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Abstract—This paper develops a hybrid decision-making
framework for autonomous pod-based railway systems, integrat-
ing Mixed-Integer Linear Programming (MILP) with a Discrete-
Event Simulation (DES) to manage dynamic and uncertain
operating conditions. Initial schedules are optimised using MILP
and then executed in DES, with re-optimisation triggered by
disruptions such as delays, carrier breakdowns, or network
failures. This event-driven feedback loop enables continuous
adjustment of plans, bridging the gap between static planning
and real-time operations. Validation on a toy case and the
Randstad network shows that dynamic re-optimisation signif-
icantly improves fulfillment rates and carrier utilisation while
mitigating the fragility of static schedules. The analysis reveals
how resilience is achieved through flexible delivery windows,
resource reallocation, and network redundancy, though often at
the cost of repositioning and delays. The results provide both
theoretical and practical insights, emphasising that digital re-
planning capabilities, fleet pre-positioning, and flexible service
standards are essential for building robust autonomous freight
systems.

Index Terms—Autonomous rail systems, discrete-event simula-
tion (DES), mixed-integer linear programming (MILP), disrup-
tion management, resilience, freight logistics.

I. INTRODUCTION

Intermodal transportation systems play a pivotal role in
enhancing the efficiency and sustainability of modern freight
distribution. By integrating different transport modes, these
systems can reduce transportation costs and CO2 emissions,
addressing environmental concerns while maintaining eco-
nomic viability. A key area of innovation is the improvement
of rail freight, which has faced challenges in flexibility and
reliability compared to road transport. One such innovation
is the development of autonomous wagons, or ”pods,” which
aim to significantly enhance the flexibility of rail operations
through a modular vehicle architecture. A pod consists of a
transport unit (TU) and a carrier unit (CU), as shown in image
1. These systems, central to projects like Pods4Rail [1], enable
individual carriers to join or detach from platoons, optimising
both resource utilisation and network capacity.

The core challenge in operating such a system lies in the
optimal assignment of carriers to transport units (TUs) and
the strategic repositioning of empty carriers to serve future
demand. Static optimisation methods, such as Mixed-Integer
Linear Programming (MILP), can generate highly efficient

Fig. 1. Autonomous Pod Rail: TU on Carrier Unit

baseline schedules under deterministic conditions. However,
these static plans are inherently fragile. They can quickly
become infeasible when faced with real-world operational dis-
ruptions, including carrier breakdowns, network link closures,
or unforeseen variations in demand [2]. The inability of static
models to adapt to dynamic events necessitates a more resilient
planning approach.

To address this, this paper proposes and evaluates a hy-
brid simulation-optimisation framework that integrates MILP
with Discrete-Event Simulation (DES) to enhance disruption
management in autonomous rail systems. The methodology
involves a concise process: conducting a targeted literature
review to establish a foundation, generating synthetic data to
reflect operational scenarios, and identifying key factors—such
as temporal, spatial, and operational constraints—affecting
carrier-TU assignments. A DES model is developed using
SimPy to simulate dynamic system behaviour, capturing events
like pod arrivals and carrier assignments. In contrast, an MILP
model optimises initial schedules and re-optimises them in
response to disruptions. Performance is assessed via KPIs
including efficiency, service reliability, and utilisation, with re-
sults systematically documented to provide actionable insights
[3]–[5]. This approach operates on an event-driven feedback
loop: the MILP generates an initial optimal plan executed in
the DES environment, pausing upon disruption to capture the
real-time system state, which informs a new adaptive plan.

The main contribution of this work is the development
and validation of this simulation-optimisation framework as
a practical tool for disruption management in autonomous rail



systems. By testing the system against a range of controlled
disruptions in both a small-scale and a large-scale network, this
research provides quantitative insights into system resilience,
identifies key operational trade-offs, and demonstrates the
critical role of service flexibility in maintaining performance
under uncertainty. This study bridges the gap between static
planning and dynamic operational execution, offering a robust
methodology for designing and managing the next generation
of autonomous freight logistics networks.

II. LITERATURE REVIEW

Within the broader context of the Pods4Rail [6] project,
significant advancements have been made in rail-based, inter-
modal freight transport systems. Liao, Han, and Saeednia [4]
have explored ways to enhance system flexibility through mod-
ular vehicle routing, focusing on the integration of autonomous
wagons in railway environments. Their research addresses key
operational challenges like platooning and routing efficiency,
demonstrating potential reductions in transportation costs and
improvements in capacity utilisation [7].

A. Carrier-TU Matching and Assignment

The optimisation of resource allocation in transportation
systems has been widely studied, particularly in ride-sharing,
autonomous vehicles, and railway logistics. While limited
research addresses autonomous pod railway systems, existing
studies provide valuable insights into key factors, optimisation
methods, and evaluation approaches that can be adapted to this
domain.

Tafreshian et al. (2020) [8] conducted a comprehensive
review of ride-matching algorithms in peer-to-peer (P2P)
rideshare systems, classifying them as one-to-one, one-to-
many, and many-to-many matching. This discussion of tem-
poral and spatial constraints aligns closely with challenges in
autonomous pod railway systems, where carriers must navigate
fixed railway networks and adhere to strict time windows.

Wu et al. (2008) [9] presented decentralised P2P shared
ride systems with explicit spatial constraints and geospatial
matching of riders and drivers. Ma et al. (2019) [10] introduced
heuristic algorithms to solve P2P ridesharing matching prob-
lems using recursive techniques based on feasibility constraints
and preference lists.

Bei and Zhang (2018) [11] developed a two-phase algorithm
using minimum weight perfect matchings that guarantees no
vehicle bears more than one request. This approach minimises
travel distances and operational expenses, providing a solution
framework adaptable to rail carrier-TU assignments.

B. Empty Carrier Relocation Strategies

Efficient relocation strategies are crucial for maintaining
adequate carrier availability while reducing operational costs.
In railway operations, Alfieri et al. [12] employed integer mul-
ticommodity flow models with transition graphs to optimise
train unit circulation. Peeters and Kroon [13] enhanced this
approach using branch-and-price methods for efficient train
unit allocation across lines.

For car-sharing systems, Illgen and Höck [14] conducted
a systematic review of Vehicle Relocation Problems (VReP),
supporting the effectiveness of mixed-integer programming
and multistage methods for relocation management. Clemente
et al. [15] modelled user-based relocation strategies using
Timed Petri Nets (TPN), focusing on load balancing in car-
sharing systems.

Weikl, Bogenberger & Cepolina et al. (2012) [16], [17]
investigated operator-based relocation methods and two-step
algorithms combining predictive offline planning with adap-
tive real-time adjustments. Ait-Ouahmed et al. [18] analysed
greedy, Tabu, and Iterated Local Search algorithms for optimal
vehicle distribution strategies.

C. Literature Gaps and Research Contributions

Eder et al. (2025) study a static, passenger-oriented POD
routing model and MILP/ALNS solution—optimising cus-
tomer arrivals and operator costs on Munich Zone M (≈17%
faster arrivals; ≈21% less base travel). In contrast, our frame-
work targets freight operations and is dynamic and disruption-
aware, coupling MILP with DES to re-optimise with lock-ins,
manage empty-carrier flows, and model platooning on rail-pod
systems [19].

While previous studies on ride-sharing, car-sharing, and
railway logistics have made valuable contributions, several
gaps remain. The absence of autonomous pod-based research
stems from the focus on existing road-based systems or
traditional railway logistics, raising novel issues like carrier-
TU assignment in hybrid road-rail scenarios.

Current relocation strategies are largely user-incentive
driven, which do not work for systems that move Transport
Units (TUs). This project focuses on developing system-driven
relocation strategies that do not rely on user incentives, ensur-
ing efficient resource utilisation and high service reliability.

Moreover, while platooning effects are well-studied for
road-based systems, they are nearly non-existent for modular
pod systems. The developed models incorporate platooning
to guarantee optimal carrier availability and scheduling when
multiple pods move simultaneously.

Finally, while Rolling Horizon approaches are not novel,
their application to carrier-TU assignment and relocation in
flexible modular pod rail systems represents a new contribu-
tion. This study implements Rolling Horizon as a primary tool,
integrated with MILP and DES, providing a robust framework
for dynamic decision-making and system evaluation under
various scenarios.

To clarify the relationship between related problem compo-
nents and autonomous pod-based rail system elements, Table
I provides a mapping of these components.

III. SYSTEM MODELING & HYBRID FRAMEWORK

This section details the underlying model of the autonomous
pod-based railway system and the integrated simulation-
optimisation framework developed for its analysis. The sys-
tem is conceptualised as a Discrete Event System (DES), a
modelling approach well-suited for capturing the dynamics of



TABLE I
MAPPING COMPONENTS TO POD CONTEXT

Component in Literature Equivalent in Pod Context

Car/Ride-Sharing
Car/Vehicle Carrier
User/Passenger Transport Unit (TU)
Station/Pickup-Drop-off Station

Railway Logistics
Rolling Stock (Train Unit) Carrier
Passenger/Goods Transport Unit (TU)
Station/Depot Station

Empty Rolling Stock
Empty Train Units Empty Carriers

shared mobility networks [2]. In a DES, the system’s state
changes only at discrete points in time in response to specific
events.

A. Overview of DES Logic

The algorithm structure of the Discrete Event Simulation is
shown in Algorithm 1. The DES initiates parallel processes
for all transport units (TUs) and carrier units (CUs). Each TU
follows a linear sequence: arrival at pickup, loading, loaded
departure, travel to delivery, and unloading. Concurrently, CUs
advance arc by arc in their itineraries, checking for assigned
TUs and platoon membership before departure (loaded/empty,
solo/platoon). Travel triggers intermediate events, with arrivals
logging deliveries and unloads at drop-offs or repositioning at
stations. The simulation advances event-by-event until com-
pletion, yielding a comprehensive event trace.

B. System Dynamics and State-Event Model

The core entities of the system are the Transport Units
(TUs), which represent the freight or cargo capsules, and
the Carrier Units (CUs), which are the autonomous, self-
propelled wagons that transport the TUs. The operational
lifecycle of a transport request involves a TU arriving at a
pickup station, waiting for an available CU, being loaded,
and then being transported to its destination. During transit,
CUs may travel solo or form platoons to enhance efficiency
before the TU is ultimately unloaded at its destination station,
completing the request.

When a transport request (TU) enters the system, it first
arrives at its designated pick-up station and remains there until
a carrier unit (CU) becomes available. The CU then drives
empty to that station (if it is not already positioned), waits for
the TU to be ready, and initiates the loading operation. Once
loading completes, the combined CU–TU pair departs imme-
diately and traverses the network along the predefined route
toward the delivery station. Travel occurs without interruption
until the pair reaches the drop-off point, where the TU remains
on board while unloading is performed. Upon completion of
unloading, the TU exits the system, and the CU departs the
station empty. The empty CU may then either proceed to
the next pick-up station, reposition itself in anticipation of
future requests, or enter maintenance if required. This basic

Fig. 2. Simulation flow process with platooning

sequence—arrival, wait, load, in-transit movement, unload,
and empty departure and captures the baseline operational
logic without any coordinated grouping (platooning) of CUs.

Figure 2 extends the baseline sequence by allowing carrier
units to travel in platoons both when empty and when carrying
a transport unit. After completing a loading or unloading
operation, each CU checks whether it should form or join
a platoon before its next departure. If platooning is desired
(platoon stations are predetermined and known from the MILP
output), a CU will either wait at its current station for other
CUs to arrive or move to a predefined station. Once at least
two CUs converge—whether they are empty or loaded—they
merge into a single platoon, synchronise their departure time
and speed, and traverse the network together along the same
route. The platoon remains intact until individual CUs reach
a station where one of two events occurs: (1) a loaded CU
arrives at its delivery station and unloads its TU, or (2) an
empty CU arrives at a designated split station (either to pick
up a TU or to further form a platoon). At that moment, the
group dissolves: unloaded CUs become available for new tasks
or maintenance, and loaded CUs (if still in transit) continue to
their final delivery station alone. By enabling both empty and
loaded platooning, this enhancement preserves the core steps
of arrival, loading, transit, unloading, and empty movement
while improving resource utilisation and travel efficiency.

To formally capture these dynamics, a state-event model is
defined for both entities. A state describes the operational con-
dition of a unit at any given moment (e.g., waiting, in-transit),
while an event is an instantaneous occurrence that triggers
a transition between states (e.g., arrival, loading completion).
The key states for TUs and CUs are summarised in Table II
and Table III, respectively.

To formally capture these dynamics, a state–event model is
defined for both entities. As illustrated in Figure 3, CU be-
haviour is non-linear: carriers can loop between staging, load-
ing/unloading, en-route travel, and optional platoon join/leave,
depending on the triggering events (E1–E10). In contrast,
the TU lifecycle in Figure 4 follows a linear pipeline—from
arrival to loading, transit, and unloading—which completes
the request. The state codes (C0–C8, T0–T4) correspond to



the definitions in Table III and Table II; arrows are labelled
by the event that causes the transition (e.g., unloading E9;
empty repositioning E10).

TABLE II
KEY STATES FOR A TRANSPORT UNIT (TU)

State Code Description

T0 At Station, waiting for a CU.
T1 Loaded onto a CU, ready for departure.
T2 In Transit towards its destination.
T3 Arrived at delivery station, awaiting unload.
T4 Delivered; journey complete.

TABLE III
KEY STATES FOR A CARRIER UNIT (CU)

State Code Description

C0 Idle and unassigned.
C2 In Transit with a TU (Solo).
C3 In Transit with a TU (Platoon).
C5 At Station, waiting for a task.
C6 Repositioning to another station (Empty, Solo).
C8 Out of Service (e.g., maintenance).

Fig. 3. Carrier Unit (CU) Event-State Transition Diagram

C. The Integrated DES-MILP Framework

While static optimisation can produce an optimal schedule,
it cannot respond to unforeseen events. To address this, a
hybrid framework that couples Mixed-Integer Linear Program-
ming (MILP) with DES was developed to enable dynamic
re-planning. The MILP acts as the decision-making core,
formulating carrier assignment, routing, and relocation as an

Fig. 4. Transport Unit (TU) Event-State Transition Diagram

optimisation problem under temporal and spatial constraints.
Its outputs provide a structured schedule of transport and
carrier movements, which are then translated into simulation-
ready inputs for the DES to capture system dynamics and
operational uncertainties [20]. This framework operates on an
event-driven feedback loop, as summarised in Algorithm 2 and
detailed below:

1) Initial Plan: An MILP solver first generates a globally
optimal baseline plan based on all known transport
requests, carrier availability, and network topology. This
plan dictates the precise assignment, timing, and routing
for all CUs.

2) Simulation: The DES environment executes this static
plan, simulating the movement of CUs and TUs through
the network event by event.

3) Disruption Trigger: During the simulation, a disruption
is introduced (e.g., a CU breakdown, a new TU request,
or an arc closure). This event invalidates the current
optimal plan.

4) System Snapshot and Lock-in: The DES immediately
pauses and generates a ”snapshot” of the current system
state. This includes the precise location and status of
every CU and TU. Any operations already in progress
are ”locked in” and allowed to complete to ensure
operational continuity.

5) Re-Optimisation : The system snapshot is fed back as
the initial condition to the MILP solver. The MILP then
re-optimises the remaining unassigned tasks and new
requests to generate a new, resilient recovery plan for



the rest of the time horizon.
6) Continuation: The DES resumes the simulation, exe-

cuting the new, adapted plan until the next disruption
occurs or the simulation ends.

This iterative process provides the flexibility required to
adapt dynamically to uncertainty and perform on-demand re-
optimisation, bridging the gap between static planning and
real-time operational execution.

IV. EXPERIMENTAL SETUP

To evaluate the performance and resilience of the proposed
framework, a series of simulation experiments was conducted.
This section details the quantitative performance metrics used
for evaluation and describes the two distinct case studies
designed to test the system under both controlled and complex
operational conditions.

A. Key Performance Indicators (KPIs)

We assess performance using three KPI groups: service ef-
fectiveness, resource efficiency, and a system-specific measure
for platooning.

1) Service Effectiveness:
• fulfillment Rate (%): Share of transport requests that

are completed within the simulation horizon (i.e., the TU
reaches its destination and is unloaded). Higher is better.

• Average Delivery Delay (time units): Mean delay of
completed requests, measured as actual delivery time
relative to the baseline plan. Reported over completed
requests only; missed jobs are reflected in the fulfillment
rate. Lower is better.

2) Resource Efficiency:
• Carrier Utilisation (%): Fraction of each carrier’s avail-

able time spent in productive states (loading, unloading,
in-transit with TU, or empty repositioning). Idle or wait-
ing time is excluded. Higher is better.

• Empty Travel Ratio (%): Portion of total carrier travel
time spent moving without a TU (repositioning). Indicates
deadheading. Lower is better.

• Average TUs per CU: Throughput per carrier over the
horizon—the total number of fulfilled requests divided
by the fleet size. Best compared at a fixed fleet size and
demand level. Higher is better.

3) System-Specific Performance:
• Platooning Rate (%): Share of carrier travel time that

occurs in coordinated platoons (two or more carriers
moving together). Reflects convoying effectiveness; may
trade off with delay or empty travel depending on network
conditions. Context-dependent.

B. Case Study 1: Toy Rail Network

A small-scale, four-station network with bidirectional links
was designed to serve as a controlled environment for initial
validation (Fig. 5). The network consists of three CUs, and
each station has a capacity of two CUs. The primary purpose
of this Toy Case was to verify the fundamental logic of

the DES-MILP feedback loop and to analyse the system’s
response to probabilistic disruptions without the confounding
variables of a large-scale network. Disruptions were modelled
as stochastic events, including CU departure delays (5-10%
probability of a 2-9 timestamp delay) and CU breakdowns
during loading (20% probability of a 100-150 timestamp
outage).

Fig. 5. The four-station Toy Rail Network used for initial validation.

C. Case Study 2: Randstad Rail Network

To assess system resilience under more realistic conditions,
a large-scale case study based on the railway network of the
Randstad conurbation in the Netherlands was implemented
(Fig. 6). This complex network includes 17 stations (9 des-
ignated as primary transfer hubs and 8 as routing nodes) and
represents a real-world operational environment. The purpose
of this case study was to evaluate the framework’s ability
to handle complex, cascading disruptions. A sequence of
deterministic disruptions was applied over a 40-timestamp
horizon to test the system’s adaptive capabilities. The case
study focuses on studies on various disruptions as shown in
Table IV

TABLE IV
DISRUPTIONS APPLIED IN THE RANDSTAD CASE STUDY

Disruption Type Analysis Type

TU Addition

Simultaneous TU addition
Non-simultaneous TU addition
Time window flexibility
Time bracket

CU Breakdown Single CU breakdown
Time window flexibility

Arc Removal Single arc removal

1) Single Disruption Type Analysis: The analysis begins
with individual disruption scenarios to establish baseline per-
formance impacts and system response characteristics.

• Transport Unit (TU) Addition Disruptions: The system
accommodates dynamic request arrivals at various time
points during simulation, including immediate additions
at simulation start and mid-simulation arrivals. When



new requests arrive, the system immediately triggers re-
optimisation to integrate these demands into the exist-
ing plan. The lock-in mechanism preserves all ongo-
ing carrier operations, ensuring that carriers currently
executing tasks continue their planned routes while the
MILP re-optimises the remaining unassigned requests and
newly arrived demands. This approach maintains opera-
tional continuity while accommodating dynamic demand
changes. The system also supports time bracket analysis,
where requests are added at different simulation times to
evaluate the impact of timing on system performance, and
time window flexibility analysis, where pickup and deliv-
ery windows are relaxed to assess the trade-offs between
fulfillment and punctuality. Specifically, two distinct TU
addition scenarios are analysed: (1) simultaneous addition
of three transport units at t=0, and (2) non-simultaneous
addition with one transport unit at t=0 and another at
t=25, enabling comparison of system performance under
different demand surge patterns.

• Carrier Unit (CU) Breakdown Disruptions: When
carrier units fail during simulation, the system imple-
ments a comprehensive lock-in strategy. All active carrier
operations are preserved and allowed to complete as
planned, while the failed carrier’s assigned tasks are im-
mediately dropped from the system. The re-optimisation
process then redistributes these dropped tasks among the
remaining operational carriers, considering their projected
availability times and current workload. This ensures that
the system maintains service continuity despite capacity
reduction. The system also supports time window flexi-
bility analysis for CU breakdown scenarios, where pickup
and delivery windows are relaxed to assess the system’s
ability to recover from capacity reductions under different
flexibility levels. Specifically, the analysis examines a
carrier unit breakdown occurring at t=5, evaluating the
system’s response to mid-simulation capacity reduction.

• Arc Removal Disruptions: The system handles both
permanent and temporary arc removals. For permanent
removals, the arc is unavailable throughout the entire
planning horizon, requiring all affected requests to be
rerouted through alternative paths. For temporary re-
movals, the arc becomes unavailable during specific time
intervals (e.g., from t=7 to t=17), after which it is restored
to the network. The lock-in mechanism preserves all
ongoing operations that do not depend on the removed
arc, while the re-optimisation process reroutes affected
requests through alternative network paths, adjusting
pickup and delivery windows as necessary to maintain
feasibility. This approach preserves operational continuity
while adapting to structural network changes.

2) Extended Analysis Scenarios: Building upon the single
disruption scenarios, the framework incorporates extended
analysis methodologies to provide deeper insights into system
behaviour under various operational conditions.

a) Time Window Flexibility Analysis: For both TU addi-
tion and CU breakdown scenarios, the system evaluates the im-
pact of time window flexibility on performance metrics. This
analysis involves systematically relaxing pickup and delivery
time windows by 0, 10, and 40 time units to assess the trade-
offs between operational flexibility and service quality. The
methodology enables evaluation of how increased flexibility
affects fulfillment rates, delivery delays, and overall system
efficiency under disruption conditions. Specifically, for TU
addition scenarios, two transport units are added at t=14,
and then time window flexibility is analysed, while for CU
breakdown scenarios, a carrier unit is broken at t=5, and then
time window flexibility is analysed to assess the system’s
recovery capabilities under different flexibility levels.

b) Time Bracket Analysis: The time bracket analysis fo-
cuses on TU addition scenarios, examining how the timing of
demand surges affects system performance. This methodology
involves adding transport units at different simulation time
points (t=0, t=10, t=20) to evaluate the system’s responsiveness
to demand changes occurring at various stages of the planning
horizon. The analysis provides insights into optimal timing
strategies for accommodating dynamic demand patterns.

3) Multi-Phase Disruption Scenarios: To evaluate system
resilience under complex operational conditions, the frame-
work incorporates multi-phase disruption scenarios that com-
bine multiple disruption types in sequence.

a) Sequential Disruption Combination 1: The first com-
bination scenario involves a sequential disruption pattern
where CU4 experiences a breakdown at t=11, followed by the
addition of TU15 at t=25. This scenario tests the system’s abil-
ity to handle cascading disruptions, where a capacity reduction
is followed by increased demand. The analysis evaluates how
the system adapts to the reduced capacity while simultaneously
accommodating new demand requirements.

b) Sequential Disruption Combination 2: The second
combination scenario represents a more complex multi-phase
disruption involving three distinct events: (1) permanent re-
moval of arc (1,3) at simulation start, (2) simultaneous addition
of TUs 4, 15, and 18 at t=0, and (3) CU6 breakdown at t=26.
This scenario tests the system’s resilience under simultane-
ous structural network changes, demand surges, and capacity
reductions. The analysis evaluates the cumulative impact of
multiple disruption types and the system’s ability to maintain
operational continuity under increasingly complex conditions.

V. RESULTS AND ANALYSIS

This section presents the key findings from evaluating the
DES-MILP framework’s resilience to disruptions in the Toy
Case (probabilistic disruptions) and the Randstad Case Study
(deterministic disruptions), highlighting the system’s perfor-
mance and recovery capabilities under varying conditions.

A. Toy Case: Performance under Probabilistic Disruption

The Toy Case evaluates the DES-MILP framework under
probabilistic disruptions across 200 simulation runs, establish-
ing a baseline for system resilience. Disruptions, including



Fig. 6. The Randstad Rail Network case study, based on the existing railway
system in the Netherlands.

breakdowns of carrier units (CUs) and transport units (TUs),
were applied probabilistically to reflect real-world uncertain-
ties.

For a representative case (Run 135), disruptions occurred
with a CU breakdown at time step 2, followed by a TU break-
down at time step 11. These events degraded performance,
reducing fulfilled requests from 5 in the baseline to 1 in the
disrupted scenario. Re-optimisation improved this to 3 fulfilled
requests, demonstrating partial recovery.

TABLE V
KPI SUMMARY FOR THE TOY CASE UNDER PROBABILISTIC DISRUPTIONS

(RUN 135).

KPI Baseline Disrupted Re-optimised

Average Delivery Delay N/A N/A 3.33
Fulfillment Rate (%) 100.00 25.00 75.00
Carrier Utilisation (%) 42.20 10.00 33.30
Empty Travel Ratio (%) 7.90 0.00 13.40
Platooning Rate (%) 0.00 0.00 3.70

The KPI summary in Table V shows substantial improve-
ments post-optimisation, with fulfillment rate rising from
25% to 75%, carrier utilisation from 10% to 33.3%, and
introduction of a 3.7% platooning rate, though at the cost
of a higher empty travel ratio (13.4%) due to repositioning.
Figure 7 illustrates CU time allocation, revealing complete
idleness for CU1 and CU2 in the disrupted case, with CU3
underutilised. Optimisation redistributed workload, restoring
CU1 to baseline-like balance and shifting CU3 toward repo-
sitioning to enable higher fulfillment.

Figure 8 illustrates the boxplot for 200 simulations. Across
all 200 runs, disruptions caused median fulfillment to drop to
around 60%, with high variance, while optimisation shifted it
to approximately 80%, approaching the 100% baseline. Carrier
utilisation followed a similar recovery pattern, though not fully
to baseline, and the empty travel ratio increased slightly in
optimised cases due to necessary repositioning trade-offs.

Error bars in 9 show mean fulfillment of 71.0% ± 16.8%
(optimised) versus 65.2% ± 24.3% (disrupted), indicating

Fig. 7. Carrier unit time allocation for Run 135 under baseline, disrupted,
and optimised scenarios.

Fig. 8. Distribution of fulfillment rate, carrier utilisation, and empty travel
ratio across 200 runs for disrupted and optimised cases. Baseline values are
shown as dashed lines.

reduced variability post-optimisation. Carrier utilization av-
eraged 35.8% ± 11.0% (optimized) and 28.9% ± 10.0%
(disrupted), with empty travel at 12.4% ± 10.6% (optimised)
and 9.8% ± 7.5% (disrupted).

Fig. 9. Errorbar plot of fulfillment rate, carrier utilisation, and empty travel
ratio across 200 runs for disrupted and optimised cases.

These results confirm the framework’s ability to mitigate
stochastic disruptions, restoring significant operational effec-
tiveness through resource reconfiguration, including platoon-
ing and repositioning, while highlighting trade-offs in effi-
ciency metrics.



B. Randstad Case Study

1) Single Disruption Type Analysis: This section evaluates
the DES-MILP framework’s resilience to single disruption
types, focusing on key performance indicators (KPIs) such
as carrier unit (CU) utilisation, fulfillment rate (%) and empty
travel ratio (%) with results derived from percentage differ-
ences and visual representations. The analysis begins with a
comparative assessment of fulfillment rate, carrier utilisation,
and empty travel ratio across four disruption scenarios, fol-
lowed by a detailed examination of CU utilisation patterns.

TABLE VI
PERCENTAGE DIFFERENCE OF THE RE-OPTIMISED SCENARIO FROM THE
BASELINE AND THE DISRUPTED CASE (SINGLE DISRUPTION ANALYSIS)

KPI Name Baseline Disrupted

Simultaneous TU Addition
Fulfillment Rate (%) -12.00 5.00
Carrier Utilization (%) -2.30 -2.30
Empty Travel Ratio (%) -3.00 -3.00

Non-simultaneous TU Addition
Fulfillment Rate (%) -5.88 5.88
Carrier Utilization (%) -3.00 -3.00
Empty Travel Ratio (%) -1.00 -1.00

CU Breakdown
Fulfillment Rate (%) -6.67 6.67
Carrier Utilization (%) 8.50 8.90
Empty Travel Ratio (%) 0.00 -0.80

Arc Removal
Fulfillment Rate (%) 0.00 13.33
Carrier Utilization (%) -6.30 0.00
Empty Travel Ratio (%) -2.00 -1.90

Table VI quantifies the percentage changes in KPIs for
the re-optimised scenario relative to baseline and disrupted
conditions. For simultaneous TU addition, the fulfillment rate
declines by 12% from the baseline but recovers by 5% com-
pared to the disrupted case, accompanied by minor reductions
in carrier utilisation (-2.3%) and empty travel ratio (-3.0%).
In the non-simultaneous TU addition scenario, the fulfillment
rate decreases by 5.88% from the baseline, improves by 5.88%
over the disrupted case, with slight decreases in utilisation (-
3.0%) and empty travel (-1.0%). The CU breakdown scenario
reveals a 6.67% reduction in fulfillment rate from the baseline,
a 6.67% improvement over the disrupted case, with notable in-
creases in carrier utilisation (8.5-8.9%) and minimal variation
in empty travel ratio (0.0% to -0.8%). Finally, the arc removal
scenario maintains baseline fulfillment, achieves a 13.33%
improvement over the disrupted case, and exhibits a 6.3%
utilisation drop from the baseline alongside minor reductions
in empty travel (-1.9% to -2.0%), reflecting effective re-
optimisation.

This performance trend is visually supported by Figure 10,
which illustrates CU time allocation under the CU break-
down scenario. The figure contrasts baseline (dark grey), re-
optimised (green), and breakdown (orange) conditions, high-
lighting significant idle time (e.g., 100% for CU 4) during
the breakdown. Re-optimisation redistributes workload, en-
hancing active utilisation for CUs such as CU 5 and CU 7,

Fig. 10. Carrier Utilisation for CU Breakdown disruption

demonstrating the framework’s adaptive capacity. Similarly,
Figure 11 presents CU utilisation composition for the arc
removal scenario, comparing baseline (grey) and re-optimised
(light green) active and idle states. Utilisation shifts range
from a -35.0% decrease (CU 1) to a +7.5% increase (CU 5),
underscoring the re-optimisation’s effectiveness in reallocating
resources across the network.

Fig. 11. Carrier Utilisation for CU Breakdown disruption

2) Extended Analysis Scenarios: This section extends the
evaluation of the DES-MILP framework by investigating the
effects of time brackets and time window flexibility on system
performance under specific disruptions, namely TU addition
and CU breakdown. The analysis focuses on percentage dif-
ferences in key performance indicators (KPIs): fulfillment rate,
carrier utilisation, and empty travel ratio, for the re-optimised
scenario relative to baseline and disrupted conditions, as
visualised in the following figures.

Figure 12 illustrates the percentage differences across vary-
ing time brackets (t=0, 10, 20, 30) for TU addition disruptions.
At t=0 and t=10, the fulfillment rate decreases by 11.10%
from the baseline but improves by 5.60% over the disrupted
case, with carrier utilisation showing a 6.00% reduction at
t=0 and a 12.00% increase at t=10, while empty travel ratio
exhibits a 5.70% decline at t=0 and a marginal 0.10% rise at
t=10. For later brackets (t=20 and t=30), the fulfillment rate
drops by 16.70% from the baseline with no improvement over
the disrupted case, carrier utilisation increases by 2.00% at
t=20 and remains unchanged at t=30, and empty travel ratio
decreases by 1.30% at t=20 with no change at t=30. These
trends suggest that earlier time brackets facilitate better recov-



Fig. 12. Percentage Difference of the Re-optimised Scenario from the
Baseline and the Disrupted Case (Time bracket analysis for TU Addition)

ery in fulfillment and utilisation, whereas later interventions
yield limited benefits, highlighting the importance of timely
re-optimisation in mitigating TU addition impacts.

Fig. 13. Percentage Difference of the Re-optimised Scenario from the
Baseline and the Disrupted Case (Time window flexibility analysis for TU
Addition)

Building on this, Figure 13 examines time window flex-
ibility (t=0, 10, 40) under TU addition disruptions. At t=0,
the fulfillment rate declines substantially by 24.00% from the
baseline and 13.64% from the disrupted case, with carrier
utilisation reducing by 2.97% in both comparisons, contrasted
by a 24.74% increase in empty travel ratio. At t=10 and t=40,
the fulfillment rate decreases by 12.00% from the baseline
with no change relative to the disrupted case, while carrier
utilisation rises by 14.85% in both, and empty travel ratio in-
creases by 23.71% at t=10 and 10.31% at t=40. This indicates
that greater flexibility in time windows enhances utilisation
but may elevate empty travel as a trade-off, with diminishing
returns beyond moderate flexibility levels, underscoring the
need for balanced parameter tuning in dynamic environments.

Shifting to CU breakdown disruptions, Figure 14 depicts
percentage differences across time window flexibility levels
(t=0, 10, 40). At t=0, the fulfillment rate reduces by 13.00%
from the baseline with no improvement over the disrupted
case, carrier utilisation falls by 15.85% and 15.25% respec-
tively, and the empty travel ratio shows no baseline change
but a 6.40% decrease from disrupted. At t=10, fulfillment
decreases by 7.00% from baseline but improves by 6.90%
over disrupted, with utilisation reductions of 8.45% and 7.80%,
and empty travel remains unchanged from baseline but down

Fig. 14. Percentage Difference of the Re-optimised Scenario from the
Baseline and the Disrupted Case (Time window flexibility analysis for CU
Breakdown)

6.40% from disrupted. Notably, at t=40, fulfillment matches
the baseline and improves by 14.94% over disrupted, util-
isation increases by 1.23% and 1.95%, while empty travel
declines by 15.38% and 20.80%. These results demonstrate
that increased time window flexibility significantly bolsters
recovery from CU breakdowns, particularly in fulfillment and
utilisation, though at the potential cost of reduced empty travel
efficiency, affirming the framework’s adaptability in handling
resource constraints.

3) Multi-Phase Disruption Scenarios: This section inves-
tigates the DES-MILP framework’s robustness under multi-
phase disruptions, combining CU breakdowns with TU ad-
ditions and arc removals. The analysis quantifies percentage
differences in key performance indicators (KPIs)—fulfillment
rate, carrier utilisation, and empty travel ratio—for re-
optimised scenarios relative to baseline and disrupted condi-
tions, supplemented by detailed carrier unit (CU) utilisation
patterns.

TABLE VII
PERCENTAGE DIFFERENCE OF THE RE-OPTIMISED SCENARIO FROM THE

BASELINE AND THE DISRUPTED CASE (MULTIPLE DISRUPTIONS)

KPI Name Baseline Disrupted

CU Breakdown + TU Addition
Fulfillment Rate (%) -6.25 12.50
Carrier Utilization (%) -0.80 -0.40
Empty Travel Ratio (%) -2.60 -3.50

Arc Removal + CU Breakdown + TU Addition
Fulfillment Rate (%) -16.67 16.67
Carrier Utilization (%) -2.40 5.80
Empty Travel Ratio (%) -5.30 -3.10

Table VII summarises the KPI impacts across two multi-
disruption combinations. For CU breakdown combined with
TU addition, the fulfillment rate decreases by 6.25% from
the baseline but improves by 12.50% over the disrupted case,
with minor reductions in carrier utilisation (-0.80% from
baseline, -0.40% from disrupted) and empty travel ratio (-
2.60% from baseline, -3.50% from disrupted). In the more
complex scenario of arc removal plus CU breakdown and TU
addition, fulfillment rate drops by 16.67% from the baseline
yet recovers by 16.67% relative to disrupted conditions; carrier



utilisation declines by 2.40% from baseline but rises by 5.80%
over disrupted, while empty travel ratio decreases by 5.30%
from baseline and 3.10% from disrupted. These results indicate
that while multi-phase disruptions amplify performance degra-
dation, re-optimisation yields substantial recovery, particularly
in fulfillment, though at varying costs to efficiency metrics.

Fig. 15. Carrier Utilisation for multiple disruptions

Complementing this, Figure 15 visualizes CU utilization
across individual carriers (CU1 to CU10) under baseline,
two-disruption (CU breakdown + TU addition, shown in
blue for active and light blue for idle), and three-disruption
(arc removal + CU breakdown + TU addition, in green for
active and light green for idle) scenarios, with orange bars
denoting full idleness (100%) during breakdowns. Compared
to baseline (dark grey active, grey idle), the two-disruption
case reveals reduced active utilisation for most CUs (e.g.,
CU1 at approximately 40%, CU4 at 60%) alongside increased
idleness, reflecting resource strain from compounded events.
The three-disruption scenario exacerbates this, with further
drops in active time (e.g., CU5 near 20%, CU9 at 30%)
and heightened idleness, yet re-optimisation mitigates some
losses by redistributing workloads, as evidenced by slight
active utilisation gains in CUs like CU3 and CU7 relative
to the disrupted baseline. Overall, the figure underscores
the framework’s capacity to adapt to escalating disruptions,
though cumulative effects progressively challenge utilisation
balance, emphasising the need for proactive multi-phase re-
covery strategies.

VI. CONCLUSION

This research set out to evaluate and enhance the operational
performance of autonomous pod-based railway systems by
integrating Mixed-Integer Linear Programming (MILP) with
Discrete-Event Simulation (DES) for dynamic evaluation and
re-planning. The primary objective was to assess system
resilience and the effectiveness of this adaptive strategy under
operational disruptions. Analyses on a simplified Toy Case and
a large-scale Randstad network across diverse failure scenarios
yield the following consolidated insights.

• Dynamic re-planning is a reliable recovery lever. On
the Toy Case, a representative run shows fulfillment
rising from 25% (disrupted) to 75% (re-optimised), with
carrier utilisation increasing from 10% to 33.3% and

platooning reappearing (≈ 3.7%). Over 200 runs, re-
optimisation shifts the median fulfillment from ∼60%
(disrupted) towards ∼80% (near 100% baseline) and
reduces variability—evidence that the loop is consistently
corrective rather than case-specific.

• Resilience entails clear, quantifiable trade-offs. Service
recovery is achieved by reallocating work and tolerating
modest efficiency losses. On the Toy Case, mean car-
rier utilisation increases post re-optimisation (35.8% ±
11.0% vs. 28.9% ± 10.0%), while the Empty Travel
Ratio ticks up (12.4% ± 10.6% vs. 9.8% ± 7.5%),
reflecting deliberate deadheading to restore service. In
Randstad, similar patterns appear: utilisation generally
climbs relative to the disrupted state, while empty travel
stays flat or slightly rises as the fleet reconfigures.

• Single disruptions are recoverable; arc removals are
structurally limiting. In Randstad single-shock scenarios
(e.g., TU additions, CU breakdown), re-optimisation con-
sistently lifts fulfillment by ∼+5–13.33% over the dis-
rupted state and rebalances CU workloads. Arc removal
is the hardest to offset: fulfillment improves vs. disrupted
(∼+13.33%) but cannot fully return to baseline utilisation
(∼–6.3%), revealing hard network-topology limits that
optimisation alone cannot erase.

• Time-window flexibility is a powerful enabler. Al-
lowing moderate slack in delivery windows after a CU
breakdown returns fulfillment to (or above) baseline (e.g.,
∼+14.94% vs. disrupted), nudges utilisation upward, and
cuts empty travel markedly (about –15% vs. baseline
and –21% vs. disrupted). Small contractual flexibilities
therefore convert directly into operational robustness.

• Compound disruptions remain manageable—up to
a point. Under sequential disruptions, the framework
still yields clear gains over the disrupted state even if
baseline levels are not always reachable (e.g., ∼+12.50%
fulfillment recovery for CU breakdown + TU addition;
∼+16.67% in a triple disruption with arc removal). Work-
load redistribution is visible at the asset level: failed CUs
go idle while healthy units absorb uneven but stabilising
loads.

A. Industrial, Policy, and Managerial Insights

a) Policy directions: Policymakers should allow a small
amount of delivery-window flexibility. Even a little slack
helps raise post-disruption fulfillment, though it may reduce
punctuality. Price this clearly with two service levels (tight
vs. flexible windows) and set a maximum allowed lateness for
each level. Encourage early TU bookings with booking cut-
offs and small discounts or credits. Treat digital re-planning
as basic resilience infrastructure: set minimum standards such
as a maximum time to produce a new plan, an audit trail
of decisions, and certified training for control-room staff.
Because losing an arc puts a hard limit on recovery, invest
in backup routes—loops and short detours—on fragile, high-
volume corridors, supported by scenario-based cost–benefit
analysis [12]. Finally, require a standard public report so



results are comparable: fulfillment, Average Delay, Carrier
Utilisation, Empty Travel Ratio, and Platooning Share from
event-coded logs.

b) Managerial Implications and Operational Guidance:
Managers should write a simple re-optimisation playbook and
use it by default. Re-optimise when a breakdown, late TU,
or arc closure occurs; also re-optimise at a fixed rhythm (for
example, every 5–10 minutes). Define clear escalation rules
when shocks stack up. Keep a small standby buffer (think
N−1) and stage carriers at merge or transfer nodes to keep
platoons and cut empty moves. Offer two products: Premium
(tight times) and Flexible (wider times with better fulfillment
under disruption). Steer demand with early-booking incentives
and, if needed, surcharges or cut-offs for late requests. Watch
workload balance at CU level; if a few units do most of the
work, rotate or rebalance. Prepare detour playbooks for critical
OD pairs and practise them with the infrastructure manager.
Run a live KPI dashboard (fulfillment, Delay, Utilisation,
Empty Ratio, Platooning) with thresholds that automatically
trigger a re-optimisation cycle when limits are crossed [14].

B. Contributions, Limitations and Future Research

a) Contributions: This work delivers a practical, event-
driven re-optimisation loop for autonomous pod rail by tightly
coupling DES (execution) with MILP (planning). Key contri-
butions are:

• Integrated DES–MILP recovery loop: A rolling re-
optimisation with clear lock-in rules that bridges static
plans and dynamic execution, enabling fast recovery
when disruptions occur.

• Formal state–event model and KPI protocol: TU/CU
state–event definitions with event-coded logs that make
fulfillment, delay, utilisation, empty travel, and platooning
reproducible and comparable across runs.

• Disruption design and evidence: A structured set of
shocks (TU additions, CU breakdowns, arc removals; sin-
gle and sequential) showing consistent service recovery
and revealing service–efficiency trade-offs.

• Policy/managerial levers validated: Clear effects of
bounded time-window flexibility, plus operational doc-
trines (lock-ins + rolling re-optimisation) that improve
resilience.

• Demonstration on two scales: A Toy Case (200-run
statistics) and a large Randstad network, including pla-
tooning representation and empty-carrier relocation be-
haviour.
b) Limitations and Future Research: While the frame-

work is robust, several limits suggest next steps:
• Data realism: Results are based on synthetic data;

validate with real demand traces, operational logs, and
observed disruption patterns.

• Stochasticity and capacity: Extend from determinis-
tic travel/handling times to stochastic models; add sta-
tion/track capacity and queueing effects.

• Horizon and scale: The current horizon (40 time steps)
limits long-run effects; benchmark run-times and scala-

bility on larger networks and longer horizons, exploring
decomposition or parallelisation.

• Objectives and metrics: Add cost, energy, and emissions
to the KPIs; study multi-objective trade-offs and pricing
of flexibility in SLAs.

• Proactive strategies: Evaluate pre-positioning, standby
buffers, predictive triggers, and learning-based (e.g., RL)
re-planning policies alongside the MILP–DES loop.

• Design of lock-ins and triggers: Test alternative lock-
in rules and re-optimisation trigger policies to quantify
robustness across operating policies.

• Multi-actor coordination: Model opera-
tor–infrastructure interactions for detour design and
redundancy planning; study incentive schemes for early
TU commitments.

In conclusion, coupling optimisation with simulation pro-
vides a practical, interpretable pathway to resilient autonomous
freight operations. The framework not only evaluates per-
formance under stress but actively improves it by triggering
immediate re-optimisation, exploiting limited schedule slack,
and revealing when structural constraints (e.g., arc removals)
require network redundancy beyond algorithmic recovery.
These findings suggest three operating guidelines: (i) trigger
automated re-optimisation at disruption onset, (ii) systematize
limited time-window flexibility in SLAs, and (iii) invest in
routing redundancy where topology is fragile.
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Algorithm 1 Overview of DES logic
Require: tu data: list of transport-unit records
Require: cu data: list of carrier-unit records
Require: platoon arcs: set of (s1, s2, t0) where platooning

occurs
Ensure: trace ← []

1: procedure MAIN
2: for all tu ∈ tu data do
3: SPAWN TU PROCESS(tu)
4: end for
5: for all cu ∈ cu data do
6: SPAWN CU PROCESS(cu)
7: end for
8: SIMULATEUNTILALLDONE
9: return trace

10: end procedure

11: function TU PROCESS(tu)
12: wait until tu.pickup time
13: log E1: “TU arrives at station”
14: wait tu.load time
15: log E4: “load”
16: log E5: “depart loaded”
17: wait tu.delivery time - tu.pickup time
18: log E8: “arrive delivery”
19: wait tu.unload time
20: log E9: “unload”
21: end function

22: function CU PROCESS(cu)
23: Initialise CU state
24: log E2: “CU becomes available”
25: log E3: “CU arrives at start”
26: for all arc ∈ cu.itinerary do
27: (s1, s2, t0, dur) ← (from, to, start time,

travel time)
28: assignedTU ← (is there a TU on (s1 → s2, t0)?)
29: inPlatoon ← (s1, s2, t0) ∈ platoon arcs
30: wait until t0
31: if assignedTU then
32: log E4: “load TU”
33: log E5: “depart loaded” (solo or platoon if

inPlatoon)
34: else if not assignedTU then
35: log E10: “depart empty” (solo or platoon if

inPlatoon)
36: end if
37: wait dur
38: if assignedTU and this is the TU’s drop-off arc

then
39: log E8: “arrive delivery”
40: log E9: “unload”
41: else if inPlatoon and next arc not in platoon arcs

then
42: log E7: “leave platoon” (solo or at station)
43: else
44: log E3: “arrive at station” (repositioning)
45: end if
46: end for
47: end function

https://pods4rail.eu/
https://pods4rail.eu/


Algorithm 2 Sequential Disruption Framework for DES-MILP
Integration
Require: Disruption configuration D =
{(d1, t1), (d2, t2), . . . , (dn, tn)}, Total horizon T

1: Extract baseline MILP inputs from case study
2: Set topt = 0

3: for all i in D do
4: ti ← disruption time
5: if ti = topt then
6: Apply disruption logic to inputs at t = topt
7: Prepare disrupted MILP inputs
8: Run MILP optimisation to generate plan file (.pkl)
9: ti+1 ← next disruption time

10: if ti+1 exists then
11: Simulate DES from topt to ti+1 with lock-in

method
12: Receive Excel output from topt to ti+1

13: Extract MILP inputs at disruption time ti+1

14: topt ← ti+1

15: continue
16: else
17: Simulate DES from topt to T without lock-in
18: Generate Excel output from topt to T
19: end if
20: else
21: Run MILP optimisation to generate plan file (.pkl)
22: Simulate DES from topt to ti with lock-in method
23: Receive Excel output from topt to ti
24: Extract MILP inputs at disruption time ti
25: Apply disruptions at t = ti
26: Run disrupted MILP from ti to T to generate plan

file (.pkl)
27: ti+1 ← next disruption time
28: if ti+1 exists then
29: Simulate DES from ti to ti+1 with lock-in

method
30: Receive Excel output from ti to ti+1

31: Extract MILP inputs at disruption time ti+1

32: topt ← ti+1

33: continue
34: else
35: Simulate DES from ti to T without lock-in
36: Generate Excel output from ti to T
37: end if
38: end if
39: end for

40: Aggregate performance metrics across all simulation seg-
ments

41: Calculate system resilience indicators
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