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A B S T R A C T

Among the many potential applications of topological insulator materials, their broad potential for the
development of novel tunable plasmonics at THz and mid-infrared frequencies for quantum computing,
terahertz detectors, and spintronic devices is particularly attractive. The required understanding of the intricate
relationship between nanoscale crystal structure and the properties of the resulting plasmonic resonances
remains, however, elusive for these materials. Specifically, edge- and surface-induced plasmonic resonances,
and other collective excitations, are often buried beneath the continuum of electronic transitions, making it
difficult to isolate and interpret these signals using techniques such as electron energy-loss spectroscopy (EELS).
Here we focus on the experimentally clean energy-gain EELS region to characterise collective excitations in
the topologically insulating material Bi2Te3 and correlate them with the underlying crystalline structure with
nanoscale resolution. We identify with high significance the presence of a distinct energy-gain peak around
−0.8 eV, with spatially-resolved maps revealing that its intensity is markedly enhanced at the edge regions
of the specimen. Our findings illustrate the reach of energy-gain EELS analyses to accurately map collective
excitations in quantum materials, a key asset in the quest towards new tunable plasmonic devices.
1. Introduction

Topological insulator (TI) materials, such as Bi2Te3 [1–3] and
Bi2Se3, possess unique properties that make them well suited for
the design of nanoplasmonic devices operating in the THz and mid-
infrared frequency ranges [4–8]. Topological insulators can also sup-
port plasmonic excitations, collective oscillations of electrons that
interact strongly with light or other electrons and lead to enhanced
light-matter interactions such as strong scattering, absorption, and
emission. In particular, low-energy plasmons [9] have been reported
in Bi2Te3 below 3 eV while correlated plasmons at energies ∼1 eV
have been identified for Bi2Se3 [10]. In this context, advancing our
understanding of how to optimally deploy TIs for the development of
tunable plasmonic devices that operate efficiently in optical frequencies
has the potential to benefit a wide range of applications, including
quantum computing [11,12], terahertz detectors [13], and spintronic
devices [14].

In recent years, significant progress has been achieved in resolv-
ing plasmon resonances at the nanoscale, providing valuable informa-
tion about the spatial and spectral distribution of plasmonic modes.
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To this end, electron-based spectroscopic techniques such as electron
energy-loss spectroscopy (EELS) have demonstrated their suitability
to investigate the electronic and optical properties of a wide range
of materials, including the study of their plasmonic resonances [15–
21]. In parallel, advances in transmission electron microscopy (TEM)
have resulted in novel opportunities for scrutinising the functional-
ities of nanostructured materials. For instance, the incorporation of
monochromators and aberration correctors makes it possible to resolve
collective lattice oscillations (phonons) and study them with nanometer
spatial resolution [22–27]. Furthermore, the incorporation of machine
learning (ML) algorithms for EELS data analysis and interpretation has
further enhanced the reach of spectroscopic techniques to pin down
the properties of nanomaterials. As recently demonstrated [28,29],
ML methods enable the spatially-resolved determination of local elec-
tronic properties such as the band gap and the dielectric function with
nanometer resolution from EELS spectral images

Here we investigate low-energy collective excitations in the TI
material Bi2Te3 by means of EELS spectral images focusing on the
vailable online 4 September 2023
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energy-gain (𝛥𝐸 < 0) region [20,30–32]. As compared to traditional
EELS, this strategy offers the key advantage that gain peaks are not
obscured by the multiple scatterings continuum and other electronic
transitions taking place in the energy-loss region (𝛥𝐸 > 0), enabling
the clean identification of narrow collective excitations with enhanced
spectral resolution. The resulting characterisation of Bi2Te3 specimens
makes it possible to search for collective resonances in the low-gain
region, and correlate their spatial distribution with distinct structural
features such as surfaces, edges, and regions with sharp thickness
variations.

Our analysis reveals the presence of a narrow energy-gain peak
around −0.8 eV whose intensity is the largest in regions of the spec-
imen associated with exposed edges and surfaces. We demonstrate
the robustness of our energy-gain peak identification algorithm with
respect to the strategy adopted for the modelling and subtraction of
the dominant zero-loss peak (ZLP) background, quantify the statistical
significance of this signal, and estimate procedural uncertainties by
means of the Monte Carlo method widely used in high-energy physics.
Our work represents a significant step forward in exploiting the infor-
mation contained in the energy-gain region of EELS spectral images to
achieve an improved understanding of localised collective resonances
in TI materials.

2. Results and discussion

Fig. 1a displays a high-angle annular dark-field (HAADF) Scanning
Transmission Electron Microscopy (STEM) image of a representative
Bi2Te3 specimen. For closer examination, Fig. 1b shows the magnified
top right corner of the same specimen. Further characterisation of the
atomic structure of this specimen is provided in SI-S1 of the Supplemen-
tary Material. By means of electron energy-loss spectroscopy (EELS), we
acquire a spectral image (Fig. 1c) of the specimen in the same region,
indicated with a white square in Fig. 1a. The colour map corresponds
o the integrated intensity in the energy range [−9.05, 92.3] eV in each
ixel, covering the total energy range in which signal was acquired.
he black line indicates the edge of the Bi2Te3 specimen, which is
utomatically determined from the spatially-resolved thickness map
ssociated to the spectral image [28], specifically from its local rate
f change.

Fig. 1d displays EELS spectra taken at three different locations
ithin the spectral image, labelled as spectra sp1, sp2, and sp3 in

he following. Spectra sp1, sp2, and sp3 are acquired in the region
etween the vacuum and the edge of the specimen, in the vicinity of
he specimen edge towards the inner region, and in the innermost part
f the specimen, respectively. The three spectra reveal the presence
f distinct spectral features located at approximately energy losses of
.6 eV and 16.6 eV, where the latter corresponds to the bulk plasmon
eak in accordance with previous studies [33]. Furthermore, the peaks
t 25.6 eV and 27.9 eV observed in sp3 can be identified with the Bi O4,5
dges excited from Bi 5𝑑 electrons, also reported in the literature [34].
ig. 1e compares three other EEL spectra (labelled as sp4, sp5, and
p6) acquired in the immediate vicinity of the specimen edge. The
hree spectra exhibit a broad peak located around 21 eV, which can be

identified with the bulk plasmon of Bi2O3 [35,36]. It is worth nothing
that the presence of Bi2O3 in the surfaces of the specimen is not visible
from the HAADF images. The reason is that HAADF intensity scales
with 𝑍𝑛, with 𝑍 being the atomic number, which is much smaller in
O as compared to Te. This presence of Bi2O3 in the edge region of
the Bi2Te3 specimen is further supported by a High-Resolution TEM
(HRTEM) analysis reported in SI-S6 of the Supplementary Material.

Fig. 1f compares the EELS intensities in the region of energy losses
𝛥𝐸 restricted to the window [−2 eV, 2 eV] for spectra sp2, sp3, and sp7.

his comparison illustrates the dependence of the dominant Zero-Loss
eak (ZLP) background with respect to the location in the specimen:
ulk (sp3), close to edge (sp2), and vacuum (sp7). On the one hand,
s one moves from the vacuum towards the bulk region, the ZLP
2

intensity gradually decreases. This effect can be ascribed to the greater
number of inelastic scattering events that occur in the bulk (thicker)
regions, compared to the vacuum where the beam electrons do not
experience inelastic scatterings. On the other hand, we also observe
an enhanced intensity in the specimen regions as compared to the
vacuum for |𝛥𝐸| ≥ 0.6 eV, highlighting material-sensitive contributions
to the spectra which contain direct information on its local electronic
properties.

Removing this ZLP background is instrumental in order to identify
the presence of localised collective excitations such as phonons [24]
and plasmon peaks [21] in the low energy-loss region. The same con-
siderations apply to the cleaner energy-gain region [32], where the con-
tinuum of inelastic scattering contributions is absent. Here we model
the ZLP in terms of a Gaussian distribution following the procedure
described in SI-S2, with the fitting region restricted to [−0.4, 0.4] eV
o remove the overlap with 𝛥𝐸 values at which plasmonic modes
f Bi2Te3 have been reported [9]. Subsequently, the ZLP is removed
ixel by pixel in the EELS spectral image and the resulting spectra
re inspected to identify peaks and other well-defined features in an
utomated manner. We note that the small band gap [3,14] of Bi2Te3,
bg ∼ 0.15 eV, prevents reliably training deep learning models for

he ZLP parametrisation and subtraction as done in previous studies
rom our group [28,29,37]. Furthermore, although here we focus on a
i2Te3 specimen, the procedure is fully general and applicable to other
aterials which can be inspected with EELS.

Fig. 2 summarises the adopted strategy for the spatially-resolved
dentification of energy-gain peaks. First, Fig. 2a shows the EEL spec-
rum for the pixel indicated with a star in Fig. 1c together with the
orresponding ZLP fit. Closing up on the energy-gain region, Fig. 2b
isplays the resulting subtracted spectrum, to which a Lorentzian func-
ion is fitted (see SI-S2 for details) to extract the position 𝐸𝑔 and
ntensity of the dominant energy-gain peak. The procedure is repeated
or the complete EELS spectral image, making it possible to construct
he spatially-resolved map of 𝐸𝑔 shown in Fig. 2c across the inspected
egion of the Bi2Te3 specimen. As in Fig. 1c, the black line indicates
he boundary of the Bi2Te3 sample. Fig. 2c reveals the presence of an
nergy-gain peak in the specimen with 𝐸𝑔 values between −1.1 eV and
0.85 eV. We demonstrate in SI-S2 that results for the ZLP removal and
nergy-gain peak identification are robust with respect to the choice of
LP model function. Then Fig. 2d displays the Bi2Te3 thickness map
s obtained from the deconvolution of the single-scattering EELS dis-
ribution [28]. The dark blue region beyond the specimen corresponds
o either the vacuum or the Bi2O3 regions. In the edge region there is

sharp increase in thickness, while in the bulk region the thickness
xhibits an approximately constant value of 70 nm.

In order to further characterise the energy-gain peak identified in
ig. 2c and to correlate its properties with local structural features
f the specimen, Fig. 3a and b display the intensity of the ZLP-
ubtracted EEL spectra integrated in the energy windows [−1.1,−0.6]
V and [0.6, 1.1] eV for the gain and loss regions respectively. These
𝐸 intervals are chosen to contain the range of 𝐸𝑔 values displayed
n Fig. 2c and then mirrored to the energy-loss region. In the latter
ase, the EEL spectra receive additional contributions to the inelastic
cattering distribution beyond those considered here. The most notable
eature of Fig. 3a is an enhancement of the integrated intensity in the
dge region of the specimen characterised by a sharp variation of the
ocal thickness (Fig. 2d).

To quantify the statistical significance of the identified energy-gain
eak, it is convenient to evaluate the ratio

𝑔 ≡
(

𝐴𝑔∕𝐴zlp
)

g−fwhm , (1)

here 𝐴𝑔 and 𝐴zlp are defined as the areas under the full width at half-
aximum (FWMH) of the Lorentzian fit signal, filled region in Fig. 2b,

nd under the ZLP in the same 𝛥𝐸 region, respectively. In other words,
𝑔 measures the significance of the energy-gain peak in units of the
LP background. Fig. 3c displays a spatially-resolved map of 𝑠 across
𝑔
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Fig. 1. Spatially-resolved EELS analysis of Bi2Te3. (a) HAADF-STEM image of a representative Bi2Te3 flake. (b) Magnified region of the top right corner of the specimen around
the white square in (a). (c) EELS spectral image corresponding to the white square region in (a). The colour map corresponds to the total integrated intensity in each pixel. The
black line indicates the edge of the Bi2Te3 specimen, determined from the thickness map as described in the text. (d) EELS spectra corresponding to the different regions of the
specimen indicated in (c): between the vacuum and the edge (sp. 1); the vicinity of the edge towards the inner region (sp. 2); and the innermost, thicker part (sp. 3). Spectra sp.
1, sp. 2 and sp. 3 display the bulk plasmon peak of Bi2Te3 at around 16 eV. Additionally, sp. 3 also shows the Bi O4,5 edges excited from Bi 5𝑑 electrons at 25.6 eV and 27.9 eV.
(e) Same as (d) for EELS spectra in the immediate vicinity of the Bi2Te3 edge, displaying characteristic features of Bi2O3. (f) A comparison of sp. 2, sp. 3, and sp. 7 in the low
loss and gain regions (|𝛥𝐸| ≤ 2 eV).
the specimen. The region of enhanced intensity reported in Fig. 3a
and associated to the specimen edge corresponds to the highest values
of 𝑠𝑔 in Fig. 3c, reaching up to a factor two. This high significance
confirms that the observe intensity enhancement in the gain region is a
genuine feature of the data rather than an artefact of the ZLP removal
procedure.

It is also interesting to compare the features of the approximately
symmetric peaks appearing in the energy-gain and energy-loss regions,
whose values 𝐸𝑔 and 𝐸𝓁 respectively are mapped across the specimen
in Fig. S3 of the Supplementary Material. One observes in general a
stronger intensity of the energy-gain peak as compared to its energy-
loss counterpart. To quantify this observation and to compare their
relative intensities, we display in Fig. 3d the ratio 𝐴𝑔∕𝐴𝓁 of the areas
under the FWHM of the energy-gain Lorentzian fit to that of the energy-
loss peak. The vacuum region is masked out to facilitate readability.
As can be seen, in the bulk of the sample the ratio 𝐴𝑔∕𝐴𝓁 is of the
order unity, whereas in the edge region of the specimen the ratio
reaches a factor of around 4. The latter result indicates that surface and
edge effects enhance the relative intensity of the energy-gain peak. The
combination Figs. 2 and 3 demonstrates the presence of a well-defined,
significant energy-gain peak in Bi2Te3 located around 𝐸𝑔 ≃ −0.9 eV
whose intensity is enhanced in the edge regions of the specimen close
to the boundary.
3

A potential limitation of this analysis concerns the lack of a sys-
tematic estimate of the functional uncertainties associated to the ZLP
modelling and its subsequent subtraction from the EELS spectral image.
To this purpose, we deploy the Monte Carlo replica method for error
propagation, originally developed for proton structure studies in high-
energy physics [38–42] and then extended to deep learning models of
the ZLP within the EELSfitter framework [28,29]. First, one applies 𝐾-
means clustering to the EELS spectral image with the similarity measure
being the area under the three bins of the EELS intensity around 𝛥𝐸 = 0,
which operates as a proxy for the local thickness map of Fig. 2d. This
procedure results in the 20 clusters shown in Fig. 4a, each of them
composed by pixels with similar thickness. Within each cluster, the
EELS intensities are assumed to be sampled from the same underlying
distribution, and 𝑁rep spectra (‘‘replicas’’) are randomly selected from
each cluster. By fitting a separate ZLP model to each replica, one ends
up with a sampling of 𝑁rep models of the ZLP which can be used to
estimate uncertainties and propagate them to the subtracted spectra
and the subsequent Lorentzian fits.

Fig. 4b displays the same ZLP-subtracted spectrum as in Fig. 2b now
with the Monte Carlo replica method used to estimate ZLP model uncer-
tainties. For the ZLP fit, the subtracted spectrum, and the
Lorentzian fit to the latter the bands indicate the 68% confidence
level (CL) intervals evaluated over the 𝑁rep replicas. By repeating
this approach in all clusters, we calculate the area ratio 𝑠 defined
𝑔
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Fig. 2. Energy-gain peak identification in Bi2Te3. (a) The EEL spectrum (solid) in the pixel indicated with a star in Fig. 1c together with the corresponding fit to the ZLP (dashed
curve). (b) Close-up of the dashed rectangle in (a), now adding the Lorentzian fit (thick solid line) to the subtracted spectrum (dotted line). The vertical line indicates the mean
of the Lorentzian energy-gain peak 𝐸𝑔 , while the filled region indicates the corresponding FWHM. (c) Spatially-resolved map displaying the location of the energy-gain peak 𝐸𝑔 ,
determined following the procedure of (b) across the whole spectral image of Fig. 1c. (d) Same as (c) now for the local specimen thickness. The dark blue region beyond the
specimen edge corresponds to the vacuum region of the spectral image.
in Eq. (1) for all pixels in the spectral image using the replicas to
propagate uncertainties. This results in lower and upper bounds of
the 68% confidence interval of the area ratio shown in Fig. 4c and d
respectively. The corresponding map of the median of 𝑠𝑔 is consistent
with that reported in Fig. 3c and shown in Fig. S4 in the Supplementary
Material. Given that a good significance (above unity) of the energy-
gain peak is still observed in the map of the lower limit of the 68% CL
interval for the relevant edge region, one can conclude that the results
of this work are not distorted by unaccounted-for methodological or
procedural uncertainties.
4

To confirm the reproducibility of our findings, we have performed
additional measurements on a different Bi2Te3 specimen characterised
by the same crystal structure and with comparable features as the one
discussed here. The resulting analysis is summarised in SI-S5 of the
Supplementary Material and reveals the same qualitative features in the
energy-gain region, namely a well-defined, narrow peak at energy gains
around −0.7 eV whose intensity is enhanced in edge and surface regions
and whose significance reaches values of 𝑠𝑔 ∼ 4. This independent
analysis further confirms the robustness of our results, in particular the
strong correlation between the enhanced intensity of the energy-gain
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Fig. 3. Spatially-resolved characterisation of energy-gain peaks. (a) Same as Fig. 1c, now with the intensity of the EEL spectra (after ZLP subtraction) integrated in the window
[−1.1,−0.6] eV where the gain peak identified in Fig. 2c is located. (b) Same as (a) for the mirrored energy-loss window, [0.6, 1.1] eV. (c) Spatially-resolved map of the ratio 𝑠𝑔 ,
Eq. (1), defined as the area under the FWHM of the Lorentzian fit to the energy-gain peak, filled region in Fig. 2b, to the area under the ZLP in the same 𝛥𝐸 window. (d) Ratio
of the area 𝐴𝑔 under the FWHM of the Lorentzian fit to the energy-gain peak to its counterpart 𝐴𝓁 in the loss region, where the vacuum region is masked out for clarity.
peak located around [−0.9,−0.7] eV and specimen regions displayed
sharp thickness variations including edges and surfaces.

It is beyond our scope to identify the underlying physical phenom-
ena leading to the observed edge- and surface-induced energy-gain
peaks in Bi2Te3. Several mechanisms have been explored leading to
resonance signatures in the 𝛥𝐸 region relevant for our results, such
as wedge Dyakonov waves [43] and edge- and surface-located Dirac-
plasmons in the closely related TI material Bi2Se3. One can in any
case exclude thermal effects associated to a Bose–Einstein distribution,
given that states with ∼ 1 eV have a very low occupation probability at
room temperatures. Disentangling the specific mechanisms explaining
5

our observations requires dedicated theoretical simulations mapping
the EELS response of Bi2Te3 with different structural and geometric
configurations and is left for future work.

3. Summary and outlook

In this work we have presented a systematic, spatially-resolved in-
vestigation of the energy-gain region of EELS spectral images acquired
on Bi2Te3 specimens. The main motivation was to avoid the inelastic
continuum that pollutes the energy-loss region, which may prevent
identifying exotic phenomena appearing at 𝛥𝐸 values below a few eV.
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Fig. 4. Energy-gain peak characterisation with the Monte Carlo replica method. (a) The EELS spectral image of Fig. 1c classified into 20 clusters, each of them composed by
pixels with similar thickness. (b) Same as Fig. 2b now using the Monte Carlo replica method to estimate and propagate the ZLP fitting model uncertainties. For the ZLP Gaussian
fit, the subtracted spectrum, and the Lorentzian fit to the latter we display both the median over replicas and the 68% CL intervals. (c,d) Same as Fig. 3c now the lower and
upper ranges, respectively, of the 68% CL interval for the area ratio evaluated over the Monte Carlo replicas. See Fig. S4 in the Supplementary Material for the corresponding

median map.
An automated peak-identification procedure identifies a narrow feature
located around 𝛥𝐸 ∼ −0.8 eV whose intensity and significance are
strongly enhanced in regions characterised by sharp thickness varia-
tions, such as surfaces and edges. We assess the role of methodological
uncertainties associated to e.g. the ZLP subtraction procedure and
find that our results are robust against them. The observed resonance
could be the signature of edge- and surface-plasmons such as those
reported in Bi2Se3, thought dedicated simulations would be required
to unambiguously ascertain its origin.

While here we focus in Bi2Te3 as a proof-of-concept, our approach
for ZLP substraction and energy-gain peak tracking is fully general and
6

can be deployed to any specimen for which EELS-SI measurements are
acquired, and in particular it is amenable to atomically thin materials
of the van der Waals family. Our approach is made available in the
new release of the EELSfitter framework and hence can be straight-
forwardly used by other researchers aiming to explore the information
contained in the energy-gain region of EELS-SI to identify, model, and
correlate localised collective excitations in nanostructured materials.
Possible future improvements include the extension to multiple gain-
peaks deconvolution and the improved modelling of the loss region
describing the inelastic continuum background. All in all, our findings
illustrate the powerful reach of energy-gain EELS to accurately map
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and characterise the signatures of collective excitations and other exotic
resonances arising in quantum materials.

4. Methods

Specimen preparation. The specimen used in this study were Bi2Te3
flakes that were mechanically exfoliated from bulk crystals through
sonication in isopropanol (IPA) at a ratio of 2 mg of Bi2Te3 per 1 ml
of IPA. The exfoliated flakes were then transferred onto holey carbon
grids for EELS investigations.

STEM-EELS settings. The scanning transmission electron microscopy
(STEM) images and electron energy-loss/gain spectra were obtained
using a JEOL200F monochromated equipped with aberration correc-
tor and a Gatan Imaging Filter (GIF) continuum spectrometer. The
instrument was operated at 200 kV and the convergence semi-angle
was 14 mrad. The collection semi-angle for EELS acquisition was 18.3
mrad obtained by inserting a 5 mm EELS entrance aperture. The EELS
dispersion was 50 meV per channel.

Data processing and interpretation. The spatially-resolved maps of
the energy-gain peaks and the associated peak identification, fitting,
and data analysis techniques were performed using the open-source
Python package EELSfitter. All features presented in this work are
available in its latest public release together with the accompanying
input EELS spectral images via its GitHub repository.

Funding

H. L., A. B., and S.C.-B. acknowledge financial support from ERC
through the Starting Grant ‘‘TESLA’’ grant agreement no. 805021. The
work of J. R. is partially supported by NWO (Dutch Research Council)
and by an ASDI (Accelerating Scientific Discoveries) grant from the
Netherlands eScience Center. The work of J. t. H is supported by NWO
(Dutch Research Council).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request

Appendix A. Supplementary data

Supplementary material related to this article can be found on-
line at https://doi.org/10.1016/j.ultramic.2023.113841. The supple-
mentary material of this manuscript provides technical details on the
atomic structure characterisation of Bi2Te3, the energy-gain peak iden-
tification procedure, the uncertainty estimate using the Monte Carlo
replica method, and the analysis of the energy-gain peaks in different
Bi2Te3 specimens.
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