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Abstract—Continuous Human Activity Recognition (HAR) in
arbitrary directions is investigated using 5 spatially distributed
pulsed Ultra-Wideband (UWB) radars. Such activities performed
in arbitrary and unconstrained trajectories render a more
natural occurrence of Activities of Daily Living (ADL) to be
recognized. An innovative signal level fusion method was applied
on the Range-Time (RT) maps, and deep learning classification
via Recurrent Neural Networks (RNN) with and without bidi-
rectionality was used on the computed micro-Doppler (μD) spec-
trogram. To assess classification performances, novel evaluation
metrics accounting for the continuous nature of the sequence of
activities and for imbalances in the dataset are proposed and
compared with existing metrics. It is shown that conventional
accuracy evaluation is too coarse, and that the proposed metrics
need to be considered for a more comprehensive evaluation.

Index Terms—Micro-Doppler Classification, Distributed
Radar, Deep learning, LSTM, Human Activity Recognition.

I. INTRODUCTION

Monitoring Activities of Daily Living (ADL) via radar has
gained attention for safe and independent aging-in-place of
older and vulnerable subjects. This includes recording critical
events such as falls, monitoring abnormalities in movements
and activities, and in general providing an appraisal of well-
being in terms of cognitive and physical state [1], [2].
Recently, distributed networks with multiple cooperating

radars have attracted significant interest for Human Activity
Recognition (HAR) to address the issue of micro-Doppler (μD)
signatures recorded at unfavourable aspect angles [3], [4]. Fur-
thermore, continuous sequences of activities are increasingly
investigated, as opposed to more conventional classification of
artificially separated activities [5]–[7], as they represent more
realistic and natural scenarios to evaluate radar-based HAR.
However, HAR on continuous sequences of activities needs

additional, alternative performance evaluation metrics beyond
simple accuracy or quantities directly extracted from confusion
matrices, regardless of the nature of the radar used for record-
ing, i.e., monostatic or distributed/multistatic. Specifically, four
aspects of continuous HAR data are considered:

• Continuity: The activities are performed in a natural
way - continuous sequence, where transitions between
them are not only happening at arbitrary times, but are
also extended in time, i.e., it is difficult even in the
ground-truth to pinpoint exactly the time instant where
one activity ends and the following starts.

• Misalignments: As a consequence of the difficulty to
estimate precisely the time instant of activity transitions,

misalignments between ground-truth and predictions la-
bel can happen, i.e., time offsets between ground-truth
and predictions. Depending on the overall goal of the
HAR system, one needs to establish how more/less im-
portant such misalignments are in terms of the perfor-
mance evaluation of a classification algorithm.

• Interruptions: As an activity occupies an extended num-
ber of time bins, an ideal prediction would have the
corresponding correct label for all of them. However,
there may be cases where the classifier returns temporary
short fluctuations in the predicted label for one or a
very short number of time bins. This fluctuation of the
predicted label is generally overlooked when classifying
human activities as artificially separated images, but
needs to be considered for continuous HAR and captured
by performance metrics.

• Imbalance: When evaluating realistic sequences of ac-
tivities, imbalances in the dataset can happen. A typical
example, as in this paper, can be the prevalence of the
walking class while participants move about in the room
to perform other in-place activities. It is therefore impor-
tant that performance metrics for the whole sequences of
continuous activities account for this.

Therefore, this paper introduces a collection of 10 possible
evaluation metrics including two novel ones for continuous
activity classifiers that can account for the four aforementioned
aspects. Applicability of these metrics with advantages and
disadvantages are discussed.
Specifically, the proposed evaluation metrics are applied to

the classifiers of ADL simultaneously recorded with 5 pulsed
Ultra-Wideband (UWB) radars circularly spaced and covering
a surveillance area of 4.39m as in Figure 1. This compre-
hensive dataset includes 30 sequences of 2 minutes duration
for each of the 15 participants, with activities performed in
both predefined (sequence A) and random locations (sequence
B) within the surveillance area. It should be noted that the
participants were free to move in unconstrained directions be-
tween performing each activity, and to face random directions
in terms of aspect angles [8].
The data from 5 radars are combined in the Range-Time

(RT) domain with incoherent fusion, followed by generation
of μD spectrograms used as input to several types of Recur-
rent Neural Networks (RNN). Their predictions are used to
calculate and compare the proposed evaluation metrics.
The rest of the paper is organized as follows. Section II
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Fig. 1: Distributed radar network covering the surveillance area
of about 4.39m diameter at the Microwave Sensing, Signals
and Systems (MS3) laboratory at TU Delft.

describes the experimental setup and the data format and pre-
processing. Section III introduces the 10 evaluation metrics
addressing concerns to evaluate continuous ADL sequences.
In Section IV, evaluation metrics and their use cases are
discussed, with final remarks given in Section V.

II. EXPERIMENTAL SETUP AND SIGNAL MODEL

This section introduces the comprehensive dataset collected
with a radar network of 5 distributed monostatic nodes for 15
participants, and discusses the radar and signal fusion model.

A. Dataset description

The collected set consists of data acquired for 5 classes,
namely: (I) translation activities (walking), (II) stationary
activities, (III) in-place activities (sitting down, standing up
from sitting, bending while sitting and standing), (IV) falling
while standing or walking, and (V) standing up from falling.
The sequences of 15 participants were split into test and

training data by excluding one participant from the training
data for testing. The procedure is well known as leave one
person out (L1PO). For all participants, each of the collected
recordings has a total duration of 2min with (sequence A)
all activities performed in predefined locations and (sequence
B) freely chosen locations within the surveillance area. It
should be noted that the participants were free to move in
unconstrained directions between performing each activity,
and to face random directions in terms of aspect angles [8].

B. Radar model

Five coherent pulsed radar nodes are employed with coded
waveform capabilities minimizing interference between nodes.
The experimental pulse repetition frequency (PRF) of the
Humatics P410 (former PulsON) radar nodes is fPRF of 122Hz
(PRI: 8.2ms). The unambiguous Doppler frequency results in
±61Hz (±2.2m/s), and the radar filterbanks have a time-of-
flight sampling rate of τ = 61 ps. The unambiguous range by
using a bandwidth of B = 2.2GHz is approximately 68mm
according to R = c

2·B .

C. Incoherent signal level fusion

Fig. 2: Pipeline of incoherent signal fusion: from individual
Range-Time (RT) plots to spectrograms fed directly into the
Recurrent Neural Network.

The received radar echoes in fast-time provide the target’s
range, with the mainlobe typically associated with the target’s
position, and the sidelobes defining the noise floor, assuming
sufficient SNR conditions. The summation of the complex RT
matrices combining all radars as:

X(d, t) =
1

Nx

Nx∑
nx=#1

χ(d, t)(nx) (1)

This generates X(d, t) as a resulting RT matrix with infor-
mation from all radar nodes indicated as nx={#1, . . . ,#5},
as shown in Figure 2. This is then used to calculate a μD
spectrogram to be used as input to the classifier.
A variety of Short-time Fourier transform (STFT) window

sizes and step-widths were tested for the best performance
between clutter suppression and clarity of limb motions.
Clutter cancellation is performed by subtracting the average
Doppler frequencies from the μD spectrogram, with satisfying
classification achieved with STFT step-width of 10 samples
(82ms → t’) and a Hanning window of 150 samples (1.23 s)
[9]–[11].
The STFT is applied on the RT, X(d,t), as computed in

[12], obtaining the μD spectrogram, Ψ(m,t’), containing the
Doppler/velocity information of the target from all nodes,
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where m refers to the spectrogram Doppler bins and t’ in-
dicates the slow-time bins, respectively. The proposed method
uses directly the slow-time bins of the μD spectrogram as
feature vectors. This approach is used in literature when
spectrograms are fed directly into classifiers based on recurrent
neural networks [13], and is an alternative to the extraction of
features from sliding windows across the spectrograms.

III. EVALUATION METRICS

This section defines and discusses the proposed evaluation
metrics to address the priorly mentioned challenges to classify
a dataset with continuous, sequential activities.

TABLE I: Notation for metrics’ definitions.

y, A / ŷ, Â ground truth / predicted label / area
y / ŷ mean ground truth / mean predicted samples
s / ŝ ground truth / predicted block (Figure 3)
(·)p, P sample, set of samples
(·)(c) class index (later neglected for readability)
tp true positive rate
tn true negative rate
fp false positive rate
fn false negative rate

A. Accuracy

To compare predictions and ground truth labels the identity
function for each class c I(c)(ŷp, yp) is introduced to measure
false predictions:

I(c)(ŷp, yp) =

{
0 ← ŷp = yp
1 ← ŷp �= yp

(2)

The number of misclassifications is provided by:

M (c) =
1

P

P∑
p=1

I(c)(ŷp, yp) (3)

with the resulting accuracy being equal to:

A(c) = 1−M (c) (4)

Classical accuracy for evaluating classification performances
does not capture inequalities of false negative (fn) and false
positive (fp) and does not account for imbalanced datasets.
This may lead to overlook drops in performance [14].

B. Fβ score with precision, recall and specificity

The Fβ score provides a more concise metric accounting for
fp and fn imbalances, and consists of precision and recall.
Together with precision and recall, the specificity is also
computed as:

precision =
tp

tp+ fp
,

TPR = sensitivity = recall =
tp

tp+ fn
,

TNR = specificity =
tn

tn+ fp

(5)

Precision and recall are needed to compute the Fβ score as:

Fβ = (1 + β2)× precision× recall

β2 · precision+ recall
(6)

with precision and recall evenly treated if β = 1, known as
F1 score. Otherwise, the formula favors precision if β > 1
[15].

C. Dice index

The Dice similarity index (also named as Sørensen-Dice
coefficient) normalizes the length of the vector labels ŷ and
ground truth y and divides them by the total number of non-
zero entries. The factor 2 multiplier scales the measurement
range between [0, 1] with 1 meaning label vectors identical to
the ground truth [16]. It is expressed as:

Dice(c) = 2×

∣∣∣Â ∩A
∣∣∣∣∣∣Â∣∣∣+ |A|

=
2tp

2tp+ fp+ fn
(7)

D. Jaccard index

The Jaccard index or Tanimoto coefficient defines the inter-
section divided by the union of two label vectors.

Jac(c) =

∣∣∣Â ∩A
∣∣∣∣∣∣Â∣∣∣+ |A| −
∣∣∣Â ∩A

∣∣∣ =
tp

tp+ fp+ fn
(8)

It will be noted that the denominator determines the union
as,

∣∣∣Â∣∣∣+ |A| −
∣∣∣Â ∩A

∣∣∣ = ∣∣∣Â ∪A
∣∣∣. Furthermore, the Jaccard

index is always smaller than the Dice index except at their
extrema [0, 1], with the relation between them as:

Jac(c) =
Dice(c)

2−Dice(c)
(9)

and is described in [17].

E. Consecutive block detection (CBD)

Fig. 3: The IoU with intersection and union sequences are
demonstrated, as well as, the penalization term H(ŝ, s) = 3/4
used in Equation (16).

This proposed metric penalizes interruptions and fluctua-
tions in the sequence of predicted samples, ŷp, with respect
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to the corresponding ground truth labels, yp. To the best of
our knowledge, this aspect is not always well considered in
the literature when evaluating radar-based HAR for continuous
activities.

1) Unweighted consecutive block detection: Firstly, the
individual ground truth blocks and the prediction blocks are
counted as shown for the ground truth in Equation (10) and
the predictions in Equation (11), respectively, as:

s (yp) =
1

2

P−1∑
p=2

√
(yp − yp−1)

2 (10)

and

ŝ (ŷp) =
1

2

P−1∑
p=2

√(
ŷ(ŷ|yp = 1)p − ŷ(ŷ|yp = 1)p−1

)2

(11)

with the counter index, (·)p, in the sequence of a total length,
P. The ratio of blocks, as shown in Figure 3, is computed as:

Ed =
s (y)

ŝ (ŷ)
(12)

with the range between [0, 1], where 1 indicates the same
number of blocks found within the ground truth sequence of a
class and the prediction. It should be noted that block length
differences are not considered in Equations (10) to (12), and
this can in fact affect the result.

2) Weighted consecutive block detection: Due to the afore-
mentioned effect of the block length differences on the metric,
a corresponding penalty factor is computed as:

w =

√√√√∣∣∣Â ∩A
∣∣∣

|A| (13)

with the numerator indicating the intersection between the
ground truth and the prediction over the ground truth, |A|. The
non-linearity impact of the weight, w =

√
(·), is introduced to

minimize penalization on small misalignments. The weighted
consecutive block detection is finally computed by combining
the Equations (12) and (13) as:

Edw = Ed · w =
s (y)

ŝ (ŷ)
·

√√√√∣∣∣Â ∩A
∣∣∣

|A| (14)

F. Intersection-Over-Union (IoU)

IoU is another metric that penalizes interruptions and fluctu-
ations in the sequences of predictions. It is a known technique
for evaluating camera-based object detection algorithms and
is equivalent to the Jaccard index (under certain conditions).
This method defines the similarity on the bounding boxes
[18], which are generally uninterrupted entities in vision-based
detection methods.
A modified algorithm can account for interruptions in labels

such as:

H(ŝ, s) = 1−
(

2 · ŝ
ŝ+ s

− 1

)2

(15)

with s and ŝ, computed by using Equations (10) and (11), the
concatenated sequence blocks for ground truth and predictions,
respectively, such as:

IoU(c) = Jac ·H(ŝ, s)

=

(
Â ∩A

Â ∪A

)
·
(
1−

(
2 · ŝ
ŝ+ s

− 1

)2
)

(16)

Equation (16) penalizes interrupted sequences, even if the
predictions are broadly corresponding and aligned with the
ground truth [19].

G. Correlation index or Matthews Correlation Coefficient
(MCC)

The correlation index or Matthews Correlation Coefficient
(MCC) provides a rather uncommon evaluation of sequences.
The method calculates the Pearson’s Linear Correlation Coeffi-
cient, typically used to find linear similarities between vectors.
This can also be used for sequence classification as:

R(ŷ, y) =

P∑
p=1

(yp − ȳ)
(
ŷp − ŷ

)
√

P∑
p=1

(yp − ȳ)
2

P∑
p=1

(
ŷp − ŷ

)2 , R ∈ R; [−1, 1]

(17)
with ŷ and y the means of the ground truth and prediction vec-
tor, respectively. Alternatively, the equation can be expressed
as:

R =
tp · tn+ fp · fn√

(tp+ fp) · (tp+ fn) · (tn+ fp) · (tn+ fn)
(18)

and is known as Matthews Correlation Coefficient (MCC) [20].
It should be noted that R(ŷ, y)=−1 is equivalent to perfectly
misclassified sequences, and R(ŷ, y)=0 is the expected value
from an unbiased “coin tossing classifier” for a balanced
dataset.

IV. CASE STUDY WITH EXPERIMENTAL DATA

To evaluate the proposed metrics, 3 different RNN are used
as classifiers: the Gated Recurrent Units (GRU), the Long
Short-Term Memory (LSTM), and the Bidirectional LSTM
(Bi-LSTM), with results reported in Table II. The classification
performance of a single radar is compared to the proposed
incoherent signal fusion method, shown in Figure 4.

A. Discussion

The objective is not to identify the most suitable metric
for continuous sequences of activities, but to discuss the
applicability and strengths or weaknesses for each metric.
Specific results for individual classes are only mentioned for
the case of incoherent signal fusion using Bi-LSTM, as the
best performing RNN from the results presented in this paper.

1) Accuracy: Accuracy appears to be very high for all
considered classifier (macro accuracy of 91%). However, it
should be noted that accuracy alone does not capture the true
performances due to dataset imbalances, especially for classes
with few samples such as falling.
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Fig. 4: Spider diagrams with the performance of the 10 proposed evaluation metrics for the classifier Bi-LSTM using signal
fusion in Figure 4b and with single radar classification in Figure 4a.

TABLE II: The proposed metrics for signal fusion used RNNs vs. single radar classification with Bi-LSTM are compared,
with the mean and standard deviation across all networks.

Accuracy F1 score TPR TNR Dice Jaccard CBD Weighted CBD IoU Corr.

Signal fusion GRU 0.914 0.784 0.589 0.934 0.608 0.477 0.721 0.557 0.400 0.560
Signal fusion LSTM 0.889 0.741 0.555 0.919 0.560 0.421 0.688 0.516 0.360 0.481

Signal fusion Bi-LSTM 0.936 0.849 0.715 0.952 0.741 0.603 0.827 0.698 0.592 0.698
Single radar average Bi-LSTM 0.909 0.773 0.566 0.930 0.599 0.456 0.687 0.521 0.436 0.543

Mean across all RNN 0.912 0.787 0.606 0.934 0.627 0.489 0.731 0.573 0.447 0.570
Standard deviation across all RNN 0.019 0.046 0.074 0.014 0.079 0.079 0.066 0.085 0.102 0.092

2) Fβ score, TPR, TNR: Evaluating TPR (sensitivity or
recall), precision, and TNR (specificity) on their own is less
effective than using the Fβ score, as this can provide a better
global view on performances for each specific class. An
average of the Fβ score across all classes, macro Fβ score, is
also possible. For this case study, the performance differences
between individual classes increase to approximately 12%
for signal fusion using Bi-LSTM, specifically referring to the
translation (91.6%) and standing up from falling (78.9%)
activity, as shown in Figure 4b.

3) Dice index: The Dice index is a harder metric than the
prior shown metrics of accuracy or Fβ score. Here, for example
standing up from falling degrades to 58.8% (F1 score: 78.9%)
and translation to 91.7% (F1 score: 91.6%).

4) Jaccard index: The Jaccard index has a linear relation-
ship with the Dice index as shown in Equation (9), with
performance always lower than the Dice index except at their
extrema. In fact, with this metric even lower performances
are reported for certain classes, e.g., standing up from falling
degrades to 41.6% (Dice index: 58.8%).

5) Consecutive block detection (CBD): The CBD operates
differently than the previously shown metrics. Here, interrup-
tions of prediction label blocks have an impact. For example,
stationary and in-place activities provide the best and worst

classes for incoherent fusion with Bi-LSTM classification (see
Figure 4b) with 88.0% and 78.3%, respectively.
However, CBD accounts for the number of detected blocks

only. The weighted CBD considers also the detection length
of the predictions versus the ground truth labels. Specifically
(see Figure 4b), the best and worst class become translation
and falling activity with 83.5% and 56.6%, respectively.

6) Intersection-Over-Union (IoU): The IoU metric is the
second metric accounting for detected blocks within the pre-
diction vector. The IoU is the most extreme evaluation metric
for our dataset since it is a product of the Jaccard index (hard
metric on its own) multiplied with a block detection term
[19]. The activity standing up from falling degrades to 41.1%
(Jaccard index: 41.6%), and the translation activity to 82.4%
(Jaccard index: 84.7%) as the best class.

7) Correlation index or Matthews Correlation Coefficient
(MCC): This metric is rather challenging to compare with
the previously introduced metrics. In contrast, the strength of
this metric is a distinct indication if classifiers provide outputs
resulting in R(ŷ, y) < 0. Such results are immediately an
indication of a mismatch between the ground truth and pre-
diction samples. The activities falling and translation activities
provide the worst and best results with 57.7% and 83.1%,
respectively.
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B. Discussion overview

As previously mentioned, the scope of this paper is not to
find the most suitable evaluation metric, but to identify the
pros and cons of each metric concerning the characteristics of
the dataset and the overall classification objective of the HAR
system. Some considerations from this initial analysis follow:

1) For equally-distributed (balanced) data evaluation: The
conventional accuracy metric can provide satisfactory results,
even if it does not describe where mistakes (e.g., missed
detections or false alarms) occur for a class. For that, Fβ score
are more suitable by accounting for precision and recall.

2) For skewed (imbalanced) data evaluation: The Fβ score
becomes a more suitable metric than plain accuracy, and is
widely used. This is very important as accuracy can signifi-
cantly overestimate performances, as seen in our case study.
The same applies to Dice and Jaccard coefficients/indexes.
Also, the correlation index or Matthews Correlation Coeffi-
cient (MCC) accounts for imbalances in the dataset as it is
widely used in the medical domain, as shown in [19].

3) For evaluating continuous sequences of activities: The
prior metrics suffer by evaluating continuous sequences of
activities with random and seamless transitions between them.
With their modification as weighted CBD and the IoU, the
proposed CBD is preferable for such cases. These metrics can
account for outliers (i.e., fluctuations and interruptions) in the
prediction label vector and are well suited for HAR of contin-
uous sequences. These metrics are particularly suited for RNN
classifiers for HAR as they can directly process their sequential
output predictions and penalize fluctuations/interruptions that
could propagate errors within the networks’ memory cells.

V. CONCLUSION

This paper presents and compares state-of-the-art and pro-
posed evaluation metrics for radar-based HAR of continuous
sequences of human activities. The metrics’ pros and cons
are discussed, referring to an experimental dataset collected
with a network of 5 distributed UWB radars and including 15
participants. Notably, the collected sequences were performed
in random locations and with arbitrary and unconstrained
trajectories and aspect angles to the radar sensors. Data from
5 radars were combined with incoherent signal level fusion to
generate a combined μD spectrogram fed to RNN classifiers,
namely, GRU, LSTM, and Bi-LSTM.
The paper demonstrates the need for metrics other than

plain accuracy or precision/recall when evaluating continuous
HAR, especially by using recurrent classification to estimate
classifier performance at a fine scale. Specifically, evaluation
metrics that account for outliers in the prediction vector (i.e.,
misalignments, interruptions, and fluctuations), the Weighted
CBD and IoU are more sensitive than conventional Accu-
racy evaluations: while IoU shows almost 20% difference
between poor and good performing classifiers, conventional
Accuracy evaluation gives only 2% difference, i.e., very
coarse assessment. Regarding the used dataset, classifiers with
bidirectionality provide superior classification, principally for
a imbalanced dataset as a use case.
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