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Abstract

Pattern matching is a high-level notation for programs to
analyse the shape of data, and can be optimised to efficient
low-level instructions. The Stratego language uses first-class
pattern matching, a powerful form of pattern matching that
traditional optimisation techniques do not apply to directly.
In this paper, we investigate how to optimise programs

that use first-class pattern matching. Concretely, we show
how tomap first-class pattern matching to a form close to tra-
ditional pattern matching, on which standard optimisations
can be applied.

Through benchmarks, we demonstrate the positive effect
of these optimisations on the run-time performance of Strat-
ego programs. We conclude that the expressive power of
first-class pattern matching does not hamper the optimisa-
tion potential of a language that features it.

CCS Concepts: • Software and its engineering → Pat-

terns; Translator writing systems and compiler generators;
• Theory of computation→ Pattern matching.

Keywords: pattern matching, optimisation, strategic pro-
gramming
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1 Introduction

Pattern matching is a fundamental tool for expressing pro-
grams by case analysis, and is used in functional program-
ming, term rewriting, logic programming, and more.

In many languages, pattern matching is expressed through
case expressions, which combine matching, variable binding,
and control flow in a single construct. In contrast, first-class
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pattern matching [39] breaks apart these concepts into three
separate constructs.

For example, Figure 1 shows a case expression in OCaml,
and the same expression in Stratego [4, 5, 38] using first-class
pattern matching. The match expression ?pattern matches
the pattern against an implicit scrutinee, the ‘current term’,
and either continues with pattern variables bound or fails.
Scoping {𝑛 : S} binds the variables 𝑛 locally for use in pat-
terns and expressions. Finally, the choice operator fst <+ alt

runs the first argument and tries the alternative in case it
fails. Because Stratego has these separate concepts, back-
tracking from a failed pattern match is a core feature of the
semantics.

Programs that use case expressions can be compiled into a
decision tree [2, 22] or an automaton [12, 13, 21, 24], which
can be optimized by reordering branches and arguments.
However, these techniques do not apply directly to first-
class pattern matching, as matches are spread out in the
program. As a consequence, they are not used in Stratego,
hurting the run-time performance of Stratego programs.
Our main contributions are the following:
• We demonstrate the mismatch between common pat-
tern match optimisations and first-class pattern match-
ing by example (Section 3).

• We describe an intermediate representation (IR) for
Stratego that resembles case expressions, and show
how to transform Stratego programs to this IR (Sec-
tion 4).

• We evaluate our IR and optimisation with a prototype
implementation in the Stratego compiler, benchmark-
ing to two different workloads (Section 5).

We starts with an introduction to Stratego in Section 2.

let calc n = match n with

| Plus (S m, n) -> S (Plus (m, n))

| Minus (n, O) -> n

| Minus (S m, S n) -> Minus (m, n)

| Minus (O, S _) -> failwith "oops";;

Calc = {m, n: ?Plus( S(m), n ); !S(Plus(m, n)) }

<+ {n : ?Minus(n , O() ); !n }

<+ {m, n: ?Minus(S(m), S(n)); !Minus(m, n) }

<+ ?Minus(O() , S(_)); fatal-err(|"oops")

Figure 1. A case expression in OCaml (top) and Stratego
(bottom) with four branches, demonstrating matching, scop-
ing, and choice operators in Stratego.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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S ::= id fail identity and failure

𝑆 ; 𝑆 sequence

{ 𝑛: 𝑆 } scope

?𝑇 !𝑇 match and build

𝑆 < 𝑆 + 𝑆 guarded choice

T ::= 𝑛 variable
𝑙 literal

𝑛(𝑇 ) constructor

Figure 2. Stratego core grammar.

2 A Short Introduction to Stratego

Stratego [40] is a gradually typed [33] term rewriting lan-
guage with programmable rewrite strategies. The terms that
are rewritten are ATerms [36], whose sorts and constructors
can be defined in Stratego. There is an open world assump-
tion, i.e. Stratego assumes that there may be more construc-
tors and sorts than are defined.
Stratego has syntactic sugar over a core language that

strongly resembles System S [39], a core calculus for rewrit-
ing and strategies. The Stratego core grammar is shown
in Figure 2 and defines identity and failure strategies, se-
quences, lexical scopes for term variables, match and build,
and guarded choice. Matching and building is done on term
patterns, which includes variables, literals, and constructors
and their arguments.
The semantics of these strategies and terms is defined in

Figure 3. For a full explanation of these rules see the System
S paper [39]. We will only go over the highlighted rules
that pertain to first-class pattern matching. Each rule takes
a pair of the store and the ‘current term’, where the store
keeps local variable bindings to values. The rule applies the
strategy on the arrow to produce another pair of store and
term. The result on the right-hand side of the arrow may
also be failure (the ↑).

The first two highlighted rules describe scoping behaviour.
A list of fresh variables of a scope are removed from the store
for execution of the body of the scope, then bindings of those
variables from before the scope (St |𝑥 ) are added again, while
preserving other bindings from the body of the scope. Failure
in the scope body is propagated.

The next three rules are part of the semantics for matching,
in particular matching a variable. An unbound variable is
bound in the store. A bound variable’s binding is compared
against the current term, failing if they differ. This provides
for non-linear pattern matching semantics in Stratego.
The final four rules are for the guarded choice: Whether

the guard (first strategy) fails decides which of the second
and third strategy is evaluated. This can result in local back-
tracking of variables: In the last rule, the failed guard 𝑠1
causes 𝑠3 to be evaluated on the original store 𝑆𝑡 , without
bindings from the partial execution of 𝑠1.

Our main point here in looking at the semantics of the core
of Stratego, is how pervasive first-class pattern matching to

Strategy 𝑆 applied to store St and term 𝑇 St;𝑇 𝑆
𝑆
St;𝑇

St; 𝑡 id
id

St; 𝑡 St; 𝑡 fail
fail

↑

St; 𝑡 𝑠1
𝑠1

St
′; 𝑡 ′ St

′; 𝑡 ′ 𝑠2
𝑠2

St
′′; 𝑡 ′′

St; 𝑡 𝑠1; 𝑠2
𝑠1; 𝑠2

St
′′; 𝑡 ′′

St; 𝑡 𝑠1
𝑠1

St
′; 𝑡 ′ St

′; 𝑡 ′ 𝑠2
𝑠2

↑

St; 𝑡 𝑠1; 𝑠2
𝑠1; 𝑠2

↑

St; 𝑡 𝑠1
𝑠1

↑

St; 𝑡 𝑠1; 𝑠2
𝑠1; 𝑠2

↑

St \ 𝑥 ; 𝑡 𝑠𝑠 St
′; 𝑡 ′

St; 𝑡 {𝑥 : 𝑠 }
{𝑥 : 𝑠 }

(St′ \ 𝑥) ∪ (St | 𝑥); 𝑡 ′

St \ 𝑥 ; 𝑡 𝑠𝑠 ↑

St; 𝑡 {𝑥 : 𝑠 }
{𝑥 : 𝑠 }

↑

𝑥 ∉ Dom(St)

St; 𝑡 ?𝑥
?𝑥

St ∪ {𝑥 ↦→ 𝑡}; 𝑡

St (𝑥) = 𝑡

St; 𝑡 ?𝑥
?𝑥

St; 𝑡

St (𝑥) ≠ 𝑡

St; 𝑡 ?𝑥
?𝑥

↑

St0; 𝑡1 ?𝑡 ′
1

?𝑡 ′
1

St1; 𝑡1 . . . St𝑛−1; 𝑡𝑛 ?𝑡 ′
𝑛

?𝑡 ′
𝑛

St𝑛 ; 𝑡𝑛

St0; 𝑓 (𝑡1, . . . , 𝑡𝑛) ?𝑓 (𝑡 ′
1
, . . . , 𝑡 ′

𝑛
)

?𝑓 (𝑡 ′
1
, . . . , 𝑡 ′

𝑛
)

St𝑛 ; 𝑓 (𝑡1, . . . , 𝑡𝑛)

𝑓 ≠ 𝑔 ∨𝑚 ≠ 𝑛

St0;𝑔(𝑡1, . . . , 𝑡𝑚) ?𝑓 (𝑡 ′
1
, . . . , 𝑡 ′

𝑛
)

?𝑓 (𝑡 ′
1
, . . . , 𝑡 ′

𝑛
)

↑

𝑡 = 𝑙

St; 𝑡 ?𝑙
?𝑙

St; 𝑡

𝑡 ≠ 𝑙

St; 𝑡 ?𝑙
?𝑙

↑

vars(𝑡2) ⊆ Dom(St)

St; 𝑡1 !𝑡2
!𝑡2

St; St (𝑡2)

vars(𝑡2) ⊈ Dom(St)

St; 𝑡1 !𝑡2
!𝑡2

↑

St; 𝑡 𝑠1
𝑠1

↑ St; 𝑡 𝑠3
𝑠3

↑

St; 𝑡 𝑠1 < 𝑠2 + 𝑠3
𝑠1 < 𝑠2 + 𝑠3

↑

St; 𝑡 𝑠1
𝑠1

St
′; 𝑡 ′ St

′; 𝑡 ′ 𝑠2
𝑠2

St
′′; 𝑡 ′′

St; 𝑡 𝑠1 < 𝑠2 + 𝑠3
𝑠1 < 𝑠2 + 𝑠3

St
′′; 𝑡 ′′

St; 𝑡 𝑠1
𝑠1

St
′; 𝑡 ′ St

′; 𝑡 ′ 𝑠2
𝑠2

↑

St; 𝑡 𝑠1 < 𝑠2 + 𝑠3
𝑠1 < 𝑠2 + 𝑠3

↑

St; 𝑡 𝑠1
𝑠1

↑ St; 𝑡 𝑠3
𝑠3

St
′; 𝑡 ′

St; 𝑡 𝑠1 < 𝑠2 + 𝑠3
𝑠1 < 𝑠2 + 𝑠3

St
′; 𝑡 ′

Figure 3. Stratego core operational semantics. ↑ is failure.
Some rules for first-class pattern matching are highlighted.

a language design. Because of the use of backtracking, every
construct of the language needs to take ‘failure’ into account.
At the same time backtracking provides the opportunity for
a different code style in Stratego than in a typical functional
programming language. An alternative result (‘fail’) is always
available, without the requirement to explicitly propagate
that failure, as it freely bubbles up to the nearest point where
a choice catches it.
Separate matching and scoping have their own benefits.

A typical use case is found in the Stratego standard library
strategy fetch-elem(s). This strategy returns the element in
a list for which the strategy parameter s matches. It can be
implemented as follows:

fetch-elem(s) =

is-list; one(s; ?x); !x
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What this code does is (1) test that the input term is a
list, (2) use a generic traversal primitive1 to visit the list
elements, attempting to apply the strategy parameter until it
succeeds on one of the list elements, and (3) build variable x

to return its binding as the result of fetch-elem. Notably, the
strategy parameter to the generic traversal attempts to apply
s and if it succeeds it binds the result to x. The resulting list
is ignored as we have found what we wanted during the
traversal and bound it to a variable that is scoped outside
of the traversal by fetch-elem. This trick can be applied
to much deeper traversals than a single list, allowing easy
extraction of information without result tuples everywhere.

3 Pattern Matching Optimisation and
First-Class Pattern Matching

The naive way to execute pattern matching of a case expres-
sion would be to attempt each branch of the case expression
in isolation. For example, when executing the OCaml func-
tion from Figure 1 on , the naive method would: (1) fail to
match the first pattern because the outermost constructor
does not match, then (2) attempt to match the second pat-
tern, match the outermost constructor, but fail to match on
the second argument, then (3) attempt to match the third
pattern, matching the outermost constructor again, which
already demonstrates the naivety. Each pattern is tested in
isolation, even when we know the outmost constructor from
the previous branch. Pattern matching optimisation tech-
niques leverage the information gathered by previously tried
branches to make pattern matching faster.

In Stratego the executionmethod for the code in Figure 1 is
the naive method described just now. Even if we wrote more
high-level rewrite rules that looked more like the OCaml
code, it would still desugar to the Stratego code in Figure 1.
And the desugared code definitely tests each pattern in isola-
tion during a separate first-class pattern matching operation.
Note that first-class pattern matching is not an interme-

diate representation used by compilers or publications for
the description of Stratego’s semantics, this is part of the
language and actually used by the end user. A common pat-
tern in Stratego is to have a ruleset where some rewrite
rules match a different pattern but have otherwise the same
logic and result. To remove this code duplication, we can use
the core operations like match, choice, and build to write a
single strategy that matches both patterns. For example, if
we compute the pessimistic time complexity of a language
with normal and parallel for loops we see some code dupli-
cation:

max-complexity: For(i, lo, hi, b) -> <subtS> (hi, lo)

max-complexity: ForPar(i, lo, hi, b) ->

<subtS> (hi, lo)

1This is a central feature of Stratego for its programmable rewrite strategies,

for more on this, see Visser and Benaissa [39, ğ2.3].

Calc = match sequential

case m, n | Plus(S(m), n): S(Plus(m, n))

case n | Minus(n, O()): n

case m, n | Minus(S(m), S(n)): Minus(m, m)

case | Minus(O(), S(_))

when fatal-err(|"Negative result"): id

end

Figure 4. A case expression version of Figure 1.

We can remove this code duplication using first-class pattern
matching:

max-complexity =

(?For(i, lo, hi, b) <+ ?ForPar(i, lo, hi, b))

; <subtS> (hi, lo)

In general, we cannot expect all Stratego code to match case
expression style code as closely as the example in Figure 1.
In other words, the information that is close together in a
match case expression, can be farther apart in Stratego code,
and not readily available to fuel optimisation. In this paper,
we will tackle the general problem of optimising first-class
pattern matching.

4 A Stratego Compatible Case Expression

Pattern match optimisation is a well researched problem
in the context of functional programming and case expres-
sions [2, 3, 7, 13, 22, 24, 28, 30]. The key idea of our work to
find a comparable construct that interacts well with Strat-
ego’s backtracking semantics, and translate first-class pat-
tern matching to that construct. Once we have a clear list
of branches, we can reuse previous pattern match optimi-
sation ideas, adapting them to Stratego’s execution model
with local backtracking.

We first look at Stratego code that we can easily translate,
to find out what minimum requirements there are for our
case expression construct in Stratego. Figure 1 shows an
already desugared form of rewrite rules. This core Stratego
code is a regular structure of a chain of choices, where each
guard is a scoped expression starting with a match. These
matches should become the left-hand sides of our case ex-
pression branches. Our construct also needs to be able to
introduce variables like the scopes, have right-hand sides for
the builds, and guards in case anything fails and other (over-
lapping) patterns need to be tried. An example of the case
expression that complies with these requirement is displayed
in Figure 4.

Each branch has some local variables to scope, a pattern, a
right-hand side, and optionally a guard. As you can see, the
right-hand side of the last case statement is the identity strat-
egy. All the logic is put into the guard of the match, where,
if anything fails, we can backtrack to another case. This is
a Stratego interpretation of the concept of guards, where
failure rather than a boolean value governs the behaviour. In
later sections we will see how these guards play a key role
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in translating first-class patterns to case expressions despite
Stratego’s backtracking semantics.

The naive semantics of our case expression can be shown
through a translation back into Stratego core shown in Fig-
ure 5. A pattern match on term t_0 and guard s_1 decide
whether we evaluate RHS s_2. It is naive because evaluation
on e.g. Plus(O(), O()) would still try each pattern and fail
every, whereas the ideally we would fail to match in just
two steps, matching the outer Plus constructor and finding
the O() as the first child. For the optimisation of case expres-
sion patterns, we can exploit overlap and mutually exclusive
patterns to get this behaviour. This can be visualised as a
matching automaton, exemplified in Figure 6. Each inter-
mediate node is labeled with the path into the term that is
matched. The Λ is the empty path denoting the root term,
and 𝑝.𝑛 is the (0-indexed) 𝑛th child of the term denoted by
the path 𝑝 . Each edge is labeled with the constructor or value
matched against. The final nodes of the automaton refer to
the nth branch of the case expression.

4.1 Translation into Case Expressions

In order to have a small set of transformations, we defined our
translation on Stratego core. While our examples are edited
for legibility, Stratego core as generated by the compiler
through desugaring makes every variable globally unique
and explicitly scoped. We will therefore not concern our-
selves with name conflicts and capture-preserving substitu-
tion for this translation.

Choices to Cases. The simplest transformation of guarded
choices to case expressions is given in Figure 7. Without
knowing anything about the strategies used in the choice,
we can safely put s1 into the guard for the first branch and
s2 into the right-hand side. s3 ends up in the second branch,
where either the guard or the right-hand side would work.
We choose the guard here because it interacts better with
the next transformations.

Match Extraction. In order to take advantage of opti-
misations for case expressions, we need to have patterns in
each branch of course. So once we have case expressions,
we can start extracting patterns from the guards, as shown
in Figure 8. Here we have the most general case where a
branch already scopes variables xs, and the guard scopes
variables ys, which are combined in the result. As long as
the guard then starts with a match, while the branch pat-
tern is a wildcard, we can move the pattern from guard to
branch. If anything occurs after that in the guard (s1), that
stays. And the RHS (s2) stays as well, it is not affected by
this transformation.

RHSExtraction. Apart from identifying the patternmatch
in the guard, we can see if the guard is redundant. If we can
statically guarantee that the guard always succeeds, it might
as well be put into the RHS. A simple local analysis of the

match sequential

case xs | t_0

when s_1: s_2

// more cases

end

⇒

{xs: t_0; s_1 < s_2 +

match sequential

// more cases

end }

match sequential

// empty

end

⇒ fail

Figure 5. Naive semantics for case expressions by transfor-
mation to Stratego core.

Λ Λ .1

Λ .0 1st

2nd

Λ .0 3rd

4th

Plus/2

Minus/2

S/1

O/0

S/1

S/1

O/0

Figure 6. Optimised match automaton for the running ex-
ample.

s1 < s2 + s3 ⇒

match sequential

case | _ when s1: s2

case | _ when s3: id

end

Figure 7. Transformation of guarded choice to case expres-
sion.

case xs | _ when {ys: ?p; s1}: s2

⇓

case xs, ys | p when s1: s2

Figure 8. Extracting a match from a case expression guard.

guard is enough to find the typical simple cases, such as the
build of a term where all variables in the term are guaranteed
to be bound.

Flattening. Since guarded choices are a nested structure,
our case expressions are also nested in the guards of case
expressions at this point. In order to flatten this structure,
we define a transformation that flattens a case expression in
the guard of another case expression in Figure 9. The local
strategy s that is introduced provides some amount of code
sharing, at the expense of creating and calling a closure. This
can be avoided by treating these local strategies specially
as part of the shared tail in the matching automaton during
optimisation of the case expression, although our current
prototype does not do so.

5 Evaluation

To evaluate our pattern match optimisation, we have im-
plemented a prototype optimisation and included it into a
fork of the Stratego compiler. This prototype is limited to
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generating decision trees rather than automata, and there-
fore generates duplicate code. But it should still result in
improved run time performance. To evaluate this optimi-
sation, we benchmark some Stratego program executions
with and without the optimisation. Before we test the per-
formance, we first test the implementation to be behaviour
preserving. At the end of this section we consider threats to
the validity of our results. We aim to answer the following
questions:

RQ1. Does the optimisation improve run time performance
of Stratego programs?

RQ2. Is there overhead for small matches?
RQ3. Is the optimisation effective in practice on łnormalž

code bases?
RQ4. What is the relative compile time cost of the prototype

optimisation?

5.1 Correctness

For behaviour preservation testing, first we use the compiler
test suite and make sure all the tests succeed with optimi-
sation on. This compiler test suite numbers 159 tests and
was also used in the past to migrate the compiler back-end
from C to Java without breaking any edge cases in program
behaviour. Then, we added 14 tests that explicitly cover situa-
tions that are affected by our optimisation. These all succeed
with our current prototype.

We also run the modified Stratego compiler with and with-
out the optimisation on, on the set of benchmark programs
used for performance evaluation below, comparing the com-
puted result.

5.2 Performance

For our performance evaluation we describe our benchmark
setup, and the subjects on which we run our benchmark
before discussing the results for each of the subjects.

Environment. We ran our experiments on a Macbook
Pro (Early 2013) with an Intel Core i7 2.8GHz CPU, 16GB
1600MHz DDR3 RAM, and an SSD. The machine is running
Mac OS 10.14.5, Java OpenJDK 1.8.0_212, and Docker 4.9.1
(81317).

Subjects. We use algorithmic rewriting problems of the
Rewriting Engine Competition (REC) [10]. These problems
are generated from the REC language, and can be translated
into up to 18 different languages for comparison of rewrit-
ing engines. There are problems for sorting (bubble sort,
merge sort, quick sort), numeric functions (Fibonacci, facto-
rial, prime sieve of Erastosthenes), and other kinds of prob-
lems. The ‘algorithmic’ problems are expressed as abstract
syntax of programs and rewrite rules that do a small-step
interpretation of that abstract syntax.
The REC programs are not typical programs as would

be written in Stratego by hand, which is acknowledged in

match sequential

/* other branches */

case xs | _ when

match sequential

case ys | p1 when s1: s2

case zs | p2 when s3: s4

/* more branches */

end: s5

end

⇓

let s = s5

in

match sequential

/* other branches */

case xs, ys | p1 when s1; s2: s

case xs, zs | p2 when s3; s4: s

/* more branches with extended guard and RHS s */

end

end

Figure 9. Transformation of nested case expressions to a flat
case expression.
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Input size
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25 50 75 100 125 150 175 200

Input size

1

10

100

Bubblesort

Pattern Match Compilation

off+inlining

on

Figure 10. Benchmark of REC problems Bubblesort and
Factorial.

Durán et al. [10, ğ4.1]. Therefore, like Durán et al., we also
use a program-transformation problem set based on the Tiny
Imperative Language (TIL) [9].

Data Collection. We use the Java Microbenchmark Har-
ness (JMH) to manage the warm-up of the Java Virtual Ma-
chine (JVM), preparing the benchmarks, and repeating runs
with different parameters. We used Single shot time as the
benchmark mode, with 5 warm-up iterations and 5 measure-
ment iterations in two forks of the virtual machine.

REC. Most programs from the REC subject show a sig-
nificant speed-up, while none slow down due to our optimi-
sation. We show two examples in Figure 10, both of which
show that we can answer RQ1: our optimisation does improve
run time performance of Stratego programs. The factorial
program is interesting because it has a small match of six
different branches, and yet there is a clearly visible run time
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improvement. Therefore we conclude that, as expected, there
is no overhead for small matches (RQ2).

TIL. We included TIL for RQ3 to see what impact our op-
timisation has on a more typical Stratego program that does
program-transformation. Figure 11 shows that whether we
run Stratego code that optimises TIL programs (left) or exe-
cutes them through big-step transformations (right), there
is a small but clear speed-up from our pattern match com-
piler. This is visible due to our generated large TIL input
programs that read one integer, add one to it and put it in
a new variable, repeated some number of times, then write
the result:

var n0; n0 := readint();

var n1; n1 := n0 + 1; // repeated...

write(n500); // ... e.g. 500 times

Compilation Time. Figure 12 shows that compilation
times (RQ4) for REC problems show that our prototype op-
timisation increases the compilation time of the Stratego
compiler, which makes sense as these programs largely con-
sist of rules that the optimisation works on. For the total
compile time of the TIL language project, the impact is milder
due to smaller rulesets and a larger amount of other compi-
lation work, between 9.68 % and 11.97 % of the median of the
baseline. We think that at the current increase of compilation
time, the optimisation is worthwhile to include in the main
Stratego compiler, with the option to turn it off.

5.3 Threats to Validity

We consider generalisability of the results (external validity),
factors that allow for alternative explanations (internal va-
lidity), and suitability of metrics for the evaluation’s goals
(construct validity).

External Validity. The results of our evaluation are spe-
cific to our implementation for the Stratego language. They
are merely a datapoint for the general argument that pattern
match optimisation can be used on first-class pattern match-
ing. Within Stratego, we have attempted to provide a good
range of styles of Stratego programs by using not only the
algorithmic problems from REC but also a more typical use
of Stratego with TIL.

Internal Validity. A typical alternative explanation for
why an optimisation performs well is that it actually removes
relevant code and breaks semantics preservation. We have
already addressed this concern in Section 5.1.

Another explanation would be that we misconfigured our
measurements, which we did at one point: we got entirely
similar results for our benchmarks because the optimisation
was not actually applied in either measurement. We were
able to manually inspect the compilation results and notice
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Figure 11. Benchmark of TIL optimisation and big-step in-
terpretation on a simple addition program.
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Figure 12. Compilation times for REC benchmark problems.

this though, so we checked that in situations where results
are similar.
We used the newest Stratego compiler for our measure-

ments, and our prototype is built on this new compiler. This
compiler was designed to be highly incremental, and to
achieve this, inlining of strategies was removed. For first-
class pattern matching this can be a limitation as a strat-
egy might be defined by choices between differently labeled
rewrite rules, but these are optimised separately when not
inlined. In our benchmarks we partially mitigated this by
manually inlining these code patterns.

Construct Validity. As the experiments are performed
in a virtualised environment (Docker), the absolute numbers
of our measurements may include some virtualisation over-
head. However, the overhead is in all measurements, where
we compare between two measurements rather than inter-
pret the absolute numbers. And this allows us to provide a
virtual machine image that can be reused to reproduce our
experiments.
We used JMH which contains many best practices for

benchmarking on the JVM in its default options. We let it
runwarm-up iterations, checked for stabilisation of the times,
and aggregated results to counter noise from background
tasks we could not eliminate on the benchmark machine.
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6 Related Work

Pattern matching has existed since the early ages of com-
puter science, with matching for tree-shaped data being first
described in 1972 by Karp et al. [19], with performance being
a key consideration from the beginning. It was introduced
to the world of programming languages by SASL [35] and
Hope [6]. Since then, it has been one of the staples of func-
tional programming languages like ML and Haskell, and
more recently it has been introduced to other mainstream
languages such as Python, Swift, Ruby, and Rust.

6.1 First-Class Pattern Matching

First-class pattern matching is a feature that so far only exists
in the Stratego language [5, 32, 38, 40]. The core language
of Stratego is System S [39], which first explored the idea
of separating pattern matching into operators match, scope,
and choice. Visser [37] describes this unique form of pattern
matching in more detail. First-class patterns2 are a similarly
named, but fundamentally different concept to first-class
pattern matching.
Cirstea et al. [8] describe a translation from first-class

pattern matching to a regular term rewriting system, with
the goal of proving termination. This technique could in
theory be applied to compile first-class pattern matching by
first transforming it into a traditional rewrite system and
then applying standard compilation techniques. However,
this would likely not lead to good results as the translation
has not been designed for this purpose and the encoding
might introduce an extra overhead. The technique also seems
to require a closed world assumption, while Stratego has an
open world assumption.

6.2 First-Class Patterns

We consider pattern matching a first-class expression in Strat-
ego because it is a primitive operation in the (strategy) expres-
sion language.While it sounds similar, first-class patterns are
a very different concept, namely that patterns are values that
can be manipulated in a programming language. This idea
shows up in both the (pure) object-oriented programming
world [16] and the functional programming world [17, 34].

While this is a powerful idea, it is not directly related to
first-class pattern matching as seen this paper. Indeed, the
path polymorphism of Jay and Kesner [17] provides some-
thing more similar to the generic traversal capabilities of
Stratego, a feature we did not focus on this paper.
Depending on the way that first-class patterns are cre-

ated and used, it may be possible to optimise the pattern
match at run time. If at run time the information of the dif-
ferent patterns is not co-located enough for a just-in-time
optimisation based on traditional pattern matching optimi-
sation, the ideas from this paper can be reused to bring such
information together. This would be particularly relevant

2https://hackage.haskell.org/package/first-class-patterns

for any programming language with first-class patterns and
backtracking semantics.

6.3 Pattern Match Compilation

There are two main techniques that are used for compiling
pattern matching to efficient code: on the one hand, com-
piling to a discrimination tree (also known as a decision tree

or case tree) as pioneered by Overmars and van Leeuwen
[25] and Hoffmann and O’Donnell [15], and similar work
on deterministic automata by Gräf [13], Pettersson [26] and
Nedjah et al. [24], and on the other hand compiling to a
backtracking automaton as proposed by Augustsson [1, 2]
and further developed by Maranget [21] and Fessant and
Maranget [12]. A backtracking automaton has the advantage
that it avoids the code duplication that can occur in the con-
struction of a case tree. However, to avoid this duplication it
might need to inspect the same term more than once as a re-
sult. In theory, this seems like a classic tradeoff between code
size and run-time performance. But in practice the difference
is less clear, as noted by Fessant and Maranget [12]:

However, sophisticated compilation techniques
exist that minimise the drawbacks of both ap-
proaches. [...] In the absence of a practical com-
parison of full-fledged algorithms, choosing one
technique or the other reflects one’s commit-
ment to guaranteed code size or guaranteed run-
time performance.

A third approach introduced by Jùrgensen [18] is to use
partial evaluation to compile definitions by pattern matching
in a way that avoids examining or decomposing arguments
multiple times, and eliminates code duplication. Sestoft [31]
further develops this idea and specialises the partial evaluator
to a more traditional pattern match compiler that produces
a discrimination tree. The paper notes that this tree can be
further optimised by eliminating duplicate trees through
hash-consing and by replacing equality checks with switch
statements. In our prototype we use switch statements, while
eliminating duplicate trees is still left to do.

Strict vs. Lazy Evaluation. In a language that uses strict
evaluation such as Stratego, we are free to inspect the argu-
ments of a function in any order, so there is a lot of room for
possible optimisation. This is a major advantage over lazy
languages, where changing the order of evaluation might
influence the termination of our program and hence room
for optimisation is more limited [20, 21].

Pattern Match Compilation in Practice. Many pro-
gramming languages compile pattern matching into a dis-
crimination tree, following the example of the ML compiler
[3, 7]. Other languages compile pattern matching to a back-
tracking automaton, for example RML [27, chapter 7] and
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OCaml. OCaml also applies several optimisations to the con-
trol flow of the generated automata to mitigate the perfor-
mance impact of backtracking [12]. Finally, yet other imple-
mentations of (mostly lazy) languages see pattern matching
as mere syntactic sugar for nested case expression, for exam-
ple Lazy ML [1, 2] and GHC. To deal with overlapping cases,
Lazy ML uses a default construct that triggers backtracking.
In contrast, GHC expands catchall cases and uses join points

in its core language to avoid duplication of terms [11]. In
the current Stratego implementation, closures and their calls
are computationally expensive, so a direct adaptation of this
approach would result in poor performance.

6.4 Heuristics

Over the years, a large number of different heuristics have
been proposed for producing better discrimination trees or
matching automata, depending on whether one wishes to
optimise for code size or run-time performance. Detailed
comparisons between these different heuristics can be found
in the studies by Scott and Ramsey [29] and Maranget [22].
Here we list some of the most common ones, with an indica-
tion of whether they optimise for run-time or code size:

Relevance (run-time and code size) Pick an argument po-
sition that is matched on in a higher priority clause [3].

Necessity (run-time) Pick an argument position that must
be inspected by any matching algorithm [22, 23, 30].

Large branching factor (run-time) Pick an argument po-
sition with the largest number of distinct construc-
tors [7].

Small branching factor (code size) Pick an argument po-
sition with the smallest number of distinct construc-
tors [3, 23].

Small arity factor (code size) Pick an argument position
where the total arity of all constructors is lowest [3].

Small default (code size) Pick an argument position with
the smallest number of wildcard patterns [3].

Scott and Ramsey [29] find little difference in performance
between these heuristics for most practical examples, with a
few notable exceptions. Maranget [22] recommends a combi-
nation of necessity, small branching factor, and arity, but also
notes that the choice depends on the specifics of the language
and the expected kinds of pattern matching code. Hence, it
would be interesting to experiment with what combination
of heuristics is the most suitable for compiling idiomatic
Stratego code.

7 Conclusion

We have introduced the problem of optimising first-class

pattern matching as seen in the Stratego programming lan-
guage, where pattern matching is broken apart into three
constructs: match, scope, and choice. To solve this problem,
we have developed a behaviour-preserving transformation
that combines these three constructs into an intermediate

representation that resembles case expressions from func-
tional programming, while still adhering to the local back-
tracking semantics of Stratego. This allowed us to optimise
first-class pattern matching with the same techniques used
for ‘regular’ pattern matching.

We still plan to make some practical improvements to our
prototype implementation, investigate which heuristics for
the discrimination trees work best for typical Stratego code,
and investigate the addition of closed types to Stratego and
what performance effect this may have on our optimisation.

Nevertheless, our benchmarks have demonstrated that our
current prototype can already have a positive effect on the
run-time performance of Stratego programs. With a speed-
up that increases with the input size, we expect Stratego
users will be willing to pay a 10% increase in compile time.
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