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Identification of Structured LTI MIMO State-Space Models

Chengpu Yu, Michel Verhaegen, Shahar Kovalsky and Ronen Basri

Abstract— The identification of structured state-space model
has been intensively studied for a long time but still has not been
adequately addressed. The main challenge is that the involved
estimation problem is a non-convex (or bilinear) optimization
problem. This paper is devoted to developing an identification
method which aims to find the global optimal solution under
mild computational burden. Key to the developed identification
algorithm is to transform a bilinear estimation to a rank
constrained optimization problem and further a difference of
convex programming (DCP) problem. The initial condition
for the DCP problem is obtained by solving its convex part
of the optimization problem which happens to be a nuclear
norm regularized optimization problem. Since the nuclear norm
regularized optimization is the closest convex form of the
low-rank constrained estimation problem, the obtained initial
condition is always of high quality which provides the DCP
problem a good starting point. The DCP problem is then
solved by the sequential convex programming method. Finally,
numerical examples are included to show the effectiveness of
the developed identification algorithm.

I. INTRODUCTION

This paper studies the identification of structured state-

space systems. In the literature, there are two kinds of

parameterized state-space models [1]. One is the black-

box model for which the associated system matrices are

fully parameterized. The other is the gray-box model (also

called structured model in this paper), where only parts of

system matrices are parameterized as non-zero parameters.

For the identification of black-box LTI system models, the

subspace identification methods are commonly adopted as

they generally yield reliable identification results [2]. Other

identification methods for black-box systems, such as the

regularized Gauss-Newton method and the gradient projec-

tion method, are also widely applied in practice [2, Chapter

7]. Although the gray-box model generally contains less

parameters than the black-box model, it is usually difficult

to obtain reliable identification results. The main reason

is that the associated identification problem for the gray-

box model is always non-convex and it may have many

local optimal points. In this regard, it is difficult to find

a global optimal solution under mild computational burden.

Generally, the gray-box model is solved by either the output-

error method or the prediction-error method for which the
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involved nonlinear optimization problem is always tackled

by gradient-based algorithms [2], [3].

For the structured system model, apart from the direct

identification method which is to estimate parameters directly

from the system inputs and outputs, the indirect identi-

fication framework has also been intensively investigated

recently, e.g., see [4], [5], [6]. This indirect identification

framework contains two steps. First, the system matrices

of the concerned state-space model are identified up to a

similarity transformation using classical subspace identifica-

tion methods, such as MOESP and N4SID [2]. Second, the

system parameters are determined according to the system

parametrization pattern and the obtained system matrices in

the first step.

The second step of the indirect identification for a struc-

tured state-space system turns out to be a nonlinear estima-

tion problem which has a smaller scale than that in the direct

identification method. More specifically, the involved nonlin-

ear estimation problem is bilinear, i.e. the system parameters

and the similarity transformation matrix are coupled together.

To solve such a kind of bilinear estimation problem, the

alternating minimization algorithm is adopted in [7], which

tries to minimize the objective function with respect to either

the model parameters or the similarity transformation matrix.

The main shortage of the alternating minimization algorithm

is that it is likely to get stuck in local optimal points

under randomly generated initial conditions. To cope with

the initialization problem, the bilinear estimation problem

is reformulated as a sum-of-squares which is then solved

by semi-definite programming [8]. Due to the complexity

of the sum-of-squares decomposition, this method can only

be applied to a small-scale structured system. Since many

variables are involved in this identification method, the

estimate of the similarity transformation tends to be ill-

conditioned.

Recently, in order to robustly solve the bilinear estimation

problem for the identification of a structured system, a null-

space-based technique is provided in [5]. It first stacks all

the variables together, no matter independent or coupled,

and then compute a subspace which the augmented variable

vector lies in. By representing all the variables using the

linear combination of the subspace basis, the dimension

of the associated non-convex optimization problem can be

reduced, hence decreasing computational burden and im-

proving identification accuracy. In practical simulations, the

estimate of the similarity transformation matrix may be ill

conditioned or even singular when the adopted algorithm get

stuck to local (not global) optimal points. To overcome this

problem, the condition number of the similarity transforma-



tion matrix is constrained when dealing with the bilinear

estimation problem [6], and a combination of BFGS method

and spectral bundle algorithm is implemented to solve such

a highly nonlinear optimization problem.

In this paper, we present a new identification method,

which is a combination of the over-parametrization technique

and low-rank constrained optimization. The main idea of

this method is that the considered nonlinear estimation

problem can be equivalently transformed to a linear esti-

mation problem with a low rank constraint. The relaxation

from a nonlinear estimation problem to a linear estima-

tion problem introduces a number of redundant variables,

while the low rank constraint reduces this redundancy. The

low-rank constrained optimization problem is generally NP

hard. However, for the investigated identification problem,

the associated rank constrained optimization problem can

be casted to a difference of convex programming (DCP)

problem, which can be solved using many existing methods

[9], [10]. The initial point for solving the DCP problem can

be obtained by solving the convex part of the DCP problem.

Interestingly, the convex part of the DCP problem is exactly

a nuclear norm regularized optimization problem, which can

be commonly employed as a heuristic way to solve low-rank

constrained optimization problems. By solving the nuclear-

norm regularized optimization problem, a good candidate of

the initial point can usually be found. Then, by iteratively

solving the DCP problem, the identification performance can

be gradually improved, which usually yields a global optimal

solution in practice. Compared with the methods in [5], [8],

the reduction of the variable redundancy using the low-rank

constraint is the key contribution of the present paper.

The rest of the paper is organized as follows. Section II

provides the problem formulation and a discussion on sys-

tem identifiability. Section III presents a new identification

method for gray-box models. Section IV gives simulation

examples to validate the proposed identification method.

Finally, concluding remarks are given in Section V.

II. PROBLEM STATEMENT AND SYSTEM IDENTIFIABILITY

In this paper, we consider the identification of param-

eterized LTI state-space system model. Let θ ∈ R
q be a

parameter vector. The concerned state-space is described as

x(k + 1) = A(θ)x(k) +B(θ)u(k)

y(k) = C(θ)x(k) + w(k),
(1)

where u(k) ∈ R
m, x(k) ∈ R

n, y(k) ∈ R
p and w(k) ∈

R
p are system input, state, output and measurement noise,

respectively. The system matrices A(θ), B(θ) and C(θ)
are assumed to be affine functions with respect to θ =
[θ1, · · · , θq]T :

A(θ) = A0 +A1θ1 + · · ·+Aqθq,

B(θ) = B0 +B1θ1 + · · ·+Bqθq,

C(θ) = C0 + C1θ1 + · · ·+ Cqθq.

(2)

In practice, the parameter vector θ in (1) often has physical

interpretation, such as the Newton’s or Kirchoff’s laws

[2, Example 7.1] and structure of a compartmental model

[11]. Thus, the estimation of these parameters is practically

meaningful.

For the system model in (1), the system input is assumed

to be persistently exciting and the system model is minimal

(observable and controllable). When the measurement noise

w(k) is uncorrelated with the system input u(k), the asso-

ciated system matrices can be consistently estimated up to

a similarity transformation using the subspace identification

method [1], [2]. Suppose that we have obtained a correct

estimate of system matrices, up to a non-singular similarity

transformation, denoted as Â, B̂ and Ĉ. Then, the following

equation holds

Â = T−1A(θ)T

B̂ = T−1B(θ)

Ĉ = C(θ)T,

(3)

where T ∈ R
n×n is a non-singular ambiguity matrix. In

the above equation, both θ and T are unknown. Before

proceeding to solve the above nonlinear equation, we shall

discuss the system identifiability of (1) or the solution

uniqueness of (3).

In order to check the identifiability of the state-space

model in (1), a direct way is to provide the corresponding

system transfer function in terms of θ and check whether

the involved parameters can be uniquely determined from

the system impulse response [11], [12]. There are generically

two factors affecting the system identifiability: the number

of involved parameters and the parametrization pattern of

the model. For the state-space model in (1), if there are

more than n(p+m) parameters, the system is unidentifiable

[1], [2]. Thus, a necessary condition is that the number of

parameters should be less than n(p + m). As an extreme

case, if all the system matrices are fully parameterized, then

they are unidentifiable. However, less than n(p+m) does not

necessarily result in the identifiability of the system model

(1). In fact, the identifiability also depends on the structure

of the concerned system model. It is shown in [11] that the

state-space model described by the following parameterized

system matrices is unidentifiable even though the number of

parameters is strictly less than n(m+ p):

A(θ) =

⎡
⎣ −θ1 θ3 0

θ1 −(θ2 + θ3) θ4
0 θ3 −θ4

⎤
⎦ , B(θ) =

⎡
⎣ 0

0
1

⎤
⎦ ,

C(θ) =
[
1 0 0

]
.

It has been shown in [11] that the following system structures

are identifiable: the diagonal structure, companion structure,

cascaded compartmental structure with only system input

and output taking place at the last compartment. It is also s-

traightforward that any system model derived from the above

identifiable structure under some similarity transformation is

also identifiable.

Since this paper mainly focuses on developing a robust i-

dentification method for structured state-space system model-

s, the model structure in (1) is assumed to be identifiable. The



above assumption indicates that the parameter vector θ can

be uniquely determined from (3), as well as the ambiguity

matrix T . In addition, by the assumption that the concerned

system is minimal, we can see that T is a nonsingular matrix.

Although θ and T are uniquely determined by (3), it is

usually difficult to find the exact solution of the nonlinear

estimation problem.

Equation (3) can be reformulated as

TÂ = A(θ)T

TB̂ = B(θ)

Ĉ = C(θ)T.

(4)

A basic approach to estimate T and θ is to solve the

following optimization problem [7]:

argmin
θ,T

h(θ, T )

h(θ, T ) = ‖TÂ−A(θ)T‖2F + ‖TB̂ −B(θ)‖2F
+ ‖Ĉ − C(θ)T‖2F .

(5)

Since the above estimation problem is non-convex, it

is difficult to obtain a global optimal solution under mild

computational burden. In order to obtain a solution close to

the global optimal point, selection of the initial condition

is crucial. Although a semi-definite programming method is

provided in [8] to find a proper initial point, the involved

the sums-of-squares decomposition of (5) is nontrivial and

computationally expensive. Also, an increased number of

decision variables are involved, which makes the estimation

problem more under-determined. In this paper, we shal-

l develop an effective and robust identification algorithm

for structured state-space models. The associated algorithm

relies on the combination of the over-parametrization tech-

nique and the low-rank constraint. The over-parametrization

technique suggests to introduce more variables to transform

a non-linear estimation problem into a linear estimation

problem, as done in [8]; however, the low-rank constraint

is employed to exploit the relations among all involved

variables and to reduce their associated redundancy.

III. GRAY-BOX SYSTEM IDENTIFICATION

In this subsection, we aim to develop an algorithm to

estimate θ and T from equation (4). Denote by ⊗ and vec(·)
respectively the Kronecker product and the vectorization

operators. The vectorized form of equation (4) is shown as

follows:⎡
⎣ ÂT ⊗ I − I ⊗A(θ)

B̂T ⊗ I
I ⊗ C(θ)

⎤
⎦

︸ ︷︷ ︸
M(θ)

vec(T ) =

⎡
⎣ 0

vec(B(θ))

vec(Ĉ)

⎤
⎦

︸ ︷︷ ︸
N(θ)

, (6)

where M(θ) ∈ R
(n2+mn+pn)×n2

and N(θ) ∈ R
(n2+mn+pn)

are introduced for notational simplicity. Since A(θ), B(θ)
and C(θ) are affine functions in terms of θ, M(θ) and N(θ)
in the above equation are affine as well. Denote the affine

expressions of M(θ) and N(θ) as follows:

M(θ) = M0 +M1θ1 + · · ·+Mqθq,

N(θ) = N0 +N1θ1 + · · ·+Nqθq,
(7)

where {Mi}qi=0 and {Ni}qi=0 are constant coefficient matri-

ces of M(θ) and N(θ), respectively. Let τ = vec(T ). Then

equation (6) can be equivalently expressed as

M0τ+M1τθ1+· · ·+Mqτθq = N0+N1θ1+· · ·+Nqθq. (8)

From the above equation, we can find that the associated

estimation problem is bilinear. More specifically, the vari-

ables of θ and τ are coupled together. To cope with this,

inspired by the over-parametrization technique, we introduce

the following redundant variables:

ϑ1 = τθ1,

...

ϑq = τθq,

(9)

where ϑi ∈ R
n2

for i = 1, · · · , q. Then equation (8) is

formed as

M0τ+M1ϑ1+· · ·+Mqϑq = N0+N1θ1+· · ·+Nqθq, (10)

where {ϑi}qi=1 and {θi}qi=1 are unknown variables. The

above equation is linear with respect to the unknown vari-

ables, but there are more variables than equations; thus,

the associated estimation problem is under-determined. Con-

straining or regularizing the variables are typically used to

mitigate this under-determinedness. Here, by exploring the

inherent relations among the variables in (9), we can find

that the following composed matrix is a rank one matrix:

H(ϑ, θ) =

[
τ ϑ1 · · · ϑq

1 θ1 · · · θq

]
, (11)

where ϑ =
[
ϑ0 · · · ϑq

] ∈ R
n2×q .

As will be shown in the following proposition, equation

(8) is equivalent to equation (10) with a rank constraint.

Proposition 1: Assume that there exists a unique solu-

tion pair (θ, τ) for equation (8). The variables (ϑ, θ) can

be uniquely determined from equation (10) subject to the

following rank constraint:

rank [H(ϑ, θ)] = rank

[
τ ϑ1 · · · ϑq

1 θ1 · · · θq

]
= 1. (12)

Furthermore, (θ, τ) can be uniquely determined from (ϑ, θ).
Proof: To prove the above proposition, it suffices to

prove that the variables (θ, τ) and (ϑ, θ) are in one-to-one

mapping under the rank constraint. It is obvious that the

variables (ϑ, θ) can be uniquely determined from (θ, τ).
Next, we will show that (θ, τ) can be determined from (ϑ, θ)
under the rank constraint as well.

Since H(ϑ, θ) is a rank one matrix, its SVD decom-

position can be represented as H(ϑ, θ) = uvT where

u ∈ R
(n2+1) and v ∈ R

(q+1). It follows that uvT =[
τ ϑ1 · · · ϑq

1 θ1 · · · θq

]
=

[
τ
1

] [
1 θT

]
with τ ∈ R

n2

.



It then follows that u = α

[
τ
1

]
and v = 1

α

[
1
θ

]
with α a scalar ambiguity. Obviously, θ and τ can be

respectively determined from v and u. Therefore, (θ, τ) can

be determined from (ϑ, θ).
By the above proposition, instead of dealing with the

bilinear estimation of (8), we shall consider the following

equivalent estimation problem:

min
ϑ,θ

‖
q∑

i=0

Miϑi −N0 −
q∑

i=1

Niθi‖22

s.t. rank [H(ϑ, θ)] = 1.

(13)

The above rank constrained optimization problem is NP

hard, which is difficult to find a global optimal solution under

mild computational burden. One heuristic way for the above

optimization problem is to solve the following nuclear norm

regularized optimization problem:

min
ϑ,θ

‖
q∑

i=0

Miϑi−N0−
q∑

i=1

Niθi‖22+λ‖H(ϑ, θ)‖∗, (14)

where λ is a regularization parameter. Since the above

optimization problem is convex, we can reliably obtain an

approximate estimate of (ϑ, θ).
Denote by σi (H(ϑ, θ)) the i-th largest singular value of

H(ϑ, θ) for i = 1, · · · , q + 1. Let

fκ (H(ϑ, θ)) =

κ∑
i=1

σi (H(ϑ, θ)) for κ = 1, · · · , q + 1.

It is remarked that fκ (·) is a Ky Fan κ-norm [13]. Inspired

by the truncated nuclear norm method in [14], the rank

constraint in (13) can be replaced by the following constraint:

q+1∑
i=2

σi (H(ϑ, θ)) = fq+1 (H(ϑ, θ))− f1 (H(ϑ, θ)) = 0.

As a consequence, we try to solve the following uncon-

strained optimization problem:

min
ϑ,θ

‖
q∑

i=0

Miϑi −N0 −
q∑

i=1

Niθi‖22

+ λ [fq+1 (H(ϑ, θ))− f1 (H(ϑ, θ))] .

(15)

According to the definition of fκ(·), we observe that

fq+1 (H(ϑ, θ)) = ‖H(ϑ, θ)‖∗
f1 (H(ϑ, θ)) = ‖H(ϑ, θ)‖2.

Then equation (15) is therefore equivalent to

min
ϑ,θ

‖
q∑

i=0

Miϑi −N0 −
q∑

i=1

Niθi‖22

+ λ (‖H(ϑ, θ)‖∗ − ‖H(ϑ, θ)‖2) .
(16)

Due to the convex properties of the nuclear norm and the

spectral norm, it is easy to see that the above optimization is

a difference of convex programming (DCP) problem, which

can be efficiently solved by sequential convex programming

method [9] or the difference convex algorithm (DCA) [10].

Since these two algorithms have similar convergence proper-

ties [15], we shall apply the sequential convex programming

method to solve the optimization problem in (16).

Denote by (ϑ̂k, θ̂k) the estimate of (ϑ, θ) at the k-th

iteration. Let ûk and v̂k be the left and right singular vectors

associated with the largest singular value of H(ϑ̂k, θ̂k),
respectively. Then, linearizing the concave term of the ob-

jective function in (16) and leaving out the constant terms

yields

min
ϑ,θ

‖
q∑

i=0

Miϑi −N0 −
q∑

i=1

Niθi‖22

+ λ
(‖H(ϑ, θ)‖∗ − (ûk)TH(ϑ, θ)v̂k

)
.

(17)

Since (17) is convex, the estimate (ϑ̂k+1, θ̂k+1) can be

reliably obtained using existing convex optimization tools.

It is noteworthy that iterative minimization of (17) is the

sequential convex programming method.

Since the DCP is still a non-convex optimization problem,

the obtained solution using the adopted sequential convex

programming method depends on the initial condition. To

cope with this, the initial condition is obtained by solving

the nuclear norm regularized optimization problem in (14).

In fact, the optimization problem in (14) is the convex part

of (16). Since the nuclear norm is the convex envelope of

the low-rank constraint on the unit ball of the operator norm

[16], the solution to (14) is usually a good candidate for the

starting point of the sequential convex programming method.

Numerous simulation results show that based on such an

initial condition, the sequential convex programming method

usually leads to a global optimal solution.

By the identifiability assumptions on the model structure,

the matrix T has to be nonsingular at the global optimal

point. However, getting stuck in local optimal points may

cause the estimate of matrix T to be ill-conditioned and even

singular [8]. Due to the continuity of the equation in (3),

there always exists a region around the true solution such

that the global optimal solution can be obtained once the

initial point of the DCP programming approach falls in this

region. In other words, if the initial solution is very close the

global optimal point, the estimate of T will be automatically

nonsingular.

IV. NUMERICAL SIMULATION

In this section, two examples are simulated to show the

performance of the proposed identification method. The first

example comes from [11], which is to identify compartmen-

tal structures of a networked system. The second one is to

estimate a state-space represented printer belt derive model

with its parameters having physical iterpretation [6]. The

system orders of these two examples are set to three.

To evaluate the performance of the developed identifica-

tion method, we use the root normalized mean square error

criterion which is defined as

rNMSE =

√√√√ 1

K

K∑
i=1

‖θ̂i − θ∗‖2
‖θ∗‖2 , (18)



where K is the number of Monte-Carlo trials which is set

to 50 in the following simulations, θ̂i and θ∗ are the i-th
estimated and the true parameters, respectively.

In the simulations, both the system input and measurement

noise are white noises which are generated independently.

Therefore, the persistent excitation property for the system

input and the consistent estimation conditions are satisfied

with probability one. To estimate the system matrices, we

employ the MOESP subspace identification method [2], [17].

In addition, the convex optimization problems involved are

solved using the CVX toolbox. The regularization parameter

λ in (14) is empirically set to λ = 10−3. For each example,

we show the identification performance at different noise

levels. Moreover, we choose 400 input-output data for the

system identification in each Monte-Carlo trial. The stopping

criterion for the proposed iterative identification method is

set to
‖θ̂i+1 − θ̂i‖

‖θ̂i‖ ≤ 10−6.

Example 1: In this example, the system model comes

from a networked system with compartmental structures [11].

The involved system matrices are parameterized as follows:

A(θ) =

⎡
⎣ −θ1 θ3

θ1 −θ2 − θ3 θ4
θ2 −θ4

⎤
⎦ , B(θ) =

⎡
⎣ 0

0
1

⎤
⎦ ,

C(θ) =
[
0 0 1

]
.

(19)

Compared with the unidentifiable example in Section II,

the matrix C in this example has a different value, and

the concerned system model here has been proven to be

identifiable [11]. The true value of the parameter vector is

set to

θ =
[ −0.394 −0.893 0.325 0.383

]
.

For the ease of reference, solving the optimization problem

in (14) to estimate the system parameters is called the

nuclear-norm (NUN) method. The obtained estimate of the

system parameters is the initial point for the DCP method
presented in Section III. For the comparison purpose, based

on initial point obtained by the NUN method, we carry out

the alternating minimization (AMI) method [7] to iteratively

estimate the system parameters. For the purpose of fair

comparison, both the DCP method and the AMI method run

for 100 iterations.

Fig. 1 shows the identification performance of three d-

ifferent algorithms. We can find that the rNMSE curve

corresponding to the NUN method changes slightly along

with the increase of SNR. More specifically, the estimates

obtained by the NUN method fluctuate around the point

θ̂0 =
[ −0.091 −0.304 0.156 −0.018

]
.

However, those rNMSE curves of the DCP method and the

AMI method decays along with the increase of SNR. From

the comparison between the DCP and AMI methods, we can
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Fig. 1. Example 1: identification performance against the SNR
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Fig. 2. Example 1: identification performance against the number of
iterations for a Monte-Carlo trial at SNR=50 dB.

see that the performance of the AMI method is worse than

that of the DCP method.

Fig. 2 shows the identification performances of the DCP
and AMI methods on a Monte-Carlo trial at SNR=50 dB,

where we can find that the AMI method has not met the

final stopping criterion up to 100 iterations. This explains

the worse performance of the AMI method shown in Fig. 1.

On the other hand, we can see that the DCP method can meet

the stopping criterion within 5 iterations in this simulation

example, indicating that the DCP method converges faster.

It is remarked that the same initial point is provided for

the DCP and AMI methods at the zeroth iteration. However,

the rNMSE curves in Fig. 2 start from the first iteration. This

explains why their corresponding rNMSE values at the first

iteration are slightly different.

Example 2: The example is extracted from [6], which

aims to identify the physical parameters governing a printer

belt drive system. The associated system matrices are param-



eterized as follows:

A(θ) =

⎡
⎣ 0 −1 0.15

0.2 0 0
θ1 θ2 θ3

⎤
⎦ , B =

⎡
⎣ 0

0
θ4

⎤
⎦ , C =

⎡
⎣ 0

1
0

⎤
⎦
T

.

(20)

The true value of θ is set to θ =[ −0.537 0.567 −0.363 0.156
]
. All other simulation

settings are the same as the previous example.

The identification performances of three different methods

are shown in Fig. 3. The obtained estimates of the system

parameters by the NUN method fluctuate around the point

θ̂0 =
[ −0.143 0.006 −0.340 0.157

]
.

Analogous to the previous example, the rNMSE curves of

the DCP and AMI methods decay along with the increase of

SNR. From Fig. 4, we can find that the DCP method can

meet the stopping criterion within 20 iterations while the

AMI method is not able to meet the stopping criterion up to

100 iterations.
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Fig. 3. Example 2: identification performance against the SNR.
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Fig. 4. Example 2: identification performance against the number of
iterations for a Monte-Carlo trial at SNR=50 dB.

V. CONCLUSION

In this paper, the identification of structured state-space

model has been studied and a new identification method

has been devised. Key to the proposed identification method

is that the concerned bilinear estimation is transformed to

a rank constrained estimation problem and further a DCP

problem, for which the initial condition can be robustly

estimated by solving its convex optimization part. Simulation

results show that the developed method usually converges to

the global optimal solution. While the current approach is

dedicated to the identification of structured systems, it can

be straightforwardly generalized to solve many other bilinear

estimation problems, such as the output feedback controller

design, blind image deconvolution, source signal separation

and so on.
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