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1
Introduction

Root and tuber crops, including cassava, yam and potatoes, are all crops that can be grown in a relatively
short period of time as well as in different ecologies. Currently, the only way to monitor crop growth is
to dig up the produce, after which the leftovers are disposed and thus losing the crop in the process.
This current method is inefficient, time-consuming and wasteful. Other imaging techniques have thus
far failed due to: a lack of open surface, physical soil properties and/or expensive equipment. Tuber
breeders and farmers are therefore seeking a new method to monitor tuber growth. HZPC [1], a com-
pany dedicated to potato development and innovation, has numerous projects researching potatoes
and potato growth patterns. This project will investigate a new imaging method based on observing
the local changes in soil temperature and using the difference in thermal diffusivity constants of the
soil and tubers. To create an imaging method, it is relevant to understand how a tuber affects the soil
temperature and its surroundings as well as its magnitude. For this there are two options. The first and
cheaper alternative is a pin containing equally distributed temperature sensors that can be put into the
ground next to a crop. The second is a grid of temperature sensors put underneath the tubers below the
surface. Both methods will be assessed for their efficacy on temperature variations as well as generating
enough data to perform analyses.
To check the feasibility of these methods a model will be constructed using a temperature diffusion
equation on a trench-like domain. The model will contain tubers that grow over time and have a time-
varying boundary condition to account for ambient temperature changes. As tubers grow over time the
interface will change as well. Thus any methods applied to the model will have to account for the mov-
ing interface. This moving interface problem can be solved using immersed finite element methods
for parabolic interfaces [2]. A second method is the arbitrary Lagrangian-Eularian method [3] in which
the computational mesh in the calculations may move arbitrarily to to optimize the shape of the ele-
ments. In this report both will be investigated for their usefulness. These numerical methods will then
be implemented in Python using the package Feniks [4], simulated for the entirety of the tuber bulking
process. The results of these simulations will then be analyzed. Based on this analysis a method will
be constructed to deduce the number and size of the tubers or reconstruct an image of the tubers. The
feasibility and accuracy of this method will be discussed at the end of this report. Subsurface imaging
using diurnal temperature variations is not applicable to tubers if the variations caused by the tubers
are not significant. If the results indicate that the temperature differences caused by the tubers are sig-
nificant, this data will be used to predict the size and number of tubers or reconstruct an image of the
tubers. The accuracy of this method and its availability of this method will determine its feasibility.
This research will be presented at the "10th international conference on inverse problems in engineer-
ing" (ICIPE 20) [5] in Francavilla al Mare (Chieti) Italy on May 18-20 2020.
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2
Theory

In this chapter the buildup of the model will be discussed. First a heat equation will be built where any
constants will be treated as functions in space and time, unlike the standard heat equation [6]. The heat
equation will be further defined as well as any model variables or functions set up and named. After
this two different numerical methods will be considered for the model: a Finite Element Method [2][7]
[8] and a Arbitrary Lagrangian Eularian Method [3].

2.1. The heat equation
In this section a heat equation will be derived where any constants are considered functions in time
and space. This new heat equation will be built up from an unsteady heatflow problem similarly to the
standard heat equation [6]. This unsteady heatflow problem is based on balance and conservation laws.
For any region within the problem we have

Rate of heat change within the region + Rate of heat outflow on its boundary = Rate of supply. (2.1)

For a time t let f (x, t ) be the heat stored at x, q(x, t ) be the heat flux at x and S(x, t ) be the heat supply at
x. For any regionΩwithin the domain Equation 2.1 becomes

d

dt

∫
Ω

f (x, t ) dΩ+
∫
δΩ

q(x, t ) ·n dΓ=
∫
Ω

S(x, t ) dΩ. (2.2)

The rules for differentiation and integration result in

d

dt

∫
Ω

f (x, t ) dΩ=
∫
Ω

∂ f (x, t )

∂t
dΩ (2.3)

and ∫
δΩ

q(x, t ) ·n dΓ=
∫
Ω
∇·q(x, t ) dΩ, (2.4)

such that Equation 2.2 can be rewritten to∫
Ω

∂ f (x, t )

∂t
+∇·q(x, t )−S(x, t ) dΩ= 0. (2.5)

Since this holds for any region within the domain it follows that

∂ f (x, t )

∂t
+∇·q(x, t ) = S(x, t ). (2.6)

Heat can be measured by temperature and as such the internal heat, heat flux and heat supply can all
be written as functions of the temperature T (x, t ). The relation between the heat flux q(x, t ) and the
temperature is described in Fourier’s law

q(x, t ) = κ(x, t )∇T (x, t ), (2.7)

2



2.2. The model 3

where κ is the thermal conductivity in Wm−1K−1.
The internal heat f (x, t ) can be seen as the internal energy density. The specific internal energy density
of a material is a function U = U (T ) of the temperature and describes the heat required to raise the
temperature of a unit mass to T degrees Kelvin. The internal energy density, or the internal heat, can
now be given by

f (x, t ) = ρ(x, t )U (T ) = ρ(x, t )Û (x, t ), (2.8)

where ρ is the density of the material in kgm−3.
Using U (T ) another property of the material can be derived. The specific heat c(T ) of a material is de-
fined as the heat required to raise the heat of an unit mass by one degree Kelvin, therefor the definition
of U (T ) implies that

c(T ) = dU

dT
, (2.9)

which under constant pressure yields

cp (x, t ) = c(T )|p = dU

dT

∣∣∣∣
p

(2.10)

and is constant for most materials under a wide range of temperatures.
Equation 2.7 and 2.8 can be substituted into the conversation law acquired in Equation 2.6 which leads
to the following

∂

∂t

(
ρ(x, t )Û (x, t )

)+∇· (κ(x, t )∇T (x, t )) = S(x, t ), (2.11)

where
∂

∂t
(ρÛ ) = ∂ρ

∂t
Û +ρdU

dT

∂T

∂t
= ∂ρ

∂t
Û +ρcp

∂T

∂t
, (2.12)

which can be approximated by
∂ρ

∂t
Û +ρcp

∂T

∂t
≈ ρcp

∂T

∂t
(2.13)

for small changes of density ρ relative to the changes of temperature T . By substituting Equation 2.13
back into Equation 2.11 the heat equation is found

cpρ
∂T

∂t
−∇· (κ∇T ) = S, (2.14)

where the function for the heat supply S often is assumed to be known.

2.2. The model
The model will consider a section of a trench that contains growing tubers. Figure 2.1 shows a schematic
respresentation of the 2D version of the model. The polygonal domain Ω is independent of the time
t and consists of both soil Ωs (t ) and tubers Ωt (t ) which change over time as the tubers grow. The
temperature at any point and any given time can be found using the heat equation as seen in 2.14.
As the trench doesn’t have its own heat-source and is instead dependent on the ambient temperature
TA(t ), the partial differential equation onΩ is given by

cpρ
∂T

∂t
−∇· (κ∇T ) = 0, (2.15)

where the coefficients ρ,cp and κ are different onΩs (t ) andΩt (t ) and therefor functions of both x and
t . The differences will be denoted by ρt ,c t

p and κt for tubers and ρs ,c s
p and κs for soil.

In its initial state the model will contain only soil meaningΩs (0) =Ω andΩt (0) =;. The initial condition
for the temperature T will be of the form

T (x,0) = T0(x). (2.16)

The boundary Γ ofΩ consists of boundaries Γa and Γs where the domain is neighboured by air and soil
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Figure 2.1: A schematic representation of the model.

respectively. The boundary Γa is subject to the ambient temperature TA(t ). This results in the radiation
of heat onto x ∈ Γa in the form of

n · (κ∇T (x, t )) = εσ(TA(t )4 −T (x, t )4), (2.17)

where ε is the emmisivity andσ is the Stephan-Boltsman constant [13]. The function TA will be periodic
to account for changes in temperature during the day and night. It is of the form

Ta(t ) = c +b sin(
2π

24
t ), (2.18)

when t is in hours. Here c is the average temperature and b the difference between c and the highest or
lowest temperature.
Unlike Γa the boundary Γs isn’t directly influenced by a function or radiation. The boundary consists of
two parts, namely the bottom Γsb of the trench and opposing boundaries ΓsL and ΓsR that split section
Ω from other trenches. On Γsb there won’t be any outflow resulting in

∂T

∂n
=∇T ·n = 0. (2.19)

However at ΓsL and ΓsR the model will have to account for the influences of other trenches, which can
be achieved by making these boundaries periodic. This can be written as

T (x, t ) = T (xR , t ), (2.20)

for any point x ∈ ΓsR and the corresponding point xR on ΓsL .
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2.2.1. Tubers and tuber growth
For any tuber i in the model with i = 0,1, . . . ,n we have a corresponding Ωt ,i ⊂Ωt . All tubers together
will form Ωt and no two tubers will overlap resulting in

⋃n
i=1Ωt ,i = Ωt and

⋂n
i=1Ωt ,i = ; respectively.

Over time the area ofΩt will get larger as tubers grow.
Tubers in the model will be considered circles with a center point c and radius r . The tubers grow as the
radius r increases, which will be done linearly. The growth-rate µ of r can be calculated by

µ= rmax

tperiod
, (2.21)

where rmax is the maximum radius and tperiod is the growth period of the tubers in hours. With this, the
radius r of a tuber in the model equals

r =µt (2.22)

and the area A of a tuber at time t is
A(t ) =πr (t )2 =πµ2t 2. (2.23)

Any tubers in the model will start growing at the same time with the same rate µ meaning that for any
tubers i and j it holds that ri = r j and Ai = A j . Because of this the total area Atotal of all tubers in the
model at a time t can be calculated with

Atotal(t ) =
n∑

i=1
Ai (t ) = n ∗ A1(t ), (2.24)

which is only dependent on the time t and the number n of tubers in the model.

2.3. Finite Element Method
One of the problems of the model is the moving interface. As the grid is border-confirming for the dif-
ferent subdomains, the grid changes with time. There has been done research towards Crank-Nicolson-
type immersed finite element methods for solving equations as in our model [2]. The slow nature of tu-
ber growth means the mesh changes will be very subtle between timesteps if∆t is picked small enough.
Because of this the model will assume the mesh to be stationary at a time t . For the next step t +1 the
results on the mesh at time t will be interpolated to the mesh of time t + 1. When ∆t is chosen small
enough this shouldn’t cause problems. By working under this assumption there are no other changes
that have to be implemented to accommodate the changing grid and a more standard finite element
method may be used. In this section a finite element method will be discussed where the equations
will be discretized in time before they are written to weak formulation and discretized in space. By dis-
cretizing over time first it is possible to evaluate the functions as functions of only x on a stationary grid
at a certain time t . The backward Euler method applied to Equation 2.15 results in:

cp,n+1(x)ρn+1(x)
Tn+1(x)−Tn(x)

∆t
−∇· (κn+1(x)∇Tn+1(x)) = 0, (2.25)

where n ≥ 0 stands for the nth step of size∆t and T0 is the initial condition of the problem. The resulting
equation will be shortened to

cp,n+1ρn+1

∆t
Tn+1 −

cp,n+1ρn+1

∆t
Tn −∇· (κn+1∇Tn+1) = 0, (2.26)

where the dependence on x won’t be written down explicitly.

2.3.1. Weak Formulation
To solve this problem with a Finite Element Method (FEM), it will be rewritten in weak formulation.
This requires a solution space U (Ω) containing possible solutions u and test space V (Ω) containing
test-functions v . The functions u will be substitute in the place of T , more precisely Tn+1 = u and
Tn = uk . By doing so u will stand for the function we’re looking for and uk is the solution found in a
previous timestep. Note that by doing so we will need a different solution space U (Ωn) and V (Ωn) in
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every timestep as the way they are defined here, they are defined on anΩn of timestep n. This method
will be capable of evaluating the model at individual timesteps but will neglect the connection between
timesteps. As the changes on the domainΩwill be neglectable for small enough ∆t the resulting evalu-
ation of the model at a certain timestep should still be a good approximation.

cpρ

∆t
u − cpρ

∆t
uk −∇· (κ∇u) = 0. (2.27)

This will be multiplied by a test function v ∈V (Ω) and integrated overΩ.∫
Ω

[cpρ

∆t
u − cpρ

∆t
uk −∇· (κ∇u)

]
vdΩ= 0, (2.28)

which can be written as ∫
Ω

cpρ

∆t
(u −uk )vdΩ−

∫
Ω
∇· (κ∇u)vdΩ= 0. (2.29)

Since we have that
∇· (vκ∇u) = (∇v) · (κ∇u)+ v∇· (κ∇u) (2.30)

we can write ∫
Ω
∇· (κ∇u)vdΩ=−

∫
Ω

(∇v) · (κ∇u)dΩ+
∫
Ω
∇· (vκ∇u)dΩ (2.31)

=−
∫
Ω

(∇v) · (κ∇u)dΩ+
∫
Γ
κ(∇u ·n)vdΓ (2.32)

and substitute this back into Equation 2.29. The result yields∫
Ω

cpρ

∆t
(u −uk )vdΩ+

∫
Ω

(∇v) · (κ∇u)dΩ−
∫
Γ
κ(∇u ·n)vdΓ= 0, (2.33)

which also contains an integral over the boundary Γ = Γa ∪Γs . When this integral is split over the dif-
ferent parts of the boundaries, the boundary conditions for each boundary can be applied. Now using
Equations 2.19, 2.20 and 2.17 ∫

Γa

κ(∇u ·n)vdΓ= εσ
∫
Γa

(T 4
a −u4)vdΓ, (2.34)∫

Γsb

κ(∇u ·n)vdΓ= 0, (2.35)∫
Γsr

κ(∇u ·n)vdΓ=
∫
Γsl

κ(∇u ·n)vdΓ. (2.36)

To accommodate the periodic boundary the periodicity on the boundaries will be added as a property
of the function space and the test function space will be adjusted accordingly.
For u ∈ U (Ω) = { f | f (ΓsR ) = f (ΓsL )} and v ∈ V (Ω) = {g | g (ΓsR ) = g (ΓsL )} the weak formulation of the
partial differential equation becomes

0 =
∫
Ω

cpρ

∆t
(u −uk )vdΩ+

∫
Ω

(∇v) · (κ∇u)dΩ−εσ
∫
Γa

(T 4
a −u4)vdΓ, (2.37)

which can be rewritten to

0 =
∫
Ω

(u −uk )vdΩ+
∫
Ω

(∇v) · (D∇u)dΩ−εσ
∫
Γa

∆t

cpρ
(T 4

a −u4)vdΓ, (2.38)

with D = κ∆t
cpρ

. The constants in the border integral will always be assumed to be those of soil, as tubers

grow underground and are therefore denoted by c s
p and ρs respectively. In the case without tubers all

constants would be soil-only and D will be denoted Ds .
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In order to solve it numerically the dicretization in x has to be completed. To do this a basis for V has to
be chosen. Let φk,i be Lagrangian basis functions onΩ for i = 1, . . . ,m, then

U (Ω) = {uk =
m∑

i=1
ai ,kψi ,k (x)} (2.39)

V (Ω) = {vk =ψi ,k (x)}. (2.40)

Substitution of the functions into Equation 2.37 will result in a system that can be discretized in x and
rewritten to a system that can be assembled into matrices.

2.4. Arbitrary Lagrangian Eulerian method
Another option is to apply the finite element method using the arbitrary Lagrangian-Eularian descrip-
tion [3]. This method will result in an extra term to compensate for the changing grid. As tubers grow
the mesh will change, the movement of a node x = (x, y) can be described by the known function−→r (t ) = (x̃(t ), ỹ(y)). Substituting T (x, y, t ) = T̃ (x̃(t ), ỹ(t ), t ) will result in

∂T̃

∂t
= ∂T̃

∂t
+∇̃T̃ · d−→r

dt
, (2.41)

for ∇̃ = ∂
∂x̃ + ∂

∂ỹ meaning the partial differential equation becomes

c̃p ρ̃(
∂T̃

∂t
+∇̃T̃ · d−→r

dt
)−∇̃ · (κ̃∇̃T̃ ) = 0 (2.42)

where c̃p , ρ̃ and κ̃ are functions of −→r (t ) and t .
This partial differential equation can be discretized over time using the backward Euler method. Note

that since −→r (t ) is a known function we can calculate ∂−→r
∂t (t ) = R(t ) for any given t , resulting in

c̃p,n+1ρ̃n+1

∆t
T̃n+1 −

c̃p,n+1ρ̃n+1

∆t
T̃n +∇̃T̃n+1 ·Rn+1 −∇· (κ̃n+1∇T̃n+1) = 0, (2.43)

where n ≥ 0 stands for the nth step of size ∆t , T̃0 is the initial condition of the problem and the depen-
dence to (x̃(t ), ỹ(t )) isn’t written down explicitly.
Let U (Ω) be a solution space with U (Ω) = {ũ | ũ(ΓsR = ũ(ΓsL )} and V (Ω) be a test function space with
V (Ω) = {ṽ | ṽ(ΓsR = ṽ(ΓsL )} for a certain type of functions ũ and ṽ respectively. The functions ũ ∈U (Ω)
will be substituted in the place of T̃ as follows T̃n = ũk and T̃n+1 = ũ, meaning ũ will stand for the so-
lution we will be looking for and ũk the solution for the previous time-step. Similarly c̃p,n+1, ρ̃n+1 and
κ̃n+1 become c̃p , ρ̃ and κ̃ respectively. Since x is now a function of t , unlike previously, the function
space does not have to be adjusted at every time step. The weak formulation for the partial differential
equation is found by the same derivation as before with one extra term. Now for ũ ∈U (Ω) and ṽ ∈V (Ω)
the weak formulation becomes

0 =
∫
Ω

c̃p ρ̃

∆t
(ũ − ũk )ṽdΩ+

∫
Ω

(∇ṽ) · (κ̃∇ũ)dΩ+
∫
Ω

c̃p ρ̃∇̃ũ · ∂
−→r
∂t

ṽdΩ−εσ
∫
Γa

(T 4
a − ũ4)ṽdΓ. (2.44)

In comparison to Equation 2.37 the biggest difference lies in the extra term∫
Ω

c̃p ρ̃∇̃ũ · ∂
−→r
∂t

ṽdΩ. (2.45)

The function ∂−→r
∂t is the derivative of the function −→r that describes how the mesh moves when tubers

grow. The growth rate of a tuber per t is of order 10−5 and ∂−→r
∂t will be of similar order. It is relatively

smaller than the other functions and therefor the effects of the integral will be neglectable in compari-
son to the other terms.



3
Simulations

In this chapter the model will be simulated. The simulations will be on a polygonal domain, which will
have a border-confirming and non-uniform mesh. A new grid will be generated for each step in time,
solutions on the old grid are interpolated to the new grid to account for any changes between steps. An
example of the generated meshes at different days can be seen in Figure 3.1. Along three different lines
the temperature data of the simulations will be stored, along the horizontal line beneath the tubers, the
line to the left and the line to the right which are Lb ,Ll and Lr respectively and contain a set of uniformly
distributed nodes along the line.

Figure 3.1: A figure depicting the mesh and domains at different stages with the three measuring lines

The temperature data stored will be known as TD and is a discrete function of t and x ∈ L. All constants
used in the simulations are as seen in table 3.1 [9] [10] [11] [12] [13].

Variable Value Units
κs 0,3 W /(m ·K )
κt 0,56 W /(m ·K )
ρs 1300 kg /m3

ρt 1079 kg /m3

c s
p 800 J/(kg ·K )

c t
p 4036 J/(kg ·K )

Ds 2,88 ·10−7 W m2/J
D t 1,29 ·10−7 W m2/J

Variable Value Units
σ 5,670374 ·10−8 W m2/K 4

ε 0,8
∆t 3600 s

Tperiod 6,048 ·106 s
c 288 K
b 5 K

rmax 0,06 m
µ 9,92 ·10−6 m/s

Table 3.1: Table containing all constants used for simulation

8



3.1. Effects of soil and tubers on the temperature 9

Tubers within the model are restrained to fall within a certain region of the trench. They’re restricted to
be 0,1 meter underground and the domain surrounded by Lr ,Ll and Lb . Figures shown of simulated
data will use a model containing 12 growing tubers unless specified otherwise.

Figure 3.2: A figure depicting the simulated temperature on the entire domain at two different times during the day.

Simulations made obtain the temperatures at nodes through the grid. As seen in Figure 3.2 the temper-
ature appears to primarily move vertically through the domain, which should mean tubers will cause
a different on Lb . The simulated temperatures will only be stored along the three different measuring
lines. The temperature data TD is stored per day k and for all nodes x ∈ Li where i ∈ {r, l ,b}. When
referring to stored data from simulations TD may be written as T k

D to refer to the data on a single day.

3.1. Effects of soil and tubers on the temperature
In this section the results and findings of the simulations will be discussed. When looking at the tem-
perature changes underground over the span of a day the periodicity of the ambient temperature is still
visible. The sine of the ambient temperature has dampened and shifted based on the depth and the
total size of the tubers.
Figure 3.3 shows these effects. The deeper into the soil, the lower the amplitude of the temperature
becomes and the larger the phase shift will be. When tubers are added the same effects are visible again
as the amplitude gets dampened more and the phase shifts more again.

Figure 3.3: Left: the temperature (vertically) against the time (horizontally) in nodes at a different height in the model. Right: the
temperature (vertically) against the time (horizontally) in the same node at different days under a bush of growing tubers

A more detailed view on both the effects of depth and tubers can be found in Figure 3.4. As the model
has a polygonal shape, when looking at temperature data along [NAME], the nodes to the left and right



3.1. Effects of soil and tubers on the temperature 10

will be less deep underground than nodes in the middle. This means that along Lb we will see a decrease
or increase in the amplitude and location of the minimum based off of depth only.

Figure 3.4: Left: the amplitude in temperature on a certain day for each the nodes on the horizontal measure line. Right: the t in
hours at which the minimum temperature is reached on a certain day for each of the nodes on the horizontal measure line.

In Figure 3.4 the amplitudes and phase shift in hours for the temperature data on days 0,35 and 69 are
shown for each node on Lb . As a result it is visible how the size of tubers affects the amplitude and
location of the minimum more clearly. The amplitude on the edges appear unaffected by the tubers,
most likely due to the tubers being more focused to the center of the trench. as seen in Figure 3.1. The
temperature in the nodes in the middle of Lb do show the effects of tuber growth. The amplitude gets
lower, and so the sine more dampened, the larger tubers grow and at its smallest a precision of 10−3

might be needed to be able to measure temperature differences under the ground. The location of the
minimum also changes. At day 0 there are no tubers and the location of the minimum only shows the
shift based on the depth. As the nodes get deeper underground the hour at which the minimum is found
gets delayed: the phase shift. This effect is strengthened on later days where tubers have grown and are
affecting the time before the minimum on that day is reached.



4
Effective inversion

In this chapter a different method for determining the amount of tubers will be explored. The data itself
is unclear as to determine size or locations of tubers. As a result, another method is needed to estimate
the quantity of tubers underground - or at the least be able to monitor growth more effectively. Effective
inversion has been implemented to approximate in-homogeneous models for electromagnetic waves
[14][15] [16] and although it will not result in the exact size or location of tubers it might be able to
give an approximation of the relation between soil and tubers. It is important to note that problems
like this often are ill posed due to the existence of multiple solutions. The goal for this chapter therefor
is not to directly determine the number of tubers, their size or their locations, but to approximate the
in-homogeneous model presented as well as possible and gain information on tuber growth from this
approximation. The focus lays on the approximation of the in-homogeneous model and the informa-
tion that can be extracted from the approximation.
In effective inversion the data of the in-homogeneous model will be fitted to results of an homogeneous
model that varies the constants used. The constants ρ,κ and cp can be reduced to only the constant D
as seen before. The homogeneous model will be called TM (D) and is dependent on D .
The model TM (D) will be a lot less complex than TD , it consists of two homogeneous subdomains. The
constant D within the model as seen in Equation 2.38 will be a function of x. Only in the domain where
tubers are allowed to grow the constant D as given in TM (D) will be applied, the rest of the domain uses
soil constants Ds ,c s

p ,ρs . This will allow TM (D) to be better fitted to TD . Simulations of this model will
be made on a less fine grid as simulations have to run faster. Other than the grid it’s simulated under the
same circumstances as TD . To fit the data of TM (D) to TD a functional F [D] is needed that will minimize
the difference between TM (D) and TD with respect to D .
The D for which F [D] is minimal will be called Deff and will be considered an indicator of the amount of
tubers. When Deff = Ds it’s an indication there are no tubers while Deff → D t indicates there are tubers.
Because of this the following assumption for Deff holds

D t ≤ Deff ≤ Ds , (4.1)

since D t ≤ Ds . Hypothetically Deff has a similar dependence on the volume fraction ofΩ andΩt as seen
in the Maxwell-Garnett [14] equation, which in this situation could result in

Deff(t ) = V (Ωt (t ))

V (Ω)
D t + V (Ω)−V (Ωt (t ))

V (Ω)
Ds , (4.2)

at a certain time t , where the function V (Ω) stands for the area of the domain, so V (Ωt (t )) = Atotal(t ).
To reach find the empherical Deff different functionals will be tried and tested. After which better ways
to minimize and determine the Deff based on the functional will be discussed.

11
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4.1. Cost functionals
A cost functional F [D] can be determined for any set of t ∈ Tperiod and any collection of nodes x ∈ Ω.

All cost functionals will be determined for the T k
M (D) and k TD on a certain day k and along all nodes

x ∈ Lb , where T k will often simply be denoted T . Basing the cost functional on a complete period of the
temperature will account of all changes and differences found during the day as well as the differences
between nodes along Lb . A cost functional must have the following properties:

F [D] = 0 ⇐⇒ TM (D) = TD (4.3)

and
F [D] ≥ 0 ⇐⇒ TM (D) 6= TD , (4.4)

and will have a minimum at D for which TM (D) fits TD best.

4.1.1. SSD functional
A logical start would be by looking at least squares fitting. The resulting functional would be defined as
the following sum of squared differences (SSD):

F [D] =
24∑

j=1

n∑
i=1

|TM (D, xi , t j )−TD (xi , t j )|2, (4.5)

for which it is clear that the properties 4.3 and 4.4 hold. It can be normalized by

Fnorm[D] =
∑24

j=1

∑n
i=1 |TM (D, xi , t j )−TD (xi , t j )|2∑24

j=1

∑n
i=1 |TD (xi , t j )|2 , (4.6)

however Fnorm doesn’t give the expected results.
Figure 4.1 shows F [D] and Fnorm with respect to different D ∈ [D t ,Ds ] on two days within the growing
period. The curves do follow expectations within the interval [D t ,Ds ]. At the start of the growth season,
without tubers, the minimum of F [D] is found at Ds while the minimum moves towards D t on later
days. Although the curves for F [D] and Fnorm[D] are similar, Fnorm[D] is not properly normalized. The
values for Fnorm[D] are extremely low indicating an error in the normalization.
To investigate this a closer look at F [D] and Fnorm[D] are needed. A simplified version of T (x, t ) would
be a sine with certain phase shift and amplitude. As tubers don’t significantly grow within the span of a
day the phase shift and amplitude are only dependent on x and not on t . Define

TD (x, t ) = c +d(x) sin(
2π

24
t +φ(x)) (4.7)

TM (D, x, t ) = c +m(D, x) sin(
2π

24
t +ψ(D, x)), (4.8)

where d and m are the amplitudes, φ and ψ are the phase shifts and c the average temperature. The
functions are real and continuous in t .
Substituting these functions in Fnorm[D] results in

Fnorm[D] =
∑24

j=1

∑n
i=1(mi (D)sin( 2π

24 t j +ψi (D))−di sin( 2π
24 t j +φi ))2∑24

j=1

∑n
i=1(c +di sin( 2π

24 t j +φi ))2
, (4.9)

where mi (D) = m(D, xi ) and di = d(xi ). Here the absolute value doesn’t have to be taken, as the square
of real functions is always positive. Due to the continuity in t and

24∑
j=1

n∑
i=1

( f (xi , t ))2 =
n∑

i=1

24∑
j=1

( f (xi , t ))2 =
n∑

i=1

∫ 24

1
( f (xi , t ))2d t ,
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Figure 4.1: Top: Graph of F [D] against D on the first day (left) and last day (right). Bottom: Graph of Fnorm[D] against D on the
first day (left) and last day (right).

Fnorm[D] can be rewritten to

Fnorm[D] =
∑n

i=1

∫ 24
j=1(mi (D)sin( 2π

24 t j +ψi (D))−di sin( 2π
24 t j +φi ))2∑n

i=1

∫ 24
j=1(c +di sin( 2π

24 t j +φi ))2
,

which is equal to

Fnorm[D] = π
∑n

i=1(d 2
i +m2

i (D)−2di mi (D)cos(ψi (D)−φi ))

π
∑n

i=1(2c2 +d 2
i )

. (4.10)

The result shows properties 4.3 and 4.4 still apply as well as the reason behind the extremely low values
of Fnorm[D]. The denominator is a lot larger than the numerator due to the c2 in the denominator.
As a result a better way to normalize F [D] is

Fnorm[D] =
∑24

j=1

∑n
i=1 |TM (D, xi , t j )−TD (xi , t j )|2∑24

j=1

∑n
i=1 |TD (xi , t j )−T D (xi )|2

, (4.11)

where

T D (xi ) =
24∑

j=1
TD (xi , t j ), (4.12)

which will be equal to c if TD is as proposed in 4.7 resolving the previous issue. The results do confirm
this theory as can be observed in Figure 4.2.
Here, as expected, the curve still closely resembles that of F [D] however the values of Fnorm are lower
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Figure 4.2: Figure depicting the corrected Fnorm[D] against D on the first day (left) and last day (right).

without being extremely low. However it is important to note that this functional isn’t without error.
The functional can give a false minimum. Fnorm[D] written similarly to equation 4.10 results in

Fnorm[D] =
∑n

i=1(d 2
i +m2

i (D)−2di mi (D)cos(ψi (D)−φi ))∑n
i=1 d 2

i

, (4.13)

which when looking at only one node xi means

Fnorm[D](xi ) = 1+ (
mi (D)

di
)2 −2

mi (D)

di
cos(ψi (D)−φi ) (4.14)

and is

Fnorm[D](xi ) =


(1− mi (D)

di
)2 ,ψi (D) =φi +2kπ

(1+ mi (D)
di

)2 ,ψi (D)−φi =π+2kπ

1+ ( mi (D)
di

)2 ,ψi (D)−φi = 1
2π+kπ

(4.15)

for k ∈ Z. Due to the behaviour of the cosine the difference in phase can cause a minimum to occur
periodically with respect to D or even cause a possibly false large value for certain phase shifts.
Figure 4.3 shows for which D the lowest value of F [D] is reached for each day of Tperiod. The figure
shows that the D corresponding to the smallest value of Fnorm[D] decreases over time, which is what
was expected since D t < Ds . Even so, the flat slope is an indicator the SSD functional might not be
sensitive enough to the tubers. Due to this other cost functionals need to be explored.

4.1.2. Correlation-based functional
A better way to compare periodic functions might be to look at their correlation C (T,xi ) with

C (T, xi ) =
∑24

j=1(T (xi , t j )−T (xi , t j )(Ta(xi , t j )−T a(xi , t j ))

σ(T (xi ))σ(Ta(xi ))
(4.16)

where Ta is a homogeneous model with only soil, T is as defined in equation 4.12 and

σ(T (xi )) =
√√√√ 24∑

j=1
|T (xi , t j )−T (xi )|2. (4.17)

The correlation between TD (x, t ) as defined in equation 4.7 and

Ta(x, t ) = c +a(x)sin(
2π

24
t +ρ(x)) (4.18)
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Figure 4.3: Graph depicting the D for which the functional 4.11 smallest against the days of Tper i od . As comparison the Deff as
in equation 4.2 and the D corresponding to the 5% smallest F[D] are drawn.

is
C (TD (xi ), xi ) = cos(ρi −φi ), (4.19)

where ρ(xi ) = ρi and φ(xi ) = φi and therefor correlations are solely dependent on phase shifts. The
correlation between two models gives the following results depending on the phase shifts

C (TD (xi ), xi ) =


1 ,ρi =φi +2kπ,

0 ,ρi −φi = 1
2π+kπ,

−1 ,ρi −φi =π+2kπ

(4.20)

with k ∈ Z. A functional based off of correlation would as a result also be only dependent on phase shifts,
rather than a combination of phase shifts and amplitude. The proposed correlation-based functional
would be

F [D] =
∑n

i=1 |C (TD (xi ), xi )−C (TM (D, xi ), xi )|2∑n
i=1 |C (TD (xi ), xi )|2 (4.21)

for which the properties 4.3 and 4.4 do appear to hold. There are some issues with using the correlations
in this manner due to the way the correlations are defined, which are also visible when looking at Figure
4.4 showing the behaviour of the functional for different D for a certain day.
When TD closely resembles Ta the functional may give an incorrect minimum and the shifting phases
mean multiple minima, or a flattened minimum may occur. This can make it hard to locate a correct
minimum, as demonstrated in Figure 4.5.
The absolute minimum of F [D] with respect to D will move to the right, then jump to moving to the left
again. It is caused by the flattened tail consisting of two minima, as seen in Figure 4.4, of which only
one is found. The range of D for which F [D] close to the absolute minimum is found is also evidence
of this tail. The band gets broader even after the sudden drop, to the point it gets split into two smaller
bands. After the drop the absolute minimum behaves as expected and follows a similar path as the
minimum of the SSD functional, be it with a steeper slope. Improvements on finding a minimum are
needed. The figure, together with Figure 4.3, is enough to say Deff does not behave like the hypothesis.
The hypothesis is a quadratic function of r while the empirical Deff are appearing to be linear. It may be
concluded that equation 4.2 does not hold.

4.2. Behaviour of the minimum
As taking the absolute minimum has its issues a different algorithm to select a minimum has to be
implemented. From earlier results we’ve seen that the expected minimum is to the left of the absolute
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Figure 4.4: Left: the amplitude in temperature on a certain day for each the nodes on the horizontal measure line. Right: the t in
hours at which the minimum temperature is reached on a certain day for each of the nodes on the horizontal measure line.

Figure 4.5: Graph depicting the D for which the correlation-based function is smallest against the days of Tper i od . As comparison
the Deff as in equation 4.2 and the D corresponding to the 5% smallest F[D] are drawn.

minimum, meaning the absolute minimum has a higher value for D than the expected minimum. In
this model tubers strictly grow and as they grow D → D t the following holds for minima Di ,D j on days
i , j

D j ≤ Di ⇐⇒ i ≤ j . (4.22)

A different algorithm can be implemented using these assumptions where on a day k we have

Dk
min

{
argminF k [D] ,D ∈ [D t ,Dk−1

min]

Dk−1
min ,otherwise

(4.23)

where D0
min = Ds . The result, compared to the previously found absolute minima, is visible in Figure

4.6. The peeks are now corrected by drawing them horizontally until a day k where the argminF k [D]
has D ∈ [D t ,Dk−1

min], the rest of the curve remains the same.

Instead of still trying to find argminF k [D] for all D it’s also possible to set

Dk
min = arg min

D∈[D t ,Dk−1
min ]

F [D], (4.24)

where Dk
min will at most be equal to Dk−1

min . Although both algorithms appear to be similar, 4.24 is able to
refine the curve by finding the second minimum as absolute minimum now the search area for D has
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Figure 4.6: Left: the absolute and corrected minimum using 4.23 for the SSD functional. Right: the absolute and corrected
minimum using 4.23 for the correlation-based functional.

been decreased. This is illustrated in figure 4.7. The SSD functional is least affected by these changes as
it already was mostly strictly decreasing, however the curve of the correlation-based functional seems
affected positively. The second minimum is the absolute minimum for a part of the peek and can now
be find by limiting the search area for D . Both curves appear to be linear. Under the assumption that
the curves are linear, a line can be fitted and extrapolated to correct for the errors in the early weeks
of the correlation-based functional. The line should be based on the lower end of the curve, from the
moment the horizontal area starts decreasing again, and the point (t ,D) = (0.0,Ds ). Examples are seen
in Figure 4.8.

Figure 4.7: Left: the absolute and corrected minimum using 4.24 for the SSD functional. Right: the absolute and corrected
minimum using 4.24 for the correlation-based functional.

In Figure 4.8 it’s seen how a straight-line fits Dmin for the correlation-based functional. The extrapolated
data starts and ends as expected while following the empirical curve closely. The two models each have
different numbers of tubers growing, which has effect on the slope (and endpoint) of the curve.
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Figure 4.8: The absolute minimum, corrected minimum and a fitted line based on the lower end of the curve for 6 tubers (left)
and 12 tubers (right) of the correlation-based functional.



5
Feasibility

In this chapter the feasibility of subsurface imaging using diurnal temperature variations will be dis-
cussed based on the previously shown results. Based on these results the applicability of subsurface
imaging will be decided.
In chapter 3 has been shown that it is possible to detect differences between stages with and without
tubers using the model. For a periodic temperature change these differences are primarily visible as
phase-shifts and amplitude changes. These differences can be used to monitor growth. However, these
are not specific enough to create an image depicting the size or silhouette of different tubers. Chapter
4 discusses effective inversion as an alternate option to gain more information on the tubers. Although
effective inversion will not result in exact placement, numbers or size at this stage it is able to approx-
imate the inhomogeneous model and show growth. This growth is shown as the effective diffusion D ,
which gradually moves towards D t as tubers grow larger. From the effective diffusion D the relation be-
tween soil and tubers may be reverse engineered, which means the total size of the tubers may be found
from this constant. In a simple model, as simulated in this report, there are enough assumptions to po-
tentially reconstruct both the number of tubers and their size based the data generated over a whole
season. Realistically however, the total amount of tubers has to be calculated in real time and at best
based on a previously found Deff in a setting with different tubers growing at different speeds, meaning
the number of tubers and their sizes can’t be determined uniquely anymore. Effective inversion comes
with more restrictions. In the early phases of the growth period the correlation-based functional will
not give accurate results, although later results can be extrapolated to correct for this behavior. This
also means effective inversion will struggle if there aren’t enough tubers or large enough tubers to be
measures, as the results over the complete period will be similar to those of the first period of a model
with a large enough quantity of tubers.
All simulations done have been in 2D. Simulations in 3D should theoretically give similar results, how-
ever, several problems arise. One of these potential problem is the time it will take to obtain Deff. To
find Deff multiple simulations will have to be made before a minimum of the cost-functional with re-
spect to D can be decided. In 2D, since the model used in effective inversion is stationary and mostly
homogeneous, the time it takes to find Deff will not result in any issues. When expanding to 3D the time
it takes will increase exponentially, so the process will need to be optimized.
Furthermore, most simulations are made using a simplified model for the tubers and the trench. As they
do not account for tubers growing at different speeds and different times, they also do not account for
weather changes. The temperature in the simulations is periodic and follows the same function during
the entire period. If temperature changes between day and night are smaller, the average temperature
changes during the season or other events like rain occur, it is not yet clear what the result will be. The
approximation might be more difficult and results more ambiguous. This will require further investiga-
tion to determine.
These limitations need to be considered when assessing the feasibility of subsurface imaging using di-
urnal temperature variations. The method assessed in this report cannot create an image or silhouette
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of the tubers. Thus, individual growth nor the quantity of tubers can be assessed using this method.
However, it is possible to give an indication of the growth of tubers as a whole, meaning the method can
be used for monitoring the overall growth and size. Therefore, this method is feasible when it comes to
monitoring the growth of tubers underground, albeit in less detail than originally expected.



6
Conclusion

In this report the growth of tubers during the entire bulking process has been modelled. The growth pro-
cess is imitated by creating a trenchlike interface in which circular subdomains are set to grow at equal
speeds. The model is numerically approximated using a finite element method and the simulations are
subsequently analyzed. The simulations resulted in information regarding temperature changes under
the ground as well as the effect on the amplitude and phase shift of these temperature variations. These
temperature variations are insufficient regarding visualizing the size or location of the tubers, therefore
effective inversion was introduced. A secondary simplified model is simulated and used to approximate
the model with tuber by varying the diffusion constant. The value for the diffusion constant that fits the
model best is considered the effective diffusion and used to deduce more information from the model.
The effective diffusion shows a changing balance between tubers and soil and therefore says something
about the number of tubers that are under the ground.
Using these simulations it is demontrated that subsurface imaging using diurnal temperature varia-
tions is a feasible solution. The method is likely able to provide an estimation of the total amount of
tubers when using a grid of temperature meters placed below the trench, however the model is unable
to determine the amount or size of the individual tubers due to being

• ill-posed if the exact number and size of the tubers have to be determined due to the existence of
multiple feasible solutions,

• unable to determine the exact location of the tubers and, combined with the above, therefor un-
able to reconstruct an image of the tubers.

In conclusion, the research presented here shows both the limitations and possibilities of subsurface
imaging using diurnal temperature variations. The model simulated for this research still has a several
restrictions and limitations, however all the simulations performed here have proven that this method
can be used for quantitative analysis of an estimate of the amount of tubers in a testing area. This
research has also proven that using the diurnal temperature variations and the differences between
the diffusion constants of soil and tubers alone is not enough to fully monitor tuber growth as it is not
able to differentiate between individual tubers. The effective diffusion still has to be used to find a
ratio between soil and tubers, and therefore determining the number of tubers, and the limitations of
this inversion have to be further investigated. Future models can also be made 3D and can be further
expanded by

• including tubers that grow at various rates and up to various sizes,

• including varying diurnal temperature changes during the growth period, such as a slowly climb-
ing average temperature or smaller diurnal variations,

• including weather variations, such as rain and a different composition of soil as the soil gets sat-
urated with water.
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