

Delft University of Technology

Modernizing a Security Alarm System

Spinellis, Diomidis

DOI
10.1109/MS.2025.3539364
Publication date
2025
Document Version
Final published version
Published in
IEEE Software

Citation (APA)
Spinellis, D. (2025). Modernizing a Security Alarm System. IEEE Software, 42(3), 18-21.
https://doi.org/10.1109/MS.2025.3539364

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MS.2025.3539364
https://doi.org/10.1109/MS.2025.3539364

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

18	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY �

Editor: Gerard J. Holzmann
Nimble Research
gholzmann@acm.org

ADVENTURES CODE

0740-7459 © 2025 IEEE. All rights reserved, including rights for text and
data mining, and training of artificial intelligence and similar technologies.

ADVENTURES IN CODE Editor: Diomidis Spinellis
dds@aueb.gr

IN CONTRAST TO physical objects
and living things, software doesn’t
deteriorate with the passage of time.
While we age and our shoes fall
apart, digital storage ensures that
the software’s bits stay immutable.
And yet, software needs substan-
tial maintenance over time, owing
to changes in its environment.1 Ad-
vancing technology and new require-
ments prompt us to modernize the
software to keep it relevant. Here,
I show how these changes happen
in practice by describing the evolu-
tion and modernization of a burglar
alarm security system I first devel-
oped a quarter-century ago. All code
and its changes are available as open
source software at https://github.
com/dspinellis/Kerberos.

A burglar alarm system receives
its input over diverse sensors, such
as reed switches placed on windows
or doors, infrared or microwave de-
tectors looking over entire rooms,
and photoelectric beams covering
passages. A control panel processes
these signals and when it detects
an intrusion, it can sound sirens or
bells and notify the owners or the
authorities.

In the fall of 2000, I developed
an alarm’s control unit as part of

an experiment to integrate several
home automation functions on a
single system.2 The platform was a
secondhand IBM PC with a leisurely
clock speed of 100 MHz and 64 MB
of RAM running the FreeBSD op-
erating system (OS). For the alarm
input and output (I/O), I used an in-
dustrial automation peripheral card,
for which I wrote a barebones (poll-
ing-only) kernel-level device driver. I
also built a printed circuit board to
interface the card’s 5-V I/O signals
to the alarm’s sensors and actuators
via opto-isolators and relays. For
performance reasons, I implemented
the alarm’s control software in the
C programming language. To sim-
plify the alarm system’s configura-
tion, I developed a domain-specific
language (DSL) that models its op-
eration as a state machine and al-
lows the specification states, event
transitions, and corresponding ac-
tions. For example, a set of transi-
tions specify the following: when a
“leave home” command is entered,
wait for the main door to open and
close, and then enter the “armed”
state. Actions can make sensors ac-
tive, sound sirens, or send out notifi-
cations. A small Perl script compiled
the DSL into performant C code.

Basing the alarm system on a full-
fledged computer and a DSL rather
than a microcontroller, as was the

case with the commercial units of
the time, allowed me to provide sev-
eral functions that were not typically
available in proprietary systems.
These included sophisticated rules
for distinguishing home members
from intruders, automation scenar-
ios for arming and disarming, and
several types of intruder notifica-
tions. Later, I added further integra-
tions, such as lowering the central
heating’s thermostat when the occu-
pants are absent.

In 2016, I realized that the system
was nearing the end of its life. The
OS release I was using was no longer
maintained, modern releases could
not run on its hardware, and getting
spare parts in the event of a hard-
ware failure would be tricky. Conse-
quently, I decided to port the system
on a modern platform, namely a
Raspberry Pi: a small inexpensive
single-board computer. This had the
advantage of low power consump-
tion, integrated I/O ports, while
still running a powerful OS (Linux).
Thanks to the alarm’s configura-
tion via a DSL, only one C control
file needed substantial changes. In
total, from the system’s 13 files and
1,039 lines, I only changed four files,
removing 115 lines and adding 60
new ones. A small upgrade in 2022
involved the transition to a rack
mounted chassis, a more powerful

Modernizing a Security
Alarm System
Diomidis Spinellis

Digital Object Identifier 10.1109/MS.2025.3539364
Date of current version: 11 April 2025

mailto:dds@aueb.gr
https://github.com/dspinellis/Kerberos
https://github.com/dspinellis/Kerberos
https://orcid.org/0000-0003-4231-1897

ADVENTURES IN CODE

	 MAY/JUNE 2025 | IEEE SOFTWARE � 19

Raspberry Pi model, and the con-
sequent required change of the em-
ployed I/O library.

Iteration Number Four
This year I decided the stars had
aligned in a way that would al-
low me to modernize the system in
two important ways. The first was
to replace its existing interface that
worked by creating and monitoring
files on disk with the well-estab-
lished Representational State Trans-
fer (REST) interface. A REST API
(application programming interface)
would make it easier to monitor and
control the system from diverse cli-
ents and applications and to provide
a more interactive web interface.
The second was to monitor sensors
through interrupts rather than poll-
ing—a tricky-to-implement feature
I had put off from the system’s in-
ception. The polling-based method
for monitoring some external in-
put involves the software running a
loop, continuously checking the in-
put device’s state. This is inefficient,
because the software continuously
performs some action. In my case,
over a period of 217 days the alarm
control program (daemon) spent
about 10 CPU days mostly on poll-
ing. The needlessly consumed power
reduces the amount of time the
alarm can run on the backup power
supply. Depending on the time
waited between successive checks
(needed to reduce CPU load), polling
can also involve substantial latency;
one second in my case.

A better way to monitor I/O in-
volves hardware interrupts. Under
this method, the hardware can be
setup to execute some instructions
whenever an event occurs (e.g., a
sensor trigger). Thus, the software
can be idle most of its time, waiting
for an interrupt. Typically, interrupts

are handled at the layer of the OS,
which provides higher-level abstrac-
tions via APIs. User programs inter-
face with this facility in two ways.
The most common one involves sub-
mitting an I/O operation that blocks
the program until the OS completes
it (blocking I/O). The other involves
submitting a nonblocking I/O re-
quest that will notify its completion
asynchronously—through a polled
event or a signal. Higher-level li-
braries use this interface to support

a callback function that will be in-
voked when the I/O request com-
pletes. This so-called asynchronous
I/O has been popularized by Node.
js, React.js, and other JavaScript
frameworks.

In the case of the alarm system,
although both versions of the hard-
ware I used supported interrupts, I
never invested the effort needed to
implement it. In the case of the origi-
nal hardware controller, I would
need to write a much more complex
device driver, while for the Rasp-
berry Pi, I considered it a waste to
invest more effort in the alarm’s C
language implementation, which was
already beginning to appear arcane.

The enablers for implementing
both features were Python’s pack-
ages that support interrupt-based
I/O and the provision of a REST-
ful web server interface. Porting
the alarm control system from C to
Python would allow me to kill two

birds with one stone. It would make
the system available in a more fea-
ture-full and popular ecosystem,
while also allowing me to implement
the two features I wanted.

A New Design
When replacing a legacy system, the
challenge is to retain the knowledge
embedded in its code.3 Fortunately,
in my case this was mostly contained
in the DSL file. As this had served
me well over the years, I decided to

retain it, extend it, and base the new
design around it.

Starting from the DSL file pro-
cessing, I continued concurrently
building and designing the system
in a bottom-up fashion. Every time
I saw that the existing design was
not serving its purpose I refactored
it accordingly. For instance, the
event queue was initially part of the
state transition module, which was
also importing functionality from
the port handling module. How-
ever, once I started handling input
events, it became obvious that port
handling would also need to access
the event queue, introducing a cy-
clic dependency. Consequently, I ab-
stracted the event queue into a small
separate module.

To avoid the cost and complexity
of devising the required data abstrac-
tions in C, the original code handled
events by compiling the DSL-speci-
fied actions and state transitions into

Typically, interrupts are handled at
the layer of the OS, which provides
higher-level abstractions via APIs.

ADVENTURES IN CODE

20	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

one C switch statement for each state,
like the following:

static void
proc_ST_wait_for_door_open(void)
{
   syslog(LOG_INFO, “Waiting for door open”);
   for (;;) {
    switch(get_event()) {
    case EV_ActiveSensor:
      state = ST_door_open;
      return;

Python’s class support allowed
me to abstract the representation of
states into objects, each with its ac-
tions and transitions tied to it. This
clarified the state machine logic by
moving it from the obscurity of the
DSL compiler into an explicit loop:

while cls.state.get_name()! = “DONE”:
  if not cls.state.has_direct_transition():
   # Block until an event is available
   event = event_queue.get()
  else:
   # Execute entry actions
   event = None
  new_state_name = cls.state.process_event(event)
  new_state = cls.get_instance_by_name(
   new_state_name)
  if new_state! = cls.state:
   cls.state = new_state
   cls.state.enter()

I implemented the REST interface
with Python’s Flask package. Because
the Flask server lacks many features re-
quired for production use, I restricted
its access to a production-quality

web server, which handles transport
layer security and access control. The
Flask server runs on a separate Python
thread, allowing the (almost) concur-
rent handling of REST requests with
other alarm handling tasks. (Python’s
threads don’t offer preemptive multi-
tasking but allow switching between
them when waiting for I/O, which is
exactly what is needed here.) Route
decorators simplified request han-
dling, as can be seen in the following

excerpt implementing the /state REST
HTTP request:

@app.route(“/state”, methods=[“GET”])
def rest_status():
  return jsonify(
   {
    “state”: State.get_state().get_name(),
   }
 )

I also handled the blocking reads
of sensor raw edge transition events
through another thread. This waits
for an I/O event to occur, checks
whether the sensor is currently asso-
ciated with an event, e.g., an active
or a delayed sensor event, and then
queues the corresponding event for
further processing. The following
code excerpt illustrates this:

while True:
  # Blocking read of sensor level changes
  for event in request.read_edge_events():
   port = get_instance_by_bcm(
    event.line_offset)

   event_name = port.get_event_name()
   if event_name:
    event_queue.put(event_name)

While coding I looked for opportu-
nities to exploit Python’s features. One
major change involved the addition to
the DSL file of the hardware configura-
tion, which was previously hard-coded
in C. This was enabled by defining a
base class for I/O ports and subclasses
for sensor and actuator objects. Another
improvement offered a facility for incor-
porating and executing Python code in
the DSL file. This could be easily run
in the correct context (that of the state
transition engine module) by means of
Python’s eval() function supplied with
the module’s dictionary. These changes
decoupled the dependency of the legacy
state transition engine on the hardware
interface and other APIs.

Once the implementation stabi-
lized, I automated code formatting
with the Black tool and introduced
static analysis with Pylint. Although
early in my career I disliked auto-
matic code formatters, preferring pre-
cise manual formatting, I’ve come to
value not wasting mental energy on it.
I enforced both with a locally run pre-
commit hook and with continuous in-
tegration checks via GitHub Actions. I
didn’t put these in place from the start,
because while I find that automated
code checks act as valuable safety rail-
ings when a project is relatively stable,
at its beginning their demands can
be distracting, impeding prototyping,
rapid progress, and experimentation.

Obligatory GenAI Section
In common with almost everything
I do nowadays, I used extensively
generative AI (ChatGPT 4o) as an
assistant. Through more than 150
prompts, I got advice regarding Py-
thon packages to use, coding patterns,
APIs, execution errors, suggestions

When replacing a legacy system, the
challenge is to retain the knowledge

embedded in its code.

ADVENTURES IN CODE

	 MAY/JUNE 2025 | IEEE SOFTWARE � 21

for the dynamic injection of im-
ports, Pylint fixes, and even a cou-
ple of complete code segments. You
can find the complete interaction log
shared online at https://chatgpt.com/
share/679cd35b-8088-8011-ba5d
-18db9f03b8dc. The most extensive
help I received concerned the transla-
tion from Perl into Python code of the
script that converted the alarm speci-
fication DSL into C event-handling
code. The code required several ad-
ditional prompts and manual adjust-
ments to correct and perfect it, but
ChatGPT saved me considerable time
and mind-numbing work.

Another helpful AI-derived code
chunk concerned the unit tests for the
I/O port handling code. I wrote most
of the unit tests concurrently with the
corresponding code. Naively, I didn’t
write unit tests for the I/O port han-
dling routines, considering them triv-
ial. After finding (what I thought to
be) a fault in the port handling code, I
decided to write complete unit tests to
provide an additional test for its fix. I
handed the task to ChatGPT, which
after a couple of clarification prompts
regarding the name of the test pack-
age to use and the tested module’s
name, gave me a 116-line file with
ten unit tests. Most were correct and
run without a hitch. For two tests it
did not consider some global state
that was required for the test, and for
another one it got wrong the names
of the mocked functions. Frustrat-
ingly, when I tried to see if the tests
failed when removing the fix, I found
that they didn’t. It turned out that
the fault was associated with incor-
rect unit test initializations. Still, the
unit tests uncovered another fault, so
they proved useful. In programming
the story is often more complex than
what appears at first sight.

The responses I got from Chat-
GPT were not always correct. In

several cases it hallucinated method
names and constants. However,
these were easy to recognize through
unit tests and fix based on the online
documentation, which continues to
be as valuable as ever.

The biggest failure of generative AI
was the recommendation of a depre-
cated package (RPi.GPIO). I only re-
alized this quite late, when I deployed
the system on the actual hardware
and the interrupt-triggered callback
routine failed to execute. By search-
ing the web for similar issues, I found
out that this package had not been up-
dated to support modern hardware.
To rectify the misleading ChatGPT
directions required an extensive re-
design of I/O handling. A follow-up
question to compare RPi.GPIO with
the modern and portable gpiod pack-
age which I adopted gave me better
advice. In retrospect, my mistake was
that the prompt for the initial rec-
ommendation was a closed question
to compare the officially supported
gpiozero package against RPi.GPIO.
Instead, I should have prompted Chat-
GPT with an open-ended question
for available alternatives and decide
among them based on my judgment.

In all, rather than replacing me as a
programmer, ChatGPT reduced tedious
work and allowed me to work more
productively by focusing on the sub-
stantial stuff. Its mistakes, which I have
seen rising when moving from teaching

examples and open source software
into proprietary code, also highlighted
the constant need for a human expert to
guide and oversee its operation.

I mplementing and modernizing
the burglar alarm security system
taught me three important lessons.

First, the advantage of having a strong
architectural core—in this case, the con-
figuration DSL. Second, the improve-
ments readily achieved by upgrading a
system to modern technologies—here,
Python as a catalyst for dynamic
hardware configuration, a REST in-
terface, and hardware-driven sens-
ing. Third, the numerous rewards and
challenges of pairing with a generative
AI sidekick.

References
	 1.	M. M. Lehman, “Laws of software

evolution revisited,” in Proc. Eur.

Workshop Softw. Process Technol.,

Berlin, Germany: Springer-Verlag,

1996, pp 108–124.

	 2.	D. Spinellis, “The information fur-

nace: Consolidated home control,”

Pers. Ubiquitous Comput., vol. 7,

no. 1, pp. 53–69, May 2003, doi:

10.1007/s00779-002-0213-8.

	 3.	P. G. Armour, The Laws of Software

Process: A New Model for the

Production and Management of

Software. New York, NY, USA:

Auerbach, 2003.

ABOUT THE AUTHOR

DIOMIDIS SPINELLIS is a professor in the Department of Management

Science and Technology, Athens University of Economics and Business,

104 34 Athens, Greece, and a professor of software analytics in the

Department of Software Technology, Delft University of Technology, 2600

AA Delft, The Netherlands. He is a Senior Member of IEEE. Contact him at

dds@aueb.gr.

https://chatgpt.com/share/679cd35b-8088-8011-ba5d-18db9f03b8dc
https://chatgpt.com/share/679cd35b-8088-8011-ba5d-18db9f03b8dc
https://chatgpt.com/share/679cd35b-8088-8011-ba5d-18db9f03b8dc
http://dx.doi.org/10.1007/s00779-002-0213-8
mailto:dds@aueb.gr

	018_42ms03-adventures-3539364

