
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Modeling and Detecting
Anomalous Safety Events in
Approach Flights Using
ADSB Data
Master thesis
Alberto Bonifazi



This page is intentionally left blank.
Picture credits: openflightmaps

https://www.openflightmaps.org/eh-netherlands/


Modeling and Detecting
Anomalous Safety Events in
Approach Flights Using

ADS-B Data
Master thesis

by

Alberto Bonifazi
in partial fulfillment of the requirements for the degree of

Master of Science
in Aerospace Engineering,
Control & Operations

at Delft University of Technology

Delivery date: Thursday 3rd December, 2020

Readers: Dr. J. Sun Delft University of Technology
MSc. G. van Baren Inspectie Leefomgeving en Transport
Prof. J. Hoekstra Delft University of Technology
Dr. O. A. Sharpanskykh Delft University of Technology

Student number: 4431057



This page is intentionally left blank.



Acknowledgements

This thesis concludes five intense years of studies in Delft. At the end of this journey, I
can look back satisfied with everything I have achieved. I have to thank Delft University
of Technology for the endless opportunities it has to offer and for the great people that
it attracts from all over the world. I would like to thank all my friends with whom I
shared a part of this experience.

This milestone has been the toughest challenge of my study to overcome. I could
not have done it without the help of my supervisors Junzi Sun, Gerben van Baren
and Jacco Hoekstra. I appreciated their openness which made asking for feedback
and talking about problems very natural. What struck me the most has been their
resilience and flexibility in these strange times. This attitude helped a lot in keeping
going with the work.

Last, but not least I would like to thank my family for welcoming me back in Bari and
supporting me in any way they could throughout my life.

A. Bonifazi
Bari, December 2020

i



Contents

Acknowledgements i

List of Figures iv

List of Tables vi

List of Abbreviations viii

1 Scientific Paper 1

A Research Framework and Methodology 14
A.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.2 Research Objective and Questions . . . . . . . . . . . . . . . . . . . . . . . . 17

A.2.1 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
A.2.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.3 Impact and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B Literature Study 21
B.1 Research Areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B.2 ADSB Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

B.2.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
B.2.2 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.2.3 Availability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
B.4 Exceedance Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.5 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

B.5.1 Distance Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B.5.2 Boundary Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.5.3 Statistical Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 33
B.5.4 Neural Network Based Methods . . . . . . . . . . . . . . . . . . . . . 36

B.6 Precursors Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

C Preprocessing 44
C.1 Manual Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
C.2 Divide Flights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
C.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
C.4 Deletion of Outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
C.5 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
C.6 Track Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
C.7 AIP the Netherlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
C.8 METAR Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ii



Contents

C.9 Obtaining Altitude Above Ground and Airspeed . . . . . . . . . . . . . . . . 50
C.10Weather Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
C.11 Aircraft Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
C.12 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

D Data Anomaly Analysis 57
D.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
D.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

D.2.1 Error from Smoothed Trajectory. . . . . . . . . . . . . . . . . . . . . . 58
D.2.2 Error from ILS Intercept . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

E Unstable Approach 62
E.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
E.2 Extra Details on Energy Compliance . . . . . . . . . . . . . . . . . . . . . . . 63

E.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
E.2.2 GMM Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
E.2.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

F Goaround 66
F.1 Extra Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
F.2 Conflicting Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
F.3 Comparison with OpenSky. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

G Monitoring Indicators 69
G.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 71

iii



List of Figures

A.1 The figure shows the representation of an incident. . . . . . . . . . . . . 16
A.2 The figure shows a generalized output for a detection algorithm. . . . . 17
A.3 The picture shows the work flow of this thesis. . . . . . . . . . . . . . . 19

B.1 Overview of DBSCAN algorithm. . . . . . . . . . . . . . . . . . . . . . . 28
B.2 Overview of classical anomaly detection algorithms. . . . . . . . . . . . 30
B.3 Strategy of Puranik to identify anomalies in general aviation flights. . . . 32
B.4 Structure of common neural network. . . . . . . . . . . . . . . . . . . . . 37
B.5 Structure of recurrent neural network. . . . . . . . . . . . . . . . . . . . 38
B.6 Structure of an autoencoder. . . . . . . . . . . . . . . . . . . . . . . . . 38
B.7 Structure of precursor detection algorithm. . . . . . . . . . . . . . . . . . 40

C.1 The figure shows the output of the smoothing strategy for a single tra
jectory. Data fit with a spline is in blue and the original one is in orange. 47

C.2 The figure shows a data density map of Schiphol Airspace, Schiphol
operational area. The data is collected in a day on the 8th January
2018. There are 4 maps for four different altitude levels specified below
the figure in feet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

D.1 The figure shows an example of trajectory with a constant shift, raw
data in green, and smoothing spline in purple. . . . . . . . . . . . . . . . 58

D.2 The figure shows an example of a trajectory with jumpy data points
(blue) fitted with a smoothing spline (purple). . . . . . . . . . . . . . . . 58

D.3 The figure shows the box plot of the Median Absolute error between the
data points and the spline smoothed trajectory. . . . . . . . . . . . . . . 59

D.4 The figure shows the box plot of the Median Absolute deviation of the
error between the data points and the spline smoothed trajectory. . . . . 59

D.5 The figure shows some high scoring outliers highlighted by the Median
Absolute Error, and Median Absolute Deviation. . . . . . . . . . . . . . . 59

D.6 The figure shows the box plot of the Median Absolute error between the
data points and the ILS intercept. . . . . . . . . . . . . . . . . . . . . . . 60

D.7 The figure shows the histogram of the Median Absolute error between
the data points and the ILS intercept. . . . . . . . . . . . . . . . . . . . . 60

D.8 The figure shows outliers highlighted by the Median Absolute Error with
a threshold of 40 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

E.1 The figure shows the results of the CH inex for the 3 components of
the GMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

F.1 Goarounds detected on the 8th January 2018. . . . . . . . . . . . . . . 66
F.2 Goarounds detected on the 29th January 2018. . . . . . . . . . . . . . 66

iv



List of Figures

F.3 This figure offers an overview of the horizontal requirements for inde
pendent parallel runway approach. . . . . . . . . . . . . . . . . . . . . . 67

G.1 This figure shows the monitoring dashboard. . . . . . . . . . . . . . . . 69

v



List of Tables

A.1 This table shows research questions, subquestions and subgoals. . . 18

B.1 The table shows the type code used and data contained in the ADSB
message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B.2 Average availability of TU Delft ADSB data at different altitudes in a
day for 2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B.3 This table summarizes the differences between MKAD and ClusterAD
for different thresholds and exceedance detection (level3). . . . . . . . . 29

B.4 The table summarizes the key difference between the two estimation
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B.5 This table shows a summary of the strategy identified to achieve the
objective. In the table, ”/” means that different models are developed
based on the same strategy depending on the flight phase. When talk
ing about A/C type, ”multiple” refers to a single model that can be used
at the same time with multiple A/C models. False positive data is not
specified when absent in the paper. . . . . . . . . . . . . . . . . . . . . 42

C.2 This table shows the definition of VMC and IMC condition. . . . . . . . . 48
C.1 This table shows an overview of the waypoints used to define the ideal

intercept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.3 This table explains the symbols present in the weather class tables. . . 51
C.4 Ceiling & visibility class ATMAP algorithm. . . . . . . . . . . . . . . . . . 51
C.5 Wind class ATMAP algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 52
C.6 Precipitations class ATMAP algorithm. . . . . . . . . . . . . . . . . . . . 52
C.7 Freezing class ATMAP algorithm. . . . . . . . . . . . . . . . . . . . . . . 52
C.8 Dangerous phenomena class 1: CB and TCU condition without precip

itation ATMAP algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
C.9 Dangerous phenomena class 2: CB and TCU condition with shower

precipitation ATMAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C.10Dangerous phenomena class 3 . . . . . . . . . . . . . . . . . . . . . . . 53
C.11 This table shows how the number of severe reports depends on the

threshold for January 2018. . . . . . . . . . . . . . . . . . . . . . . . . . 54
C.12 This table shows the features offered by OpenSky aircraft database. . . 54
C.13 These tables show a comparison of the average data available per day

between the 9th and 12th of January 2018. The same preprocessing
techniques are applied to obtain these two tables, namely only manual
cleaning. The table on the left shows the data available from Delft. The
one on the right shows the data available combining the two databases. 55

E.1 This table shows the limits for possible approach operations. . . . . . . 63

vi



List of Tables

E.2 This table shows the amount of anomalous trajectory resulting from the
3GMMmodel (threshold of 0.1%) trained with 3000 trajectory collected
from 5th to 10th of January. . . . . . . . . . . . . . . . . . . . . . . . . . 64

E.3 This table shows the validation of the energy compliance algorithm with
the validation list depending on the threshold and the dataset. . . . . . . 65

F.1 This table shows an overview of the different altitudes when flying par
allel approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

F.2 This table shows a comparison of validating the goaround detection
method with different datasets. . . . . . . . . . . . . . . . . . . . . . . . 68

vii



List of Abbreviations

Abbreviations related to data mining methods

AE Autoencoder
ARIMA Auto Regressive Integrated Moving Averages
CNN Convolutional Neural Network
DAE Deep Autoencoder
DBN Deep Belief Network
DBSCAN DensityBased Spatial Clustering of Applications with Noise
DTMIL Deep Temporal MultipleInstance Learning
ELM Extreme Learning Machines
GAN Generative Adversarial Network
GLOSH GlobalLocal Outlier Score from Hierarchies
GMM Gaussian Mixture Model
GRU Gated Recurrent Unit
ICA Independent Component Analysis
IF Isolation Forest
KDE Kernel Density Estimation
kNN KNearest Neighbours
IMF Inductive Monitoring System
LOF Local Outlier Factor
LoOP Local Outlier Probability
LSTM Long ShortTerm Memory
MKAD Multiple Kernel Anomaly Detection
NN Neural Network
OCSVM OneClass Support Vector Machine
OPTICS Ordering Points To Identify the Clustering Structure
PCA Principal Component Analysis
RBM Riemann Boltzmann Machine
RL Reinforcement Learning
RNN Recurrent Neural Network
SMSVAR Semi Markov Switching Vector Autoregressive model
STORN Stochastic Recurrent Network
SVM Support Vector Machine
VAE Variational Autoencoder

viii



VAR Vector AutoRegressive

Abbreviations related to aviation

1090ES 1090 MHz Extended Squitter
ACAS Airborne Collision Avoidance System
ACARS Aircraft Communication Addressing and Reporting System
ADSB Automatic Dependent Surveillance–Broadcast
AIS Aeronautical Information Service
ANSP Air Navigation Service Provider
APP APProach Control
ASAS Airborne Separation Assurance/Assistance System
ASDE Airport Surface Detection Equipment
ASIAS Aviation Safety Information Analysis and Sharing
ASR Airport Surveillance Radar
ATC Air Traffic Control
ATIS Automatic Terminal Information Service
ATM Air Traffic Management
CTA ConTrol Area
CTR Controlled Traffic Region
DDR Demand Data Repository (Eurocontrol)
EHAM Schiphol (Amsterdam, ICAO code)
EHS Enhanced Surveillance
ES Extended Squitter
FAAFederal Aviation Agency
FAF Final Approach Fix
FDM Flight Data Monitoring
FDR Flight Data Recording
FIR Flight information Region
FIS Flight information Service
FL Flight Level (= each 100 ft above 1013.25 Pa)
FMS Flight Management System
FOQA Flight Operations Quality Assurance
GNSS Global Navigation Satellite System
GPS Global Positioning System
IAF Initial Approach Fix
ICAO International Civil Aviation Organisation
IFR Instrument Flight Rules
ILS Instrument Landing System
METAR METeorological Aerodrome Report

ix



MLAT MultiLATeration
MLS Microwave Landing System
MSL Mean Sea Level
NAS National Airspace System
NASA National Aeronautics and Space Administration
NextGen Next Generation Air Transport System (USA)
PAR Precision Approach Radar
RADAR Radio Detection And Ranging
SES Single European Sky
SESAR Single European Sky ATM Research
SJU SESAR Joint Undertaking (=the SESAR organisation)
SID Standard Instrument Departure route
SMR Surface Movement Radar
SSR Secondary Surveillance Radar
STAR STandard Arrival Route
SUA Special Use Airspace
SWIM System Wide Iformation Managemen
TCAS Traffic alerting and Collision Avoidance Systems
TMA TerMinal Control Area
TWR Tower, Aerodrome Control
UTA Upper conTrol Area
VFR Visual Flight Rules
WGSWorld Geodetic System (e.g. WGS 84)

x



1
Scientific Paper

The scientific paper provides a succinct overview of the work performed and the re
sults obtained. The purpose of the appendices is to expand some of the concepts
presented. The paper begins on the next page.
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Modeling and Detecting Anomalous Safety Events
in Approach Flights Using ADS-B Data

Alberto Bonifazi1, Junzi Sun1, Gerben van Baren2, Jacco Hoekstra1
1Control & Operations, Delft University of Technology, Delft, the Netherlands

2Inspectie Leefomgeving en Transport, Minister van Infrastructuur en Waterstaat, Den Haag, the Netherlands

Abstract—This paper shows that it is possible to produce
safety knowledge by mining Automatic Dependent Surveillance-
Broadcast (ADS-B) data. The methodology combines exceedance
detection and anomaly detection techniques to identify anomalous
safety events in approach flights. One of these events is unstable
approaches, which are identified with a rule-based algorithm
and a Gaussian Mixture Model (GMM). The first model relies
on the idea that an aircraft during the final approach needs to be
flying within a certain horizontal area. The second one extracts
the energy characteristics of the aircraft using ADS-B data, and
later trains the GMM which is used for anomaly detection. Also,
go-arounds are detected in the data using fuzzy logic with four S-
functions to model the dynamics of a go-around. After identifying
these events, indicators are constructed by aggregating the results
to monitor safety performance. These models are applied to
the ADS-B data from 2018 of the Schiphol Airport area in
Amsterdam. Thus, it is possible to derive insights for runways
and months, and it is possible to combine these indicators with
extra variables such as meteorological data.

Index Terms—anomalous safety event, safety monitoring, ADS-
B, Schiphol Airport, data mining and anomaly detection

I. INTRODUCTION

Air traffic management is one of the most complex systems
that humans have ever created. In this system, ensuring safe
aircraft operations has the utmost importance. For this reason,
operators perform Flight Data Monitoring (FDM) programs,
called Flight Operations Quality Assurance (FOQA) in the
United States. To enhance safety, aviation authorities around
the world have promoted safety information sharing report-
ing mechanisms. The most notable ones are the European
Co-ordination Centre for Accident and Incident Reporting
Systems (ECCAIRS), and the Aviation Safety Information
Analysis and Sharing (ASIAS) from the FAA. Although the
majority of stakeholders join these initiatives, much of the
safety knowledge they generate remains within the boundaries
of their organization. The reason is that only serious occur-
rences must be communicated. Furthermore, it is challenging
for researchers to work with because it is confidential, and
thus, not-easily and not-widely accessible.

In this context, authorities are responsible to ensure the
safety of operations in civil aviation. They monitor its perfor-
mance through the reporting system, and by building statistics
of relevant occurrences. This provides a high-level overview
because it is based on safety occurrences, rather than specific
aircraft data. Automatic Dependent Surveillance-Broadcast
(ADS-B) technology can complement this information, and it
is compulsory for all aircraft from 2020. The system consists

of a transmitter and a receiver. ADS-B Out, the transmitter,
broadcasts continuously, on average every second, the aircraft
position, velocity and track angle. [1]

Furthermore, ADS-B data are not encrypted, there are
no restrictions on its use, and the receiver is cheap. These
characteristics make these data easily retrievable and widely
accessible. Combining these data with data-mining techniques
allows producing safety knowledge. For safety monitoring, it
means that it can be used to gain an independent point of view
on aircraft operations.

This paper aims to contribute to the field of safety monitor-
ing with a concrete use case centered on the final approach op-
erations at Schiphol Airport in Amsterdam, The Netherlands.
The goal is to produce insights based on the safety knowledge
extracted from ADS-B data.

The final approach phase is selected because it is where
65% of accidents occurred between 2011 and 2015 [2].
Furthermore, within this flight phase, the research focuses
on detecting two types of anomalous safety events: unstable
approaches and go-arounds. The first event is a factor in 14%
of the accidents occurring during approach [2]. The second
one is a standard procedure that can be initiated by the pilot
or ATC for different reasons, such as an unstable approach,
conflicting traffic, or adverse weather. For this reason, there is
a strong link between go-arounds and anomalous safety events.

Extracting safety knowledge from aircraft data is an active
field of research. The industry follows it closely. Currently,
they extract safety knowledge from aircraft data using ex-
ceedance detection algorithms, which are dependent on some
thresholds. The main pitfall of this method is that it fails
in detecting unknown events. Instead, researchers focus on
anomaly detection techniques, which have the key advantage
of detecting those. [3] However, their disadvantage is a high
false-positive rate that is generally around 70%.

These two strategies are combined in this paper. Wang et al.
[4] focus on exceedance detection and develop a methodology
to detect unstable approaches using radar data. The rule-
based algorithm is designed using knowledge from safety
regulations. For the detection of go-arounds, Proud [5] offers
a strategy based on a set of rules defined on the attributes of
ADS-B data.

The most well-recognized technique in anomaly detection
is the Once Class Support Vector Machine (OC-SVM) vari-
ant called the Multiple Kernel Anomaly Detection (MKAD)
algorithm, which is developed at NASA by DAS et al. [6].
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This algorithm has been tested extensively for approximately
10 years for various phases of flight, and it is able to detect
unstable approaches and go-arounds. [7] [8]

However, its focus is on discovering flight level anomalies,
and it has shown the best results when used with a single
type of aircraft and FOQA data. In this paper, the use case
is different since the strategy is applied to ADS-B data and
on multiple types of aircraft at the same time. To overcome
these limitations, Puranik et al. [9] preprocess the data using
energy metrics [10], and instantaneous anomalies in general
aviation operations are detected using a Gaussian Mixture
Model (GMM).

This paper offers the basis for the development of an
independent safety monitoring mechanism. It shows how a
novel methodology can detect unstable approaches and go-
arounds in ADS-B data. A general overview is shown in Fig. 1.
In the following sections, it becomes clearer how all the pieces
interconnect. Section II covers aspects regarding the data in
use, the preprocessing strategy, and the postprocessing one.
Section III and section IV discuss the detection of anomalous
safety events using a rule-based algorithm, GMM, and fuzzy
logic. Section III is specific to the detection of unstable
approaches and section IV to the detection of go-arounds. The
findings are presented in section V and section VI. The result
consists of a set of safety indicators that can be aggregated in
different ways to produce insights.

Fig. 1. The work flow of this paper

II. DATA

This section provides an overview of the data and a descrip-
tion of the manipulation strategies before and after using the
anomalous safety events detection methods.

A. Data Overview

The data consist of flight data and weather data. Flight data
include ADS-B data, an aircraft database from OpenSky1, and
Schiphol’s Aeronautical Information Services (AIS) publuca-
tions2. While the weather data comprise of METeorological
Aerodrome Report (METAR) reports and Global Forecast

1opensky-network.org/aircraft-database
2en.lvnl.nl/information-for-airmen/publications-for-airmen

System (GFS) data from NOAA3. These data are all publicly
available and free to download.

ADS-B data constitute the backbone of this research and the
most valuable source of information. In this paper, the ADS-B
data are collected through the antenna positioned on top of the
Aerospace Faculty of Delft University of Technology. ADS-
B data provide the timestamp, the unique ICAO identifier of
the aircraft, its ground-speed, its rate of climb, its position,
and its track angle. [11] The source of most of this data is a
satellite radio-navigation system on-board of the aircraft. For
this reason, there is a direct relation between the accuracy of
this instrument and the accuracy of the ADS-B data.

The aircraft database contains more information on the
aircraft under consideration: the manufacturer, the model, the
national registration ID, the operator, the owner, and the
ICAO aircraft type. The database is particularly useful when
preprocessing the data. Also, Schiphol’s data from the AIS
publication are used during the preprocessing step, and in the
rule-based algorithm. In particular, the Instrument Approach
Charts and the specific information of the runways are of
interest.

METAR reports indicate the weather perceived at the airport
on any particular day. In this case, METAR reports from
Schiphol are downloaded from IOWA ASOS network4. These
reports are generated every 30 minutes, and they include many
weather variables. The ones that are used in this research are
the timestamp, the temperature, the dew point temperature,
the wind direction, the wind speed, the pressure, the visibility,
the wind gust, the cloud coverage, and the weather codes.
However, this information is provided only for the airport. This
means that wind speed and direction are accurate only at low
altitudes. The GFS data from NOAA is used to complement
this information for higher altitudes. This dataset offers wind
data at intervals of 700 ft with updates every 6 hours.

B. Preprocessing

In this step, the raw data are cleaned and combined to
obtain something ready for further analysis. It will become
clear how this research resolves some of the limitations of
ADS-B data. A preliminary procedure consists of removing
general aviation aircraft, helicopters, and ground vehicles
using OpenSky aircraft database.

It is possible to know exactly which aircraft communicated
the ADS-B data point because the message includes the
ICAO’s identifier. However, the same aircraft might land and
take-off multiple times on the same day. For this reason,
the data points of a particular aircraft are further divided
into trajectories. This is a crucial step as we will be using
trajectories later in the analysis. Given the fact that we only
use the area around Schiphol for the analysis, it is easy
to detect inbound and outbound traffic, which gets labeled
respectively as approaching, and taking-off traffic. In this way,
we can further refine the trajectories used for the analysis by

3ncdc.noaa.gov/data-access/model-data/model-datasets
4https://mesonet.agron.iastate.edu/request/download.phtml
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selecting only approaching traffic. Throughout this process,
incomplete trajectories are removed. Furthermore, using data
from Schiphol’s AIS publication, it is possible to determine the
landing runway for each approaching trajectory. This is useful
information when building statistics of safety indicators.

ADS-B’s track angle data are a valuable source of informa-
tion, but these are not always accurate. Identifying the causes
of this behavior is beyond the scope of this work, but a track
angle fix is proposed. It is observed that sometimes when an
aircraft performs a go-around, or after landing when it moves
along the taxiways, its track angle indicator doesn’t follow
the aircraft movements. The track angle communicated via
ADS-B data doesn’t change whereas it is clear it should have.
To solve this issue, the track angle information communicated
from the ADS-B data is compared to a bearing estimated using
its position. If the difference between the two is higher than
60 deg, the estimate is used as track angle data. To limit the
influence of poor measurements in the track angle estimation,
a window of 40 s is considered and a minimum amount of 5
points.

Furthermore, ADS-B data provide ground speed and baro-
metric altitude. These are dependent on the weather, and
thus limit the comparison of aircraft in different meteorolog-
ical conditions. Nonetheless, it is possible to remove their
dependency using METAR reports and GFS NOAA data.
The barometric altitude assumes standard temperature and
pressure. These two values can be adjusted using the METAR
reports, as follows:

TA = T + a · hA

PA = P ·
(
TA
T

) −g
a·R

PA,M = PA

TA,M = TM ·
(
PA,M

PM

) a·R
−g

hA,M =
TA,M − TM

a

(1)

In (1), PA, TA and hA refer respectively to pressure,
temperature and altitude of the aircraft assuming standard
atmospheric conditions. The variables P , T , g, a and R are
International Standard Atmosphere constants. While, PA,M ,
TA,M and hA,M are the airplane’s pressure, temperature and
altitude calculated using PM and TM from the METAR report.

Ground speed is dependent on the wind speed, and it can be
corrected to obtain true airspeed by subtracting ADS-B ground
speed from the wind speed. METAR reports are used to correct
speed up to an altitude of 100 m, where the difference in wind
speed is estimated to be approximately 1.5 m/s. 5 After this
point, wind information is extracted from the GFS NOAA data.

Furthermore, it is interesting to understand the relationship
between safety anomalous events and the weather. For this
reason, it is important to establish a way to assess the severity

5http://euanmearns.com/high-altitude-wind-power-reviewed/

of the weather with a meaningful score. Thus, EUROCON-
TROL’s ATMAP weather algorithm [12] is implemented in
Python. In this metric, a high score corresponds to poor
weather with 4 being the threshold for a weather condition
that disrupts airport operations. In addition, it determines also
if an aircraft is flying in VMC or IMC. [13]

C. Postprocessing

After identifying anomalous safety events, it is possible
to construct safety indicators. These indicators combine the
knowledge obtained from the data to drive new insights.

In this way, it is possible to monitor how the number of
identified events by every strategy changes depending on an
extra feature or multiple ones. These features are the weather
score, the month of the year, and the landing runway.

In addition, for the horizontal compliance strategy and go-
around detection, there are extra specific features. For the
first one, there is also the stabilization altitude. While for the
second one, there are the distance to the closest aircraft and if
the aircraft is reported to be unstable. In the case of go-around
detection, the possibility to vary all these features is meant to
provide insights on the possible causes of go-arounds.

III. DETECTION OF UNSTABLE APPROACH

There are many definitions of an unstable approach depend-
ing on the operator and the entity. All these definitions have
in common an approach that is not aligned with the correct
flight path, that is too fast, or too slow. Generally, a definition
describes the requirements for a stable approach, rather than
prescribing when one is unstable. [14]

Furthermore, there is a link with the meteorological con-
dition because these conditions need to be satisfied at 1000
feet above airport elevation in IMC, or 500 feet above airport
elevation in VMC. Otherwise, a go-around should be exe-
cuted. This paper proposes two strategies to detect unstable
approaches: one checks if an airplane operates outside the
horizontal boundaries of stable approach operations, and the
other analyses if an aircraft is within normal energy bounds.

A. Horizontal Compliance

This method assumes that all approaches in Schiphol are
ILS approaches, and for this reason must be flown within 1-
dot of the localizer. [14] 1-dot represents a dot on the course
deviation indicator (CDI), the definition of dot depends on
the instrument. For the ILS-intercept, it corresponds to 1 deg.
Instead, for a VOR, a dot corresponds to 2 deg.

It is important to define an area of horizontal stable ap-
proach operations for each runway. In this case, information
is collected from the Instrument Approach Chart. The ILS-
intercept is defined as the line connecting the Final Approach
Fix (FAF), Runway Threshold (THR), and Runway Localizer
(LOC). A horizontal compliance region is constructed as the
area comprised within 1 deg of the ILS-intercept. It results
in areas with the same dimension and shape, but positioned
differently depending on the runway.

In Fig. 2, it is possible to visualize the horizontal compliance
area for each runway in gray. It is possible to see also the
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runway in blue, the decision gate at 1000ft in sky blue,
and the one at 500ft in green. As in the regulations, an
aircraft is unstable if it stabilizes after 1000ft in Instrument
Meteorological Condition (IMC), and after 500ft in Visual
Meteorological Condition (VMC).

Fig. 2. The horizontal compliance area in gray corresponds to the area in
which an aircraft needs to be flying once it intercepts the ILS. An aircraft
performs a stable approach if it intercepts the ILS before the 1000ft light-blue
gate in IMC, and before the 500ft green gate in VMC.

B. Energy Compliance

This strategy starts from the assumption that an unstable
approach has abnormal energy levels, which is quite common
in literature [15] [16] [17]. Thus, a set of energy features is
derived from ADS-B data. Subsequently, anomaly detection
is performed using a GMM. This is an unsupervised learning
model, as it does not require any a priori knowledge of what
is anomalous.

The key advantages of the GMM over other unsupervised
learning models are that it can be trained directly on mul-
tivariate data and it outputs its probability of being normal.
What a GMM does is clustering normal operations together
using a weighted sum of Gaussian component densities. The
strategy is composed of two steps: creating energy features
and anomaly detection.

1) Energy Features Generation: The energy features are
the following: specific total energy (e), specific kinetic energy
(ek), specific potential energy (eu), energy angle (γp), specific
rate of total energy (ė), specific rate of kinetic energy (ėk) and
specific rate of potential energy (ėu).

These features are similar to the ones used by Puranik and
Marvis in their work. [15] Since the mass of the aircraft is
not available from the ADS-B data, these features represent
the aircraft’s specific energy and its change. In addition, the
energy angle is a measure of how the flight-path angle can
change given the current energy level. [18] These metrics are
computed as follows:

e = ek + eu

ek = 0.5 · v2

eu = h · g

γp = arcsin
(roc
v

)
+
v̇

g

ė = ėk + ėu

ėk = v · v̇
ėu = roc · g

(2)

In (2), v corresponds to the true airspeed, h to the altitude
above the ground. These are both computed as explained in
the preprocessing section. Furthermore, g is the gravitational
acceleration constant near Earth’s surface and roc is the rate
of climb.

Once the energy features are generated, the data are re-
sampled, which consists of obtaining a new representation
suited for the use with GMM. In this case, data are sampled
in space using a median window comprising 0.5 NM, which
corresponds roughly to 12 sec. The time interval varies greatly
depending on the flight stage. The analysis considers aircraft
flying between 0.5 to 10NM from the runway threshold. This
is the area interested by final approach procedures, as it can
be seen in the instrument approach charts. The last portion
between 0 and 0.5 is not used because it is highly inaccurate.
Fig. 3 shows how the specific potential energy, the specific
kinetic energy and the specific total energy vary during the
approach phase.

2) Anomaly Detection: The anomaly detection step is per-
formed with a model based on a GMM. Because aircraft’s
behavior changes while performing a final approach, the model
comprises three separate GMM and it will be referred to as 3-
GMM model. In this way, each GMM learns how the aircraft
behaves in a particular phase. Otherwise, if a single GMM
is trained on the full spectrum of operations, the model of
aircraft behavior would be too general, and it would fail at
recognizing anomalies.

The first GMM learns what means being stable during the
final approach. In practice, this GMM is trained on aircraft
flying at a distance from the runway threshold between 0.5 NM
and 4 NM. This covers the most interesting aircraft operations
because it corresponds with the decision area described by
the Flight Safety Foundation as it includes the gates of 500ft
and 1000ft. The second GMM learns how aircraft descend
and intercept the ILS. It comprises the final approach area
that goes at a distance from the runway threshold between 4
NM to 7 NM. The last GMM learns of a broader spectrum
of aircraft behaviors as the area expands 3NM starting at a

5



Fig. 3. Variation of the specific potential energy, the specific kinetic energy
and the specific total energy depending on the distance to runway threshold

distance of 7NM from the runway threshold. At this stage, an
aircraft could be descending, turning, or flying level.

The features selected to train the 3-GMM model include
the energy features and two more features: time to runway
threshold and distance to threshold. These are particularly
important because each energy level is closely linked to a
particular position and time before landing.

A GMM is fully defined by the following equation:

p(x|λ) =
k∑

i=1

wig(x|µi,Σi) (3)

Equation (3) represents a parametric probability density
function that is a weighted (wi) sum of Gaussian components.
g(x|µi,Σi) indicates a single component, where Σ is the co-
variance matrix that captures the relation between the different
features. k is the number of components in the mixture. The
majority of these parameters can be obtained from the data
using the expectation-maximization (EM) algorithm. Only two
need to be specified beforehand: the type of covariance matrix
and the number of components. This approach is very common
in literature [9] [19].

The type of covariance matrix has direct consequences on
the shape of the Gaussian components. [9] and [19] use a
diagonal covariance matrix because of the lower computational
cost, which restricts the shape of the Gaussian components

forcing it to be oriented along the coordinate axes. During the
experimentation process, the computational time of using any
kind of covariance matrix is reasonable. Thus, this thesis uses
a full covariance matrix for the 3-GMM model such that the
components are free of assuming any shape.

The number of components is chosen using the Calin-
ski–Harabascz (C-H) index, as suggested by Puranik in [9].
This is an internal evaluation criterion that measures how
compact components are and how well separated they are.

Based on this information, the 3-GMM model can be trained
and it can be used for anomaly detection. Every time the
3-GMM model is trained, the data are normalized and only
95% is used. This is an attempt to remove anomalies from the
training data. In this way, the 3-GMM model should be more
sensible to anomalies once it is tested.

After the 3-GMM model is trained, every data point has
a certain probability of belonging to the distribution. An
anomaly threshold is selected such that contains points with
the least probability of being normal. The percentage of points
included can be changed depending on the need. Puranik [9]
suggests to use 0.05%, or 0.1%. The anomaly detection goes
as follows:

• Each trajectory is fed to the 3-GMM model, which will
return the probability of being normal for each of its
points.

• If the probability of a point is above the anomaly thresh-
old, the point is labeled as anomalous.

• A trajectory is considered anomalous if at least two points
are anomalous in the last 7 NM.

IV. DETECTION OF GO-AROUND

A go-around is a normal operation that occurs when landing
is aborted. However, pilots don’t perform it very often, which
leads to two risk scenarios. A: If the go-around is executed, it
is a deviation from the intended operation; and B: Pilots may
refrain from performing this maneuver. The risk in scenario
A arises from the fact that performing this maneuver increase
the workload for the pilots. Furthermore, accommodating a
go-around in busy airspace also increases the workload for
air traffic controllers.6 In scenario B, although guidelines
recommend executing a go-around, pilots decide not to. This
means that the approach is continued and may remain unstable.
Thus, it can lead to loss of control, runway excursion, or
controlled flight into terrain.

On top of the inherent risks of go-arounds, it is important
to understand what are the circumstances of a go-around be-
cause they are potentially anomalous safety events themselves.
Generally, these are an unstable approach, conflicting traffic,
or adverse weather.

The detection of go-arounds from ADS-B data follows a
two-steps approach: identification of a possible go-around and
evaluation of the go-around score.

6https://www.skybrary.aero/index.php/Go-around Execution
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1) Identification of a Possible Go-Around: A go-around
consists of climbing to a predetermined altitude prescribed
in the instrument landing procedures, and once at the correct
altitude turning 360 degrees around the runway. Thus, a
possible go-around is identified when an airplane changes its
course and starts climbing.

This step employs the technique developed by Sun et al. in
[20]. Applying this algorithm allows identifying rapid changes
in aircraft behavior. Sun’s phase detector can distinguish
between 5 different phases: climb (CL), ground(GND), descent
(DE), level (LVL), and cruise (CR). As shown by Proud
[5], this is particularly useful in case of a go-around as the
algorithm detects changes from DE to LVL/CL.

The change in phase is the indication for the beginning of
a possible go-around, this will be referred to as the starting
position in the text. Four ADS-B variable are analyzed: rate
of climb, altitude, ground speed, and track angle. During a
go-around, these variables are expected to change in a very
specific way.

The rate of climb and the altitude are an indication for the
aircraft climbing and gaining altitude. It is expected that these
two variables will be changing immediately after the starting
position. In particular, the model analyzes the delta in the
altitude from the starting position.

Instead, the ground speed and the track angle are expected
to change some time after the starting position. Indeed, they
will start varying after the initial climb. The track angle keeps
changing until the aircraft is aligned with a runway for landing.
In this case what is considered by the algorithm is the delta
in the ground speed and the track angle from the starting
position.

For these reasons, each variable is monitored for a specific
interval after the starting position. The rate of climb and the
altitude are analyzed from the starting position to the next 2
minutes. Whereas the ground speed and the track angle are
monitored from the starting position to the next 10 minutes.
This value is chosen because a go-around typically adds a
flight delay of this amount.7 A moving average with a window
of 15 seconds is used to reduce the susceptibility of the model
to outliers.

2) Evaluation of Go-around Score: The idea is to evaluate
how much the data resemble a go-around. We describe the
expected behavior of these variables using 4 S-functions,
which output 1 for maximum similarity and 0 for none. Every
variable has its specific S-shape function with the following
general definition:

S(x; a, b) =



0, if x ≤ a

2
(

x−a
b−a

)2
, if a ≤ x ≤ a+b

2

1− 2
(

x−b
b−a

)2
, if a+b

2 ≤ x ≤ b
1, if x ≥ b

(4)

7https://www.casa.gov.au/safety-management/advice-air-travellers/go-
arounds

In (4), a is the lower bound of the sloped part of the curve,
while b is the upper bound. Fig. 4 offers a visual interpretation
of the S-function. In this case, the functions for each variable
are defined as follows, where delta represents the difference
between the current position and the starting position:

∆X(m) = S(m; 30, 300) [deg]

∆H(n) = S(n; 100, 1000) [ft]

∆V (p) = S(p; 5, 80) [kn]

ROC(q) = S(q; 10, 1000) [fpm]

(5)

Fig. 4. S-function of the ground speed

These 4 S-functions in (5) represent a simplified version
of the behavior of an aircraft during a go-around, where X
corresponds to the track angle, H to the altitude, V to the
ground speed, and ROC to the rate of climb. By plugging the
actual data in these functions, we obtain scores. Mathemati-
cally, there should be points in the trajectory considered where
these functions score 1. This is not always the case as ADS-B
data are prone to errors. For this reason, the model flags a
trajectory as a go-around in case the average of the maximum
score obtained from the 4 S-functions is higher than 0.5.

Fig. 5 provides direct insights into the working mechanism
of this strategy because it shows how the ADS-B variables
evolve during a go-around procedure with the red horizontal
line corresponding to the 0.5 detection threshold. In particular,
time zero corresponds to the starting position that is the point
in which the phase changes from descent (DE) to climb (CL)/
level (LVL). Overall it is possible to see that Sun’s phase
detector reveals that during a go-around the phase changes
from climb to level, and then it returns to descent. In this case,
a go-around is clearly detected because all variables have at
least a point above the 0.5 detection threshold. As expected,
the altitude and the rate of climb vary rapidly.In the rate of
climb plot, there is a sudden jump. This is not surprising as
this variable represents the instantaneous change in altitude.
Furthermore, once the pilot has reached the go-around altitude,
this variable drops as the pilot will not increase the altitude
anymore. Whereas, the altitude score remains high for all
the go-around procedure, and then starts decreasing gradually
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Fig. 5. Evolution of the scores of the various ADS-B variables during a
go-around with the red line corresponding to the detection threshold

during the next descent. It is interesting to see how rapidly
the altitude score changes in the climbing part compared to
the descending one. The track angle and ground speed take
longer to change. In particular, the track angle stops changing
once the airplane has terminated looping around the airport.
It is clearly visible that this happens at around 10 minutes,
and then the aircraft maintains its bearing until the end of the
flight.

V. RESULTS

The results are produced using the data collected by the
antenna on top of the Aerospace Faculty of Delft University of
Technology during the year 2018. This section shows examples
of the detected events, the validation for the three detection
models developed for the identification of anomalous safety
events, and insights drawn from the monitoring in the year
2018.

A. Examples of the Detected Events

This subsection offers a graphic overview of the detected
events while providing insights into the working strategy of
the algorithms.

1) Horizontal Compliance: Fig. 6 shows an example of
the type of trajectory that the horizontal compliance strategy
is able to detect. In this case, it shows a trajectory, purple line,
that stabilizes at 500 ft, this gate is represented in green.

2) Energy Compliance: The flight shown in Fig. 7 repre-
sents an unstable approach. The red dots are points belonging
to this particular aircraft, while the purple area comprises
95% of data, and the dotted line its median. It is possible
to see that it is considered anomalous although some of the
parameters vary within normal energy bounds. This is where

Fig. 6. A flight that stabilizes after the 1000ft light blue gate and before the
500ft green gate.

the multivariate nature of GMM anomaly detection comes into
play because it discovers anomalies based on a combination
of features.

In Fig. 7, it is possible to understand why the 3-GMM model
classifies the trajectory as unstable. Looking at the specific
potential energy, it is clear that the aircraft is approaching
higher than usual. The reason might be that a high speed is
maintained until the beginning of the final approach phase, as
can be seen in the specific kinetic energy plot. This situation
leads to an overall higher than usual specific total energy level.
The pilot is trying to dissipate all this excess energy, which is
visible in the rate plots. To better understand the situation from
a time-frame perspective, there is the time to runway threshold
plot. Indeed, the aircraft is advancing faster than usual towards
the threshold.

This flight is also present in the validation list, which is
described in detail in subsection V-B. This occurrence is
accompanied by the following explanation ”after accepting a
short line-up the approach is unstable because the aircraft is
high during the approach”. This situation is, indeed, visible in
the energy metrics plot.

3) Detection of Go-Around: An example of a go-around
detected on runway 06 by the algorithm is presented in Fig. 8.
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Fig. 7. The energy metrics of an aircraft performing an unstable approach

B. Validation
Validating the results of the detection algorithms is challeng-

ing because data is unlabeled. However, we could rely on a
list of known go-arounds and unstable approaches provided by
ILT that is the part of the Ministry of Infrastructure in charge
of the airports’ oversight in the Netherlands. The list, which
will be called the validation list, comprises 65 go-arounds and
48 unstable approaches.

There is an important methodological difference that needs
to be made. There is the possibility that a flight present
in the validation list is not present in the ADS-B data.
However, whereas for go-around detection, it is possible to
determine without doubts if this happens by visualizing the
trajectories graphically. For unstable approaches, this is not the
case because plotting the trajectory doesn’t provide sufficient

information on the energy of that aircraft. Also, by inspecting
the energy metrics, we can get more insights, but it is hard to
say objectively that a flight is unstable. Indeed, this is shown
by LI et al. in [19] where 4 experts could not agree on which
situation poses safety concerns.

Thus in the following paragraphs, for go-arounds, the indi-
cation of ”not present” will refer to a flight not being present.
While for unstable approaches, it will refer to an aircraft not
present in the available ADS-B data.

1) Horizontal Compliance: There are two unstable ap-
proaches detected for 2018 using this strategy, none of which
is present in the validation list. Furthermore, by inspecting the
detected cases, one detection is a false-positive as it is caused
by poor data quality. The analysis shows that landing aircraft
are most times within horizontal stability limits.
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Fig. 8. An airplane performs a go-around and then lands on runway 06.

2) Energy compliance: Comparing the validation list with
the ADS-B data reveals that only 31 airplanes are present
in it. This detection model relies on the anomaly detection
step executed using the 3-GMM. One of the parameters that
is possible to vary in a GMM is the threshold. The goal
is to select a threshold that includes all anomalous safety
occurrences while limiting as much as possible the number
of false-positives.

Table I shows the relation between a particular GMM
threshold, the number of detected events, the detection accu-
racy, and the ratio of positives. The number of detected events
refers to the occurrences that are also present in the validation
list. The detection accuracy is the ratio of the number of
detected events over the total number of events found in
the validation list. Finally, the ratio of positives provides an
overview of the amount of approaches that it is considered
unstable in an year relative to the total number of approaches
of that year.

As expected, increasing the threshold increases the number
of detected events with the last row showing that when the
threshold equals 10 % the detection accuracy rises to roughly
94%. However, 43% of landing trajectories are labeled as
unstable. It is likely that the higher percentage of positives
results underlies a high percentage of false positives.

According to Boeing, approximately 3% of the approaches
are unstable. [21] For this reason, we would choose a threshold
that is 0.1% or 0.5%. In this case, 0.1 is selected to limit
the number of false positives. This corresponds to a detection
accuracy of 26%, and it reveals an overall number of unstable

TABLE I
COMPARING THE NUMBER OF UNSTABLE APPROACHES DETECTED FROM

THE VALIDATION LIST DEPENDING ON A GMM THRESHOLD

GMM Detection Ratio of
threshold [%] Detecteda accuracyb [%] positivesc [%]

0.01 3 9.68 0.50
0.05 6 19.36 1.08
0.1 8 25.81 1.60
0.5 9 29.03 4.78
1 11 35.48 7.55
2 15 48.39 12.70
3 17 54.84 17.55
5 21 67.74 26.23

10 29 93.55 42.80
aNumber of detected unstable approaches, which are present

in the validation list.
bRatio between detected unstable approaches also present in the
validation list and the total number of elements in the validation list
cRatio between number of detected unstable approaches

and overall number of detected landing aircraft

approaches equal to 3000 for the year 2018. A higher threshold
could be selected after an accurate analysis of a safety expert
that balances the number of false-positives and new anomalies.

3) Detection of Go-Around: In this paragraph, two vali-
dation tests are performed: comparing the results with the
validation list and manual inspection for the detection of false-
positives.

Table II shows the results of applying the go-around de-
tection model to the aircraft from the validation list. ”Not
present” refers to go-around trajectories not present in the data,
while undetected to go-arounds present in the data that are not
detected by the algorithm.

TABLE II
OVERVIEW OF THE NUMBER OF GO-AROUNDS DETECTED COMPARED TO

THE GO-AROUNDS PRESENT IN THE VALIDATION LIST

Detecteda Undetectedb Not presentc
46 1 18

aNumber of detected go-arounds, which
are present in the validation list.

bNumber of undetected go-arounds, which
are present in the validation list.

cNumber of go-arounds not present in the data,
which are present in the validation list.

This test shows a detection accuracy of approximately 98%.
However, it also shows that 28% of the trajectories are not
present in the data. Thus, the first step to improve the detection
of go-arounds is better data availability.

Another way to evaluate this algorithm is by manually
inspecting its output. This means logging when the result is a
go-around. The results are shown in Table III.

TABLE III
OVERVIEW OF THE OVERALL NUMBER OF GO-AROUNDS DETECTED, THE

TRUE POSITIVES AND THE FALSE POSITIVES

Detected True positives False positives
292 285 7
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False positives occur only 2% of the time, and the large
majority of the detected trajectories 98% are go-arounds.

C. Monitoring the Safety Indicators

In this section, safety indicators are constructed by aggre-
gating the results of the energy compliance model and the go-
around detection model. With the knowledge extracted from
the ADS-B data, it is possible to gain insights into operations
by analyzing the relationship between different variables.

1) Energy Compliance: Table IV shows the relation be-
tween unstable approaches, months of the year, and weather
conditions. The weather column in the table represents unsta-
ble approaches happening in the degraded weather situation.

TABLE IV
COMPARING THE NUMBER OF DETECTED UNSTABLE APPROACHES

DEPENDING ON THE MONTH AND THE WEATHER CONDITION

Month Unstablea Weatherb Totalc
Jan. 297 77 15269
Feb. 182 33 14370
Mar. 304 30 16794
Apr. 215 8 17645
May 256 36 17212
Jun. 259 8 18276
Jul. 298 7 19409
Aug. 265 48 19554
Sep. 213 48 18948
Oct. 226 26 19292
Nov. 214 14 16227
Dec. 270 72 16249

aNumber of unstable approaches
bNumber of unstable approaches with

a weather score higher than 4
cNumber of approaches detected in the data

This table shows that the months with the highest number of
unstable approaches are March, January, and July with approx-
imately 300 unstable approaches per month. Instead, February
is the month with the least unstable approaches around 180.
It is interesting to analyze the relationship between weather
conditions and unstable approaches. As expected, the months
with the largest portion of unstable approaches happening with
poor weather are January and December. In these months,
approximately 25% of the unstable approaches are linked with
the weather. Whereas, only 3% of the time in July and June.

Furthermore, it is possible to visualize how the unstable
approaches vary depending on the runway and the weather
condition. This is shown in Table V. The runway with the
most unstable approaches is 36R with 809, almost 30% of
all. The runway where there seems to exist a strong link
between degraded weather and unstable approaches is runway
27. Almost 40% throughout the year, with peaks in January
and December, where poor weather is concurrent to unstable
approaches 60% and 50% of the time respectively.

2) Detection of Go-Around: It is of interest to determine
what are the circumstances of go-arounds. For this reason,
Table VI and Table VII are used to investigate the relationship
between the number of go-arounds, the weather condition,
the unstable approach, and the separation to closest aircraft.

TABLE V
COMPARING THE NUMBER OF DETECTED UNSTABLE APPROACHES

DEPENDING ON THE RUNWAY AND THE WEATHER CONDITION

Runway Unstablea Weatherb Totalc
06 528 57 48394

18C 409 20 35393
18R 662 86 66637
22 107 21 4018
27 351 131 17304

36C 133 27 9742
36R 809 65 27757

aNumber of unstable approaches
bNumber of unstable approaches with

a weather score higher than 4
cNumber of approaches detected in the data

Compared to the analysis of unstable approaches, there are two
extra columns. The unstable column contains information on
whether the go-around is preceded by an unstable approach.
The separation column indicates if the closest aircraft to the
one performing the go-around is at a distance between 1.5NM
and 3NM. These thresholds are chosen because there is no
aircraft closer than 1.5 NM, and 3NM is the minima for
terminal airspace operations.

TABLE VI
COMPARING THE NUMBER OF DETECTED GO-AROUNDS DEPENDING ON

THE MONTH, THE WEATHER CONDITION, THE UNSTABLE APPROACH AND
THE SEPARATION TO CLOSEST AIRCRAFT

Month Totala Weatherb Unstablec Separationd

Jan. 44 29 2 1
Feb. 12 1 3 1
Mar. 29 6 4 3
Apr. 22 0 9 1
May 32 5 9 6
Jun. 26 2 8 1
Jul. 28 2 7 1
Aug. 22 4 3 1
Sep. 23 13 3 2
Oct. 11 1 4 1
Nov. 10 1 1 0
Dec. 26 12 7 1

aNumber of go-arounds
bNumber of go-arounds with a weather score higher than 4
cNumber of go-arounds linked with an unstable approach
dNumber of go-arounds where the separation

to the closest aircraft is between 1.5NM and 3NM.

From Table VI, 25% of go-arounds happen in December
and January. Probably, the reason is that weather conditions are
worse. Indeed, 60% of go-arounds in this period is linked with
the degraded weather condition. Also in September, approxi-
mately 60% of go-arounds are linked with poor weather. April
is the month where go-arounds are preceded by an unstable
approach most often, 40% of the time. Followed by October,
36%. Separation seems to influence very little the number of
go-arounds.

Table VII shows how the number of go-arounds varies de-
pending on the runway. The majority happens on runway 18R
(68 go-arounds) and 27 (65 go-arounds). On this last runway,
55% of go-arounds are linked with a poor weather condition.
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TABLE VII
COMPARING THE NUMBER OF DETECTED GO-AROUNDS DEPENDING ON

THE RUNWAY, THE WEATHER CONDITION, THE UNSTABLE APPROACH AND
THE SEPARATION TO CLOSEST AIRCRAFT

Runway Totala Weatherb Unstablec Separationd

06 49 2 14 2
18C 33 3 5 5
18R 68 19 14 2
22 11 6 2 2
27 65 36 5 1

36C 12 3 4 1
36R 47 7 16 6

aNumber of go-arounds
bNumber of go-arounds with a weather score higher than 4
cNumber of go-arounds linked with an unstable approach
dNumber of go-arounds where the separation

to the closest aircraft is between 1.5NM and 3NM.

In particular, on runway 27 out of 25 go-arounds happening in
January, 22 are concurrent with a difficult weather situation.
Also, runway 18 has 28% of go-arounds associated with
degraded weather. The peaks happen in January and September
where go-arounds are associated with poor weather 73% and
87% of the time respectively. Unstable approaches precede
34% of go-arounds on runway 36R and 29% on runway 06.
In particular, in April 80% of go-arounds on runway 06 are
preceded by an unstable approach.

VI. DISCUSSION

This paper shows a new data-driven approach to monitor
unstable approaches and go-arounds using ADS-B data. It
proposes three models: two for detecting unstable approaches
and one for go-arounds. Overall all methods would benefit by
having better data availability. This would allow reiterating
the algorithms to improve detection accuracy. A limitation
common to all methods is the absence of a proper validation
dataset. This makes it difficult to produce metrics such as false-
negative and false-positives.

The horizontal compliance algorithm is the one that shows
the most limited applicability. This is an exceedance detec-
tion method inspired by the Flight Safety Foundation stable
approach guidelines and by the work of Wang et al. [4].
Airplanes have shown to always comply with the lateral
stabilization criteria, thus the method has shown low efficacy
in detecting unstable approaches.

The energy compliance algorithm, instead, shows promising
results with a detection accuracy of 26% on the validation
list. After improving the availability of data especially at
lower altitudes, the threshold used for anomaly detection could
be reiterated by a safety expert to improve the detection
accuracy. A GMM is chosen as the anomaly detection strategy
because it provides interpretability and is directly usable with
multivariate data. Instead, many anomaly detection strategies
reduce the feature space and identify trajectory level anomalies
rather than point level anomalies. The ability of detecting
point level anomalies makes the model more resilient in case
some points are missing because in this method the analysis is

performed point by point. While if the analysis was performed
on a trajectory level, incomplete trajectories would have to be
removed completely. The effect would be a further limitation
on the analysis.

One of the limitations of the energy compliance method
is linked with the preprocessing of the true airspeed used in
the energy metrics. The GFS NOAA wind data is available at
intervals of 700 ft and updated every 6 hours. Furthermore,
there is no information about the wind vertical velocity.

Go-around detection is the best performing model with
a false positive rate of only 2%, and over 98% detection
accuracy on the validation list. Minor variations of this model
can potentially detect other aircraft operations, such as holding
patterns, which provide a measure of the ATC workload. This
strategy detects go-arounds based on the similarity between
ADS-B data and a predefined model. The underlying assump-
tions are well-reviewed by Proud in [5].

The thresholds used for the S-functions of the go-around
detection strategy are chosen based on experiments. Further
studies can be performed to improve them. However, the
optimum values are likely close to the ones selected. Indeed,
this is visible in the extremely low false-positive rate and high
detection accuracy.

A go-around might be caused by an anomalous safety event.
For this reason, this paper attempts to understand the most
likely circumstances of go-arounds. Another aspect that can
be analyzed is the wake-category of the preceding aircraft.
Nevertheless, some factors remain difficult to investigate such
as an ATC instruction because of an occupied runway.

Better data availability can directly improve the result of
this analysis, as 28% of the go-arounds in the validation list is
not present in the data, and 35% for unstable approaches. Fur-
thermore, this overview does not take into account incomplete
flights, thus these numbers are likely higher. There are fewer
data available at a lower altitude because this study relies on
an antenna 40km away. This impacts the detection of unstable
approaches more than the detection of go-arounds because this
last maneuver is performed at higher altitudes.

Yet, it is not possible to provide comprehensive statistics
on false-negatives and false-positives because it does not exist
a proper validation dataset. In the case of go-arounds, false-
positive statistics are provided by examining the output of the
method, which provides a clear idea of false-positives. The
same method does not apply to false-negatives since it would
require an inspection of thousands of trajectories one by one.

VII. CONCLUSIONS

Different models are tested to construct the basis of a
safety monitoring system. These methods are able to extract
safety knowledge from aviation data. Two of them focus on
detecting unstable approaches. The first one relies on the idea
that a stable approach is constrained within certain horizontal
bounds. The second one assumes that an unstable approach
is characterized by an anomalous energy level. Thus, energy
features are derived from ADS-B data, and anomalies are
revealed using a GMM. The third model detects go-arounds
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using fuzzy logic and S-functions. These functions model the
dynamics of go-arounds and provide a similarity score.

It is shown that these models can detect anomalous safety
events on ADS-B data from 2018 around Schiphol Airport.
These results are aggregated to derive useful insights. For
example, December and January are the months in which a
degraded weather condition has the highest impact on the
presence of unstable approaches and go-arounds. Also, on
runway 27 unstable approaches and go-arounds are often
linked with an adverse weather situation.

From the results, it can be concluded that the data-driven
methodology proposed in this paper has the potential to enable
independent monitoring of aircraft operations using aviation
and meteorological open data.

In the future, the focus will be on detecting other events
that may impact the safety of operations. Although some of
the strategies discussed in this paper can be modified and
used to detect other anomalous safety events, more strategies
will be required to efficiently detect them. Flight phases of
particular interest are take-off and ground operations. This
analysis would benefit greatly from better data availability
especially at lower altitudes, which becomes fundamental for
the analysis of ground operations.
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A
Research Framework and Methodology

This chapter provides the general research framework of which the presented paper
in Chapter 1 is a realization. Section A.1 introduces the problem, which is the start
ing point of this thesis. Section A.2 formalizes the objective and research questions.
Furthermore, Section A.3 clarifies the contribution of the thesis to the field of research.
Section A.4 explains how the questions are going to be answered and how the ob
jective is going to be reached. After reading this section, the choices made when
selecting the relevant literature will become clear.

A.1. Problem Definition
In the Netherlands, Schiphol Airport is the main port connecting the country with the
rest of the world and it is the busiest airport in Europe by aircraft movements1. The
different actors operating at Schiphol Airport aims to capture as much air transport
demand as possible. For this purpose, Royal Schiphol Group has built a secondary
airport in the Flevopolder, 70 km away. Furthermore, it is building a new terminal at
Schiphol to accommodate 14 million passengers with an expected opening in 2023.2

However, an increase in aircraft movements rises multiple questions, especially for a
complex infrastructure such as Schiphol Airport. It is not only a matter of the economic
benefit it would have on the Dutch economy, but it also raises concerns for the safety
of operations and the people living around the airport. These aspects have been part
of the political agenda for more than 20 years.

The safety of operations at Schiphol has been high on the political agenda in the
90s, after the Bijlmer incident of 1992. The key measure taken at that time was the
establishment of the Integral Safety Management System (ISMS) between actors at
Schiphol: Royal Schiphol Group, Air Traffic Control the Netherlands, airlines, and air
ground services.[1] The work on the ISMS has accelerated in 2017 when the Roadmap
for Safety Improvement at Schiphol was launched3. This renewed effort was a direct

1data from www.aci.aero
2data from www.schiphol.nl/en/schiphol-as-a-neighbour/page/lelystad-airport/ and news.

schiphol.com/amsterdam-airport-schiphol-presents-new-terminal/
3data from https://integralsafetyschiphol.com/
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A.1. Problem Definition

consequence of a report published by the Dutch Safety Board the same year. The
report highlighted how ”Schiphol is reaching its limits”, and since 2014, the growth in
movements was accompanied by an increase of incidents. According to their analysis,
actors at Schiphol Airport had to rethink their safety and risk mitigation strategy before
being able to increase air traffic after November 2020.[2]

Until November 2020, aircraft movements at Schipol Airport are limited to 500,000 due
to an agreement signed in 2008 which aimed at the reduction of noise pollution of the
surrounding residential areas4. Furthermore, the secondary airport in the Flevopolder
is ready, but it is closed for concerns about the level of nitrogen emissions that would
be produced by the operating aircraft.

In this complex scenario, the Dutch government is responsible to ensure the safety of
operations in civil aviation. Within the government, this delicate responsibility falls to
the Ministry of Infrastructure and Water Management. Inside the Ministry, the Human
Environment and Transport Inspectorate (ILT), in Dutch Inspectie Leefomgeving en
Transport, monitors and oversees safety at Schiphol Airport. This research is con
ducted in close collaboration with ILT. Currently, they assess the safety performance
analyzing occurrence reports and building statistics of relevant occurrences. These
reports are produced by the different parties operating at the airport and include any
event that could hinder safety. With the higher availability of aviation data, it is possible
to gain greater insights from normal operations.

The idea is to obtain anomalous aviation events from the data and to analyze the
occurrences to gain insights in the form of safety indicators. Some examples of in
dicators are the number of unstabilized approaches, identification of traffic density,
the average minimum distance between landing/takeoff aircraft, and the number of
goarounds. It is important to clearly define the area in which these operations take
place. It includes all areas that regulate the inflow and outflow of aircraft traffic. In this
analysis, the term Schiphol Airspace (SA) is used to indicate the area that includes:

• Schiphol’s Holding stacks: this is the area where aircraft wait before landing in
case of runway unavailability

• Schiphol’s Terminal control areas (TMA): the area that extends up to FL095 sur
rounding the airport

• Schiphol’s Control zones (CTR): the area that extends from the up to 3000 ft
surrounding the airport

• Schiphol’s Runways: used for takeoff and landing
• Schiphol’s taxiways: used for moving between parking areas and runways
• Schiphol’s parking areas: used for the parking of aircraft

The primary data used is ADSB data collected using the antenna on top of the Aerospace
Faculty of TU Delft. A preliminary analysis has shown that because of the distance
to the airport there is little availability of ground movements data. For this reason,

4data from https://www.schiphol.nl/en/schipholasaneighbour/page/schipholandthefuture/
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A.1. Problem Definition

other databases are used to improve the situation. This comes at the cost of extra
preprocessing steps.

In this thesis, finding anomalous aviation events means finding incidents and their pre
cursors. From ICAO, an incident is an occurrence, other than an accident, associated
with the operation of an aircraft which affects or could affect the safety of operation.5
In more detail, using Statler’s definition[3], an incident is a finite sequence of states.
As shown in Figure A.1, the first and last are safe states. While all other states are
compromised or anomalous states, with at least one which is anomalous. If the final
state is anomalous, instead of safe, the sequence of states belongs to an accident. A
precursor is a compromised state which, if not corrected, leads to an incident or an
accident.

Figure A.1: The figure shows the representation of an incident. (Adapted from [3])

What makes this task particularly challenging is the imbalance of the dataset, namely
the fact that anomalous aviation safety events are a handful against millions of regular
flights. On top of this complexity, once anomalous aviation events are found, it is not
guaranteed that these are operationally significant. It is important to be aware of the
difference between operationally anomalous and statistically anomalous.

Algorithms recognize statistically abnormal events, which include safe events and op
erationally anomalous ones. Figure A.2 shows the output of a detection algorithm in
relation to these different events. In the figure, the rectangle represents the output of
the algorithm that differentiates events for being statistically normal, green, or anoma
lous, yellow. Within the statistically anomalous ones, the algorithm recognizes false
alarms, which are safe events, known and potentially unknown problems. This study
is interested in operationally anomalous events, which include known and unknown
problems. For this reason, different strategies are used to minimize the number of
false positives, which are described in Section A.4.

5ICAO Annex 13
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A.2. Research Objective and Questions

Figure A.2: The figure shows a generalized output for a detection algorithm.

A.2. Research Objective and Questions
This section explains what is the objective of this thesis and which research questions
are answered to achieve it. The definition of the research objective and questions
follows from the identification of the key challenges in Section A.1.

A.2.1. Research Objective
The objective of this research is:

"To propose ILT a set of safety indicators that provide insights
into the safetyperformanceof aircraft operationsaroundSchiphol
Airport by mining ADSB data."

The objective is very practical and it contributes to bridge the gap between research
and realworld applications of ADSB technology.

A.2.2. Research Questions
It follows the main research question:

"HowcanADSBdata be used to gain insights into the safety per
formance of Schiphol Airport?"

To answer this question, several research questions are identified. These questions
together with subquestions and subgoals achieve the research objective, as shown
in Table A.1. Answering these questions aim to deliver the most valuable operational
tool. After obtaining a result from the algorithm, time is spent in determining how it
can be operationalized.
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A.3. Impact and Contribution

Table A.1: This table shows research questions, subquestions and subgoals.

Research Questions
(RQ)

Subquestions Subgoals (all ”build” tasks refer
to programming in Python)

1 What areas can be analyzed
given the data available?

1.1 Which data should
be discarded?
1.2 Which smoothing
methods are applicable?
1.3 Which outlier removal
technique can be used?

 Merging database
 Manual cleaning of data
 Removal of outliers from data
 Map with data density over Schiphol
 Table with data density
at different altitudes
 Build preprocessing tool

2 What data mining strategies
can be developed to identify
incidents and precursors
for the final approach phase?

2.1 Which threshold can be used to
construct an incident detection model?
2.2 Which set of feature(ex. energy) is
more appropriate to detect anomalies?
2.3 Which algorithms are more indicated
for an anomaly detection model?
2.4 Which algorithms are more indicated
for a precursor detection model?

 Build incident detection model and tool
 Detect anomalous events
 Build precursor detection
model and tool
 Detect precursor

3 What are the limitations of the
outcome of these models?
What is the operational
significance of the result?

3.1 What tests can be performed to
identify limits in anomalous events?
3.2 What tests can be performed to
identify limits in precursors?

 Validate anomalous events
 Validate precursors

4 How can the results of
the models be used
to design safety indicators,
which reveal the underlying
safety performance of Schiphol
Airport?

4.1 How often does a certain anomalous
event or precursor happen?
4.2 Is there a condition (ex. weather) that
affects the appearance of anomalous
events or precursors?
4.3 What are the similarities between
anomalous events and precursors (ex.
a trajectory characteristic of these
events, a particular speed profile )?

 Finalize tool that takes ADSB
data as input and computes safety
indicators statistics

This research takes place within a limited amount of time, 9 months. Given the time
constraint, it is unlikely that all operational phases are analyzed. For this reason, the
thesis is setup such that answering all questions entails analyzing a single operational
phase. Once the preprocessing step is overcome, one operational phase is selected.
At this point, the anomalous event detection and the precursor detection are performed
only for the selected operational phase. The results can be directly used to produce
safety indicators for this particular phase.

In coordination with ILT, anomalous safety events of particular interest are identified
to achieve the most useful operational result given the limited amount of time. After a
preliminary analysis the following operations are identified: unstabilised approach, go
around, rejected takeoff, and runway crossings. Since 50% of the accidents happen
in the landing phase, this will be the first focus of the analysis. The same methodology
can be used to continue the research for other operational phases.

A.3. Impact and Contribution
The work of this thesis has an impact in three different ways that are summarized in
this section. It contributes to the body of knowledge, to ILT, and in general to the Air
Traffic Management safety research segment.
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Figure A.3: The picture shows the work flow of this thesis.

The contribution of this thesis to the body of knowledge consists of an innovative
methodology that uses datadriven indicators to produce safety insights and a con
crete use case of it. This contributes in bridging the gap between research and real
world applications of ADSB technology. In this way, it advances the research regard
ing proactive risk assessment using ADSB data.

ADSB data is independent. This characteristic makes its applications very valuable
to air traffic safety body. With this methodology is possible to independently monitor
aircraft operation. Given that the case study for this analysis is Schiphol Airport, ILT
can directly use the results of this thesis to gain safety insights.

Furthermore, the research has farreaching applications because the same method
ology can be used anywhere in the world. ADSB data is not encrypted and anyone
with the correct receiver setup can record it without any restriction in much of the
world. This represents a costeffective way to monitor safety and operational perfor
mance. It might constitute a piece of an efficient monitoring tool that could be useful
in developing countries, where accident rates are much higher.

A.4. Methodology
In this section, the methodology used to achieve the project objective is presented.
Flight data is used to perform the analysis. In particular, ADSB is the main resource
throughout the work, which may be integrated with weather and flight procedures data.
ADSB data is collected using the antenna on top of the Aerospace Faculty of TU Delft.
A preliminary analysis has shown that because of the distance to the airport there is
little availability of ground movements data. For this reason, the OpenSky database6
is used to improve the coverage. These data constitute the starting point of the work,
as shown in Figure A.3.

The next step consists of preprocessing the data. In particular, ADSB data is col
lected from different sources. Thus, databases are merged and data undergo manual
cleaning in which data not useful for the analysis is removed, for instance, negative

6https://openskynetwork.org/
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altitudes, helicopters, and ground vehicles. More preprocessing steps might be re
quired depending on the algorithm.

For example, these can be selecting only one type of aircraft, the same phase of flight,
and adding extra features to the ADSB basic ones (ex. energy). Preprocessing
answers the first research question. Once data is cleaned, it will be clear in which
area it will be possible to perform the analysis.

After preprocessing, the data is ready to be analyzed to find anomalous aviation
events. The idea is to use a combination of exceedance detection and anomaly de
tection techniques to obtain the most effective and operationalizable result. For this
reason, it is privileged a solution with low complexity and a low falsepositive rate
compared to complex models.

As anticipated in the previous section, the first focus is on the final approach phase
to detect unstable approaches and goarounds. This is the most critical flight phase
since it is where 50% of all accidents happen. This step partially answers the second
research question.

When statistically anomalous events are discovered, postprocessing is applied to
validate the operational significance of the algorithm’s results. The validation consists
of performing sensitivity analysis on the tuning parameters of the algorithms to un
derstand how the result varies, comparing if the trajectory is anomalous for multiple
algorithms, and visual inspection possibly with an expert. Furthermore, anomalous
safety events can be checked against data from occurrence reports. In this way, the
third research question is fully addressed.

Once anomalous aviation safety events are detected, this labeled data can be used
to identify precursors. For instance, it would be interesting to understand whether go
arounds happen because of conflicting traffic, poor weather, or an unstable approach.
At this step, the second research question is fully answered.

Finally, safety indicators are designed by combining statistics of incidents and pre
cursors. Completing this step answers the fourth research question and reaches the
objective of the thesis presented in Section A.2.
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B
Literature Study

The literature study is presented in this chapter. The goal is to highlight relevant work
that could be useful while performing the thesis. It starts with an overview of the
research areas in Section B.1. The data used for the analysis is described in Sec
tion B.2 and it includes an overview of the current data availability. In Section B.3, it
continues with an analysis of preprocessing techniques that can be used for these
data. Afterward techniques for finding incidents in data are presented in Section B.4
and Section B.5. After finding incidents, precursors are discovered with methods from
Section B.6. There will be an overview of techniques highlighting their relevance in
the field and above all their applicability to the present thesis. Section B.7 summarizes
the key findings.

B.1. Research Areas
This research is based on multiple research areas. It finds its foundations and moti
vation in the field of aviation safety. This field produces much of the regulations that
govern air traffic operations. In this thesis, these regulations are used to derive a set
of rules that is accountable in the ADSB data. The core driver of this research over
laps with this research field. The goal is minimizing the occurrence and probability of
occurrence of accidents, incidents, and precursors.

In this thesis, this goal is achieved via proactive risk assessment. Safety risk assess
ment in aviation is experiencing profound changes. The technological innovations,
introduced with the modernization of the ATM, Air Traffic Management, architecture,
are causing a shift from reactive to proactive risk management. With the reactive
approach, risks are identified after a serious event occurs. In this case, mitigation
strategies are identified after performing indepth analysis to reconstruct the causes
using safety models such as the Swiss Cheese barrier and the Bowtie. Instead, proac
tive risk management wants to avoid the occurrence of safety events. To achieve this
result, it studies what might pose a risk to safe operations before any accident or
incident occurs.

Proactive risk assessment is possible because of the availability of large amounts of
data and data mining techniques. Data mining is another fundamental research area
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for this thesis. In fact, preprocessing, anomaly and precursor detection are largely
resulting from it. Data mining uses techniques from statistics, signal processing, ma
chine learning, and process control. Within data mining, the most interesting field
is anomaly detection. The research focuses on identifying data that deviates from
normality. Because ADSB data is unlabeled, the focus of this research is on unsu
pervised learning algorithms. The key assumption of these is that only a few samples
are anomalous, and this is also the case for anomalous aviation safety events.[4]

These datadriven algorithms can be used because of the advancements made in the
usage of ADSB data.[5] There is a growing field of experts that wants to apply this data
to different areas of aviation research. The reason is that aviation data has generally
been expensive and difficult to access. Instead, ADSB has opposite characteristics
being easily retrievable and cheap. In fact, anyone with the correct receiver setup
can record this data. These characteristics facilitate the independent monitoring of air
traffic.

B.2. ADSB Data
ADSB stands for Automatic Dependent SurveillanceBroadcast: ”automatic” because
it transmits data without any input of the pilot and ”dependent” because it depends on
the aircraft’s navigation system. Furthermore, it is a ”surveillance” technology com
posed of two distinct instruments: a transmitter and a receiver. ADSB out, the trans
mitter, allows any equipped aircraft to ”broadcast” continuously its position enabling
anyone with ADSB in, the receiver, to know where it is located.[6]

ADSB data is the main data source for this master thesis, as such, it has a critical
position for the outcome of the project. For this reason, it is important to understand
the limitation arising from this technology. Background information are presented in
Section B.2.1. While Section B.2.2 describes possible inaccuracy in the data. Finally,
Section B.2.3 addresses why the limited availability of data at particular altitudes is a
problem and how it can be overcome.

B.2.1. Background
ADSB represents one of the key technological enablers to modernize the ATM ar
chitecture all over the world, and it is a pillar in the European and American ATM
Master Plan. Since the Eleventh ICAO Air Navigation Conference of 2003, regula
tors recommended the implementation of the ADSB technology for the costeffective
improvement of safety and capacity.[7] For instance, it has been employed in areas
which were previously not covered by any surveillance technology because it was not
economically or physically feasible, such as the Australian inland or over Hudson Bay
in Canada. From 2020, ADSB Out equipment became compulsory for all air traffic in
designated airspace in Europe and US.

In Europe, ADSB out uses the 1090ES ICAO datalink standard. Among the 3 exist
ing standards, this is the most common one and its name stands for ”1090” is the MHz
frequency, which is typically used by aviation surveillance system; ”E” is extended be
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cause its message consists of 112 bits, whereas the ACAS 1 has 56 bits; ”S” is squitter
for the autonomous broadcasting capability.

Every ADSB message contains the unique ICAO identifier of the aircraft together with
a piece of specific information. There are 9 different types. In particular, the type of
information is raveled through a code encoded at bits 33  37 of the ADSB message.
This code is shown in Table B.1 together with the respective encoded content. [5]

Table B.1: The table, adapted from [5], shows the type code used and data contained in the ADSB
message.

Type Code Content
1  4 Aircraft identification
5  8 Surface position
9  18 Airborne position (w/ Baro Altitude)
19 Airborne velocities
20  22 Airborne position (w/ GNSS Height)
23  27 Reserved
28 Aircraft status
29 Target state and status information
31 Aircraft operation status

The source of most of this data is a satellite radionavigation system. It might also
use other onboard instruments such as the inertial platform or the altimeter. For this
reason, there is a direct relation between the accuracy of these instruments and the
accuracy of the ADSB data

B.2.2. Data Quality
For this thesis, it is important to understand if the quality of the data is sufficient to per
form the analysis. Verbraak et al. [8] performed an analysis to understand if ADSB
can be used as the primary mean of surveillance, thus focusing on data quality and
signal quality. His research is extremely relevant because he used ADSB data col
lected using the setup located on top of the aerospace building, which is the main
source of data also for this thesis. There are two main components of data quality:
latency and accuracy. Latency is the delay between measuring and receiving the po
sition caused by the processing of data. Accuracy means how accurate is the position
measured compared to the real one. Verbraak found an average latency of 20 ms and
an average horizontal offset of 21 m with crosstrack accuracy better than 51 m 95%
of the time. [8]

Another study on the quality of ADSB data has been conducted by Ali et al. [9], the
analysis was performed on a limited dataset of 9 aircraft and resulted in an average
latency of 1 sec and a root mean square error (RMS) horizontal offset of 188 meters,
whereas Verbraak found a RMS of 250 meters. It is important to note that Ali cleaned
its dataset removing data coming from the faulty ADSB out setup.

1ACAS: Airborne Collision Avoidance System
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Ali et al. performed also a detailed analysis of ADSB system errors on 57 British Air
ways aircraft. [10] He revealed that some of these errors are random while others are
systematic and specific to certain aircraft plus avionics equipment. The most common
types of error are position jumps, ADSB update interval, and GPS clock. These er
rors risk to jeopardize the implementation of ADSB surveillance technology. Thus, it
is important to put in place mitigation strategies. ICAO has released a list with known
ADSB avionics problems. [7]

B.2.3. Availability
Another important aspect is the availability of ADSB data, which depends on the
position of the ADSB in the receiver. The primary source of data for this thesis is
the database collected using the set up on top of the Aerospace Faculty of TU Delft.
Table B.2 shows the average availability of data at different altitudes in a day for 2018.
For all altitudes, there is a reasonable amount of data except at ground level where
there are only 50 points per flight on average. Considering the average latency of 1
sec this means 12 minute of trajectory, while aircraft spend much more time in ground
operations. In Schiphol, it can take more than 15 minutes to reach the Polderbaan
runway.

This is not enough for an analysis of ground movement and integration with more
databases is required. A possibility would be integrating it using OpenSky database
because it is easily accessible for researchers and an amateur ADSB in receiver is
registered at 52◦12’N 4◦53’E, which is only 15 Km from Schiphol. However, this is
based on a community receiver network and it presents unique challenges because
of the integrity of the data. [11]

Table B.2: Average availability of TU Delft ADSB data at different altitudes in a day for 2018.

Altitude range [ft] # fid # of points ratio
10000  8000 1271.43 89937.57 70.74
8000  6000 1269.42 124469.35 98.05
6000  4000 1268.03 134823.59 106.33
4000  2000 1266.02 200105.11 158.06
2000  1000 1243.75 121920.53 98.03
1000  500 1223.85 50215.02 41.03
500  100 1119.17 28434.37 25.41
100  0 673.03 33801.15 50.22

B.3. Preprocessing
Preprocessing the data is a fundamental step especially when dealing with data from
different sources. ADSB data comes in the form of a continuoustime series. The goal
is to obtain data that is regular and easy to interact with. In this section, general pre
processing steps will be described. It is likely that when applying the different methods
to detect anomalies more preprocessing steps will be required, like resampling in
time or space.
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It is required to merge the two databases: units will need to be converted, dupli
cates removed, and possible outliers. As presented by Sun et al. [12], common
preprocessing steps are data scaling, interpolation, and smoothing. When apply
ing machine learning algorithms, the range of data influences its performance. For
instance, Euclidean distance varies depending on if meters, degrees, or a mix is used.
For this reason data is scaled, Equation B.1 scales xi, an instance of the distribution
X, between [0, smax].

x
′

i =
xi −min(X)

max(X)−min(X)
· smax (B.1)

Some machine learning algorithms also require the data to have 0 mean and unit
variance. The standardization procedure is shown in Equation B.2.

x
′

i =
xi −mean(X)

var(X)
(B.2)

Interpolating and smoothing is often required when dealing with realworld data. For
instance, the data collected for an aircraft presents some gaps or irregularities. Inter
polation is used when given a set of measurements we want to estimate what would be
the value of a point between known ones. Smoothing is used when the data present
small measurement errors and/or fluctuations. Common methods include lowpass
filters, moving average, and splines.

Another important preprocessing step is dividing aircraft operations in different flights.
In fact, ADSB data provide information about which aircraft is transmitting the mes
sage, and not about the specific flight. The same aircraft lands and takeoffs multiple
times on the same day. In this thesis, all operations are happening around Schiphol
Airport. For this reason, a rulebased method is designed to detect when an aircraft
lands and takeoffs.

B.4. Exceedance Detection
Exceedance detection is currently themost commonmethodology used to track anoma
lous aviation safety events. Classic exceedance detection consists in analyzing Flight
Operation Quality Assurance (FOQA) data using threshold based algorithms. These
thresholds are set by experts based on knowledge of previous incidents and risks. The
general process is as follows. During a flight, an aircraft records information about its
position, speed, pilot inputs, engine setting and many more. There are more than
100 features recorded. After the flight, this data is collected and analyzed by an ex
ceedance detection algorithm. The events highlighted by the algorithms are analyzed
by a safety expert that decides if the event requires further investigation.

FOQA data and exceedance detection algorithms are proprietary information. This
thesis uses ADSB data as the main source of information, which means that airline
graded exceedance detection algorithms can not be used. For these reasons, ex
ceedance detection in this thesis is performed using research papers, policies from
regulators, and operating manuals from manufacturers. Among the regulators, key
information is retrieved from LVNL, ICAO, CANSO, EASA, Eurocontrol, and IATA. It
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follows an example of how data from regulations and research papers are used in the
exceedance detection method for unstabilised approach.

Unstabilised approach
Detecting unstabilised approaches is crucial as 50% of the accidents happen in this
phase of flight.2 According to the Flight Safety Foundation a stabilised approach hap
pens when the following is satisfied:

• The aircraft is on the correct flight path
• Only small changes in heading/pitch are necessary to maintain the correct flight
path

• The airspeed is not more than VREF + 20kts indicated speed and not less than
VREF

• The aircraft is in the correct landing configuration
• Sink rate is no greater than 1000 feet/minute; if an approach requires a sink rate
greater than 1000 feet/minute a special briefing should be conducted

• Power setting is appropriate for the aircraft configuration and is not below the
minimum power for the approach as defined by the operating manual

• All briefings and checklists have been conducted
• Specific types of approach are stabilized if they also fulfill the following:

– ILS approachesmust be flownwithin one dot of the glideslope and localizer
– a Category II or III approach must be flown within the expanded localizer
band

– during a circling approach, wings should be level on final when the aircraft
reaches 300 feet above airport elevation;

• Unique approach conditions or abnormal conditions requiring a deviation from
the above elements of a stabilized approach require a special briefing.

An approach that becomes unstabilised below 1000 feet above airport elevation in
IMC or 500 feet above airport elevation in VMC requires an immediate goaround. If it
fails to do so, it may result in airborne loss of control, runway excursion, or controlled
flight into terrain.3

Many of the items provided in the official guidelines can be directly analyzed using
ADSB data. Wang et al. [13] propose a method to identify stabilised approaches
using radar data, which provides information similar to ADSB. They define four per
formance factors: changes in speed, rate of descent, alignment with the runway cen
terline, alignment with the glidepath. If an aircraft is out of performance then it is per
forming an unstable approach. Their results for Newark Liberty International Airport
shows that 65 % of the approaches are stabilised. In the thesis, a similar approach will
be followed when incidents are identified with the exceedance detection methodology.

2data from: https://flightsafety.org/asw-article/commercial-accident-final-approach/
3Page 44 of https://www.skybrary.aero/index.php/Hindsight_17
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B.5. Anomaly Detection
In this section, a review of different anomaly detection methods is provided. To evalu
ate their applicability for detecting anomalies at Schiphol Airport, certain aspects are
carefully evaluated. These are the data used, the phase of flight, the number of flights,
the type of A/C, and the amount of false positive. Following the division made by Ba
sora et al. [4], the different methods analyzed are:

• Section B.5.1Distance basedmethods: Thesemethods determine anomalous
operations based on distance/similarity metrics.

• Section B.5.2 Boundary based methods: These methods determine a bound
ary that separates normal operations from the anomalous ones

• Section B.5.3 Statistical based methods: These methods identify anomalies
by assigning a certain probability to each datapoint.

• Section B.5.4 Neural Network based methods: These methods use a neural
network to identify anomalies.

These provide an overview going from classical approaches to recent developments.

B.5.1. Distance Based Methods
Distance based methods use a measure of similarity or distance between different
points. The techniques that find wider usage in the identification of aviation safety
anomalies are:

• kNearest Neighbours: This method is based on finding anomalies by computing
the distance of all points to its k nearest points. If the distance is higher than a
certain threshold, this point is considered to be an outlier.

• Clustering: The idea is to cluster data based on similarity using an unsupervised
or semisupervised technique. Anomalies are points that are not included in any
cluster.

Oehling et al. [14] use Flight Operational Quality Assurance (FOQA) data recorded
by airborne flight sensors with the Local Outlier Probability (LoOP) algorithm to detect
anomalies in the approach phase, more specifically, the last 10NM. Generally, FOQA
data is analyzed using threshold models that compare the operational data of flights
to fixed thresholds.

LoOP, developed by Kriegel et al. [15], is based on the assumption that the density
of kNearest Neighbour around an outlier is lower than around a normal data point.
Its advantage over other density based approaches is that it provides an outlier in
the range [0,1] which can be directly interpreted as the probability that the point is an
outlier.

Oehling et al. [14] focus on the final landing phase because it is where 30% of accident
occurs, and the most common type of accidents are: loss of control in flight (LOCI),
controlled flight into terrain (CFIT) and runway excursions (RE). The causes of these
accidents are an aircraft entering stall for LOCI, an aircraft being in the wrong position
for CFIT, and an aircraft having too much energy for RE. To highlight these factors,
these are the features used in the model:
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• Lateral distance from runway centreline (NM)
• Height above runway threshold (feet)
• Average airspeed (knots)
• Angle difference between aircraft track and runway track (◦)
• Average flight path angle (◦)
• Average flight path acceleration (g)

This approach could be used with some adaptation in the thesis by deriving the quan
tities above from ADSB data. It is extremely important to take into account that the
study is performed on 1 million A320 and A321 flights. The algorithm highlighted 134
events of which 112 were false positive (84%). On the same dataset, an exceedance
detection method found 2465 true anomalies and 6171 false positives (71 %).

In [16] and [17], Li et al. use an anomaly detection method based on the clustering
algorithm DBSCAN. This method is called ClusterAD and it uses FOQA data to de
tect abnormal takeoffs and landings. The analysis is performed separately for the 2
phases. The takeoff phase is the period when a large amount of power is applied.
When preprocessing the data, each flight is sampled every second for this phase. In
stead, the landing phase is sampled in space from the touchdown point. ClusterAD
consists of generating very highdimensional vectors using 67 flight parameters from
the FOQA dataset, which is then reduced in dimension using PCA before applying the
clustering algorithm. This approach can identify high/low energy approaches, unusual
pitch excursions, abnormal flap settings, and high wind conditions.

DBSCAN is a density based spatial clustering developed by Ester et al. [18] with the
idea of grouping together points in dense areas leaving the rest as outliers. Figure B.1
shows the workingmechanism of the algorithm. MINPT and ϵ are themain parameters
of the algorithm. In this case, MINPT is set to 4 and ϵ is represented by the circle
around each point. A point is classified as a core point if it is surrounded by at least
MINPT within a distance ϵ, reachable point if it is not a core point and it has a core
point within ϵ, and outliers if there are no core points within ϵ. Clusters are formed by
joining connected core and reachable points. [19]

Figure B.1: Overview of DBSCAN algorithm.[19]
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In Li’s application of DBSCAN the value MINPT is selected based on a sensitivity anal
ysis. The value of MINPT is fixed while ϵ varies between its maximum and minimum
value. After a few iterations, MINPT is picked in the area in which the number of de
tected anomalies is independent of the parameters. Later, ϵ is selected depending on
an acceptable percentage of outliers detected.

In [17], Li performs a detail comparison of exceedence detection, ClusterAD and
MKAD, which will be discussed in the next subsection. 25,519 A320 flights are an
alyzed and it shows that just a few percentage are detected by all algorithms. Ex
ceedance detection has 3 levels of severity: level 3 (severe exceedance), level 2
(moderate exceedance), and level 1 (mild exceedance). To give an idea: level 3 in
cludes 3 % of flights, level 2 14 %, and level 1 74%. Generally level1 flights are not
analysed because most of them are not operationally significant and it is too expen
sive to analyze them. By varying the detection threshold of MKAD and ClusterAD
between 1% and 10%, as it can be seen in Table B.3. The table also shows the flights
present at the same time in Exceedance detection (level 3 only) and ClusterAD, or
MKAD. The comparison is performed on level 3 exceedance detection because the
number of outlier is expected to be lower since its the most severe case.

Table B.3: This table summarizes the differences between MKAD and ClusterAD for different
thresholds and exceedance detection (level3). [17]

Technique / Threshold [%] 1 3 5 10
ClusterAD only [flights] 244 606 919 1584
MKAD only [flights] 170 557 851 1528
Both [flights] 33 147 355 955
Exceedance detection
in ClusterAD [flights]

39 93 143 220

Exceedance detection
in MKAD [flights]

12 31 53 86

ClusterAD shows approximately 3 times more common flight with the exceedance
detection method. This is expected because ClusterAD detects anomalies based on
the deviation from nominal values. This nominal values are close to the target value
used in exceedance detection. Based on this consideration and the fact that level 3
anomalies are approximately 3% of the dataset, the false positive of ClusterAD can
be approximated to be 80%. The author reveals that MKAD works best with discrete
data, while ClusterADworks best with continuous data. It is noteworthy that ClusterAD
does not provide a score for the anomaly and that all anomalies have the same ”score”,
while MKAD differentiate between anomalies using a scoring criteria. This is important
because with MKAD it is possible to limit the search to anomalies with an high score.

Churchill et al. [20] present a DBSCAN clustering strategy based on a two steps ap
proach to detect anomalies in aircraft ground movements. First, they cluster trajectory
in space and then they cluster in time to obtain different kinds of insights. Their idea
is to find standard paths using the DBSCAN algorithm while identifying anomalies as
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a byproduct. This approach could be directly adapted for the use case of Schiphol
airport to extrapolate useful safety indicators in ground movements, as they use ADS
B data. This method is tested for 10,000 flights at Charlotte Douglas International
Airport.

A different kind of clustering is used by Iverson et al.[21], this time they build an Induc
tive Monitoring System (IMS) based on clustering, which is used for safety monitoring
for the International Space Station (ISS). The key difference with the earlier examples
is that they train a model on normal safe operations of the ISS. While in the previous
cases, anomalies are included in the training dataset. Afterward, the trained model
detects anomalies based on their distance from the cluster centroid. The downside of
this approach is that 2 steps are required and to generate the training dataset another
technique needs to be used to clear it from anomalies.

The main downside of these methods is that they suffer from the curse of dimension
ality that is they do not scale well with high dimensional dataset. For applications
with flight data which is generally high dimensional, it means that fewer dimensions
are used, i.e. only a subset of the available ones or the dimensionality needs to be
reduced using techniques such as PCA[22], tSNE[23] or autoencoders (discussed
later). [4]

B.5.2. Boundary Based Methods
These methods use a training dataset that represents the normal data from which
boundaries of regular operations are learned. The famous python package Scikit
learn offers a way to easily implement these algorithms, which are often used in
anomaly detection. Figure B.2 offers an intuitive explanation of the different algorithms
applied to a 2D datasets.[24]

Figure B.2: Overview of classical anomaly detection algorithms.[24]
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Among these algorithms, the one that finds wider usage in identifying safety risks in
aviation is oneclass support vector machine (OCSVM), which is the variant of SVM
designed to detect outliers. This technique finds a hyperball in high dimensional space
that comprises only good observation leaving the outliers outside this border, which is
described by the following Equation B.3.[25]

min
R,ξ

R2 +
1
vn

n∑
i=1

ξi

s.t. ||ϕ(xi)− b||2 ≤ R2 + ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n

(B.3)

What Equation B.3 expresses concretely is finding the smallest possible hyperball by
minimizing R, the radius of the hyperball, and ξ, the slack variable. Such that, the
square Euclidean distance of the point x, which in kernel space is b, to the center of
the hyperball, is smaller or equal to R2 + ξi. Where ξi ≥ 0is necessary to allow for
outliers detection. In 1/vn, the weight factor n represents the number of samples and
it is used to normalize and make the result independent of the training size. v is the
user design parameter used to determine the amount of slack.[25]

Based on OCSVM is the Multiple Kernel Anomaly Detection (MKAD) algorithm devel
oped by Das et al. at NASA.[26] In this technique, multiple kernels are employed to
analyze discrete and continuous data at the same time. It finds application in the anal
ysis of FOQA, surveillance data, and even occurrence reports. In this paper, out of
the 500 parameters in the Flight Operations Quality Assurance (FOQA), the 39 most
meaningful features are selected. It can detect approach anomaly, high airspeed,
gusty wind anomaly, and goaround.

Das at al. in [27] and Matthews et al. in [28] test MKAD on a larger dataset made
of multiple aircraft. It can detect high energy approaches, due to high speed or high
altitude, and turbulent approaches, where a loss of lift causes roll or pitch changes.
The basic idea is that aviation data is highly multivariate, which is impossible to com
pare directly. For this reason, Kernel functions are used to map data to a different
dimension where similarity can be assessed. At this point, a flight is anomalous if it is
different from most other flights. MKAD is the most studied and used anomaly detec
tion algorithm in aviation. It is very often used as a benchmark for new algorithms.

Matthews et al. [29] use MKAD on surveillance data which includes the following
features latitude, longitude, altitude, and time. When training MKAD also the distance
to the closest neighboring aircraft is added as a feature. The training dataset is made
of the 30 days preceding the test day. The 90 most statistically anomalous flights are
analyzed by an expert, which considered 33 to be operationally significant.

A key problem of MKAD is the number of false positives produced by the algorithm,
another experiment with a domain expert shows that out of 98 statistically anomalous
flights only 20 are operationally significant. For this reason, M. Sharma et al. [30] at
NASA focused on the way to overcome this limitation using Active Learning (AL). This
approach is based on an expert that reviews the results of the algorithm and asses if
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the anomaly is operationally significant. The approach is based on the idea that there
is a cost associated with labeling the dataset, the expert who reviews the result of
MKAD. The process is as follows. The expert reviews an initial set of flights marked
as the most anomalous by MKAD. In this way, it is possible to train an initial classifier
that determines which anomaly is operationally significant and which not. Based on
this classifier, the expert is interrogated again with a new set of flights and its labels are
used to improve the classifier itself. The expert not only provides a label, but he can
also provide an explanation, which the researchers try to add in MKAD using a new
kernel. The result shows a slight improvement over MKAD. In particular, comparing
the top 46 anomalous flights of AL and MKAD reveals that AL identifies 15 operational
anomalies and MKAD 11.

Another application of OCSVM is present in the paper of Puranik et al. [31]. A two
step strategy is used to detect anomalies in the approach phase in general aviation
using FOQA data. Before performing the anomaly detection, they have a feature
generation step in which they transform the data using some energy metrics from [32].
Using energy metrics is particularly important because many incidents are due to poor
energy management of the aircraft. The model is shown in Figure B.3, DBSCAN is
used to obtain the number of clusters in the data set and OCSVM is trained to detect
anomalies.

Figure B.3: Strategy of Puranik to identify anomalies in general aviation flights.[31]

Testing is performed on different energy metrics on a dataset of 1000 flights, only
the top 5% anomalous flights are considered. These energy metrics use different
kinds of features with the most limited one using only information about speed and
altitude. Interestingly 80% of the flights detected with each method are the same. This
means that using ADSB data should give similar results. Additionally, the results are
insensitive of runway, airport, and aircraft model. This means that the samemodel can
be used with different aircraft landing at different runways, or even different airports.
For future work, this paper raises the point that it would be interesting to see how
operations change based on the weather. Comparing these results with the ones
obtained from ClusterAD reveals that 60% of the anomalies are the same, while the
differences arise from anomalies that are very feature dependent.

Temporal LogicBased Learning is a novel anomaly detection approach that is capable
of to infer signal temporal logic (STL) formulae resembling natural language from data.
STL is a language used to specify system parameters, a possible output is ”if x is
greater than y, then within T1 seconds, it will drop below y and remain below y for at
least T2”.[33]

Deshmukh at al. [34] applied this technique to trajectories obtained from ADSB DATA
in terminal airspace. They call their methodology ”TempAD” and it is composed of
two steps: first they apply DBSCAN to cluster together similar trajectories, and later
they use temporal logic learning to define boundaries of normal operations with an
optimization problem similar to Equation B.3. Operations are bounded in terms of
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horizontal (latitude and longitude), altitude, speed, and energy. It is important to note
that bounds are not combined when detecting outliers in the sense that the algorithm
is trained on each bound and tested separately. For instance, this method reveals if
the aircraft is out of limits in altitude, but it does not recognize if the combination of
speed and altitude is anomalous.

In a subsequent publication, Deshmukh at al. [35] transformed TempAD in an incre
mental learning algorithm. The authors realize that TempAD is not able to account for
large amounts of data because when trained with data collected over multiple days
it becomes too conservative. The cause is that airtraffic operations have a periodic
pattern and they change depending on the time of the day and the season. For this
reason, the incremental learning algorithm updates the operation boundaries every
day. This approach can recognize goaround, Sturn (path stretch), overspeed/under
speed, late interception of glideslope, energy excess/deficit, and change of runway
anomalies.

B.5.3. Statistical Based Methods
Statistical methods rely on the concept of assigning a certain probability to each data
point. Normal data will fall in high probability region. While anomalies will fall in low
probability regions.

Gaussian Mixture Model
Gaussian Mixture Model (GMM) is a probabilistic model and it assumes that all data
points are generated by several weighted Gaussian distributions. Their wide usage
in aviation derives from the fact they handle multivariate data explicitly. This model
detects anomaly by calculating the probability that each data point belongs to a certain
Gaussian distribution, and if this probability is lower than a certain threshold it will
consider it as an outlier.

There are two common ways of estimating Gaussian distributions. The first one relies
on an iterative expectationmaximization (EM) algorithm what it does is maximizing
the likelihood that each datapoint belongs to a certain number of Gaussians. In this
approach, the number of Gaussian is assumed to be known beforehand, and the
algorithm can find a local optimum. A way to check that the algorithm was applied
correctly is by investigating that the resulting Gaussians do not contain singularities,
i.e. a component that corresponds to a single point, with mean equals to the point and
variance equals 0.

The second approach is called Bayesian Gaussian Mixture, the key difference is that
this algorithm can estimate the number of Gaussians, but it needs a higher number of
hyperparameters. The most important of which is the weightconcentration parame
ter. If a low value is chosen, a few components will carry most of the weight. If instead,
a high value is chosen, many components will play a role in the model. Table B.4 sum
marizes the differences between the two estimation algorithms. A shortcoming of this
model is that if the training dataset has many outliers, it will fail in recognizing it as an
outlier. For this reason, the dataset should be cleaned of this data, which might be
very challenging.
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Table B.4: The table summarizes the key difference between the two estimation algorithms, adapted
from [24].

EM Bayesian

Pro
Speed Automatic selection

of components

No bias Less sensible to change
in parameters

Cons

Very sensible to change
in parameters

Slower than EM

Singularities Implicit bias

The main application of GMM in aviation is detecting an instantaneous anomaly. For
instance, Puranik and Li, who are presented in the previous sections, use GMM to add
instantaneous anomaly detection to their flight anomaly detection algorithms. Puranik
et al. [36] use GMM because it deals with multivariate data explicitly with EM estima
tor. They find the number of components by using the CalinskiHarabascz clustering
criteria because it provides the clearest definition of clusters. In this paper, the authors
not only identify instantaneous anomaly but also monitor teach aircraft operation with
anomalous probability score.

Furthermore, there is a comparison with exceedance detection. It is shown that there
is a negative correlation between the two methods. A point has a high exceedance
level, but a low anomalous probability score. However, if the points considered are
only the top 1% anomalous points resulting from the GMM method, they are also
anomalies for the exceedance detection algorithm. In this application, GMM can de
tect anomalies in takeoff and landing.

Similarly, after developing ClusterAD using DBSCAN, Li et al. [37] investigate the use
of GMM. On a high level, the key difference is that the new approach can detect an
abnormal data point instead of an abnormal flight phase. This is advantageous when
an expert has to review the flight because he can analyze directly the anomalous part.
Normal operations are captured by the Gaussian components of the model as ILS ap
proach, different kinds of visual approach and touchdown. Li notes that full covariance
matrices are unnecessary even when flight parameters are not independent. There
fore diagonal covariance matrices can be used which have the advantage of being
more computationally efficient. As Puranik, Li uses EM estimator, but this time the
number of components is chosen based on the Bayesian Information Criterion(BIC),
which finds the optimal balance between model accuracy and complexity.

The authors analyze a dataset of 10528 A320 flights with this algorithm and they ana
lyzed the 53 most anomalous flight with a group of experts that revealed a 80% false
positive rate. Furthermore, they compare this new algorithm with the previous Clus
terAD, MKAD and exceedance detection. The result is that this new algorithm pro
duces results more in line with level 3 exceedance detection. 26% of the anomalies
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detected by GMM with a threshold of 3% are also in level 3% exceedance detection.
This means that the percentage of false positive can be considered to be around 70%.

The main challenges in applying the work of Li and Puranik to the thesis are the dif
ference in data and the different aircraft. The data available for the thesis is ADSB
data, while in the work of Li and Puranik FOQA data is used. The work of Puranik
and Li focuses on a specific type of aircraft, while the thesis will need to manage most
aircraft landing at Schiphol. The second problem can be overcome by categorizing
the aircraft in different categories and performing different analyses per category.

Principal Component Analysis
Principal Component Analysis(PCA) is a linear transformation algorithm that trans
forms the feature space such that variance is maximized on the components. The
principal component has a maximum variance, and the variance decreases for the
successive components. In particular, it is guaranteed that if reconstruction is per
formed using only the principal component, the obtained 1D result minimizes L2 error,
the sum of the square differences between the original value and the reconstructed
value. Flight data is often nonlinear, and researchers use modified PCA able to deal
with nonlinearities. For instance, Zhang et al. [38] developed an efficient Kernel PCA
(KPCA) algorithm optimized specifically for flight data.

Jarry et al. [39] use Functional PCA (FPCA) and unsupervised learning with track
radar data to detect NonCompliant Approach (NCA) that is a precursor of NonStabilised
Approach(NSA), which may lead to catastrophic accident Control Flight Into Terrain
(CFIT). The 2step approach consists of applying FPCA on total energy trajectories,
and later applying hierarchical clustering. The total energy is used because an excess
of energy is the key reason for noncompliance. The radar data consists of longitude,
latitude, altitude, ground speed, time, vertical speed, heading, and aircraft type. These
are the same parameters provided by ADSB, which make this method adaptable for
the thesis. FPCA allows reducing the dimension by estimating a truncated Karhunen
Loève decomposition. It is based on the fact that aircraft radar positions are functional
data, and it can be considered as realizations of an underlying stochastic trajectory
function.

Furthermore, to allow for a comparison between different flights that have different
operational speeds, the reference system is based on the curvilinear distance from
the runway threshold. The author analyzes a small interval of trajectory at the time
to provide segment noncompliance score by using a sliding window and applying
recursively the algorithm. To compute the noncompliance score, Hierarchical DB
SCAN (HDBSCAN) is used after which the GlobalLocal Outlier Score from Hierar
chies (GLOSH) algorithm is applied to obtain a score between 0 and 1.

HDBSCAN constructs the minimum spanning tree among the data and computes a
density dendrogram based on the size of the edges between the data. Clusters are
selected from the dendrogram based on the number of points per each subelement.
According to the authors, this approach is very sensitive to a change in sliding window
size. Jarry et al. [40] extensively tested this approach at multiple airports with good
results. The reason for the development of this method arises from the fact that an
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exceedance detection methodology has a high falsepositive rate. In this paper, the
author mention a system from the French government called ELVIRA which has a
false positive rate of 98 %. While the FPCA method has a false positive rate of 70 %.

Independent Component Analysis
Independent Component Analysis (ICA) is a statistical technique that consists of a lin
ear transformation of some observed data to a new feature space. ICA assumes that
the observed data originates from a mix of nonGaussian and mutually independent
latent variables. ICA reveals the latent variables, or independent components, which
maximize feature reconstruction such that it is possible to predict the new feature from
the original one, and viceversa. Jiang et al. [41] applied ICA in the aviation sector.
In particular, they use a complex network approach based on ICA to monitor air traffic
congestion outside the Terminal Maneuvering area.  

Regression model based
This approach consists of training a regression model and highlighting anomalies
based on the distance between the expected value produced by the regression model
and the actual value. In the case of aircraft data, the vector autoregressive (VAR)
model is used to take into account multiple time series variables using a single model.

Melnyk et al. [42] [43] models the flights using a dynamic Bayesian network combin
ing discrete and continuous variables taken from the FOQA database. The model
is a semi Markov switching vector autoregressive model (SMSVAR) and it works as
follows. A single VAR model built using continuous data does not represent the entire
flight. For this reason, different VAR models are used depending on the flight phase,
which is revealed by a combination of the flight switches (change in autopilot). The
flight phase is not observed in data and it is modeled as a latent parameter (hidden
Markov process). An example of flight phases identified for goaround: descending,
levelingoff at a certain altitude, final approach, sudden takeoff, and circling.

After training the model on the full dataset, it finds anomalies by predicting the next
state given the current one. Then, it computes the dissimilarity using KL divergence
between the two states. Testing the algorithm on simulated data shows that the model
works well with a percentage of anomalies up to 10%, afterward the model starts
to learn the anomalies and the model fails. Testing a VAR, SMSVAR and MKAD
on 20,000 flights and taking the 100 most statistically anomalous flight reveals that
VAR detects 17 operational anomalies, SMSVAR 49, and MKAD 38. Although this
approach seems to perform better than MKAD, it will not be used in the present thesis
because in order to achieve the same level of performance flight switches information
should be used as well. Otherwise, this would be a simple VAR model that performs
worse than MKAD.

B.5.4. Neural Network Based Methods
The principle of the neural network is to resemble the working mechanism of the hu
man brain. It is a simulation involving interconnected neurons. In general, these are
organized in layers, and each neuron of a layer is connected to all neurons of 2 neigh
boring layers. The first layer receives the input data, and the last layer contains the
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output of the network. In between, there are the hidden layers, which allow gaining
a deeper ’understanding’ of the data. This structure is shown in Figure B.4. ”Under
standing” means finding a relationship between data. Thus a neural net represents a
hidden mathematical function that reproduces the relation of a training set. 

Figure B.4: Structure of common neural network.[44]

There exist different types of neural networks used in anomaly detection in the aviation
section, which will be analyzed in the following sections.

Recurrent Neural Network
Recurrent Neural Networks (RNN) have a different structure compared to the one
showed in Figure B.4. This type of network is designed to take series type input with
no predetermined size. As it is possible to see in Figure B.5, the key difference with
Figure B.4 is that the weights are applied ”recurrently” for all inputs and that there is
a connection between the different input sequences. This connection is implemented
via a hidden state, which is calculated from the current input and the hidden state at
the previous step. This feature is also called memory capability as if RNN remembers
what happened at the previous timestamp. The idea behind this is that in this way it
can understand the sequential nature of data, and in this case of flight data.

Nanduri et al.[45] use RNN based models, Long Short Term Memory (LSTM) and
Gated Recurrent Units (GRU), with FOQA data. LSTM introduces extra elements to
the basic RNN, most importantly the cell state. In this way, LSTM networks are able
to understand if the information is important in a given context. GRU is a variation of
LSTM that merges nonrelevant information and the input.

In an experiment, both RNN and MKAD are trained on trajectories generated by X
Plane. In particular, there are 478 training examples and 22 test samples (11 of which
contain an anomaly). This test setup raises concerns as the amount of data used is
very limited and it is possible that if this model is used with real data results will differ
from the one of this author. The output of the RNN model is the predicted state of
the aircraft. An anomaly is detected when the error between real state and predicted
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Figure B.5: Structure of recurrent neural network.[44]

state is high. RNN models did not have false positives, as well as MKAD. Further
more, RNN models show a much higher recall than MKAD classifying correctly 80%
of anomalies compared with 50% of MKAD. Among the two RNNmodels, GRU shows
the best performance as the MSE is higher, which means that there is less ambigu
ity in detecting anomalies. Recurrent Neural Networks are able to detect 9 out of 11
canonical anomalies in the test dataset, while MKAD 6 out 11.

Autoencoder
Autoencoders are feedforward neural networks with an equal number of input and
output nodes. It is composed of two parts: an encoder and a decoder. Figure B.6
shows the general structure of an autoencoder. As it is possible to see in Figure B.6,
an autoencoder reduces the feature space of the input in the encoding part and tries
to recreate it in the decoding part. The objective of the autoencoder is to minimize the
error of the reconstructed result. Anomalies are detected when this error is high.

Figure B.6: Structure of an autoencoder.[46]

Olive et al. [46] analyze one year of ADSB data between different cities to detect
anomalies inflight trajectory and identify controllers command. Their analysis ex
cludes terminal maneuvering area operations. They use an autoencoder with 150
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input and output neurons, 64 neurons in the hidden layer, sigmoid activation function,
and mean squared error as the loss function. They show that the reconstruction error
is higher for anomalies caused by weather conditions and traffic regulations. While
ATC deconfliction causes anomalies with a lower error. Interestingly they use data
from the OpenSky network.

Expanding on the previous work, Olive and Basora [47] present a framework to identify
anomalies in trajectories based on a two step approach: clustering and anomaly de
tection. First, they apply DSBSCAN to identify trajectory clusters, then in each cluster,
they use an autoencoder with a regularization term to identify anomalies. They ana
lyze 7 months of data from the OpenSky database for the LFBBPT sector controlled
by Bordeaux ACC.

Janakiraman andNielsen [48] implement a special type of autoencoder called Extreme
Learning Machine (ELM) to detect anomalies in the last 60 miles before landing. ELM
maps the input data to a random hyperspace, like autoencoders, then spectral embed
ding is applied. Anomalies are detected based on their distance from the embedded
space origin. They use real surveillance data with these parameters: latitude, longi
tude, altitude, and distance from the closest neighbor. The last parameter is used
to consider the loss of separation anomalies. They compare the ELM algorithm with
MKAD on a dataset of 43000 flights and a test dataset of 115 flights producing similar
results with the difference that ELM 2X faster. ELM has a very high false alarm rate
(more than 70%), while for MKAD is 50 %. It is important to note that MKAD is trained
using the same parameters employed for ELM. The anomalies detected by ELM are
highspeed landing, overshooting their final turn before landing and overtaking other
landing aircraft.

B.6. Precursors Detection
This section describes different methods to identify precursors to anomalies. After in
cidents are identified, different algorithms exist to identify precursors. These methods
are similar to the anomaly detection ones with the key difference that this time the al
gorithms are modified to take most advantage from labeled data. In fact, the data was
labeled as anomalous or normal, after applying exceedance detection and anomaly
detection. Precursor detection not only reveals which compromised states lead to an
incident, but also correcting action taken to avoid it.

Reinforcement learning
Reinforcement Learning (RL) is based on the idea that an agent learns to perform a
particular task by interacting autonomously with the environment. In order to learn
the task, at every iteration, the active agent performs an action in response to the
observation from the environment. Depending on the action, the agent receives a
reward and strives to maximize the cumulative reward in the longterm by considering
the expected future rewards.

Janakiraman et al. [49] at NASA uses a mix of reinforcement learning and inverse
reinforcement learning to identify precursors. The idea is that the algorithm searches
for suboptimal actions in the adverse time series which increase the risk of an incident.
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Figure B.7: Structure of precursor detection algorithm.[49]

The algorithm is shown in Figure B.7. Before looking for precursors, it is necessary
to label the time series (a flight) to identify flights with an adverse event. Flights with
an incident are considered the result of an nonexpert agent, while nominal flights the
result of an expert one. First, inverse reinforcement learning is performed to deduce
the expert’s rewardmodel, which represents the instantaneous consequence of a deci
sion. Second, the longterm consequence of a decision is derived using reinforcement
learning on the expert reward model and the nominal time series to obtain the expert’s
value model. Precursor discovery uses the expert’s value model and reward model
on the adverse time series to identify a state which should have been different and
has an high probability to lead to an anomaly.

Multipleinstance learning
After developing the precursor model based on inverse reinforcement learning, Janaki
raman [50] develops a novel approach based on multipleinstance learning (MIL) and
deep recurrent neural networks (DRNN). MIL is a supervised learning algorithm par
ticularly indicated for weaklysupervised data. The idea of MIL assumes that data is
grouped in bags and that a bag is positive if one element is positive and negative if all
elements are negative. Once trained, MIL learns to predict element’s label. Before ap
plying this precursor algorithm, flights needs to be labeled using an anomaly detection
method. In this model, a single flight represents a bag and an element of the bag is
the sequence of measurements up to the current time. The standard MIL is not able to
understand the temporal relation between elements, and DRNN is introduced to add
this capability. The results present precursors to highspeed exceedance (HSE) dur
ing landing. The method is compared to the inverse reinforcement learning approach
and it shows a lower false alarm rate and higher accuracy.

Temporal Logic Learning
Deshmukh at al.[51] design a precursor algorithm based on TempAD. Fundamentally,
once anomalies are recognized using TempAD, the idea is to rerun the anomaly de
tection algorithm with labels and using only the part of the trajectory that precedes
the occurrence of the anomaly. In looks for an occurrence in the states preceding an
anomaly such that if the occurrence occurs it is grantee that the anomaly will happen.
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The algorithm analyzes not only where the feature where the anomaly occurred, but
also other features to identify a possible cause from another plausible feature space. It
is important to note that the feature space is expanded with the horizontal and vertical
distance of the closest neighboring aircraft.

FPCA
A very different approach is used by Olive et al. [52]. The goal this time is very specific.
The idea is to quantify the risk of runway excursion by evaluating precursors using
ModeS data. Instead of having an algorithm looking for precursors autonomously,
the idea is to use an existing fault tree models developed by Future Sky Safety and
estimate the probabilities of contributing factors using ADSB data. Using FPCA on
particular features of the data reveals that the secondary components resulting from
the decomposition carry important information about anomalous behavior.

Regression Trees
Herrema et al. [53] deal with the problem of analyzing abnormal Arrival Runway Occu
pancy Time (AROT). First, abnormal AROTs are foundmodeling AROT using a normal
distribution and identifying them based on a deviation of more than 2σ. Afterwards a
regression tree is built from the anomalous AROTs by iteratively finding predictors. At
each iteration, the variables and the split point are chosen such that MSE between
predictions and AROT is minimized.

B.7. Summary
The previous sections have described in detail many anomalous safety event detec
tion methods and precursor detection methods applied in aviation. Table B.5 shows
an overview of different strategies focusing on the technique, the type of data, the
flight phase, the aircraft type, and the false positive rate.

Typical exceedance detection algorithms used in the industry are proprietary and they
are not publicly available. Furthermore, they wouldn’t be usable in the specific case
of the thesis because they use many features from the FOQA data, which are not
present in the ADSB data. In this thesis, exceedance detection is performed design
ing a set of rulebased algorithms. The knowledge for these rules is taken from safety
regulations. This is inspired by the work of Wang et al.[13] that use radar data and
a set of predefined threshold to identify anomalous aviation events in the approach
phase.

It is noteworthy that the most wellrecognized technique in anomaly detection is the
OCSVM variant called MKAD and developed at NASA by DAS et al.[26]. This algo
rithm is the benchmark used in research when developing novel approaches and it
has been tested extensively for approximately 10 years, Das et al.[27] and Matthews
et al.[28] [29].

As previously anticipated, the false positive rate is an important characteristic when
evaluating detection algorithms. The performance of these algorithms is far from ideal
with an average false positive rate of approximately 70%. The best performing tech
nique is SMSVAR developed by Melnyk et al.[42] at NASA. This is not usable with
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Table B.5: This table shows a summary of the strategy identified to achieve the objective. In the
table, ”/” means that different models are developed based on the same strategy depending on the
flight phase. When talking about A/C type, ”multiple” refers to a single model that can be used at the
same time with multiple A/C models. False positive data is not specified when absent in the paper.

Strategy Technique: citation (data, flight phase, A/C type, false positive[%])
Exceedance detection  Rulebased: [13] (radar data, approach, multiple)

Distance based methods
 kNN: [14](FOQA, approach, A320, 84)
 DBSCAN: [17](FOQA, approach, B777/A320, 80)

[20](ADSB, ground movements, multiple)

Boundary based methods
 OCSVM: [26](FOQA/radar, take off/approach, multiple, 6575)

[31](FOQA, approach, general aviation)
[34](ADSB, approach, multiple)

Statistical based methods

 GMM: [36](FOQAradar, take off/approach, general aviation)
[37](FOQA, take off/approach, A320, 70)

 PCA: [39](radar, approach, multiple)
 SMSVAR: [42](FOQA, approach, multiple, 50)

Neural Network based methods
 RNN: [45](simulated FOQA, approach, multiple)
 Autoencoders: [46](ADSB, enroute, multiple)
 ELM: [48](radar, approach, multiple, 70)

Precursor detection

 RL: [49](labeled data, approach/takeoff, multiple)
 DTMIL: [50](labeled data, approach, multiple)
 OCSVM: [51](labeled data, approach, multiple)
 PCA: [52](existing fault tree + ADSB, ground movements, multiple)

ADSB data because it is highly dependent on the pilot button switches. The algorithm
works in such a way that when it detects a switch it changes its dynamics.

There is an important consideration to make about the false positive rate. The values
provided are not exact because it heavily relies on expert judgment. The concept of
what is operational significant varies depending on the expert. This is shown by LI et
al. in [37] where 4 experts could not agree on which situation poses safety concerns.

Table B.5 shows that researchers have mainly focused on detecting anomalous safety
events in the approach phase. This is crucial as 50% of the accidents happen in this
phase of flight including airborne loss of control, runway excursion, or controlled flight
into terrain.4

Interestingly, distance based methods are generally less applicable to multiple aircraft
at the same time. The reason is that these models, such as Oehling et al.[14] and
Li et al.[17], use features directly and identify anomalies based on the distance from
cluster. On the other hand, all other anomaly detection models implicitly project the
feature in other spaces where anomalies are computed taking into account also the
interrelations of the features. It is important to underline that these researchers used
FOQA data, which provides features that are more aircraft dependent.

Furthermore, the applicability of a single model to multiple aircraft types grows when
features are preprocessed in a meaningful way. Puranik et al.[31] [36], Deshmukh

4data from: https://flightsafety.org/asw-article/commercial-accident-final-approach/
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et al.[34] and Jarry et al.[39] augment the set of features available with some energy
metrics[32]. This is more important when ADSB and radar data are used, as it en
riches the limited amount of features available.

Techniques that have been recently developed to identify anomalies include Neural
Networks, different types of networks have been implemented by different researchers:
Naduri et al.[45] works with Recurrent Neural Networks, Olive et al.[46] with Autoen
coders, and Janakiraman et al.[48] with Extreme Learning Machines. Results from
these methods are promising, and many researchers are working with Autoencoders.
Although, as it is possible to see from the table, the false positive rate remains in
line with more classical approaches for the moment. Goel et al. [54] test VAR, RNN
LSTM, and autoencoderLSTM in reconstructing time series of aircraft data. They
perform some experiments on real and synthetic data. It shows that VAR performs
better than both LSTMs. When a value can be predicted by looking at a few previous
steps, a linear model (VAR) is better.

Precursor detection techniques are mainly semisupervised approaches that use the
identified anomalous aviation events as labeled data, such as Janakiraman et al.[49]
[50] and Deshmukh at al.[51]. A very different approach is used by Olive et al.[52].
Instead of having an algorithm looking for precursors autonomously, the idea is to
use an existing fault tree model developed by Future Sky Safety and estimate the
probabilities of contributing factors using PCA with ADSB data.
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C
Preprocessing

This chapter provides an overview of the data used and the preprocessing strategy ex
perimented with. Preprocessing is a required activity when dealing with large amounts
of data. Often data contains outliers and noise that can jeopardize the result of the
analysis. Outliers are erroneous data points, and noise is an oscillation in the recorded
data. The reasons for these phenomena are errors in the raw data captured with the
antenna and possible errors in processing the raw data.

C.1. Manual Cleaning
In this phase, the intuition of possible useless data and possible outliers is used to
delete and modify data. The steps are removing duplicates, change in measurement
units, and merging the Open Sky and the Delft databases Furthermore, operations out
of the limits of the Schiphol Airspace are removed. Trajectories with few points are
removed because they can’t be analyzed. Also, trajectories belonging to a particular
type of vehicle are removed such as ground vehicles and helicopters. Finally, the
trajectory is divided into different pieces depending on the aircraft operation: landing,
takeoff, and ground movements.

C.2. Divide Flights
This section describes the divide flights function. This function assigns to each aircraft,
identified through the ICAO code, its flight phases. In fact, the same aircraft might
land and takeoff multiple times on the same day. There are 4 possible phases: land
(L), takeoff(T), unidentified(C), and ground operations(G). The unidentified phase is
a special case that includes aircraft cruising and aircraft taking off and landing without
exiting Schiphol Airspace. These are identified based on 2 steps:

• Identify changes in phase
• Identify ground movements

Identify changes in phase assumes that if data is not received within 20 minutes, it
must have changed. Once these breaking points are collected in a list, phases are
assigned as follows:
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1 list_break_points = [ex. t5, t22, t44]
2 for every element in list_break _point:
3 # compute overall tendency of aircraft , is it going up or down?
4 up_down = flight_df.loc[between break points , 'alt'].diff().sum()
5 if up_down > 100: #goes up
6 # phase_attribute is a list long as the number of points recorded for a

given aircraft
7 phase_attribute[between break points] = 'T' # all points between

break points are representitive of a take-off
8 elif up_down < 100: #goes down
9 phase_attribute[between break points] = 'L'
10 else:
11 phase_attribute[between break points] = 'C'

Identify groundmovements assumes that groundmovements are all the ones taking
place below 100ft, and it assigns G to all these points in the phase_attribute list.

C.3. Normalization
Normalization is used to prepare the data for the following steps. Normalizing the data
ensures that all data is uniformly scaled between 0 and 1. In this way, it is possible to
use the same algorithms for data that have different statistical characteristics. For
instance, altitude has values ranging from 10,000 ft to 0, while speed has values
between 500 kts and 0 kts. When a thresholdbased algorithm is used, a different
threshold value would be required. While if the data is standardized the same value
can be used. The standardization procedure is shown in Equation C.1.

x
′

i =
xi −mean(X)

var(X)
(C.1)

Every trajectory is analyzed separately, and every feature of the trajectory is normal
ized. Now the data is ready for the remotion of outliers.

C.4. Deletion of Outliers
Removing outliers improves the quality of the analysis. First of all, it improves the
accuracy of the smoothing procedure. It will also improve the result of the overall
result of the research when performing the analysis. Batista et al. [55] use a Hampel
filter to remove outliers from radar data. Hampel filter is based on the 3σ rule, which
assumes the data to be normally distributed and the outlier to be a point further than
3 standard deviations.

MAD = median (|X −median(X)|) (C.2)

The Hampel filter runs a moving window through the data and replaces outliers with
the median of the sample based on a robust 3 σ rule. Instead of using the mean of the
window, it uses themedian. While instead of the standard deviation, it used themedian
absolute deviation (MAD) calculates as shown in Equation C.2. The algorithm has two
tuning parameters: the size of the window size, and the threshold for outlier removal,
expressed in the number of median absolute deviations. Limitations of this technique
are themasking effect means, outliers are undetected because there aremultiple ones
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next to each other, and the swamping effect, a good data point is considered an outlier
because of the presence of multiple outliers in its proximity.

C.5. Smoothing
The purpose of smoothing the data is to remove noise. Different techniques are ex
perimented with and researched. It follows an overview of the discarded techniques:

• Forwardbackward filter is excluded because it provides suboptimal results that
vary considerably the behavior of data.

• SavitzkyGolay filter is a lowpass filter that runs a moving average over the data.
It is found to change the behavior of data.

• Kalman smoother relies on a Kalman filter to determine the most probable posi
tion of the aircraft given the sensor data available. A shortcoming of this tech
nique is that an acceleration needs to be assumed to construct the aircraft mo
tion matrix. This research analyzes operations in the Terminal Schiphol Airspace
that are all operations with variable acceleration. For this reason, this method is
excluded as it is required to define a possible function of the acceleration.

• Generalized additive models (GAM) are linear combinations of base functions
used to fit a set of data. There is an optimization routine that runs to produce a
result with little least square error. This approach works quite well, but it uses a
complex model that requires some time to optimize.

After some tuning, splines are found to produce the most efficient result. A spline is
a piecewise polynomial and knots are the points where the different parts join. In this
case, 3rd order Bsplines are used. The main challenge is tuning the knots parame
ter. A basic choice would be choosing equally spaced knots, this offers suboptimal
solutions. Then Dung et al. [56] propose a method that places the knots at variable
positions while minimizing the least square error of the current segment. The imple
mentation works as follows. Serial bisection is applied to the data to find the largest
segments for which the least square error is lower than a certain threshold.

The result of the smoothing procedure is a set of spline functions where noise is re
moved, as can be seen in the next section. Having a set of functions describing every
feature is particularly advantageous because it allows resampling at any frequency,
and it can be stored extremely efficiently. Instead of storing thousands of rows per tra
jectory, now a single row containing the spline coefficients is enough. This method
showed to be unreliable. Smoothing has the sideeffect of removing too much
information from the data, as can be seen in Figure C.1. The result is for a trajec
tory selected randomly on 1st January 2018. It shows that the preprocessing strategy
can effectively remove noise and compute smooth polynomials.

C.6. Track Angle
Track angle data has shown to be a valuable source of information, but its accuracy is
highly susceptible to rapid aircraft movements. It is observed that sometimes when an
aircraft performs a goaround, or after landing when it moves along the taxiways, its
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(a) Longitude (b) Latitude

(c) Altitude (d) Heading

(c) Ground Speed (d) Rate of Climb

Figure C.1: The figure shows the output of the smoothing strategy for a single trajectory. Data fit with
a spline is in blue and the original one is in orange.
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track angle indicator doesn’t follow the aircraft movements. The track angle communi
cated via ADSB data doesn’t change whereas it is clear it should have. To solve this
issue, an algorithm has been developed such that the track angle information commu
nicated from the ADSB data is compared to an estimate of it computed using latitude
and longitude information. If the difference between the two is higher than 60 deg, the
estimate is used as track angle data. To limit the influence of poor measurements in
the track angle estimation, a window of 40 s is considered and a minimum amount of
5 points.

C.7. AIP the Netherlands
Information from AIP Netherlands produced by LVNL is used to define the ILS inter
cept on a map, useful for detecting unstable approaches. In particular, information
is collected from the instrument landing procedures charts. The intercept is defined
as the line connecting the Final Approach Fix (FAF), Runway Threshold (THR), and
Runway Localizer (LOC). Table C.1 has an overview of these values for runways with
an ILS procedure in place.

This information is used to define the allowed horizontal bound for all runways with an
ILS intercept procedure in place: 06, 18C, 18R, 22, 27, 36C, 36R.

C.8. METAR Data
METAR reports can be used to have an idea of how the weather was like on a particular
day. In this case, METAR reports from Schiphol are downloaded from IOWA ASOS
network1. In particular, information about wind speed and direction is collected for
each trajectory. Furthermore, using METAR reports is possible to determine if an
aircraft is flying in VMC or IMC. This is performed using Table C.2.[57]

Table C.2: This table shows the definition of VMC and IMC condition.

Altitude [ft] VMC IMC

<3000
 Visibility ≥ 5km
 In sight of the surface
and clear of clouds

 Visibility < 5km
 Not clear of clouds

≥3000
 Visibility ≥ 5km
 Distance from clounds: 1500m
horizontally and 1000ft vertically

 Visibility < 5km
 Not clear of clouds

>10000
 Visibility ≥ 8km
 Distance from clounds: 1500m
horizontally and 1000ft vertically

 Visibility < 8km
 Not clear of clouds

1https://mesonet.agron.iastate .edu/request/download.phtml
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Table C.1: This table shows an overview of the waypoints used to define the ideal intercept.

Runway Wpt_type Lat Lon AMSL [ft] Hdg True [deg]
6 EH609  FAF 52°14’04”N 004°35’45”E 2000 057.92
6 EH616  INT 52°15’13”N 004°38’43”E 1310 057.92
6 THR06 52°17’20.78”N 004°44’14.01”E 50 057.92
6 LOC06 52°18’25.71”N 004°47’03.10”E 11,1 057.92
22 EH661  FAF 52°23’28”N 004°54’49”E 2000 221.27
22 EH651  INT 52°21’51”N 004°52’29”E 1310 221.27
22 THR22 52°18’50.51”N 004°48’10.89”E 46 221.27
22 LOC22 52°17’55.25”N 004°46’51.82”E 13,7 221.27
18C EH630  FAF 52°26’01.7”N 004°44’58”E 2000 183.22
18C EH626  INT 52°23’52.6”N 004°44’45.3”E 1310 183.22
18C THR18C 52°19’53.03”N 004°44’24.11”E 50 183.22
18C LOC18C 52°18’00.50”N 004°44’13.78”E 12 183.22
18R EH621  FAF 52°27’45.7”N 004°43’16”E 2000 183.20
18R EH622  INT 52°25’36.2”N 004°43’04.1”E 1310 183.20
18R THR18R 52°21’36.93”N 004°42’42.21”E 50 183.20
18R LOC18R 52°19’32.22”N 004°42’30.93”E 13 183.20
27 EH639  FAF 52°19’26”N 004°57’50”E 2000 266.82
27 EH640  INT 52°19’19”N 004°54’19”E 1310 266.82
27 THR27 52°19’06.15”N 004°47’48.81”E 50 266.82
27 LOC27 52°18’59.67”N 004°44’39.71”E 12,1 266.82
36C EH632  FAF 52°12’12”N 004°43’42”E 2000 003.22
36C EH633  INT 52°14’22”N 004°43’54”E 1310 003.22
36C THR36C 52°18’20.99”N 004°44’15.66”E 50 003.22
36C LOC36C 52°20’02.33”N 004°44’24.97”E 12 003.22
36R EH636  FAF 52°11’18”N 004°46’04”E 2000 003.25
36R EH635  INT 52°13’28”N 004°46’16”E 1310 003.25
36R THR36R 52°17’26.97”N 004°46’38.45”E 50 003.25
36R LOC36R 52°19’24.61”N 004°46’49.34”E 11,1 003.25
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C.9. Obtaining Altitude Above Ground and Airspeed

C.9. Obtaining Altitude Above Ground and Airspeed
ADSB data provide respectively ground speed and barometric altitude. Ground speed
is dependent on the windspeed. Barometric altitude assumes standard temperature
and pressure. These two values can be adjusted using the METAR reports. In Equa
tion C.3, it is possible to compute the altitude of the aircraft knowing pISA, TISA, pMETAR,
TMETAR and the constants.

TACISA
= TISA + a · hACISA

pACISA
= pISA ·

(
TACISA

TISA

) −g
a·R

pACISA
= pACMETAR

TACMETAR
= TMETAR ·

(
pACMETAR

pMETAR

)a·R
−g

hACMETAR
=

TACMETAR
− TMETAR

a

(C.3)

However, the data from the METAR report is obtained at ground level, and at higher
altitudes, there might be large differences in wind speed and direction. For this reason,
METAR reports are used to correct speed up to an altitude of 100 m, where the differ
ence in wind speed is estimated to be approximately 1.5 m/s. 2 After this point, data
is extracted from the National Climatic Data Center (NCDC), a department of NOAA.3
This dataset offers wind data at intervals of 700 ft with updates every 6 hours.

For both the METAR and NOAA datasets, the direction is expressed, in tens of de
grees, from which the wind is blowing with respect to the true north.4 While aircraft
direction is expressed in terms of where it is going to. For this reason, the correction
is, as follows:

TrueAirSpeed = GroundSpeed−WindSpeed (C.4)

C.10. Weather Algorithm
It is important to establish a way to assess the severity of the weather to determine
its contribution to a goaround. This section describes an algorithm that attaches a
numerical score to the quality of the weather. The METAR reports are the input data
for the algorithm. These reports are generated every 30 minutes at Schiphol airport,
and they contain many weather features (i.e. precipitation type, visibility, cloud base,
wind speed). Much of the content of this chapter is based on the technical report
”Algorithm to describe weather conditions at European airports” published in 2011 by
EUROCONTROL.[58]

The objective of this technical report is to describe the ATMAP weather algorithm,
which ”assesses the weather conditions independently from traffic congestion”.[58]
The algorithm described by EUROCONTROL works as follows:

2http://euanmearns .com/highaltitudewindpowerreviewed/
3https://www.ncdc.noaa .gov/dataaccess/modeldata/modeldatasets/globalforcastsystemgfs
4https://www.wmo.int/pages/prog/www/WDM/Guides/Guidebinary2.html
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C.10. Weather Algorithm

1. Each METAR report is evaluated considering weather class
2. The scores of each class are summed, and the overall score is obtained for a

single METAR report
3. The quality of a given day is evaluated averaging the values of all METAR scores

The end goal of EUROCONTROL’s algorithm is to determine the overall quality of the
weather in a single day. They assume that if the score is higher than 1.5 the day is bad.
Shultz et al. [59] work with METAR reports from Frankfurt airport and they recommend
to increase the threshold to 2.8. From this description, it is clear that for this thesis
we are interested specifically in points number 1 and 2. After a description of how the
score for each METAR is calculated, a new threshold is defined to assess the overall
severity of a single report.

There are 5 weather classes to assess the severity score for a METAR report: ceil
ing & visibility, wind, precipitations, freezing conditions, and dangerous phenomena.
Each class analyses certain elements of the METAR reports (i.e. wind speed), and it
associates a coefficient indicating the level of severity to a set of thresholds. These
thresholds are decided by experts at EUROCONTROL. The coefficient constitutes the
score obtained by a METAR report for that weather class. The tables below show how
the thresholds are linked to a given coefficient. Each weather class has a single table,
except for the dangerous class. For this class, coefficients are calculated for all the
tables, and the final score for this class is the highest of them. Table C.3 explains the
symbol found in the following tables, which are also the ones found in METAR reports.

Table C.3: This table explains the symbols present in the weather class tables.

 = slight + = Heavy BC = Patches BL = Blowing FEW = Few
BR = Mist DR = Low Drifting DS = Dust Storm DU = Widespread Dust SCT = Scattered
DZ = Drizzle FG = Fog FC = Funnel Cloud FU = Smoke BKN = Broken
FZ = Freezing GR = Hail GS = Small Hail HZ = Haze OVC = Overcast
IC = Ice Crystals MI = Shallow PL = Ice Pellets PO = Dust Devils CB = Cumulonimbus
RA = Rain SA = Sand SG = Snow Grains SH = Shower TCU = Tower Cumulus
SN = Snow UP = Unid. Precip. SS = Sandstorm TS = Thunderstorm VA = Volcanic Ash

Table C.4: Ceiling & visibility class ATMAP algorithm.

coefficient visibility [m] OR (vertical visibility [ft] AND octas [])
0 >800 >300 OVC, BKS
2 >550 >200 OVC, BKS
4 >350 >100 OVC, BKS
5 <= 350 <= 100 OVC, BKS
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C.10. Weather Algorithm

Table C.5: Wind class ATMAP algorithm.

coefficient (with gust) wind speed [kt]
0 (+1) <= 15
1 (+1) >15
2 (+1) >20
4 (+1) >30

Table C.6: Precipitations class ATMAP algorithm.

coefficient type of precipitations
0 no precipitation
1 RA, UP, DZ, IC
2 SN, SG, +RA
3 FZ, SN, + SN

Table C.7: Freezing class ATMAP algorithm.

coefficient (temperature [C] AND type of precipitations (Notes: TT means True
Temperature [C], and DP Dew Point [C]))

0 >3 any

1 <= 3 DZ, IC, RA, UP, FG, GR, GS, PL,
TT  DP <3

3 <= 3 SN, SG, +RA, RASN, BR
4 <= 3 SN, +SN, SHSN, FZ
4 <= 15 any

Table C.8: Dangerous phenomena class 1: CB and TCU condition without precipitation ATMAP
algorithm.

octas coefficient CB coefficient TCU
FEW 4 3
SCT 6 5
BKN 10 8
OVC 12 10
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C.10. Weather Algorithm

Table C.9: Dangerous phenomena class 2: CB and TCU condition with shower precipitation ATMAP.

(octas TCU OR octas CB) coefficient SH coefficient SH
FEW  4 6
SCT FEW 8 12
BKN SCT 10 15
OVC BKN 12 20
 OVC 18 24

Table C.10: Dangerous phenomena class 3

coefficient type of precipitations
18 GS

24 FC, DS, SS, VA,
SA, GR, PL, TS

30 +TS

Once theMETAR report score for each class is obtained, the overall score is computed.
The weather of a METAR report is considered to be bad if its overall score is equal or
higher than 4. The reasons for this value rely on the explanation of each class present
in EUROCONTROL’s report[58]. For instance, coefficient 4 is associated with:

• Ceiling & visibility class: With these conditions operations become more com
plex, CAT II approaches should be conducted, Low Visibility Operations are ac
tivated and the landing intervals between aircraft will increase.

• Wind class: With wind speeds higher than 30kts, it starts having a severe im
pact on airport operations (higher impact on ground speed and more and more
aircraft reach the crosswind airworthiness limits).

• Freezing class: Freezing conditions become very harsh and difficult to mitigate,
even for Scandinavian airports.

Performing an analysis on METAR reports from January 2018 reveals that 207 reports
have a value higher than 4, which represents 14% of the total number of reports. In
terms of time, this means approximately that 4.5 days had severe weather conditions.
Table C.11 shows an overview of how the number of severe METAR reports changes
with different thresholds.
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C.11. Aircraft Database

Table C.11: This table shows how the number of severe reports depends on the threshold for January
2018.

Threshold # severe reports % total
3 221 15
4 207 14
5 122 8
6 99 6.6
10 81 5.5
12 54 3.6
14 29 2.6
20 10 0.7

Note: Values in Table C.11 are computed considering METAR reports received at any
time of the day (incl.nights).

C.11. Aircraft Database
An aircraft database is a collection of ICAO24 codes, registration numbers, vehicle
type, type of aircraft, manufacturer, operator, and owner. This database is very useful
to distinctly identify an aircraft given an identification parameter. Basically the ICAO
provided by the ADSB data is enriched with more information that can be useful in
the analysis. For this thesis, the aircraft database from OpenSky is used because
during some experiments it seemed to be the most complete one.5 Table C.12 shows
an overview of the available data.

Table C.12: This table shows the features offered by OpenSky aircraft database.

Icao24 National registration Manufacturer Model
Operator Owner Status Year built
Engines First flight Seat configuration Icao aircraft type

C.12. Results
This section presents the result of the preprocessing performed on the data. Ta
ble C.13 shows a comparison of the data available between the Delft database and the
combined DelftOpen Sky database. The tables are produced after the same manual
cleaning procedures are applied to these two databases. This is the average data of
a day taking a sample of four days. There is a clear improvement in the data available
when comparing the two tables: more than 1.5X data at all altitudes, and 4 times more
for ground movements.

Examining the number of usable trajectories, approximately 10% more trajectories at
all altitudes and approximately 1.5X more ground trajectory. A trajectory is defined
as a series of continuous data points with a distance of less than 5 minutes between
each other. The ratio column represents the average amount of points per trajectory.

5https://openskynetwork.org/aircraftdatabase
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Table C.13: These tables show a comparison of the average data available per day between the 9th
and 12th of January 2018. The same preprocessing techniques are applied to obtain these two

tables, namely only manual cleaning. The table on the left shows the data available from Delft. The
one on the right shows the data available combining the two databases.

Altitude [ft] # traj # of points ratio
10000  8000 1138.0 72058.0 63.32
8000  6000 1133.0 98771.25 87.18
6000  4000 1124.0 111976.5 99.62
4000  2000 1114.75 176721.0 158.53
2000  1000 1082.5 76064.75 70.27
1000  500 1052.25 34341.25 32.64
500  100 1008.0 16817.75 16.68
100  0 403.0 11162.0 27.7

Altitude [ft] # traj # of points ratio
10000  8000 1282.67 126080.67 98.3
8000  6000 1277.67 164209 128.72
6000  4000 1260 190615.67 151.28
4000  2000 1238.33 306796 247.75
2000  1000 1206 152605 126.54
1000  500 1164 51704 44.42
500  100 1148.67 30520.16 26.57
100  0 641.33 44232 68.97

Looking at the ratio column, it is clear that by merging the two databases the number
of points per trajectory increases considerably at all altitudes, and as for the other
parameters, the highest increase happens at the ground level. This is likely a direct
consequence of the fact that OpenSky adds crowdsource antennas spread across the
Netherlands. Considering the trajectories present both above 9000ft and below 500ft
reveals that on average operations at Schiphol Airport from 100FL to 100 ft take 580 s,
approximately 10 minutes. The average latency is 0.85s. It is possible to estimate an
average traveling time per altitude range knowing the latency. For Delft only data is
450 s, while for combined data, it is 700 s. It is possible to conclude that for operations
between 100FL and 100ft even using only Delft data offers a reasonable amount of
data and combining the two datasets offers a clearer picture. For ground operations,
data seems to be scarce even when combing the two datasets. More knowledge
regarding operations at Schiphol is required to confirm these findings.

Note that a trajectory might have more points than the one shown in the table. The
reason is that the analysis is per altitude level and the same trajectory might appear
in multiple altitudes because it has points at different levels.

Verification for tables
To test that duplicates between the two databases are removed the preprocessing
process applied to produce these tables is performed merging the same database.
The Delft database is used to perform this test. The result is exactly the one presented
with the table on the left meaning that all duplicates are removed successfully.

Density maps
Figure C.2 shows the point density over Schiphol operational area. As expected, with
growing altitude operations get further from the airport. Looking at the subfigures a
and b, it shows that there were certain runways particularly used on the day of the
analysis.
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C.12. Results

(a) 0100 (b) 1002000

(c) 20006000 (d) 600010000

Figure C.2: The figure shows a data density map of Schiphol Airspace, Schiphol operational area.
The data is collected in a day on the 8th January 2018. There are 4 maps for four different altitude

levels specified below the figure in feet.
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D
Data Anomaly Analysis

After preprocessing the data, the next step is understanding the limitation of this data.
This chapter elaborates on this topic and offers insights discovered during the work.
First, it offers an overview of the methodology, and subsequently, it describes the
results obtained. The content of this chapter is a collection of experiments performed
while working on the exceedance detection of unstable approaches. For this reason,
it is an error analysis specific for this phase of flight. The decision of dedicating an
entire chapter to this topic arises from the fact that some of the insights and results
are applicable to multiple phases of flight.

D.1. Methodology
The purpose of this chapter is to identify potential sources of error in the analysis of
safety events. The focus is on understanding the limitations of the main positional data
used (ADSB). While working in the identification of potential safety events during the
final approach phase, visualizingmany trajectories has revealed that a significant num
ber of trajectories contain a constant error in the data. Furthermore, the analysis has
shown that the data for some trajectories are very imprecise with many unpredictable
jumps. The following figures offer an example of these undesirable situations.

In Figure D.2 and Figure D.1, the gray areas (one for each runway) indicate the ILS
intercept with allowed tolerance. The perpendicular yellow lines indicate where the
aircraft should be at 1000 ft, 500 ft, 300 ft, 200 ft, and 100 ft respectively, if it was
following the instrument approach chart from LVNL.

The idea is to select the portion of trajectory relevant to the final approach and to
compute the error of each point from its smoothed trajectory and the ideal ILS intercept
(in the figures above, it would be the line running in the middle of the gray area). The
error of each point from these lines are then used to compute statistical error metrics.

The relevant portion of the trajectory is selected based on 3 constraints: the aircraft
is below 2500 ft, the aircraft is aligned with the runway with a tolerance of +/ 5 deg,
and the aircraft is at no more than 6.2 nm from the runway threshold.
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Figure D.1: The figure shows an
example of trajectory with a

constant shift, raw data in green,
and smoothing spline in purple.

Figure D.2: The figure shows an example of a trajectory
with jumpy data points (blue) fitted with a smoothing spline

(purple).

The experiments are performed using different metrics to measure a representative er
ror for each trajectory and a measure of the dispersion of the error. Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and Median Absolute Error (MedAE) have
been initially taken into consideration for measuring the representative error. As it is
often the case when working with large amounts of data, MedAE is the best fit for this
purpose because it is inherently more resistant to outliers. On the other hand, RMSE
and MAE show inconsistent results, especially RMSE which emphasizes the weight
of outliers. Following similar reasoning, as a measure for dispersion of the error the
Median Absolute Deviation is used, instead of the variance.

D.2. Results
This section presents the result of the experiments described above in Section D.2.1
and Section D.2.2.

D.2.1. Error from Smoothed Trajectory
These two box plots (Figure D.4 and Figure D.3) show that trajectories have on av
erage a low error with a low dispersion. Figure D.5 shows an example of the out
liers highlighted using this strategy. However, empirical analysis of the trajectories
revealed that the smoothing spline approximation used as the truth value for the error
has different limitations. As also shown from Figure D.2, the spline offers a good ap
proximation in case there is a low amount of error while it tends to follow the outliers.
This means that if outliers are present in the data, they will be present in the smoothing
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Figure D.3: The figure shows the box plot of the
Median Absolute error between the data points

and the spline smoothed trajectory.

Figure D.4: The figure shows the box plot of the
Median Absolute deviation of the error between

the data points and the spline smoothed trajectory.

Figure D.5: The figure shows some high scoring outliers highlighted by the Median Absolute Error,
and Median Absolute Deviation.

spline representation as well. Appendix C offers an overview of the working mecha
nism of the spline. A solution would be to increase the amount of error allowed, but
the side effect is that the spline would follow less closely the trajectory and it would
lose important information contained in the data.

Ideally, the goal was to define a criterion based on these parameters to remove jumpy
trajectories. Further investigating the problem has revealed that the open sky database
was the cause of much of this error. In Appendix C, it is shown that the OpenSky
database enriches the data available form the Delft one, and it is useful especially at
low altitudes. As an example, for the 812018 using the OpenSky data adds approxi
mately 100 extra landings compared to the 500 present in the Delft database. For the
same day, approximately 400,000 data points are lost when using only Delft data (ap
prox. 500,000) for this particular phase of flight. This might cause some occurrences
to go undetected because not present in the data. For instance, the goaround per
formed by aircraft with registration PHEXD and ICAO 485086 is not present in the
Delft data. It is clear that the OpenSky data is a crucial source of information, but all
limitations must be considered. In addition, the Hampel filter discussed in Appendix C
seems to miss many of these outliers. The reason is probably the fact that in case
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there are multiple outliers in the same time window it loses its efficacy.

D.2.2. Error from ILS Intercept
As mentioned earlier, some trajectories seem to have a constant offset. For this rea
son, the Median Absolute Error is computed and analyzed using box plots and his
tograms shown in Figure D.6 and Figure D.7.

Figure D.6: The figure shows the box plot of the
Median Absolute error between the data points

and the ILS intercept.

Figure D.7: The figure shows the histogram of the
Median Absolute error between the data points

and the ILS intercept.

Figure D.6 shows that 75% of the landings have a median distance from the ILS in
tercept within 11 m, this is in line with the fact that the runways have a width of 45 m
(aircraft can be maximum 22.5 m to the left or right of intercept). Considering that the
mean error is approximately 15 m, it means that generally once an aircraft intercepts
the ILS it descends following it with very small deviations. In fact, considering the tol
erance cone of each ILS as shown in the figures plotting trajectories, when the aircraft
is at 6.2 nm at the beginning of the final approach phase it can be in a horizontal range
of 200 m from the ILS.

Figure D.7 shows that at 4050 m trajectories can be considered outliers. There are
few trajectories after this threshold at irregular steps. An example of these trajectories
is shown in Figure D.8 with a threshold of 40 m.
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Figure D.8: The figure shows outliers highlighted by the Median Absolute Error with a threshold of 40
m.
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E
Unstable Approach

This chapter provides extra information on the unstable approach methods, including
some reference material. Unstable approaches are considered one of the leading
causes of accidents. It is estimated that 50% of the accidents happen in this phase
of flight.1 It is estimated that 3% of landings are unstable. Although unstable landings
should always be followed by a goaround, a study performed by Boeing reveals that
this happens 3% of the time.[60] When comparing these numbers with the ones pro
vided by the Staat van Schiphol, it reveals that in Schiphol approximately 0.03% of
landings are unstable.[61]

E.1. Definition
There is no single definition of an unstable approach, every operator and entity can
have a different one. All these definitions have in common an approach that is not
aligned with the correct flight path, too fast, or too slow. For this thesis, the defini
tion of the Flight Safety Foundation is used as a base for the evaluation of unstable
approaches. According to them, a stable approach happens when the following is
satisfied:

• The aircraft is on the correct flight path
• Only small changes in heading/pitch are necessary to maintain the correct flight
path

• The airspeed is not more than VREF + 20kts indicated speed and not less than
VREF

• The aircraft is in the correct landing configuration
• Sink rate is no greater than 1000 feet/minute; if an approach requires a sink rate
greater than 1000 feet/minute a special briefing should be conducted

• Power setting is appropriate for the aircraft configuration and is not below the
minimum power for the approach as defined by the operating manual

• All briefings and checklists have been conducted
• Specific types of approach are stabilized if they also fulfill the following:

1data from: https://flightsafety .org/aswarticle/commercialaccidentfinalapproach/
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– ILS approachesmust be flownwithin one dot of the glideslope and localizer
– a Category II or III approach must be flown within the expanded localizer
band

– during a circling approach, wings should be level on final when the aircraft
reaches 300 feet above airport elevation;

• Unique approach conditions or abnormal conditions requiring a deviation from
the above elements of a stabilized approach require a special briefing.

An approach that becomes unstable below 1000 feet above airport elevation in IMC
or 500 feet above airport elevation in VMC requires an immediate goaround.

ADSB data doesn’t contain all the information required to verify that the requirements
above are fullfilled.

E.2. Extra Details on Energy Compliance
E.2.1. Preprocessing
Data contains various errors, whose source is difficult to identify. Outlier removal
means removing data points with unreasonable value. Limits are defined for the
speed, height, and rate of climb as shown in Table E.1.

Table E.1: This table shows the limits for possible approach operations.

variable min max
Airspeed [m/s] 0 140
Height [ft] 0 6000
Rate of climb [fpm] 3000 2000

Considering the table above, airspeed has a maximum value of 140 m/s. This value
is based on the fact that large category D jets have a maximum speed of 95 m/s
for the final approach, and 135 m/s in the case of a missed approach.2 Analyzing
the instrument approach charts lead to the conclusion that aircraft are normally at a
maximum height of 4000 ft for runway 36C at 10 NM. For this reason, the height is
assigned an upper limit of 6000ft taking into account some contingency. Finally, for the
rate of climb, 3000 fpm is the minimum allowed value considering the general rules
of the Flight Safety Foundation, which can be found in the section above. It mandates
that a goaround should be performed in case the rate of climb is below 1000 fpm.
The limit is the theoretical decision value multiplied by 3 to take into account some
contingency. The upper limit of 2000 fpm takes into account the case in which an
aircraft performs a goaround.

During the outlier removal process, it is found that 7% of Open Sky data exceeds the
limits defined in Table E.1, while the percentage is close to 1% for the Delft data. For
this reason, this analysis uses only Delft data and this preprocessing step doesn’t
need to be performed.

2data from: www.skybrary.aero/index.php/Approach_Speed_Categorisation
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E.2.2. GMM Components
The number of components is chosen using the Calinski–Harabascz (CH) index, as
suggested by Puranik in [36]. This is an internal evaluation criterion that measures
how compact are components and how well separated they are. Several GMMs are
trained with a different number of components using the training data. Figure E.1
shows the result of the CH index for the different number of components for the 3
GMM model. A higher value of this index is better, and thus we select 2 components
for the first GMM, 3 for the second one, and 2 for the third one.

Figure E.1: The figure shows the results of the CH inex for the 3 components of the GMM.

E.2.3. Results
In this example, the 3GMM model is trained on 5 days of data from the 5th to 10th
of January 2018. In this way, there are approximately 3000 trajectories available for
training. This number is chosen based on the previous study by Puranik [36] that also
uses 3000 flights. After training, the number of anomalous trajectories resulting from
this methodology with a threshold of 0.1% is shown in Table E.2.

Table E.2: This table shows the amount of anomalous trajectory resulting from the 3GMM model
(threshold of 0.1%) trained with 3000 trajectory collected from 5th to 10th of January.

Distance to
runway [NM]

# unique
[% of

anomalous
total]

trajectories

0.5  4 34 [1.2] 52
[1.8]

91
[3.1]

4  7 24 [0.8]
7  10 49 [1.7] \\

Themost interesting part is the one closest to the runway threshold because it is where
the aircraft needs to comply with the stabilized approach criteria. In this area, 1.2 %
of the trajectories result to be anomalous.

The subsequent area from 4 to 7 NM can be of interest when looking for unstable
approach precursors, or as an extension of the previous one. An aircraft unstable
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between 4 and 7 NM may manage to return to the stable condition before reaching
the decision gate. This assumption is confirmed by looking at the second column.
There are 52 anomalous unique trajectories flying between 0.5 and 7 NM, and only
34 between 0.5 and 4 NM. It means that 18 trajectories stabilize before reaching the
decision gate. Instead, 6 of them remain unstable after entering the last portion of the
final approach path.

The last part, between 7 and 10 NM, has the highest number of anomalous trajectories.
This is expected because this area includes a wider spectrum of operations.Here, an
aircraft could be flying at 2000, 3000, 4000 ft depending on ATC commands. The last
column of the table indicates the total number of unique anomalous trajectory from
0.5 to 10 NM.

Table E.3: This table shows the validation of the energy compliance algorithm with the validation list
depending on the threshold and the dataset.

0.01 0.05 0.1 0.5 1 2 3 5 10

Detected Open+Delft 4 6 8 11 16 17 19 24 28
Delft 3 6 8 9 11 15 17 21 29

Detection
accuracy [%]

Open+Delft 12.90 19.36 25.81 35.48 51.61 54.84 61.29 77.42 90.32
Delft 9.68 19.36 25.81 29.03 35.48 48.39 54.84 67.74 93.55

Positives [%] Open+Delft 2.74 3.74 4.42 7.58 10.55 15.40 19.96 27.35 40.66
Delft 0.50 1.08 1.60 4.78 7.55 12.70 17.55 26.23 42.80

In Chapter 1, a simplified version of Table E.3 is presented. In this section, there is
an extra column containing the results from the OpenSky data.Table E.3 shows the
result of validating the energy compliance algorithm with the validation list depending
on the threshold and the dataset used. It shows how the overall number of detected
trajectories varies depending on the threshold and dataset. Furthermore, there is
the detection accuracy, and how the overall number of positive detection varies. It
is important to note that to perform a fair comparison and highlight the differences
only aircraft present in both datasets are considered. In the Delft data, there are 31
trajectories and in OpenSky, there are 44 trajectories.

It is interesting to see that the OpenSky dataset performs overall better than using only
the Delft data. This is probably the consequence of having more data points in the
first compared to the second database. This directly leads to an increase in detection
accuracy. However, by analyzing the third row showing the overall percentage of
autonomous trajectories returned by the algorithm, it is clear that using Opensky data
more often return an unstable approach. This is caused by the lower quality of data
present in this dataset. A higher percentage of positives results likely underlies a high
percentage of false positives. It is possible to see that as the threshold is set higher
and higher the detection of unstable approaches equalizes between the two datasets
reaching for a threshold equal to 10% a 40% portion of unstable trajectories.
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F
Goaround

A goaround is a maneuver that happens when landing is aborted. It can be initiated
by the pilot or ATC for different reasons, such as unstable landing and obstacles on
the runway. It is a procedure that consists in climbing to a predetermined altitude pre
scribed in the instrument landing procedures, and once at the correct altitude turning
360 degrees around the runway.

F.1. Extra Examples
This section shows some examples of trajectories identified by the model.

Figure F.1: Goarounds detected on the 8th
January 2018.

Figure F.2: Goarounds detected on the 29th
January 2018.

Preliminary tests of the model show that goarounds are detected for trajectories with
a high and low density of data, as shown in Figure F.1. Figure F.2 shows that aircrafts
performing holding loops at low altitudes might be flagged as goaround as well. This
behavior needs to be examined further.
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F.2. Conflicting Traffic
A goaround might be an indicator for conflicting traffic. An aircraft might perform a
goaround because separation can not be guaranteed. For this reason, ATC might
command a goaround. In Schiphol TMA, the separation minima are:

• 1000ft vertically or
• 3nm horizontally

There is an exception in case parallel runways are in use. For this airport independent
parallel approaches are possible since the distance between the parallel runways is
larger than 3400ft. This type of parallel approach will be discussed further. Aircraft are
separated vertically by flying at different altitudes until they intercept the ILS. Table F.1
shows the standard procedures altitudes when flying at different parallel runways and
Figure F.3 offers an horizontal overview of the operation.

Table F.1: This table shows an overview of the different altitudes when flying parallel approaches.

Parallel runways Altitudes [ft] Centerrunway distance [ft] Buffer area [ft] ([NM])
36C & 36R 36C: 4000 and 36R: 3000 8200 3000 (0.5)
18C & 18R 18C: 3000 and 18R: 2000 6200 2000 (0.33)

Figure F.3: This figure offers an overview of the horizontal requirements for independent parallel
runway approach.[62]

There is an approach controller for each runway. He monitors that its aircraft don’t
enter the No Transgression Zone (NTZ). NTZ is a corridor established between the
parallel runways to ensure separation. If an aircraft enters this zone, immediate cor
recting action from the controller is required.[63] The notransgression zone (NTZ)
is at least 2000 feet (610 meters) in width and established equidistant between the
extended runway centerlines.

It is important to note that in the CTR, when airplanes are in line of sight, the controller
can deviate from the described minima.1

1data from: https://en.lvnl.nl/safety/achievingsafety/separationofaircraft
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F.3. Comparison with OpenSky
In Chapter 1, a simplified version of Table F.2 is presented. In this section, there is
an extra column containing the results from the OpenSky data. This table shows the
validation of the goaround detection method using the validation list.

Table F.2: This table shows a comparison of validating the goaround detection method with different
datasets.

Open+Delft Delft
Detected 50 46
Undetected 6 1
Not present 9 18

As expected, the combination of the two datasets improves the number of detected
goarounds, and the data availability from 72% to 86%. Interestingly, also the amount
of undetected goarounds is much higher, for open+Delft is 11% of the available go
arounds, while for Delft it is only 2%. This behavior is probably caused by the lower
data quality of the OpenSky and the fact that these trajectories have fewer points com
pared to the average detected trajectory. The difference is of an order of magnitude,
with these trajectories having approximately 100 points compared with the average
detected trajectory possessing 1500 points.
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Monitoring Indicators

This chapter is dedicated to the dashboard built as a basis for a monitoring tool.

Figure G.1: This figure shows the monitoring dashboard.

G.1. Overview
The purpose of this dashboard is to develop an interactive interface to analyze the
results. It represents the basis of a safety monitoring system. This dashboard is
developed in R using the Shiny package. Figure G.1 shows one of the interactive plot
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G.1. Overview

areas. In this plot, it is possible to visualize the number of goarounds per month and
filter it depending on several conditions simultaneously. For instance, it is possible
to select goarounds happening with adverse weather on a particular runway. This
allows drawing unique insights into aircraft operations.

The dashboard is organized as follows:

• Introduction contains info about the project.
• Goaround, it has two tabs:

– Model Description with info on how the detection of events works.
– Results contains three interactive plot areas to analyze the relationship
between goarounds, months of the year, runway, weather, unstable ap
proach, and separation to closest aircraft.

• Unstable approaches, it has two tabs:

– Model Description with info on how the detection of events works.
– Results contains one interactive plot to analyze the relationship between
unstable approaches, months of the year, runway, and weather.
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