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Abstract
High-resolution spatial–temporal root zone soil moisture (RZSM) information collected at different scales is useful for 
a variety of agricultural, hydrologic, and climate applications. RZSM can be estimated using remote sensing, empirical 
equations, or process-based simulation models. Machine learning (ML) approaches for evaluating RZSM across numerous 
spatial–temporal scales are less generalizable than process-based models. However, data-driven ML approaches offer a 
unique opportunity to develop complex models of soil moisture without making assumptions about the processes govern-
ing soil water dynamics in a given study region. In this study, comparisons were made between two models, pySEBAL and 
EFSOIL, which were based on evaporation fraction (EF) and soil properties, and a data-driven model based on the Random 
Forest (RF) ensemble algorithm. These approaches were evaluated to demonstrate their capabilities for RZSM estimation. 
The EF obtained from Landsat images was used after validation with eddy covariance measurements as the major input to 
all three models, along with other meteorological and soil physical properties. The RF model was trained using in situ soil 
moisture data from Time Domain Reflectometry (TDR) sensors installed in a vineyard from 2018 to 2020. The predictor 
variables comprised of meteorological, soil properties, EF, and a vegetation index. The results reveal that there was a strong 
correlation between the in situ measured soil moisture and the RF predicted soil moisture at all sensor locations. Due to the 
complexity of the physical processes involved in soil water flow, the empirical models pySEBAL and EFSOIL were unable 
to reliably predict RZSM values at all monitored locations. The high RZSM predicted by pySEBAL demonstrated the pres-
ence of possible bias in the model’s algorithm used to estimate soil moisture. We also demonstrated that ML based on the RF 
algorithm may be used to predict spatially distributed RZSM when a few soil moisture ground measurements are combined 
with remote sensing to produce soil moisture maps.

Introduction

As the world's population continues to grow and water 
resources increasingly become scarce (Boretti and Rosa 
2019) due to climate change, competition from various 
beneficial uses, and increased regulation of agriculture use, 
there is an urgent need for the development of more sustain-
able production practices. For example, in California, from 
the winter of 2011 to 2016, the state experienced extreme 
drought that impacted agricultural production and served as 
the catalyst for passing the Sustainable Groundwater Man-
agement Act (SGMA), which limits groundwater pumping 
for irrigation. Currently (as of October 2021), California is 
experiencing another major drought that started in 2020. 
The increased frequency of extreme drought and increased 
regulation of groundwater use are making irrigated agricul-
ture challenging in California. Achieving precision irrigation 
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water management requires a thorough understanding of 
crop-specific biophysical processes including crop response 
to water at different growth stages as well as variability over 
space. Soil moisture is a critical and vital variable that can 
help us improve our understanding of the relationships 
between climate dynamics (D’Odorico and Porporato 2004), 
water (Gao et al. 2014), drought (Sheffield and Wood 2008), 
and food security (Sadri et al. 2020). Information on soil 
moisture is important for the development of appropriate 
irrigation systems to maximize crop yield, and long-term 
soil moisture information combined with climatic informa-
tion provides insights into patterns, agricultural thresholds, 
and losses (Bastiaanssen et al. 2007; Lin et al. 2018). Thus, 
soil moisture information is required to achieve the benefits 
of precision agriculture and agricultural sustainability.

Soil moisture collected at the soil surface is referred to as 
surface soil moisture (SSM), and most remote-sensing meth-
ods are confined to the determination of SSM. Soil mois-
ture obtained at deeper depths where plant root water uptake 
occurs is referred to as root zone soil moisture (RZSM) and 
is of much more relevance (Scott et al. 2003; Bauer-Mar-
schallinger et al. 2019) to management and decision mak-
ing. Atmospheric conditions have a more direct impact on 
SSM than on RZSM (Hirschi et al. 2014). A precise RZSM 
estimate is required for quantifying plant available water and 
for irrigation scheduling. In situ sensors deployed at various 
depths along the soil profile can provide direct RZSM data 
(Cosh et al. 2016). However, one disadvantage of the soil 
moisture sensors is that they require site-specific calibra-
tion to provide reliable measurements of volumetric water 
content. Because of the effects that variations in soil prop-
erties have on sensor output, it is necessary to calibrate the 
sensor at each site (Peddinti et al. 2020a). Also, the volume 
of soil sensed is somewhat limited. With the advent of new 
in situ and proximal sensors, new satellites, other sensing 
technologies, and increased modeling capabilities, soil mois-
ture monitoring techniques are undergoing fast expansion 
and innovation (Peddinti et al. 2018, 2020b). As a result, an 
increasing variety of soil moisture data products are being 
developed.

Various theoretical and empirical models were developed 
over the last few decades to retrieve surface soil moisture 
at a depth of 0–5 cm (Petropoulos et al. 2015) by utilizing 
passive or active microwave sensors and establishing the 
relationship between the soil dielectric constant and water 
content (Jackson 1993). In spite of this, remote-sensing sat-
ellites are unable to provide direct soil moisture content in 
the root zone at depths of 30–60 cm because of technical 
limitations imposed by L-band and X-band characteristics 
within the microwave wavelength range (Engman 1991). In 
most cases, SSM data may be obtained more easily than 
RZSM data. In most instances, the RZSM can be extrapo-
lated from SSM data, which can be obtained either in situ 

or through satellites (Wigneron et al. 1999; Montaldo et al. 
2001; Sabater et al. 2007). Spatially distributed RZSM can 
be a challenge, since the installation of a large number of 
sensors in the network within the subsurface is costly and 
time-consuming, and is likely to affect the soil characteris-
tics (González-Teruel et al. 2019). It is, unfortunately, less 
common to measure RZSM at depths of 100 cm and beyond, 
such as is required for deep rooting crops, e.g., pistachio 
trees. The use of data-driven models that can efficiently 
relate the inputs to the desired output while being compu-
tationally efficient is required to precisely predict spatially 
distributed RZSM (Kornelsen and Coulibaly 2014; Carranza 
et al. 2021).

On a large-scale, detailed process-based models for 
simulating soil moisture dynamics based on the Richards 
equation require a lot of data for parameterization and can 
be computationally expensive. Data-driven prediction tech-
nologies (Kornelsen and Coulibaly 2014) such as artificial 
neural networks (ANNs) (Hassan-Esfahani et al. 2015), 
Random Forest (RF) (Carranza et al. 2021), and statistical 
learning tools, such as Support Vector Machines (SVMs) 
(Yu et al. 2012), are increasingly being used for SSM and 
RZSM estimations. They are designed to extract informa-
tion from data by examining patterns of variability in the 
data and to stimulate responses that are being taught by the 
data in the process. A common prerequisite is that in situ 
data are properly calibrated and sufficient for model train-
ing. Specifically, data-driven techniques implicitly include 
and assess all of the interacting processes that result in the 
production of a specific RZSM state (Carranza et al. 2021). 
Advances in machine learning (ML) techniques have been 
mostly utilized in hydrology (Lange and Sippel 2020) and 
climate research (Huntingford et al. 2019) for the prediction 
and forecasting of environmental variables (Li et al. 2011), 
as well as the optimization of model parameters. Over the 
last few years, ML approaches have become more common 
in soil hydrology research to estimate model-derived RZSM 
using ANNs or satellite-derived SSM using SVMs (Yu et al. 
2012; Adab et al. 2020; Carranza et al. 2021).

Yu et al. (2012) used SVMs and the ensemble particle 
filter (EnPF) to develop a multi-layer soil moisture predic-
tion model for the Meilin watershed in China, which showed 
that SVMs are statistically significant and resilient for soil 
moisture prediction in both the surface and root zone layers. 
Using simulated soil moisture data from the Soil and Water 
Assessment Tool (SWAT), Al-Mukhtar (2016) determined 
which ANNs were most effective for modeling the RZSM 
up to 2 m depth. He found that layer recurrent network and 
feedforward network were the most effective estimators. 
Kornelsen and Coulibaly (2014) applied the process-based 
HYDRUS model and data-driven ANNs using surface soil 
moisture observations to predict RZSM. They demon-
strated that ANNs were capable of accurately predicting soil 



Irrigation Science 

1 3

moisture as estimated by HYDRUS, but the performance 
was reduced when compared to in situ moisture observa-
tions outside the training conditions. According to the find-
ings of a recent study by Carranza et al. (2021), in situations 
where adequate training data can be obtained from intense 
observing campaigns where soil hydraulic parameters are 
not accessible, the RF model was shown to be more favora-
ble than the process-based HYDRUS model, particularly 
when the primary goal was to predict soil moisture content.

The purpose of this study was to compare the perfor-
mance of two semi-empirical models, pySEBAL and 
EFSOIL to the machine learning-based RF model in com-
bination with remoting data for predicting spatial–temporal 
changes in RZSM in a commercial vineyard. The in situ soil 
moisture data were acquired from eight TDR soil moisture 
sensors in a vineyard at Ripperdan Ranch, California during 
the growing seasons from 2018 to 2020 as part of the Grape 
Remote Sensing Atmospheric Profile and Evapotranspiration 
eXperiment (GRAPEX).

Materials and methods

Study area description and soil moisture data

In this study, in  situ soil moisture measurements were 
acquired from Ripperdan Ranch near Madera, CA 
(38.8500 N, − 120.1768 W), as part of the GRAPEX pro-
ject (Kustas et al. 2018; Alfieri et al. 2019). As depicted in 

Fig. 1, soil moisture data were collected from eight TDR 
soil moisture sensors (Model: CS655, Campbell Sci. Inc., 
Logan, UT, USA1) over the 2018–2020 grapevine crop 
growth seasons. Soil samples were collected in 2018 from 
eight different locations at three different depths: 30, 60, and 
90 cm, for soil texture assessment and sensor calibration. 
Using the gravimetric calibration procedure (Peddinti et al. 
2020a), the following calibration equation was developed 
to get calibrated volumetric water content from the sensors:

here, �volumetric is volumetric water content obtained from 
the sensors and �gravimetric is the gravimetric water content 
obtained from the soil samples (Table 1).

The daily average RZSM refers to volumetric soil mois-
ture content within the top 60 cm, calculated as the aver-
age of sensor readings at 30 and 60 cm or, in some cases, 
40 and 60 cm depth. It is possible that the majority of the 
grapevine root system can be found deeper than 60 cm; 
however, on the basis of the available data, we have con-
sidered the data from 60 cm depth as the effective RZSM. 

�volumetric =
(

1.2713 × (�gravimetric)
2
)

+
(

0.2914 × �gravimetric

)

+ 0.0873;

Fig. 1  The study area showing the eight soil moisture sensors 
(RIPC1, RIPC2, RIPC3, RIPC4, RIPT1, RIPT2, RIPT3, and RIPT4) 
and four flux tower (red triangle) locations at Ripperdan Ranch, near 

Madera, was placed under the grapevines for which root zone soil 
moisture and both carbon and water flux data were collected

1 Mention of trade names or commercial products in this publication 
is solely for the purpose of providing specific information and does 
not imply recommendation or endorsement by the U.S. Department 
of Agriculture.
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The majority of sensors were positioned beneath the vine 
row, where they sensed irrigation events during the grow-
ing season. In the root zone, the soil was classified as sandy 
loam, with 60% sand, 25% silt, and 15% clay. There was 
a difference in the soil bulk density ranging between 1.47 
and 1.55 g  cm−3 at all sensor locations. Field capacity was 
estimated as 0.21  cm3  cm−3, and the permanent wilting point 
was 0.10  cm3  cm−3 (Table 2). The soil moisture readings 
collected from all of the sensor locations over a three-year 
period ranged from 0.08 to 0.30  cm3  cm−3 (Fig. 2), with a 
saturated moisture content of 0.39  cm3  cm−3 and residual 
water content of 0.048  cm3  cm−3.

Remote sensing and meteorological data

To estimate the EF fraction from an energy balance model 
during the period 2018–2020 grapevine crop growing 
seasons, a total of 123 Landsat Thematic Mapper (TM)-
Enhanced Thematic Mapper Plus (ETM +)/Operational 
Land Imager (OLI) images under clear sky conditions were 
collected from the USGS Earth Resources Observation and 
Science Center (https:// earth explo rer. usgs. gov/). Image dates 
for Landsat 7 and 8 are presented in Fig. 3 along with the 
corresponding day of the year (DOY). The USGS EROS 
Center produced a high-resolution digital elevation model 
(DEM) from the Shuttle Radar Topography Mission (SRTM) 
with a resolution of 90 m, which was rescaled to a resolution 
of 30 m to match Landsat resolution.

The meteorological data, i.e., hourly and daily data, 
including solar radiation, air temperature, relative humid-
ity, and wind speed required to run the pySEBAL model and 
energy balance components including net radiation, soil heat 
flux, and sensible heat flux, were collected from the eddy 
covariance (EC) flux tower located within the study region, 
as shown in Fig. 1. The ET data were also obtained from this 
EC tower which is one of the primary biophysical processes 
that governs root zone water dynamics. In an earlier publi-
cation, Alfieri et al. (2019) provide detailed information on 
the general sensor design of the GRAPEX eddy covariance 
flux towers with more specific details given by Knipper et al. 
(2019).

Root zone soil moisture estimation from pySEBAL

Traditional systems that use soil moisture sensors in con-
junction with data from meteorological stations provide 
only point measurements, and are relatively expensive, 
and require frequent maintenance. IrriWatch (https:// www. 
irriw atch. com/ en/: IrriWatch, Maurik, The Netherlands) 
addresses this issue by combining root zone soil moisture 
and crop ET into a single, cost-effective technology commer-
cial service that does not require hardware installation. Irri-
Watch is one of the first products to deliver comprehensive Ta
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soil water potential and soil moisture data in the root zone 
to the farmers that is derived from thermal, multispectral, 
and optical-based remote sensing. In addition, estimates of 
ET and crop production among others are provided at the 
spatial resolution of 10 m for any field around the globe. The 
Surface Energy Balance Algorithm for Land (SEBAL) is the 
core algorithm behind IrriWatch, and it was implemented 
in a python environment, which is referred to as pySEBAL 
(python Surface Energy Balance Algorithm for Land) (Hes-
sels et al. 2017; Jaafar and Ahmad 2020). The following 
section includes the major equations for estimating RZSM 
using the pySEBAL algorithm. Readers are referred to the 
following articles (Bastiaanssen et al. 1998b, a; Laipelt et al. 
2021) for a more detailed explanation of the algorithm.

The soil moisture content is computed as a function of 
the evaporation fraction (EF) using the pySEBAL package 

(Waters et al. 2002). Bastiaanssen et al. (1997) and Scott 
et al. (2003) were the first studies to identify a relationship 
between soil moisture and the EF, leading to the formula-
tion of Eq. (1)

where �sat is saturated soil water content  (cm3  cm−3), EF 
is evaporation fraction from pySEBAL, and a and b are 
curve fitting parameters set to 1 and 0.421. Note that Eq. (1) 
directly relates EF to volumetric soil water content. Nutini 
et al. (2014) evaluated this equation in semi-arid rangeland 
ecosystems in Niger and Chad, and Petropoulos et al. (2020) 
investigated the relationship in a Mediterranean environment 
in Spain.

(1)� = �sat × exp
(

EF − a

b

)

,

Table 2  The goodness-of-fit statistics for the three models assessed for pySEBAL, EFSOIL, and RF models were compared to measured and 
predicted root zone soil moisture at eight sensor locations

Here, RMSE is the root-mean-square error, bias is the mean bias error, R2 is the coefficient of determination, and d is the index of agreement 
between in situ and predicted RZSM at eight sensor locations

Site RMSE Bias R2 d

pySEBAL EFSOIL RF pySEBAL EFSOIL RF pySEBAL EFSOIL RF pySEBAL EFSOIL RF

RIPC1 0.12 0.07 0.031 0.06 0.034 0.028 0.16 0.19 0.83 0.27 0.12 0.86
RIPC2 0.09 0.06 0.012 0.02 0.003 0.001 0.04 0.09 0.94 0.31 0.22 0.98
RIPC3 0.12 0.07 0.025 0.049 0.03 0.014 0.23 0.3 0.83 0.23 0.12 0.92
RIPC4 0.11 0.06 0.036 0.052 0.027 0.031 0.06 0.11 0.85 0.27 0.14 0.86
RIPT1 0.11 0.06 0.019 0.033 − 0.003 − 0.008 0.04 0.09 0.89 0.29 0.21 0.96
RIPT2 0.09 0.05 0.021 0.043 0.017 0.008 0.05 0.11 0.84 0.31 0.21 0.95
RIPT3 0.12 0.07 0.024 0.052 0.032 0.004 0.39 0.42 0.77 0.18 0.09 0.93
RIPT4 0.12 0.07 0.023 0.035 0.009 0.008 0.07 0.12 0.84 0.27 0.19 0.95
Average 0.11 0.06 0.024 0.043 0.019 0.011 0.13 0.18 0.85 0.27 0.16 0.93

Fig. 2  Box plots depicting the distribution of root zone soil moisture at eight sensor locations on the Ripperdan Ranch, near Madera, California
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The following formula is used to calculate the EF from 
the energy balance equation:

where Rn is the net radiation (W  m−2) at the surface,  H is 
the sensible heat flux (W  m−2), and G is the soil heat flux 
(W  m−2).

The net radiation is the first and the most important com-
puting step in the pySEBAL method. According to Eq. (2), 
Rn is computed by subtracting all outgoing radiation fluxes 
from all incoming radiation fluxes by Eq. (3)

where Rs↓ is the incoming shortwave radiation measured at 
the time of satellite overpass (W  m−2), RL↓ is the incoming 
longwave radiation (W  m−2), � is the surface albedo, �0 is 
the surface emissivity calculated by a semi-empirical rela-
tionship involving Normalized Difference Vegetation Index 
(NDVI) and Leaf Area Index (LAI) (Xue et al. 2020), which 
can be retrieved from the red and near-infrared bands of 
the electromagnetic spectrum, �  is the Stephen–Boltzmann 
constant denoted as 5.67 ×  10−8 (W  m−2  K4), and  Ts is the 
temperature of the land surface (K).

(2)EF =
Rn − G − H

Rn − G
,

(3)Rn = (1 − �)Rs↓ + �0RL↓ − �0�T
4
s
,

G is expressed as a fraction of Rn, and pySEBAL employs 
the empirical formula (Eq. 4) for calculation of G estab-
lished by (Bastiaanssen et al. 1997)

where Ts,reference is the corrected land surface temperature (Ts) 
based on the DEM of the area of interest (AOI), considering 
the slope and aspect of the land surface and NDVI.

When using pySEBAL, an internal calibration of H is 
implemented, eliminating the requirement for an additional 
atmospheric adjustment of Ts to be performed. While cal-
culating H, pySEBAL makes use of the bulk aerodynamic 
resistance equation, expressed as Eq. (5)

where � is the air density (kg  m−3), Cp is the specific heat 
of air at constant pressure and it is equal to 1004 J/(kg K), 
rah is the aerodynamic resistance to heat transfer between z1 
and z2 (s/m), and dT  is the temperature difference between 
two near-surface height (z1 = 0.1 m and z2 = 2 m) above the 
canopy layer (K) (Xue et al. 2020), which is estimated as a 
linear function of corrected surface temperature Ts,reference 
(Eq. 4), being a major assumption for estimating sensible 

(4)
G = Ts,reference × (0.0038 + 0.007�) ×

(

1 − 0.98NDVI4
)

× Rn,

(5)H =
� × Cp × dT

rah
,

Fig. 3  Cloud free Landsat scene imagery (path: 042/043 row:034) was used to estimate evaporation fraction
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heat flux (Bastiaanssen 1995; Allen et al. 2005b). Readers 
are referred to (Xue et al. 2020; Jaafar and Ahmad 2020) for 
a more detailed description of the pySEBAL algorithm and 
the automated selection of hot and cold pixels in the calcula-
tion of sensible heat fluxes. After estimating ET, IrriWatch 
uses a soil water balance and site-specific information on 
soil physical characteristics such as field capacity, wilting 
point, and effective crop root depth to estimate soil water 
content within the root zone. Soil physical characteristics are 
obtained from public databases such as gSSURGO. Valida-
tion of the EF data was carried out using EC tower data from 
the study region's source footprint area to ensure accuracy.

Root zone soil moisture estimation 
from evaporation fraction (EF) and soil properties

In the absence of ground-based auxiliary measurements, 
Pradhan (2019) proposed a method for estimating soil mois-
ture content from the satellite-derived EF and soil physical 
properties. In this study, the relationship between satellite-
based EF and soil properties was used to derive RZSM. In 
this study, this approach was defined as EFSOIL (Evapotran-
spiration fraction and soil properties-based RZSM).

Budyko and Zubenok (1961) defined the ratio of actual 
crop evapotranspiration (AET) to plant-specific reference 
evapotranspiration ( ETr ) as a function of actual available 
soil moisture (SM) and plant available soil moisture (PAM), 
which can be written as

This is a simplified equation for a complex physical pro-
cess that requires additional testing for various soil and cli-
matic conditions. In Eq. (6), the right-hand side term can be 
taken as the relative saturation or soil wetness index defined 
as

where � is the actual soil water content within the root zone 
 (cm3  cm−3), and �fc and �wp are site-specific field capacity 
and permanent wilting point  (cm3  cm−3), respectively.

By rearranging the terms from Eqs. (6) and (7), Eq. (8) 
can be written as

Similarly, in Eq. (8), the left-hand side term is equal 
to the crop coefficient (Kc). As reported by Trezza 2002; 
Tasumi 2003; and Allen et al. 2007, Kc can be similar to the 
EF under certain conditions (Allen et al. 1998). While the 

(6)
AET

ETr
=

SM

PAM

(7)
SM

PAM
=

(

� − �wp
)

(

�fc − �wp
)

(8)
AET

ETr
=

(� − �wp)

(�fc − �wp)
.

parameter EF takes into consideration water stress, the actual 
ET is the variable that accounts for environmental stresses 
(Allen et al. 2005a). By assuming that EF is equal to Kc and 
that it is related to soil moisture fraction defined in Eq. (8), 
the following equation can be written as:

Equation (9) can be used to derive spatially distributed 
soil moisture content (�i) at any spatial location denoted as

This is the fundamental equation that was used in the 
EFSOIL model to retrieve the RZSM within the vineyard 
at the Ripperdan Ranch by utilizing the Landsat-derived EF 
from pySEBAL algorithm and soil characteristics at each 
sensor location.

Root zone soil moisture estimation using Random 
Forest

To estimate RZSM at fine spatial resolution, the RF machine 
learning algorithm was trained using in situ soil moisture 
measurements from eight sensors in combination with EF 
derived from Landsat imagery, meteorological, soil, and 
topography data as predictor variables. RF is an ensemble-
based machine learning approach that uses multiple clas-
sifications and regression trees in sample selection utilizing 
the bootstrapping method, which is referred to as “bagging” 
(Breiman 1996, 2001). The detailed RF flowchart used 
in this study is shown in Fig. 4. With the bootstrap in the 
various decision trees, the selection of the variables is ran-
domized in this method, with only a portion of the samples 
being selected in each of the multiple trees. RF is capable 
of performing both classification and regression processes 
(Fig. 4). The number of trees (tree) and the number of fea-
tures (mtry) are the two most influential factors in the RF 
algorithm. According to its general definition, it is a method 
used to improve the precision of models when compared to 
linear regression, because it is resistant to multicollinearity 
and is capable of solving complex interactions between the 
predictor and explanatory variables (Drobnič et al. 2020). 
During the generation of RF samples, the input data are 
grouped into rows (called samples) and columns (called 
features) with respect to row sampling; the technique is to 
use replacement sampling, which means that some samples 
may occur several times in the training set of a tree or may 
never exist at all in the training set (Meyer et al. 2019).

The RF approach was implemented using the R package 
CAST developed by Hanna Meyer (https:// cran.r- proje ct. org/ 
web/ packa ges/ CAST/ index. html). To estimate the RZSM 

(9)EF =
(� − �wp)

(�fc − �wp)
.

(10)�i = EF
(

�fci − �wpi
)

+ �wpi.

https://cran.r-project.org/web/packages/CAST/index.html
https://cran.r-project.org/web/packages/CAST/index.html
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using RF, a random interpolation of randomly selected 
points from each sensor location within the time-series data 
from 2018 to 2020 was used. With data from all eight TDR 
soil moisture sensor stations on the Ripperdan Ranch inte-
grated, a single RF model was developed and applied to the 
spatial prediction of soil moisture over the entire vineyard. 
Random samples were taken from the daily time-series data 
at each site to perform RF interpolation (Fig. 4). The sam-
ples from each station were generated using a proportion of 
70–80% of the daily time-series measurements at each site. 
These were then integrated into a single training set for the 
purpose of developing an RF model. For interpolation, the 
value of the ntree option was set to 500 trees. The optimiza-
tion of the RF model was carried out by modifying the mtry 
value from 2 to 10 for each training set proportion tested. 
Covariates or predictor variables utilized in the construction 
of an RF regression model were meteorological data, soil 
properties, and EF derived from Landsat imagery. During 
the training phase of the model, daily linear interpolated EF 
and normalized difference vegetation index (NDVI) values 
between two satellite dates from 123 images taken over 3 
years were utilized as predictor variables. Also, meteoro-
logical factors, such as daily average solar radiation, refer-
ence evapotranspiration, wind speed, maximum, minimum, 
and daily average air temperature, and relative humidity 
respectively, were utilized as covariates. Additionally, soil 
attributes such as spatial distribution of bulk density, soil 
temperature (three temperature sensors were installed at the 
flux tower site at a depth of 10 cm), and a digital elevation 
model derived were also employed as predictor variables.

The validation of the RF model was accomplished by the 
use of k-fold cross-validation (CV). CV is widely used to 
estimate the performance of a model in the context of data 
that has not been utilized for model training (Meyer et al. 
2018, 2019). The CV procedure involves training models on 
a large number of occasions (k models), and in each model 
run, the data from onefold are set aside and used not for 
model training, but for model validation instead. This way, 
the model's performance can be assessed using data that 
were not used in the model's training (Meyer et al. 2018, 
2019). We used the index argument to account for data 
dependencies by leaving the entire dataset from one sensor 
location out. A random k-fold CV contains data points from 
each sensor site that are contained in each of the folds with 
the maximum degree of certainty.

Performance evaluation criteria

Different statistical goodness-of-fit indicators were 
employed to assess the errors between modeled and observed 

soil moisture values from the three models. The difference 
in RZSM values between observed (in situ) and modeled 
values was quantified using root-mean-square error (RMSE), 
index of agreement (d), and coefficient of determination (R2) 
(Huryna et al. 2019); see Eqs. (11)–(14)

where  Pi is modeled value, Oi is the observed value, O is 
the average of the observed values, and n is the number of 
observations.

(11)RMSE =

[

1

n

n
∑

i=1

(

P
i
− O

i

)2

]1∕2

(12)d = 1 −
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i=1

�

Oi − Pi

�2
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i=1

�

�

�

�

Pi − O
�

�

�

+
�

�

�

Oi − O
�

�

�

�2
, 0 ≤ d ≤ 1

(13)R2 = 1 −

∑

(Pi − Oi)
2

∑

(Pi − O)
2

(14)bias =

∑n

i=1
(Pi − Oi)

n
,

Fig. 4  Workflow diagram for the Random Forest (RF) model. The 
construction of regression trees is based on a large number of boot-
strap samples. Each tree is formed by picking the datasets from each 
subsample and putting them together. Each tree's predictions were 
averaged to provide a single value for the purpose of building a 
model, which was then used to predict the spatial distribution of root 
zone soil moisture
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Results and discussion

Model tuning and variable significance 
in the random forest model

The RF model built with varying amounts of training data 
sets showed the lowest RMSE when 70–80% of the total data 
was used, with R2 of 0.84 and RMSE of 0.02  cm3  cm−3. As 
a result, by setting ntree equal to 500, the 80% training set 
was chosen for further evaluation of the model. The results 
of the tenfold cross-validation demonstrated that, compared 
to meteorological factors, soil bulk density, EF, NDVI, and 
average soil temperature had the greatest impact on the RF 
model accuracy (Fig. 5). The soil bulk density and the soil 
temperature were the most critical parameters that impact 
the amount of moisture present in the soil within the root 
zone. Water movement in the root zone was influenced by 
the dominant sandy soil found at the study site, which has a 
high bulk density and thus a low porosity due to the coarse 
texture that affects the saturated water content. Additionally, 
at low temperatures, root water uptake may be decreased to 
due lower evaporative demand, and that is also accompanied 
by reductions in the photosynthetic rate in the grapevines. 
Topography and meteorological variables had minor effect 
on the RF model accuracy (Fig. 5), which is not surprising 

given that the study vineyard is relatively flat. The EF vari-
able is strongly connected to crop ET that drives RZSM. 
Reference ET was found to significantly influence the RF 
model predictions (Fig. 5). Even though the NDVI is one of 
the variables used to derive EF, when used as an independent 
covariate, it had a major impact on the RF model, which not 
was surprising given that canopy size affects light intercep-
tion and consequently crop water use. In light of the fact 
that precipitation has a direct impact on soil moisture, but 
the rainfall parameter did not show a high rank on the list 
of important variables, it is possible that the Mediterranean 
rainfall pattern in which there is negligible rainfall during 
the summer growing season explains this observation.

Validation of the evaporation fraction 
and evapotranspiration

The evaporation fraction (EF) was determined using the 
energy balance components from the EC tower, which 
were then correlated with the EF derived from the pySE-
BAL model at the available dates (Fig. 6). The correlations 
revealed that the EC tower measured EF agreed well with 
remote-sensing-derived EF. This was critical, since EF is 
one of the important covariates (Fig. 5) in the training of 
the RF model for soil moisture predictions within the study 

Fig. 5  Variable importance of 
RF model used in this study. 
Here, BLD is soil bulk density 
at each sensor location, AvgST 
is the daily average soil tem-
perature, EF is the evaporation 
fraction, NDVI is normalized 
difference vegetation index, 
DEM is the digital elevation 
model, SolRad is the daily solar 
radiation, MinRH, MaxRH, 
and AvgRH are the minimum, 
maximum, and daily average 
relative humidity respectively, 
MaxAT, MinAT, and AvgAT 
are minimum, maximum, and 
daily average air temperatures, 
respectively, Etr is reference 
evapotranspiration, AvgWS is 
daily average wind speed, and 
rainfall is the sum of precipita-
tion in that particular day
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area. Furthermore, the trained model was used to make 
spatial predictions by providing satellite-derived spatial EF 
data. The RMSE and nRMSE (normalized root-mean-square 
error) between measured and molded EF were found to be 
0.07 and 0.102, respectively, with a coefficient of determina-
tion (R2) of 0.75. The amount of irrigation was implemented 
at each sensor location separately in the research block. The 
daily dynamics of ET with combined irrigation and precipi-
tation at the flux tower location are depicted in Fig. 7. The 
ET patterns indicate that ET is low at the beginning of the 
crop season and gradually increases with crop growth as 
transpiration rates increase, and then begin to decrease at 
the end of the crop season. In addition, we can detect a rela-
tionship between soil moisture, the amount of water applied 
through irrigation and precipitation, and ET through Figs. 7 

and 8, respectively. For example, during the middle part of 
the season, when ET is at its peak, RZSM is depleted at a 
faster rate and reaches its lowest levels. Also, soil moisture 
reaches its peak during the winter, when ET is low and pre-
cipitation is high (California has a Mediterranean climate 
with dominant winter rainfall). Additionally, it is reasonable 
to infer that the EF contains indirect information on irriga-
tion, which has an impact on soil water dynamics.

Root zone soil moisture dynamics

The daily average soil moisture in the root zone consid-
ered as the top 60 cm in this study was acquired from soil 
moisture sensors at eight sensor locations. These data were 
used to train the RF model and to validate predicted soil 

Fig. 6  Evaporation fraction (EF) values obtained from the eddy 
covariance flux tower and those derived using pySEBAL were com-
pared for the three crop seasons, with scatter plots reflecting the root-

mean-square error (RMSE), normalized RMSE (nRMSE), and coef-
ficient of determination  (R2)

Fig.7  Daily evapotranspiration from eddy covariance flux tower and combined irrigation and precipitation for the three seasons from 2018 to 
2020 in a vineyard at the Ripperdan Ranch near Madera, CA
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moisture from the three models to measured values. The 
daily observed and predicted RZSM dynamics from the 
three models pySEBAL, EFSOIL, and RF are shown in 
Fig. 8 for the vineyard growing seasons from 2018 to 2020. 
It should be noted that the RZSM correlations were lim-
ited to the times when the EF data were available over the 
3-year studied period (i.e., 123 Landsat-derived EF data 
were considered in 3-year time frame). When comparing 
the three models with the observed RZSM, the soil moisture 
demonstrated significant temporal variability. During each 
of the three growing seasons, the RF model showed high 
correlations with in situ RZSM data. However, soil mois-
ture estimated by the pySEBAL model either overestimated 
or underestimated soil moisture when compared to in situ 
data from all sensor locations. Similar results were found 
for the EFSOIL model at all the eight sensor locations. As 
expected, the in situ RZSM effectively tracked precipitation; 

for example, when the amount of rainfall was high, e.g., in 
2019 and 2020, soil moisture content within the vineyard 
was high. The RF model was able to capture these wetting 
and drying cycles better than the pySEBAL and EFSOIL 
models (Fig. 8). Under dry conditions, the performance of 
both pySEBAL and EFSOIL models agreed closely with 
in situ sensor data, but the RF model produced more accu-
rate predictions across all conditions. It was encouraging to 
see that, while in situ data for the 2018 growth period were 
not available for the RIPC3 and RIPT3 sensor locations, 
the RF model predictions showed extremely consistent and 
precise dynamics, similar to the dynamics observed at the 
other sensor locations during this period. This observation 
provided confidence in predicting the RZSM at this vine-
yard, which was useful for future implementations of the 
RF model.

Fig. 8  Time-series plots of root zone soil moisture estimates from 
pySEBAL (orange dots), EFSOIL (blue stars), RF models (green 
dots), and in  situ measurements (black solid lines) at eight sensor 
locations (RIPC1, RIPC2, RIPC3, RIPC4, RIPT1, RIPT2, RIPT3, 

and RIPT4) and combined irrigation and precipitation (histogram) at 
each sensor location are shown on secondary axis for the three grow-
ing seasons of grapevines
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The goodness-of-fit statistical indicators obtained from 
the comparison of observed and predicted root zone soil 
moisture at each sensor location are reported in Table 2. The 
results from the RF model had a high R2 (> 0.80), low RMSE 
(0.012–0.036  cm3  cm−3), low mean bias error (− 0.008 to 
0.031), and a high index of agreement value (> 0.86) from 
all eight sensor locations, indicating that a data-driven ML-
based method such as RF is capable of accurately predict-
ing RZSM across the study this site. The pySEBAL model 
had the weakest performance, with low R2 (< 0.04), high 
RMSE (> 0.09 to 0.12 cm3   cm−3), high bias (> 0.02 to 
0.052), and a low index of agreement value (0.18–0.31) 
from all of the monitoring locations. However, when com-
pared to pySEBAL, the EFSOIL model predictions were 

only marginally better, with low  R2 (< 0.09), high RMSE 
(0.05–0.07  cm3  cm−3), high mean bias (− 0.003 to 0.034), 
and a very low index agreement value (0.09–0.22) at all 
eight soil moisture sensor locations. Within the vineyard, 
soil moisture patterns were controlled by a variety of fac-
tors including soil evaporation and crop root water uptake. 
Compared to the data-driven RF-based approach, the semi-
empirical models based on pySEBAL and EFSOIL were 
unable to accurately predict the RZSM values. As discussed 
earlier, the RF model was developed using a number of 
covariates such as meteorological data and soil characteris-
tics that have high correlations with the in situ soil moisture 
data. The findings from this study indicate that the RF model 
can be used to accurately predict soil water status to guide 

Fig. 9  On the growing season of 2018, an example of the spatial 
distribution of root zone soil moisture from the three models pySE-
BAL, EFSOIL, and RF for a certain day of the crop season. The crop 

growth stages are divided as Budburst, Bloom, Veraison, and Matura-
tion & Harvest
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irrigation scheduling decisions or in evaluating root zone 
soil water balance.

Spatial root zone soil moisture dynamics

The spatial distribution pattern of soil moisture predicted by 
the pySEBAL, EFSOIL, and RF models for each grapevine 
crop growth stage (single day for each stage) from 2018 
to 2020 was evaluated at a 30 m spatial resolution, respec-
tively, as shown in Figs. 9, 10 and 11. The spatial patterns 
were evaluated in relation to the growth stages of the grape-
vine. Several processes and events occur during the annual 
growth cycle of grapevines; however, the major ones are 
classified into four categories: budburst, bloom, veraison, 
fruit maturation, and harvest. In each of the 3 years, the 

spatial variability in RZSM differed from the three models 
in terms of magnitude and crop stage. The pySEBAL model 
revealed consistent patterns at the beginning (budburst) and 
end (harvest) of the crop season. However, the pySEBAL 
model exhibited very high soil moisture levels that were not 
practical (compared to soil moisture sensor values) during 
the Veraison stage, given the fact that the farmer applied 
deficit irrigation to allow light stress on crops to increase 
grape quality at this growth stage, as shown in Fig. 6. It is 
worth noting that the pySEBAL modeling framework was 
developed for predicting ET over large spatial scales and 
soil is derived as an auxiliary output. This might explain 
why it did not do very well at the vineyard scale. The sensor 
measurements of RZSM revealed a decrease in the observed 
RZSM over the months of June–July across all three crop 

Fig. 10  On the growing season of 2019, an example of the spatial distribution of root zone soil moisture from the three models pySEBAL, 
EFSOIL, and RF for a certain day of the crop season. The crop growth divided as Budburst, Bloom, Veraison, and Maturation & Harvest stages
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seasons (Fig. 8). Furthermore, the RF model has enhanced 
stability during both well-watered and crop stress growth 
stages, and performed well both spatially and temporally 
(Figs. 8, 9, 10 and 11). The RF-based data-driven model, 
which was trained solely on point location data from the 
TDR soil moisture sensors, provided accurate predictions 
at the sensor locations. The spatial distributions of RZSM 
in the EFSOIL model had constant soil moisture values 
throughout the crop's growing season, which may be attrib-
uted to the fact that the field capacity and wilting point do 
not vary from season to season. Despite the fact that a spatial 
resolution of 30 m was insufficient to reliably predict soil 
moisture in response to crop phenological phases, spatially 
distributed estimates of soil moisture from the RF model 
can be used to refine site-specific irrigation scheduling in 

vineyards and other high-value crops by considering the 
location in addition to irrigation timing and amount.

Future possibilities of Random Forest model

Using random forest modeling for spatial prediction, regres-
sion, and classification with complex data sets in a variety 
of subjects has become increasingly popular in recent years. 
This is due to the fact that it has a computational advantage 
over other regression models and is simple to implement. 
Because this model is heavily reliant on the dependent vari-
able and covariates, the RF predictions are always within a 
reasonable range of the observed data, and the values of the 
tuning parameters are insensitive to the model's parameters. 
The drawback of RF approaches is they require extremely 

Fig. 11  On the growing season of 2020, an example of the spatial distribution of root zone soil moisture from the three models pySEBAL, 
EFSOIL, and RF for a certain day of the crop season. The crop growth divided as Budburst, Bloom, Veraison, and Maturation & Harvest stages
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high densities of in situ data within a given study region 
to be properly trained; appropriate data sets are not always 
available in some regions. For example, obtaining high spa-
tial and temporal data on soil moisture is extremely difficult 
in some regions due to the high cost of the sensors and the 
need for more frequent and proper maintenance of the sen-
sors. Aside from that, when creating a large number of trees 
to train the model, requires significantly more computational 
power and resources, as well as a significant amount of time 
to train the model to make decisions based on the major-
ity of tree votes. Future research should place an emphasis 
on the spatial predictions of different variables in data-poor 
regions, as well as the development of more accurate valida-
tion methods. In addition, future work should explore devel-
oping Cyberphysical infrastructures that combine low cost 
sensors, and Internet of Things technologies with predic-
tive power of RF-based machine learning models to enhance 
technology adoption among users.

Conclusions

This study compared two semi-empirical approaches that 
use the evaporation fraction (EF) from remote sensing to 
a machine learning data-driven approach that uses Ran-
dom Forest (RF) for predicting spatial–temporal root zone 
soil moisture distribution in a vineyard. When sufficient 
observed data for training are available, data-driven mod-
els based on machine learning can be developed that accu-
rately predict RZSM and are less computationally expensive 
compared to process-based models. RF showed the high-
est agreement with observed soil moisture compared to the 
semi-empirical models. Soil bulk density, soil temperature, 
and EF were the most influential covariates for predicting 
spatially distributed root zone soil moisture within the vine-
yard. The semi-empirical analytical models pySEBAL and 
EFSOIL, which were tested in this work, were unable to 
accurately predict the root zone soil moisture dynamics at 
the soil moisture sensor locations; depending on the wet and 
dry conditions, they were either overestimating or under-
estimating the RZSM. During the crop stress period, the 
pySEBAL model predicated very high spatial RZSM val-
ues which were not comparable to sensor data, but during 
budburst and harvesting growth stages, the model predicted 
reasonable spatial distributions throughout the studied area. 
With some algorithmic tweaks or parameterization, the 
pySEBAL may potentially be enhanced to produce accurate 
spatially distributed RZSM predictions, which is extremely 
valuable for site-specific irrigation scheduling and soil water 
balance evaluations, because it is based on Landsat imagery 
that are freely available. In summary, the RF approach that 
produced good predictions of RZSM though demonstrated in 
a vineyard, the framework can be applied to other cropping 

systems or conditions where accurate spatially distributed 
predictions of root zone soil moisture are needed as long 
as there is adequate soil moisture monitoring data over the 
range of soil textures within the field to train the machine 
learning algorithm. Combining remote sensing with machine 
learning techniques has the potential to enhance precision 
agricultural water management.
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