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a b s t r a c t

In finite element methods, the accuracy of the solution cannot increase indefinitely since
the round-off error related to limited computer precision increases when the number of
degrees of freedom (DoFs) is large enough. Because a priori information of the highest
attainable accuracy is of great interest, we construct an innovative method to obtain
the highest attainable accuracy given the order of the elements. In this method, the
truncation error is extrapolated when it converges at the asymptotic rate, and the
bound of the round-off error follows from a generically valid error estimate, obtained
and validated through extensive numerical experiments. The highest attainable accuracy
is obtained by minimizing the sum of these two types of errors. We validate this
method using a one-dimensional Helmholtz equation in space. It shows that the highest
attainable accuracy can be accurately predicted, and the CPU time required is much
smaller compared with that using successive grid refinement.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many problems in engineering sciences and industry are modelled mathematically by initial–boundary value problems
omprising systems of coupled, nonlinear partial and/or ordinary differential equations. These problems often consider
omplex geometries, with initial and/or boundary conditions that depend on measured data [1]. In some applications,
ot only the solution, but also its derivatives are of interest [1,2]. For many problems of practical interest, analytical or
emi-analytical solutions are not available, and hence one has to resort to numerical solution methods, such as the finite
ifference, finite volume, and finite element methods. The latter will be adopted throughout this paper and applied to
ne-dimensional boundary value problems.
The accuracy of the numerically obtained solution is influenced by many sources of errors [3]: firstly, modelling errors

n the set-up of the models, such as the simplification of realistic domains and governing equations and the approximation
f initial and boundary conditions; next, truncation errors due to the discretization of the computational domain and the
se of basis functions for the function spaces defined on it; then, round-off errors due to the adoption of finite-precision
omputer arithmetics, rather than exact arithmetics; finally, iteration errors resulting from the artificially controlled
olerance of iterative solvers.

One tacitly assumes that most errors are well-balanced and/or negligibly small. In this paper, the focus is on the
runcation error (ET) and the round-off (ER), by considering idealized problems, which do not introduce modelling errors,
and using a direct solver, which avoids the introduction of iterative errors. In particular, the round-off error is often ignored
based on the argument that it will be ‘sufficiently small’ if just IEEE-754 double-precision floating-point arithmetics [4]
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are adopted. Therefore, to improve the accuracy, i.e. to decrease ET, one often reduces the mesh width (h-refinement),
ncreases the approximation order (p-refinement), or applies both strategies simultaneously (hp-refinement) [5,6].

The common characteristic of these methods is to increase the number of degrees of freedom (DoFs). However,
R increases with the number of DoFs, and dominates the total error if more and more DoFs are employed [7,8].
hile typically an impractically large number of DoFs is required for ER to dominate the total error if low(est)-
rder approximations are used, the number can be very small if high-order approximations are adopted, which are
owadays becoming more and more popular. This shift to higher order approximations makes the results more prone
o be dominated by round-off errors. Despite this alarming observation, to the authors’ best knowledge, only very few
ublications address the impact of accumulated round-off errors on the overall accuracy of the final solution or take
hem into account explicitly in the error-estimation procedure. The general rule of thumb is still to perform as many
-refinements as possible considering the available computer hardware.
The aim of this paper is to systematically analyse the influence of the round-off error on the total error when using

-refinements for different orders of p. Not only the solution but also its first and second derivatives are investigated for
ne-dimensional, second order model problems, assuming the second derivative exists in the weak sense [9]. Both the
tandard finite element method (FEM) and the mixed FEM [10] are analysed for multiple p’s. Furthermore, the following
actors are considered: types of boundary conditions and methods of implementing them, choices and configurations of
he linear system solver, orders of magnitude of the variables and coefficients. Based on the statistics of the evolution of
he round-off error, we propose an algorithm to predict the best accuracy Emin that occurs when the sum of ET and ER is
he smallest, and the corresponding number of DoFs (Nopt).

The paper is organized as follows. The model problem, finite element formulation and numerical implementation are
escribed in Section 2. The approach to predicting Emin is illustrated in Section 3. The statistics on the evolution of the
ound-off error are given in Section 4. The algorithm for realizing the approach is put forward in Section 5, followed by
ts validation by a Helmholtz problem in Section 6. The conclusions are drawn in Section 7.

. Model problem, finite element formulation and numerical implementation

.1. Model problem

Consider the following one-dimensional second-order differential equation:

− (d(x)ux)x + r(x)u(x) = f (x), x ∈ I = [0, 1], (1)

ith u denoting the unknown variable, which can either be real or complex, f (x) ∈ L2(I) a prescribed right-hand side,
nd d(x) and r(x) continuous coefficient functions. By choosing d(x) = 1 and r(x) = 0, Eq. (1) reduces to the Poisson
quation; for d(x) > 0 and not constant, the diffusion equation is found when r(x) = 0, and the Helmholtz equation [11]
s found when r(x) ̸= 0. The boundary conditions are u(x) = g(x) on ΓD and d(x)ux = h(x) on ΓN , where ΓD and ΓN are
he boundaries where Dirichlet and Neumann boundary conditions are imposed, respectively.

.2. Finite element formulation

For convenience, we introduce two inner products [12]:

⟨f1, f2⟩ =
∫
I
f1(x)f2(x) dx, (2a)

⟨f1, f2⟩Γ = f1(x0)f2(x0). (2b)

here f1(x) and f2(x) are continuous functions defined on the unit interval I , Γ denotes the boundary of I , and x0 denotes
he values of x on Γ .

.2.1. The standard FEM
The weak form of Eq. (1) is derived in Appendix A.1. Imposing the Dirichlet boundary conditions strongly, the weak

orm is read as:

Weak form 1

Find u ∈ H1
D(I) such that:

⟨ηx, dux⟩ + ⟨η, ru⟩ = ⟨η, f ⟩ + ⟨η, hn⟩ΓN ∀η ∈ H1
D0(I),

with

H1
D(I) = {t | t ∈ H1(I), t = g on ΓD},

H1 (I) = {t | t ∈ H1(I), t = 0 on ΓD}.

(3)
D0

2
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Imposing the Dirichlet boundary conditions in the weak sense [13], the weak form reads:

Weak form 2

Find u ∈ H1(I) such that:
⟨ηx, dux⟩ + ⟨η, ru⟩ − ⟨η, duxn⟩ΓD + ⟨ηx, un⟩ΓD − ⟨η, ρun⟩ΓD
= ⟨η, f ⟩ + ⟨η, hn⟩ΓN + ⟨ηx, gn⟩ΓD − ⟨η, ρgn⟩ΓD ∀η ∈ H1(I),
where ρ is a positive value that serves as the penalty parameter.

(4)

In both forms, η denotes the test function, n is equal to 1 at x = 1, and −1 at x = 0; the terms on the right-hand
sides consist of information of Neumann boundary conditions which vanishes if no Neumann boundary conditions are
prescribed. We approximate u by a linear combination of a finite number of basis functions:

u ≈ u(p)
h =

m∑
i=1

uiϕ
(p)
i . (5)

Here, p is the element degree, m is the number of DoFs, which equals p× t + 1, with t denoting the total number of grid
cells; ui’s are the values of u(p)

h at the DoFs; ϕ(p)
i ’s are C0-continuous Lagrange basis functions supported by Gauss–Lobatto

points, which feature the Kronecker-delta property, i.e. ϕ(p)
i (xj) = δij, with xj denoting the support point. This type of

lement will be referred to as Pp. Taking η equal to ϕ(p)
k , k = 1, 2, . . . , m, the resulting linear system of equations is read

s

AU = F , (6)

here A is the stiffness matrix, F the right-hand side and U = [u1, . . . , um]
⊤.

.2.2. The mixed FEM
As a first step, we introduce the auxiliary variable

v(x) = −d(x)ux, (7a)

llowing Eq. (1) to be rewritten as

−vx − r(x)u(x) = −f (x). (7b)

The weak form of Eq. (1) using the mixed FEM, derived in Appendix A.2, is given by:

Weak form 3

Find v ∈ H1
N (I) and u ∈ L2(I) such that:

⟨w, d−1v⟩ − ⟨wx, u⟩ = −⟨w, gn⟩ΓD ∀w ∈ H1
N0(I), (8a

− ⟨q, vx⟩ − ⟨q, ru⟩ = −⟨q, f ⟩ ∀q ∈ L2(I), (8b
with

H1
N (I) = {t | t ∈ H1(I), t = −h on ΓN},

H1
N0(I) = {t | t ∈ H1(I), t = 0 on ΓN}.

In this form, w and q denote the test functions of v and u, respectively, and n has the same interpretation as before. We
pproximate v and u by:

v ≈ v
(p)
h =

m∑
i=1

viϕ
(p)
i , (9a)

u ≈ u(p−1)
h =

p∑
j=1

usjψ
(p−1)
j in cell s, for s = 1, 2, . . . , t, (9b)

where m is the number of DoFs for v(p)h , which is equal to p× t + 1, vi’s are the values of v(p)h at the DoFs, and ϕ(p)
i ’s are

of the same type of basis functions used in Eq. (5); usj’s are the values of u(p−1)
h at the DoFs, ψ (p−1)

j ’s are discontinuous
Lagrange basis functions, which implies that two independent usj’s have been assigned at the cell interfaces. This pair of
elements will be referred to as Pp/Pdisc

p−1. Replacing w and q by ϕ(p)
k , k = 1, 2, . . . , p×t+1, and ψ (p−1)

e , e = 1, 2, . . . , p×t ,
respectively, the resulting coupled linear system of equations that has to be solved is read as:[

M B
⊤

][
V

]
=

[
G

]
, (10)
B 0 U H

3
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where the mass matrix M , discrete gradient operator B, and its transpose, the discrete divergence operator B⊤, comprise
he left-hand side; G and H are the components of the right-hand side; V = [v1, . . . , vm]⊤ and U = [u11, . . . , u1p, . . . ,

t1, . . . , utp]
⊤, respectively.

For the sake of readability, we will drop the superscript (p) or (p− 1) whenever the approximation order is clear from
he context.

.3. Numerical implementation

.3.1. Solution technique
All results are computed in IEEE-754 double precision [4] using the deal.II finite element library [14]. Unless stated

therwise, the computational mesh is obtained by globally refining a single element that covers the interval I , and the
irichlet boundary conditions are imposed strongly. The former means that, when the solution is real valued, the number
f DoFs equals 2R

×p+1 using the standard FEM and 2×2R
×p+1 using the mixed FEM, at the Rth refinement; when the

olution is complex valued, the above numbers double since deal.II does not provide native support for complex-valued
roblems and, hence, all components need to be split into their real and imaginary parts.
To compute the occurring integrals, sufficiently accurate Gaussian quadrature formulas are used. To solve the systems

f equations, the UMFPACK solver [15], which implements the multi-frontal LU factorization approach, is used unless
tated otherwise. This solver results in relatively fast computations of the problems considered in this paper, and prevents
he iteration errors of iterative solvers. The derivatives of the numerical solution, which are uh,x and uh,xx in the standard
EM and only vh,x in the mixed FEM, are computed in the classical finite element manner, e.g. uh,x =

∑m
i=1 uiϕi,x yields

n approximation to ux using standard FEM. Note that, each differentiation decreases the element degree by one.

.3.2. Error estimation
For the numerical results varh, where var can be u, ux and uxx of the standard FEM, and u, v and vx of the mixed FEM,

he error measured in the L2 norm is used. It is defined as

Eh = ∥varh − varexc∥2 (11a)

hen the exact solution varexc is available, and [16]

Ẽh = ∥varh − varh/2∥2 (11b)

therwise, where varh/2 is the numerical solution computed on a mesh once refined with grid size h/2.

.3.3. Convergence of the solution
When the number of DoFs is relatively large, but the round-off error does not exceed the truncation error, the error

onverges at a fixed rate, known as asymptotic convergence rate, of which the value is one order higher than the
pproximation order [6]. In practice, the convergence rate in the numerical experiments can be calculated from either

Q = log2

(
Eh
Eh/2

)
(12a)

sing Eq. (11a), or

Q̃ = log2

(
Ẽh
Ẽh/2

)
(12b)

sing Eq. (11b).

. Approach to predicting the highest attainable accuracy

A conceptual sketch of Eh against the number of DoFs (Nh) in a log–log plot can be found in Fig. 1, also see [17]. When
h is relatively small (Nh < Nc), Eh does not decrease at the aforementioned asymptotic order of convergence, and only
hen Nh is large enough (Nc ⩽ Nh < Nopt) this asymptotic order of convergence is attained. The transition from the first
hase, denoted by black circles, to the second phase, denoted by green circles, is usually fast, cf. Fig. 1. Eh in both phases
s controlled by the truncation error ET; in the second phase Eh can be represented by

Eh ≈ ET = αTNh
−βT . (13)

ere αT is the offset, and βT is the slope of the line approximating Eh, equalling the asymptotic order of convergence, see
ppendix B for the proof. Note that, αT can be inverted by using

αT = Ec/Nc
−βT , (14)

t the beginning of the second phase, where E equals the corresponding error E .
c h

4
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Fig. 1. Conceptual sketch of the error evolution against the number of DoFs. (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)

Table 1
Description of the evolution of Eh .

1. Nh < Nc 2. Nc ⩽ Nh < Nopt 3. Nopt ⩽ Nh

Feature Decreasing but not
converging at
slope βT

Decreasing and
converging at
slope βT , with the
offset αT

Increasing and
converging at
slope βR , with the
offset αR

Dominant error Truncation error Round-off error

Formula – Eh ≈ ET = αTNh
−βT Eh ≈ ER = αRNh

βR

When Nh is increased too much (Nh ⩾ Nopt), the round-off error ER starts to dominate and Eh increases, illustrated by
range circles. At this phase, the slope of the line approximating Eh, denoted by βR, tends to be fixed [8,18]. The parameter
βR and the associated offset, denoted by αR, are investigated in detail in Section 4. As will be shown there, αR and βR are
ixed constants, which allow us to estimate Eh as

Eh ≈ ER = αRNh
βR . (15)

n summary, the evolution of Eh is described in Table 1, and depicted in Fig. 1.
Since the evolution of Eh (= ET + ER) is known after entering the second phase, by solving

d(ET + ER)
dN

= 0, (16)

e can predict the optimal number of DoFs

Nopt =

(
αTβT

αRβR

) 1
βT+βR

, (17a)

and hence, the highest attainable accuracy is given by

Emin = αTNopt
−βT + αRNopt

βR . (17b)

4. Results

In this section, we assess the general values of αR and βR. We start with a benchmark Poisson equation, for which the
influences of solution strategies and boundary conditions are investigated, and then consider more general parameters
for the Poisson equation, as well as the diffusion and Helmholtz equations.
5
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Fig. 2. Absolute errors for the benchmark Poisson equation using the standard FEM.

Fig. 3. Absolute errors for the benchmark Poisson equation using the mixed FEM.

4.1. Benchmark Poisson equation

We consider the Poisson equation with f (x) = −e−(x−1/2)
2 (

4x2 − 4x− 1
)
. The boundary conditions are imposed as

follows: u(0) = u(1) = e−1/4. The exact solution reads u(x) = e−(x−1/2)
2
. The error Eh of the resulting solution u, and its

first and second derivatives, using the standard FEM and the mixed FEM, with p ranging from 1 to 5 are in Fig. 2 and
Fig. 3, respectively. In these figures, αR and βR are denoted.

It is found that, for all dependent variables and their derivatives, the values of αR and βR of different element degrees
re the same. The statistics of the former can be found in Fig. 4(a). The values of βR only depend on the FEM method, and
re 1 using the mixed FEM and 2 using the standard FEM. Notably, αR is of order 10−16, which is as expected when using

double precision, and tends to increase slightly with increasing order of derivative. Furthermore, αR of the mixed FEM is
smaller than that of the standard FEM.

For larger p, ET decreases faster such that smaller Emin can be obtained, see Fig. 4(b). In general, smaller Emin can be
obtained using the mixed FEM compared to using the standard FEM.

In Sections 4.1.1–4.1.2, the sensitivity of the above results will be investigated, using P2 elements for the standard FEM
and P4/Pdisc

3 elements for the mixed FEM.

4.1.1. Solution strategy
In this section, we investigate the influence of the solution strategy on the accuracy of the numerical solution. In

particular, we compare the outcome when applying the direct solver UMFPACK with that of using the iterative Conjugate
Gradient (CG) method [19], which can be applied when the left-hand side, e.g. A in Eq. (6), is symmetric and positive
definite. The tolerance of the CG solver is a small number, denoted by tolprm, in the standard FEM, and the product of a
small number tolprm and the L2 norm of the corresponding right-hand side in the mixed FEM. When the L2 norm of the
residual, e.g. ∥F − Au∥2 in Eq. (6), is smaller than the tolerance, the iteration is stopped.

The standard FEM. For tolprm = 10−10 and 10−4, the absolute errors of u, ux and uxx using the CG solver are shown in
Fig. 5, in comparison with that using the direct solver UMFPACK.

When tolprm is adequately small, i.e. tolprm = 10−10, the round-off error for the solution and the first derivative using
the CG solver is the same with that using the UMFPACK solver; the round-off error for the second derivative using the
CG solver increases faster than that using the UMFPACK solver. When tolprm is too large, i.e. tolprm = 10−4, the error
contribution due to the iterative solver dominates both truncation and round-off errors for an intermediate number of
DoFs.
6
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Fig. 4. Statistics on αR and Emin of the benchmark Poisson equation. The blue colour denotes results using the standard FEM and the red colour
denotes results using the mixed FEM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 5. Influence of the CG solver on the accuracy using the standard FEM.

The mixed FEM. Since the resulting matrix Eq. (10) is indefinite, a widely used alternative is to decouple the fully coupled
monolithic approach using Schur’s complement

B⊤M−1BU = B⊤M−1G− H, (18a)

MV = G− BU (18b)

nd solve both equations in segregated manner, i.e. Eq. (18a) is solved in the first place to obtain U , which is then
ubstituted into Eq. (18b) to obtain V .
Eq. (18a) involves the term M−1G on the right-hand side, which is computed by solving the auxiliary linear system

Y = G by using either the UMFPACK or the CG solver. The same options are available for solving Eq. (18b).
The difficulty in solving Eq. (18a) lies in not assembling the Schur complement matrix explicitly since it comprises
−1. The CG solver only makes use of matrix–vector products of the form (B⊤M−1B)W , which can be computed by the

ollowing three-step algorithm: X = BW , MY = X and Z = B⊤Y . As before, the linear system MY = X can be solved by
he UMFPACK or the CG solver.

We first investigate the influence of tolprm of the CG solver on the accuracy of the solutions when the left-hand side is
⊤M−1B. In this case, the UMFPACK solver is used to solve the matrix equations when the left-hand side is M . For tolprm
eing 10−16 and 10−10, the results are shown in Fig. 6, in comparison with that obtained from solving the monolithic
q. (10) directly using the UMFPACK solver. It shows that, for the problem at hand, the monolithic solution approach
ields by far the most accurate solution and derivative values. The round-off error for vx increases fastest using the Schur
omplement approach even though tolprm is sufficiently small, i.e. tolprm = 10−16, which makes the highest attainable
ccuracy much lower. When tolprm is less strict, i.e. tolprm = 10−10, the iteration error dominates the total error instead
f the round-off error.
Next, we investigate the influence of tolprm of the CG solver when the left-hand side is M . In this case, the CG solver

ith tolprm being 10−16 is used to solve the matrix equation with the left-hand side being B⊤M−1B. For tolprm being 10−16
nd 10−10, the results are shown in Fig. 7, in comparison with that obtained from solving the monolithic Eq. (10) directly
sing the UMFPACK solver. It also shows that, when the tolerance is less strict, i.e. tolprm = 10−10, the iteration error
ominates the total error before the round-off error.
In summary, in comparison with the UMFPACK solver, the CG solver gives the same accuracy for u and ux but less

ccuracy for u using the standard FEM, and gives smaller accuracy for all the three variables using the mixed FEM when
xx

7
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Fig. 6. Influence of the CG solver on the accuracy when the left-hand side is the Schur complement using the mixed FEM.

Fig. 7. Influence of the CG solver on the accuracy when the left-hand side is M using the mixed FEM.

Fig. 8. Influence of the weak imposition of the Dirichlet boundary condition on the accuracy.

tolprm is strict enough; the CG solver introduces iteration errors for both the standard FEM and the mixed FEM when tolprm
s less strict. Thereby, we continue with the UMFPACK solver in our algorithm to obtain higher accuracy.

.1.2. Boundary condition
In this section, two aspects of the influence of the boundary conditions on the round-off error are investigated: first

he method of implementing the Dirichlet boundary conditions, and secondly types of boundary conditions.
For the first aspect, using Weak form 2 for ρ = 50 and 106, the errors are depicted in Fig. 8, in comparison with

hat using Weak form 1. As can be seen, both the weak imposition and the strong imposition of the Dirichlet boundary
ondition yield the same trend line for the round-off error for the solution and its derivatives, and the magnitude of the
enalty parameter in the weak imposition makes no difference. In addition, small penalty parameters might lead to larger
runcation errors for u, but the difference diminishes when the penalty parameter is large enough.

To construct the problem for the second aspect, the Dirichlet boundary condition at the left boundary (x = 0) is kept
hile the Dirichlet boundary condition at the right boundary (x = 1) is replaced by the Neumann boundary condition
(1) = −e−1/4, leading to the same solution and derivative profiles.
x

8
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Fig. 9. Comparison of αR for imposing Dirichlet/Dirichlet and Dirichlet/Neumann boundary conditions.

Table 2
Setting of the Poisson equation with different right-hand sides.

Case f (x) Boundary conditions u(x)

u(0) u(1)

1 sin(2πc1x) 0 (2πc1)−2 sin(2πc1) (2πc1)−2 sin(2πc1x)

2 −e−c2(x−1/2)
2
·
(
4c22(x− 1/2)2 − 2c2

)
e−c2/4 e−c2/4 e−c2(x−1/2)

2

3 sin(2πc3x)+ 1 0 (2πc3)−2 sin(2πc3)− 1
2 (2πc3)−2 sin(2πc3x)− x2

2

4 (2πc4) sin(2πc4x) 0 (2πc4)−1 sin(2πc4) (2πc4)−1 sin(2πc4x)

5 0 0 c5−1 c5−1x

The standard FEM. Using the standard FEM, the offsets αR for the two types of boundary conditions are depicted in
Fig. 9(a). For the Dirichlet/Neumann boundary condition, the offsets αR for u and ux are slightly larger than that for the
irichlet/Dirichlet boundary condition by a factor of 3.5 and 2, respectively. The offsets αR for uxx are identical for the two
ypes of boundary conditions.

he mixed FEM. Using the mixed FEM, the offsets αR for the two types of boundary conditions are depicted in Fig. 9(b).
s can be seen, the type of boundary conditions plays a more important role for αR for the solution than αR for other
ariables.
In summary, αR are relatively independent of the variations in the type of boundary conditions and the method Dirichlet

oundary conditions are implemented, which is an important prerequisite for our a posteriori refinement strategy to be
pplicable for a wide range of problems. However, since the asymptotic behaviour of the truncation error is essential in
ur algorithm, we continue with the strong imposition of the Dirichlet boundary condition.
In Sections 4.2–4.3, where the influences of u(x), d(x) and r(x) are investigated, we only consider the Dirichlet boundary

onditions, and still use P2 elements for the standard FEM and P4/Pdisc
3 elements for the mixed FEM.

.2. General Poisson equation

In this section, we will again consider the Poisson equation, but now focus on the influence of the order of magnitude
f the solution and right-hand side on αR. To cover a wide range of scenarios, we choose the cases shown in Table 2.
ach case contains a coefficient ci, i = 1, 2, . . . , 5, which is varied over several orders of magnitude so that the L2 norm
f the solution, denoted by ∥u∥2, and the L2 norm of the right-hand side, denoted by ∥f ∥2, extend over a wide range of
agnitudes. Fig. 10 gives an overview of the distribution of ∥u∥2 and ∥f ∥2 for Cases 1–4.
For these Poisson problems, the error basically evolves according to that shown in Fig. 1. To summarize, βR is 2 using

he standard FEM and 1 using the mixed FEM. αR against ∥u∥2 is shown in Fig. 11(a) for the standard FEM; αR against
u∥2 or ∥v∥2, depending on the dependent variable of interest, is shown in Fig. 11(b) for the mixed FEM.
For all the variables using both the standard FEM and the mixed FEM, the distribution of αR can be approximated by a

traight line. This implies that αR has a power-law relation with the horizontal coordinate. The power term, represented
y the slope of the line, is 1 for all the relations; the constant term, represented by the intercept of the line, is denoted
n the figure. The latter reads 2e-17, 5e-17 and 5e-16 for u, ux and uxx, respectively, using the standard FEM, and 1e-18,
e-16 and 5e-16 for u, v and vx, respectively, using the mixed FEM. Note that, the intercept is the value of αR when the
orizontal coordinate is 1. Therefore, αR has a linear relation with the L2 norm of the dependent variable. We express αR
s the product of a constant and the magnitude of ∥u∥ or ∥v∥ that is shown in Table 3.
2 2

9



J. Liu, M. Möller and H.M. Schuttelaars Journal of Computational and Applied Mathematics 386 (2021) 113219

e
w

1

Fig. 10. Distribution of ∥u∥2 and ∥f ∥2 of the Poisson equations in Table 2.

Fig. 11. αR for the influence of u(x).

Table 3
αR in terms of the product of a constant and the L2 norm ∥u∥2 or ∥v∥2 , dependent on the specific
dependent variable, for one-dimensional Poisson equations.
(a) The standard FEM (b) The mixed FEM

Variable αR Variable αR

u 2e−17 }
×∥u∥2

u 1e−18
}
×∥u∥2ux 5e−17 v 1e−16

uxx 5e−16 vx 5e−16 ×∥v∥2

Table 4
Various d(x) for the diffusion equations.
Case d(x) ∥d∥2 Case d(x) ∥d∥2
1 0.01 0.01 7 1+ sin(10x) 1.14
2 0.1 0.1 8 1+ sin(100x) 1.06
3 1 1 9 1+ x 1.5
4 10 10 10 1+ 10x 6.7
5 100 100 11 1+ 100x 58.6
6 1+ sin(x) 1.23

4.3. General diffusion and Helmholtz equation

The coefficient d(x) is taken from Table 4 for the diffusion equations, and d(x) = 1 is taken for the Helmholtz
quations, with r(x) taken from Table 5. The analytical solution u is the same as the benchmark Poisson equation, of
hich ∥u∥2 = 0.92 and ∥v∥2 = 0.5.
Again the errors show the same behaviour as that shown in Fig. 1. The coefficient βR is 2 using the standard FEM and

using the mixed FEM.
10
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Table 5
Various r(x) for the Helmholtz equations.
Case r(x) ∥r∥2
1 0.01 0.01
2 0.1 0.1
3 1 1
4 10 10
5 100 100

Fig. 12. αR for the general diffusion equations.

Fig. 13. αR for the general Helmholtz equations.

The parameter αR against ∥d∥2 is shown in Fig. 12 for the diffusion equations. Using the standard FEM, αR is
independent of ∥d∥2 for u, ux and uxx, with the upper bound reading 2e-17, 5e-17 and 1e-15, respectively. Using the
mixed FEM, αR is independent of ∥d∥2 for u, but is linearly dependent on ∥d∥2 for both v and vx. The upper bound for u
reads 5e-17; the intercept for v and vx reads 2e-16 and 5e-16, respectively. The parameter αR against ∥r∥2 is shown in
Fig. 13 for the Helmholtz equations. Visibly, αR is independent of ∥r∥2 using both the standard FEM and the mixed FEM.
Using the standard FEM, αR reads 2e-17, 5e-17 and 2e-16 for u, ux and uxx, respectively; using the mixed FEM, αR reads
1e-19, 1e-16 and 2e-16 for u, v and vx, respectively.

In Figs. 12–13, we do not take the influence of ∥u∥2 or∥v∥2 into account. Since ∥u∥2 is of order 1, we omit its influence
on αR for the standard FEM and on αR of u and v for the mixed FEM. Since ∥v∥2 is half of 1, we multiply the intercept of
αR of vx in Fig. 12(b) and the upper bound of αR of vx in Fig. 13(b) by 2, for validating the constant term of αR in Table 3.

Comparing the resulting αR of the diffusion equations with the constant term of αR in Table 3, for the standard FEM,
the constant term of αR of u and ux does not change, while that of uxx increases to 1e-15; for the mixed FEM, the constant
term of α of u increases to 5e-17, that of v becomes 2e-16 ×∥d∥ , and that of v increases to 1e-15. Therefore, we amend
R 2 x

11
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Table 6
αR in terms of the product of a constant and the L2 norm ∥u∥2 or ∥v∥2 , dependent on the specific
dependent variable, for one-dimensional second order differential equations.
(a) The standard FEM (b) The mixed FEM

Variable αR Variable αR

u 2e−17 }
×∥u∥2

u 2e−17
}
×∥u∥2ux 5e−17 v 2e-16 ×∥d∥2

uxx 1e−15 vx 1e−15 ×∥v∥2

Table 7
Custom input of DoFinder .
Type Item

Problem • The differential equation to be solved
• Variables of interest

FEM • Standard or mixed formulation
• An ordered array of element degrees {pmin, . . . , pmax}

αR in Table 3 to be that shown in Table 6. Note that, for the constant term of αR of u of the mixed FEM, considering most
f its values of the diffusion equations are smaller than 2e-17, which is the value we obtain for the standard FEM, we
hoose 2e-17 as its value. Furthermore, since the constant term of αR of the Helmholtz equations is smaller than that in
able 6, its effect can be ignored.
Summarizing Sections 4.2–4.3, the order of magnitude of the coefficient r(x) is basically irrelevant; the order of

agnitude of the dependent variable and the coefficient d(x) can be mitigated when their values are known. Specifically,
he value of the order of magnitude of the dependent variable can be obtained from a built-in function in our algorithm,
nd that of d(x) can be obtained by carrying out simple integration.

. A posteriori algorithm for finding the optimal number of degrees of freedom

Based on the validation experiments from the previous section, we introduce a novel a posteriori algorithm for
etermining Emin and its associated Nopt for the solution and its first and second derivatives without performing brute-force
esh refinement. We call the algorithm DoFinder .
In DoFinder , we define the following coefficients and use them in the steps given below.

– a minimal number of h-refinements before carrying out ‘NORMALIZATION ’ and ‘PREDICTION ’, denoted by Rmin, with
the following default values:

Rmin =

{
9− p for p < 6,
4 otherwise.

(19)

We choose this parameter mainly because the error might increase, or decrease faster than the asymptotic order of
convergence for coarse refinements, especially for lower-order elements.

– the allowed maximum Nh: 108, denoted by Nmax.
– a stopping criterion cs for seeking the L2 norm of the dependent variable, of which the value is 0.001 by default. We

choose this parameter because the analytical solution does not exist for most practical problems.
– a relaxation coefficient cr for seeking the asymptotic order of convergence, with the following default values:

cr =

⎧⎨⎩
0.9 for p < 4,
0.7 for 4 ⩽ p < 10,
0.5 otherwise.

(20)

– the offset αR, see Table 6 for the default values.

The procedure of DoFinder consists of four steps, which are explained below:

tep-1. ‘INPUT ’. In this step, the custom input shown in Table 7 has to be provided.

tep-2. ‘NORMALIZATION ’. The function of this step is to find the L2 norm of the dependent variable, in which elements
f degree p are used. The specific procedure can be found in Algorithm 1.
min

12
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Algorithm 1: NORMALIZATION
1 while Nh < Nmax do
2 if

⏐⏐⏐ ∥varh∥2−∥var2h∥2
∥varh∥2

⏐⏐⏐ < cs then
3 ∥var∥2 ← ∥varh∥2;
4 break;
5 else
6 h← h/2;
7 calculate ∥varh∥2;
8 end
9 end

Step-3. ‘PREDICTION ’. This step finds Emin for each var and p of interest, as illustrated in Fig. 1. The procedure for carrying
ut this step can be found in Algorithm 2.

Algorithm 2: PREDICTION
1 while Nh < Nmax and Ẽh > ER do
2 Q̃ ← log2

(
Ẽ2h/Ẽh

)
;

3 if Q̃ ⩾ βT × cr then
4 Nc ← Nh;
5 Ec ← Ẽh;
6 αT ← Ec/Nc

−βT ;

7 Nopt ←

(
αTβT
αRβR

) 1
βR+βT ;

8 Emin ← αTNopt
−βT + αRNopt

βR ;
9 else

10 h← h/2;
11 calculate Ẽh;
12 end
13 end

Step-4. ‘OUTPUT ’. In this step, we output Emin, Nopt, etc., obtained from Step-3.

6. Validation

In what follows, we validate the strategy discussed in Section 3 by using the following Helmholtz problem:

((0.01+ x)(1.01− x)ux)x − (0.01i)u(x) = 1.0, x ∈ I = [0, 1], (21)

ith homogeneous Dirichlet and Neumann boundary conditions imposed as follows: u(0) = 0 and ux(1) = 0. Both the
tandard FEM and the mixed FEM are investigated, with the element degree p taken in {1, 2, . . . , 5}. Variables u, ux and
xx using the standard FEM and u, v and vx using the mixed FEM are investigated.

.1. Accuracy analysis

Using DoFinder and the brute-force approach, Emin’s are compared in Fig. 14. As can be seen, Emin can be predicted
orrectly. Note that, for p = 1 using the mixed FEM, we cannot obtain Emin of the brute-force approach because of the
imited hardware. The associated Nopt using DoFinder is shown in Fig. 15, and it is used to compute the solution of the
ptimal grid in Section 6.2.

.2. Efficiency analysis

The CPU time required by DoFinder and the brute-force approach is shown in Fig. 16 and Fig. 17, respectively. In
eneral, the CPU time associated with the brute-force approach decreases with increasing element degree. In comparison
ith the CPU time of the brute-force approach, the CPU time of DoFinder is negligible.
Furthermore, to obtain the solution on the optimal grid based on DoFinder , the computation time can be saved much

n comparison with that using the brute-force approach. Fig. 18 gives the percentage of the CPU time saved by DoFinder .
t shows a saving of the CPU time of around 70% for both the standard FEM and the mixed FEM.
13



J. Liu, M. Möller and H.M. Schuttelaars Journal of Computational and Applied Mathematics 386 (2021) 113219
Fig. 14. Emin for Eq. (21) using DoFinder . The filled circle denotes results using the brute-force approach.

Fig. 15. Nopt for Eq. (21) using DoFinder .

Fig. 16. CPU time required by the brute-force approach to obtain Emin for Eq. (21).

6.3. Further development

For a given tolerance of a variable, denoted by tolvar , we are able to quickly select the available FEM method, the
associated minimal available p and minimal available number of DoFs. For example, when tolu = 1e-9, we can only
achieve it using the mixed FEM, the associated minimal available p is 2, and minimal available number of DoFs is 638876.
14
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Fig. 17. CPU time required by DoFinder to obtain Emin for Eq. (21).

Fig. 18. Percentage of CPU time saved by DoFinder to obtain Emin for Eq. (21).

7. Conclusions

A novel approach is presented to predict the highest attainable accuracy for second order, ordinary differential
equations using the finite element method. In contrast to the brute-force approach, which uses successive h-refinements,
his approach uses only a few coarse grid refinements to reach the region of asymptotic convergence. This approach is
iable for the solution and its first and second derivatives, for both the standard FEM and the mixed FEM, for all element
egrees. The algorithm for implementing the approach shows that the highest attainable accuracy can be accurately
redicted using negligible CPU time and the CPU time to obtain this solution explicitly is significantly reduced: to compute
he solution with the highest attainable accuracy using our approach results in a reduction of CPU time by around 70%
or both the standard FEM and the mixed FEM. Future research will focus on the extension of this approach to 2D second
rder problems, where the influence of the linear system solver, local mesh refinement and boundary conditions might
e significantly different from 1D problems.

ppendix A. Derivation of the weak form

.1. The standard FEM

Multiplying Eq. (1) by a test function η ∈ H1(I), and integrating it over I yield

⟨η, − (dux)x + ru⟩ = ⟨η, f ⟩. (A.1)

By applying Gauss’s theorem, we obtain

⟨ηx, dux⟩ + ⟨η, ru⟩ = ⟨η, f ⟩ + ⟨η, duxn⟩Γ . (A.2)

Substituting the natural boundary conditions, i.e. d(x)ux = h(x) on ΓN , and taking η = 0 on ΓD render Eq. (3); substituting
the natural boundary conditions, not taking η = 0 on Γ , but adding auxiliary terms render Eq. (4).
D
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A.2. The mixed FEM

Multiplying Eq. (7a) by a test function of v, i.e. w ∈ H1
N0(I), and integrating it over I yield

⟨d−1v + ux, w⟩ = 0. (A.3a)

Applying Gauss’s theorem to Eq. (A.3a), it becomes

⟨w, d−1v⟩ − ⟨wx, u⟩ = −⟨w, un⟩ΓD . (A.3b)

ubstituting the natural boundary conditions, i.e. u(x) = g(x) on ΓD, renders Eq. (8a). Note that, unlike the standard FEM,
the essential boundary conditions are imposed on ΓN and the natural boundary conditions are imposed on ΓD for the
mixed FEM.

Multiplying Eq. (7b) by a test function of u, i.e. q ∈ L2(I), and integrating it over I yield

−⟨q, vx⟩ − ⟨q, ru⟩ = −⟨q, f ⟩, (A.4)

which results in Eq. (8b).

Appendix B. Proof of the slope of the decrease of the error

Here we give the proof for the standard FEM. The process for the mixed FEM is similar.
For the grid size h and element degree p, the number of DoFs

Nh = (1/h)× p+ 1. (B.1)

Therefore,

h =
p

Nh − 1
. (B.2)

ince the error [6]

Eh ⩽ Chp+1, (B.3)

ubstituting Eq. (B.2) into Eq. (B.3), we obtain

Eh ⩽ C1(Nh − 1)−(p+1), (B.4)

here C1 = Cpp+1. Therefore, the slope is βT = p+ 1
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