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2 Summary 

Saccharomyces cerevisiae, also known as baker’s yeast, is a robust microorganism frequently used in 

industrial biotechnology. The scale of its applications ranges from several millilitres for research and 

process development in the lab to hundreds of cubic meters for cultivation in industrial production 

processes. In large-scale reactors mixing limitations inherently lead to physiochemical gradients in 

substrate and oxygen concentrations, pH or temperature. Such inhomogeneous environment in 

production processes can cause a reduced yield or titer compared to the small-scale development 

processes. Such scale performance differences can lead to significant worse process economics and 

increase costs and development time. 

The scope of this thesis is to study and understand the regulation of Saccharomyces cerevisiae 

metabolism under dynamic substrate conditions, using both experimental and modelling approaches. 

Chapter 1 provides a general introduction to S. cerevisiae central carbon metabolism, especially 

focused on dynamic conditions. Here, earlier experimental studies monitoring the metabolic response 

to various dynamic substrate conditions in S. cerevisiae are summarized and discussed, together with 

an overview of the currently published kinetic models of S. cerevisiae metabolism. Furthermore, the 

current challenges and remaining knowledge gaps are described. 

In Chapter 2, a large, comprehensive dynamic model of yeast carbon metabolism was used to identify 

relevant mechanisms regulating the metabolic response to prolonged repetitive dynamic 

“feast/famine” conditions. This study is based on multi-omics data, containing quantitative 

metabolomics and fluxomics, as well as 13C labelling data. A novel parameter estimation pipeline using 

combinatorial enzyme selection was applied to identify the minimal enzyme and parameter 

adjustments to reproduce the adaptation in metabolic response from chemostat to feast/famine 

conditions. Especially, proteomic changes in glucose transport and phosphorylation reactions were 

identified as most relevant for reproducing the adapted dynamic metabolic response. These 

predictions were confirmed through comparison with experimental proteome data. 

Chapter 3 describes the development of a proteome-dependent kinetic model of yeast central carbon 

metabolism. In contrast to earlier resource allocation approaches, able to predict optimal proteomes 

under (quasi) steady-state conditions, this model can be applied to dynamic cultivation conditions as 

well. The model was constructed by combining published kinetic models and calibrating its parameters 

to published fluxomics and proteomics datasets. The calibrated model was able to predict proteomes 

for different steady-state chemostat dilution rates. The predictions suggested that the onset of aerobic 

fermentation, also known as the Crabtree effect, is not the result of space limitations in the total 

proteome, but rather an effect of mitochondrial constraints. Predictions of proteome allocation under 

dynamic feast/famine conditions showed that, compared to steady-state conditions, less proteome 

space was available for non-metabolic proteins. This suggests that the experimentally measured 

‘overcapacity’ in proteomes at steady-state might ensure robustness of cells to dynamic conditions. 

Comparison of predicted proteomes under dynamic conditions with experimental proteome 

measurements confirmed the ability of this model to accurately predict proteome adaptation trends. 

Chapter 4 provides a comprehensive experimental comparison of four different sugar substrates, 

namely glucose, fructose, sucrose and maltose, under dynamic substrate conditions in S. cerevisiae. 

While these substrates are chemically very similar to each other, the transport of these sugars into the 

cell differs significantly, with glucose and fructose being transported passively, while maltose is 

transported actively into the cell. Sucrose on the other hand is hydrolysed extracellularly, followed by 

passive transport of the resulting mono-saccharides into the cell. These differences in transport were 

expected to modulate the metabolic response under dynamic substrate conditions. To unravel the 

impact of these different carbon sources under dynamic substrate gradients, both steady-state and 



 
3 Summary 

dynamic feast/famine conditions were compared with respect to physiology, intracellular metabolome 

and proteome. Dynamic gradients of maltose lead to a significant decrease in biomass yield, which was 

not observed for the other sugar gradients.  

While the averaged physiology was very comparable for glucose, fructose and sucrose, the intracellular 

metabolic response was very different, with reduced glycolytic responses for fructose and sucrose 

compared to glucose. Additionally, the concentration of enzymes of the upper glycolysis were found 

to be decreased for glucose, while increased for fructose and sucrose conditions upon exposure to 

dynamic substrate conditions. Nonetheless, a stable energy charge between 0.78 and 0.89 was 

observed for all dynamic sugar conditions, contrary to observations from single-pulse experiments.  

Chapter 5 summarizes the main findings of this work and the remaining open questions, challenges 

and opportunities for future research are discussed. Future experimental and modelling challenges 

include 1) the accounting for differences in enzyme kinetics due to intracellular pH changes, isoenzyme 

expression and post-translational modifications, 2) quantification of intracellular transport and 

compartmentation, and 3) population dynamics. 
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6 Samenvatting 

Saccharomyces cerevisiae, ook wel bekend als bakkergist, is een robuust micro-organisme dat veel 

wordt gebruikt in de industriële biotechnologie. De schaal van zijn verschillende toepassingen varieert 

van enkele milliliters bij onderzoek en procesontwikkeling in het lab tot honderden kubiek meters bij 

cultivatie in industriële productieprocessen. Op grote schaal zullen beperkingen in het mengen van de 

reactor van nature leiden tot fysiochemische gradiënten in de substraat en zuurstof concentraties, pH 

en temperatuur. Zo’n inhomogeen milieu kan in productieprocessen leiden tot een verminderde 

productopbrengst in vergelijking met kleine schaal processen voor procesontwikkeling. Dit soort 

verschillen in opbrengst kunnen leiden tot significant slechtere winstmarges en tot verhoogde kosten 

en een langere ontwikkelingstijd. 

Het doel van dit proefschrift is het bestuderen en begrijpen van de regulatie van het metabolisme van 

Saccharomyces cerevisiae bij blootstelling aan substraatgradiënten, door gebruik te maken van zowel 

experimentele als modelmatige methoden. 

Hoofdstuk 1 geeft een algemene introductie tot het centrale koolstofmetabolisme van S. cerevisiae, 

met een specifieke focus op dynamische omstandigheden. Voorgaande experimentele onderzoeken 

van de metabole respons van S. cerevisiae op verscheidene dynamische substraatomstandigheden zijn 

samengevat en worden hier besproken, samen met de tot op heden gepubliceerde kinetische 

modellen van het metabolisme van S. cerevisiae. Hiernaast worden ook de huidige uitdagingen en 

kennislacunes beschreven. 

In Hoofdstuk 2 is een groot, uitgebreid dynamisch model van het koolstofmetabolisme van gist 

gebruikt om de belangrijke mechanismen, verantwoordelijk voor het reguleren van de metabole 

respons op langdurige herhaaldelijke dynamische “feast/famine” omstandigheden, te identificeren. 

Deze studie is gebaseerd op multi-omics data, bestaande uit zowel kwantitatieve metabolomics en 

fluxomics data, als 13C labelling data. Om kinetische parameters te schatten is een nieuwe pijplijn, 

gebruikmakend van combinatorische enzymselectie, toegepast om de aanpassing van de metabole 

respons van chemostaat naar feast/famine omstandigheden te reproduceren. Hierbij werden 

proteoomveranderingen in glucose transport en fosforyleringsreacties geïdentificeerd als het 

belangrijkst voor het reproduceren van de aangepaste metabole respons. Deze voorspellingen werden 

bevestigd door vergelijking met experimentele proteoom data. 

Hoofdstuk 3 beschrijft de ontwikkeling van een proteoom-afhankelijk kinetisch model van het centrale 

koolstofmetabolisme van gist. In tegenstelling tot eerdere resource allocation modellen, die in staat 

waren om de optimale proteoomsamenstelling onder (quasi) steady-state omstandigheden te 

voorspellen, kan dit model ook gebruikt worden met dynamische cultivatie omstandigheden. Het 

model is opgebouwd door gepubliceerde kinetische modellen met elkaar te combineren en de 

parameters ervan te kalibreren op gepubliceerde fluxomics en proteomics datasets. De voorspellingen 

suggereerden dat het begin van aerobe fermentatie, ook wel bekend als het Crabtree-effect, niet het 

resultaat is van ruimtebeperkingen in het totale proteoom, maar eerder een effect is van 

mitochondriale beperkingen. Voorspellingen van proteoomverdeling onder dynamische feast/famine 

omstandigheden toonden aan dat, in vergelijking met steady-state omstandigheden, er minder 

proteoomruimte beschikbaar was voor niet-metabole eiwitten. Dit suggereert dat de experimenteel 

gemeten ‘overcapaciteit’ in proteomen bij steady-state de robuustheid van cellen voor dynamische 

omstandigheden zou kunnen garanderen. Vergelijking van voorspelde proteomen onder dynamische 

omstandigheden met experimentele proteoommetingen bevestigden het vermogen van dit model om 

proteoomaanpassingstrends accuraat te kunnen voorspellen. 

  



 
7 Samenvatting 

Hoofdstuk 4 biedt een uitgebreide experimentele vergelijking van vier verschillende suikersubstraten, 

namelijk glucose, fructose, sucrose en maltose, onder dynamische substraatomstandigheden in S. 

cerevisiae. Hoewel deze substraten chemisch gezien erg op elkaar lijken, verschilt het transport van 

deze suiker naar de cel aanzienlijk, waarbij glucose en fructose passief worden getransporteerd, terwijl 

maltose actief de cel in wordt getransporteerd. Sucrose daarentegen wordt extracellulair 

gehydrolyseerd, gevolgd door passief transport naar de cel van de resulterende monosacchariden. 

Verwacht werd dat deze verschillen in transport de metabole respons onder dynamische 

substraatomstandigheden zouden moduleren. Om de impact van deze verschillende koolstofbronnen 

onder dynamische substraatgradiënten te ontrafelen, werden zowel steady-state als feast/famine 

omstandigheden vergeleken met betrekking tot fysiologie, intracellulair metaboloom en proteoom. 

Dynamische gradiënten van maltose leidden tot een significante daling in de biomassaopbrengst, 

hetgeen niet werd waargenomen bij de andere suikergradiënten.  

Hoewel de gemiddelde fysiologie zeer vergelijkbaar was voor glucose, fructose en sucrose, was de 

intracellulaire metabole respons heel anders, met verminderde glycolytische responsen voor fructose 

en sucrose in vergelijking met glucose. Bovendien bleek de concentratie van enzymen van de hogere 

glycolyse verlaagd te zijn voor glucose, terwijl deze juist verhoogd was voor fructose- en 

sucroseomstandigheden bij blootstelling aan dynamische substraatomstandigheden. Desalniettemin 

werd er een stabiele energielading tussen 0.78 en 0.89 waargenomen voor alle dynamische 

suikercondities, in tegenstelling tot waarnemingen van experimenten met één enkele substraatpuls. 

Hoofdstuk 5 vat de belangrijkste bevindingen van dit werk samen en hiernaast worden de resterende 

open vragen, uitdagingen en kansen voor toekomstig onderzoek besproken. Toekomstige 

experimentele en modelleringsuitdagingen omvatten 1) het rekening houden met de verschillen in 

enzymkinetiek als gevolg van intracellulaire pH veranderingen, isoenzymexpressie en post-

translationele modificaties, 2) kwantificering van intracellulair transport en compartimentering, en 3) 

dynamiek in populaties. 
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10 Chapter 1 

Background 
Saccharomyces cerevisiae, also commonly known as baker’s yeast, is one of the most used 

microorganisms in biotechnology. It has been used by mankind for thousands of years, having 

engrained itself in our society as a successful domestication project. S. cerevisiae is a prominent cell 

factory involved in the food, beverages, and biofuels industries [1–5]. On top of its tractability and 

robustness, genetic engineering has allowed for the introduction of novel pathways, mechanisms of 

protein secretion, as well as improvement of a plethora of cellular mechanisms, such as those involved 

in protein secretion, stress tolerance and substrate requirements, generating new strains that have 

widened its range of applications [6,7]. Nonetheless, scaling up from laboratory to commercial 

production is a challenging stage in which developed strains may emerge as inefficient [8]. When 

scaling up a reactor, all dimensions are enlarged, however, relevant parameters, such as power input 

per volume are far more difficult to scale. As such, both shear stress and mixing times are increased, 

presenting a major problem, as these parameters heavily affect metabolic performance of the cells 

including S. cerevisiae. This is because long circulation times and nonideal mixing results in significant 

gradients in substrate, oxygen, pH and temperature in the large-scale reactor [9–12]. As yeast cells 

experience these gradients, extracellular fluxes into the cell are constantly changing, which is 

something to which these cells need to continuously adapt their metabolism, often deteriorating 

process yields [13]. Understanding the regulatory mechanisms behind this behaviour is essential to 

improve the development of large-scale bioprocesses. 

However, cell factories are apart from the product pathway, not designed, but rather evolved in 

natural environments. Our understanding of the multifaceted regulation of metabolism and 

adaptation to different environments is still limited. A cell contains many different molecules, together 

forming a biological system regulating the metabolic behaviour of the cell. Following the central dogma 

of biology [14], the genome, in the form of DNA, acts as the blueprint of the cell, from which mRNA 

molecules are transcribed. These mRNA molecules are subsequently translated into proteins. Proteins 

in turn catalyse the reactions converting substrates into energy, biomass and various metabolites and 

products. Together, these levels of metabolism, genome, transcriptome, proteome and metabolome, 

shape the metabolic behaviour of the cell. Systems biology is the field of study which aims to identify 

how these different levels interact with each other to produce the metabolic behaviour of the cell. It 

does this by combining mechanistic or heuristic modelling based on extensive datasets describing 

these biological levels, in the form of fluxomics, genomics, metabolomics, proteomics and 

transcriptomics [15]. 

In this thesis, several of these -omics technologies have been used in synergy with metabolic modelling 

to describe and understand the metabolic behaviour of S. cerevisiae under different, dynamic 

cultivation conditions. 

S. cerevisiae metabolism under dynamic conditions 

Glycolysis can be found at the core of the metabolic network of S. cerevisiae. This pathway converts 

intracellular hexose into pyruvate and produces energy in the form of ATP and glycolytic intermediates 

that support anabolic reactions [16]. How glycolysis contributes to the metabolic processes inside the 

cell depends on multiple factors. The presence or absence of oxygen determines if pyruvate is fully 

oxidized to CO2 or fermented to ethanol [17,18]. Still, this conspicuously simple explanation is 

challenged at high-substrate concentrations or higher growth rates, where the maximum respiratory 

capacity is reached and fermentation takes place even if oxygen is present [19,20], in what is known 

as ‘overflow metabolism’ or Crabtree effect [21]. While these phenomena can be explained by 

different optimality criteria, it is not clear how such behaviours are regulated on a metabolic level.  
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By nature, glycolysis (see Figure 1.1) is thermodynamically set up in a so-called ‘turbo design’, with ATP 

produced from glucose being reinvested to consume even more substrate, producing a further surplus 

of ATP, optimizing flux through glycolysis [22]. However, when substrate-limited cells are suddenly 

exposed to an excess of substrate, this ‘turbo design’ of glycolysis has been observed to cause a 

phenomenon called substrate accelerated death. In wild-type yeast cells, this phenomenon has been 

observed specifically for maltose, but not for glucose, which indicated the presence of specific 

regulatory systems to prevent this from occurring. The response of glycolysis to fluctuations in glucose 

concentration in the extracellular space is controlled by different regulatory layers. The first, fast 

mechanism is metabolic, i.e. the diversion of flux to storage, glycogen and trehalose when glucose 

uptake exceeds the glycolytic processing capacity [23]. Furthermore, allosteric and post-translation 

regulation take place [24]: Hexokinase (HXK) is allosterically inhibited by trehalose-6-phosphate (T6P), 

pyruvate kinase (PYK) is activated by fructose-1,6-bis-phosphate (FBP) and multiple metabolites act on 

phosphofructokinase (PFK) [25,26]. Simultaneously, the cAMP-protein kinase A (PKA) pathway is 

activated upon glucose perturbation and starts a regulation cascade in central carbon metabolism 

(CCM) [27] and possible targets for Post-Translational Modifications (PTMs) have been found in 

multiple enzymes along the CCM [28]. Finally, to adapt to different growth conditions, yeast cells use 

different enzyme isoforms. For instance, expression of hexokinases and glucokinases is balanced to 

adapt to different glucose concentrations [29], with hexokinases specifically playing a significant role 

in glucose repression [30] and the regulation of intracellular pH is compartment-specific, carried out 

by different ATPases [31]. 
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Figure 1.1. Schematic overview of the central carbon metabolism of yeast, with in the centre glycolysis, with 

associated pathways for the trehalose cycle, glycerol pathway, TCA cycle, PPP and ethanol fermentation.  

Developments in monitoring the dynamic metabolic response  in S. cerevisiae 
Scale-down approaches have been developed to understand long-standing performance problems in 

industrial bioreactors. Although this has granted valuable knowledge, essential intracellular properties 

such as in vivo fluxes and kinetics have been captured with only limited resolution, constraining model 

development. In fact, this has become one of the main challenges in the development of high quality 

predictive kinetic models, since often multiple variables from  the transcriptome, metabolome and 

fluxome, interact to result in the final response [32]. 
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Early models on in vitro and in vivo metabolic responses to periodic glucose fluctuations  only used 
small datasets, reducing their range of implementation. On most occasions only extracellular data such 
as growth and nutrient exchange rates was available [33] or a few metabolites at most [34], until in 
vivo quantification of metabolite concentrations and fluxes became a common practice, where most 
cofactors, glycolytic intermediates and rates were simultaneously observable [35]. A major challenge 
in this type of experiments is the accurate monitoring of the actual metabolic state at the time of 
sampling, followed by the accurate measurement of intracellular metabolites, which are all present in 
very low concentration. For rapid sampling of cultures, many different setups have been developed 
[36–40]. However, accurate measurement of metabolite concentrations is also dependent on 
quenching and processing of the samples, where one has to take metabolite leakage and extracellular 
metabolites into account [41–44]. To account for degradation of metabolites during processing steps, 
an internal (13C) standard can be added prior to processing [45].  

Later, a commonly used dynamic glucose perturbation experimental setup with yeast strains from the 

CEN.PK lineage [46] was adopted (see Table 1). This consisted of glucose-limited chemostat cultures at 

dilution rate of 0.1 h-1 (about 25% of the maximum growth rate of this yeast), followed by an external 

glucose perturbation in the form of a single pulse, where extracellular concentration increased to            

1 g L-1. These stimulus response experiments were used to infer more physiological patterns [36] and 

the use of Nuclear Magnetic Resonance (NMR) and Mass Spectroscopy (MS) techniques made a wide 

range of intracellular metabolites measurable. From only a few glycolytic concentrations, datasets 

gradually grew to include most metabolites in glycolysis, the trehalose cycle, the tricarboxylic acid 

(TCA) cycle, and the pentose phosphate pathway (PPP). These studies focused on a single substrate 

pulse, which is a good tool to study the metabolic makeup of cells grown under limiting conditions (i.e. 

the previous chemostat). 

To study cells in their industrial setting, other setups that mimic the large-scale conditions are required, 

so called scale-down experiments. One such setup is the feast/famine cycle regime [47] which uses 

repetitive cycles of short glucose pulses (Figure 1.2). Extensive datasets are now available for                       

S. cerevisiae, however they have not yet been used for the purpose of model development [48,49]. 

Suarez-Mendez et al. [49] used a feast/famine cycle setup to monitor in vivo metabolic activity during 

cycles of 400 s. These feast/famine cycles were characterized by  a 20 s feed (‘feast’), followed by 380 

s of no feed (‘famine’) (Figure 1.2). These feast/famine cycles were maintained for 50 hours. 

 

Figure 1.2. Profile of the experimental feeding and resulting substrate concentration conditions. After a glucose-

limited chemostat phase (reference steady-state) of 50 h, a block-wise feed is applied in a 400 s cycle at the same 

average substrate supply and dilution rate for another 50 h (adapted from [49]). 

It was observed that under these feast/famine conditions, S. cerevisiae cultures show a different 
metabolic response to a substrate perturbation compared to steady-state cultures [49]. For instance, 
the ethanol production typically observed upon single glucose pulse to a glucose-limited yeast culture, 
is not observed after pulsing glucose in feast/famine conditions. Interestingly, an increase rather than 
a decrease in ATP is observed. Additionally, a quick and maintained accumulation of glycolytic 
metabolites is observed upon a single glucose pulse to a chemostat culture, which is not observed for 
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feast/famine cultures. These differences in metabolic response suggest metabolic adaptation to long-
term exposure to the feast/famine regime [50–52], although the exact mechanism behind this 
adaptation is not well understood.  

In general, three levels of metabolic regulation can be distinguished [53]: 1) Allosteric regulation, which 
is the regulation of enzyme activity through non-covalent binding with metabolites. The response time 
of this form of regulation is almost instantaneous, providing important feedback loops within 
metabolic pathways [54]. 2) Post-translational modifications (PTMs), in which the enzyme activity is 
regulated through covalent binding of specific molecular attachments, such as phosphate groups. This 
form of regulations acts on the timescale of seconds to minutes, and is utilized as part of short-term 
responses to stress situations, such as sudden changes in the extracellular environment [55,56]. Finally, 
3) translational regulation, which directly affects the composition of the proteome, accounting for 
longer-term adaptations [57]. Together, these mechanisms regulate the adjustment of the metabolic 
response. Next to aforementioned metabolomics, the quantification of mRNA transcripts and proteins, 
respectively known as transcriptomics and proteomics, provides a useful tool to further understand 
the role of these three levels of regulation in the observed metabolic adaptation to long-term exposure 
to repetitive substrate fluctuations. 

Table 1.1. Overview of experiments with glucose concentration perturbation to substrate-limited cultures of        

S. cerevisiae. Only studies with intracellular metabolome quantification are shown. The only exception is the 

study by Walther et al. [58] in which growth limitation is reached by trehalose feeding in batch (shake-flask) 

culture. Metabolite pools: glycolysis (GLYCO), tricarboxylic acid cycle (TCA), pentose phosphate pathway (PPP), 

trehalose cycle (TRE), nucleotides (NUC), Amino acids (AAs).  

 
 Rizzi et al. [59]  Theobald et al. [36]  Vaseghi et al. [60] 

 Visser et al. 
[25] 

Glucose input 
regime 

Glucose-limited to 
glucose pulse 
(0.25 g L-1) 

Glucose-limited to 
glucose pulse (1 g L-1) 

Glucose-limited to 
glucose pulse (1 g L-

1) 

Glucose-limited 
to glucose 
pulse (1 g L-1) 

Experimental 
setup 

30 °C, pH5, aerobic, 
D = 0.1 h-1, direct 
sampling 

30 °C, pH5, aerobic, 
D = 0.1 h-1, direct 
sampling 

30 °C, pH5, aerobic, 
D = 0.1 h-1, direct 
sampling 

30 °C, pH5, 
aerobic, 
D = 0.05 h-1, 
BioScope 
sampling 

Duration 500 s 180 s 180 s 80 s 

Strain 
CBS 7336 (ATCC 
32167) 

CBS 7336 (ATCC 
32167) 

CBS 7336 (ATCC 
32167) 

CEN.PK113-7D 

Measurement 
technique 

Enzymatic assay 

Enzymatic assay: 
metabolites, NAD(H) 
HPLC: adenine 
nucleotides 

Enzymatic assay: 
metabolites, NAD(H) 

Enzymatic 
assay: ATP, 
NADX and G6P 
MS: glycolytic 
intermediates 

Intracellular 
variables 
measured 

GLYCO: G6P. 

GLYCO: G6P, F6P, 
FBP, GAP, 3PG, PEP, 
PYR. NUC: NAD(H), 
AXP (whole cell and 
cytoplasmic). Pi. 

GLYCO: G6P, F6P. 
PPP: 6PG. NUC: 
NADP(H). 

GLYCO: G6P, 
F6P, G1P, FBP, 
2GP+3PG, PEP, 
PYR. NUC: ATP, 
NADX. 

 
Mashego et al. [37] Kresnowati et al. 

[61] 
Wu et al. [62] Walther et al. 

[58] 

Glucose input 
regime 

Glucose-limited to 
glucose pulse (1 g L-1) 

Glucose-limited to 
glucose pulse (1 g L-1) 

Glucose-limited to 
glucose pulse (1 g L-

1) 

Trehalose-
limited to 
glucose pulse 
(20 g L-1) 
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Experimental 
setup 

30 °C, pH5, aerobic, 
D = 0.05 h-1, BioScope 
sampling 

30 °C, pH5, aerobic, 
D = 0.05 h-1, 
BioScope sampling 

30 °C, pH5, aerobic, 
D = 0.05 h-1, direct 
sampling 

30 °C, pH4.8, 
aerobic, direct 
sampling. 

Duration 180 s 180 s 300 s 30 min 

Strain CEN.PK113-7D CEN.PK113-7D CEN.PK113-7D BY4741 

Measurement 
technique 

MS 
Enzymatic analysis: 
NAD(H) MS 

MS MS 

Intracellular 
variables 
measured 

GLYCO: G6P, F6P, 
FBP, 2/3PG, PEP, 
PYR. TCA: ISOCIT, 
FUM, MAL, AKG, 
SUC. PPP: 6PG. TRE: 
G1P, T6P, TRE. NUC: 
AXP, NADH:NAD 
ratio. 

GLYCO: G6P, F6P, 
F1,6P2, F2,6P2, 
2/3PG, PEP. TCA: 
ISOCIT, AKG, SUC, 
FUM, MAL. PPP: 
6PG. TRE: G1P, 
T6P. NUC: AXP, 
NADH:NAD ratio. 

GLYCO: G6P, F6P, 
F1,6P2, F2,6P2, 
2/3PG, PEP. TCA: 
ISOCIT, AKG, SUC, 
FUM, MAL. PPP: 
6PG. TRE: G1P, 
T6P. NUC: AXP, 
NADH:NAD ratio. 
AAs. 

GLYCO: G6P, 
F6P, FBP, G3P, 
2/3PG, 
PEP. TCA: AKG, 
MAL. PPP: 6PG, 
R5P, R1P. TRE: 
T6P, G1P. NUC: 
ATP, ADP, 
AMP, IMP, INO, 
HYP, GTP, GDP, 
GMP. 

  
Van Heerden et al. 
[63] 

Suarez-Mendez et al. 
[49], Suarez-Mendez 
et al. [64] 

  

Glucose input 
regime 

Glucose-limited to 
glucose pulse (20 g L-

1) 

Glucose-limited to 
feast–famine cycles 
(0.08 g L-1 max.) 

  

Experimental 
setup 

30 °C, pH5, aerobic, 
D = 0.1 h-1, BioScope 
sampling 

30 °C, pH5, aerobic, 
D = 0.1 h-1, direct 
sampling 

  

Duration 340 s 400 s   

Strain CEN.PK113-7D CEN.PK113-7D   

Measurement 
technique 

MS; Reaction rates 
calculated by 
piecewise affine 
approximation (13C 
data) 

MS; Reaction rates 
calculated by 
piecewise affine 
approximation (13C 
data) 

  

Intracellular 
variables 
measured 

GLYCO: G6P, F6P, 
FBP. TRE: G1P, UDPG, 
T6P, TRE. PPP: 
6PG. NUC: AXP, 
cAMP, UXP, 
GXP. Fluxes within 
glycolysis and 
trehalose cycle. 

GLYCO: G6P, F6P, 
FBP, G3P, GLYC, 
DHAP, GAP, 2PG, 
3PG, PEP, PYR. TCA: 
CIT, FUM, ISOCIT, 
MAL, AKG, SUC. PPP: 
6PG, E4P, R5P, 
RBUP5, S7P, 
X5P. TRE: G1P, 
UDPG, T6P, 
TRE. NUC: 
AXP. Fluxes within 
glycolysis and 
trehalose cycle. 
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As described in Table 1.1, previous research on understanding the metabolic effect of substrate 
concentration perturbations has mostly focused on glucose. However, industrially used substrates 
often contain different sugars besides glucose, such as sucrose, a glucose-fructose dimer, from 
sugarcane [10]. As these sugars have different affinities [65], or even different transport mechanisms 
[66], respective metabolic responses are also different [67]. The presence, concentration and nature 
of sugars in sensed by yeast and transduced via complex signalling pathways. Different substrates 
therefore triggers different signals and thereby different responses. TOR kinase and protein kinase A 
(PKA) are two of the main signalling cascades for sugar sensing in yeast, and regulating cell growth in 
response to sugar nature and abundance [68]. The G-protein-coupled receptor system (Gpr1-Gpa2) 
upstream of PKA pathway  has very different affinities for different substrates. Its higher affinity for 
sucrose, but a lower affinity for fructose compared to glucose [69], results in sugar-dependent 
metabolic responses. Further research, especially into the effect of repetitive perturbations of 
different sugars, is required to evaluate both the effect of different sugar feedstock for industrial 
processes, as well as the effect of different sugar transport mechanisms on the metabolic regulation 
under dynamic substrate conditions. This will be explored in Chapter 4 of this thesis. 

Identification and understanding of Key Glycolytic Properties through the 

Development of Metabolic Models  
Many applications of metabolic modeling are based on stoichiometric genome scale models, which 

allow for extensive structural analysis of metabolic networks, playing an important role in model-

driven metabolic engineering approaches. Nonetheless, stoichiometry alone does not describe the 

kinetics of metabolism and the response to glucose perturbations is a dynamic process where 

stoichiometry cannot explain mechanisms that act at different time scales or the appearance of 

metabolic bistability, among others [32,70]. As a result, kinetic models, which integrate the kinetic 

parameters of enzymes upon the stoichiometric network, enable to gain a deeper understanding of 

glycolytic properties. Thanks to the abundant data available for S. cerevisiae, models of the glycolytic 

networks have reached a high level of maturity for this organism. 

The first kinetic models developed focused on understanding the metabolic response to glucose 

fluctuations in non-growing yeast cultures [33,34,71–77]. Most enzymatic reactions were lumped 

(except [71,76]) but they acknowledged the important role of the allosterically-regulated 

phosphofructokinase (PFK), and showed its kinetic sensitivity to different glucose, oxygen, and 

acetaldehyde concentrations.  

Later studies focused on understanding control properties and glycolytic responses upon a single 

glucose perturbation experiment, based on the experimental data described in the previous section, 

[22,78–81]. Thanks to a progressive increase in experimental data available, more detailed models 

were developed [63,82–84]. Much of the focus was on understanding how mutant strains lacking a 

functional trehalose cycle would undergo growth arrest upon the glucose perturbation [23,26]. This 

was found to be due to a metabolic imbalance between upper and lower glycolysis, as ATP has to be 

invested first, before it can produced downstream in the pathway [22]. Later, van Heerden et al. [63] 

more precisely identified the role played by the trehalose cycle in the glycolytic response and 

highlighted how the intracellular concentrations of metabolites at a given time point modulate 

metabolic responses.  

In this process, glycolytic models have become more interconnected with other pathways, allowing for 

a more complete understanding of the metabolic responses. Teusink et al. [84] introduced glycolytic 

byproduct branch reactions to trehalose, glycogen, glycerol and succinate that were necessary to 

reproduce the experimentally observed metabolic steady state. Other works modeled pathways that 

are directly linked to yeast glycolysis. For instance, detailed descriptions of glycerol synthesis, the 



 

17 
 

17 General Introduction 

trehalose cycle and the pentose phosphate pathway (PPP) were developed in [60,85,86], respectively. 

Later, a PPP model was connected to glycolysis in [87], and another model of glycolysis together with 

the tricarboxylic acid cycle (TCA) was developed in [35]. These networks were used to understand the 

control properties of glycolysis, pointing to glucose transport (GLT) and PFK for being the steps with 

the highest flux controlling coefficients [79,80,88–90]. For a complete overview of metabolic models 

developed to understand dynamic perturbations, see Table 2. 

Furthermore, the regulation exerted by cofactors has gradually become more evident, resulting in a 

more comprehensive understanding of glycolysis. The depletion of inorganic phosphate concentration 

that was shown to be crucial in [63] had been overlooked in previous works where it was assumed to 

be constant over time. Furthermore, adenosine nucleotides were mostly assumed to be a conserved 

moiety [82]; but, under some experimental conditions this is not the case [58,91], which can be 

relevant considering that controlling enzyme PFK is allosterically regulated by ATP and AMP. 

Table 1.2. Properties of S. cerevisiae models developed to understand dynamic glucose perturbation response: 
glycolysis (GLYCO), tricarboxylic acid cycle (TCA), pentose phosphate pathway (PPP), trehalose cycle (TRE). 
Number of ‘+’ sign according to how advantageous the property is. Cofactor conservation moieties are sumAXP 
and sumNADX. N/A when reactions were not modeled, or data was not shown in article. Van Eunen et al. and 
Kesten et al. [35,83] fitted different parameter sets to multiple data sets. Other models used a unique parameter 
set.  

 

 
Rizzi et al. [78] Teusink et al. [22] Teusink et al. [84] 

van Eunen et al. 
[83] 

Contribution to 
glycolytic 

understanding 

Dynamic models 
can accurately 
describe glucose 
perturbation. 

ATP surplus can 
cause the 
observed 
overactivation of 
initial glycolytic 
steps in DTps1 
mutant strains. 

In vivo behavior 
cannot be 
predicted with in 
vitro kinetics. 

Implementation of 
allosteric 
regulation and in 
vivo measured 
parameter values 
is necessary to 
reproduce GP 
data. 

GLYCO 
Individual + branch 
reactions (++) 

Lumped reactions 
(+) 

Individual + 
branch reactions 
(++) 

Individual + 
branch reactions 
(++) 

TRE N/A N/A N/A T6P regulation (+) 

TCA 
Individual 
reactions (++) 

N/A N/A N/A 

PPP N/A N/A N/A N/A 

Cofactors 
Conservation 
moiety (+) 

Conservation 
moiety (+) 

Conservation 
moiety (+) 

Conservation 
moiety (+) 

Parameters 
Computational, in 
vivo (++) 

Computational, 
toy model (+) 

Computational, in 
vivo (++) 

Experimental and 
computational, in 
vivo (++) 

Data 
Single GP 
experiment (++) 

Single GP, toy 
data (+) 

SS data point (+) 
Single GP 
experiment and 
multiple SS (+++) 

  
 Smallbone et al. 
[82] 

 Van Heerden et 
al. [63] 

 Messiha et al. 
[87] 

 Kesten et al. [35] 

Contribution to 
glycolytic 

understanding 

Broad 
quantification of 
enzymatic kinetic 
constants in in 

Glycolytic 
dynamics 
combined with 
cell heterogeneity 

Feasibility of 
constructing 
larger network 
models by 

Cooperativity PYK-
PYR and ADH-PDH 
bypass play a 
major role in the 
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vivo-like 
conditions. 

determine cell 
fate. 

merging smaller 
pathway models. 

onset of the 
Crabtree effect. 

GLYCO 
Individual + branch 
reactions + 
isozymes (+++) 

Individual + 
branch reactions 
(++) 

Individual + 
branch reactions 
(++) 

Individual + 
branch reactions 
(++) 

TRE N/A T6P regulation (+) N/A N/A 

TCA N/A N/A N/A 
Individual 
reactions (++) 

PPP N/A N/A 
Individual 
reactions (++) 

N/A 

Cofactors 
Conservation 
moiety (+) 

Conservation 
moiety + dynamic 
Pi (++) 

Conservation 
moiety (+) 

Conservation 
moiety (+) 

Parameters 
Experimental, in 
vivo (++) 

Experimental, in 
vivo (++) 

Experimental, in 
vivo (++) 

Computational, in 
vivo (++) 

Data N/A 
Single GP 
experiment (++) 

Single GP 
experiment (++) 

Single GP 
experiment (++) 

 

From Glycolysis to Central Carbon Metabolism: Understanding Response to Glucose 

Perturbations Is Limited by Model Complexity 
The development of kinetic models of metabolism has often been constrained to a subset of the whole 
network. In S. cerevisiae models, each next step forward in the understanding of glycolysis 
encountered a new limitation due to the inherent complexity of the pathway. 

Models studying glycolytic oscillations or single glucose pulse experiments led to an in-depth 
understanding of glycolytic dynamics, but to understand central carbon metabolism performance, 
more pathways than only glycolysis must be considered. For the synthesis of biomass, a significant 
fraction of glucose-derived carbon is taken up at different points in glycolysis [92]. To account for this, 
a relatively simple option is to implement branches or sink reactions (developed for Escherichia coli in 
[93]). This led S. cerevisiae models to reproduce glycolytic steady state where imbalance had been 
mistakenly predicted [84]. Still, dynamic regulation of storage metabolism is more complex than a sink 
reaction [63,64] and later models gradually added complexity to the trehalose cycle kinetics to avoid 
the imbalance from happening upon dynamic perturbation [63,83]. A similar situation could happen 
for other closely linked pathways such as the TCA or PPP, which have mostly been lumped into a single 
reaction, even though a few exceptions exist [35,60,78,87].  

Factors such as growth rate, compartmentation, or transport of metabolites other than glucose, 
regulate glycolytic responses but have barely been considered to date. First, the growth rate 
determines how sink reactions behave [92], but most models focus only on a unique growth rate of 
0.1 h-1. Since the effect of this variable has not been explicitly considered, models simulating different 
growth rates had no other alternative than to fit a different parameter set each time [83]. Second, 
compartmentation and transport reactions have barely been considered. This is for instance relevant 
in trehalose regulation since trehalose is known to accumulate in compartments other than the cytosol 
[47,94]. Third, transport of metabolites such as gases oxygen (O2) and carbon dioxide (CO2) could allow 
models to explain differences between respiratory and fermentative behavior [21,25,95] but neither 
of these has been implemented. 

Finally, a key challenge is the representation of metabolites that are not part of the carbon flux, such 
as cofactors. In most models these are assumed constant or expressed with moiety conservation cycles 
[96], such as the sum of intracellular adenine nucleotides ([ATP] + [ADP] + [AMP] = [AXP]) or inorganic 
phosphate [83]. Nonetheless, under intense glucose perturbations, both variables behave in a dynamic 



 

19 
 

19 General Introduction 

manner [36,58,78,97] and alter glycolytic responses. A well described example of this is the ATP 
paradox, which occurs when ATP and the sum of adenine nucleotides transiently decay [98]. 
Furthermore it was shown that adenine nucleotides exert allosteric regulation on the important 
controlling enzyme PFK [99]. Next to AxP, understanding cytosolic Pi as a dynamic variable and 
implementation of import from the vacuole turned out to be central in understanding the glycolytic 
imbalance, with the availability of Pi being essential for lower glycolysis progression via GAPDH [63]. 

 

Scope of thesis 
The aim of this thesis is to deliver a validated, widely applicable model for the prediction and design of 

new S. cerevisiae processes that can reduce the bioprocess development time significantly. In the 

extensive literature review, following knowledge gaps were identified: 

1) Metabolic models that cover different cultivation conditions, e.g., steady-state chemostat, 

single substrate pulse & repetitive substrate perturbation conditions. 

2) Integration of kinetics with theory of resource allocation by including proteome capacity 

in the kinetic modelling. 

3) Extension of the range of studied substrates for dynamic conditions beyond glucose, 

including other sugar substrates with different transport mechanisms. 

Combining experimental and computational approaches, these are addressed in the different chapters 

of the thesis.  

In Chapter 2, available metabolomics and fluxomics data from literature were combined with a large 

and comprehensive dynamic kinetic model of yeast central carbon metabolism, to identify and predict 

the minimum enzyme and parameter adjustments from steady-state to feast/famine. These 

predictions were subsequently compared against experimental proteome measurements to identify 

the difference in metabolic adaptation between steady-state and feast/famine conditions. 

To gain a better understanding of the mechanisms underlying proteome allocation, in Chapter 3, a 

proteome-dependent kinetic model of central carbon metabolism was constructed and exposed to 

different dynamic conditions. Current proteome allocation models are able to explain (pseudo) steady-

state metabolic phenotypes, but lack kinetics to explain short-term dynamics. We therefore developed 

a proteome-dependent kinetic model to evaluate and understand the impact of the allocation of 

proteins in the cellular proteome on the metabolic fitness of a yeast cell under short-term extracellular 

substrate dynamics. Predicted proteome allocations for feast/famine conditions were also evaluated 

against experimental proteome allocation data to validate the model. 

The metabolic response to dynamic substrate conditions has been extensively studied for glucose, 

however, other sugar substrates, some of which utilize different transport mechanisms, have not been 

extensively studied under dynamic conditions. In Chapter 4, fructose, sucrose and maltose 

perturbations were used as carbon source in feast/famine regime in S. cerevisiae cultures, studying 

how the metabolic response upon dynamic repetitive substrate perturbations changes with different 

sugars and thereby transport mechanisms. 

Finally, in Chapter 5, the main findings of this work are summarised and remaining open questions and 

opportunities for future research are discussed.  
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Abstract 
Microbial metabolism is strongly dependent on the environmental conditions. While these can be well 

controlled under laboratory conditions, large-scale bioreactors are characterized by inhomogeneities 

and consequently dynamic conditions for the organisms. How Saccharomyces cerevisiae responds to 

frequent perturbations in industrial bioreactors is still not understood mechanistically. To study the 

adjustments to prolonged dynamic conditions, experiments under a feast/famine regime were 

performed and analysed using modelling approaches. Multiple types of data were integrated; 

including quantitative metabolomics, 13C incorporation and flux quantification. Kinetic metabolic 

modelling was applied to unravel the relevant intracellular metabolic response mechanisms. An 

existing model of yeast central carbon metabolism was extended, and different subsets of enzymatic 

kinetic constants were estimated. A novel parameter estimation pipeline based on combinatorial 

enzyme selection, supplemented by regularization, was developed to identify and predict the 

minimum enzyme and parameter adjustments from steady-state to feast famine conditions. This 

approach predicted proteomic changes in hexose transport and phosphorylation reactions, which was 

additionally confirmed by proteome measurements. Nevertheless, the modelling also hints to a yet 

unknown kinetic or regulation phenomenon. Some intracellular fluxes could not be reproduced by 

mechanistic rate laws, including hexose transport and intracellular trehalase activity during feast 

famine cycles.  
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Introduction 

Saccharomyces cerevisiae, also commonly known as baker’s yeast, has been used by mankind for 

thousands of years for the production of relevant beverages, foods and chemicals. However, despite 

its extensive usage in industry [1–3], scaling especially new S. cerevisiae production processes to 

industrial scale poses several interesting and fundamental challenges. Source of most challenges are 

spatial inhomogeneities due to mixing limitations in large-scale bioreactors leading to gradients 

throughout the reactor. A cell dispersed in the reactor is therefore exposed to rapid changes in its 

extracellular environment, which in turn will impact intracellular metabolic regulation [4,5]. Similarly, 

the natural habitat will commonly have oscillations resp. perturbations of environmental conditions 

like temperature, pH and substrate availabilities.  

Although dynamic conditions are encountered for industrial applications as well as environmental 

habitats, many physiological studies on yeast are performed under (pseudo-) steady-state conditions. 

Clearly, with the vast available reference data, reliable measurements, and reproducibility, steady-

state (SS) experiments are very useful in the quantification of intracellular fluxes. However, for the 

identification of in vivo kinetic parameters, dynamic metabolic experiments are required [6]. To bridge 

this gap, dynamic perturbation experiments can be performed, and many studies have focused on 

elucidating the metabolic response from single pulse (SP) experiments [6–12].  

While this SP approach is very useful for the identification of kinetic parameters of networks adapted 

to the pre-perturbation limited steady-state, it cannot describe adaptations that may occur upon the 

subsequent perturbations observed under industrial conditions [5]. To emulate such an environment, 

a system of periodic perturbations, known as a feast/famine (FF) regime, was developed. The FF 

regime produces repetitive substrate concentration gradients in time, which allow for accurate and 

reproducible sampling of the intracellular metabolism (Figure 2.1) [13,14]. Suarez-Mendez et al. [13] 

used this FF setup to monitor the in vivo metabolic activity during FF cycles of 400 s. At this timescale 

it is assumed that the metabolic response within one cycle is mainly governed by metabolic 

interactions, as enzyme concentrations will remain basically constant during these 400 s [15]. In a FF 

cycle, feed was provided block-wise i.e. 20 s feeding, followed by 380 s of no feed (Figure 2.1).  

 

Figure 2.1. Left, the profile of the experimental feeding regime. After a chemostat phase (reference steady-state) of 50 h, a 

block-wise feed is applied in a 400 s cycle at the same average substrate supply and dilution rate for another 50 h (adapted 

from [13]). On the right, the resulting extracellular substrate concentration profile in the fermentation broth is shown. 

Under such FF conditions, S. cerevisiae cultures show different metabolic phenotypes compared to SP 

or SS cultures [13]. After a pulse in FF, an increase rather than a decrease in ATP, no ethanol 

production, and no accumulation of glycolytic metabolites was observed. These differences in 

metabolic response suggest a proteomic adaptation, induced by the prior dynamic growth conditions 

[16–18]. Especially, translational regulation can lead to condition specific proteome compositions [19]. 

In fact, distinct proteome compositions have been observed under changing glucose availability 

conditions [20], both for sugar transporters and intracellular enzymes [21,22], and distinct isoenzymes 
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have different kinetic properties that can include glucose sensitivity as well [23]. However, the 

mechanisms behind this adaptation are not well understood.  

For the identification of kinetic parameters and putative regulation mechanisms, quantitative data 

from different omics approaches will be required. Especially, to generate comprehensive models, in 

addition to intracellular concentrations, carbon tracing is required to identify bidirectional, cyclic or 

parallel reactions [24,25]. Work with 13C-labelling indicated that storage metabolism is a major 

metabolic sink upon changes in the glycolytic flux, with in average 15% of the carbon flux being 

diverted through the glycogen and trehalose cycles [26]. This diversion of flux is in accordance with 

earlier studies into the importance of the trehalose cycle under SP conditions [9]. 

Understanding metabolism, especially under dynamic conditions requires integration of stoichiometry 

and enzyme kinetics. Such kinetic metabolic models have been developed for  S. cerevisiae using either 

in vitro and in vivo parameters [22,27], additional allosteric regulation [28] or subpopulation   

dynamics [9]. Nonetheless, the conditioning of the cells was mostly at steady-state [29], leading to 

putative mismatches when applied to large-scale, dynamic cultivation conditions. 

Under dynamic conditions, further pathways have been described to play a regulatory role – glycogen 

and trehalose metabolism. For both, the reaction stoichiometry is known, and in vitro parameters 

have been broadly studied [30–33], but no in vivo based parameter values have been derived. 

Especially for cyclic pathways like the trehalose cycle, quantifying in vivo parameters can be 

challenging as both in- and outfluxes influence the concentration change and no in- or outflux is 

directly observable. This correlation, plus the fact that the networks are getting larger, leads to a 

danger posed by local minima and ill-conditioning, and “sloppy parameter” estimates [34]. To 

overcome this challenge and identify a minimal set of necessary changes in kinetic constants, the 

divide and conquer approach has been developed. Here, a decomposition of the global estimation 

problem into independent subproblems [35] is used. Furthermore, to consider the already known 

parameter values for the enzymes under study [22,29], L1 or Tikhonov regularization can favour a 

given parameter set, as long as experimental data is properly reproduced [36–38]. 

Here, we specifically studied the impact of proteome adaptation to substrate perturbations on the 

changed metabolic response. To this end, we have expanded upon existing state-of-the-art kinetic 

models, integrating both metabolomics and fluxomics as well as 13C enrichment data, to evaluate 

which proteome changes are most relevant to explain the experimentally observed change in 

metabolic response. 
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Results and discussion 

Continuous and feast famine grown cells demonstrate different enzymatic levels and metabolic 

responses – experimental observations 

As mentioned before, cells exposed to a block-wise feeding (feast/famine conditions), showed a 

remarkable different response compared to glucose-limited cells from chemostat conditions. The 

proteome during both conditions was measured and subsequently analysed on their composition [39]. 

Major changes were observed within the glycolytic and transporter enzymes, specifically in the 

expression levels of hexose transporters (Hxt), hexokinase (Hxk) and glyceraldehyde dehydrogenase 

(Tdh) (Figure 2.2). The expression of hexose transporters, especially Hxt7p, has been shown to 

correlate with the (maximal) substrate uptake rate [40]. The observed decrease in protein 

concentration can be interpreted as an adaptation to limit rapid influx of glucose upon glucose pulse. 

In contrast, glucokinase (Glk) is slightly upregulated. Hxk is highly regulated through inhibition by T6P, 

however, GLK is not inhibited by trehalose-6-P (T6P) up to a level of 5 mM [41]. As such the lower 

concentration of Hxk in combination with the upregulation of GLK will likely result in an adaptation in 

the regulation of the glycolytic flux. The downregulation of upper glycolysis (Hxk), in combination with 

the upregulation of lower glycolysis (Tdh) may additionally allow for improvement of flux capacity 

through glycolysis upon glucose influx [9].  

 

Figure 2.2. The protein concentration log2 fold change from chemostat to feast/famine conditions of selected 

glycolytic and transporter proteins. Feast/famine proteome samples were taken at the end of the cycle. 

Liebermeister et al. [42] observed that long-term adaptation of the proteome composition had a major 

influence on the adjustment of the metabolic response of the cell. In our work, to assess whether the 

observed metabolic response in feast/famine conditions can indeed be explained by the measured 

proteome changes, combinatorial enzyme selection and regularization was used to identify key 

parameter adaptations. Next to this, the effect of individual iso-enzymes was considered and 

evaluated as a factor influencing the observed metabolic response. Furthermore, the kinetics and 

implementation of the storage metabolism were evaluated. 
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Carbon storage physiology differs between continuous and feast famine limitation 

A kinetic model of yeast glycolysis was previously developed to fit various SS and SP data sets [29]. For 

the FF conditions, the model was extended with regard to trehalose metabolism in different 

compartments and glycogen synthesis and degradation (Figure 2.3). 

The model simulations could reproduce most of the experimental data properly, after several kinetic 

constants of Hxt and Hxk were estimated (this is explained in detail in the next section), but with a few 

exceptions (Figure 2.4A). For instance, glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P) 

simulated concentrations were smaller, which was already documented in the original model and 

attributed to underdetermined phosphofructokinase (Pfk) reaction kinetics [29]. Other metabolites 

also deviated, such as fructose bis-phosphate (FBP), glucose 1-phosphate (G1P) or trehalose 6-

phosphate (T6P). This could be explained by affinity constants undergoing changes during FF cycles, 

here unaccounted for. Furthermore, reaction rates, estimated from 13C enrichment data, were in close 

agreement (Figure 2.4B), except for the maximum simulated rate for Hxt with a simulated maximum 

lower than observed experimentally.  

In the FF simulations, the increase in residual glucose during feeding resulted in transient changes in 

glycolytic metabolites, which returned to the initial value by the end of the cycle (Figure 2.4C). Upper 

glycolysis metabolites reached their maximum concentration within 50 seconds, except glucose, due 

to recirculation via storage metabolism. Glycerol branch and storage kinetics followed a similar 

response, but with delay. Due to the slower reaction rate for enzyme GAPDH [43], the entry in lower 

glycolysis was delayed and BPG reaches its maximum at about 130 seconds. Nonetheless, the increase 

in FBP activated pyruvate kinase (Pyk), reducing concentrations of 3-phosphoglycerate (3PG), 2-

phosphoglycerate (3PG) and phosphoenolpyruvate (PEP). As FBP decreased, its activation dissipated, 

and these lower glycolysis metabolites reached maximum concentrations in about 230 to 250 seconds 

of cycle. This trend is in agreement with the known allosteric regulation of FBP on Pyk [12].  

Trehalose metabolic dynamics were different in FF and SP conditions. During FF, the maximum flux 

towards production of trehalose was less than 10% of the Hxk reaction rate, in comparison to the 30% 

observed in SP [9], and a part was secreted to the extracellular space, what is commonly regarded as 

stress protection [44,45]. Nonetheless, glycogen took up a greater portion during the feast famine 

regime, implying that carbon storage is predominant over the stress response by the trehalose cycle 

and suggesting that the cell is indeed adapted to the FF setup.  

Small changes in protein expression occur between cells in a population. One way to examine the 

possible resulting phenotypes of the network upon perturbation is by means of ensemble modelling 

[46,47]. To test the robustness of the model, 10000 simulations were performed with random 

parameter values deviating within a range of ±10% from the model parameter set obtained for the 

best fit. The concentration and reaction rate profiles were very consistent (see appendix 

Concentration and reaction rate model fit), especially for reaction rates, where the relative deviation 

between fluxes was very small. This suggested that the model dynamics are consistent within the 

parameter range tested. 
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Figure 2.3. Kinetic metabolic model with a detailed description of trehalose and glycogen metabolism. Sink 

reactions account for fluxes towards the TCA, PPP and biomass synthesis. This model was adapted from [29]. 

The diagram style was adapted from van Heerden et al.[9].  
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Figure 2.4. Model simulations in comparison to experimental observations. (A) Metabolite concentrations with 

standard deviation (average metabolite relative error of 5.5 %) and (B) reaction rates estimated from 13C 

enrichment data over one cycle (400 s). Metabolite concentrations and reaction rates are displayed in the y-axis 

(in mM and mM s-1, respectively) and time in the x-axis. (C) Normalized metabolite concentrations during one 

feeding cycle. Darker colours indicate values closer to the maximum, while brighter ones to the minimum.
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Glucose transport and phosphorylation identified as key adaptations from combinatorial parameter 

estimation  

Glycolytic enzymes expression changed from chemostat to feast/famine conditions, most notably for 

Hxt and Hxk (Figure 2.2). As each iso-enzyme has specific kinetic properties, the catalytic (kcat) and 

Michaelis-Menten (KM) constants also differ [22]. To identify changes in kinetic parameters, parameter 

estimation based on the FF datasets was performed and interpreted in light of the measured 

proteome changes. However, estimating all kinetic parameters simultaneously can lead to multiple 

local minima and ill-conditioning [34]. To bypass this problem and identify which are the key 

parameters that change between the cells adapted to continuous and feast famine conditions 

respectively, we adapted the scale and setup of the parameter estimation problem. Two stages were 

applied (Figure 2.5): (1) Parameters were estimated for multiple combination of enzymes in parallel 

assays, to isolate which enzymes were key to reproduce the data properly, and (2) Regularization was 

implemented, i.e., parameters were re-estimated for the best selection of enzymes found and with a 

penalty for deviation from the reference parameter set.  

In step 1 (Figure 2.5A), good fits were achieved when Hxt, Hxk/Glk and the trehalose cycle were 

included in the parameter estimation, suggesting that these are the relevant enzymes undergoing 

changes. Note that for some optimizations, the addition of an extra enzyme parameter set to the 

optimization resulted in a slightly higher model error. While counter-intuitive, this is likely a result of 

the solver using different timesteps, hitting the solver tolerance at a slightly different local minimum. 

In step 2, regularization was used to decide on the trade-off between model error (the normalized 

deviation between model prediction and data) and parameter deviation from the reference 

parameter set, shown in Figure 2.5B for Glk kinetics. This overcame dependencies between kinetic 

constants of the reaction and pointed to Km.GLC, Ki.T6P and Vmax being the key parameter alterations with 

respect to the reference parameter set from Lao-Martil et al. [29] (Figure 2.5C). Compared with other 

toolboxes available to perform parameter estimation in complex kinetic metabolic models 

[22,34,36,48,49], this pipeline incorporates regularization for known in vitro parameter values into a 

combinatorial enzyme selection approach, with the added value that intracellular flux data is used. 

Flux data has been available only for a decade and few works have used it for yeast kinetic model 

development and validation [9,29]. 

As a result of this pipeline, some kinetic constant changes were suggested for the glucose transport 

and phosphorylation reactions (Table 2.1). For Hxt, the maximal reaction rate (Vmax) decreased from 

8.13 to 1.7 mM s-1, which is actually close to the value in other published models [27,28] and consistent 

with the experimental Hxt concentration decrease (Figure 2.2). Changes in Hxt isoenzymes 

proportions could also lead to changes in affinity; In vitro KM measurements have shown a high 

variability for the Hxt1-7p subunits [21,50]. Nevertheless, the shift in isoenzymes here did not lead to 

drastic changes in affinity, the KM did only change from 1.01 to 0.90 mM. 

For the hexose phosphorylation reaction, several kinetic constants changed. Km,glucose decreased from 

0.35 to 0.11 mM, in line with the experimental increase in Glk/Hxk ratio (Figure 2.2), given that the 

affinity constant for glucose was found lower in Glk than Hxk both in vitro and in vivo-like conditions 

[22,51]. Furthermore, the T6P inhibition constant (Ki,T6P) increased from 0.0073 to 0.0183 and Ki,T6P was 

also found to change between the two isoenzymes [41]. Next to these parameters, Vmax increased 

from 6.25 to 15.75 mM s-1, which is higher than values reported before in yeast glycolytic models 

[27,28]. Since the kcat for Glk is much lower than for HXK [22] such increase in Vmax was not expected.  
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Figure 2.5. Two-step, scaled optimization approach results: (A) Fitting the data with different subsets of enzyme 

parameters. Bars show the error between simulation and best fit with the respective combination (upper x-axis). 

Blue bars highlight the combinations containing the two enzymes Hxt and Glk. Here, model error is defined as 

the normalized residual value between experimental and predicted data. (B) Implementation of a regularization 

factor on the estimation of Glk kinetic parameters. The dashed and continuous line show model and parameter 

error, respectively. The arrow indicates the chosen regularization factor. Parameters are regularized such that 

the data is still well reproduced (see appendix Figure A2.3 and A2.4). (C) Change in key Glk parameters identified 

upon regularization. The deviation between the estimated parameter and the initial value taken from [29] is 

shown in the y-axis (in logarithmic scale).  Black and empty circles show the estimates prior and post 

regularization, when parameter dependencies are minimized. The x-axis shows specific parameters. 
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Outside glycolysis, changes to the model were implemented in the trehalose cycle and ATP 

maintenance reaction. Note, that the original model did not include glycogen metabolism, nor 

compartmentation of the trehalose cycle reactions. These reactions were added in this work, and 

trehalose cycle parameters re-estimated to account for the effect of the previously lumped reactions. 

Finally, the ATPase maximum reaction rate decreased to fit the adenosine nucleotide concentrations 

(ATP + ADP + AMP). This might be related to the fact that the initial model simulated the response to 

a GP of 20 g L-1 of glucose [29], which is seen by the cell as a stress condition [9]. The final parameter 

set can be found in the appendix. 

Table 2.1 Several parameters explain the adaptations in Hxt and Hxk isoenzymes. Changes in parameters in Hxt 

and Hxk kinetics that allow the Y3M1 model to fit the data. For the other parameters in these reactions, changes 

were below 5%. 

Enzyme Parameter Units Original 

model [29] 

This work Fold 

change 

Literature 

HXT Vmax mM s-1 8.13 1.70 0.21 [27]: 3.67, [28]: 1.62. 

Km.GLC mM 1.01 0.90 0.90 [21]: 50-100 (low affinity HXT), 1-2 (high affinity 

HXT). 

GLK/HXK Vmax mM s-1 6.25 15.75 2.52 [27]: 3.75, [28]: 3.55-4.75, Kcat [22]: 10.2 (HXK1), 

63.1 (HXK2), 0.07 (GLK). 

Km.GLC mM 0.35 0.11 0.31 [51]: 0.1 (HXK), 0.028 (GLK). 

[22]: 0.15 (HXK1), 0.2 (HXK2), 0.0106 (GLK). 

Ki.T6P mM 0.0073 0.0183 2.51 [41]: 0.2 (HXK1), 0.04 (HXK2), 5 (GLK). 

 

 

Glucose sensing influences hexose transporter kinetics during feast-famine cycles 

Glucose uptake has been widely modelled as an equilibrium-driven passive transport reaction [22,27], 

where its kinetics are determined by isoenzyme-specific Vmax and Km parameters [21,50,52]. Here, we 

have found that these kinetics alone cannot explain the experimental data, for which a glucose sensing 

mechanism [23] needs to be active.  

By sampling the parameter space and using passive transport reaction kinetics, we found that no 

combination of parameters could fit the data (Figure 2.6). Especially, none of the generated models 

could reproduce a net uptake reaction of almost zero at the end of the cycle (400 seconds) and reach 

the value of 0.72 mM s-1 at 20 seconds, when the uptake rate reaches its maximum (Figure 2.6A). Since 

throughout the entire FF cycle the residual and maximum glucose concentration are 0.1 and 0.45 g L-

1, respectively, adjusting parameters to lower the effect of transmembrane glucose gradient for one 

also reduces for the other. Interestingly, the only way to reproduce the experimental uptake (Figure 

2.6B) was by including a minimum glucose concentration term in Hxt kinetics (GLCec,min in equation 

2.1). This term acted as a lower bound value above which glucose import occurs.  

Suarez-Mendez et al. [13] already noticed a similar phenomenon when modelling glucose uptake 

dynamics. Here, we assumed that the threshold was an effect of glucose sensing under certain 

conditions [23]. Glucose sensing acts independently of glucose uptake [53] and is known to activate a 

cascade of reactions and ultimately lead to altered gene expression in yeast [54–56]. This could imply 

that, in line with [57], glucose sensing is observable under the FF condition, but not in the SP 

experiments in which residual glucose concentrations are markedly higher [9].  
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Figure 2.6. Glucose sensing is needed to explain Hxt kinetics (A) Glucose uptake rate at 20 seconds vs at 400 

seconds. 20 seconds is the approximate point for the maximum reaction rate. Black data shows simulations 

generated with randomly generate parameter samples with passive transport kinetics, when no threshold value 

is considered. 1000 samples were run, within 3 orders of magnitude above and below the estimated parameters. 

Parameters were randomized for Hxt kinetics and external glucose concentration was fit to the experimental 

data. (B) Visualization of hexose transport rate during the cycle for the abovementioned models. The blue line 

corresponds to the simulation with the model considering glucose sensing. The grey and black coloured 

simulations are the ones with the generated models. Only 200 lines are displayed and some simulations are 

highlighted in black to ease visualization. The red dots point at the experimental data points. The effect of each 

parameter Hxt kinetic parameter can be found in appendix Glucose sensing. 

 

𝑣ℎ𝑥𝑡 =  𝑣𝑚𝑎𝑥 ⋅

(𝐺𝐿𝐶𝑒𝑐2  −  
𝐺𝐿𝐶𝑖𝑛

𝐾𝑒𝑞
)

𝑘𝑀.𝐺𝐿𝐶𝑒𝑐 ⋅ (1 +  
𝐺𝐿𝐶𝑒𝑐2

𝐾𝑀.𝐺𝐿𝐶𝑒𝑐
+  

𝐺𝐿𝐶𝑖𝑐

𝐾𝑀.𝐺𝐿𝐶𝑖𝑐
+  0.91 ⋅

𝐺𝐿𝐶𝑒𝑐2  ⋅  𝐺𝐿𝐶𝑖𝑐

𝐾𝑀.𝐺𝐿𝐶𝑒𝑐  ⋅  𝐾𝑀.𝐺𝐿𝐶𝑖𝑐
)

, 

where, 𝐺𝐿𝐶𝑒𝑐2 =  𝐺𝐿𝐶𝑒𝑐 − 𝑮𝑳𝑪𝒆𝒄.𝒎𝒊𝒏 ,  if   𝐺𝐿𝐶𝑒𝑐 > 𝑮𝑳𝑪𝒆𝒄.𝒎𝒊𝒏 

Equation 2.1. Kinetics used in the glucose transport reaction: The term in bold was added to account for the 

minimum glucose concentration for import to happen. 
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13C-labelled metabolite mass balances validate the model but suggest caveats in carbohydrate 

storage metabolism 

Metabolic and flux profiles agreed between simulations and experimental data (Figure 2.4). Even 

though 13C isotope labelling was used in the flux estimation [26], these data have not been 

implemented in kinetic models yet. Here, we aimed at validating the model by implementing 

individual mass balances for each labelled metabolite (carbon structures) in the network. We found a 

considerable degree of agreement when simulating enrichment profiles. For the first 100 s of cycle, 

the percentage of enriched metabolite rose to about 80% for most metabolites (Fig 2.7A), to then 

decay as recirculation of unlabelled trehalose and glycogen became more prominent (Fig 2.7B-D). 

Conversely, the model also showed limitations. Simulated enrichment of T6P decreased slower and 

glycolytic metabolites faster than expected during the late cycle, which could indicate that there is a 

surplus of glycogen recirculation in the model which was mostly unlabelled. This might be explained 

by the current glycogen metabolism kinetics, which were simplistic here. Small deviations from the 

experimental value can have a great impact on the late cycle stage, given that fluxes in the network 

are generally low. We initially aimed at representing glycogen synthesis and degradation as mass 

action or Michaelis-Menten kinetics, but unfortunately, this did not resemble the experimental 

reaction rates due to the high and relatively constant glycogen concentrations. Therefore, simplified 

phenomenological expressions were used (see appendix Rate equations). Besides glycogen 

metabolism, simulated enrichment of lower glycolysis metabolites was faster than expected, which 

could be attributed to the changes observed in other isoenzymes such as Tdh1, Tdh2 and Tdh3, which 

may have individual effects unaccounted for in this model. 
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Figure 2.7. Predicted and observed 13C labelling enrichment during FF cycles (A) Enrichment of intracellular 

metabolite (%) vs time. Black lines consist of the simulations and black markers to the experimental data points. 

Feast phase is shaded in light grey, and famine phase has no shading. X-axis is cycle time, from 0 to 400 seconds 

and Y-axis is enrichment percentage, from 0 to 100%. (B) Diagram of inflow to cytosolic glucose. (C) Fluxes that 

positively contribute to the cytosolic glucose mass balance (mM s-1) vs cycle time (s). Red coloured are labelled 

data, blue coloured, non-labelled. (D) Contribute of each flux to the cytosolic glucose mass balance (in %) vs 

cycle time (s). Red coloured are labelled data, blue coloured, non-labelled. 
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Identification of missing kinetic mechanisms 

Another location with uncertainty is the trehalase reaction, which is carried out by an acid and neutral 

enzyme (Ath1p and Nth1p, respectively) [58,59] and whose in vivo fluxes were quantified in the FF 

condition in [26]. In the model simulations, Nth1p trehalase activity was reproduced, but only if 

cytosolic trehalose concentration was artificially low (Figure 2.8A-C) and redirected to the other 

compartments. Nonetheless, trehalose is expected to locate more in the cytosol than the vacuole [60]. 

This occurred as a result of Nth1 reaction being modelled as simple Michaelis-Menten kinetics (Figure 

2.8A) [61]. To fit these kinetics, cytosolic concentrations were kept very low with a comparatively high 

increase during the cycle. To further doubt the current model understanding, the estimated Km.TRE 

decreased from 2.11 to 0.13 mM, but it was experimentally quantified to be 3-8 mM [62]. It is not 

known to us what this missing regulation could be. Post translational regulation acting on Nth1p could 

be a possible explanation [32,62], but new data on the state of the enzyme would be required to 

confirm this hypothesis. 

  

 

Figure 2.8. Missing regulation on Nth1p could explain excessively low simulated cytosolic trehalose 

concentrations (A) Nth1 reaction kinetics. (B) Nth1 reaction rate. (C) Cytosolic trehalose. Blank lines show 

simulations and red dots experimental data. 
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Conclusions and summary 

In this work, we show how integrating experimental data from metabolomics, fluxomics and 

proteomics allowed to identify relevant mechanisms of metabolic adaptation to repetitive dynamic 

feast/famine conditions. Especially, testing different subsets of parameters for recalibration 

highlighted transporters and phosphorylation reactions as crucial for the adaptation. This in silico 

approach is comparable to the experimental approach of metabolic reverse engineering [63], but 

much faster and less laborious as no experiments with combinatorial genome modifications are 

required. The combinatorial approach can also be applied to other industrially relevant downscaling 

setups which are relevant to find out key parameter changes in a relatively simple manner and further 

optimize the bioprocess. 

Furthermore, integrating 13C labelling for the validation of model simulations calibrated with flux 

estimation reveals if the currently assumed mechanistic kinetics can sufficiently describe the 

intracellular flux and metabolome. Here, glucose uptake could not be explained by facilitated diffusion 

only (Equation 2.1), but required a minimal glucose threshold concentration (Figure 2.4). In addition, 

some reactions of the storage metabolism required non-mechanistic adjustments to reproduce the 

observed labelling enrichments. 
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Materials and methods 

Strain and growth conditions 

The haploid yeast Saccharomyces cerevisiae CEN PK 113-7D strain was grown at 30oC, pH 5, first in a 

batch phase and then in chemostat at dilution rate 0.1 h-1 [13]. The repetitive feast/famine regime 

began after five residence times and consisted of 20/380 seconds-cycles in which a feed was added in 

the first 20 seconds. The concentration of this feed was 20 times higher than the one of the chemostat 

phase, to ensure that the culture would overall receive the same amount of glucose. Data was 

collected after 20 cycles. For further reference, see [13]. 

Experimental data sets used in this work 

The experimental data sets used in this work consisted of metabolite concentrations measurements 

[13] and the respective calculated reaction rates [13]. Samples were collected more frequently during 

the feast than the famine phase, since network dynamics changed rapidly during the first. 

Extracellularly, concentrations were measured for carbohydrates glucose and trehalose. 

Intracellularly, concentrations were measured for carbohydrates involved in glycolysis, trehalose 

cycle, PPP, glycerol branch and the TCA cycle, and for adenosine nucleotides. Dynamic fluxes were 

estimated as piece-wise linear functions [64] using a consensus stoichiometric model for yeast [65]. 

Fluxes were estimated for glycolysis, carbohydrate storage metabolism (trehalose and glycogen 

cycles), PPP and the TCA cycle [26]. 

Model description 

A kinetic model of yeast central carbon metabolism was adapted in this work [29]. The original model 

contained the reactions that compose glycolysis, glycerol branch, a simplified trehalose cycle. 

Reactions of the PPP, TCA cycle and uptake of glycolytic metabolites for biomass production were 

lumped as sink reactions (similar to [66]). An overview of the developed model can be seen in Figure 

2.3. The following modifications were made to represent the complexity of carbon storage 

metabolism seen in the data and adapt the sink reactions of the TCA to the feast famine setup: 

1. New reactions were added to represent a complete trehalose cycle and glycogen synthesis 

and degradation: 

a. The α-glucoside transporter (Agt1p) mobilizes trehalose between the extracellular 

space and cytosol [32]. Its reaction rate was modelled using reversible uni-uni MM 

kinetics. Since the experimental data pointed at a decay in its activity during the cycle 

but it did not contain any information on possible inhibitors, an inhibitory effect of 

T6P was added as a proxy of an increasing flux through the trehalose cycle. 

b. A vacuolar transport of trehalose was added to mobilize trehalose between cytosol 

and vacuole-like compartments. Even though trehalose can be compartmentalized in 

vesicles in the cytosol, the kinetics of the process are not known. Here it was assumed 

that reversible MM kinetics determine this process, as with Agt1p. 

c. Acid trehalase (ATH1, EC 3.2.1.28) degrades trehalose to glucose. It acts in more acid 

environments that the cytosol such as the vacuole or the intracellular space [32], even 

though its location is still under debate. This reaction was modelled using irreversible 

MM kinetics. Similar to Agt1p, inhibition by T6P was added. 

d. UDP-Glucose phosphorylase (UDPG, EC 2.7.7.9) carries out the reaction from G1P to 

UDP-glucose, which is later used as substrate for glycogen synthesis. This reaction was 

adapted from [61] and modelled using an ordered bi-bi mechanism. 
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e. Glycogen synthesis was not modelled by enzymatic kinetics, but interpolated from the 

experimental data in this study, with an added UDP-glucose saturation factor. 

f. Glycogen degradation was also interpolated from the experimental data in this study, 

with an added UDP-glucose saturation factor. 

2. The sink reactions were optimized for chemostat growth [67] in the previous model. At a 

dilution rate of 0.1 h-1 the fluxes observed were higher than the ones seen under the FF 

regime. As a result, the flux simulated in FF towards the TCA cycle via the sink of pyruvate was 

over-estimated, resulting in a lesser flux towards the fermentative direction and more CO2 

being produced than measured. A factor was added to the reaction accounting for the 

pyruvate sink to reduce its flux and fit the CO2 concentrations observed in the experiment.  

In the following section, further details on model implementations are discussed. 

System of ordinary differential equations 

The model consists of a series of ordinary differential equation representing the mass balances for 

each metabolite in the model. The model contained three compartments: cytosol, vacuole, and 

extracellular space. The metabolites that are part of glycolysis, trehalose and glycogen cycles, glycerol 

branch and cofactors metabolism were located in the cytosol, trehalose could be compartmentalized 

in the vacuole or secreted to the extracellular space, and glucose was modelled extracellularly as well. 

Meanwhile the amount of carbon structure inside the cytosol depended on the inflow of glucose and 

outflow of the system, moiety conservations were used for cofactors as in [22]. The sum of adenosine 

and nicotinamide adenine nucleotides (ATP + ADP + AMP and NAD + NADH, respectively) was kept 

constant in the cell. The model mass balances can be seen in detail in appendix Ordinary differential 

equations. 

Reaction rate equations 

The reaction rate equations used in this model followed Michaelis Menten kinetics in most cases, but 

there were exceptions: Pfk kinetics are affected by multiple regulators and the alternance between 

tense and relaxed state [27], Pyk and Pdc follow Hill-type kinetics [28] and glucose transport occurs by 

facilitated diffusion (equilibrium constant equals 1). Additionally, multiple allosteric regulations occur 

in the network, both activation and (competitive) inhibition. Reactions were made reversible, except 

hydrolysis reactions, due to their remarkably negative Gibbs energy [68] and the sink reactions in the 

model. Reaction rates were expressed in (mM s-1). The kinetic rate expressions can be seen in detail 

in appendix Rate equations. 

Simulation setup 

The simulations were performed in three steps aimed at resembling the experimental process that 

cells underwent in the experiments in [13]. The first step simulated a chemostat, which also served to 

confirm that the system remained in a physiological realistic steady state. The second step consisted 

of the feast famine cycles. 20 repetitive cycles were simulated in which glucose was fed for the first 

20 seconds of the cycle without any outgoing flux. For the rest of the cycle, no glucose was fed, and 

the outgoing flux lasted until the same amount of volume increased in the first 20 seconds had been 

emptied, by approximately 260 seconds of cycle. Afterwards, both incoming and outgoing fluxes were 

kept at zero. After running for 20 cycles, the resulting simulation was compared to the experimental 

metabolite concentrations in reaction rates obtained in [13]. The third step concerned the simulation 

of the enrichment profiles reported in [26]. This extra simulation was run after the second step and 

99% of the inflow of glucose was set to be fully 13C labelled. All the simulations were carried with the 

abovementioned mechanistic model. Matlab version 9.3.0.713579, R2017b, and the ode15s solver 
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were used. The details of how simulations were constructed can be found in appendix Simulation 

setup. 

Implementation of 13C-labeling data simulations 

As described by Wahl [25], reactions of a metabolic network can only be correctly represented with 

mass isotopomeric models if there are no cleavage reactions present, because in the latter the 

position of the labelled carbon(s) is decisive to define the isotopomers of the following metabolites. 

In the interest of providing an accurate model without over-complicating it, the kinetic model is thus 

expanded to (uniformly) labelled carbon enrichment, instead of simulations of isotopic transients, as 

the simulation of the isotopic transients, requires determination of the distribution of the possible C-

labelled atoms for every metabolite of the network and additionally accounting for the bidirectionally 

of reactions in the isotopomer balance equations, which is no longer as trivial as building an 

enrichment model [69]. 

For each carbon-based metabolite in the model, a mass balance was added to account for its 

respective 13C-labelled fraction. In this mass balance, the input and output reaction rates were the 

same than for the total metabolite concentration mass balance, but it was multiplied by the respective 

fraction of labelled metabolite. Whereas the metabolite total concentrations depend solely on the 

enzymatic rates, the metabolite labelled concentrations also depend on the fractions of other labelled 

metabolites (labelled concentration / total concentration) that the reactions use as substrate. 

Moreover, now the enzymatic fluxes need to be adjusted for reversible enzymatic reactions. 

For mass balances equations of total metabolite concentrations, reversible enzymatic fluxes are 

defined with a positive value in one direction and negative in the reverse direction. However, to 

implement the mass balances equations of labelled metabolite concentrations, these are multiplied 

by metabolite’s labelled fractions and so they need to be always positive. Thus, enzymatic fluxes that 

change directions during the simulation, are implemented as a forward and backwards flux. These are 

only used in the equations for labelled metabolite concentrations and are defined in the model with 

conditional statements. An example of the mass balance of labelled and unlabelled acetate can be 

seen below. Reaction reversibility is already accounted for in the calculation of the reaction rate: 

𝑑[𝐴𝐶𝐸]

𝑑𝑡
=  + 𝑣𝑃𝐷𝐶 − 𝑣𝐴𝐷𝐻 − 𝑣𝑠𝑖𝑛𝑘𝐴𝐶𝐸 

𝑑[𝐴𝐶𝐸𝐿]

𝑑𝑡
=  +𝑃𝑌𝑅𝑓

𝐿 ⋅  𝑣𝑃𝐷𝐶 − 𝐴𝐶𝐸𝑓
𝐿 ⋅  𝑣𝐴𝐷𝐻 −  𝐴𝐶𝐸𝑓

𝐿 ⋅  𝑣𝑠𝑖𝑛𝑘𝐴𝐶𝐸 

Where L refers to the labelled metabolite and f, the fraction of the total concentration. Enrichment 

simulations were performed after the 20 repetitive cycles were simulated. The experimental data 

consisted of percentage level of 13C enrichment over cycle time, obtained from [26].  

Parameter values used in this work 

The initial parameter values were obtained from the original model [29]. These parameter values had 

been fitted to experimental data (metabolomics and fluxomics) from a data at different steady states 

[67] and SRE [9]. A subset of the parameter values including enzymes Hxt and Glk, the ones involved 

in the trehalose cycle and ATPase kinetics were estimated in this work. The values of the kinetic rate 

expressions used in this work can be seen in appendix Parameter values.  

Estimation of in vivo parameters 

Some reactions in the model underwent changes during the feast famine cycles. For instance, the 

proportions of the isoenzymes Hxk/Glk changed. To account for its effect on kinetic parameters such 
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as Km or kcat, reaction parameters were estimated for HXT and HXK/GLK. Additionally, trehalose cycles 

parameters were estimated, since the final structure of the cycle was different that the initial, and the 

ATPase reaction rate constant needed to change as well. For initial parameter guesses, the initial 

parameter values from [29] were used. The nonlinear least-squares MATLAB solver lsqnonlin from the 

Optimization Toolbox, using an interior reflective Newton method [70], was used to estimate the 

parameters by minimizing the error between measured and simulated data during the transient 

experiment. 

Design of the cost functions: combination of enzymes and weighting factors 

Experimental quantification of isoenzymes pointed at the couple Hxk/Glk experiencing the biggest 

deviation prior and after the FF cycles, but minor changes were also confirmed for the other enzymes 

in glycolysis (Figure 2.2). Still, estimation of all the kinetic constants in glycolysis simultaneously was 

undesirable due to the appearance of parameter dependencies [48] which could lead to 

unphysiological parameter values. Therefore, to describe the changes in the experimental data with 

only the essential number of enzymes changing, the parameters were fitted to the data in multiple 

occasions. In each of those, a different selection of enzymes and cost function weighting factors was 

used. 

• Selection of enzymes: multiple enzyme combinations were tested. These combinations 

contained the trehalose cycle and added different enzymes from glycolysis each time. The 

combination selected was the one that described experimental data properly while making 

physiological sense (such as including the changes in Hxk/Glk) and having the smallest number 

of enzymes possible. Simultaneously, random combinations of enzymes were also tested, to 

confirm results and give robustness to the method. 

• Combination of weighting factors: it was not clear at first if it would be possible to describe all 

the experimental data simultaneously. For this purpose, each of the abovementioned enzyme 

combinations was run repeated times, each of them with a different set of weighting factors. 

The errors for every metabolite were normalized so that they would contribute with the same 

weight to the cost function. Additional weighting factors changed these weights in three 

orders of magnitude at most to account for differences in data error. 

Design of the cost functions: regularization 

Parameter dependencies could still appear for a selection of enzymes or within a single enzyme, even 

though less generalized than if all enzymes had been optimized together. To avoid this problem, 

parameters were estimated again after the previous round of data fit which was only based on 

selecting enzymes and cost function weights. This time L1-type regularization was implemented to 

force the parameter estimates closer to the initial parameter set, as long as experimental data could 

be properly fit, helping to identify the important parameter changes for a specific dataset [36,37]. In 

this way, only the necessary parameters needed to change to fit the FF data were made 

distinguishable. The regularization factor λ, defined by the trade-off between model error (the 

normalized deviation between model prediction and data) and parameter deviation from the 

reference parameter set, was applied to the cost function in the following manner: 

𝑒𝑟𝑟𝑜𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑒𝑟𝑟𝑜𝑟𝑑𝑎𝑡𝑎 + 𝑒𝑟𝑟𝑜𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝑒𝑟𝑟𝑜𝑟𝑑𝑎𝑡𝑎 = 𝑎𝑏𝑠(𝑑𝑎𝑡𝑎𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 − 𝑑𝑎𝑡𝑎𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) 

𝑒𝑟𝑟𝑜𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = λ ∙ 𝑎𝑏𝑠 ((𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)) 
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Data availability 

The raw data, scripts and presented model are available in the GitHub repository 

https://github.com/DavidLaoM/y3m2_ff. Python scripts and SMBL model format can be found in 

these respective GitHub repositories: https://github.com/DavidLaoM/y3m_py and 

https://github.com/DavidLaoM/y3m_xml.  
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Appendix 

Ordinary differential equations 

Some mass balances were added or edited to those used in the original model [29]: 

𝑑𝐺𝐿𝐶𝑖

𝑑𝑡
= −𝑣𝐺𝐿𝐾 + 𝑣𝐺𝐿𝑇 + 2 𝑣𝑁𝑇𝐻1 + 2 𝑣𝐴𝑇𝐻1𝑣𝑎𝑐 + 𝑣𝑔𝑙𝑐𝐷𝑒𝑔 

𝑑𝑈𝐷𝑃𝐺𝑙𝑐

𝑑𝑡
= 𝑣𝑈𝐺𝑃 − 𝑣𝑇𝑃𝑆1 − 𝑣𝑔𝑙𝑦𝑐𝑆𝑦𝑛𝑡ℎ 

𝑑𝑇𝑅𝐸

𝑑𝑡
= 𝑣𝑇𝑃𝑆2 − 𝑣𝑁𝑇𝐻1 − 𝑣𝐴𝐺𝑇1 − 𝑣𝑣𝑎𝑐𝑢𝑜𝑙𝑒𝑇 

𝑑𝑇𝑅𝐸𝑒𝑐

𝑑𝑡
= −

𝐹𝑜𝑢𝑡 ∙ 𝑇𝑅𝐸𝑒𝑐

𝑉𝑏𝑟𝑜𝑡ℎ
+ 𝑣𝐴𝐺𝑇1 ∙ 𝑏𝑚𝑓 ∙ 𝐶𝑋 − 𝑣𝐴𝑇𝐻1𝑒𝑐 ∙ 𝑏𝑚𝑓 ∙ 𝐶𝑋 

𝑑𝑇𝑅𝐸𝑣𝑎𝑐

𝑑𝑡
= −𝑣𝐴𝑇𝐻1𝑣𝑎𝑐 + 𝑣𝑣𝑎𝑐𝑢𝑜𝑙𝑒𝑇 

𝑑𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛

𝑑𝑡
= 𝑣𝑔𝑙𝑦𝑐𝑆𝑦𝑛𝑡ℎ − 𝑣𝑔𝑙𝑦𝑐𝐷𝑒𝑔 

𝑑𝐸𝑇𝑂𝐻𝑒𝑐

𝑑𝑡
= 𝑣𝐸𝑇𝑂𝐻𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ∙ 𝑏𝑚𝑓 ∙ 𝐶𝑋 − 𝐸𝑇𝑂𝐻𝑒𝑐 ∙

𝐹𝑜𝑢𝑡

𝑉𝑏𝑟𝑜𝑡ℎ
 

𝑑𝐺𝐿𝑌𝐶𝑒𝑐

𝑑𝑡
= 𝑣𝐺𝐿𝑌𝐶𝐸𝑅𝑂𝐿𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ∙ 𝑏𝑚𝑓 ∙ 𝐶𝑋 − 𝐺𝐿𝑌𝐶𝑒𝑐 ∙

𝐹𝑜𝑢𝑡

𝑉𝑏𝑟𝑜𝑡ℎ
 

𝑑𝐺𝐿𝐶𝑒𝑐

𝑑𝑡
= 𝐺𝐿𝐶𝑖𝑛 ∙

𝐹𝑖𝑛

𝑉𝑏𝑟𝑜𝑡ℎ
− 𝐺𝐿𝐶𝑒𝑐 ∙

𝐹𝑜𝑢𝑡

𝑉𝑏𝑟𝑜𝑡ℎ
− 𝑣𝐺𝐿𝑇 ∙ 𝑏𝑚𝑓 ∙ 𝐶𝑋 + 𝑣𝑆𝑈𝐶 + 2 𝑣_𝐴𝑇𝐻1𝑒𝑐 ∙ 𝑏𝑚𝑓 ∙ 𝐶𝑋 

 

Rate equations 
The following reaction rates were added to those used in the original model [29]: 

𝑣𝐴𝑇𝐻 =
𝐴𝑇𝐻 ∙ 𝐾𝑐𝑎𝑡 ∙ 𝑇𝑅𝐸

𝐾𝑀,𝑇𝑅𝐸 ∙ (
𝑇𝑅𝐸

𝐾𝑀,𝑇𝑅𝐸
+ 1)

 

𝑣𝐴𝐺𝑇1 =

𝐴𝐺𝑇1 ∙ 𝐾𝑐𝑎𝑡 ∙ (𝑇𝑅𝐸𝑐𝑦𝑡 −
𝑇𝑅𝐸𝑣𝑎𝑐

𝐾𝑒𝑞
)

𝐾𝑀,𝑇𝑅𝐸 ∙ (
𝑇𝑅𝐸𝑒𝑐
𝐾𝑀,𝑇𝑅𝐸

+
𝑇𝑅𝐸𝑐𝑦𝑡

𝐾𝑀,𝑇𝑅𝐸
+

𝑈𝐷𝑃𝐺𝑙𝑐
𝐾𝑀,𝑈𝐷𝑃𝐺𝑙𝑐

+ 1)

 

𝑣𝑣𝑎𝑐𝑢𝑜𝑙𝑒𝑇 =

𝑉𝑚𝑎𝑥  ∙ (𝑇𝑅𝐸𝑐𝑦𝑡 −
𝑇𝑅𝐸𝑣𝑎𝑐

𝐾𝑒𝑞
)

𝐾𝑀,𝑇𝑅𝐸 ∙ (
𝑇𝑅𝐸𝑣𝑎𝑐
𝐾𝑀,𝑇𝑅𝐸

+
𝑇𝑅𝐸𝑐𝑦𝑡

𝐾𝑀,𝑇𝑅𝐸
+ 1)

 

Glycogen synthesis and degradation were directly interpolated from the data, with the additions of a 

saturation component, to avoid that it becomes a constraint in the system, especially when fluxes 

were overall small. 

𝑣𝑔𝑙𝑦𝑐,𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 =
𝑣𝑔𝑙𝑦𝑐,𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠,𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 ∙ 𝑈𝐷𝑃𝐺𝑙𝑐

𝑈𝐷𝑃𝐺𝑙𝑐 + 1𝐸−4
 

𝑣𝑔𝑙𝑦𝑐,𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =
𝑣𝑔𝑙𝑦𝑐,𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛,𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 ∙ 𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛

𝐺𝑙𝑦𝑐𝑜𝑔𝑒𝑛 + 1𝐸−4
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Glucose sensing 

Figure A2.1. Glucose sensing is needed to explain Hxt kinetics: Individual parameter effect. Glucose 

uptake rate at 400 vs at 20 second. Blue and yellow colours show smaller and bigger parameter values. 1000 samples were 

run, within 3 orders of magnitude above and below the estimated parameters. Parameters were randomized for Hxt kinetics 

and external glucose concentration was fit to the experimental data. The red dot is the experimental data point. 
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Parameter values 

Several parameters from the original model were adjusted and others added: 

Table A2.1. Re-estimated parameters. 

Enzyme Name Original 

model 

[29] 

This 

work 

Reference Units Source 

HXK 𝐾𝑀,𝐺𝐿𝐶  0.35 0.11 0.08 mM [27] 

HXK 𝐾𝑖,𝑇6𝑃 0.01 0.0183 0.2 mM [22] 

HXK 𝐾𝑐𝑎𝑡 6.25 15.75 0.95 s-1 [28] 

GLT 𝐾𝑀,𝐺𝑙𝑐 1.01 0.90 1.1918 mM [27] 

GLT 𝑉𝑚𝑎𝑥 8.13 1.70 0.734 mM 

s-1 

[28] 

PGM1 𝐾𝑒𝑞 21.40 4.08 0.167 
 

[61] 

PGM1 𝐾𝑀,𝐺1𝑃 0.07 0.1316 0.023 mM [61] 

PGM1 𝐾𝑀,𝐺6𝑃 0.03 0.0154 0.05 mM [61] 

PGM1 𝐾𝑐𝑎𝑡 8.46 4.1018 100 s-1 [61] 

TPS2 𝐾𝑀,𝑇6𝑃 0.37 0.2427 0.5 mM [61] 

TPS2 𝐾𝑐𝑎𝑡 28.41 20.752 81.45 s-1 [61] 

TPS2 𝐾𝑀,𝑃𝑖 0.70 0.6991 1 mM This 

study 

NTH1 𝐾𝑀,𝑇𝑅𝐸 2.11 0.13 2.99 mM [61] 

NTH1 𝐾𝑐𝑎𝑡 4.51 284.25 100 s-1 [61] 

TPS1 𝐾𝑀,𝐺6𝑃 4.54 0.4422 3.8 mM [61] 

TPS1 𝐾𝑀,𝑈𝐷𝑃𝐺𝑙𝑐 0.13 0.11 0.886 mM [61] 

TPS1 𝐾𝑐𝑎𝑡 9616.42 1.37E+04 1000 s-1 [61] 

TPS1 𝐾𝑖,𝑃𝑖 0.79 0.2863 1 mM This 

study 

TPS1 𝐾𝑀,𝐹6𝑃 1.56 0.7116 1 mM This 

study 

UGP 𝐾𝑈𝑇𝑃 
 

0.9797 0.11 mM [61] 

UGP 𝐾𝑖,𝑈𝑇𝑃 
 

0.2387 0.11 mM [61] 

UGP 𝐾𝐺1𝑃 
 

0.1321 0.32 mM [61] 

UGP 𝐾𝑖,𝑈𝐷𝑃𝐺𝑙𝑐 
 

0.0163 0.035 mM [61] 
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UGP 𝐾𝑐𝑎𝑡 
 

1442.7 1000 s-1 This 

work 

ATH1 𝐾𝑇𝑅𝐸 
 

6.16E+03 4.7 mM [71] 

ATH1 𝐾𝑐𝑎𝑡 
 

546.77 4.21E+05 s-1 [71] 

ATH1 [𝐴𝑇𝐻1]𝑒𝑐 
 

0.0018 
 

mM This 

work 

ATH1 [𝐴𝑇𝐻1]𝑣𝑎𝑐 
 

0.000196 
 

mM This 

work 

AGT1 𝐾𝑇𝑅𝐸,𝑒𝑐 
 

0.6846 4 mM [72] 

AGT1 𝐾𝑐𝑎𝑡 
 

476.46 1.74E+04 s-1 [73] 

AGT1 𝐾𝑇𝑅𝐸,𝑖𝑐 
 

0.0855 4 mM [72] 

AGT1 𝐾𝑒𝑞 
 

7.3 1000 
 

This 

work 

AGT1 𝐾𝑖,𝑈𝐷𝑃𝐺 
 

18.09 1 mM This 

work 

AGT1 [𝐴𝐺𝑇] 
 

6.67E-05 
 

mM This 

work 

vacT 𝑉𝑚𝑎𝑥 
 

6.67E-05 1.00E-04 mM 

s-1 

This 

work 

vacT 𝐾𝑇𝑅𝐸 
 

2.83 20 mM [74] 

vacT 𝐾𝑒𝑞 
 

1 1 
 

This 

work 

 

In addition, several parameters were considered for the extracellular mass balances: 

Table A2.2. Extracellular parameters. The missing values depend on the feeding (see appendix 

Simulation setup) 

Parameter Name Value Units 

Biomass concentration 𝐶𝑋 3.639 gDW Lbioreactor
-1 

Biomass volume fraction 𝑏𝑚𝑓 0.002 Lbioreactor
 gDW

-1 

Incoming flux 𝐹𝑖𝑛  Lbioreactor s-1 

Outgoing flux 𝐹𝑜𝑢𝑡  Lbioreactor s-1 

Broth volume 𝑉𝑏𝑟𝑜𝑡ℎ 3.894 Lbioreactor 
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Abstract 

Exposed to changes in their environment, microorganisms will adapt their phenotype, including 

metabolism to ensure survival. To understand the adaptation principles, resource allocation based 

approaches were successfully applied to predict an optimal proteome allocation under (quasi) steady-

state conditions. Nevertheless, for a general, dynamic environment, enzyme kinetics will have to be 

taken into account which were not included in the linear resource allocation models. To this end, a 

resource dependent kinetic model was developed and applied to the model organism Saccharomyces 

cerevisiae by combining published kinetic models and calibrating the model parameters to published 

proteomics and fluxomics datasets. Using this approach, we were able to predict specific proteomes 

at different dilution rates under chemostat conditions. Interestingly, the approach suggests that the 

occurrence of aerobic fermentation (Crabtree effect) in S. cerevisiae is not caused by space limitation 

in the total proteome, but rather an effect of constraints on the mitochondria. When exposing the 

approach to repetitive, dynamic substrate conditions, the proteome space was allocated differently. 

Less space was predicted to be available for non-essential enzymes (reserve space). This could indicate 

that the perceived ‘overcapacity’ present in experimentally measured proteomes may very likely serve 

a purpose in increasing the robustness of a cell to dynamic conditions. Especially, an increase of 

proteome space for the growth reaction as well as of the trehalose cycle was shown to be essential in 

providing robustness upon stronger substrate perturbations. The model predictions of proteome 

adaptation to dynamic conditions were additionally evaluated against respective experimentally 

measured proteomes, which highlighted the model’s ability to accurately predict major proteome 

adaptation trends. This proof of principle for the approach can be extended to production organisms 

and applied for both understanding metabolic adaptation, and improving industrial process design.  
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Introduction 

The ability of microorganisms to adapt to changing extracellular environmental conditions is essential 

for their survival and leads to metabolic robustness and competitive fitness [1,2]. Depending on the 

environmental conditions, different metabolic functions and/or flux distributions are needed that 

require a different proteome composition [3]. The proteome adaption is triggered by not yet fully 

unraveled protein signaling cascades and further mechanisms [4]. An intuitive example of this adaption 

is described for Saccharomyces cerevisiae (S. cerevisiae), when shifting from growth under minimal to 

rich medium conditions: Cells grown under rich nutrient conditions require a significantly smaller 

proteome fraction for biosynthesis genes [5–7] compared to cells grown in mineral medium, where 

amino acids and other biomass precursors are not present but have to be synthesized from glucose. 

On the other hand, next to optimization of proteome resources, cells do maintain metabolic fitness 

and/or robustness [8]. Especially under substrate limiting conditions, cells seem to invest in proteins 

which may not be required yet, for example, to quickly utilize alternative substrates without delays in 

growth [9]. However, any additional increase in protein abundance also results in higher costs due to 

occupation of ribosomes, resource consumption and potentially additional protein misfolding.  

Different hypotheses have been formulated and respective models were developed to understand the 

optimization and trade-offs. 

Constraint-based modelling approaches are essential to analyze putative properties of metabolic 

networks. The well-established and frequently used method for the analysis of (large genome-scale) 

metabolic networks is flux balance analysis (FBA) [10,11]. This method calculates feasible solutions 

under steady-state conditions, depending on a defined objective function (biomass or ATP 

maximization) [12]. However, this method cannot be applied to dynamic cultivation conditions and 

does not consider gene regulation nor protein expression. To overcome these limitations, dynamic flux 

balance analysis (dFBA) was developed to maximize biomass growth over time, with changing 

extracellular conditions [13]. To include the synthesis costs of proteins and ribosomes, resource 

balance analysis (RBA) was developed, allowing for the prediction of the optimal allocation of 

intracellular resources for steady-state growth [14]. Looking at cellular behavior in terms of resource 

allocation has also been used to explain overflow metabolism [15,16]. In this paradoxical phenomenon, 

cells use catabolic pathways with low ATP yields per substrate such as alcoholic fermentation when 

growing at high growth rates, even when a high-yield pathway like respiration is available. Following 

the current hypothesis, the answer is that these fermentative pathways are much cheaper in terms of 

proteome space cost, meaning that the ATP production rate per protein mass is larger [16].  

Combining approaches from both dFBA and RBA, lead to conditional FBA (cFBA) [17,18], which 

combined both temporal changes in the extracellular environment with constraints on intracellular 

resource allocation. These powerful tools are able to reproduce and predict metabolic phenotypes 

beyond steady-state conditions and extend our understanding of microbial physiology. Nevertheless, 

short term dynamics require yet another mechanism: kinetics instead of quasi-steady state of the 

intracellular metabolites to capture the rapid intracellular changes of metabolites as well as kinetic 

regulation.  

Experimentally, S. cerevisiae cultures show different metabolic responses to substrate perturbations 

depending on the cultivation condition. Especially, cell cultured under repetitive dynamic substrate 

conditions, the so-called ‘feast/famine’ regime showed a different response compared to cultures 

grown under steady-state limitation [19]. Ethanol production after a substrate pulse was observed for 

cultures originating from a chemostat [20], while no ethanol was observed for cells under a repetitive 

excess/limitation regime [21]. Furthermore, the intracellular response to substrate excess has  
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significantly different properties: While the ATP concentration dropped after a pulse originating from 

a chemostat culture [20], a rise was observed for a feast/famine culture. Moreover, the biomass yield 

of a feast/famine culture was lower than a chemostat culture. Lastly, chemostat-grown cells showed 

short and long-term accumulation of glycolytic intermediates after a substrate pulse, while this was 

not observed for feast/famine cultures. Storage synthesis and degradation leads to “wasting” of ATP 

(futile cycle) which was shown to rescue cellular metabolism, i.e. balance pathway capacities in case 

of sudden perturbations [22].  

The observed differential metabolic response implies an adaptation during the prior dynamic growth 

condition. Similar differences in adaptations have been observed earlier – for example the lag phase 

before exponential growth [23,24], upon a change in substrate [25] and in the period just after 

switching to a different dilution rate in a chemostat [26].  

There are three levels of metabolic regulation commonly assumed to be dominant [27]: (1) Allosteric 

regulation, in which enzyme activity is modified by non-covalent binding with other molecules. The 

response time of this type of regulation is almost instant [28], and it is often used for local fine-tuning 

in metabolism, thus it is unlikely to cause this adaptation effect. (2) Post-translational modifications 

(PTMs), in which enzyme activity is altered by addition of covalent attachments. The timescale of this 

response is a matter of seconds to minutes [29], and it is often part of short-term responses to stress 

situations (e.g. sudden changes in the environment).  

(3) Translational regulation, influencing the composition of the proteome. This regulation has a 

response time of hours [30], which is in the same order of magnitude as the generation time, and thus 

the choices made at this level are important for the long-term strategy. It is also considered the most 

expensive regulatory level: degradation and synthesis of proteins requires significant amounts of ATP. 

Recent studies showed that the amount of protein in a cell is limited due to macromolecular crowding 

and the kinetics of protein synthesis and degradation [31,32]. When all proteome space is occupied, 

increasing the concentration of one protein is only possible at the cost of another (Pareto frontier) 

[33].  

We were curious to study the impact of short-term vs long-term adaptations to substrate 

perturbations encountered in natural and laboratory environments. Therefore, we developed a 

resource dependent kinetic model and exposed this to different dynamic environments to evaluate 

the impact of the allocation of proteins in the cellular proteome on the metabolic fitness of a yeast cell 

under short-term extracellular substrate dynamics. 
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Results 

Construction of a proteome-dependent kinetic model 
We wanted to construct a proteome dependent kinetic model, which was small, but still able to 

reproduce the main phenotypes observed for S. cerevisiae. Furthermore, it should be calibrated with 

available experimental data. We based the model on the kinetic model of yeast glycolysis [34] which 

we extended with reactions for the trehalose cycle, respiration pathway, as well as a growth reaction 

(see Figure 2.1). Each (lumped) reaction has been associated with a proteome fraction resulting in a 

proteome-dependent kinetic model of yeast central carbon metabolism and growth.  

 

Figure 2.1. Map showing the metabolic network used in this model. 

The Embden-Meyerhof glycolytic pathway has been implemented as three lumped reactions (uptake, 

upper and lower glycolysis) with three intermediates: G6P, FBP and pyruvate. The stoichiometry of the 

growth reaction was based on [35]. The NADPH requirement was assumed to be met by using the 

pentose phosphate pathway, which in sum (together with PGI) converts one G6P to six CO2 and 12 

NADPH. The required NADPH flux was balanced by a respective consumption of G6P. The ATP demand 

for growth has been derived from [36] taking into account that the demand was expressed as 

catabolized glucose amounts. Furthermore, the trehalose cycle was included as two lumped reactions, 

based on an existing kinetic model of the trehalose cycle [37] (see Appendix 1 for details).  

Due to a lack of kinetic models of yeast TCA cycle and oxidative phosphorylation, the two respiratory 

reactions (from cytosolic NADH and pyruvate, vNDE and vTCA respectively) have been implemented using 
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general Michaelis-Menten kinetics. However, the two reactions are interdependent - both connect to 

the electron transport chain and consequently, the rate is determined by the same proteome fraction. 

A maximum value for the rate of the two reactions combined is defined, reflecting the capacity in the 

electron transport chain, limited by the provided proteome sector size (see Appendix 1). 

The biomass reaction contains many, complex reactions and the kinetics of the full process currently 

cannot be derived from basic principles. Therefore, a holistic approach based on experimental 

observations was chosen, i.e. the growth rate has been found to correlate with the energy charge [38]. 

Here, the growth rate is described by a sigmoid function most sensitive within the range of an energy 

charge between 0.7 and 0.9 as observed for growing cells [38]. 

Calibration of model parameters using available experimental data 
Especially, the specific activity for the defined pathways has a major impact on model predictions. To 

obtain realistic values, the specific enzyme activities (kcat) were estimated from experimental omics 

data sets. In the proposed model, the kcat,i for each reaction i is defined as the max. reaction rate per 

fraction of proteome (mol/Cmolx/h), where 100% proteome reflects 500 mg protein per gX [39]. Hence, 

the maximum rate of the reaction i (𝑉𝑚𝑎𝑥,𝑖) with a given sector fraction 𝜑𝑖 is: 

𝑽𝒎𝒂𝒙,𝒊 = 𝝋𝒊 ∙ 𝒌𝒄𝒂𝒕,𝒊 

From this, the enzymatic rate 𝑽𝒊  is calculated by multiplying the 𝑽𝒎𝒂𝒙,𝒊  with the function 𝒇𝒊(�⃗�  ) 

describing the effects on enzymatic rate due to substrate and product concentrations, as well as effects 

by allosteric activators and inhibitors (see Appendix 1 for specification of 𝒇𝒊(�⃗�  ) for each reaction): 

𝑽𝒊 = 𝑽𝒎𝒂𝒙,𝒊 ∙ 𝒇𝒊(�⃗�  ) 

The kcat parameters have been estimated by combining the proteome and fluxome measurements 

under batch conditions. The proteome fractions were taken from [5] using S. cerevisiae grown at batch 

conditions with defined glucose minimal medium and aligned according to the protein classification in 

the KEGG database. Specifically, grouping all proteins with the KEGG BRITE label “Genetic Information 

Processing” and all proteins with the “Metabolism” label that were not classified as “Central Carbon 

Metabolism” or “Energy Metabolism” being assigned to the “growth protein sector”, assuming that 

their size is growth rate-dependent in minimal medium. Furthermore, for the calculations, it was 

assumed that the whole proteome sector of cells grown under substrate excess at the maximal growth 

rate was used. 

The corresponding flux distribution, i.e. under batch conditions was obtained from [40] with the 

exception of fluxes for the trehalose cycle - these were obtained from the feast/famine experiments 

conducted by [41]. For both trehalose synthesis and degradation, the maximum value of the flux 

reached in one feast/famine cycle was used, which was 5.1010-3 mol/CmolX/h for trehalose synthesis 

and 4.09·10-3 mol/CmolX/h for the degradation of trehalose. The kcat value for maintenance was set to 

0.0155 mol/CmolX/h, which is the maintenance requirement measured at near-zero growth rates [42].  

To obtain the kcat parameters, a parameter optimization was performed, estimating the parameters 

which produced the smallest deviation between the simulated and experimental fluxes [40], using the 

batch proteome composition taken from [5](see Appendix 2 for details). Using this approach, the 

proteome dependent kinetic model was able to largely reproduce the experimental flux distribution 

(Table 2.1) and this kcat calibration was used in all further calculations.  
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Table 2.1. Comparison of the predicted fluxes of a chemostat experiment at a dilution rate of 0.4 h−1 with the 

experimental flux distribution of Heyland et al. [40]. Upt, uptake; UGlc, upper glycolysis; LGlc, lower glycolysis; 

Ferm, fermentation; Esnk, electron sink/glycerol pathway; Resp, respiration; Trsn, trehalose synthesis; Trdg, 

trehalose degradation; Grwt, growth. 

 Upt Uglc LGlc Ferm Esnk Resp Trsn Trdg Grwt 

Predicted flux 

(mol/Cmolx/h) 

0.504 0.4669 0.8251 0.7391 0.0898 0.0719 0.0072 0.0072 0.4 

Experimental flux 

(mol/Cmolx/h) 

0.4753 0.4373 0.8745 0.7272 0.0428 0.0808 0.0051 0.0041 0.4 

Deviation  +6% +7% -6% +2% +110% -11% +41% +76% 0% 

 

Prediction of the steady-state growth phenotype under carbon limited steady-state 
conditions 
S. cerevisiae is a Crabtree-positive yeast, thus fermentation is observed next to oxidative 

phosphorylation at substrate uptake rates above an observed ‘critical’ rate [43]. The ability of the 

model to reproduce the Crabtree effect is assessed by optimizing proteomes for dilution rates in the 

range from 0.05 h-1 to 0.4 h-1. The proteome optimization was started at the dilution rate of 0.4 h-1 

using the experimental batch proteome as starting value. The most competitive proteome out of 1000 

randomly generated proteome allocations was selected using minimization of the residual substrate 

concentration as objective function. Subsequently, this procedure was repeated for the next, lower 

dilution rate. The optimal proteome allocation of the previous dilution rate was used as starting value. 

To validate the model, the predicted fluxes and metabolite concentrations were compared with a flux 

and metabolome dataset (Suarez-Mendez et al., 2016) at different dilution rates at chemostat 

conditions. This comparison of predicted and measured fluxes and metabolite concentrations can be 

found in Appendix 3, in figures A2.2 and A2.3 respectively. 

The experimental data for ethanol production and oxygen consumption in Figure 2.2 shows that the 

ethanol production starts at a dilution rate of 0.28 h-1 [44,45]. Above this critical dilution rate the 

oxygen consumption rate decreases, while ethanol production keeps increasing. Ethanol production is 

first predicted by the model for a dilution rate of 0.25 h-1, which is a lower rate compared to the 

experimental data. Furthermore, there is no decrease in the oxygen consumption rate above a dilution 

rate of 0.28 h-1 for the optimized proteomes, which was observed in experimental studies [45]. From 

the model this can be explained by the proteome specific ATP production ‘cost’: Respiration has a 

higher yield compared to fermentation (Table 2.2). Hence, reducing the size of the respiration 

proteome sector will not predicted by the model as it is not beneficial. The predicted plateau originates 

from a constraint that was introduced manually (12 % of the proteome for respiration) to reflect the 

maximum oxygen consumption rate measured by [44] after long-term evolution. The continuous 

increase in ethanol production rate can then be explained by the increasing need for ATP with 

increasing growth rate while respiration is at its maximum.  
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Figure 2.2. Comparison of predicted and observed phenotypic rates (ethanol excretion, oxygen uptake rate, 

and biomass yield) at different dilution rates. Blue represents the best proteome out of 1,000 randomly 

generated proteomes; red represents the best proteome out of 100 randomly generated proteomes (limited 

evolution with adaptation from the batch proteome). For the experimental data similarly–red represents data 

from Van Hoek et al. [45] (seven generations at steady-state starting from batch), and blue represents a 

respiration-adapted culture [44]. 

 

TABLE 2.2. Comparison of the proteome-specific ATP yield for fermentation and respiration obtained by Nilsson 

and Nielsen( 2016) and this study. Values of this study were derived from simulations performed at a growth rate 

of 0.4 h−1. 

 Fermentation (molATP/gprot/h) Respiration (molATP/gprot/h) 

Nilsson and Nielsen [16] 0.40 0.21 

This study 0.18 0.20 

 

This result conflicts with the discussed dataset of [45] as well as model predictions of [16], which was 

partly based on this experimental dataset. This mismatch and conclusions will be discussed in more 

detail later. Notably, there is also experimental evidence from previous studies that the predicted 

plateau is reasonable. It was shown that the respiratory repression observed by [45] could be negated 

upon long-term adaptation [43,44,46] and a stable maximum oxygen uptake rate above a dilution rate 

of 0.28 h-1 was found.  

To test the hypothesis of short- vs long-term evolution, the proteome optimization approach was 

performed with a reduced number of generated proteomes and compared to the experimental data 

of [45] (Figure 2.2, red line). With a high number of generated proteomes for the optimization the 

experimental findings of long-term chemostats could be reproduced. From these predictions we 

hypothesize that cells not exposed to long-term glucose-limited conditions did not yet reach the 

‘optimal’ proteome allocation and respective metabolic phenotype. This set number of 1000 

simulations was chosen as after this amount of simulations only very limited further optimization of 

the objective function was observed. As such, 1000 simulations was concluded as sufficient to reach 

the optimum. Work on adapted glucose-grown cultures, at which point glucose repression on 

respiration disappears, are cultivated for at least 50 generations at the same dilution rate (Barford et 

al., 1979). Work by van Hoek et al. (1998), describing the Crabtree effect with its typical glucose 

repression of respiration, cultivated cultures at the same dilution rate for 7 generations. Therefore, a 

set number of 100 simulations was chosen to reflect this state of limited adaptation of the proteome 

from batch growth conditions. 

Looking into the global trends in the fully evolved proteome allocation at different dilution rates (Figure 

2.3, see Appendix 4 for sensitivity analysis), an increase with dilution rate can be seen for nearly all 

sectors leading to unused space (in the following called overcapacity sector, last panel). The 
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overcapacity sector accounts for the fraction of the proteome which remains unused within the 

optimized proteomes. Before discussing specific trends, the high dilution rates will be highlighted. 

Even close to the maximal growth rate, the model predicts a small overcapacity sector. Nevertheless,  

please note that batch and very high dilution rate might still have different optimization criteria, in the 

model here minimal substrate concentration was applied as objective function.  Because of the 

optimization approach some robustness is required this was not further tuned as the fraction is rather 

small (7%) and does not change trends. Additionally, the algorithm samples from an enumerated 

number of randomly generated proteomes and therefore requires some buffer for robustness.  

Figure 2.3. Predicted proteome fractions at steady-state as a function of the dilution rate. Blue represents the 

best proteome out of 1,000 randomly generated proteomes; red represents the best proteome out of 100 

randomly generated proteomes. The values shown are averaged over 40 optimization runs, and the single results 

are displayed in the appendix Figure A2.4. Upt, uptake; UGlc, upper glycolysis; LGlc, lower glycolysis; Ferm, 

fermentation; Esnk, electron sink/glycerol pathway; Resp, respiration; Grwt, growth; Ocap, overcapacity. The 

trehalose sector was decreased to zero in all instances of the overcapacity simulation, and therefore not shown 

in the figure. 

A major difference between this model and earlier studies [16] is that the proteome space limit is not 

reached at the critical growth rate (D = 0.28 h-1). At the critical dilution rate (D = 0.28 h-1), the 

overcapacity sector still has a significant fraction (21 %). As briefly discussed earlier, [16] postulated 

that the Crabtree effect could be explained by the catalytic efficiency of the fermentation and 

respiration pathways expressed as ATP per amount of protein used in the pathway (Table 2.2). To 

estimate these catalytic efficiencies, [16] used the fluxes and specific enzyme activities for 

fermentation and respiration, under the assumption that all enzymes operate at half of their maximum 

specific activity [16], whereas in this model, the estimation of the catalytic efficiency is based upon 

proteome and fluxome dataset, using dynamic saturation of enzymes. The estimation proposed by [16] 
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subsequently produced a proteome composition in which the mass of all respiration proteins is 19 

times larger than the protein mass of all glycolysis enzymes [16], while from proteome measurements 

it was observed that the mass of all respiration proteins are 0.3 times the size of the mass of all 

glycolysis proteins [5,47]. This large difference in proteome allocation between glycolysis and 

respiration causes the catalytic efficiency of fermentation to be overestimated. The conclusion that 

the proteome is fully allocated after the critical growth rate is reached, leads to the prediction that the 

‘optimal’ endpoint of proteome allocation is reached, which cannot explain datasets by [43,44]. 

Additional modelling studies by [47] suggest that the decrease in oxygen consumption at higher growth 

rates observed by [45] is not caused by a limitation in proteome capacity, but rather by a maximum 

rate of mitochondria biogenesis, where long-term adaptation could overcome the described glucose 

repression of respiration.  

 

Prediction of proteome allocation under dynamic conditions 
The proteome compositions especially at low dilution rates were characterized by a significant 

overcapacity sector. The kinetic proteome allocation approach could not yet answer, why the cells 

maintained such an excess proteome. As discussed earlier, hypothesis for a proteome overcapacity are 

competitiveness and robustness including towards dynamic environmental conditions. Overcapacity 

could enable faster substrate uptake rates and enable a competitive advantage and outcompete 

slower consuming microbes [48]. Furthermore, excess capacity could enable a robust, balanced 

functioning of pathways like glycolysis [22] under dynamic substrate conditions.  

To test these hypotheses, we studied the predicted proteome allocation under different repetitive 

substrate feeding regimes using the proteome dependent kinetic model, using the minimization of the 

time-weighted residual substrate concentration as objective function. With this approach, we were 

able to select for competitive proteomes with fast substrate uptake rates. As reference dynamic 

condition an experimentally explored feeding regime was chosen, i.e. a cycle length of 400 seconds of 

which 20 seconds were used to feed the culture (D = 2 h-1), leading to the average dilution rate of D = 

0.1 h-1 over the complete cycle [19].  

Proteome allocations and respective metabolic phenotypes were then compared to the steady-state 

at the same (average) growth rate. First, we studied the maximum, minimum and average enzyme 

saturation (V/Vmax) during dynamic conditions compared to the enzyme saturation under chemostat 

conditions (Table 2.3). Under dynamic conditions, the maximal enzyme saturation is much higher (up 

to 92 % for the respiration reaction) compared to chemostat conditions (77% for respiration). 

Nevertheless, the average enzyme saturation over the whole cycle is actually lower compared to the 

reference chemostat state (for respiration 25% compared to 77% at steady-state). This indicates that 

the proteome optimization to some extend focuses on the ‘peak’ flux, especially for the large sectors 

of respiration and growth, indicating high usage of the available flux capacity, while on average leaving 

a large overcapacity over the whole cycle. This enables a rapid consumption of substrate as soon as it 

becomes available, which was the optimization criteria.  
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Table 2.3. Enzyme saturation, i.e., v/vmax under dynamic feeding conditions compared to steady-state (both at a 
dilution rate of D = 0.1 h-1). For dynamic conditions, v/vmax is calculated at the maximum rate during the cycle and 
the minimum as well as the average over the cycle. Upt, uptake; UGlc, upper glycolysis; LGlc, lower glycolysis; 
Ferm, fermentation; Esnk, electron sink/glycerol pathway; Resp, respiration; TrSn, trehalose synthesis; TrDg, 
trehalose degradation; Grwt, growth.  

Upt Uglc LGlc Ferm Esnk Resp TrSn TrDg Grwt 

Max V/Vmax ratio 

under FF 

6% 19% 8% 25% 46% 92% 79% 11% 100% 

Min V/Vmax ratio 

under FF 

<1% <1% <1% <1% <1% 1% <1% 4% <1% 

Average V/Vmax 

ratio under FF 

1% 3% 1% 4% 7% 25% 10% 7% 24% 

V/Vmax ratio 

under chemostat 

<1% 2% 6% - 13% 77% - - 74% 

 

We were now curious to see how the perturbation strength would influence the proteome allocation. 

Therefore, the length of the feeding period was varied at the same average dilution rate, resulting in 

different substrate perturbation intensities. The respective predicted proteome allocations were 

calculated and compared (Figure 2.4) for the different ratios of feeding time over cycle time (TF/TC). 

TF/TC values were chosen as log2 increments from the experimentally used TF/TC value of 1/20 [19].  

Figure 2.4. Proteome allocation as a function of the ratio of feeding time over cycle time (TF/TC). Further 

proteome sector fractions are shown in Appendix 5. 

Especially, the growth sector fraction increased with the perturbation intensity, suggesting that this 

strategy was the most effective measure to survive the higher substrate concentration variations (from 

faster feeding) and consequently high flux dynamics. The growth reaction seemed to act as an efficient 

and fast sink for substrate and ATP. However, in reality the growth sector does not consist of a single 

reaction and may not be able to provide a rapid response upon glucose influx. For this reason, two 

other scenarios were additionally evaluated: 1) the regulation of the trehalose cycle upon repeated 

substrate pulses and 2) the regulation of the ratio between upper and lower glycolysis (see Appendix 

6).  
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Impact of the proteome fraction for the trehalose cycle 
The trehalose cycle has been described to function as ‘safety valve’ upon large changes in glycolytic 

flux [22,49–51]. Under dynamic conditions in yeast, it was found that a significant amount of imported 

glucose was recycled through the trehalose cycle, especially during periods of high flux changes [41]. 

To evaluate the effect of storage metabolism activity under dynamic conditions the reference 

condition (D=0.1 h-1, TF/TC = 0.05, [19]), was further analyzed. We varied the trehalose sector size 

between 0 and 1% (Figure 2.5) and compared the response of metabolism using FBP and Pi as 

indicators. A balanced metabolic response will lead to repetitive cycles in FBP and Pi. Such repetitive 

response was observed for proteomes with a trehalose sector larger than 0.1%. Increasing the 

trehalose sector above 0.1% leads to reduced fluctuations in G6P/FBP and Pi, suggesting a more robust 

metabolic response. Simulated changes in FBP and Pi are in line with results from previous work by 

van Heerden et al. [22]. 

 

Figure 2.5. Concentration time course over repetitive cycles (D = 0.1 h−1, TF/TC = 0.05) for different trehalose 

sector fractions (blue = 0.1 red 1%). Shown are FBP and Pi as representative metabolites. For trehalose sector 

fractions <0.1%, no stable cycles were obtained. 
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Comparison of the model predictions to experimental proteomes 
To evaluate the prediction accuracy and trends of the predicted proteomes under dynamic conditions, 

the simulated proteome adaptation from chemostat to feast/famine conditions was compared with 

the experimentally measured proteome fold changes between chemostat and feast/famine conditions 

[52] (Figure 2.6). Proteins of trehalose/glycogen storage, ribosomes, and oxidative phosphorylation 

were used as proxies for the storage, growth and respiration sectors respectively (proteins categorized 

in the same way as calibration approach, see Methods).  

Figure 2.6. Protein concentration fold change from chemostat to feast/famine cultivation. The experimental fold 

change individual proteins are displayed as dots. Proteins of trehalose/glycogen storage, ribosomes, and 

oxidative phosphorylation were used as proxies for the storage, growth, and respiration sectors, respectively. 

Simulation fold changes for each sector are shown as vertical bars. The simulated storage sector for steady-state 

conditions was 0 and increased under simulated feast/famine conditions. As such, no fold change could be 

calculated, and therefore this fold change is not shown. 

The model predicted the experimentally observed changes in upper and lower glycolysis (Figure 2.6). 

The enzyme Tdh catalyzes the glyceraldehyde dehydrogenase reaction (TDH), which forms ATP using 

Pi. However, if upper and lower glycolysis are imbalanced during high fluxes, this reaction becomes a 

bottleneck, leading to the accumulation of FBP and subsequently to an imbalanced metabolism. 

Therefore, it was expected that that Tdh had to be upregulated under substrate fluctuating conditions 

to facilitate balanced intermediates, which was reflected in both the model predictions as well as in 

the experimental dataset. The predicted change in lower glycolysis is larger than in the experimental 

data. This is likely caused by the fact that simulated proteomes for chemostat conditions contain no 

overcapacity in the lower glycolysis sector, whereas experimental proteomes under chemostat 

conditions do appear to contain more overcapacity in this proteome sector. As such, the fold change 

between measured and simulated values is higher. Furthermore, the model reproduced the average 

change observed for the uptake sector, although it should be noted that effects of individual iso-

enzymes (especially with regard to HXK/GLK, which catalyze the first step of glycolysis) was not taken 

into account in the current model.  
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Significant deviations between experimental and predicted fractions were observed for the storage 

sector. This was significantly decreased experimentally, while the resource dependent kinetic model 

predicted an increase.  Experimentally, a decrease of 28%, from 0.25% to 0.2% of the proteome, was 

observed, while in the model an increase to 0.2% of the proteome was predicted. Possible reasons for 

this difference in sector size could be: (1) The synthesis of trehalose has additional functions in the cell 

which are not represented in the model – it is described that trehalose plays an important role in 

different stress responses, including severe substrate limitation at low dilution rates (see also Figure 

A2.3). (2) The measured and predicted proteomes do not include post-translational modifications 

which are known to significantly affect the kcat’s of enzymes in the trehalose cycle [53], nor changes 

that could occur during cell-cycle progression.  

Furthermore, there could also be a bias from the experimental setup - the differences in trehalose 

sector, combined with the observed increase of the lower glycolysis sector compared to experimental 

conditions, suggests that the experimental chemostat proteome is potentially already primed for 

dynamic environments, and as such is more robust than the predicted optimized chemostat 

proteomes.  

Conclusions & Outlook 

In this work, we developed a proteome-dependent kinetic modelling framework that predicts the 

optimal proteome composition for defined extracellular dynamic conditions. The approach could 

reproduce observed complex metabolic phenomena, such as the Crabtree effect, including long-term 

adjustments under chemostat conditions. 

Analysis of the predicted proteomes showed that under substrate limiting conditions (i.e. low dilution 

rates) with close to constant extracellular concentrations, a significant part of the optimized proteome 

is not required (thus lot of overcapacity). With increasing substrate availability and/or concentration 

fluctuations, this overcapacity is shown to decrease. Cells optimized for steady-state conditions were 

not able to survive these substrate perturbations. This suggests that in reality, where conditions are 

never as ideal and ‘optimal’ as presented in the model simulations, cells already possess proteome 

adjustments to create a more robust metabolism, allowing them to cope effectively with external 

perturbations such as substrate gradients. 

Such adjustments to perturbations were found when comparing steady-state and feast/famine 

condition predictions. The approach generated a stable phenotype and the predicted changes in 

proteome allocation, i.e. downregulation of uptake and upper glycolysis sectors, upregulation of the 

lower glycolysis sector, were also found experimentally. This complex, and strongly kinetics dependent 

prediction highlights the relevance of kinetic properties also for the regulation of protein expression.  

Nevertheless, to achieve this prediction, some constraints, which had to be derived from experimental 

observations, had to be included: the maximum mitochondrial fraction and the glucose repression on 

fermentation. These boundaries seemed to be only stretched after very long-term evolution, as was 

observed by [43]. Following this observation, the model was used to predict the proteome composition 

and metabolic behavior of cells at different stages of adaptation, able to simulate differences in 

cultivation history. Thus, the modelling approach was able to cover a large range of conditions and 

evolution outcomes, which could be specifically relevant for the prediction of production processes 

regimes running over a long time span.  
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Materials & Methods 

Proteome-dependent kinetic yeast model 
The proteome-dependent kinetic yeast model is based on a system of ordinary differential equations 

(ODEs) that describe the mass balances of all intra- and extra-cellular metabolites. This system of ODEs 

is solved with the ode15s function in MATLAB2020b, for which the absolute tolerance is set to 1e-4 

and all variables are constrained to be higher than zero with the ”NonNegative” setting. A detailed 

description of the final proteome-dependent kinetic yeast model used is given in the Appendix 1.  

To predict which proteome composition is the most competitive for defined environmental conditions, 

a Monte-Carlo approach is used. The metabolic behavior of 1000 random proteomes, generated 

around a seed proteome, is compared based on an objective function. Under steady-state conditions, 

the minimization of the residual substrate concentration was used as objective function. Under 

dynamic conditions, the minimization of a time-weighted average substrate concentration was used, 

to promote fast consumption of available substrate, therefore selecting for competitive proteomes: 

 
∫ 𝑐𝑠 ∙ 𝑡 𝑑𝑡
𝑡𝑐𝑦𝑐𝑙𝑒
0

∫ 𝑡
𝑡𝑐𝑦𝑐𝑙𝑒
0

𝑑𝑡
 

Subsequently, it is determined whether the solution is balanced. If the objective function is optimized 

and the solution is balanced, the objective function and the seed proteome are updated. In the next 

iteration, the proteome is then generated around this new seed proteome, with a maximum deviation 

of 25% per sector.  

Proteome allocation to model sectors 
All proteins from experimental datasets are sorted in the same nine protein sectors that are used in 

the model, to allow for direct comparison of the experimental proteomes and the optimized 

proteomes. The proteins are categorized per sector based on either the protein name or the 

description in the KEGG database [54,55] (Appendix 7). The whole dataset is sorted with the 

MATLAB2020b functions ‘strcmp’ and ‘contains’, which are used to search the dataset for specific 

names or keywords to group the proteins by.  

Parameter optimization 
The proteome cost parameters are estimated by optimization with the MATLAB2020b function 

fmincon. For all parameter optimizations, a multi-start approach is used. This approach minimizes the 

risk of reaching a local minimum in the solution space by starting the optimization from different initial 

guesses. The tolerance of the function is set to 1e-12 for all optimizations. For the estimation of the 

kcat parameters, the difference between the experimental and simulated fluxes is minimized. 

Additional weight in the objective function was applied for the growth rate, as kcat parameters have to 

be rejected if the maximum growth rate is not reached. 

Overcapacity simulations 
The amount of overcapacity in the yeast proteome is determined by introducing a tenth protein sector. 

This new protein sector does not have a function for the cells, and hence, only takes up space in the 

proteome. Therefore, the fraction of the proteome that can be allocated into the extra sector without 

altering the metabolic fluxes is defined as overcapacity. The overcapacity is estimated for each sector 

separately, to minimize the changes in each step. The sectors are sorted in decreasing order, and then 

optimized for overcapacity in this order. The amount of overcapacity in each sector is determined in a 

step-wise approach. Per iteration, one percent of the specific protein sector is removed and allocated 

into the extra sector. Subsequently, the fluxes of the adapted proteome are compared to the reference 

fluxes, and only if the change in the fluxes remains within the boundaries, the seed proteome is 
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updated. This new seed proteome is then used for the next iteration, in which the sector size is again 

decreased by 1%. By decreasing the sector size by 1% of the current size, the step size is reduced with 

each iteration. If the flux profile deviates more than the threshold value, the adapted proteome 

allocation is rejected. The fluxes are evaluated based the following criterium: The average value of the 

uptake and growth fluxes should not deviate more than 1% from the reference flux, to ensure that the 

same substrate uptake and growth rates are achieved. 

 

Data Availability Statement 

The  dataset on proteome fold changes between chemostat and feast/famine conditions, analyzed in 

this study, can be found in the 4TU.ResearchData repository https://doi.org/10.4121/19008833. The 

codes used for this publication can be found at https://doi.org/10.4121/19074791.  
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Appendix 

1  Model structure 

Figure A2.1. Map showing the metabolic network used in this model. 

First, we tag glucose, ethanol, glycerol and biomass with the label EC, and the other compounds with 

the label IC, then the system of equations becomes: 

{

𝑑𝑐𝐸𝐶
𝑑𝑡

= 𝐷(𝑡) ∙ (𝑐𝐸𝐶,𝑖𝑛 − 𝑐𝐸𝐶) + 𝑆𝐸𝐶  ∙ 𝑣 ∙ 𝑐𝑥

𝑑𝑐𝐼𝐶
𝑑𝑡

= 𝑆𝐼𝐶 ∙ 𝑣 ∙ 𝜌𝑥

 

In this model, 4 variables are user supplied: 

  φ : an 9-dimensional proteome allocation vector (should add up to one) 

  Davg : the average dilution rate (for batch, set to 0) 

  tcycle : the length of a feast-famine cycle 

  tfeed : the length of the feed phase of the feast-famine cycle (for chemostat, set equal to tcycle) 

 

To compensate D for the feast/famine operation, D(t) is defined as followed: 

D(t) = {
D𝑎𝑣𝑔  ∙

tcycle

tfeed
 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑒𝑒𝑑 𝑝ℎ𝑎𝑠𝑒

0 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑓𝑒𝑒𝑑 𝑝ℎ𝑎𝑠𝑒

  

The concentrations of ADP and NAD are calculated as followed: 

𝑐𝐴𝐷𝑃 = 𝑐𝐴𝑥𝑃 − 𝑐𝐴𝑇𝑃         𝑤𝑖𝑡ℎ 𝑐𝐴𝑥𝑃 
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𝑐𝑁𝐴𝐷 = 𝑐𝑁𝐴𝐷𝑥 − 𝑐𝑁𝐴𝐷𝐻         𝑤𝑖𝑡ℎ 𝑐𝑁𝐴𝐷𝑥 

2 Stoichiometry 
 

Table A2.1. The stoichiometric matrix S of the metabolic model 

 Upt UGlc LGlc Ferm Esnk TCA NDE TrSn TrDg Grwt Mtn 

Glucose -1 0 0 0 0 0 0 0 0 0 0 

Biomass 0 0 0 0 0 0 0 0 0 1 0 

Ethanol 0 0 0 1 0 0 0 0 0 0 0 

Glycerol 0 0 0 0 1 0 0 0 0 0 0 

ATP -1 -1 2 0 0 7/5 1.2 -1 -2 -2.0531 -1 

NADH 0 0 1 -1 -1 0 -1 0 0 0.2916 0 

Pi 0 0 -1 0 1 -7/5 -1.2 3 0 2.1930 1 

G6P 1 -1 0 0 0 0 0 -2 2 -0.0927 0 

FBP 0 1 -0.5 0 -0.5 0 0 0 0 -0.0236 0 

PYR 0 0 1 -1 0 -1/5 0 0 0 -0.1992 0 

Treh 0 0 0 0 0 0 0 1 -1 0 0 

(CO2)* 0 0 0 1 0 3/5 0 0 0 0.2954 0 

* CO2 is not simulated in the ODE system, but this stoichiometry was used for calculating qCO2  

Flux vector as used in ODE system: 

𝑣 =  

(

 
 
 
 
 
 
 
 

𝑣𝑢𝑝𝑡
𝑣𝑢𝑔𝑙𝑐
𝑣𝑙𝑔𝑙𝑐
𝑣𝑓𝑒𝑟𝑚
𝑣𝑒𝑠𝑛𝑘
𝑣𝑇𝐶𝐴
𝑣𝑁𝐷𝐸
𝑣𝑡𝑟𝑠𝑛
𝑣𝑡𝑟𝑑𝑔
µ
𝑣𝑚𝑡𝑛)
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3 Rate equations 

1 Uptake 

𝑣𝑢𝑝𝑡 = 𝜑𝑢𝑝𝑡  ∙ 𝑘𝑐𝑎𝑡,𝑢𝑝𝑡 ∙  
𝑐𝐺𝑙𝑐

𝐾𝑚,𝑢𝑝𝑡,𝐺𝑙𝑐 + 𝑐𝐺𝑙𝑐
 ∙  

𝑐𝐴𝑇𝑃
𝐾𝑚,𝑢𝑝𝑡,𝐴𝑇𝑃 + 𝑐𝐴𝑇𝑃

  

The value of 𝜑𝑢𝑝𝑡 is capped to 𝜑𝑢𝑝𝑡
𝑚𝑎𝑥, to reflect the limited space for proteins on the membrane. Any 

proteome allocated to this sector above this value is ignored. 

2 Upper glycolysis 

𝑣𝑢𝑔𝑙𝑐 = 𝜑𝑢𝑔𝑙𝑐  ∙ 𝑘𝑐𝑎𝑡,𝑢𝑔𝑙𝑐 ∙  
𝑐𝐺6𝑃

𝐾𝑚,𝑢𝑔𝑙𝑐,𝐺6𝑃 + 𝑐𝐺6𝑃
 ∙  

𝑐𝐴𝑇𝑃
𝐾𝑚,𝑢𝑔𝑙𝑐,𝐴𝑇𝑃 + 𝑐𝐴𝑇𝑃

∙  
𝐾
𝑖,𝑢𝑔𝑙𝑐,𝐴𝑇𝑃

𝑛𝑢𝑔𝑙𝑐,𝐴𝑇𝑃

𝐾
𝑖,𝑢𝑔𝑙𝑐,𝐴𝑇𝑃

𝑛𝑢𝑔𝑙𝑐,𝐴𝑇𝑃 + 𝑐𝐴𝑇𝑃
𝑛𝑢𝑔𝑙𝑐,𝐴𝑇𝑃

  

3 Lower glycolysis 

𝑣𝑙𝑔𝑙𝑐 = 𝜑𝑙𝑔𝑙𝑐  ∙ 𝑘𝑐𝑎𝑡,𝑙𝑔𝑙𝑐 ∙  
𝑐𝐹𝐵𝑃

𝐾𝑚,𝑙𝑔𝑙𝑐,𝐹𝐵𝑃 + 𝑐𝐹𝐵𝑃
 ∙  

𝑐𝐴𝐷𝑃
𝐾𝑚,𝑙𝑔𝑙𝑐,𝐴𝐷𝑃 + 𝑐𝐴𝐷𝑃

∙
𝑐𝑃𝑖

𝐾𝑚,𝑙𝑔𝑙𝑐,𝑃𝑖 + 𝑐𝑃𝑖
∙
𝑐𝑁𝐴𝐷𝐻
𝑐𝑁𝐴𝐷𝑥

  

4 Fermentation 

𝑣𝑓𝑒𝑟𝑚 = 𝜑𝑓𝑒𝑟𝑚  ∙ 𝑘𝑐𝑎𝑡,𝑓𝑒𝑟𝑚 ∙  
𝑐𝑃𝑌𝑅
𝑛𝑓𝑒𝑟𝑚,𝑃𝑌𝑅

𝐾
𝑚,𝑓𝑒𝑟𝑚,𝑃𝑌𝑅

𝑛𝑓𝑒𝑟𝑚,𝑃𝑌𝑅 + 𝑐𝑃𝑌𝑅
𝑛𝑓𝑒𝑟𝑚,𝑃𝑌𝑅

 ∙  
𝑐𝑁𝐴𝐷𝐻
𝑛𝑓𝑒𝑟𝑚,𝑁𝐴𝐷𝐻

𝐾
𝑚,𝑓𝑒𝑟𝑚,𝑁𝐴𝐷𝐻

𝑛𝑓𝑒𝑟𝑚,𝑁𝐴𝐷𝐻 + 𝑐𝑁𝐴𝐷𝐻
𝑛𝑓𝑒𝑟𝑚,𝑁𝐴𝐷𝐻

 

To regulate the activation of fermentation, a critical glucose concentration is set, equal to the 

residual glucose concentration at a dilution rate of 0.28 h-1 (0.057 mM).  

5 Glycerol electron sink 

𝑣𝑒𝑠𝑛𝑘 = 𝜑𝑒𝑠𝑛𝑘  ∙ 𝑘𝑐𝑎𝑡,𝑒𝑠𝑛𝑘 ∙  
𝑐𝐹𝐵𝑃

𝐾𝑚,𝑒𝑠𝑛𝑘,𝐹𝐵𝑃 + 𝑐𝐹𝐵𝑃
∙  

𝑐𝑁𝐴𝐷𝐻
𝐾𝑚,𝑒𝑠𝑛𝑘,𝑁𝐴𝐷𝐻 + 𝑐𝑁𝐴𝐷𝐻

 

6 Respiration (pyruvate-dependent and NADH-dependent) 

𝑣𝑇𝐶𝐴 = 𝜑𝑟𝑒𝑠𝑝  ∙ 𝑘𝑐𝑎𝑡,𝑟𝑒𝑠𝑝 ∙  
𝑐𝑃𝑌𝑅

𝐾𝑚,𝑟𝑒𝑠𝑝,𝑃𝑌𝑅 + 𝑐𝑃𝑌𝑅
∙

𝑐𝐴𝐷𝑃
𝑛𝑟𝑒𝑠𝑝,𝐴𝐷𝑃

𝐾𝑚,𝑟𝑒𝑠𝑝,𝐴𝐷𝑃
𝑛𝑟𝑒𝑠𝑝,𝐴𝐷𝑃 + 𝑐𝐴𝐷𝑃

𝑛𝑟𝑒𝑠𝑝,𝐴𝐷𝑃
∙

𝑐𝑃𝑖
𝑛𝑟𝑒𝑠𝑝,𝑃𝑖

𝐾𝑚,𝑟𝑒𝑠𝑝,𝑃𝑖
𝑛𝑟𝑒𝑠𝑝,𝑃𝑖 + 𝑐𝑃𝑖

𝑛𝑟𝑒𝑠𝑝,𝑃𝑖
 

𝑣𝑁𝐷𝐸 = 𝜑𝑟𝑒𝑠𝑝  ∙ 𝑘𝑐𝑎𝑡,𝑟𝑒𝑠𝑝 ∙  
𝑐𝑁𝐴𝐷𝐻

𝐾𝑚,𝑟𝑒𝑠𝑝,𝑁𝐴𝐷𝐻 + 𝑐𝑁𝐴𝐷𝐻
∙

𝑐𝐴𝐷𝑃
𝑛𝑟𝑒𝑠𝑝,𝐴𝐷𝑃

𝐾𝑚,𝑟𝑒𝑠𝑝,𝐴𝐷𝑃
𝑛𝑟𝑒𝑠𝑝,𝐴𝐷𝑃 + 𝑐𝐴𝐷𝑃

𝑛𝑟𝑒𝑠𝑝,𝐴𝐷𝑃
∙

𝑐𝑃𝑖
𝑛𝑟𝑒𝑠𝑝,𝑃𝑖

𝐾𝑚,𝑟𝑒𝑠𝑝,𝑃𝑖
𝑛𝑟𝑒𝑠𝑝,𝑃𝑖 + 𝑐𝑃𝑖

𝑛𝑟𝑒𝑠𝑝,𝑃𝑖
 

If  𝑣𝑇𝐶𝐴 + 𝑣𝑁𝐷𝐸 > 𝜑𝑟𝑒𝑠𝑝  ∙ 𝑘𝑐𝑎𝑡,𝑟𝑒𝑠𝑝 (if ETC capacity is exceeded) 

Then 𝑣𝑁𝐷𝐸 = 𝜑𝑟𝑒𝑠𝑝  ∙ 𝑘𝑐𝑎𝑡,𝑟𝑒𝑠𝑝 − 𝑣𝑇𝐶𝐴 (TCA cycle gets priority, rest of 𝜑𝑟𝑒𝑠𝑝 is used by NDE 

(mitochondrial external NADH dehydrogenase)). 

The value of 𝜑𝑟𝑒𝑠𝑝 is capped to 𝜑𝑟𝑒𝑠𝑝
𝑚𝑎𝑥, to reflect the limited space for proteins on the membrane. Any 

proteome allocated to this sector above this value is ignored. 

7 Trehalose synthesis 

𝑣𝑡𝑟𝑠𝑛 = 𝜑𝑡𝑟𝑒ℎ  ∙ 𝑘𝑐𝑎𝑡,𝑡𝑟𝑠𝑛 ∙  
𝑐𝐺6𝑃
𝑛𝑡𝑟𝑒ℎ,𝐺6𝑃

𝐾𝑚,𝑡𝑟𝑠𝑛,𝐺6𝑃
𝑛𝑡𝑟𝑒ℎ,𝐺6𝑃 + 𝑐𝐺6𝑃

𝑛𝑡𝑟𝑒ℎ,𝐺6𝑃
∙  

𝑐𝐴𝑇𝑃
𝐾𝑚,𝑡𝑟𝑠𝑛,𝐴𝑇𝑃 + 𝑐𝐴𝑇𝑃
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UTP of the original model [37] has been replaced by ATP assuming thermodynamic equilibrium 

between these pools, i.e. it is assumed that the phosphorylation ratio of the uridylate and adenylate 

pools is quasi-constant, and that the adenylate pool is about 3.5 times as big as the uridylate pool [35]. 

8 Trehalose degradation 

𝑣𝑡𝑟𝑠𝑛 = 𝜑𝑡𝑟𝑒ℎ  ∙ 𝑘𝑐𝑎𝑡,𝑡𝑟𝑑𝑔 ∙  
𝑐𝑡𝑟𝑒ℎ

𝐾𝑚,𝑡𝑟𝑑𝑔,𝑡𝑟𝑒ℎ + 𝑐𝑡𝑟𝑒ℎ
∙  

𝑐𝐴𝑇𝑃
𝐾𝑚,𝑡𝑟𝑑𝑔,𝐴𝑇𝑃 + 𝑐𝐴𝑇𝑃

 

9 Growth 

µ = 𝜑𝑔𝑟𝑤𝑡  ∙ 𝑘𝑐𝑎𝑡,𝑔𝑟𝑤𝑡 ∙   
𝑐𝐴𝑇𝑃
𝑛𝑔𝑟𝑤𝑡,𝐴𝑇𝑃

𝐾𝑚,𝑔𝑟𝑤𝑡,𝐴𝑇𝑃
𝑛𝑔𝑟𝑤𝑡,𝐴𝑇𝑃 + 𝑐𝐴𝑇𝑃

𝑛𝑔𝑟𝑤𝑡,𝐴𝑇𝑃
∙  

𝑐𝐺6𝑃
𝑛𝑔𝑟𝑤𝑡,𝐺6𝑃

𝐾𝑚,𝑔𝑟𝑤𝑡,𝐺6𝑃
𝑛𝑔𝑟𝑤𝑡,𝐺6𝑃 + 𝑐𝐺6𝑃

𝑛𝑔𝑟𝑤𝑡,𝐺6𝑃

∙  
𝑐𝐹𝐵𝑃
𝑛𝑔𝑟𝑤𝑡,𝐹𝐵𝑃

𝐾𝑚,𝑔𝑟𝑤𝑡,𝐹𝐵𝑃
𝑛𝑔𝑟𝑤𝑡,𝐹𝐵𝑃 + 𝑐𝐹𝐵𝑃

𝑛𝑔𝑟𝑤𝑡,𝐹𝐵𝑃
∙  

𝑐𝑃𝑌𝑅
𝑛𝑔𝑟𝑤𝑡,𝑃𝑌𝑅

𝐾𝑚,𝑔𝑟𝑤𝑡,𝑃𝑌𝑅
𝑛𝑔𝑟𝑤𝑡,𝑃𝑌𝑅 + 𝑐𝑃𝑌𝑅

𝑛𝑔𝑟𝑤𝑡,𝑃𝑌𝑅
 ∙  

𝑐𝑁𝐴𝐷
𝑛𝑔𝑟𝑤𝑡,𝑁𝐴𝐷

𝐾𝑚,𝑔𝑟𝑤𝑡,𝑁𝐴𝐷
𝑛𝑔𝑟𝑤𝑡,𝑁𝐴𝐷 + 𝑐𝑁𝐴𝐷

𝑛𝑔𝑟𝑤𝑡,𝑁𝐴𝐷
 

10 Maintenance 

𝑣𝑚𝑡𝑛 = 𝑘𝑐𝑎𝑡,𝑚𝑡𝑛 ∙  
𝑐𝐴𝑇𝑃

𝐾𝑚,𝑚𝑡𝑛,𝐴𝑇𝑃 + 𝑐𝐴𝑇𝑃
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4 Used parameter values 
 

Table A2.2. Estimated kcat parameters without multiplication (kcat,i), multiplication factors and the final kcat 

parameters estimated for each protein sector based on the proteome and fluxome of yeast in batch conditions 

[5,40].  

Parameter Value (mol∙Cmolx
-

1∙h-1) 
Origin 

Kcat,upt 567.03 Fitted to proteome data of [5] and flux distribution of [40] 

Kcat,uglc 223.07  Fitted to proteome data of [5] and flux distribution of [40] 

Kcat,lglc 127.84  Fitted to proteome data of [5] and flux distribution of [40] 

Kcat,ferm 229.1 Fitted to proteome data of [5] and flux distribution of [40] 

Kcat,esnk 30.721  Fitted to proteome data of [5] and flux distribution of [40] 

Kcat,resp 3.501  Fitted to proteome data of [5] and flux distribution of [40] 

Kcat,trsn 5.919  Fitted to proteome data of [5] and flux distribution of [41] 

Kcat,trdg 7.812  Fitted to proteome data of [5] and flux distribution of [41] 

Kcat,grwt 0.578  Fitted to proteome data of [5] and flux distribution of [40] 

Kcat,mtn 0.0155  [42] 
 

Table A2.3. The values for the KM as used in the model. 

Parameter Value Origin 

KM,upt,S 10.286 mol∙m-3 Fitted to model of [34], multiplied by 10 to set residual glucose to 
realistic value in Crabtree experiment 

KM,upt,ATP 0.4186 mol∙m-3 Fitted to model of [34] 

KM,uglc,G6P 1.9811 mol∙m-3 Fitted to model of [34] 

KM,uglc,ATP 0.1564 mol∙m-3 Fitted to model of [34] 

Ki,uglc,ATP 1.68 mol∙m-3 Fitted to model of [34] 

KM,lglc,FBP 0.736 mol∙m-3 Fitted to model of [34] 

KM,lglc,ADP 0.27 mol∙m-3 Fitted to model of [34] 

KM,lglc,Pi 4.78 mol∙m-3 Fitted to model of [34] 

KM,ferm,PYR 0.866 mol∙m-3 Fitted to model of [34] 

KM,ferm,NADH
 0.01∙cNADx Arbitrarily chosen (much smaller than in vivo concentration) 

KM,esnk,FBP 0.1648 mol∙m-3 Fitted to model of [34] 

KM,esnk,NADH 0.0352 mol∙m-3 Fitted to model of [34] 

KM,mtn,ATP 0.01∙cAxP Arbitrarily chosen (ATP cannot be used if it is depleted) 

KM,resp,PYR 0.8 mol∙m-3 Km of isolated mitochondria for pyruvate [56] 

KM,resp,NADH 0.03 mol∙m-3 NDI kinetics, [57], assuming that NDE has same KM 

KM,resp,ADP 0.01∙cAxP Arbitrarily chosen (much smaller than in vivo concentration) 

KM,resp,Pi 0.05 mol∙m-3 Arbitrarily chosen (much smaller than in vivo concentration) 

KM,trsn,G6P 0.973 mol∙m-3 Fitted to model of [37] 

KM,trsn,ATP 0.255 mol∙m-3 Fitted to model of [37] 

KM,trdg,Treh 5 mol∙m-3 Fitted to model of [37] 

KM,trdg,ATP 0.4186 mol∙m-3 Fitted to model of [37] 

KM,grwt,ATP 0.75∙cAxP Arbitrarily chosen so that µ is sensitive in energy charges around 
0.8 

KM,grwt,G6P 0.35 mol∙m-3 Arbitrarily chosen (much smaller than in vivo concentration) 
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KM,grwt,FBP 0.02 mol∙m-3 Arbitrarily chosen (much smaller than in vivo concentration) 

KM,grwt,PYR 0.2 mol∙m-3 Arbitrarily chosen (much smaller than in vivo concentration) 

KM,grwt,NAD 0.01∙cNADx Arbitrarily chosen (much smaller than in vivo concentration) 

 

Table A2.4. Miscellaneous parameter values used in the model. 

Parameter Value Origin 

cGlc,in 41.67 mol∙m-3 (7.5 g/l) [19] 
cx,in 0 Sterile medium 
CEtOH,in 0 No ethanol in medium 

Cglyc,in 0 No glycerol in medium 
ρx 26656 molx∙m-3 Derived from [58] and [59] 

assuming 1 mol biomass weighs 24.6 gx  
CAxP 8.28 mol∙m-3 [19] 

CNADx 1.46 mol∙m-3 [19] 
nuglc,ATP 2 Fitted to model of [34] 
ntreh,G6P 1.58 Fitted to model of [37] 
nferm,PYR 1.9 Fitted to model of [34] 
nferm,NADH 25 Arbitrarily chosen (large value for sharp sigmoid) 

nresp,ADP 25 Arbitrarily chosen (large value for sharp sigmoid) 
nresp,Pi 25 Arbitrarily chosen (large value for sharp sigmoid) 
ngrwt,ATP 25 Arbitrarily chosen so that µ is sensitive in energy charges around 

0.8 (assuming that the “safety valves” have not been triggered) 

ngrwt,G6P 10 Arbitrarily chosen (large value for sharp sigmoid) 
ngrwt,FBP 10 Arbitrarily chosen (large value for sharp sigmoid) 
ngrwt,PYR 10 Arbitrarily chosen (large value for sharp sigmoid) 
ngrwt,NAD 25 Arbitrarily chosen (large value for sharp sigmoid) 

𝝋𝒖𝒑𝒕
𝒎𝒂𝒙  0.016 Arbitrarily chosen, as twice the uptake sector in the proteome 

data from [5] 
𝝋𝒓𝒆𝒔𝒑
𝒎𝒂𝒙   0.12 Arbitrarily chosen to match the oxygen 

consumption of [45] 

 

5 Objective function 
Under steady-state conditions, the minimization of the residual substrate concentration was used as 

objective function. Under dynamic conditions, the minimization of a time-weighted average substrate 

concentration was used, to promote fast consumption of available substrate, therefore selecting for 

competitive proteomes: 

 
∫ 𝑐𝑠 ∙ 𝑡 𝑑𝑡
𝑡𝑐𝑦𝑐𝑙𝑒
0

∫ 𝑡
𝑡𝑐𝑦𝑐𝑙𝑒
0

𝑑𝑡
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6 Comparison of predicted flux distribution to experimental flux distribution 
The kcat parameters were calculated by estimating the fluxes that were obtained at half-saturation 

conditions with the experimental batch proteome [5]. This is done with a proteome model in which all 

kcat parameters equal one. Subsequently, the factor between these fluxes and the experimental flux 

distribution of [40] is defined as the kcat parameter for the corresponding reaction. 

When the obtained parameters are used to simulate a chemostat experiment at a dilution rate of 0.4 

h-1 the cells reach an unstable state because the flux capacity is not sufficient. This was assumed to be 

a result of both the conditions under which the parameters were estimated and the possibility of 

reserve flux capacity in the actual yeast proteome. The concentrations used for the estimation might 

be too low, as it is likely that the cells operate closer to saturation conditions when growing at the 

maximum growth rate. To correct the flux capacity and to enable accurate reproduction of the flux 

distribution of [40], the estimated kcat parameters are increased with specific factors (Appendix 1), 

except for the kcat for maintenance. These factors are found with a multi-start optimization aimed at 

minimizing the difference between the simulated fluxes and the flux distribution of [40]. The result of 

simulating a chemostat experiment at a dilution rate of 0.4 h-1 with the new kcat parameters shows that 

the model can now successfully simulate an experiment with the experimental proteome allocation. 

 

7 Comparison of steady state model with experimental data at different dilution 
rates 
 

Figure A2.2. Comparison of simulated steady-state fluxes at different dilution rates (orange line) with 

experimental data from [35] (black points). Upt, uptake; UGlc, upper glycolysis; LGlc, lower glycolysis; Ferm, 

fermentation; Esnk, electron sink/glycerol pathway; Resp, respiration 
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Figure A2.3. Comparison of simulated steady-state fluxes at different dilution rates (orange line) with 

experimental data from [35] (black points).  

 

8 Sensitivity analysis of steady state model at different dilution rates 

Figure A2.4. Sensitivity analysis of fluxes through each sector at different steady-state dilution rates. Per dilution 

rate, 40 simulations were evaluated. Especially around the critical dilution rate of 0.28 h-1, when the Crabtree 

effect occurs, variability with respect to respiration and fermentation is present, but overall limited variability is 

present in the fluxes of optimized proteomes. 
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Figure A2.5. Sensitivity analysis of fluxes through each sector at different steady-state dilution rates. Per dilution 

rate, 40 simulations were evaluated. High variability is especially present in the lower glycolysis and respiration 

sectors, significantly affecting the amount of overcapacity present. This high variability does however not appear 

to have a large impact on the fluxes (Figure A2.4) 

9 Optimized proteome sector sizes at increasing feast/famine perturbation 
strength  
 

Table A2.5. The optimized proteome sector sizes at increasing perturbation strength. The perturbation strength 

is expressed as the feeding time over the cycle time (TF/TC); a TF/TC of 1 is equal to chemostat, 0.05 is equal to 

an experimental pulse perturbation strength of a feast/famine cycle [19]. Upt = Uptake, UGlc = Upper Glycolysis, 

LGlc = Lower Glycolysis, Ferm = Fermentation, Esnk = Electron sink/glycerol pathway, Resp = Respiration, TrSn = 

Trehalose synthesis, TrDg = Trehalose degradation, Grwt = Growth, Strc = Structural sector, Ocap = Overcapacity 

TF/TC Upt UGlc LGlc ESnk Ferm Resp Tre Growth Strc Ocap 

1 0.0139 0.0035 0.004 0 0.0002 0.0535 0 0.2199 0.0625 0.6425 

0.5 0.0154 0.0063 0.023 0.0005 0.0002 0.1141 0.002 0.3162 0.0708 0.4516 

0.2 0.016 0.0023 0.0384 0.0002 0.0006 0.12 0.0045 0.5627 0.0618 0.1934 

0.1 0.016 0.0061 0.0573 0.0031 0.0005 0.12 0.001 0.6951 0.0618 0.0391 

0.05 0.016 0.0091 0.0585 0.0089 0.001 0.12 0.0013 0.7205 0.0592 0.0055 

0.025 0.0136 0.0092 0.0471 0.0143 0.0006 0.12 0.0008 0.7193 0.0618 0.0134 

0.0125 0.0134 0.009 0.0395 0.0063 0.0007 0.1197 0.0014 0.7379 0.0618 0.0102 
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10 The ratio of upper over lower glycolysis and its effect on the stability of the 
glycolytic pathway 
The phosphate ‘deadlock’, described by [22] to be dependent on the intracellular concentrations of Pi 

and FBP, is hypothesized (next to the trehalose cycle) to be additionally regulated by adaption within 

glycolysis. Specifically, the ratio between the capacity of upper vs lower glycolysis is considered. By 

increasing the capacity of lower glycolysis over upper glycolysis, the ATP supply should be restored 

more quickly, without complete depletion of Pi. This effect was demonstrated by changing the size of 

the lower glycolysis sector in a proteome, optimized for feast/famine conditions (Figure S6). Using the 

energy charge, it is observed that proteomes larger lower glycolysis sector have are able to maintain a 

higher energy charge throughout the cycle, however, it appears that the effect on the stability of 

glycolysis, as indicated by G6P, FBP and Pi, is limited. 

Figure A2.6. The extra- and intracellular metabolite profiles of proteomes with a upper glycolysis/lower 

glycolysis ratio between 1/10 (blue) to 1/100 (red). 
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11 Protein categorisation 
The proteome datasets are sorted in the same nine sectors that are used in the proteome-dependent 

kinetic model. The complete datasets are sorted based on protein names and keywords with the use 

of MATLAB 2020b. First, specific proteins are sorted out based on their protein name. Secondly, the 

remaining proteins are sorted based on keywords are sorted based on the KEGG Pathway names, the 

GOMF names and the GOMB names [54,55]. 

Table A2.6. Proteins and proteins groups from KEGG sorted to their respective protein sectors defined in the 

model. 

Sector Proteins/Protein groups 

Upt HXK, GLK, HXT 

UGlc PGI, FBP, PFK 

LGlc FBA, TPI, TDH, PGK, GPM, ENO, PYK, PCK 

Ferm PDC, ADH 

ESnk GPD, HOR, RHR 

Resp PYC, PDA, PDB, PDX, LPD, CIT, MDH, ACO, MLS, ICL, IDH, IDP, SDH, LCS, FUM, KGD, LPD, LAT, ALD, ACS, 

TCA Cycle, Oxidative phosphorylation 

Treh PGM, TPS, GSY, NTH, ATH, GPH 

Grwt Genetic Information Processing, Amino acid metabolism, Metabolism of other amino acids, Lipid 

metabolism, Metabolism of cofactors and vitamins, biosynthesis, Nucleotide metabolism, 

Cytoskeleton, Biosynthesis, Transcription, Cell cycle, DNA, Metabolism, Pentose Phosphate pathway, 

Ribosome, RNA, SNARE, Proteasome, Cytoskeleton, Structural, Cell wall, Translation, Biogenesis, 

Reproduction, Assembly, Golgi 

Struc HSP, HRI, PKR, PERK, GCN2, YBH, RCK, RQC, RCN, LSM, PIL, TMA, RDL, RTN, PST, STM, Not Included in 

Pathway or Brite, Environmental Information Processing, Cellular Processes, Signaling, Protein kinases, 

Protein phosphatases, Peptidases, Glycosyltransferases, Protein families: signaling and cellular 

processes, Organismal Systems, Stress, maintenance 
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Abstract 
The impact of substrate gradients on the microbial physiology has been studied for glucose but not 

other common carbohydrates that partly have different transport mechanisms that could trigger a 

different intracellular response. Here we show a comprehensive comparison of four different sugars, 

glucose, fructose, sucrose and maltose. Both mono-saccharides are transported via facilitated diffusion 

by transporters of the HXT family. For the disaccharides, maltose and sucrose follow different 

mechanisms. Maltose is transported by active transport and hydrolyzed intracellularly, while sucrose 

is hydrolyzed extracellularly and the resulting monosaccharides are imported. To explore the impact 

of the carbon source and the impact of large-scale gradients, steady-state and dynamic feast/famine 

cultivation conditions were compared with regards to physiology, the intracellular metabolome as well 

as the proteome, generating a comprehensive dataset for future modelling efforts. 

Especially, gradients of maltose lead to a significant decrease in biomass yield while Saccharomyces 

cerevisiae could cope well with gradients in glucose, fructose and sucrose. Although the physiology 

was very comparable for these sugars, the intracellular metabolome as well as proteome responded 

differently. Especially, the concentration of upper glycolytic enzymes decreased for glucose and 

maltose, while an increase was observed for sucrose and fructose when exposed to gradients. 

Nevertheless, for all conditions a surprising stable energy-charge was observed between 0.78 and 0.89, 

which is significantly different to results from single-pulse experiments or limitation to excess shifts 

where for example maltose-accelerated death was observed. These differences highlight the 

importance to study metabolism under close-to large-scale conditions to obtain representative 

physiology and kinetics. 
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Introduction 

While glucose is commonly used as only carbon source for research at lab-scale, this is rarely the case 

in large-scale industrial processes. Under industrial conditions, more complex feedstocks are utilized, 

that are derived from plant material. Clearly, a more complex feedstock with several carbon sources 

will lead to a different metabolic response compared to glucose. Four substrates will be considered in 

this chapter: the mono-saccharides glucose and fructose, and the di-saccharides sucrose and maltose. 

These substrates were selected based on the (1) different transport mechanisms, i.e. passive and active 

(2) slightly different entry points and (3) different signaling pathway responses. With these differences, 

glycolysis is expected to be perturbed in different ways: On the one hand different substrate stimulus 

as transport will determine the pulse strength, on the other hand differential regulatory expression of 

glycolytic enzymes.  

The two mono-saccharides with the composition C6H12O6, glucose and fructose are very similar 

substrates. Both are imported into the cell by one of the Hxt transporters, with Hxt1, Hxt3 and Hxt7 

being the most relevant [1–3]. Intracellularly, both glucose and fructose are further metabolized by 

the phosphorylation through hexokinase to G6P and F6P respectively. Here, for both, Hxk2 is the major 

paralog for this reaction. Glucose can also be converted by glucokinase (Glk1) [4]. Under low substrate 

conditions, a high affinity for the sugars is observed for the transport of glucose (KM = 1.5 mM) and 

fructose (KM = 6 mM) into the cell. Consequently, slightly higher residual substrate concentrations were 

observed for S. cerevisiae grown in chemostat on fructose compared to glucose due to this difference 

in affinity, however similar yields of biomass were obtained [5]. Under high substrate concentrations, 

a low-affinity uptake system is in place, with KM = 20 mM and KM = 40 mM for glucose and fructose 

respectively [4] 

The catabolism of the disaccharides has several differences in terms of uptake steps. For sucrose, the 

first step is the hydrolysis of sucrose to equimolar amounts of glucose and fructose, catalyzed  by 

invertase [6] (see Figure 4.1). Invertase is encoded by genes from the SUC family, with SUC2 the most 

common one. The invertase enzyme encoded by SUC2 can occur in two locations. The glycosylated 

variant is in the periplasmic space, where it can hydrolyze extracellular sucrose to glucose and fructose. 

The non-glycosylated version of invertase remains in the cytoplasm of the cell. Strains that do not have 

an active SUC2 gene are still able to consume sucrose at a basal level. This is most likely through 

maltases, encoded for by the MAL-gene family, which are also in the cytoplasm. Transport of sucrose 

into the cytoplasm is facilitated by active transport through Agt1 or maltose permeases [7–9].  

Maltose is a disaccharide consisting of two 1,4-α interlinked glucose molecules [10]. In contrast to 

glucose and fructose, maltose is transported by an active transport mechanism, the maltose-proton 

symporter. Then, maltose is hydrolyzed intracellularly to two glucose molecules by α-glucosidase or 

‘maltase’ [11,12] (see Figure 4.1). The difference in uptake results in a net loss of 1 ATP per mol maltose 

compared to a mol of glucose, as the proton needs to be exported again at the expense of ATP. 

Weusthuis et al. [13] reported a 25% decrease in biomass yield of Saccharomyces cerevisiae when 

grown anaerobically on maltose compared to glucose. However, aerobically, this effect is minor [14].  

S. cerevisiae has been reported to be (hyper-)sensitive to sudden changes in the extracellular maltose 

concentration [15]. This phenomenon, also known as ‘maltose accelerated death’, was described as 

the unrestricted uptake of maltose, resulting in accumulation of glucose and protons and eventually 

cell death [16]. This phenomenon was observed for extracellular maltose concentrations larger than 

50 mM [15].  
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Figure 4.1. Schematic overview of the uptake of glucose, fructose and maltose, as well as the extracellular 

hydrolysis of sucrose in S. cerevisiae, coupled to reactions and pathways in central carbon metabolism. Here 

malx1 represents mal11, mal21, mal31, mal41 and mal61; malx2 represents mal12, mal22, mal32, mal42 and 

mal62. 

Regulatory mechanisms in S. cerevisiae 
Metabolism is regulated at different cellular levels, which have significantly different response times. 

Allosteric activation or inhibition of the enzyme reaction, or post-translational modification are very 

fast mechanisms which can react to sudden changes in environmental conditions. In contrast, 

adjustment of the enzyme concentration by gene expression (regulation) requires much more time. 

This gene regulation mechanism is controlled via multiple regulatory pathways [17–22]. In these 

pathways, the nutrients are both substrate and signal molecule, activating the first steps of the 

signalling pathways. In general, glucose is a preferred substrate in yeast, controlling not only its own 

use, but also the consumption of other carbon sources. This process, called glucose repression, results 

in a preferential consumption of glucose over other present saccharides, such as sucrose, fructose, or 

maltose [19,21–24]. 

Apart from repression of the consumption of other substrates, cell growth is also regulated by glucose 

sensing via protein kinase A (PKA) in many S. cerevisiae strains. Particularly, PKA is described to regulate 

the expression of proteins involved in biomass synthesis, such as ribosomes [18,19,22,25]. A major 

signalling cascade leading to the activation of PKA is controlled by cyclic AMP (cAMP), the Gpr1/Gpa2 

and Ras proteins [17–19,26]. The Gpr1p-Gpa2p signalling system is stimulated by the presence of 

different substrates, and in turn affects the activity of adenylyl cyclase. As these proteins have different 

affinities for each sugar, a different response from this signalling system is expected. Especially, there 

is a higher affinity for sucrose compared to glucose, and the system is basically insensitive to the 

presence of fructose [27]. 

The signalling response of cAMP in S. cerevisiae upon a switch from ethanol to different sugar carbon 

sources showed a similar response for glucose and sucrose, while for maltose no significant cAMP 

response was found. For fructose, a lower response, half the size of glucose and sucrose was observed 

[28]. This also indicates that these different sugar substrates produce very different responses 

compared to each other. The exact mechanism linking this signalling cascade to cell growth in response 

to sugar levels however is still unknown [18,19]. Additionally, CEN.PK113-7D, the strain used in this 

study, lacks the ability to produce cAMP [29]. The mechanism through which PKA is activated in this 

strain is therefore still unknown. 
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Results & Discussion 
In this work, we used metabolomics and proteomics, as well as dynamic flux estimations to analyze 

the effect of different substrate transport mechanisms and substrate signaling pathways under 

dynamic conditions with four different sugars as substrates: glucose, fructose, sucrose, and maltose. 

Especially we determined: 1) Average metabolic rates and yields under both steady-state and 

feast/famine conditions, 2) the dynamic metabolic response during a feast/famine cycle, and 3) the 

changes in the proteome composition after adaptation to feast/famine conditions. Specifically, the 

chemostat was sampled after 5 residence times (50 h), to ensure that a steady-state was achieved. 

Similarly, the feast/famine cycle was sampled after 5 residence times (corresponding to 50 h or ~450 

400s cycles). A schematic overview of this is shown in Figure 4.2. 

All cellular responses were compared with respect to differences in feeding condition (steady-state vs. 

feast/famine) and used sugar sources. The results are structured by analyzing (1) the extracellular 

environment, (2) the average phenotype and then (3) metabolic and proteomic responses. Note that 

all cultures and conditions were performed with the same amount of substrate (in terms of moles of 

carbon) and water per time, resulting in the same growth rate for all conditions and carbon sources.  

  

Figure 4.2. Profile of the experimental feeding regime. After a chemostat phase (reference steady-state) of 50 
h, a block-wise feed is applied in a 400 s cycle at the same average substrate supply and dilution rate for 
another 50 h (adapted from [13]). At the top, a schematic overview of the feed rate during chemostat and 
feast/famine regimes is shown. At the bottom, the resulting extracellular substrate concentration profile in the 
fermentation broth is shown. Sampling time points are shown as red dots. 
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Substrate in the extracellular environment 
The extracellular sugar concentrations were measured under both steady-state and feast/famine (FF) 

conditions after 5 residence times, allowing the cells to adapt to the imposed feeding regime (see 

Figure 4.2). For the monosaccharides, a significant difference can be observed: for fructose a much 

higher residual sugar concentration under both the steady-state (Frc/Glc = 4.7 fold) and the 

feast/famine (Frc/Glc = 5.8 fold) condition are observed. This difference in residual sugar concentration 

can be explained by differences of the affinities of hexose transporters which are much higher for 

glucose (KM = 1.5 mM) compared to fructose (KM = 6 mM) [4]. As a consequence, the relative changes 

in concentration during the feast famine cycle were lower under fructose conditions (max/min Frc = 

1.8 compared to max/min Glc = 4.9), which may result in a milder intracellular metabolic response. 

For the disaccharides, the transport mechanisms are very different. Using sucrose feeding, it can be 

observed that the fed sucrose is immediately converted into glucose and fructose by invertase leading 

to a residual sucrose concentration of less than 0.01 mM. Comparable to the respective mono-

saccharide cultivations, the difference in affinity for glucose was higher, i.e. at steady-state, the 

residual fructose concentration was 1.5 fold higher than glucose.  

Strikingly, while the residual glucose concentration at the end of the cycle with sucrose feeding was 

very similar to conditions with glucose as only substrate, the residual fructose concentration was far 

lower compared to conditions with only fructose. This indicates that the affinity for fructose increased 

under conditions with sucrose as substrate. While this may be explained by a lower transport rate 

(about half), this effect was not found for glucose. 

With maltose as substrate, no extracellular hydrolysis was observed. Rather, the extracellular maltose 

concentration appeared to follow a similar profile as under glucose conditions. Furthermore, similar 

to the glucose conditions, a higher affinity for maltose under feast/famine condition compared to the 

steady-state was visible. Similar (glucose equivalent) residual sugar concentrations were observed 

under both steady state (Malglc,eq/Glc = 1.1) and feast/famine (Mal/Glc = 0.8) conditions. Relative 

changes however were observed to be slightly larger under maltose conditions (max/min Mal = 6.2 

compared to max/min Glc = 4.9). However, a faster decrease was observed for the glucose 

concentration during feast/famine cycles, with substrate uptake reaching zero after 350 s, while 

maltose was still decreasing at that timepoint. This indicates that the initial glucose uptake rate was 

higher compared to the maltose uptake. 

Uptake rate estimation 
While steady-state uptake rates were very comparable between the different sugars (see Table 4.1), a 

very different picture is observed for the dynamic uptake rates during the feast/famine cycles (Figure 

4.3).  

To quantitatively compare the transport of sugars into the cell under feast/famine conditions, a 

piecewise affine (PWA) rate approximation was calculated based on the concentration measurements. 

The timepoints 0, 15, 80, 220 and 400 s were used as breakpoints [30,31]. Furthermore, the first and 

last timepoints were coupled to reflect the cyclic nature of the imposed feeding regime (see Figure 

4.3). The breakpoints were manually selected as they resulted in the lowest sum of residual squares 

(SSR) over all different conditions.  

For the monosaccharides, clear differences in the uptake rate dynamics were observed. As expected, 

based on the lower affinity (higher KM), the fructose uptake rate changed less pronounced compared 

to the glucose uptake rate during the cycle. The maximum for glucose was 1.46 µmolglc,eq/gcdw/s 

compared to 0.80 µmolglc,eq/gcdw/s for fructose, nearly a two-fold difference. On the other hand, 
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fructose was consumed over the whole cycle, while the glucose uptake was basically stopped after  

360 s.  

Under sucrose conditions, a very high invertase rate was observed, i.e. there was no residual sucrose 

measured during any time point of the cycle. This was different for the invertase products, glucose and 

fructose, here a peak uptake rate of 0.45 µmolglc,eq/gcdw/s was observed which dropped to 0.25 

µmolglc,eq/gcdw/s at the end of the cycle. These rates did thus not follow the profiles of the respective 

monomer cultivations, where the uptake dropped to zero towards the end of the cycle, indicating that 

the presence of sucrose has a significant effect on the overall sugar transport into the cell.  

Figure 4.3. Estimation of the sugar uptake rates in µmol/gcdw/s (in glucose equivalents, i.e. 1 mol maltose = 2 mol 

glucose equivalents) and measured extracellular sugar concentrations over one 400s cycle during four different 

cultivation conditions: Glucose, fructose, sucrose and maltose as substrates. The estimation of the uptake rates 

is based on a piece-wise linear function approximation. Due to the cyclic nature of the feast/famine regime, the 

first point of the cycle at 0 s corresponds to the last point at 400 s. 

Surprisingly, the maltose uptake rate, which is catalyzed by an active proton symport, was lower 

compared to glucose (diffusion). The maximum reached was 0.85 µmolglc,eq/gcdw/s, only about 60% of 

the glucose uptake maximum. Additionally, maltose transport continued up until the end of the cycle, 

maintaining a minimum uptake rate of 0.11 µmolglc,eq/gcdw/s. 
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Average biomass specific rates and yields 
Under steady state conditions, a growth rate of 0.1 h-1 was achieved for all different sugars. In table 

4.1, the rates and yields under steady-state and feast/famine conditions have been summarized for 

each of the four substrates. At this growth rate, no significant differences were observed between the 

different sugars at steady-state. 

Looking into the differences between steady-state and feast/famine feeding, small differences are 

observed for most sugars. Under glucose conditions there is a small decrease in biomass yield (-3 %), 

with only minor differences in overall rates. Comparable to glucose, there were only slight decreases 

in biomass yield under fructose and sucrose conditions. For maltose however, a more significant 

decrease in biomass yield (-8%) and an increase in respiratory activity (+13%) were observed for 

feast/famine conditions as compared to steady-state. This decrease in yield, coupled with an increase 

in respiration, indicates that more ATP may be consumed in a futile cycle or stress response. It has 

been reported that a culture grown under maltose-limited conditions was unable to cope with a pulse 

of maltose (Postma et al., 1989). This phenomenon, called maltose-accelerated death, results in a 

significant accumulation of maltose inside the cell, which, when converted into glucose, can no longer 

be processed by hexokinase, due to insufficient capacity, leading to a high intracellular osmotic 

pressure. In addition, the cell is acidified by the large influx of protons due to the unregulated maltose 

transport. These two factors subsequently lead to cell death [15].  

Putatively, in the case of a maltose feast/famine regime a large part of the imported maltose is directly 

funneled through the trehalose cycle to prevent this phenomenon from occurring. Additionally, the 

transport seems less active compared to continuously limited conditions. This topic will be further 

discussed during the analysis of the intracellular metabolomics and proteomics. 
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Table 4.1. Reconciled average biomass specific rates and yields for steady-state and feast/famine conditions with 

different sugars as substrate. Standard deviation was calculated from three biological replicates. The relative 

changes between steady-state and feast/famine conditions are given in the last column. 

 

 

 

Glucose 

Rate/Yield Steady-state Feast/Famine 
(averaged over cycle) 

Change (%) 

-qs (mCmol · gX
-1 · h-1) 6.89 ± 0.21 7.06 ± 0.07 2 

µ (h-1) 0.101 ± 0.0002 0.100 ± 0.0006 0 

-qO2 (mmol · gX
-1 · h-1) 2.67 ± 0.21 2.70 ± 0.04 1 

qCO2 (mCmol · gX
-1 · h-1) 2.85 ± 0.21 2.80 ± 0.05 -2 

CX (gX·L-1) 3.64 ± 0.16 3.46 ± 0.17 -4 

YX/S (gX/gS) 0.49 0.47 -3 

Fructose 

Rate/Yield Steady-state Feast/Famine 
(averaged over cycle) 

Change (%) 

-qs (mCmol · gX
-1 · h-1) 6.84± 0.12 7.07± 0.18 3 

µ (h-1) 0.104± 0.0007 0.098± 0.0009 0 

-qO2 (mmol · gX
-1 · h-1) 2.75 ± 0.14 2.58 ± 0.16 -6 

qCO2 (mCmol · gX
-1 · h-1) 3.12 ± 0.09 3.01 ± 0.15 -4 

CX (gX·L-1) 3.63 ± 0.07 3.51 ± 0.04 -3 

YX/S (gX/gS) 0.49 0.47 -3 

Sucrose 

Rate/Yield Steady-state Feast/Famine 
(averaged over cycle) 

Change (%) 

-qs (mCmol · gX
-1 · h-1) 7.00 ± 0.09 7.23 ± 0.22 3 

µ (h-1) 0.101 ± 0.0004 0.100 ± 0.0003 0 

-qO2 (mmol · gX
-1 · h-1) 2.77 ± 0.14 2.81 ± 0.10 1 

qCO2 (mCmol · gX
-1 · h-1) 3.05 ± 0.13 3.11 ± 0.08 2 

CX (gX·L-1) 3.55 ± 0.11 3.45± 0.02 -3 

YX/S (gX/gS) 0.50 0.48 -3 

Maltose 

Rate/Yield Steady-state Feast/Famine 
(averaged over cycle) 

Change (%) 

-qs (mCmol · gX
-1 · h-1) 6.99 ± 0.06 7.61 ± 0.04 9 

µ (h-1) 0.099 ± 0.0008 0.100 ± 0.0005 0 

-qO2 (mmol · gX
-1 · h-1) 2.87 ± 0.13 3.24 ± 0.08 13 

qCO2 (mCmol · gX
-1 · h-1) 3.12 ± 0.12 3.58 ± 0.11 15 

CX (gX·L-1) 3.57 ± 0.07 3.27 ± 0.03 -8 

YX/S (gX/gS) 0.48 0.44 -8 
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Intracellular metabolite dynamics 
Based on the observed changes in the uptake rate dynamics for the different sugars (Table 2), 

differences in intracellular metabolite concentrations in time were expected. To this end, metabolites 

of the central carbon metabolism were quantified for both steady-state and feast/famine conditions 

for the different sugar substrates. 

Glycolysis and trehalose cycle 
With glucose as substrate, the concentrations of metabolites of the upper glycolysis, such as glucose-

6-phosphate (G6P), increased rapidly, reaching its maximum concentration 60 s after the start of the 

cycle, delayed compared to the maximum extracellular glucose concentration at 20 s [32] (see Table 

4.2 and Figure 4.4). Similarly, a peak was observed for fructose-1,6-bisphosphate (FBP) at 60 s, which 

then decreased following G6P. In the lower glycolysis, 3PG showed a minor increase during the first 20 

seconds after the pulse, followed by a sharp decrease until 60 s, at which point it increased again. This 

behavior is inverse to the profile of FBP, and can be explained by the allosteric activation by FBP of the 

last (rate-limiting) step of the lower glycolysis, pyruvate kinase [33]. Towards the end of the cycle, after 

220 s, the 3-phosphoglycerate (3PG) concentration decreased again, likely caused by the fact that 

glucose uptake was significantly decreased after this point. 

Table 4.2. Comparison of selected metabolic concentrations and fluxes during feast/famine conditions for the 
different sugars. Peaks are defined as the highest concentration measurement during a cycle. 

Glucose 

Metabolite Max/min ratio Time peak 
concentration (s) 

Fold change average 
FF vs SS  

Extracellular glucose 4.88 20 1.12 

G6P 8.65 60 1.05 

FBP 14.66 60 0.59 

3PG 2.14 220 0.88 

Energy charge 1.13 60 0.98 

Uptake flux 313 15 1.02 

Fructose 

Metabolite Max/min ratio Time peak 
concentration (s) 

Fold change average 
FF vs SS 

Extracellular fructose 1.76 20 0.79 

G6P 1.72 71 0.57 

FBP 3.86 71 0.62 

3PG 1.34 5 1.04 

Energy charge 1.07 50 1.03 

Uptake flux 172 15 1.03 

Sucrose 

Metabolite Max/min ratio Time peak 
concentration (s) 

Fold change average 
FF vs SS 

Extracellular total 
sugar/glucose/fructose 

2.47 / 3.17 / 2.10 20 0.72 / 0.75 / 0.70 

G6P 1.48 70 0.88 

FBP 2.17 70 0.72 

3PG 1.45 5 1.11 

Energy charge 1.05 70 0.98 

Uptake flux 1.80 15 1.03 
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Maltose 

Metabolite Max/min ratio Time peak 
concentration (s) 

Fold change average 
FF vs SS 

Extracellular maltose 6.23 20 1.16 

G6P 3.44 99 1.05 

FBP 7.73 99 0.59 

3PG 1.61 10 0.88 

Energy charge 1.15 71 0.97 

Uptake flux 7.63 15 1.09 

 

As was already indicated before from the extracellular sugar profile for fructose conditions, the relative 

change in concentration (1.76) is much smaller than for the glucose condition (4.9). The reduced 

perturbation is also reflected in the intracellular metabolic response, i.e. the glycolytic response to 

fructose having only around a quarter the magnitude compared to glucose (see table 2). This same 

effect is also propagated into the trehalose cycle and pentose phosphate pathway (see Appendix). 

Similarly, for the disaccharide sucrose with lower maximal uptake rates, the magnitude of the 

metabolic response was smaller compared to glucose conditions. For example, in G6P a ~50% increase 

was observed, compared to a ~750% increase under glucose conditions. The reduced dynamics were 

then also observed in the pentose phosphate pathway (see Appendix) and the trehalose cycle, 

suggesting a reduced glucose recycling through this cycle. Interestingly, for lower glycolysis, i.e. 

downstream of FBP, larger changes in metabolite concentrations were observed, possible due to the 

missing release of inorganic phosphate (Pi) from within the trehalose cycle. 

Figure 4.4. Concentration measurements of intracellular glycolytic metabolites during a 400s feast/famine cycle for glucose (green), 
fructose (black), sucrose (blue) and maltose (red) as substrate. Dashed lines indicate disaccharide sugars, full lines indicate 
monosaccharide sugars. 
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Interestingly, a significant delay of 30 s in the metabolic responses for the maltose condition can be 

observed compared to all other conditions (see also appendix for further metabolites). Additionally, a 

much higher peak was observed for trehalose-6-phosphate (T6P) (Figure 4.5), indicating a possible 

difference in the activity in the trehalose cycle under maltose conditions compared to glucose. An 

increase in trehalose cycle activity could partly explain the decrease in biomass yield and increase in 

respiratory activity compared to glucose. Nevertheless, an increase in activity alone would not be 

sufficient to explain the observed yield drop of 8%. Possible other mechanisms responsible for this 

decrease in yield could be cycling of maltose within the cell, such as between the cytosol and vacuole 

or extracellular space.  

Figure 4.5. Concentration measurements of intracellular metabolites of the trehalose cycle during a 400s 
feast/famine cycle for glucose (green), fructose (black), sucrose (blue) and maltose (red). Dashed lines indicate 
disaccharide sugars, full lines indicate monosaccharide sugars. 
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Energy homeostasis - Nucleotides 
An important finding for the glucose feast/famine regime was increased energy and AxP (sum of 

ATP+ADP+AMP) homeostasis compared to cells grown under continuous sugar-limited conditions, i.e. 

the so-called “ATP paradox” was not observed [32] (Figure 4.6). This phenomenon describes the 

observation that upon a glucose pulse the sum of adenylate nucleotides in the cell decreases although 

more substrate becomes available [34,35]. Here, cells adapted to feast/famine have stable AxP levels 

(Appendix, Figure A4.2), for all sugars used. Furthermore, from the adenylate energy charge [36], it 

can be observed that energy homeostasis was maintained throughout the feast/famine cycle. 

Interestingly, again a significant delay was observed for maltose conditions, with the energy charge 

lagging ~30 s behind compared to the other sugars. 

  

Figure 4.6. Energy charge (EC) during a 400s feast/famine cycle for glucose (green), fructose (black), 
sucrose (blue) and maltose (red) as substrate. Dashed lines indicate disaccharide sugars, full lines indicate 
monosaccharide sugars. 
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Proteome Adaptations 
As was demonstrated in Chapter 2 for glucose as substrate, the change in metabolic response between 

steady-state and feast/famine conditions could not be explained by metabolite and enzyme kinetics 

alone. The model could only be fitted to the experimental data by additional adjustment of specific 

protein concentrations, especially the hexose transporter(s) and hexokinase/glucokinase (see Chapter 

2). Therefore, changes in the proteome composition between steady-state chemostat and dynamic 

feast/famine conditions for the different sugar substrates were expected and measured. 

Non-targeted proteome comparison 
The whole proteome was compared between conditions using label-free quantification. In total, 1126 

proteins from 4748 peptides were identified in biological duplicates, covering 18% of metabolic 

proteins (345 out of 1928) reported in the KEGG database (https://www.kegg.jp/kegg-

bin/download_htext?htext=sce00001).  

Sucrose, fructose and glucose appeared to be the most differentiated conditions with 12 enzymes 

uniquely upregulated under glucose, 13 for sucrose and 15 for fructose (Figure 4.7). Proteins 

considered here  have a fold change larger than 0.25, with an abundance of more than 0.02 % of the 

total proteome. Maltose in contrast only had 2 unique differentially regulated proteins. Only one 

protein was increased for all conditions, Ald6p. Ald6p, an aldehyde dehydrogenase, is responsible for 

the conversion of (accumulated) acetaldehyde into acetyl-CoA under stress conditions [37]. This could 

be linked to the increased acetate production under feast/famine conditions compared to steady state. 

Under fructose and sucrose conditions, Ssa4p is upregulated (see Figure 4.7). Ssa4p is chaperone 

protein which is part of the S. cerevisiae SSA subfamily of cytosolic Hsp70 proteins. Hsp70 proteins are 

molecular chaperones, binding newly-translated proteins to assist in proper folding and prevent 

aggregation/misfolding [38]. Knockout of Ssa4p was found to result in a phenotype which is non-

distinguishable from the wildtype, however, its expression has been found to be linked to heat shock, 

cold and ethanol stress, diauxic shift [39–42]. The observation here, a consistent increase for all 

substrates during dynamic substrate conditions, is a new condition of upregulation. 

Common between glucose, fructose and sucrose are Tef1p and Glk1p, an elongation factor and a 

paralogue to hexokinase with different kinetic properties, especially with regards to allosteric 

regulation by T6P [43], which was also shown to be an essential enzyme to fit the kinetic model, 

described in Chapter 2. 

Comparing the protein levels with the decrease from steady-state to feast/famine, condition specific 

changes were observed. As before, a change is identified when a fold change larger than 0.25, with an 

abundance of more than 0.02 % of the total proteome is observed. There was no protein commonly 

decreased for all substrates (Figure 4.8). Under sucrose feast/famine there were 31 proteins 

decreased, while for maltose only 9 proteins were lower concentrated. Downregulated for glucose, 

maltose and sucrose conditions, was Hsp26p, a molecular chaperone (see Figure 4.8). Hsp26p is barely 

expressed in unstressed cells, however strongly induced by among other conditions, carbon starvation 

[44,45]. This indicates that under feast/famine conditions, on average, cells appear to experience less 

stress from carbon starvation compared to steady-state conditions. 

There was a common decrease for maltose and glucose for hexokinase I (Hxk1p), but this was not 

observed for sucrose and fructose. Furthermore, the abundance of glutamate dehydrogenase I 

(Gdh1p) was reduced in both conditions, which was earlier described to be regulated by carbon 

sources [46], but not yet by carbon source dynamics. 
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In earlier work, upregulation of the transcription factors Cyc8p, Wtm1p and Rap1p, with 

downregulation of Hog1p was found during batch cultivations comparing sucrose and glucose [47]. 

However, under chemostat conditions in this work no significant changes were observed for these 

specific proteins. Many other transcription factors and signaling proteins were below detection limit 

and, as such, could not be evaluated. 

Figure 4.7. A Venn diagram of upregulated proteins (> 0.25 fold change, > 0.02% of proteome) from steady state to 
feast famine for all four substrates. 

Figure 4.8. A Venn diagram of downregulated proteins (> 0.25 fold change, > 0.02% of proteome) from steady state to feast 
famine for all four substrates. 
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Pathway enrichment 
A pathway enrichment analysis was performed based on the gene ontology biological process terms 

(GO terms) [48]. This allows for the identification of global changes in protein groups related to specific 

biological functions. The analysis was performed using a Fisher’s exact test, selecting for proteins 

groups of more than 10 proteins of which at least 2/3 of proteins were significantly differentially 

expressed [49]. 

Considering the changes from steady-state to feast/famine conditions, for each of the different 

substrates, no significant changes were observed in specific biological functions. Thus, while these 

conditions exhibit different metabolic responses, these changes seem mostly based on post-

translational modifications and kinetics, rather than changes on the proteomic level. 

Next to analyzing the changes between steady-state and feast/famine conditions, this GO analysis was 

also performed on the feast/famine proteome measurements between the different substrates (see 

Figure 4.9). Significant changes were observed related to cytoplasmic translation and translational 

termination for all other sugar conditions compared to glucose, which was earlier observed for 

CEN.PK113-7D comparing sucrose to glucose growth conditions [47]. Additionally, proteins related to 

the cellular response to oxidative stress were found to be significantly enriched for all sugar conditions 

compared to glucose, which could be related to the increased respiration observed for sucrose and 

especially maltose conditions. A higher expression of proteins related to glycolytic processes was found 

for glucose conditions compared to the other sugars, which can be related to the higher glucose uptake 

flux, which potentially required a larger glycolytic capacity. 
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Proteome adaptation within the glycolysis pathway 
As the entry point of central carbon metabolism, a special focus was given to the proteome changes in 

hexose transporters and glycolysis. As discussed in Chapters 2 and 3 (glucose conditions), the 

upregulation of proteins of the lower glycolysis (especially TDH) from steady-state to feast/famine in 

combination with the downregulation of hexose transporters and proteins in the upper glycolysis was 

assumed to provide robustness to cope with extracellular perturbations. These changes should also 

prevent a putative phosphate ‘deadlock’ [50]. Especially, HXT and HXK decreased by more than 30%, 

lower glycolytic enzymes like TPI and TDH which are known to be abundant still increased by nearly 

30%. Downstream of TDH changes in protein concentrations were less pronounced.  

While the changes with maltose as substrate partially followed the ones with glucose, this was not the 

case for fructose and sucrose as substrates (Figure 4.10). Instead, for these two substrates, an 

Figure 4.9. Enrichment analysis by Fisher's exact test for significant proteins between glucose and the three other 
substrates under feast/famine conditions. For all significant terms the p-value, group size and the enrichment 
(odds) factor are displayed. Plots were generated in Python, using a visualization toolbox developed by Schessner 
et al. [49]. 

C. Maltose / Glucose 

B. Sucrose / Glucose 

A. Fructose / Glucose 
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upregulation of transporters and upper glycolytic proteins was observed, without significant 

upregulation of lower glycolysis. The largest observed increase of glycolytic enzymes was actually 

observed for sucrose, with an increase of 41% for GLK (upper glycolysis). The inverse trends compared 

to glucose and maltose might be strongly linked to the lower affinity of the fructose transporter and 

reduced dynamics from its higher KM value. The upregulation of transporters was highest with sucrose 

as substrate, where glucose and fructose are transported over the membrane.  

This distinct difference between the protein adaptation observed for glucose & maltose and fructose 

& sucrose, in combination with the observed differences in uptake rates and especially metabolic 

response, highlights a yet unknown difference in regulation of central carbon metabolism under 

dynamic substrate conditions for these different sugars.   

Figure 4.10. The log2 changes observed in protein concentrations between steady-state chemostat and 
feast/famine conditions for hexose and maltose transporters as well as glycolytic enzymes. 

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

HXT HXK GLK PGI PFK FBA TPI TDH PGK GPM ENO PYK

Lo
g2

 c
h

an
ge

 F
F/

SS

Glucose Fructose Sucrose Maltose



 

 
 

113 
A dive into yeast’s sugar diet – Comparing the metabolic response of glucose, fructose, 

sucrose & maltose under dynamic feast/famine conditions 

Conclusions 
The differential metabolic response of S. cerevisiae to different substrates under dynamic conditions 

highlights the importance to consider the intricacies of metabolic regulation when designing any 

bioprocess. While the sugar substrates are chemically very similar, they surprisingly elicited a specific 

different metabolic response under dynamic substrate conditions.  

Substrate gradients of maltose lead to a decrease in biomass yield, while this same effect was not 

observed for glucose, fructose and sucrose. Striking is also the difference observed in uptake rate, with 

a very high initial uptake rate being observed with glucose, a similar uptake rate between maltose and 

fructose and a significantly lower uptake rate with sucrose. This indicates clearly that the kinetic 

properties of transporters influence metabolism, however, the significant differences in proteome 

adaptation between especially glucose & maltose vs fructose & sucrose substrate conditions suggests 

that beyond the effect of substrate transport, the substrate signaling of these different sugars also 

plays an important role in the metabolic response. The energy charge, which can be used as a proxy 

for the energetic stability of the cell, was observed to be stable for all substrates under dynamic 

feast/famine conditions, contrary to what was expected based on results from single-pulse 

experiments or limitation to excess shifts where for example maltose-accelerated death was observed. 

Keeping the diverse industrial feedstocks, such as molasses, in mind, this highlights the importance to 

look beyond glucose as model sugar substrate in exploring the regulation of metabolism under 

dynamic conditions and consider further evaluation of these other sugar substrates. 

However, the interpretation of data itself is currently still challenging, showing gaps in the current 

understanding of regulation under dynamic conditions. While for glucose conditions, especially with 

respect to metabolomics, proteomics and fluxomics, several datasets are available, datasets for other 

carbon sources are sparse. Of special interest is the generation of comprehensive datasets that will 

include flux distributions. This should include flux data from 13C labelling experiments, in combination 

with kinetic modelling, which may assist with the evaluation of different hypotheses on the regulation 

of the metabolic response to feast/famine conditions. In this way, the effect of the different glycolytic 

proteome adaptation can be evaluated, and its effect on the metabolic response can be quantified and 

compared to the obtained metabolomics dataset. 

An additional challenge is the existence of physiological differences between strains. As was concluded 

from earlier work, significant differences with respect to the consumption of different sugars can be 

observed between different strains of S. cerevisiae [51]. Botman et al. [28] observed large differences 

in cAMP response between different sugar substrates, however, certain S. cerevisiae strains, such as 

the strain used in this work, CEN.PK113-7D, are deficient in cAMP [29]. To what extent such differences 

in the substrate signaling pathways affected the observed metabolic response remains to be 

elucidated. 
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Materials & Methods 

Strain and Culture Conditions 
The haploid yeast Saccharomyces cerevisiae CEN.PK113-7D, obtained from the Centraalbureau van 

Schimmelcultures (Fungal Biodiversity Center, Utrecht, The Netherlands), was used in this study. The 

cultivations were performed using a low-salt Verduyn minimal medium [52] with a fructose/glucose 

concentration of 7.5 g/L or a maltose/sucrose concentration of 7.12 g/L, with a feed of the same 

composition. 1L-Erlenmeyer flasks containing 100 mL medium were inoculated with cells from a 

cryovial (glycerol, -80oC) and the inoculation cultures were subsequently grown for 10 h at 200 rpm 

and 30 °C. The inoculation culture was used to inoculate a 7 L bioreactor (Applikon Biotechnology B.V., 

Delft, The Netherlands) containing a working volume of 4 L, controlled by a Biostat B Plus controller 

(Sartorius AG, Göttingen, Germany). The reactor was aerated with pressurized air at 1 L/min (0.25 vvm) 

using a Smart series mass flow controller 5850S (Brooks Instrument, Hatfield, PA, USA). The reactor 

was operated at 0.3 bar overpressure, at 30 oC, with a stirrer speed of 600 rpm. The pH of the broth 

was maintained at 5.0 by automated addition of either 4M KOH or 2M H2SO4. Once the batch phase 

was completed (indicated by a fast decrease in CO2 signal and a sharp increase in dissolved oxygen 

(DO)), the chemostat phase (steady-state) was started at a dilution rate of 0.1 h-1 for 50 h. DO was not 

controlled but was well above > 60% during the whole chemostat phase. After about 5 residence times, 

sampling for proteomics was performed. 

Dynamic Feast Famine Setup 
After five residence times (50 h) of continuous feeding, the feeding was changed to a block-wise 

feeding regime, leading to a feast/famine regime [32]. Cycles of 400 s were applied by a feeding 

medium for 20 s, followed by a period of 380 s of no feeding. The medium pump was controlled using 

an automatic timer (PTC-1A, Programmable timing controller, Omega Engineering Inc., Stamford, CT, 

USA). During the 20-second feeding period, 43 ± 1 mL of fresh medium were added. The same volume 

was subsequently withdrawn for 260s at a flow rate of 0.166 ± 0.001 mL s−1 maintaining the broth 

volume nearly constant at 4 L. After about 5 residence times (450 cycles), sampling for proteomics was 

performed. 

Sample acquisition and analysis 

Extracellular metabolites 
For the analysis of extracellular metabolites, 1.5 ml broth was taken using a syringe containing ~26 g 

pre-cooled (-20 oC) stainless steel beads, which was subsequently filtered as described by Mashego et 

al. [53]. Extracellular acetate, ethanol, glucose and glycerol concentration were measured using HPLC 

or enzymatic assay, as described by Canelas et al. [54]. Biomass concentrations (cell dry weight) were 

determined using a gravimetrical method described by Suarez-Mendez et al. [32]. The CO2 and O2 

fractions in the off-gas were determined using a combined infrared/paramagnetic NGA2000 analyzer 

(Rosemount Analytics, St. Louis, MO, USA). 

Intracellular metabolites 
Samples for the measurement of intracellular metabolites were taken by rapidly withdrawing 1 ml of 

broth and quenching it in 5 ml cold (-40 oC) methanol, as described by Lange et al. and Canelas et al. 

[52,55]. Taken samples were weighted, and subsequently poured into a filtration setup (using a Supor-

200 cellulose membrane, 0.2 µm, 47 mm, Pall Corporation), which already contained 15 ml pre-cooled 

(-40 oC)  methanol. After this, vacuum was applied, followed by the addition of 15 ml cold (-40 oC) 

methanol to wash the biomass [56]. The filter with the washed biomass was subsequently transferred 

to a 50 ml falcon tube containing 30 ml of a 75% (v/v) ethanol solution, preheated to 75 oC. To this, 

100 µl 13C yeast cell extract was added as internal standard [57]. The tube was then shaken and put 
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into a water bath at 95 oC for 3 minutes to extract the intracellular metabolites. After extraction, the 

tubes were immediately cooled in an ice bath, and the filter was removed. The cell extract was 

subsequently stored at -80 oC and later concentrated through complete evaporation of the aqueous 

ethanol solution and resuspended into 500 µl milliQ water, as described by Mashego et al. [58]. The 

resuspended samples were centrifuged at 15000 g for 5 minutes at 1 oC, and the supernatant was 

transferred to a new tube, which was subsequently centrifuged again to remove all solid components 

in the sample. The obtained supernatant was then transferred into a screw-capped vial and stored at 

-80 oC. Samples were analysed by GC-MS [57–59] and LC-MS [60]. 

Proteomics analysis 
For each proteome sampling timepoint, a sample normalized to 10 OD units was withdrawn into an 

eppendorf tube and immediately centrifuged at 8000 g for 5 min at 4 oC. Supernatant was discarded, 

the pellet was resuspended in 2 mL saline solution (0.9% NaCl) (cooled beforehand at 4oC) and 

centrifuged again (8000 g, 5 min, 4 oC). The supernatant was discarded once more, again resuspended 

in 2 mL saline solution and centrifuged (8000 g, 5 min, 4 oC). Then, the supernatant was discarded and 

the sample was snap-frozen using liquid nitrogen and stored at -80 oC until further analysis. For each 

timepoint, duplicate samples were taken. To process the samples for proteomics analysis, the cell mass 

was normalized to a dry weight of 1.6 mg and then mechanically lysed using 0.5-mm zirconium beads 

and a PreCellys homogenizer. Proteins were isolated using Bligh and Dyer extraction [61], followed by 

reduction, alkylation, and digestion using trypsin. The samples were analysed in technical triplicates 

by liquid chromatography tandem mass spectrometry (LC-MS/MS) using a Vanquish UHPLC coupled to 

a Q Exactive Plus Orbitrap MS (Thermo Fisher Scientific, Waltham, MA, USA). Peptides were separated 

using reverse-phase chromatography using a gradient of water with 0.1% formic acid (solvent A) and 

acetonitrile with 0.1% formic acid (solvent B) from 2% B to 45% B in 50 min. Data-dependent 

acquisition (DDA) was performed with a resolution setting at 70,000 within the 400- to 1,600-m/z range 

and a maximum injection time of 75 ms, followed by high-energy collision-induced dissociation 

activated (HCD) MS/MS on the top 15 most abundant precursors using a resolution setting of 17,500 

and a 200- to 2,000-m/z range with a maximum injection time of 50 ms. The minimum intensity 

threshold for MS/MS was 1,000 counts, and peptide species with 1 and >8 charges were excluded. 

MS/MS spectra were analysed with the SEQUEST HT search engine and Proteome Discoverer, version 

2.3, against the proteins of Saccharomyces cerevisiae (Uniprot, S. cerevisiae CEN.PK113-7D, 

ID:UP000013192) [29]. Label-free quantification was performed using the top three unique peptides 

measured for each protein. Retention time alignment was performed on the most abundant signals 

obtained from nonmodified peptides measured in all samples, and results were corrected for the total 

ion intensities measured for each sample. The data was analysed for statistical differences using 

Perseus 1.6.10.45 [62]. A two sample test was used to determine the significance of the fold change, 

with a significance level threshold of p < 0.01, and at least 2 unique peptides per protein. 

Data availability 

The  dataset on proteome fold changes between chemostat and feast/famine conditions, analyzed in 

this study, can be found in the 4TU.ResearchData repository at https://doi.org/10.4121/19008833 and 

https://doi.org/10.4121/21541416. The analyzed metabolomics dataset for chemostat and 

feast/famine conditions  can be found in the same repository at https://doi.org/10.4121/21692057.  
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Figure A4.1. Concentration measurement of intracellular glycolytic metabolites during a 400s feast/famine cycle for glucose (green), 
fructose (black), sucrose (blue) and maltose (red). Dashed lines indicate the steady state level for each metabolite for the different 
sugars respectively. 

Figure A4.2. Concentration measurement of intracellular nucleotides during a 400s feast/famine cycle for 
glucose (green), fructose (black), sucrose (blue) and maltose (red). Dashed lines indicate the steady state 
level for each metabolite for the different sugars respectively. 
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Figure A4.3. Concentration measurement of intracellular metabolites of the pentose phosphate pathway during a 400s 
feast/famine cycle for glucose (green), fructose (black), sucrose (blue) and maltose (red). Dashed lines indicate the steady 
state level for each metabolite for the different sugars respectively 

Figure A4.4. Concentration measurement of intracellular metabolites of the TCA cycle during a 400s feast/famine 
cycle for glucose (green), fructose (black), sucrose (blue) and maltose (red). Dashed lines indicate the steady state 
level for each metabolite for the different sugars respectively. 
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Figure A4.5. Concentration measurement of intracellular metabolites of the trehalose cycle during a 400s 
feast/famine cycle for glucose (green), fructose (black), sucrose (blue) and maltose (red). Dashed lines indicate 
the steady state level for each metabolite for the different sugars respectively. 

Figure A4.6. The measured extracellular sugar concentrations during four different cultivation conditions: 
Glucose, fructose, sucrose and maltose as substrates. Glucose concentrations are shown in green, fructose 
concentrations in black and maltose concentrations in red. Dashed lines indicate steady-state concentrations, 
and dots indicate feast/famine concentrations over the 400s cycle. 
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Outlook 
The presented research generated a better understanding of the metabolism of Saccharomyces 

cerevisiae through the integration of multi-omics datasets to produce a validated model. This model 

can now be applied for the prediction and design of novel S. cerevisiae processes. There are many 

experimental and modelling challenges beyond the focus of the thesis which are outlined below: 

 

1. Accounting for differences in enzyme kinetics due to isoenzyme expression, 

intracellular pH and post-translational modifications 

In Chapter 2, experimental data from fluxomics, metabolomics and proteomics was integrated into a 

large dynamic kinetic model, to identify the key mechanisms in the adaptation of S. cerevisiae to 

repetitive dynamic substrate conditions. In this model, multiple novel approaches were used. Next to 

fitting the model to the estimated flux distribution, model predictions of 13C labelling enrichment 

were compared to the experimentally measured enrichment. This allowed for identification of 

missing kinetic regulatory mechanisms, which were mainly observed within the trehalose cycle.  

Within the trehalose cycle, the trehalase reaction is carried out by an acid and a neutral enzyme 

(Ath1 and Nth1, respectively) [1], of which in vivo fluxes were quantified under feast/famine 

conditions. Within the model, we were able to reproduce the cytosolic Nth1 trehalase activity, but 

only if the cytosolic trehalose was artificially kept low by allocating the bulk of the trehalose to the 

vacuolar compartment. Other experimental work however shows that trehalose is expected to be 

mostly allocated to the cytosol [2]. Additionally, the predicted KM for trehalose (0.13 mM) in the 

NTH1 reaction is significantly lower compared to the experimentally quantified value of 3-8 mM [3]. 

These discrepancies point towards an appreciable knowledge gap with respect to the regulation of 

the trehalose cycle. 

Likely candidates for this missing regulation are post-translational modifications (PTMs). PTMs 

regulate the activity of individual enzymes through covalent binding of specific molecular 

attachments, such as through phosphorylation, acetylation or ubiquitination [4]. Within glycolysis 

and the trehalose cycle, many enzymes, such as Nth1, are regulated through phosphorylation [5]. 

While qualitative data on PTMs of enzymes in the central carbon metabolism of S. cerevisiae, 

including in the trehalose cycle, is available (den Ridder et al., 2022), a quantitative kinetic 

understanding of their impact on the activity of enzymes is as of yet still lacking. Future work ought 

to be focused on combining metabolic flux measurements with accurate quantitative measurements 

of PTMs [6] to elucidate this relationship. 

In this work, we also touched upon the importance of the presence of different isoenzymes. While 

often simplified in kinetic models, the expression of different isoforms of the same enzyme differs 

between growth conditions, such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH) genes [7]. 

We could show that especially the expression of glucokinase vs. hexokinase was relevant to explain 

the adaptation in metabolic response under dynamic feast/famine conditions. These isoenzymes are 

differently inhibited by trehalose-6-P. The effect of isoenzymes on the metabolic response under 

dynamic substrate conditions ought to be further investigated, for example by investigating the 

metabolic response of a S. cerevisiae strain containing only a minimal set of glycolytic genes, as was 

developed by Solis-Escalante et al. [8]. Additionally, the effect of individual enzymes may be 

evaluated using knock-outs. Next to the effect of differences in kinetics due to enzyme isoforms, the 

effect of intracellular pH on enzyme kinetics should also be considered in future modelling efforts, as 
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glucose pulses are known to significantly affect the intracellular pH of the cell [9,10]. While the 

enzymatic activity of glycolytic enzymes, especially GAPDH, has been shown to be very sensitive to 

pH [11], thus far, no dynamic kinetic models of yeast investigating the metabolic response to glucose 

pulses have included dependency on pH. Including the pH-dependency of enzymes has in fact been 

shown essential in reproducing metabolic responses in models of skeletal muscle cell glycogenolysis 

[12]. 

 

2. Spatial and temporal dimension of metabolism: Experimental challenges to 

determining intracellular transport & compartmentation 

The holy grail of eukaryotic systems biology is to be able to measure the complete spatial and 

temporal state of the entire metabolism. As was highlighted in chapter 2 of this work, the temporal 

state of metabolism was provided as an input to the model, however, data on the spatial state of 

metabolism, regarding compartmentation of cofactors and metabolites involved in the trehalose 

cycle and glucose transport, was severely lacking. Canelas et al. [13] performed a thermodynamic 

analysis of the glycolytic reactions using whole cell as well as compartment specific NAD/NADH ratio 

measurements. With whole cell measurements, glycolysis appeared thermodynamically not feasible, 

which clearly showed the impact of redox factor compartmentation generating different potentials. 

To assess the kinetics driving the various intracellular redox reactions, the compartment-specific 

metabolite concentrations have to be determined. This presents an additional challenge for 

measuring the actual in vivo concentrations in eukaryotic cells.  

Compartment-specific concentrations can be measured using fluorescent biosensors. These 

biosensors, composed of fluorescent proteins and an allosteric binding domain, change the 

fluorescent signal based on the analyte concentration (Figure 5.1). For example, the fluorescence 

intensity is changed by conformational changes in the sensor complex upon binding of the analyte 

[14,15]. These biosensors were applied for high-throughput screening of large mutant libraries using 

FACS. For example, mutants with NADPH-dependent systems were identified and isolated [16]. Next 

to FRET sensors for NADH, NADPH biosensors have been employed to study the influence of cellular 

processes on NADPH availability [17] and dynamic changes in NADPH concentrations [18].  

Advantage of these biosensors is that they allow for single cell measurements, revealing the 

metabolic heterogeneity within a population [19]. However, a disadvantage is that a fluorescence 

microscope is required to provide a live readout of the single cell biosensor fluorescence, and thus 

these biosensors cannot be used to monitor the compartment-specific metabolite concentrations in 

cells in larger cultivations, such as reactors (although these conditions may be mimicked with 

microfluidics). Additionally, no absolute quantitative values can be obtained, and measurements are 

further complicated by interactions such as pH and ionic strength [20]. 

Another option is to utilize so-called equilibrium-based sensor reactions [13] (Figure 5.1). By 

overexpressing an enzyme catalysing an equilibrium-based reaction, a near equilibrium can be 

established between different metabolite pools involved in the reaction. From the equilibrium 

constant and involved measured metabolite concentrations, an undetermined metabolite 

concentration can be determined. To be sure that such a reaction operates close to equilibrium it 

should have a high capacity compared to the in vivo reaction rate. Sometimes native reactions can be 

used for this purpose [21]. If not, a heterologous enzyme can be expressed to act as sensor reaction, 

however, it should be verified that this does significantly not interfere with the host metabolism. An 

example is the expression of mannitol-1-phosphate dehydrogenase from E.coli in S. cerevisiae, 
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converting fructose-6-phosphate and NADH into mannitol-1-phosphate and NAD+ and vice versa, 

which appeared to be essentially a dead-end reaction in S. cerevisiae [13]. If this reaction is 

expressed exclusively in a specific compartment, and the measured metabolites are exclusively 

present in this specific compartment, then the compartment-specific concentration of the 

undetermined metabolite be determined. Several of these sensor reactions have been developed, 

such as for measuring the cytosolic NADH/NAD+ and NADPH/NADP+ ratios, or cytosolic Pi [13,21–

23]. Using mannitol-1-phosphate dehydrogenase expressed in the cytosol as sensor reaction highly 

dynamic changes in the cytosolic NADH/NAD+ ratio, as result of glucose and combined 

glucose/acetaldehyde pulses to a steady state glucose limited chemostat, could be measured [13].  

These sensors may additionally be employed to provide information on the compartment-specific 

labelling of metabolites, allowing not only for compartment-specific metabolomics, but also 

fluxomics. 

Disadvantage of this sensor reaction-based technique is that only population average signals can be 

obtained as larger samples are required for quantification. Any single cell variation in redox ratios 

cannot be observed. 

 

Figure 5.1. Left: Cytosolic fluorescence-based sensor (adapted from Komatsu et al. [24]): This sensor works 

based on the principle of Förster resonance energy transfer (FRET), i.e., energy is transferred from a donor to 

an acceptor fluorophore. The energy transfer only occurs when both fluorophores are in proximity of each 

other, and the distance is influenced by binding of the ligand. The fluorescence signals of YFP versus CFP are 

subsequently used to evaluate the ligand concentration [24]. Right: Cytosolic equilibrium-based sensor: By 

overexpressing an enzyme catalysing a close to equilibrium reaction, equilibrium between metabolites of 

interest and measurable pools can be established. From the equilibrium constant (Keq) and involved measured 

metabolite concentrations, the metabolite of interest can be determined. With the equilibrium reaction 

expressed only in the cytosol, and the measured metabolites (blue) exclusively present in the cytosol, the 

compartment specific concentration of the metabolite of interest (red) can be determined [13]. 

The described sensors, both equilibrium- and fluorescence-based, are able to provide these single 

cell measurements, but are limited to only a subset of metabolites. The current GC- and LC-MS 

techniques are able to measure the full scope of the metabolism within a discrete temporal space, 

but are unable to provide the spatial property of metabolites of the cell, especially important within 

eukaryotic cells. However, even with future improvements in resolution and accuracy of MS 
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technology, the spatial property of the metabolism will not be resolved using regular extraction 

techniques. Promising developments to resolve this issue are made in the field of single-cell 

metabolomics [25]. MALDI-MSI (matrix assisted laser desorption/ionization mass spectrometry 

imaging) is utilized to sample the spatial distribution of metabolites within samples. With a lateral 

resolution down to 1.4 μm [26], this technique was utilized to analyse single-cell organisms with 

subcellular resolution. Due to the need of sample preparation, this technique, as of yet, cannot be 

utilized to measure single-cell and subcellular metabolome changes under dynamic conditions. 

However, with future developments in metabolome quenching techniques and organelle 

purification, MS imaging may well help provide full inside into the actual metabolic spatial and 

temporal state of single cells. 

 

3. Population dynamics 

A topic that has remained relatively underexplored in this work is cell population dynamics. Effects 

such as cell synchronization allow for major changes in intracellular flux distribution, even under 

stable extracellular conditions [27]. Zhang et al. [27] observed significant changes in the flux 

distribution of storage metabolism and the oxidative PPP/glycolysis split ratio after pulsing G0 cells 

with glucose, as cells simultaneously transition to the G1 phase. As cell synchronization is also likely 

to occur under the repeated feast/famine conditions utilized in this work, future research ought to 

also consider to what extend this effect influences the observed metabolic responses.  

Additionally, during this research, we have studied the metabolic response of an entire population of 

cells in a reactor, assuming a homogeneous culture. However, this is only the average metabolic 

response, as from cell to cell, these responses are known to differ drastically [28]. This heterogeneity, 

caused by differences in, for example, expression of proteins, is also described in the form of bet-

hedging. Cultures will contain a mixture of more robust fast-growing cells and more stress-resistant 

slow-growing cells. The advantage of this is that the population as a whole can grow both fast and be 

resistant to unexpected stresses in the environment [29]. This however also means that our models 

only describe the average kinetics of the whole population and not the kinetics of its subpopulations. 

To truly understand the impact of these subpopulations on the metabolic response of the population 

as a whole, and on the prediction ability of kinetic metabolic models, further research must be 

performed.  

 

4. Model limitations and data quality 

In this research, we have investigated the regulation of yeast central carbon metabolism under 

dynamic conditions using kinetic modelling. Nevertheless, this approach also has several limitations. 

Firstly, every model is, by definition, false. In order to completely capture the entire metabolism of a 

cell, one would need a model at least as complex as the cell itself. As we cannot currently create nor 

simulate such a model, several assumptions and shortcuts must be taken to create a representative 

model of yeast central carbon metabolism. In the presented model, several parts of the central 

carbon metabolism, such as the pentose phosphate pathway and TCA cycle were lumped into 

simplified sink reactions, as no or limited data was available on the concentrations and 

compartmentation of the metabolites in these pathways. A consequence of this choice is that the 

activity and regulation of these pathways cannot be accurately represented. Secondly, the model 

quality and reliability are limited by the quality of the used experimental data. This includes noise in 

the experimental dataset itself, but also variation between different datasets. Especially when fitting 
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a model to a dataset, this noise must be considered, as without proper normalization and 

regularization, this noise may lead to incorrect and misleading conclusions [30]. For example, within 

the dataset used in our work, we observed a relative error of ~50% in measurements of GAP, 

whereas the relative error in G6P was only ~5%. By applying weights to the different metabolite 

model errors, this was considered in this work (See Chapter 2). Still however, for the simulation of 

the dynamic feast/famine regime only dataset was used to fit the model. Future work should aim to 

include multiple and larger datasets, in which the variation due to the metabolic response is 

significantly larger compared to the data noise, to produce more reliable conclusions on the 

regulation of central carbon metabolism under dynamic substrate conditions. 
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