ik kijk er naar uit om je te zien opgroeien tot een nog lievere meid
dan dat je momenteel al bent. Wie weet groei je op in te tijd dat het kwantuminter-
net wereldwijd de standaard wordt, en dat jij trots bent dat je peetoom een kleine
bijdrage heeft geleverd om dat een werkelijkheid te maken.

Leon Wubben
12 July 2019

Contents

1 Introduction 5

1.1 Summary . 9
1.2 Overview . 9

2 Quantum network programming 11

2.1 CQC interface . 12
2.1.1 CQC Message Format . 12

2.2 Application frontend . 15
2.3 SimulaQron. 16

2.3.1 Register merging . 18
2.4 Example . 18

2.4.1 The application layer . 19
2.4.2 CQC message handler . 20

3 NetSquid 22

3.1 Discrete event simulator . 22
3.2 Components . 24
3.3 Related work . 25

4 Design 26

4.1 Simulation setup . 26
4.2 Quantum network emulation . 27
4.3 Possible implementations . 32

4.3.1 Time windows . 32
4.3.2 Real time scheduler. 32
4.3.3 Our solution . 33
4.3.4 Other optimizations and outlook . 35

5 Implementation 36

5.1 Instructions. 36
5.1.1 Dynamic program . 38

5.2 Simulation manager . 39

6 Evaluation 42

6.1 Correctness . 42
6.2 Speed . 43

3

CONTENTS 4

7 Conclusion 45

Bibliography 46

1. Introduction

In order for remote parties to communicate they need to exchange some informa-
tion between them. In a perfect world the communication is fast, secure and correct.
Unfortunately classically secureness is not guaranteed, others can still read the com-
munication. Even when the messages are encrypted using the best classical crypto-
graphic protocols, they can still be cracked given enough computing power and time.
Communication over a quantum internet or quantum network can be information
theoretic secure. Many applications of a quantum internet are already known. The
most famous is probably the quantum key distribution (QKD) protocol to generate
secure encryption keys that can then be used in classical communication. [4, 11].
Other applications are secure identification [10] and other two-party cryptographic
tasks [16], clock synchronization [15], secure delegated quantum computation [7],
and extending the baseline of telescopes [17].
Many protocols for a quantum internet only need a handful qubits to be feasible,
whereas quantum computers need many logical qubits (over 70) before they can re-
alistically solve problems classical computers can not do. This makes a quantum
internet an attractive research topic as the quantum processors needed for the com-
munication can be relatively simple.
A problem with quantum communication and quantum computing in general is that
the qubits used are very sensitive to noise and errors. This is currently the biggest bot-
tleneck when establishing the quantum internet. Research is done to prevent errors
by improving the hardware or correct them with error correction. These problems
have to be solved first before we can feasibly use a quantum internet.

We use quantum (network) simulations to simulate the quantum network instead.
This enables research about quantum communication to continue when a quantum
network is not yet available. These simulators are programs that run on a classi-
cal computer and simulate a quantum network or computer. Within this thesis we
make use of two of such simulators; SimulaQron and NetSquid. Anything a quan-
tum computer can do can be done by a classical computer, except that, to the best of
our knowledge, a quantum computer can be exponentially faster in certain scenar-
ios. We can also simulate quantum communication with classical communication,

5

6

except we lose the security aspect.
The simulators are built to test and benchmark certain protocols, so we do not care
that our simulated data is not secure from the world outside the simulation. The ex-
ponential overhead can be a nuisance when simulating large networks or quantum
states, but some protocols can still be tested on smaller datasets and networks.

The classical internet as we know it now has been in development since the 1960s.
Many techniques, aspects and protocols of the classical internet can be reused when
developing the quantum internet.
Therefore it is useful to design our quantum internet similarly as the classical inter-
net for some things. For accurate simulation we need to keep this design in mind
when creating and using the quantum network simulators.
In classical networks information is passed through multiple layers in packages. Mul-
tiple networking models exist with different amount of layers. Some well known pro-
tocols that use this layered model is the OSI model. On each layer a protocol runs
that handles the packages passed from higher levels. The layers are usually unaware
of what the other layers have done or will do with the package. This makes it possible
for each layer to be developed independent on the others. Changes or optimizations
made in one layer should not affect or require additional changes in other layers.
Some common essential layers:

• The application layer is the highest layer. It creates the information to send,
usually with a user friendly user interface. The data is encoded so it can be
handled by the transport layer. HTTP is probably the most famous example as
an application layer.

• The transport layer provides communication between hosts within the net-
work. On this layer, protocols run to handle requests from the application
layer. The transportation layer makes sure the information packets are send
in the correct order and those received in the network layer are handled in the
correct order.

• The network layer routes packages through the network. It finds a path through
the network to the destination. It might have to route it through multiple nodes
if there is no direct connection.

• The link layer transfers the packages between adjacent nodes in the network.

• The physical layer is the lowest layer. It consist of the hardware that is respon-
sible for creating and manipulating physical bits of which your information
packages consists.

7

Error correcting protocols can run on each layer to correct errors introduced by pre-
vious layers.

The layered structure or stack can also be used to develop a quantum network in a
quantum network stack [21]. Each layer works similar as its classical counterpart.
The biggest difference is that we now also send quantum information next to classi-
cal information. We can create entanglement between nodes in a network using the
quantum channels.
The quantum link layer is responsible for generating and keeping track of this entan-
glement between two nodes [9]. Entanglement is fundamental for a quantum net-
work. However entanglement over long distances is subject to qubit losses. In order
to strengthen the entanglement of a link quantum repeaters are used [5].
Since each layer sees the other layers as a black box, we can already develop some of
the higher layers that are independent of the lower level hardware layers.

A low-level classical controller within the hardware manages the quantum hardware.
It receives commands from a higher level in the network stack. These commands
can contain instructions about for example creating entanglement or sending qubits.
The quantum hardware together with the low-level classical controller from the back-
end of platform dependent quantum processing system. See also figure 2.1.

The backend is platform independent, this means that we can substitute the back-
end with any other backend, be it another simulation or a real quantum hardware,
without any change needed to the higher classical application layer. This means the
backend should be able to parse the messages that it receives from the higher level.
For this there is an interface between the application and backend. Since this in-
terface combines classical commands to quantum instructions it is called a classical
quantum combiner, CQC for short. The classical controller within a backend receives
messages or packages from the classical side and translates it to instructions for the
hardware [8].

CQC is not only used for messages within a network stack to send and receive qubits.
The same format is used to instruct local quantum hardware or simulators with low-
level instructions, such as simple qubit gates such as the Hadamard and CNOT gates.
These CQC messages are designed to be hardware agnostic. The instructions made
by higher level applications should not have to change when we change the hardware
or simulator. All that is needed is that the classical system within the backend can re-
ceive, create and parse these CQC commands and instruct the quantum hardware
based on the commands.

8

To test the CQC messages, a simulator is available to simulate a simple link and phys-
ical layer; SimulaQron. This makes it possible to already build protocols for the ap-
plication and transport layers without having access to quantum hardware. Since
SimulaQron executes the instructions perfectly and instantly, the simulation is not
accurate when it comes to timings, noise and losses that happen in a real scenario
[8]. CQC and SimulaQron are discussed more in detail in chapter 2.

We need another simulator to test how robust protocols are to errors and delays. For
this NetSquid is available [19]. NetSquid is developed by QuTech.
This simulator simulates the hardware components in quantum computers and net-
works, including noises in qubit operations, decoherence and time delays and losses
in channels between nodes. Decoherence and delays are all time dependent. For this
NetSquids keeps track of an internal simulation time (see definition 2) to correctly
apply noise and schedule events for when qubits are send and received. Within the
simulation events are scheduled at certain times on a timeline. NetSquid is a discrete
event simulator, when the simulation runs it will jump from event to event on this
timeline, discretely increasing its internal simulation time.
NetSquid can be used to benchmark quantum network protocols and test hardware
for potential improvements. NetSquid is discussed more in detail in chapter 3.

Definition 1. Real t i me. The time that passes in the real world outside the simula-
tion running on a computer.

Definition 2. Si mul ati on ti me. The time that passes in a simulation on a com-
puter. This time is stored as a variable and is increased discretely within a discrete
event simulator.

So CQC helps to build and test the application layers in the network stack and Net-
Squid is perfect to test and simulate the quantum layers in the stack. Together they
are are strong in each layer. NetSquid for accurately simulating the hardware, and
CQC to help create protocols and interfaces for the application and transport layer.
In this thesis we have done exactly that by making NetSquid compatible with CQC.
We create an interface that reads and sends CQC messages and instructs the Net-
Squid simulator based on the commands in the messages.
The CQC messages are hardware agnostic, so applications that currently run on Sim-
ulaQron through the CQC interface should be able to run on NetSquid without any
change to the applications. Similar on how those applications will also run on real
quantum network when they become available.
Figure 2.1 shows an overview on how this will look like. The application layers send
messages to the backend. This backend can be a real quantum hardware or simu-
lated ones. Communication between the application layer and the backend is done
with those CQC messages.

1.1. Summary 9

1.1. Summary
In this thesis we make NetSquid compatible with CQC. On top of the NetSquid sim-
ulator we build a piece of software that receives incoming classical messages from a
higher level classical application and inputs them as instructions to be simulated on
NetSquid. The application runs in real time (definition 1) whereas NetSquid has its
own different simulation time (definition 2). NetSquid uses this time as an internal
clock to schedule new events on its timeline. It is a discrete event simulator, so it dis-
cretely increases this simulation time to jump from event to event.

The simulation time in NetSquid can run as fast or slow as the machine the simula-
tion runs on allows. However the application that sends the messages to the backend
sends them in real time to NetSquid that simulates it in simulation time. It is not
desired that the simulation time runs faster than real time as it might miss messages
from the outside world.
This is the challenge that is faced in this thesis. For this we created a simulation man-
ager that synchronizes the two times, turning the simulator into an emulator. If we
let the simulation run as fast as possible it would receive some messages too late.
One instruction might cause the simulation to advance by one hour simulation time
in only one millsecond real time. Meanwhile the qubits of another application deco-
hered by one hour the next time it tries to access them. To prevent this we need to
delay the simulation. This is done by waiting in real time with executing the instruc-
tions on the simulator.
There are multiple challenges to overcome. The simulation should stay consistent;
instructions should still be handled in the same order they would have in a real quan-
tum network. The simulation should also not be delayed too much, otherwise run-
ning the simulation would take an unnecessary amount of real time.

1.2. Overview
• In chapter 3.3 we have a look how network emulation is done classically.

• Chapter 2 describes how to program quantum networks; 2.1 talks about how to
send commands from the higher level application (2.2) to a low-level classical
controller in the backend. SimulaQron is used as one of those backends and is
described in 2.3.

• Chapter 3 describes the NetSquid simulator for more realistic simulations with
noise and delays.

1.2. Overview 10

• In chapter 4 we describe the problems we face when trying to synchronize real
time with simulation time. Since NetSquid keeps track of an internal simula-
tion time we need to synchronize this time with the real time. Network emula-
tion has been studied in earlier works. Some of these techniques are discussed
in 4.3.

• The implementation to solve the challenges is discussed in section 5. A simu-
lation manager is created to stop and start the simulation at appropriate times.
And finally chapter 6 shows how well the interface performs under different
scenarios. The results are compared to how other simulators performed with
the same scenarios.

2. Quantum network programming

A quantum network or quantum internet is build as a network of nodes that can com-
municate with each other by sending quantum bits (qubits) over a channel and gen-
erating entanglement between nodes. Such a network can be represented by a graph,
where two nodes are connected by an edge if they are able to communicate with each
other.
Within each node there is classical logic that instructs its quantum hardware. The
main components in a quantum hardware are its processor. There are different ways
to establish qubits in the quantum processors. Two popular implementations to use
for quantum networking are NV centers in diamond [13] and ion traps [14]. Creating,
modifying, sending and measuring these qubits differ for the different implementa-
tions.
The quantum processors are instructed by higher level classical programs. When
programming the processors we want the program to be agnostic of the underlying
implementation. Running the same program on NV center based processors should
yield the same results as running it on ion-trap based processors. However the un-
derlying architecture of these pieces of hardware can be vastly different.
For this we need an interface on top of the processors, or the backend, that can read
and translate commands received from higher level programs and instruct the com-
ponents of its backend accordingly to the command. This interface should also be
able to send messages back in a standard format, for example when sending back a
measurement result.
Figure 2.1 gives an overview of how the classical and quantum levels communicate
in a network with two nodes.

11

2.1. CQC interface 12

Application Alice

Quantum hardware

Low-level
classical controller

CQC Messages

Application Bob

Quantum hardware

Low-level
classical controller

CQC Messages

Classical
communication

Classical
communication

Quantum
communication

Figure 2.1: Overview of the architecture of a network with two nodes; Alice and Bob. Each solid box
represents a process within in the network and can be substituted with another similar process with-
out having to change the others. For example we can replace the quantum hardware with a simulation
of the hardware or with a different kind of hardware. The low-level classical controller would also have
to be adjusted for this hardware. Similarly we can write different applications that can all communi-
cate with the backend. The low-level classical controller and the quantum hardware together form the
backend of one node.
The dotted arrows indicate that the communication is over some kind of channel between the two
processes. A solid arrow indicates direct communication.

2.1. CQC interface
CQC, the Classical Quantum Combiner, is an interface between the classical applica-
tions layers and the quantum backend. It receives classical low-level instructions
from the higher level application and translates it to quantum instructions for its
quantum hardware. So now if your backend has a low-level classical controller that
can receive, parse and send CQC messages you can send it CQC messages to mod-
ify quantum bits, without knowing what the underlying hardware actually does. We
can change the hardware with a completely different implementation without any
change to the application. CQC is designed and developed by Axel Dahlberg and
Stephanie Wehner at QuTech at Delft University of Technology [8].

2.1.1. CQC Message Format
The quantum processor can be physically at a different location than the classical
computer instructing it. For this reason it should be possible to send the instructions
over a classical connection to the server the backend is connected to. The packages
to the CQC interface have the following format:

2.1. CQC interface 13

request type rationale
TP_HELLO Alive check, return backend information
TP_COMMAND Execute one or more commands
TP_FACTORY Execute one or more commands repeatedly
TP_GET_TIME Get creation time of qubit

Table 2.1: Types of possible types from application to backend

• A type header.

• Optionally one or more command headers

The type header contains information on what type of message it is, the version num-
ber of the CQC format, a unique identifier for the application sending the message,
and the length of the total message.
The unique identifier is for the backend to know which application the message was
received from. One node in the network might have multiple applications running.
This node is responsible for giving each application a unique identifier so the back-
end can distinguish messages from different applications from the same node.
Possible messages type are depicted in table 2.1.
From the length the backend can anticipate how many bytes it should still receive
before executing the command.
If the first message is of type T P_COM M AN D then one ore more messages are send
with the information of the commands. This message consists of the following infor-
mation:

• The command to perform (for example initializing a new qubit, what gate to
do or a measurement)

• The qubit to perform the action on

• Whether to notify the sender when the action is done

• Whether the backend should be blocked from other messages until the action
is done

• Whether there are any additional actions to perform after this action

In the last case we send another command of the same format.
Some commands require additional information. For example the backend needs to
know what the qubit identifier of the second qubit for two-qubit gates is, the rotation
angle of gates, or the ip and port information to which a qubit should be send to. This

2.1. CQC interface 14

command type rationale
CMD_NEW Request new qubit
CMD_MEASURE Measure and destroy qubit
CMD_MEASURE_INPLACE Measure qubit
CMD_RESET Reset qubit to |0〉
CMD_RELEASE Mark qubit as free to use
CMD_SEND Send qubit to other node
CMD_RECV Receive qubit
CMD_EPR Create EPR pair with other node
CMD_EPR_RECV Receive half of EPR pair
CMD_I Identity
CMD_X Pauli X
CMD_Y Pauli Y
CMD_Z Pauli Z
CMD_H Hadamard
CMD_K K gate
CMD_T T gate
CMD_ROT_X Rotation over angle around X axis
CMD_ROT_Y Rotation over angle around Y axis
CMD_ROT_Z Rotation over angle around Z axis
CMD_CNOT Controlled X gate
CMD_CPHASE Controlled Z gate

Table 2.2: Possible CQC commands for the backend

information is send in a third message specific to the command.
Possible commands are depicted in table 2.2.

The rotation angles are depicted by one byte, and are therefore discrete with 256 pos-
sible angles. When the hardware finishes the command, it can send information back
to the application in the same CQC format. Each message contains a response code,
and optionally some content as well. Possible responses can be found in table 2.3.

The CQC format is useless if there is no application that can generate and send CQC
messages and if there is no backend that can receive CQC messages and instruct
some quantum processor.

2.2. Application frontend 15

command type rationale
TP_EXPIRE Qubit has expired
TP_DONE Command successfully executed
TP_RECV Qubit received. Returns qubit id
TP_EPR_OK EPR pair created. Returns qubit id and entanglement information
TP_MEASOUT Qubit measured. Returns outcome
TP_GET_TIME Returns creation time of qubit
TP_INF_TIME Returns timing information
TP_NEW_OK Qubit created. Returns qubit id
ERR_GENERAL General error happened
ERR_NOQUBIT No more qubits available
ERR_UNSUPP Command not supported
ERR_TIMEOUT Timeout
ERR_INUSE Qubit already in use
ERR_UNKNOWN Qubit is unknown

Table 2.3: Possible CQC commands for the backend

2.2. Application frontend
In the frontend higher level platform independent applications, programs and proto-
cols can be developed. These applications sends instructions to the backend in real
time. The application needs to be able to receive and send these instructions to the
backend for it to be used to develop software for a quantum internet. Higher level
libraries can be written to help generating and parsing CQC messages. One such li-
brary we make use of in this thesis is the one written in python. Figure 2.2 shows what
happens when the application sends a command to the backend.
Since the application is platform independent it should be possible to replace the
backend with any other without loss of functionality.

2.3. SimulaQron 16

Alice’s application
real time t ↓

Bobs application
real time t ↓

Backend

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

C MD_N EW

N EW _DON E

C MD_SE N D

SE N D_DON E

C MD_N EW

N EW _DON E

C MD_ME AS

ME AS_DON E

C MD_RECV

QU B I T _RECV

Figure 2.2: Timeline showing a simple application of an example program for Alice and Bob. Alice
starts her program at t = 0 where she sends a CQC message to her backend to create a qubit. This
command is received at t = 0.5. It takes ∆t = 1 to create the new qubit, indicated by the red bar in the
backend. Once the qubit is created its qubit id is send back to the application over a CQC message.
Upon receiving this qubit id Alice sends it to Bob, again with a CQC message. The backend can already
send back to the application that the send has been done before the qubit arrives at Bob. Meanwhile
Bob started his program at t = 1. At t = 3 Bobs backend receives Alice’s message. However Bob hasn’t
requested it yet. Only when a receive command comes in at t = 7.5 does Bobs backend receive the
message and send a confirmation back to Bobs application.

2.3. SimulaQron
The backend of a node in a quantum network consists of two parts: a low-level clas-
sical controller that handles classical data and instructs the quantum hardware. This
controller also can receive parse and send CQC messages. Based on the commands
in these messages the hardware is instructed with certain commands such as creat-
ing new qubits, doing single or two-qubit gates on those qubits, sending them ore
measuring them. The only quantum computers available at the moment do not have
a lot of qubits available, and the ones it has are noisy and decohere fast. In order to
test the CQC interface and the already written applications we simulate the qubits

2.3. SimulaQron 17

Figure 2.3: A visualization of the interplay between different internal components of SimulaQron.
The si mul atedQubi t s (blue squares) are objects handled locally in a vi r tual Node. These
si mul atedQubi t s point to a part of the quantumReg i ster , which stores the quantum state
simulated by the vi r tual Node. Operations on the simulated state in the quantumReg i ster are
handled by the quantumEng i ne. Additionally, a vi r tual Node also has vi r tualQubi ts (red cir-
cles). These vi r tualQubi ts point to si mul atedQubi ts, possibly in a different vi r tual Node. The
vi r tualQubi ts correspond to the actual qubits a node would have in a physical implementation of
the quantum network. Picture taken from [8].

.

instead on a classical processor.
For this the SimulaQron simulator is available [8]. SimulaQron simulates multiple
local quantum processors and the classical and quantum communication channels
between them. This makes it possible to simulate the transmission of qubits between
different processors.
The quantum communication is done over already established classical network chan-
nels, which makes it possible to run SimulaQron on different remote classical com-
puters.
We can simulate multiple quantum processors on one classical computer, have each
classical computer simulate one processor or any combination between them. All
simulated quantum processors are connected to each other over the classical net-
work channel to transmit qubits and entanglement information.
A quantum simulator should be able to simulate entanglement between qubits. But
entangled qubits can classically only be simulated within the same memory or mem-
ory register. This makes it impossible for entangled qubits to be simulated in two dif-
ferent classical processors, even though they are in different quantum processors. To
solve this SimulaQron introduces the notion of ‘simulated’ and ‘virtual’ qubits. See
figure 2.3.

Each node simulates a quantum register to function as a quantum memory with n
qubits. Simulated qubits are simulated in these registers. They are stored as a matrix

2.4. Example 18

at a certain index in the register. This allows easy manipulation of the qubit by gates
or measurements. If qubits are measured or moved to other registers the size of the
matrix in the register is shrunk to prevent it to grow arbitrarily when new qubits are
created or added.
Each simulated qubit is associated with a virtual qubit. A virtual qubit ‘belongs’ to
a certain node and is essentially a pointer to its simulated qubit. This means that a
virtual qubit does not necessarily belong to the same as where it is simulated. A qubit
can virtually belong to node A, but be simulated at node B. Only node A can perform
operations on the qubit. If node A wants to apply an Hadamard gate to the qubit, the
underlying structure sends an instruction to node B to perform the Hadamard gate
on this qubit.
Node A can also send the qubit to another node C. From node A a message is send to
node B to update the owner of the qubit, and to node C the information where the
qubit resides.
The owners of each node do not know where its virtual qubits are simulated or whose
qubits it simulates. This all happens in the background.

2.3.1. Register merging
When performing two qubit operations it is a bit more complicated. Such an opera-
tion, or more specifically, an entangling operation, can only be done if all qubits are
simulated at the same location. So two qubits should not only belong to the same
node, they also need to be simulated in the same register. This might require two
registers to be merged before the operation can be done.
One way to prevent the need of register merges is to simulate all qubits on one single
classical computer in the network. This classical computer had the computation load
of the whole simulation, making it a single point of failure and a performance bottle-
neck. To prevent this we keep the simulation distributed by having remote registers,
distributing the load over the network and allows for subsets of nodes not being in-
fluenced by other nodes.
As an example we look at a merge between a register at node A with a register at node
B. Node B sends its register with simulated qubit to node A. And it tells the nodes that
had their virtual qubits simulated at B that their qubits are now simulated at A.

2.4. Example
Let’s look at a simple example to show how a program would look like. We have a
network consisting of two nodes Alice and Bob. Alice creates a qubit and sends it
Bob. Bob meanwhile also created a qubit, and measured it. Finally Bob receives Alice
qubit.

2.4. Example 19

Algorithm 2.1: Teleportation Alice

1 # I n i t i a l i z e the connection
2 with CQCConnection(" Al ice ") as a l i c e :
3 # create qubit
4 q = qubit (a l i c e)
5 # send i t to Bob
6 a l i c e . sendQubit (q , "Bob")

Algorithm 2.2: Teleportation Bob

1 # I n i t i a l i z e the connection
2 with CQCConnection("Bob") as bob :
3 # c r e a t e qubit
4 q = qubit (bob)
5 # measure and print i t
6 outcome = q . measure ()
7 print ("Bob measured , outcome " + s t r (outcome))
8 # r e c e i v e qubit from A l i c e
9 q2 = bob . recvQubit ()

10 print ("Bob received qubit from Alice ")

2.4.1. The application layer
Algorithms 2.1 and 2.2 show the python code at the application level of Alice and Bob
respectively. Figure 2.2 shows the process on a timeline.
On line 4 Alice creates a new qubit and sends it to Bob in line 6. Internally the li-
brary of Alice creates CQC message that are send to the classical controller of Alice’s
backend. In the case of the send command this are three headers; a type header, a
command header and a communication header.
The type header tells the backend what to expect:
(V ERSION _NU MBER,T P_COM M AN D,
APP_I D,CQC _C MD_HDR_LE NGT H +CQC _COM_HDR_LE NGT H)
Each of these value is an integer. The first parameter indicates the version of CQC the
application is running, the second is the integer that correspond to the Command
type. The APP_ID is the application ID of Alice. Alice might be running multiple
applications at once, the parameter indicates which application Alice sends the mes-
sage from. And the last parameter is the total length of the messages still to come. We
are sending a command header and a communication header, so the total amount of
bytes the backend should still expect is the sum of the length of those two headers.

2.4. Example 20

The command header tells the CQC interface what command should be done on
which qubit. If for example the qubit identifier of the newly created qubit is 1 then
the CQC message might look something like (1,C MD_SE N D,Tr ue,F al se,F al se)
The last three booleans indicate if we want to be notified when the command is done,
if the other qubits of Alice should be inaccessible during the execution and if any ad-
ditional actions are to be taken after this action. Let’s say in our case we want to be
notified when it is done.
And finally the third header is the communication header. The library has a method
to look up the locations of the other nodes in a network, so it can lookup the IP ad-
dress and port that Bob is listening to.
(RE MOT E_APP_I D,RE MOT E_I P,RE MOT E_PORT)
Bob also might run multiple applications, so here the first parameter indicates for
which application we want to send the qubit to.

Meanwhile Bobs application is waiting at line 9 to receive a qubit, after having created
and measured a qubit.

2.4.2. CQC message handler
When an application sends a CQC message to the backend it is received by the CQC
message handler in the low-level classical controller. This message handler reads the
message and computes the instructions in the message on the simulation.
When it receives the C MD_N EW command it will create a new qubit object in the
|0〉 state. The simulation stores the state of this new qubit in its register and the han-
dler assigns a qubit identifier. It sends this qubit id back to the application so the
application can refer to this qubit in the following send command.
A CQC message is send back to Alice’s Application with the qubit id so she knows what
id to use when doing future operations on this qubit. We send two headers back.
The first is as always a type header:
(V ERSION _NU MBER,T P_N EW _OK , APP_I D, leng th)
The second header only contains the identifier of the qubit.
After Alice’s backend sends the qubit to Bob it will send a notification back to Alice’s
application to indicate that the command has successfully finished, since Alice in-
dicated that she wanted to be notified. This notification is again done with a CQC
message. We only need to send one CQC message in this case with type T P_DON E .

Alice then sends an instruction to the backend to send the qubit to Bob. The simula-
tion can do this in two different ways. It could either send the simulated qubit to Bob
by sending the register it is simulated in or it can send the virtual qubit by sending in-
formation to Bob to where to find the simulated qubit in Alice’s register. Sending the
virtual qubit is less information, but might mean there is going to be more internal

2.4. Example 21

traffic within the backend of the Alice’s and Bobs simulator. When Bob wants to do
additional commands on the qubit which is still simulated at Alice, then the backend
of Bob has to send messages to Alice’s backend to do those commands on Bobs qubit.
What is done with the virtual qubit when Bobs backend receives it depends on whether
Bob was already waiting to receive a qubit. If not then the virtual qubit is put in a
queue. It will be removed from the queue when Bob does request to receive the qubit
in a first in first out basis. If Bob was already waiting to receive it or there was a qubit
in the queue when Bob called to receive a qubit, then the qubit information about
where the qubit lives is send to the message handler. The handler gives the virtual
qubit a qubit identifier and sends this with a CQC message to Bob in a similar way
Alice had done.

3. NetSquid

What SimulaQron does not do is simulate noise and delays. Every operation is per-
fect and instantaneously.
To simulate these phenomena the NetSquid (Network Simulator for Quantum Infor-
mation using Discrete events) simulator is developed at QuTech. NetSquids focus is
to accurately simulate noises and timings in any quantum network.
The components of a quantum computer can be implemented and simulated in Net-
Squid. This way the performance of these implementations can be checked and bot-
tlenecks can be found to determine were the biggest improvements in performance
can be gained and to see if it is worth improving one component, as there might be
greater grains to be found elsewhere.
NetSquid also simulates the timings of components. Operations on qubits and send-
ing information through a fiber to other nodes take time, causing qubits to decohere.
Decoherence is a large source of noise in quantum networks, so it is important to
simulate this noise correctly.
One application for NetSquid is the simulation of quantum repeaters. We can simu-
late different repeater protocols and setups to see what configurations have the least
overall decoherence times in quantum networks.

3.1. Discrete event simulator
As the name suggests NetSquid uses a discrete event simulator to simulate quantum
networks. Under the hood a simulation engine keeps track of the simulation time.
The engine can run the simulation up to a given time unit or for a certain amount of
time. Entities within the simulation can schedule events on the timeline of the sim-
ulator. When the simulation engine runs, it sequentially runs from event to event.
Discretely increasing the simulation time. See figure 3.1.

Each component in NetSquid is an entity. They can schedule events at the current
time (_schedule_now()), at some relative time from now (_schedule_after()) or
at some absolute time unit (_schedule_at()).
Entities can also listen to events. When listening to an event they subscribe to it with

22

3.1. Discrete event simulator 23

sim
u

latio
n

tim
e
τ

(m
s)

0

2

4

5

7

10

Schedule new qubit

New Qubit done, schedule new qubit

New Qubit done, schedule Hadamard

Hadamard done, schedule CNOT

CNOT done, put on channel

Qubit to be received from channel

Figure 3.1: Example of a discrete-time simulation of creating a simple EPR pair between two nodes
in a network. The timeline is not continuus indicated by the dashed line, it discretely increases the
time. An arrow indicates the scheduling of a new event. For example at τ= 0 we want to create a new
qubit. Creating this qubit takes 2ms, so an event is created at τ= 2. When the simulation jumps to this
time the qubit is created and the next event is scheduled. The discrete-event simulation then jumps
discretely from one event to the next.

3.2. Components 24

an event handler; a callback function that fires when the event is triggered.
The event handler can in turn schedule and listen to other new events.

The discrete event simulator is oblivious to the world outside the simulation, it is
independent on real time. The simulation steps from event to event as fast as the
classical computer allows, increasing its simulated time discretely as it goes.

3.2. Components
NetSquid simulates the hardware of a quantum computer, so before running a sim-
ulation this hardware needs to be defined. This is done by defining components and
their interaction with each other. The two main components are the channel and
the quantum processor. Items are send over a channel by a sender to a receiver with
some delay. Depending on the channel those items can be can be both classical or
quantum bits.
Upon sending the items an event can be specified. When the items are ready to be re-
trieved the event will be called and event handlers that were subscribed to the event
will be called.

Channels can be specified with delay, noise and loss models. The delay model de-
scribes the time delay of the channel as either some constant or a defined distribu-
tion. The noise model describes how much noise is applied to the information but
on the channel. And the loss model describes how likely it is that the information is
lost during transmission.

The quantum processor is where qubits are created, manipulated and measured. De-
pending on the processor these operations might behave very different. Simulating
the quantum processor for NV-centers differs a lot from simulating the processor of
ion-traps.
But on the surface they behave very similar as well. Each operation takes time and
introduces some noise to the qubit. When building up the simulation the operation
time and noise models all have to be defined. For example in figure 3.1 we set the
operation time of initializing new qubits and doing a CNOT to two milliseconds and
doing an Hadamard gate to one millisecond. Note that these times are not realist in
a real implementation but are chosen arbitrary for the purpose of the example.
The processor of a node can be programmed by giving it a list of instructions. It will
schedule the instructions sequentially (or in parallel if this is allowed by the type of
processor) on the timeline. It can be given a callback to be called when the program
finishes (or fails), this will prove useful in section 5.1.

3.3. Related work 25

3.3. Related work
Classical simulations that use discrete event simulation are avaible, as quantum net-
works are not the only networks where simulation is desired. For some classcial
discrete even network simulators emulation is also possible. Emulating a network
makes it possible to predict how it will behave in real applications, without having to
implement them.
Since these emulators are classical they are often not focused on simulating noise,
nor do they focus on internal computations that might take too long to compute.
The main focus is on the correctness, loss and delays of sending data packets across
the network. The physical systems that send packages to the emulator are assumed
to run in real time [1, 2]. This makes having an internal clock within the emulator let
alone have it synchronized with the real world less important [3, 6].
Emulating networks with discrete event simulators was introduced at the end of the
twentieth century with the first NETSIM simulator [12]. Here the simulator intro-
duces real time delay in order to slow the simulation down. The accuracy was im-
proved using the second simulator NS-2 by monitoring and correcting the virtual
clock of the simulator to ensure the chronological order of events remained unchanged
[20].
The biggest disadvantage of these emulators is simulation overload, where the simu-
lator has to simulate too much that it starts running behind on real time. It is possible
to use a large computing power to increase the execution speed [18]. This does only
work up to a certain point and does not remove the initial issue.
In the case of NS-2 the simulation overload is because NS-2 is single threaded. A
solution was brought in NS-3 where it is possible to use multi-core processors and
distributed computing [22].
One platform, SliceTime, solves this by using time windows, or so called time slices
[23, 24]. The simulation time is sliced up in different timewindows of given length.
When the simulator hits the end of such a time slice it will halt the simulation and
waits for the real time to synchronize. This makes it possible to have each compo-
nent be simulated on a different machine, and the time drift or accuracy between the
components is limited by the time of the slice.
We have a look at these implementations in section 4.3 to see which is suitable to
implement in our quantum network emulator.

4. Design

We can now write high-level applications for a quantum network that creates CQC
messages. We can test these programs on SimulaQron that can simulate a quantum
network without noises and delays. And NetSquid can accurately simulate noises
and delays quantum hardware components.
What we want now is to write high-level applications that can simulate accurate
quantum network simulators including noise, decoherence and delays. We can do
this by adding a CQC message handler in the backend to the NetSquid simulator.
This handler receives CQC messages from the higher layers and translates them to
programs that run on the simulated quantum processors in NetSquid. This chapter
describes the design of the message handler.
The applications run in real time, where NetSquid keeps track of its own simulation
time. If those times are independent on each other then messages received from the
application might arrive later in simulation time than expected. We need to slow
down the simulation time. This is quite challengiing, we describe why and how in
the chapter.

4.1. Simulation setup
NetSquid runs its simulation all on a single machine in a single thread. This is in con-
trast to SimulaQron and real networks where the hardware of nodes can be physically
separated, as shown in figure 2.1.
For NetSquid these nodes are all simulated within the same process. We still want
each node to listen to its own higher level application. For this we add a low-level
classical controller for each node but all within the same process, see figure 4.1.

26

4.2. Quantum network emulation 27

Application Alice

Simulated
quantum hardware

Low-level
classical controller

CQC Messages

Application Bob

Simulated
quantum hardware

Low-level
classical controller

CQC Messages

Simulated classical
communication

Classical
communication

Simulated quantum
communication

Figure 4.1: Overview of the architecture of a network with two nodes in the NetSquid simulator, similar
to figure 2.1. The backends of every node run in the same process, where the classical controller
of each node listen to their application level. Communication between the nodes is now done by
simulated channels rather than real connections.

4.2. Quantum network emulation
We want the NetSquid simulation to behave as much like the real quantum hard-
ware. This includes keeping track of some simulation time to simulate decoherence
and delays. When running a simulation on NetSquid, the internal simulation time
increases as fast as the machine the simulation is run on allows. This means the sim-
ulation can run much faster or much slower than it would have in a real scenario. We
can simulate communication with a Mars base in seconds while it would take about
half an hour in reality. Or simulation of a quantum state with 30 entangled qubits can
take hours, where it would take a few microseconds when running on the real hard-
ware. This is not a problem when running simulations on just NetSquid; we want the
simulation to be done as fast as possible. It does become a problem when the sim-
ulation receives instructions from outside the simulation. The outside world of the
simulation runs with a different internal clock than the simulated world. In our case
the outside world is the real world running at one second per second, but we can also
have another simulator communicating with the NetSquid simulator. A simulator
that can receive inputs from outside the simulation is called an emulator [6, 12]. We
need to turn NetSquid into an emulator.
For this we need some kind of time synchronization between the simulation and the
real world. We can not run the simulation as fast as possible as the simulation al-
lows. An instruction send to the simulation will be received too late in the simula-
tion. For example Alice sends a command that advances the simulation time by one

4.2. Quantum network emulation 28

hour, while Bob had a qubit stored in its memory. This qubit now has decohered by
one hour when Bob next accesses the qubit, even though in real time Bob might only
have had the qubit stored for a couple of milliseconds. To prevent this we can not let
the simulation run faster than real time, we need to delay instructions in real time
based on the operation time it would advance the simulation time. See figure 4.2.

Alice’s application
real time t ↓

Bobs application
real time t ↓

Backend
simulation time τ ↓

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

C MD_N EW

N EW _DON E

C MD_SE N D

SE N D_DON E

C MD_N EW

N EW _DON E

C MD_ME AS

ME AS_DON E

00

2
2

4
410

10

11

Figure 4.2: This timeline shows a faulty propagation of real and simulation time. Any command that
comes in is directly simulated on the backend. CQC message from and Alice’s application are indi-
cated by red arrows on the left. Similarly Bobs CQC messages are indicated by blue arrows on the
right. The red (Alice) and blue (Bob) bars indicate the backend is doing some indicate some compu-
tation. At τ= 4 a command comes in to send a qubit to Bob, this command advances the simulation
time by 6 time units. Now when Bob wants to measure its newly created qubit the qubit has already
been alive for 6 time units. Much longer than the expected 1 time unit. Bobs qubit is much more
decohered than expected. This is not desired, any application can forward the simulation time of the
backend by any amount. This causes the simulations of all other applications to fast forward as well,
so any messages that come in from those applications arrive much too late in the simulation time.

4.2. Quantum network emulation 29

A desired timeline is shown in figure 4.3. However this scenario assumes that all in-
structions are computed instantaneously on the backend, this is not realistic.

Alice’s application
real time t ↓

Bobs application
real time t ↓

Backend
simulation time τ ↓

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

C MD_N EW

N EW _DON E

C MD_SE N D

SE N D_DON E

C MD_N EW

N EW _DON E

C MD_ME AS

ME AS_DON E

0.5

1.5

2.5

3.5

4.5

6.5

9.5

Figure 4.3: This imeline shows a desired order of events. Here the backend and application are 100%
synchronized; when the discrete-time simulator increases its simulation time it always increases it to
the current real time. At t = 0.5 a new command comes in to create a new qubit for Alice. Within
the simulation it is defined that creating a new qubit would take ∆τ = 2, so the backend waits in real
time for 2 time units until it creates the qubit at t = 2.5. The solid arrows indicate this delay in real
time before the command is done. The time between Bobs new qubit and measuring it is now 1 as
expected, no more decoherence is introduced. Note that receiving a message from the application
also does some resynchronizing. This timeline does not consider the real time it takes to compute the
instructions, so this timeline is not realistic to achieve.

What realistically happens is shown in figure 4.4 where we both slow down the simu-
lation and instructions take some real computation time to compute.
Sometimes the simulation takes longer than expected to compute one instruction.
This might happen for example when computing on a large quantum state, since

4.2. Quantum network emulation 30

states grow exponentially in the amount of qubits, or when the simulation consist of
many nodes that are all simulated on a single processor.
This can not be fixed. We can not speed up the simulation since it is bottlenecked by
the computation. And we can not slow down real time.

4.2. Quantum network emulation 31

Alice’s application
real time t ↓

Bobs application
real time t ↓

Backend
simulation time τ ↓

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

C MD_N EW

N EW _DON E

C MD_SE N D

SE N D_DON E

C MD_N EW

N EW _DON E

C MD_ME AS

ME AS_DON E

0.5

1.5

2.5

3.5

4.5

5.5

7.5

8.5
9.5

Figure 4.4: Timeline shows a realistic order of events where some operations take a real amount of
time to compute on the backend. Here again the solid arrows indicate that the backend is waiting in
real time to start the operation and the red and blue bars indicate the backend is doing some compu-
tation for Alice and Bob respectively. We now wait 6 time units in real time before doing the send. This
gives the backend time to receive the measurement command from Bob and compute it. The mea-
surement computation takes quite long. It is still being computed when Alice’s qubit should be send.
Instead it waits with this computation and only starts it after Bobs measurement has been finished.

4.3. Possible implementations 32

4.3. Possible implementations
In chapter 3.3 some earlier works are discussed. In this chapter we go over some of
those solutions and check their viability.

4.3.1. Time windows
In [23] a technique is implemented that slices up the simulation in discrete time win-
dows. A synchronization component assigns the length to these time windows and
acts as external time source. A scheduler keeps track of the current queue of events.
If the time of execution of the next event is within the current time window it will
be executed. Otherwise the synchronization component will cause the simulation to
pause in real time until the start of the next window. If a new event is scheduled due
to an instruction from outside the simulation, and this event resides in the current
time window it will be executed immediately.
The length of a time window has to be carefully chosen. The optimal value depends
on the protocols that are running, the simulated hardware, the machine the simula-
tion runs on and the topology of your network.
If the length of the window is too large then events might happen too early, causing
the simulation to run ahead of the real time. In fact if the length of the time window
approaches to infinity, the emulation becomes a regular simulation where all com-
putations are done as fast as possible.
If the length of a window is too small then there is a lot of synchronization needed,
which in turn costs valuable computing time. Having such a small window also
means that the computation time is often larger than the length of a window. This
causes the next window to be delayed. The synchronizer will still try to start the win-
dow after at the correct time. This does mean the simulation will temporarily run
faster than real time. Which, as explained earlier, risks processing incoming instruc-
tions too late.

4.3.2. Real time scheduler
With a real time scheduler [12, 20] the scheduler checks the simulation time of the
next event to be executed, if this time is less than the current real time it will execute
the event directly. This scheduler is part of the classical controller of the backend (see
figure 2.1. Otherwise this event has to be done somewhere in the future, the sched-
uler will then in real time wait for the duration (in simulation time) of the event or if
a new event is scheduled due to a new incoming message. A version of this was seen
in figure 4.4.
If there are too many events or events are computationally heavy then the sched-
uler will fall behind in real time. Adding more computing power or distributing the

4.3. Possible implementations 33

computation over multiple cores can lessen this problem, but does not solve the un-
derlying issue.

4.3.3. Our solution
Using time windows is an infeasible solution. Picking the size of a time window
proved to be a difficult task given the different use cases for our simulations. For
networks with a large amount of nodes and high traffic between them it is desired
to have a small time window so that in- and outgoing messages are scheduled ac-
curately. But for networks that share large entangled states we want a larger time-
window, since computations on these states take a long time, a large time window
means the computation can sometimes start earlier, giving the window a bit more
breathing time after the computation is finished.
With the time windows the synchronizer has to synchronize every time window. In
the real time scheduler the scheduler synchronizes with every event.
We have chosen for an adjusted implementation of the real time scheduler. To re-
duce the amount of synchronizations we only synchronize when needed. Within the
quantum simulator we have a lot of events that are irrelevant to the emulation, such
as events that trigger within certain protocols that run in the background of the sim-
ulation. So instead we only synchronize on events that are fired when an instruction
has finished.

An operation i has some operation time in the simulated world τi and some compu-
tation time ti it takes to compute the operation on the machine that runs the sim-
ulation. τi is defined when setting up the simulation and is always constant under
the same conditions within the simulation. The computation time ti can vary due to
small fluctuations within in the machine, or the machine might be busy computing
something else.
With the implementation as in figure 4.4 every operation takes ti +τi real time within
the run of a simulation. One part waiting, one part computing. This can be improved
by not waiting a full τi seconds after the previous operation has done, but rather we
wait τi seconds after the previous operation has started.
It might be possible that at this time the previous operation is still being computed,
so ti−1 > τi . In that case we start our operation directly after when the previous has
finished.
So when running a sequence of operations then the real time each operation con-
tributes to the total computation time is max(τi , ti−1). And thus the total computa-
tion time is

∑
i max(τi , ti−1). Figure 4.5 shows this scenario.

4.3. Possible implementations 34

re
al

ti
m

e
t

(m
s)

0

1

2

3

4

5

6

7

8

9

10

11

12

0

2

4

5

7

9
10

Application Backend

sim
u

latio
n

tim
e
τ

(m
s)

C MD_EPR

T P_EPR_DON E

New qubit

New qubit

Hadamard

CNOT

Send qubit over network

Figure 4.5: This timeline shows a slight optimization of event order. When creating an EPR pair the
backend will schedule multiple events. Rather than scheduling the next event only after the simulation
of the current event is finished, we can already schedule the next event from the start of the simulation
of the current event. This means that the simulation is slightly faster overall in real time. The CNOT
in this case takes longer to compute (4ms) then it would have on the real hardware (2ms). This might
happen since combining two large quantum states is a quite resource heavy computation in a classical
simulation. The backend still schedules the next operation after 2ms. However this event has to wait
for the CNOT to be done computing, and is then done directly after the CNOT is finished.

4.3. Possible implementations 35

4.3.4. Other optimizations and outlook
Other optimizations can be made in future works. The main one is that instead of
first waiting for τi amount of time in real time and only then start the computation,
we start the computation right away and then halt the backend for mi n(τi − ti ,0)
amount of time, as shows in figure 4.6. Unfortunately NetSquid was not well fitted
yet for this implementation, but it is worth looking into this in future works.

re
al

ti
m

e
t

(m
s)

0

1

2

3

4

5

6

7

8

9

10

0

2

4

5

7

10

Application Backend

sim
u

latio
n

tim
e
τ

(m
s)

C MD_EPR

T P_EPR_DON E

New qubit

New qubit

Hadamard

CNOT

Send qubit over network

Figure 4.6: This timeline shows a possible optimization. Here when a command arrives the backend
starts computing this instruction right away. Once the instruction is done in then waits for the re-
maining amount of time before starting the next instruction. This way the simulation does not run
faster than real time, and we do not spend unnessary time waiting while we can already compute
some instructions.

5. Implementation

5.1. Instructions
In order to instruct NetSquid with the commands send through the CQC interface a
class is built to handle the messages.
The pseudocode in algorithm 5.1 shows what happens when this message handler
receives a message.

Algorithm 5.1: Message Handler

1 pending_programs = { }
2 busy = False
3 quantum_program
4 def handle_cqc_message (header , message) :
5 quantum_program = new Program ()
6 add_commands(header , message)
7 i f header . should_notify :
8 add_command(send_done)
9 quantum_program . done_callback (execute_next_program)

10 pending_programs . append(quantum_program)
11 i f not busy :
12 execute_next_program ()
13

14 def add_command(params *)
15 quantum_program . add_instruction (params * ,
16 should_yield=False)
17 quantum_program . add_instruction (command_done,
18 should_yield=True)
19

20 def command_done () :
21 # Event that f i r e s when an i n s t r u c t i o n has f inished
22 # Get duration time of the program upto the next y i e l d
23 instr_duration = quantum_processor . sequence_duration
24 simulation_manager . new_event (instr_duration)

36

5.1. Instructions 37

25

26 def execute_next_program () :
27 i f pending_programs i s not empty :
28 busy = True
29 # Remove f i r s t program from program l i s t
30 program = pending_programs . pop ()
31 # Returns the duration time of the f i r s t i n s t r u c t i o n
32 # up to the f i r s t y i e l d
33 instr_duration = quantum_processor .
34 execute_program (program)
35 simulation_manager . new_event (instr_duration)
36 else :
37 busy = False

On line 5 a new Program is created. This program is essentially a list with instructions
for the underlying quantum processor. For each instruction a new event is created
for discrete-even simulator. When this event is fired in simulation time depends on
the instruction. For example doing an XG AT E takes some time to execute, so this
needs to be scheduled within the simulation.
On line 6 the instructions in the CQC message are parsed and iteratively added to the
list of instructions in the program by calling add_i nstr ucti on().
Line 7 and 8 add two more instructions to send a CQC message back to the applica-
tion to notify the command is done if required.
A quantum processor can only execute one program at the same time. It might be
the case that the backend receives another set of instruction while another program
is still being executed. Therefore this new program needs to wait before it can be ex-
ecuted. It is put in a queue of pendi ng _pr og r ams in line 10. The program at the
front of the queue should be executed either if the quantum processor is not busy
(line 11 and 12) or when the previous program has finished. The latter is achieved in
line 9 by adding a callback to the program that fires execute_next_pr og r am when
the program finishes.

When adding a command two instructions are scheduled. The first instruction is the
physical instruction of the command (line 15-16). For example doing some quantum
gate or measurement. The second instruction fires an event to indicate the previous
instruction is done and the next simulation manager should schedule a time in real
time to synchronize with this command (line 17-18). The shoul d_yi eld parameter
here tells the processor up to which instruction it should run until the simulation as
to synchronize with the real world. Using that we can get the simulation time it would
take to execute the next set of instructions up to the first yield. This time is used in
the simulation manager (line 20-24, 33-35 and section 5.2).

5.1. Instructions 38

Sometimes more instructions are scheduled. For example in the case of a measure-
ment we schedule an additional instruction that would send the measurement result
back to the application.

Instructions are removed from the instruction list after they are handled.

5.1.1. Dynamic program
Some commands cause the set of instructions to change based on what happens in
the processor. For example when creating an EPR pair we need to know the memory
position of the two created qubits before we can do any other operations on them.
For this the set of instructions in a program dynamically changes while the program
is already running. The psuedocode in algorithm 5.2 shows what happens when an
EPR command is issued.

Algorithm 5.2: dynamic program

1 key = 0
2 def cmd_epr(header , command, extra) :
3 key1 = key
4 key2 = key + 1
5 key = key + 2
6 add_command(INIT_QUBIT , output_key=key1)
7 add_command(INIT_QUBIT , output_key=key2)
8

9 def create_epr (event) :
10 q_id1 = quantum_program . output [key1]
11 q_id2 = quantum_program . output [key2]
12 add_command(H, q_id1 , instr_index =0)
13 add_command(CNOT, [q_id1 , q_id2] , instr_index =2)
14 send_CQC_back (CMD_EPR_OK, qubit_id = q_id1)
15 add_command(SEND, extra . r e c e i v e r _ d e t a i l s , instr_index =4)
16

17 event = EventHandler (create_epr)
18 add_command(FIRE_EVENT , event)

We first initialize two new qubits in line 6 and 7. We don’t know yet what the memory
positions of those two qubits are going to be. But we still need to know those memory
positions in order to the additional operations on them. For this reason we tell the
quantum program to store those memory positions in the output of the program by
some key in a dictionary. When the memory position are available we could look in

5.2. Simulation manager 39

this dictionary with the correct keys (line 10 and 11).
After the instructions to initialize two new qubits are added we add a command to
call the cr eate_epr function. This function will not run until the program has started
and the two qubits are created. So when cr eate_epr is called the program is already
running, yet we still need to add additional instructions. Namely an Hadamard (line
12) a CNOT (line 13) and sending it to another node (line 15).
Normally when adding new instructions in a program they are just added sequen-
tially. We now need to squeeze in new instructions at the start to prioritize them. For
we this we give an additional parameter that tells the program at which index the
instruction should be inserted. The Hadamard should be done right away so is in-
serted at the start of list of instructions (i nstr _i ndex = 0). After the Hadamard we do
a CNOT, the Hadamard scheduled two instructions, one to do the command and one
to notify that the command has finished, so the CNOT starts at index 2. And similarly
the SEND command starts at index 4.
Once the SEND command has finished the program continues normally.

5.2. Simulation manager
Keeping the simulation time synchronous with the real time is a task of the simula-
tion manager. The simulation manager starts and stops the simulation so that the
time within the simulation does not increase faster than real time. The code in algo-
rithm 5.3 shows a simplified version of the simulation manager.
When the backend receives one or multiple instructions from a higher layer it cre-
ates and schedules a Quantum program that can run on the quantum processor.
This quantum program schedules one or more events. The simulation time τ0 of
the first fired event is known, this time is send to the simulation manager with a call
of Si mul ati onM anag er.new_event (τ0).
Upon receiving this time the simulation first synchronizes the simulation time. It
keeps track of the real time l ast_si m the last simulation has finished, and advanced
the simulation time by the difference between the current real time and l ast_si m.
In figure 4.4 the first message arrives at τ= 0.5 in the backend. This is the time it took
to the send the message from the application to the backend.
Once the backend has synchronized and the current simulation time is
τcur = net squi d .si mul ati on_t i me() it will create a timer in real time for the dura-
tion of the event τ0. When this timer is fired the simulation will advance the simula-
tion time to τcur +τ0.
While the timer is running it is possible that a new message comes in before the timer
has finished. This happens in figure 4.4 at τ= 1.5 when a message from Bobs comes
in to create a new qubit, while Alice’s timer is running. At this moment the simulation
will synchronize again and starts the timer of this new command. This timer might
be scheduled after the first event (first solid blue arrow from Bob in figure 4.4). Or it

5.2. Simulation manager 40

might be scheduled earlier than the first event (second solid blue arrow from Bob in
figure 4.4) in which case that message will be handled first.
When a timer finishes while the simulation is still computing something it will simply
wait for that simulation to finish and schedule it right after. In Alice’s second com-
mand in figure 4.4 the simulation is still doing a computation of Bob and is therefore
locked, so when Alice’s command comes in it starts after Bobs computation is done
and the lock as been removed. Locking is done on line 24 of algorithm 5.3. Multiple
threads are with timers might be running, the l ock makes sure only one thread can
enter its code at a time.
On line 7-9 we synchronize the simulation time with the real time. We compute the
difference in real time since the last simulation has finished, and advance the simu-
lation by this difference.

Algorithm 5.3: simulation manager

1 # Get the current r e a l time
2 last_sim = get_current_time ()
3 lock = threading . RLock ()
4

5 def new_event (duration) :
6 # synchronize simulation
7 sync_end_time = netsquid . simulation_time () +
8 get_current_time () − last_sim
9 run_simulation (end_time=sync_end_time)

10

11 end_time = netsquid . simulation_time () + duration
12

13 # Create timer in a new thread to simulate
14 # upto end_time a f t e r duration seconds
15 timer = threading . Timer (function=run_simulation ,
16 parameters ={end_time } ,
17 i n t e r v a l =duration)
18 timer . s t a r t ()
19

20 def run_simulation (end_time) :
21 # run the simulation up unti l end_time simulation time
22 # We need to lock the running of the simulation .
23 # Can ’ t s t a r t multiple simulations
24 with _lock :
25 # I t might be p o s s i b l e that another event already ran
26 # the simulation up to the current end_time
27 # So we don ’ t need to run the simulation anymore

5.2. Simulation manager 41

28 i f end_time >= netsquid . simulation_time () :
29 netsquid . run_sim (end_time=end_time)
30 # update the global l a s t simulation time to
31 # the current r e a l time .
32 last_sim = get_current_time ()

6. Evaluation

The simulation manager is tested in different scenarios. We test for correctness and
speed.

6.1. Correctness
For testing purposes we artificially increased the computation time by implementing
a sleep method within the method. And the operation time for qubit operations has
been set to high values to check if the delays are applied correctly.

Figure 6.1: Real time that has advanced between sending and receiving a qubit as function of channel
length between two nodes. With and without emulation.

We use the example as described in section 2.4 where we increase the length of the

42

6.2. Speed 43

channel between Alice and Bob. We run this example with and without synchroniza-
tion. 6.1 shows the real time it takes for Bob to receive its qubit after Alice has send
it. The figure shows that with emulation the real time that advanced is always slightly
more than the time it takes for a qubit to be send over the channel between Alice and
Bob. Without emulation the qubit are always send near instantly.

6.2. Speed
In order to test for speed in a realistic scenario we run an application on the Sim-
ulaQron backend and on the NetSquid backend. To compare the two simulations
we now set the operation time of all operations within NetSquid to 0, this means the
simulation time will not advance due to the operations. We create a GHZ state of n
qubits 1. When simulating the GHZ state on a classical computer the amount of in-
formation to store grows exponentially in n, and thus it is also expected that the time
to create this state grows exponentially.
Within both simulators it is possible to store the state |ψ〉 in different ways. Either as
a density matrix (DM) |ψ〉〈ψ|, as regular KET vector |ψ〉 or as a stabilizer state. Not all
states are stabilizer states, but stabilizer states can be simulated in efficiently poly-
nomial time instead of in exponentially as O (2n). All three formalisms are tested and
timed for both simulators. The result of this is shown in figure 6.2.
As expected the density matrix formalism and KET formalism both scale exponen-
tially when creating bigger GHZ states, where creating a stabilizer state is done lin-
early in both SimulaQron and NetSquid.
SimulaQron is slightly faster than NetSquid for each formalism. This might be be-
cause we now have a more roundabout way of doing the simulation with the emu-
lation. The simulation constantly is started and stopped by the simulation manager,
which adds unnecessary overhead.

Finally we also compare the speeds of NetSquid and SimulaQron by repeatedly creat-
ing and measuring qubits. This way we check which of the two simulators is better to
use for non-computation heavy operations. We again set all operation times of each
operation within the simulation to 0, so there is no delay added by the simulation
manager. The results are shown in figure 6.3.
In this case SimulaQron is slightly faster. So for testing applications without noises
or delays on channels SimulaQron is the better simulation still.

1A GHZ state is the state 1p
2

(|0...0〉+ |1...1〉)

6.2. Speed 44

Figure 6.2: Time it takes to create a GHZ state of n qubits in different backends and formalizations.
SimulaQron is faster for each qubit formalism. The three formalisms are density matrix formalism
(DM), KET formalism and Stabilizer formalism.

Figure 6.3: Time it takes to create and measure n qubits in SimulaQron and NetSquid.

7. Conclusion

We are in the process of building all layers of a fully realized quantum network stack.
Each layer should be independent on the other layers. This makes it possible to al-
ready work on a layer when other layers are realized yet.
High-level applications are developed to be run on a quantum network. These ap-
plications talk to the quantum backend with so called CQC messages. Currently
real scalable quantum computers are not available yet. As a substitute we simulate
the quantum network classically instead. This way we can still test and develop the
higher classical layers without the need of quantum hardware. One such simulator
that can receive, parse and send CQC messages is SimulaQron.
If we want accurate simulations, then they need to behave as close as possible to the
quantum hardware, so they should simulate noises, losses and delays as well. Simu-
laQron is not suited for this, but the NetSquid simulator is.
NetSquid did not have logic to handle CQC messages yet. This thesis has added this
logic. For each node in the NetSquid simulation a message handler was added that
handles the incoming and outgoing CQC messages from the higher level application
for that node. It creates programs to be run on the simulated quantum processor.
For this an interface is added between the classical and quantum layers that trans-
lates classical commands to quantum instructions. The application sends messages
to the backend in real time, whereas the simulation in the backend runs in simula-
tion time. The simulation and outside world run on different clocks, so these clocks
have to be synchronized to prevent the simulation running faster than the wall time.
This synchronization is done by a simulation manager that stops and runs the simu-
lation when new instructions are scheduled.
We showed that the simulation is correctly slowed down when having large operation
times within the simulation.
Running the emulation has similar computation times as SimulaQron, so there is no
big drawback when running a program with the emulation or on SimulaQron if you
do not care about simulated delays and operation times.
There are still some optimizations to be made. Such as moving the start of the com-
putation of an operation to the moment this operation is scheduled, rather than to
first wait for the duration of the operation in real time.

45

Bibliography

[1] J. Ahrenholz, T. Goff, and B. Adamson. Integration of the core and emane net-
work emulators. In 2011 - MILCOM 2011 Military Communications Conference,
pages 1870–1875, Nov 2011. doi: 10.1109/MILCOM.2011.6127585.

[2] Jeff Ahrenholz, Claudiu Danilov, Thomas R. Henderson, and Jae Kim. Core: A
real-time network emulator. pages 1–7, 11 2008. ISBN 978-1-4244-2676-8. doi:
10.1109/MILCOM.2008.4753614.

[3] M. Allman and S. Ostermann. One: The ohio network emulator. Technical Re-
port 19972, Ohio University, 1997.

[4] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution
and coin tossing. In Proceedings of IEEE International Conference on Computers,
Systems, and Signal Processing, page 175, India, 1984.

[5] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller. Quantum repeaters: The role of im-
perfect local operations in quantum communication. Phys. Rev. Lett., 81:5932–
5935, Dec 1998. doi: 10.1103/PhysRevLett.81.5932. URL https://link.aps.

org/doi/10.1103/PhysRevLett.81.5932.

[6] Mark Carson and Darrin Santay. Nist net: A linux-based network emulation tool.
SIGCOMM Comput. Commun. Rev., 33(3):111–126, July 2003. ISSN 0146-4833.
doi: 10.1145/956993.957007. URL http://doi.acm.org/10.1145/956993.

957007.

[7] Andrew M. Childs. Secure assisted quantum computation. Quantum Info. Com-
put., 5(6):456–466, September 2005. ISSN 1533-7146. URL http://dl.acm.

org/citation.cfm?id=2011670.2011674.

[8] Axel Dahlberg and Stephanie Wehner. SimulaQron—a simulator for develop-
ing quantum internet software. Quantum Science and Technology, 4(1):015001,
sep 2018. doi: 10.1088/2058-9565/aad56e. URL https://doi.org/10.1088%

2F2058-9565%2Faad56e.

[9] Axel Dahlberg, Matthew Skrzypczyk, Tim Coopmans, Leon Wubben, Filip
Rozpędek, Matteo Pompili, Arian Stolk, Przemysław Pawełczak, Robert Kneg-
jens, Julio de Oliveira Filho, Ronald Hanson, and Stephanie Wehner. A link layer

46

https://link.aps.org/doi/10.1103/PhysRevLett.81.5932
https://link.aps.org/doi/10.1103/PhysRevLett.81.5932
http://doi.acm.org/10.1145/956993.957007
http://doi.acm.org/10.1145/956993.957007
http://dl.acm.org/citation.cfm?id=2011670.2011674
http://dl.acm.org/citation.cfm?id=2011670.2011674
https://doi.org/10.1088%2F2058-9565%2Faad56e
https://doi.org/10.1088%2F2058-9565%2Faad56e

BIBLIOGRAPHY 47

protocol for quantum networks. SIGCOMM Comput. Commun. Rev., 2019. doi:
10.1145/3341302.3342070.

[10] Ivan B. Damgård, Serge Fehr, Louis Salvail, and Christian Schaffner. Secure iden-
tification and qkd in the bounded-quantum-storage model. Theoretical Com-
puter Science, 560(1):12–26, 12 2014. ISSN 0304-3975. doi: 10.1016/j.tcs.2014.
09.014.

[11] Artur K. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett.,
67:661–663, Aug 1991. doi: 10.1103/PhysRevLett.67.661. URL https://link.

aps.org/doi/10.1103/PhysRevLett.67.661.

[12] K. Fall. Network emulation in the vint/ns simulator. In Proceedings IEEE In-
ternational Symposium on Computers and Communications (Cat. No.PR00250),
pages 244–250, July 1999. doi: 10.1109/ISCC.1999.780820.

[13] Peter C. Humphreys, Norbert Kalb, Jaco P. J. Morits, Raymond N. Schouten,
Raymond F. L. Vermeulen, Daniel J. Twitchen, Matthew Markham, and Ronald
Hanson. Deterministic delivery of remote entanglement on a quantum net-
work. Nature, 558(7709):268–273, 2018. ISSN 1476-4687. doi: 10.1038/
s41586-018-0200-5. URL https://doi.org/10.1038/s41586-018-0200-5.

[14] I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe. Multispecies
trapped-ion node for quantum networking. Phys. Rev. Lett., 118:250502, Jun
2017. doi: 10.1103/PhysRevLett.118.250502. URL https://link.aps.org/

doi/10.1103/PhysRevLett.118.250502.

[15] Richard Jozsa, Daniel S. Abrams, Jonathan P. Dowling, and Colin P. Williams.
Quantum clock synchronization based on shared prior entanglement. Phys.
Rev. Lett., 85:2010–2013, Aug 2000. doi: 10.1103/PhysRevLett.85.2010. URL
https://link.aps.org/doi/10.1103/PhysRevLett.85.2010.

[16] Jędrzej Kaniewski and Stephanie Wehner. Device-independent two-party cryp-
tography secure against sequential attacks. New Journal of Physics, 18(5):
055004, may 2016. doi: 10.1088/1367-2630/18/5/055004. URL https://doi.

org/10.1088%2F1367-2630%2F18%2F5%2F055004.

[17] A Kellerer. Quantum telescopes. Astronomy & Geophysics, 55(3):3.28–3.32, 06
2014. ISSN 1366-8781. doi: 10.1093/astrogeo/atu126. URL https://doi.org/

10.1093/astrogeo/atu126.

[18] Cameron Kiddle. Scalable Network Emulation. PhD thesis, Calgary, Alta.,
Canada, Canada, 2005. AAINR03870.

https://link.aps.org/doi/10.1103/PhysRevLett.67.661
https://link.aps.org/doi/10.1103/PhysRevLett.67.661
https://doi.org/10.1038/s41586-018-0200-5
https://link.aps.org/doi/10.1103/PhysRevLett.118.250502
https://link.aps.org/doi/10.1103/PhysRevLett.118.250502
https://link.aps.org/doi/10.1103/PhysRevLett.85.2010
https://doi.org/10.1088%2F1367-2630%2F18%2F5%2F055004
https://doi.org/10.1088%2F1367-2630%2F18%2F5%2F055004
https://doi.org/10.1093/astrogeo/atu126
https://doi.org/10.1093/astrogeo/atu126

BIBLIOGRAPHY 48

[19] Rob Knegjes and Julio Oliveira. Netsquid, 2018. URL https://netsquid.org/.

[20] D. Mahrenholz and S. Ivanov. Real-time network emulation with ns-2. In Eighth
IEEE International Symposium on Distributed Simulation and Real-Time Appli-
cations, pages 29–36, Oct 2004. doi: 10.1109/DS-RT.2004.34.

[21] A Pirker and W Dür. A quantum network stack and protocols for reliable
entanglement-based networks. New Journal of Physics, 21(3):033003, mar
2019. doi: 10.1088/1367-2630/ab05f7. URL https://doi.org/10.1088%

2F1367-2630%2Fab05f7.

[22] A. Sahu, A. Goulart, and K. Butler-Purry. Modeling ami network for real-time
simulation in ns-3. In 2016 Principles, Systems and Applications of IP Telecom-
munications (IPTComm), pages 1–8, Oct 2016.

[23] Elias Weingaertner, Florian Schmidt, Hendrik Lehn, Tobias Heer, and Klaus
Wehrle. Slicetime: A platform for scalable and accurate network emulation. 01
2011.

[24] Elias Weingärtner, Florian Schmidt, Tobias Heer, and Klaus Wehrle. Syn-
chronized network emulation: Matching prototypes with complex simula-
tions. SIGMETRICS Perform. Eval. Rev., 36(2):58–63, August 2008. ISSN 0163-
5999. doi: 10.1145/1453175.1453185. URL http://doi.acm.org/10.1145/

1453175.1453185.

https://netsquid.org/
https://doi.org/10.1088%2F1367-2630%2Fab05f7
https://doi.org/10.1088%2F1367-2630%2Fab05f7
http://doi.acm.org/10.1145/1453175.1453185
http://doi.acm.org/10.1145/1453175.1453185

	Introduction
	Summary
	Overview

	Quantum network programming
	CQC interface
	CQC Message Format

	Application frontend
	SimulaQron
	Register merging

	Example
	The application layer
	CQC message handler

	NetSquid
	Discrete event simulator
	Components
	Related work

	Design
	Simulation setup
	Quantum network emulation
	Possible implementations
	Time windows
	Real time scheduler
	Our solution
	Other optimizations and outlook

	Implementation
	Instructions
	Dynamic program

	Simulation manager

	Evaluation
	Correctness
	Speed

	Conclusion
	Bibliography

