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Abstract. In the context of river hydraulics, we develop the idea of a richer local zoom
model superposed to a given global model. The local zoom model (2D shallow water equa-
tions in flooded parts) describes additional physical phenomena which are not represented
by the basic global model (1D shallow-water equations with storage area). The weak cou-
pling method presented preserves the integrity of the global 1D model, while it allows to
calibrate its input variables (inflow boundary conditions for example) by assimilating lo-
cal data measured inside the 2D zoom area. The resulting Joint Assimilation Coupling
algorithm (JAC) is based on the optimal control method of PDEs systems. Some numer-
ical tests, where we consider a toy flooding event that involves overflowing of the main
channel and a moving front travelling over previously dry areas, show the efficiency of the
algorithm.

1 INTRODUCTION

Generally, operational hydrological models describing river networks are based on the
1D shallow water equations with storage areas, essentially because of their low computa-
tional cost required for fast decision-making. The bi-dimensional situations, such as those
that occur during flooding, are represented by the storage areas i.e. by extra source terms
in the 1D equations. In the present study, we seek to model the 2D flows in the local
flooded areas, coupled in a certain way with the 1D-net global model. Another reason for
using local 2D models arises in the context of Data Assimilation (DA): this can allow to
assimilate data which are not described in the 1D model.
A natural way to introduce local 2D models could be the Domain Decomposition Method
(DDM), when one obtains a set of 1D channels and 2D areas/junctions, see e.g. [1],[2].
The coupling techniques which can be applied in this case vary from the classical Schwarz
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method with overlapping, the wave-form relaxation method , see e.g. [3], (which is a
subset of the global time Schwartz method), to the optimal control based methods, [4].
When the DDM is applied, the integrity of the existing 1D-net model is not preserved
and a new composite model has to be created. Indeed, the DDM disintegrates the model
making available a parallel implementation. Here, we keep in mind a different approach,
proceeding from the condition that the 1D-net global model must stay intact. This may
be considered as a natural demand from the expert-users that holds this model in opera-
tional use.
Thus, we suggest a coupling principle, which may be called superposed rather than de-
composed: we keep the overall integrity of the existing 1D model. Source terms of the
1D model within the areas of interest (storage areas) are estimated via the 2D local solu-
tion as a defect correction, [5]. The 1D model, in turn, provides a key part of Boundary
Conditions (BC) at open boundaries of the 2D local ’zoom’ superposed model. BCs and
all information transfers between both models are based on the incoming characteristics,
which can be viewed as a special case of absorbing BC, [6], [7].
Thus, the 2D local model is ’superposed’ over the 1D model in the ’storage areas’ and
plays the role of a zoom. Both producing the 2D estimation of the flow and improving
performance of the 1D global model.
Let us point out that the two models are not consistent since: a) the 1D model cannot
provide the full set of BC for the 2D model; b) the 1D model is usually solved on much
coarser mesh with a typical ratio 101 − 102 for the space mesh size and 102 − 103 for the
time step. We compensate the lack of information by using a-priori information measured
data (variationnal data assimilation), and the difference of the spatio-temporal grids is
circumvented by using weak coupling terms (mortar type approach).
Eventually, we obtained what we call the Joint Assimilation Coupling (JAC) algorithm,
which solves simultaneously both DA and superposed weak coupling. It is based on the
optimal control method of PDEs systems. We specify an extended objective functional
such that in addition to the usual DA terms (residuals between model predictions and
measured data), it includes coupling conditions written in an integral form.
The main advantages of this algorithm are the following: 1) no additional assumptions are
needed since it evades difficulties of coupling inconsistent models; 2) one can assimilate
data within the ’zoom’ area which are not represented into the 1D model, allowing to
identify its parameters or input variables (inflow BC for example).
The extended objective functional is minimized using the quasi-Newton LBFGS algo-
rithm, while the gradient is computed using the adjoint method. We conduct numerical
tests, where we consider a toy flooding event that involves overflowing of the main channel
and a moving front travelling over previously dry areas.
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2 MATHEMATICAL MODEL

2.1 2D model

The 2D problem is considered in the domain Ω2 (’zoom’ area) confined by the bound-
aries Γ3,4,5,6 and the main channel (domain Ω1) is confined by the boundaries Γ1,2, see
Fig.1. For simplicity we assume that the positions of the lateral boundaries Γ3(t) and
Γ4(t) (inflow and outflow respectively) are fixed along the median curve of the main chan-
nel (x′ axis), but they can stretch in the tangential direction y′ as long as the ’zoom’
area evolves in time. The boundaries Γ5(t), Γ6(t) represent moving wet/dry fronts. The
bathymetry is given by the function Z(x, y).
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Figure 1: General problem layout.

The equations describing the 2D shallow water flow are as follows:

Ut + A(U)x +B(U)y − S(U) = 0, (x, y) ∈ Ω2(t), t ∈ (0, T ) (1)

with U = [ h, q, p ]T , A(U) = [ q, q2/h+ gh2/2, qp/h ]
T
, B(U) = [ p, pq/h, p2/h+ gh2/2 ]

T

and S(U) = [ 0, gh(Zx − fx), gh(Zy − fy) ]T .

Here h = h(x, y, t) is the surface elevation, q = q(x, y, t) and p = p(x, y, t) are compo-
nents of discharge, Zx, fx and Zy, fy are the bed slope and the friction slope associated to
the x and y axes respectively, g is the gravity acceleration. The friction slope is defined
using the Manning law via the Manning coefficient µ = µ(x, y) as follows:

fx = µ2(q2 + p2)1/2qh−10/3; fy = µ2(q2 + p2)1/2ph−10/3

We consider the 2D local SWE model with open lateral boundaries using the first order
absorbing BC that is essentially the incoming characteristics, see [6], [7]. Assuming that
the flow at Γ3,4 always remains subcritical, we set:

(x, y) ∈ Γ3 : q~n + ch = w1(x, y, t), q~τ = w3(x, y, t), ∀u~n > 0 (2)
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(x, y) ∈ Γ4 : q~n − ch = w2(x, y, t), q~τ = w3(x, y, t), ∀u~n < 0 (3)

where q~n and q~τ are the normal and tangent (with respect to the boundary) components
of the discharge, c = (gh)1/2 is the celerity. The quantities wk(x, y, t) are imposed. In all
the sequel, initial condition is given.

2.2 1D model with storage area

The 1D model can be derived from the 2D SWE model in two steps.
First, the 2D model has to be considered in the ’channel-following’ coordinate system
(x′, y′), when x′-axis follows the median curve of the main channel and y′ is the or-
thonormal to x′. Assuming that the median curve is given in the parametric form
xm = m1(x

′), ym = m2(x
′) we can obtain the following co-ordinate transformation

∂x′

∂x
=

cos(α′)

1 − y′α′
x

,
∂y′

∂x
= −sin(α′),

∂x′

∂y
=

sin(α′)

1 − y′α′
x

,
∂y′

∂x
= cos(α′)

where α′ is the angle between the x-axis and the local tangent to the median curve,
α′

x = ∂α′/∂x. By neglecting y′α′
x (that is often justified for river flows), we obtain the

same equations as (1) for the variables U ′ = [ h, q′, p′ ]T , where q′, p′ are the normal and
tangent component of discharge in the new co-ordinate system (x′, y′).
The second step is to integrate these equations in y′ from Γ1 to Γ2. Assuming that: a)
zero fluxes through Γ1,2; b) u′y′ = 0; c) (hx′)y′ = 0 we get the Saint-Venant equations or,
in the case when the main channel has a constant rectangular cross-section of width b,
the ’dimensional’ 1D SWE as follows

Ũ ′
t + Ã(Ũ ′)x′ − S̃(Ũ ′) = Ψ, (x′) ∈ (0, L′), t ∈ (0, T ) (4)

with: Ũ ′ = [ H ′, Q′ ]T , Ã(Ũ ′) = [ Q′, (Q′)2/H ′ + g(H ′)2/2 ]
T
, S̃(Ũ ′) = [ 0, gh(Z ′

x − f ′
x) ]T

and Ψ = [ψ1, ψ2]
T . Where H ′ is the wet cross-section area and Q′ is the total discharge.

If H ′ and Q′ are scaled by b, we get the classical 1D SWE variables.

Above, we have artificially introduced the source terms Ψ = [ψ1, ψ2]
T to actuate the

1D solution. We assume that these are existing entries into the standard 1D model with
storage areas (since storage areas are represented by source terms anyway).

Similarly to the 2D case, we consider first order absorbing BC, based on incoming
characteristics. We impose:

x′ = 0 : Q′ + c′H ′ = W1(0, t) (5)

x′ = L′ : Q′ − c′H ′ = W2(L
′, t) (6)
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where c′ = (gH ′/b)1/2. The initial condition is given.

It is worth mentioning that the characteristic BC for the 1D model is not an obligatory
option. We use it for convenience, but one could use the classical BC Q′(0, t), H ′(L′, t).
These are, however, reflective BC.

3 FINITE VOLUME SCHEMES

The SWE are solved numerically in the conservative form by the finite-volume method.
For simplicity we utilize a structured rectangular mesh, although the solver allows non-
structured mesh computations.

3.1 2D scheme

We reduce the 2D SWE problem to a set of 1D local Riemann problems, from where
integral fluxes between adjacent cells can be retrieved, Fig.2. Let us consider a mesh
consisting of finite volumes Ki covering the ’zoom’ area (Ω2) in such a way that volume
interfaces continuously reproduce boundaries of the main channel (Γ1,2) as shown in Fig.2.
In general case the mesh not necessarily must be quadrangular.
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Figure 2: Finite volume mesh

Assuming the Euler explicit time discretization, for the finite volume Ki the model
equations (1) are approximated as follows

Ui(tm + τ) = Ui(tm) − τ

(

1

|Ki|

4
∑

n=1

Fn(Ui) − S(Ui)

)

t=tm

(7)

where m = 0, ..., T/τ is the time index, τ is the time step used for the 2D model inte-
gration, Fn(Ui) are total fluxes of U via nth edge Ei,n of the volume Ki and |Ki| is the
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volume surface. For the edge we define a rotation

T (θ) =







1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)







where θ is the angle between the normal ~n to the edge Ei,n and the x-axis. Variables
V = [ h, q~n, q~τ ] are used to define a vector of local Godunov fluxes as follows

Φ(V ) =
[

q~n, q
2
~n/h+ gh2/2, q~nq~τ/h

]T

Computing the flux Fn(Ui) consists of three steps, see e.g. [8].
First we compute the normal and tangent discharge components in two finite volumes Ki

and Ki,n adjacent to the edge Ei,n (see Fig.2) using the rotation as follows Vi = T (θi,n)Ui.
Second, we compute Φ(V ) as an approximate solution of the local Riemann problem

∂V

∂t
=
∂Φ(V )

∂x~n

, V (x, 0) =

{

Vi, x~n < 0
Vi,n, x~n > 0

}

To this end, we use an approximate HLLC solver described in details in [8]. This first
order scheme handles correctly the transition between sub-critical and super-critical flows,
unlike most other first order schemes, that is important for a reliable front propagation
modeling.
The last step is to compute fluxes of Ui using the inverse rotation T−1(θi,n), so we can
eventually write

Fn(Ui) = T−1(θi,n)Φ(V ) (8)

The bed slope is included into the source term of the 1D local Riemann problem in the
manner as described in [9], thus we deal with the non-homogeneous version of the HLLC
scheme. We use a simple treatment of a dry/wet front introducing a front propagation
threshold. If the surface elevation is less than the threshold value, then zero fluxes be-
tween sells are specified.

For those control volumes belonging to Ω1 the variables in the channel-following co-
ordinates U ′, as well as fluxes Fn(U ′

i) can be obtained using another rotation T (α′) (see
Fig.(2) for the definition of α) as follows

U ′ = T (α′)U, Fn(U ′) = T (α′)Fn(U)

The numerical implementation of the characteristic BC is as follows. Let us consider the
’inlet’ boundary Γ3, for example. We compute the elevation and the discharge components
in ’ghost’ cells Ki,n, ∀Ei,n ∈ Γ3, adjacent and symmetric to the boundary sells Ki as
follows

h(t)|(x,y)∈Ki
= Z +

1

2

(

w1

c
−
w2

c

)
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q~n(t)|(x,y)∈Ki
=

1

2

[(

1 +
u~n

c

)

w1 +
(

1 −
u~n

c

)

w2

]

q~τ (t)|(x,y)∈Ki
= w3, ∀u~n > 0

Above, w1 and w3 are control variables, while w2 is the outgoing characteristic variable to
be extrapolated to the center of the cell Ki,n from the interior along the direction normal
to the edge Ei,n. For extrapolation we use a cubic spline representation of w2 built in the
vicinity of Γ3. Similar expressions are used for the ’outlet’ boundary Γ4.

3.2 1D scheme

Assuming the Euler explicit time discretization, for a given finite volume K̃i the 1D
model can be represented in the finite-dimensional form as follows

Ũ ′
i(tm̃ + τ̃) = Ũ ′

i(tm̃) − τ̃

(

1

|K̃i|

2
∑

n=1

F̃n(Ũ ′
i) − S̃(Ũ ′

i) − Ψi

)

t=tm̃

(9)

where m̃ = 0, ..., T/τ̃ is the time index, τ̃ is the time step used for the 1D model integra-
tion, F̃n(Ũ ′

i) are the fluxes of Ũ ′ via nth edge of K̃i, which can also be defined by the same
steps as in the 2D case when using θ1 = 0, θ2 = π.

4 COUPLING CONDITIONS

4.1 2D → 1D information transfer

Flux term A first approach is to compute overflowing of the main channel as fluxes via
its boundaries based on a current approximation of the 2D flow given by a ’zoom’ solution.
Thus, we define these fluxes as piece-wise constant functions G along the boundaries Γ1

and Γ2 as follows

G|Γ1
:= {Fn(U ′

i)} , ∀(i, n) : Ei,n ∈ Γ1 ∩ Ω2, Ki ∈ Ω1

G|Γ2
:= {Fn(U ′

i)} , ∀(i, n) : Ei,n ∈ Γ2 ∩ Ω2, Ki ∈ Ω1

Since the 1D state consists of the components (H ′, Q′), we need to retain only two first
components of G = (G1, G2, G3)

T , which we denote as G⊥ = (G1, G2)
T . Let us relate

the 1D finite volume K̃i ∈ (x′1, x
′
2) and a segment of the main channel confined by the

perpendiculars to the median curve at the points x′1 and x′2, and by the arcs they cut
from the boundaries Γ1, Γ2, which we denote Γ̃1,i and Γ̃2,i (as we show in Fig.2). Then
the overflowing in the 1D model can be compensated using the source term Ψi as follows

Ψi(tm) =
1

τ̃ |K̃i|

∫ tm̃+τ̃

tm̃
(
∫

Γ̃2,i

G⊥dΓ −
∫

Γ̃1,i

G⊥dΓ) dt (10)
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Flux term with defect correction A more general approach is based on the idea
of a defect correction originated from the multi-grid method, see e.g. [5]. If Af and
Ac are spatial operators defined on a ’fine’ and a ’coarse’ grid correspondingly, U is a
state variable and R is a fine-to-coarse projection (restriction) operator, then the ’defect
correction’ term used in the coarse grid problem approximation reads as follows

d = RAf (U) − Ac(RU)

Let us define a piece-wise constant function G(U ′) such that

G(U ′) =







1

|Ki|

4
∑

j=1

Fj(U
′
i) − S(U ′

i)







; ∀i : Ki ∈ Ω1 ∩ Ω2

This is the action of the finite-dimensional 2D SWE spatial operator on a state vector U ′,
as in (7). Again, we need to retain only two first components G⊥ = (G1, G2)

T . Another
function to be defined is the action of the finite-dimensional 1D SWE spatial operator on
a state vector Ũ ′ (9) as follows

G̃(Ũ ′) =







1

|K̃i|

2
∑

j=1

F̃j(Ũ
′
i) − S̃(Ũ ′

i)







; ∀i : K̃i ∈ Ω1 ∩ Ω2

Now we introduce a projection (restriction) operator R that computes average values over
K̃i and τ̃

Ri(tm)v =
1

τ̃ |K̃i|

∫ tm+τ̃

tm

∫

K̃i

v dΩdt

Eventually, we compute the source term for the 1D model as follows

Ψi(tm) = di := Ri(tm)G⊥(U ′) − G̃(Ri(tm)U ′) (11)

Let us note that for matching grids and without friction, the function Ψi obtained by
(10) and (11) are equivalent.
Obviously, the defect correction term as specified in (11) is a generalization of the classical
multi-grid defect correction, since it takes into account the dimensional heterogeneity.

4.2 1D → 2D information transfer

For coupling the 1D and ’zoom’ models at the lateral boundaries we use a characteristic
approach. Actually we demand that the total quantity of the incoming characteristic
variables across the boundary must be preserved. This condition can be written as follows

∫

Γ3

w1(x
′, y′, t) dΓ = W1(x

′, t)|x′∈Γ3
,
∫

Γ4

w2(x
′, y′, t) dΓ = W2(x

′, t)|x′∈Γ4
(12)

where w1, w2 are defined in (2)-(3) and W1, W2 in (4)-(5) for arbitrary x′.
In the finite-dimensional implementation, the right-hand sides in (12) are computed from
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known coarse grid values W (x′i, tm), x′i ∈ K̃i using the cubic spline interpolation operator
I, that can be written in the form

W1(x
′, t)|x′∈Γ3

= IW1(x
′
i, tm), W2(x

′, t)|x′∈Γ4
= IW2(x

′
i, tm) (13)

Let us note that no more information can be extracted from the 1D model. The
distribution of w1, w2 on y′ remains unknown as well as the tangent velocity w3 in (3),
because there exists no related quantity in the 1D formulation. This is a main problem
of coupling dimensionally heterogeneous models.

5 THE JOINT ASSIMILATION-COUPLING ALGORITHM (JAC)

We present our method that allows to assimilate local data measured within ’zoom’
areas into the 1D-net model. It is based on an optimal control process, which consists
to minimize a cost function including the coupling boundary conditions terms (charac-
teristics) and a term measuring the discrepancy between the full model response and
observations. Hence, we do couple the 1D and 2D models (in a weak sense), while we
identify inflow BC, both using the available data. The 2D model plays the role of a finer
zoom model superposed to the global 1D network model.

To achieve this, we introduce the following objective functional:

J = γJ∗ + J1 + J2 (14)

This functional comprises a regular data assimilation term (weighted by γ)

J∗ =
∑

i

∫ T

0
(Ui − Ûi)

2 βi dt (15)

where β is an array of dimension (imax × 3), such that βi,l = 1 indicates the finite volume
number Ki, where the l− component of the state vector is measured. Also, the functional
comprises coupling conditions (12) in a ’weak’ form as follows

J1 =
∫ T

0
(
∫

Γ3

w1(x
′, y′, t)dΓ − I W1(x

′
i, tm))2dt (16)

J2 =
∫ T

0
(
∫

Γ4

w2(x
′, y′, t)dΓ − I W2(x

′
i, tm))2dt (17)

This arrangement leads us to a ’one-way relaxed’ model formulation, which can be
defined by the following steps, see Fig. 3:

a) given the initial condition and a current estimation of boundary conditions w1(t)|Γ3
,

w2(t)|Γ4
, w3(t)|Γ3,4

, solve the 2D ’zoom’ problem for t ∈ (0, T ), (keeping the 2D flow
field values at the sensor locations);
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b) compute source terms to the 1D model Ψi(tm) using (11);

c) given the initial condition, current estimation of boundary conditions W1(0, t),
W2(L

′, t) and Ψi(tm), solve the 1D problem for t ∈ (0, T );

d) compute W1(x
′
i, tm) and W2(x

′
i, tm), m = 0, ..., T/τ̃ using (13);

e) compute the value of the generalized objective functional (14) using definitions (15)-
(17).

Control

Variables 2D incoming charac. 1D incoming charac.

Coupling var. : B.C. (input var.) :

Discrepancy between: 

o Averaged 2D 

charac. 
1D charac. at interface

o DATA solution at measure points

Cost function :

2D Model

0 −−> T

0 −−> T

1D Model

1D source term 

with defect correction

1D solution

2D solution

Figure 3: The Joint Assimilation - Coupling algorithm

Eventually we formulate the optimal control problem as follows:

Find inf
~W
J( ~W ) (18)
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with ~W =
[

W1(0, t),W2(L
′, t), w1(t)|Γ3

, w2(t)|Γ4
, w3(t)|Γ3,4

]T
, and assuming the model con-

straints are defined by steps a)-c).

We refer to this control approach as to the Joint Assimilation Coupling (JAC) method.
We must point out that no additional assumptions have been involved into the JAC model
formulation: the lack of information is naturally compensated from the measured data.

Adjoint code and minimizer In order to implement the JAC method, we need the
gradient of (14) with respect to the vector-function of controls ~W . To this end we have dif-
ferentiated the code implementing the ’one-way relaxed model’ (as defined by items a)-d))
plus the objective functional. This task has been completed by means of the Automatic
Differentiation tool TAPENADE developed at INRIA, TROPICS [10]. The resulting ad-
joint code has been optimized and verified using classical tests. For optimization we use
the quasi-Newton LBFGS algorithm with the Wolf linear search.

6 NUMERICAL RESULTS

For all numerical tests, we have used a simplified problem layout as shown in Fig.4(left).
The boundary at y = 0 (Γ1) is the no-flow boundary, i.e. a wall. For simplicity, lateral
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Figure 4: Simplified problem layout and bathymetry used in numerical tests

boundaries of the ’zoom’ area Γ3, Γ4 are chosen beyond the area where the overflowing
may happen. Despite a simplification this idealized scheme allows verifying the basic
ideas of the proposed approach. More complicated situations require the non-uniform
mesh to be used, that we have tried to avoid. The bathymetry with a uniform bed slope
in the x-direction as shown in Fig.4(right) is used. The main channel width is 40m. In
simulations, the 1D model is solved using the 1D option of the same 2D solver.
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6.1 The reference solution

To enable analysis of results, we compute a ’reference’ flow pattern by solving the 2D
problem in the entire spatial domain Ω1 ∪ Ω2. As the initial condition we use a steady-
state flow confined by the main channel. This flow is supported by a constant value
of the inlet boundary control W1(0, t) (at the outlet we always keep an ’open boundary’,
assuming w2(L

′, t) = 0). Then we add a time-dependent component, which creates a wave
propagating downstream. When the wave reaches the ’low bank’ it starts overflowing
and produces a wetting front travelling over the previously dry area. This process is
illustrated in Fig.5, where the surface elevation of the flow in Ω2 for different time instants
is presented. The boundary condition that generates the reference solution is as follows

W1(0, t) = [0.5 + 1.2
(

1 + sin
(

3π

2
+

πt

480

))

] 104 m2/s
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Figure 5: Reference flow (surface elevation h) for different times

We speak about ’consistent discretization’ when the 1D model solution is obtained
with the same space mesh h′x = hx and time step τ̃ = τ as 2D problems, and about

12
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’inconsistent discretization’ otherwise.
The unknowns of the 2D model are the incoming characteristic variables w1(t)|Γ3

and
w2(t)|Γ4

, while for the 1D model we seek to identify the upstream incoming characteristic
variable W1(0, t), assuming the open boundary at x = L′, see Fig. 3.
Data is collected in two points located within the ’zoom’ area (see Fig.4,left). The exact
location of the sensors is as follows: x1 = 290m, y1 = 20m for sensor A, x1 = 290m, y2 =
140m for sensor B. Measurements to be used in the identical twin experiment are gener-
ated by the 2D reference solution.

6.2 Results with a consistent discretization

In the following assimilation examples presented in Fig.6, Fig.7 we use a consistent
discretization. Here to the left, we can see the reference BC (in dashed line) and the
retrieved value after k iterations of the JAC algorithm (in sharp solid lines). A line that
corresponds to k = 0 is the initial guess. To the right, one can see the convergence
history for J and for its components J∗, J1, J2. These examples show that the JAC
method converges and allows retrieving the unknown BC of the 1D model, while data is
assimilated into the ’zoom’ model. When both q, p and h are measured (Fig.6) we need
just 10 iterations to get quite a reasonable approximation of the reference value, about
20 iterations to get a very close one (apart from the ’blind’ spot in the vicinity of t = T ,
where the BC cannot be obtained in principle).
When only h is measured, one needs more iterations to get a good quality approximation
of W1(0, t), although any difference in the convergence rate cannot be seen.
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6.3 Results with an inconsistent discretization

In the next data assimilation example (Fig.8), we use an inconsistent discretization
where τ̃ /τ = 102, h̃x/hx = 101 and h-data only. As above, to the left we show the refer-
ence BC and the retrieved value after k iterations; to the right - the convergence history.
One can see that the convergence rate is the same as in the previous example, but the
retrieved value of W1(0, t) deviates from the reference value. This probably happens be-
cause the 1D model is solved used a very coarse discretization steps and the solution error
accumulates beyond the ’zoom’ area. There exists such an iteration number kopt when we
get the best approximation of the reference value (k ≈ 12). As we proceed iterating, the
estimation deviates from it approaching the value shown at k = 20. If the 1D problem
boundary control is a purpose by itself, one should look for an appropriate stopping crite-
ria. However, within Ω2, the ’zoom’ solution perfectly reproduces the reference solution;
within Ω1 ∩ Ω2, the 1D coupled solution perfectly reproduces the reference solution too
(as good as the space discretization allows), but beyond this domain may deviate, see
Fig.9.

In conclusion, one can say that the ’zoom’ model may be regarded as an operator that
maps measured physical quantities into the state space of the basic model.

6.4 Results with sensor B only

In the last numerical test, we consider a consistent discretization and we assimilate
data into the zoom model only. These data are not represented in the basic model i.e.
1D model. We consider only the data collected by the ’dry field’ sensor B, Fig.1(right),
located at y′ = 100m from the overflowing boundary Γ2). To set up an ultimate test
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case we use a special form of the reference BC as shown in Fig.10(left) by a dash-dotted
line. One can see that up to t ≈ 300 s the value of control does not exceed a flood
trigger level. This is done to increase a period when sensor B remains ’dry’. The readings
of the sensor are shown in Fig.10(left) by solid lines. We note that up to t ≈ 600 s
all measurements remain zero. The problem solution obtained by the JAC algorithm is
presented in Fig.10(right).

Here, by a dash-dotted line we show the reference BC and by solid lines - the retrieved
value after k iterations. The only ’trick’ in solving this DA problem is that one must start
iterations from the initial guess that necessarily keeps the whole domain Ω2 wet (solid
line, k = 0). As a result we manage to identify quite satisfactory a part of the unknown
boundary control between t ≈ 300 − 750 s, i.e. the part, which is actually responsible
for causing a flood event. The part below the flood trigger level is not retrieved, neither,
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of coarse, the solution in a certain vicinity of the terminal point t = T . It is worth
mentioning that the solution has been identified for times far preceding to the beginning
time of the ’wet’ period for the sensor B (t > 600 s). We should stress that this result
could not be obtained in the framework of the 1D model in principle.

7 Conclusion

Global numerical models cannot always consider natural phenomena in full complexity
and everywhere because of computational difficulties. Actually, this is not always neces-
sary, but in some parts of the problem domain the effects which are not represented by
the global model become important and must be taken into account. Hence, ’richer’ local
models may become interesting. Also, in the DA context, richer local models may allow
to assimilate measured physical quantities which are not the variables of the basic global
model. In some cases the correspondence between them could be easily established, in
some cases could not. If the extra state variables of a richer local model match with some
of measured quantities, it can be viewed as a mapping operator.
We present here a weak and superposed coupling method. That is, the richer local model
is laid over the global model in some area, which can be chosen either from physical con-
siderations or by a-posteriori estimates. The global model provides a basis for estimating
the local model open BCs, while the richer local model produces ’defect correction’ source
terms that allows adjusting global model solution into the local ’zoom’ area. Such an
approach keeps the integrity of the global model. Also, for the DA context, ’zoom’ richer
models may be considered as a part of the sensor supply, making the instrumental devices
compatible with the basic global model.
This is the idea we developed here, as applied to river hydraulics modelling. As global
model, we have the 1D shallow water model with storage areas. Over the storage areas,
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we superpose a local zoom 2D shallow-water model. Then, we builted, what we called,
the Joint Assimilation Coupling (JAC) algorithm, which treats simultaneously the assim-
ilation and weak coupling problems through minimizing an extended objective functional.
It is based on the optimal control method. A lack of information is compensated from
measured data, hence no extra a-priory information is needed.
For this application, we have developed the information exchange principles (based on
incoming characteristics) and tested them numerically for a simplified problem layout.
The numerical experiments show that the global model gets obvious benefits from using
a zoom richer local model, and demonstrate the efficiency of the coupling method, which
converges in few iterations. In the last numerical test case presented, elevation data lo-
cated outside the 1D main channel have been successfully assimilated, and allowed to
retrieve the most important part of the unknown inflow BC of the 1D model that caused
the ’flooding’. This information could not be considered using the 1D-net global model
only.
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