
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Outlier detection in non-Gaussian distributions

Uitschieter detectie in niet-Gauss verdelingen

Thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

Y.R. Maas

Delft, The Netherlands
December 2019

Copyright © 2019 by Youri Maas. All rights reserved.

BSc Thesis APPLIED MATHEMATICS

“Outlier detection in non-Gaussian distributions”

Y.R. Maas

Delft University of Technology

Supervisor

Dr.ir. J.J. Cai

Other committee members

Dr.ir. L. Meester,

Dr.ir. M. Keijzer

December, 2019 Delft

Abstract

In this thesis we are going to study outlier detection methods and propose a new method.
Classical outlier detection is typically based on the assumption that the data is from a Gaus-
sian/normal distribution. When the underlying distribution of a random sample is heavy tailed,
so not normal , it is likely to have some extreme observations which would be identified as outlier
using the classical procedure. This paper aims to address this issue by proposing a procedure
to identify real ‘outliers’ for heavy tailed data set. We first dive in the some existing methods
and see how they work, try to understand them, simulate them and see their shortcomings in
the case of a heavy tailed distribution. Then we study Extreme Value Theory (EVT) which we
shall use to set up our proposed method of detecting outliers. Once we have constructed the
proposed method, we are going to simulate and compare it with the existing methods. The goal
in the case of normality is that the new method is not worse than the existing ones, at least not
extremely, and in the case of a heavy tailed function to work better.

iv

Contents

Abstract iv

1 Introduction 1

2 Some existing methods 3
2.1 Theory . 3
2.2 Simulation Study . 9
2.3 Conclusions . 11

3 Proposed method 11
3.1 Extreme Value Theory . 11
3.2 Simulation Study . 18
3.3 Comparison study . 24
3.4 Conclusions . 26

4 Conclusions and discussion 26

A R-code 27

References 38

vi

1 Introduction

When we are analysing a data set, it can happen that there is an outlier in it. You want to
detect which data point in your data set is really an outlier and remove it for further analysis
or take a closer look at it. Questions like, why is this point in my data set? Has a mistake been
made?

Figure 1: Steps for outlier detection. [1]

The algorithm is shown in figure 1, where we consider outliers the bad values. So there should be
an method that detects when we really have an outlier or not. Most of the classical methods use
the assumption that the data is from a normal distribution. This is a very strong assumption,
as much data which is being analysed today does not come from a normal distribution.Then it
can happen that some points are considered as outliers with the classical methods while they
are in fact not and thus shouldn’t be removed from the data set. We need to propose a new
method that does not depend on the normality assumption and still works as good as the other
classical methods if the data is indeed normally distributed or at least not much worse.

Let X1, . . . , Xn be independently and identically distributed from an univariate distribution
F . The definition which we will use for an outlier is as follows:

Definition 1.1. x∗ is considered an outlier and should be removed from your data set if

PF (max
1≤i≤n

Xi > x∗) (1)

is very small.

In other words “x∗ is not likely to occur in a sample of size n and should therefore be deleted”.
Very small is too vague, so will need some threshold that says when the chance is small enough
and make the definition a bit better. So definition 1.1 becomes:

Definition 1.2. x∗ is considered an outlier and should be removed from your data set if

PF (max
1≤i≤n

Xi > x∗) ≤ α (2)

for a predetermined significance level α.

For the case that we have an outlier at the left side of the data set:

PF (min
1≤i≤n

Xi < x∗) ≤ α

= PF (max
1≤i≤n

−Xi > −x∗) ≤ α

So we can still use our definition 1.2 and don’t have to change it when we want to look at the
left side of the data set. Most common is that the significance level α has the value 10%, 5%

1

or 1%, but the user of the method can change that number how he pleases. From definition 1.2
we know x∗, max1≤i≤nXi and α, and not the distribution F , although in some cases we might
know it. If we know F , then we can compute (1) directly, but in practice you most likely don’t
know the underlying distribution of your data set and thus have to use an outlier detection
method.

We need to estimate chance (1) and will use extreme value theory (EVT) to do that. What we
are going to do is finding the extreme value distribution G or at least make a good estimate.
We we also study the tail probability to propose a method. But before we are looking at that,
we can also compute it this way

P(max
1≤i≤n

Xi > x∗)

= 1− P(max
1≤i≤n

Xi < x∗)

= 1− P(X1 < x∗, X2 < x∗, ..., Xn < x∗)

= 1− P(X1 < x∗)P(X2 < x∗) · · ·P(Xn < x∗)

= 1− Fn(x∗)

= 1− [P(X < x∗)]n

Where we use that X1, . . . , Xn are independently and identically distributed from distribution
F and say X ∼ F . If we know F, we can compute (1). However, in most cases you are not
100% sure what the underlying distribution is. Nevertheless we will use this to compare it to
the proposed method.

2

2 Some existing methods

2.1 Theory

Now we are going to study some existing methods of outlier detection. There are many existing
methods or criteria you can use to determine if a point x∗ is an outlier or not. We will study
these 6:

• Peirce’s criterion;

• Chauvenet’s criterion;

• Grubbs’s test;

• Dixon’s Q test;

• Z-score;

• MAD.

We will study these methods and compare them with the proposed method later in the paper.

Peirce’s Criterion:
Like many older methods for determining outliers in a data set, Peirce’s method is also derived
for the Gaussian distribution, in other words a normal distribution. However it has a nice edge
compared to some other criteria for removing outliers, it can be used to find and remove more
than 1 outlier. These are the following steps you have to take with this method:

1. calculate the mean µ and standard deviation σ of the data set.

2. obtain R from the Peirce’s criterion table and assume the case of 1 outlier (see figure 2).

3. for any weird point x∗ calculate |x∗ − µ|.

4. remove the presumed outlier x∗ if

σR < |x∗ − µ| (3)

5. if there is only 1 point removed from the data set, assume now the case of 2 outliers with
the already calculated mean and standard deviation σ. Then go to step 8.

6. if there are more than 1 removed from the data set, assume the next highest case of
outliers with the already calculated mean and standard deviation σ. Then go to step 8.

7. repeat steps 2 to 5 until no more outliers are to be found

8. obtain the new value of the mean and standard deviation of the reduced data set.

3

This is the table used to determine R (table contains max for n = 50 data points and up to 4
points who are considered abnormal):

Figure 2: Table for R. [2]

To get the R values for n higher than 50, you can use for number of suspected outliers m:

R[m] = p1[m] ∗ log(n) + p2[m] (4)

where p1 comes from the array [0.4094 0.4393 0.4565 0.4680 0.477 0.4842 0.4905 0.4973 0.5046]
and p2 from the array [0.991 0.6069 0.3725 0.2036 0.0701 -0.0401 -0.1358 -0.2242 -0.3079]. [3]
So we now have a way to calculate R for all n, but we can only do it up to 9 points who are
considered abnormal.

Chauvenet’s Criterion:
Another criterion we can use is Chauvenet’s criterion which also has the assumption of normal-
ity. This method is used in many educational institutions and laboratories to look for outliers.
Although it’s a good way to establish if a point is a true outlier or not, it makes an arbitrary
assumption considering the rejection of the data. It also doesn’t make a distinction between
the case of 1 or more suspicious data points. Peirce’s method doesn’t make this arbitrary
assumption and can easily be used in the case of several outliers.

4

The algorithm:

1. calculate the mean µ and standard deviation σ.

2. reject the suspicious point x∗ if

erfc

(
|x∗ − µ|

σ

)
<

1

2n
(5)

3. repeat steps 1 and 2.

4. obtain final µ, σ and n.

In step 2 the assumption of the Chauvenet’s criterion is used, if (5) is true than the suspicious
point has to be removed. The erfc is the complementary error function and is 1− erf where erf
is the normal error function which is defined as:

erf(x) =
1√
π

∫ x

−x
e−t

2
dt (6)

Which we can write as P (Y ∈ [−x, x]) with Y ∼ N
(
0, 12
)
, so we see the assumption of normality

back in the algorithm. We can re-write (5) to

n · erfc

(
|x∗ − µ|

σ

)
<

1

2
(7)

From the assumption we now have the number 1
2 . But how can we interpret 1

2? We give each
point a 50% of survival. In other words, there must be as many points closer to the mean as
there are further away and when it’s too far away it is considered an outlier and should be
removed from the database. Now we will look at a little example of the criterion used on a data
set with 14 points.

Figure 3: An Example of Chauvenet’s criterion. [1]

We see in figure 3 that in the first iteration of the method we get 2 outliers (29.87 and 25.71).
However when we do the second iteration the point 20.46 is also considered an outlier by the
criterion. This outlier is called a shielded outlier. An outlier which in first instance was small
enough or close enough to the mean to be excluded as an outlier, but by removing the other
extreme values it is revealed to be an outlier as well. The shielding effect is the reason why you
must use an outlier detection method multiple times.

5

Grubbs’s test:
The Grubbs test, which is also referred to as maximum normalized residual test or extreme
studentized deviate test, is an outlier detection test to find outliers in an univariate data set.
This test has again the assumption of normality. The test detects 1 outlier at a time, unlike
we saw in the method of Chauvenet, and therefore the points which are tested are always the
maximum or the minimum value points of the data set. When the assumed outlier is to be
considered as one, we remove it and apply Grubbs’s test again. The test should not be used
when the data set only has 6 or less points, because then it will most likely consider them all
as outliers. The test works with the 2 hypothesis:

• H0: There are no outliers in the data set.

• Ha: There is 1 outlier in the data set.

H0 is called the null hypothesis and Ha the alternative hypothesis. The test looks if we should
reject the null hypothesis or not and the test statistic is defined as:

G =
maxi=1,...,n |xi − µ|

σ
(8)

where µ and σ are the mean and standard deviation. This is the 2-sided version of the test, but
there is also a 1-sided test. For the minimum value the statistic becomes:

G =
µ− xmin

σ
(9)

where xmin is the minimum value of the data points. And for the maximum value it becomes:

G =
xmax − µ

σ
(10)

The null hypothesis is rejected with a beforehand determined significance level α for the 2-sided
test if

G >
n− 1√
n

√√√√ t2α
2n
,n−2

n− 2 + t2α
2n
,n−2

(11)

where t α
2n
,n−2 is the upper critical value of the t-distribution with n-2 degrees of freedom and a

significance level of α
2n . For 1 sided test just replace α

2n by α
n .

Dixon’s Q-test:
Dixon’s Q-test or just Q-test is a test that assumes a normal distribution. It is said to not use
this test too often and if you use it, only use it once in your data set. The first thing you need to
do is to arrange your data points from lowest to highest value. Then determine the Q-statistic:

Q =
gap

xmax − xmin
(12)

where gap is the absolute difference between the suspicious point in question and the closet
point to it. If Q > Q0, where Q0 is found in the Dixon’s table with the corresponding number
of observations n and confidence level, then we should remove the point from our data set. The
table is for n up to 25:
We now only have a way for a very small data set, up to n is 25. This is why Dixon’s Q-test
is not such a good method to use on a large data set, for example with 2000 observations. The
Q0 is not easily calculated like the R in Peirce’s method and it is already advised to only use
the test once while in a large data set you most likely have more than 1 outlier.

6

Figure 4: Table for Q0.[4]

Z-score:
The Z-score, also called standard score, z-value, normal scores or standardized variables, is
another criterion you can use to detect outliers. The score is defined as follows:

Z =
x− µ
σ

(13)

where x is the data point, µ is the mean and σ is the standard deviation. The outlier detection
method is very straightforward . Calculate all the Z-scores of the data points. Then a point is
considered outlier, and therefore should be removed from the data set, if the value of its z-score
is higher than 3 or lower than -3. This rule of thumb is based on the empirical rule and we see
from this rule that almost all data points should be within 3 standard deviation from the mean.
So this it the algorithm you use:

1. look for the maximum or minimum value x∗.

2. determine the mean µ and standard deviation σ of the other values.

3. we consider x∗ an outlier if it’s 3 times the standard deviation of the mean, so if x∗ < µ−3σ
or x∗ > µ+ 3σ.

4. if x∗ was indeed an outlier, remove it from your data set and repeat the steps above with
the remaining data.

We say that x∗ is an outlier because 99.7% of the data from a normal distribution is in the
interval of [µ− 3σ, µ+ 3σ]

7

Figure 5: Z-score.[5]

MAD (Median absolute deviation):
The MAD method is one that can be used very well on the normal distribution, but it also
works if the underlying distribution is not normal. It is defined as follows:

MAD = bMi (|xi −Mj (xj)|) (14)

where

• b = 1
Q(0.75) , with Q(0.75) the 0.75 quantile of the distribution/data;

• Mi is the median of the series;

• xi is the observation value;

• Mj(xj) is the median of the observation point xj

In words the MAD is calculated in these steps:

1. the first thing you do is to subtract the median of all the value points in you data set and
take the absolute value of it. Now we have a new series of these absolute values.

2. then rank these values from lowest to highest.

3. after that calculate the median of the that series, which is Mi (|xi −Mj (xj)|).

4. lastly do b times the median to get the MAD.

When we have calculated the MAD, we must define a rejection criterion. Here lies the subjective
nature of making a decision if a point is an outlier or not. There are 3 values, lets say C, which
are most commonly used 3 (very conservative), 2.5 (moderately conservative) and 2 (poorly
conservative). Then the decision criterion is defined as follows:

M − C ·MAD < x∗ < M + C ·MAD (15)

where M is the median of the original data set and x∗ the data point. If x∗ lies in the range of
criterion (15), then it is kept in the data set and not considered an outlier. We use (15) to say
we remove the suspicious point from the data set if:∣∣∣∣x∗ −MMAD

∣∣∣∣ > C (16)

8

2.2 Simulation Study

Now it’s time to simulate these existing models. We want to test it with a data set where we
know we will have an outlier for certain. So we need to calculate the equal part of (2) with a
significance level α the value x∗.

1− Fn(x∗) = α

Fn(x∗) = 1− α
F (x∗) = n

√
1− α

So we get:
x∗ = F−1(n

√
1− α) (17)

where F−1 the inverse is of the cumulative distribution function. We have used α = 0.1.

These data sets with n observations are without a point x∗ or higher in it:

N(0, 1)

n # of
detected
outliers
(Peirce)

of
detected
outliers

(Chauvenet)

of
detected
outliers
(Grubb)

of
detected
outliers

(Z-score)

of
detected
outliers
(MAD)

500 0 11 0 3 1

2000 0 19 0 5 4

5000 0 30 0 13 16

Lognormal(0,1)

500 12 16 373 8 146

2000 21 48 1873 43 535

5000 42 117 4873 98 1341

Cauchy

500 9 3 397 1 118

2000 5 8 1475 6 419

5000 9 31 4475 18 1050

The first thing we notice is that we have 0 outliers in the normal situation without a point x∗

or higher in it when the distribution is normal for Peirce. This makes sense as the method has
the normality assumption. While in the situation with lognormal and Cauchy, we already have
”outliers” in it according to method. But this shouldn’t be the case as this is without a point x∗

or higher in it. However we have outliers in the case of a normal distribution with Chauvenet.
While this was not the case with Peirce. So maybe the arbitrary assumption from Chauvenet is
not that good, as in the case of normality it detects outliers. As expected the number of outliers
is higher in the case for lognormal, but what is strange is that the number of outliers in the
case of a Cauchy distribution lower is than in the case of normality. When we have a normal
distribution, Grubb’s method works perfect in this case. Like Peirce, no outliers are detected
when we put our point x∗ in it and that is the one that gets picked out even though the µ and
σ changes. However in the case of both our non-normal distributions Grubb’s test detects a
lot of outliers, more than half is considered an outlier. This can never be correct. Although
the Z-score, like the other methods, is based on normality, it does not work as good as Peirce
method and Grubb’s test on a normal distribution. And is slightly better than Chauvenet in
that case. But overall it is not bad. With the MAD method there are ”outliers” spotted in the
data set in the case of normality and also many in the case of the 2 non-normal distribution.
Which was not the case for example when we used Peirce’s criterion or the Z-score.

9

These are the values of x∗ computed with (17) and an α = 0.1:

x∗

n N(0, 1) Lognormal(0,1) Cauchy

500 3.526 34 1511

2000 3.878 48 6042

5000 4.095 60 15105

These data sets with n observations are with a point x∗ or higher in it:

N(0, 1)

n # of
detected
outliers
(Peirce)

of
detected
outliers

(Chauvenet)

of
detected
outliers
(Grubb)

of
detected
outliers

(Z-score)

of
detected
outliers
(MAD)

500 1 11 1 4 1

2000 1 19 1 6 4

5000 1 30 1 14 16

Lognormal(0,1)

500 6 11 281 5 150

2000 14 39 1781 34 536

5000 34 102 4873 81 1341

Cauchy

500 1 2 0 2 123

2000 2 5 793 4 426

5000 4 7 3793 7 1053

The number in Cauchy stays the low in Peirce’s method, so maybe this method could be a good
for a Cauchy distribution. While in the case of lognormal there are more outliers. What is
weird is that in the case of lognormal and Cauchy we see that the number of outliers decrease
instead of increase. In Chauvenet’s case it also seems that by increasing the average µ and
standard deviation σ the number of outliers decrease instead of increase which also happened
in with Peirce’s method with lognormal and Cauchy. We already said that Peirce’s method was
more general than Chauvenet’s and so we could already assume that Peirce’s method would be
better. We really see this in the case of a normal distribution. It seems that with Grubb the
number of outliers again decreases, in this case by a lot, when µ and σ change. Thus Grubb’s
test seems to work as good as Peirce in the normal case and better than Chauvenet’s method,
but is not so good on these 2 non-normal distributions. The good thing is that in the case
of normality the change in the average and standard deviation doesn’t increase the number of
outliers by a lot. It only detects the 1 extra weird point we put in. In the case of a lognormal
distribution, the Z-score method detects far more outliers and we see again a decrease in outliers
when the average µ and standard deviation σ increase. What is surprising is that the Z-score
works quite well in the case of a Cauchy distribution. We expected that in the normal case
as Z-score is based on normality. With the MAD method it is interesting that, in the case of
a normal distribution, the number of outliers doesn’t change when we add the number higher
than x∗ in the data set. Nevertheless the values of the outliers do change. But the method is
based on taking the median so adding 1 extra value will change it and thus our result.

10

2.3 Conclusions

We have seen that the existing methods don’t work very good in the case of heavy tailed
distribution like a lognormal or Cauchy. In some cases the number of outliers is very high and
the method says we should remove more than half of our data points. Which can never be
correct. This was to be expected as almost all are based on the assumption of normality. So
we need to propose a method for outlier detection that works good in the case of data set that
is not distributed normally but has is heavy tailed.

3 Proposed method

The definitions and theorems in this section follow the ones in Ferreira and de Haan. [6]

3.1 Extreme Value Theory

When we get some random data set, we don’t know from which distribution it was from and
thus don’t know F . So to study the end of the tail, we will use Extreme Value Theory (EVT).
Let Mn = max1≤i≤nXi, we study this relation:

lim
n→∞

P(
Mn − an

bn
≤ x) = G(x) (18)

where an a sequence of positive numbers and bn a sequence of real numbers. We shall use this
definition for the relation of (18):

Definition 3.1. Suppose there exists a sequence of constants an > 0 and bn real such that for
a non-degenerate distribution function G,

lim
n→∞

P(
Mn − an

bn
≤ x) = lim

n→∞
Fn (anx+ bn) = G(x). (19)

G is the so called extreme value distribution. F is said in the max domain attraction of G.
Notation: F ∈ D(G).

So we need to have a way to determine that G easily as taking the limit can be difficult in some
cases. The theorem of Fisher, Tippet (1928) and Gnedenko (1943) can help us with that:

Theorem 3.1. The class of extreme value distribution functions is Gγ (c1x+ c2) with c1 > 0,
c2 real, where

Gγ (x) = exp
(
−(1 + γx)

−1
γ

)
(20)

with γ real and where for γ = 0 the right hand side is read as exp(− exp(−x)).

From the theorem of Fisher, Tippet and Gnedenko we know that the class of extreme value
distribution functions is

Gγ(x) = e−(1+γx)
−1
γ

(21)

The γ is called the extreme value index and is a real number. When γ = 0, the right side is
Gγ(x) = e−e

−x
. There are 3 situations for γ:

1) γ > 0, this means the distribution is heavy tailed at the right side, and thus the right
endpoint can be infinite and the distribution does not have moments of order higher than 1

γ .
This is called Frechet domain.

2) γ = 0, this means it has a light right tail. So the right endpoint can be finite or infinite and
there exists moment of any order. This is called Gumbel domain.

3) γ < 0, this means it has no tail and the right endpoint is finite. This is called reverse-Weibull
domain.

11

We need to find a way to estimate an, bn and γ . To find the estimators for an and bn we will
study this theorem:

Theorem 3.2. For γ ∈ R, the following statements are equivalent:

1. F ∈ D (Gγ), for γ ∈ R

2. There exists a positive function a such that for x > 0,

lim
t→∞

U (tx)− U (t)

a (t)
=
xγ − 1

γ
, (22)

where for γ = 0, the right hand side is read as log(x).

3. There exists a positive function a such that for all x with 1 + γx > 0,

lim
t→∞

t (1− F (a (t)x+ U (t))) = (1 + γx)
−1
γ . (23)

For γ = 0, the right hand side is read as exp(−x)

From (23) we can see that we have to take bn = U(n). U (t) is called the tail quantile function
and for that we have:

P (X > U (t)) = 1− F (U (t)) =
1

t
, t ≥ 1 (24)

From (24) we can get an expression for U (t):

U (t) = F−1
(

1− 1

t

)
(25)

We already mentioned max domain of attraction, but what do we mean with that.

Example 3.1. Let X ∼ EXP (1), so F (x) = 1 − e−x. From (25) we get that the tail quantile

function U(t) = log(t), t ≥ 1. Take a(t) ≡ 1, then we get U(tx)−U(t)
a(t) = log(tx)−log(t) = log(x).

So (22) is satisfied if γ = 0. By theorem 3.2, F ∈ D(G0). Then we get:

Fn(anx+ bn) =
(

1− e−(anx+bn)
)n

=
(

1− e−(x+log(n))
)n

=

(
1 +
−e−x

n

)n
Taking n→∞ gives Fn(anx+ bn)→ e−e

−x
. So the function G(x) goes to e−e

−x
, in other words

attracts to that function.

We can have that different distributions are in the same max domain of attraction. For example
take F1 ∼ Normal, F2 ∼ Log-normal and F3 ∼ Exp, we have that Fn1 (anx + bn) → e−e

−x
,

Fn2 (anx + bn) → e−e
−x

and Fn3 (anx + bn) → e−e
−x

. So they attract all to the same extreme
value function G.

12

For now we will focus on the case of a heavy tailed distribution, so with γ > 0, and determine
our estimators for an, bn and γ. We start we approximating the quantile U (t) and thus find
our estimator for bn. To do this we study this theorem:

Theorem 3.3. F ∈ D(Gγ , for γ > 0, if and only if

lim
t→∞

U (tx)

U (t)
= xγ , for any x > 0. (26)

So for a distribution with a heavy tail we get that U(tx) ≈ xγU(t). Now we take tx = 1
p and

n = n
k where k is a large integer but much smaller than n. So we get that:

U

(
1

p

)
≈ U

(n
k

)(k

np

)γ
(27)

Now we need to estimate γ and U
(
n
k

)
. We can estimate γ with the Hill estimator and that is

given by

γ̂H =
1

k

k∑
i=1

log
Xn−i+1,n

Xn−k,n
(28)

Where we have ordered statistics X1,n ≤ X2,n ≤ ... ≤ Xn−1,n ≤ Xn,n and k is a large integer
but much smaller than n. To know which number for k we have to choose you can do that with
visual inspection, just plot the estimates of (28) against k and see when it becomes stable. You
will use the k from the moment the estimate looks to be in a stable area. For a smaller k, you
have a smaller bias but a larger variance. So it is not possible to have a small bias and a small
variance. There is an optimal k, but it is difficult to find that and as the estimator works good
for a range of different k’s there is not need to find the optimal one. So with the Hill estimator
γ̂ we have a way to estimate γ. U

(
n
k

)
can be estimated with Xn−k,n. We already saw that

bn = U(n), so we also have our estimator for bn:

b̂n = Xn−k,nk
γ̂H (29)

Now we only need a way to estimate an. From theorem 3.2 point 2 we have that:

lim
t→∞

U (tx)− U (t)

a (t)
=
xγ − 1

γ
(30)

From (26) we get that U(tx)−U(t)
a(t) is approximately xγU(t)−U(t)

a(t) . So we have get that:

U (tx)− U (t)

a (t)
≈ xγ − 1

γ

⇒ xγU (t)− U (t)

a (t)
≈ xγ − 1

γ

⇒ a(t) (xγ − 1) ≈ γU (t) (xγ − 1)

⇒ a(t) ≈ γU (t)

Thus our estimator of an is:
ân = γ̂HXn−k,nk

γ̂H (31)

13

Now we have our estimators for an, bn and γ and can estimate (1) with the help of EVT. We
have

P(max
1≤i≤n

Xi > x∗)

= P(
Mn − bn

an
>
x∗ − bn
an

)

= 1− P(
Mn − bn

an
≤ x∗ − bn

an
)

= 1−Gγ(
x∗ − bn
an

)

Where we use relation (19) to get the extreme value distribution G. So we need to use (20) and
our estimators (28), (31) and (29) for γ, an and bn to estimate

1−Gγ(
x∗ − bn
an

) (32)

So the estimator we will use for (1) will become

1− e−(1+γ̂
x∗−b̂n
ân

)
−1
γ̂

(33)

Another way to determine (1) will be with the help of the tail probability:

p0 = P(X > x∗) (34)

Because we can use that one as follows:

P(max
1≤i≤n

Xi > x∗)

= 1− P(max
1≤i≤n

Xi < x∗)

= 1− Fn(x∗)

= 1− [P(X < x∗)]n

= 1− [1− P(X > x∗)]n

and thus get

P(max
1≤i≤n

Xi > x∗) = 1− (1− p0)n (35)

So we need a way to determine the tail probability p0. We will use this theorem to estimate p0.

Theorem 3.4. F ∈ D(Gγ), for γ > 0, if and only if

limt→∞
1−F (tx)
1−F (t) = x

−1
γ

14

From theorem 3.4 we get 1−F (tx) ≈ 1−F (t)x
−1
γ . We now take tx = x∗ and t = U

(
n
k

)
. Then

we get

1− F (x∗)

≈ 1− F
(
U
(n
k

))(x∗

U
(
n
k

))−1
γ

=
k

n

(
x∗

U
(
n
k

))−1
γ

Now we only need to put the estimators of U
(
n
k

)
and γ to get the estimator of p0:

p̂0 :=
k

n

(
x∗

Xn−k,n

) −1

γ̂H

(36)

with γ̂H the Hill estimator of γ (see (28)).

There are also other estimators we can use. Now we study these 2: Maximum Likelihood esti-
mator (MLE) and Moment estimator (ME). First we study the Maximum Likelihood method.
We consider the MLE of γ and a

(
n
k

)
. We denote σ := a

(
n
k

)
. For 1 + γ

σx > 0, the density is
given by:

hσ,γ (x) =
1

σ

(
1 +

γ

σ
x
) −1

γ−1
(37)

The likelihood function which we have to maximize is as follows:

L (σ, γ) =

k∏
i=1

hσ,γ (Xn−i+1,n −Xn−k,n)
−1

γ−1 (38)

= σ−k
k∏
i=1

(
1 +

γ

σ
(Xn−i+1,n −Xn−k,n)

) −1

γ−1
(39)

We will maximize the function over the set {(γ, σ) : γ > −1, σ > 0}, as it will tend to ∞ for
γ < −1 and 1 + γ

σ (Xn−i+1,n −Xn−k,n)→ 0+. To change the product to a summation, we will
look at the log-likelihood function which is defined as:

LL (σ, γ) = log (L (σ, γ)) (40)

= −klog (σ)−
k∑
i=1

(
1

γ
+ 1

)
log
(

1 +
γ

σ
(Xn−i+1,n −Xn−k,n)

)
(41)

The MLE are then obtained by solving this equation system with Yi = Xn−i+1,n −Xn−k,n:


∂LL
∂γ =

∑k
i=1

(
1
γ2

log
(
1 + γ

σYi
)
−
(

1
γ + 1

) Yi
σ

1+ γ
σ
Yi

)
= 0

∂LL
∂σ = − k

σ +
∑k

i=1

(
1
γ + 1

) Yi
σ

1+ γ
σ
Yi

= 0

(42)

15

As γ = 0 is not interesting, we will exclude that solution and we can therefore simplify (42) to:

{
1
k

∑k
i=1 log

(
1 + γ

σYi
)

= γ
1
k

∑k
i=1

1
1+ γ

σ
Yi

= 1
γ+1

(43)

From (43) we can derive that:

(
1

k

k∑
i=1

log
(

1 +
γ

σ
Yi + 1

)) 1

k

k∑
i=1

1

1 + γ
σYi

= 1 (44)

We define f(x) := 1
k

∑k
i=1 log

(
1 + γ

σYi + 1
)

and g(x) := 1
k

∑k
i=1

1
1+ γ

σ
Yi

and take x = γ
σ . Then

we get

f
(γ
σ

)
g
(γ
σ

)
− 1 = 0 (45)

We calculate the MLE in the following steps:

• Find root x̃ for f (x) g (x)− 1 = 0;

• γ̂mle = f (x̃)− 1;

• σ̂mle = γ̂mle

x̃ .

The moment estimator is the generalization of the Hill estimator. It’s more general because the
Hill estimator is base on the assumption that γ > 0, while the moment estimator is suitable for
all γ. We have:

Mn =
1

k

k∑
i=1

(log (Xn−i+1,n)− log (Xn−k,n))2 (46)

Then the moment estimator of γ is given by:

γ̂M = γ̂H + 1− 1

2

(
1−

(
γ̂H
)2

Mn

)−1
(47)

Define γ+ = max (0, γ) and γ− = min (0, γ). Then the Hill estimator γ̂H estimates γ+ and

1 − 1
2

(
1− (γ̂H)

2

Mn

)−1
estimates γ−. However if you get a random data set, you don’t know

beforehand what for sort distribution you have. Thus we don’t know if γ should be positive or
negative.

As we use have a different assumption for γ, we also need to change our method of estimating
the tail probability p0. The MLE of p0 is as follows:

p̂mle0 = max

0,
k

n

(
1 + γ̂mle

x∗ −Xn−k,n

âmle
(
n
k

))− 1

γ̂mle

 (48)

with amle
(
n
k

)
= σ̂mle and γ̂mle the gamma you get from the MLE steps.

16

The moment estimator for p0 equals to:

p̂M0 = max

0,
k

n

(
1 + γ̂M

x∗ −Xn−k,n

âM
(
n
k

))− 1

γ̂M

 (49)

with aM defined as :

aM
(n
k

)
=

1

2
Xn−k,n

(
1−

(
γ̂H
)2

Mn

)−1
(50)

where γ̂H is the Hill estimator and Mn equal to (46).

17

3.2 Simulation Study

Now we simulate some distributions and want to know what happens when n becomes larger
or other things that we may notice that are interesting. We will use N(0, 1), U(0, 1), EXP(3),
Student’s t with df = 3 and Lognormal(0,1) for this. The max-value is rounded at 2 decimal
places and chance at 3. First we calculated it with 1− [P(X < x∗)]n as we now the distribution
and can later compare that probability with what we get from our proposed method.

N(0, 1) U(0, 1) EXP(3) Student’s t
(df = 3)

Lognormal
(0,1)

n Xn,n, Prob. Xn,n, Prob. Xn,n, Prob. Xn,n, Prob. Xn,n, Prob.

500 3.04, 0.445 1, 0.104 1.91, 0.800 5.81, 0.921 41.66, 0.047

2000 3.73, 0.175 1, 0.708 3.07, 0.181 20.86, 0.214 50.89, 0.082

5000 3.93, 0.192 1, 0.697 3.47, 0.139 34.63, 0.124 46.93, 0.257

10000 3.93, 0.347 1, 0.853 3.33, 0.365 34.63, 0.233 95.61, 0.025

For normal distribution the max-value doesn’t increase much as n becomes larger and the
chance of an observation value larger than 3.04 is quite large, so it seems that the increase is
even smaller. This is not so weird as the normal distribution has light right tail. Also in this
case n = 5000 and n = 10000, we have the same max-value but the probability of that value or
larger occurring is higher when n = 10000. So for larger n the change seems to be larger. That
is not a surprise as you do [P (X < x∗)] to the power n and a chance is between the values 0
and 1, the value of [P (X < x∗)]n will become smaller when n increases. x∗ stays the same, thus
1− [P (X < x∗)]n becomes larger.

The max-value, in the case of an U(0, 1) case, is always 1.00 and we see that when n increases
the change of that value occurring becomes larger. As the uniform distribution has a finite
endpoint, here 1, the max-value cannot become higher than that endpoint value. The decrease
in chance from n = 2000 to n = 5000 happens because I have rounded the max-value at
2 decimals while the max-value at 2000 observations is lower (0.99971...) than that of 5000
observations (0.99997...).

For the exponential distribution we notice that, as in the normal distribution case, the max-value
doesn’t increase much. Thus it seems that, like in the normal case, the exponential distribution
also has a light right tail. We see again that as n grows larger the chance of some value larger
or equal to the max-value increases if the max-value is almost the same.

With a student’s t distribution something is happening that is different from what we saw in the
other cases, the max-value increases a lot more when n becomes larger. This happens because
a student’s t distribution has a heavy right tail, so when n becomes larger the max-value will
increase more. We see however that when n goes from 5000 to 10000 that the max-value doesn’t
increase, this is maybe a coincidence as I saw in other cases, using a different seed, the max-value
did increase.

When we have a lognormal distribution we see, like in the student-t case, that the value increases
when n becomes larger. Although it decreases from 50.89 to 46.93 when we do 3000 observations
more, the probability of that value occurring or larger is lower in the case of n = 2000. As there
is an increase in the max-value it seems that the lognormal distribution also has a heavy right
tail. For this case we will look at some figures to clarify what we see in the table.

18

In both cases the chance of an observation like the max-value or larger was very small. When
we look at figure 6, we see that is not so weird. The max-value is really far from the other
points and it seems like an outlier. If we would have used α = 5%, the point would have been
considered a real outlier and should have been removed from the data set.

(a) n = 500 (b) n = 10000

Figure 6: Points form a Lognormal(0,1)

As there is an increase in the max-value when n increases, we said that the lognormal might
have a heavy right tail. That is easy to see in figure 7 when we make a QQ-plot. The points
almost follow a normal distribution, but at the right tail it clearly doesn’t. You can do the
same for the other distributions and look at the QQ-plot to get an indication of the heaviness
of the tail and instead of looking for outliers like the plots form figure 6, you can also make a
box-plot.

Figure 7: QQ-plot with n = 10000

We will use estimator (33) on Lognormal(0,1), because this is a heavy tailed distribution, and
look if our estimate is close to the probability (1) we first got. The first thing we have to do
before we estimate γ, an and bn is to determine the right k. As this will also take some time,
we will only look at n = 500 and n = 2000. After we have determined what k is suitable to
use, the Hill estimator is used to estimate the value of γ. Then an and bn are being estimated
with (31) and (29). We will now look at the plots of the value of the Hill estimator for certain
k. With these plots we can determine an usable k.

19

Figure 8: Hill estimator with n = 500

It seems that we can use k = 50. Then we have that γ̂ ≈ 0.523 and X450,500 ≈ 3.996. So

ân ≈ 16.217 and b̂n ≈ 30.979.

Figure 9: Hill estimator with n = 2000

Here we pick k = 100. The estimate of γ̂ ≈ 0.442 and X1900,2000 ≈ 5.659. So ân ≈ 19.175 and

b̂n ≈ 43.362.

Lognormal(0,1):

n x∗ Probability (1) Estimate (33)

500 41.66 0.047 0.433

2000 50.89 0.082 0.502

The probability and estimate are not really close. As the γ of a lognormal distribution is zero
we will simulate our method with a student’s t distribution with degrees of freedom 3 as that
distribution has a higher value of γ, γ = 1

3 . We will again use the estimators (28), (29) and
(31) but now on the student t distribution. As the distribution has negative values, we will
only look at some k and not all. This is not wrong because we know that k needs to be much
smaller than n. If you would take k too large, you will also use many points that are very close
to the mean and each other. While you would want to check with a select group of high value
points, if the point x∗ is indeed too large. And therefore should be considered an outlier and
removed from the data set. After that we look if our estimate of (1) via G, so (33), is close to
the probability we get via 1 − [P (X < x∗)]n. We first have to determine k again. With these
plots we should be able to determine an usable k.

20

Figure 10: Hill estimator with n = 500

It seems that we can use k = 38. Then we have that γ̂ ≈ 0.353, so close to the real value of γ
and X462,500 ≈ 1.824. Thus ân ≈ 2.319 and b̂n ≈ 6.577

Figure 11: Hill estimator with n = 2000

Here we pick k = 100. The estimate of γ̂ ≈ 0.461 and X1900,2000 ≈ 2.071. So ân ≈ 7.975 and

b̂n ≈ 17.299.

Student-t with df = 3:

n x∗ Probability (1) Estimate (35) with
p̂0

500 5.81 0.921 0.307

2000 20.86 0.214 0.832

We see that for the chosen k the chances are not at all close to each other. Whereas the γ
is close to the real one. We can do it in a different way via the tail probability p0 which was
defined as follows (36):

p̂0 :=
k

n

(
x∗

Xn−k,n

) −1

γ̂H

(51)

Same k as last time for 500, k = 38 and for 2000, k = 100. Student’s t with df = 3:

n x∗ Probability (1) Estimate (35) with
p̂0

500 5.81 0.921 0.283

2000 20.86 0.214 0.821

21

It seems it is not working as intended or not good for the distribution we used. To fix this we
will use two k’s instead of one. We will have a k1 which determines the γ of the distribution
and a parameter k2 to make sure the model works as intended. So we then get:

p̂0 :=
k2
n

(
x∗

Xn−k2,n

) −1

γ̂(k1)
H

(52)

k1 is again the same for both n = 500 and n = 2000. We have estimated for n = 500 that
k2 = 6 and k2 = 147 for n = 2000 Student-t with df = 3:

n x∗ Probability (1) Estimate (35) with
p̂0

500 5.81 0.921 0.921

2000 20.86 0.214 0.214

These k2 are so chosen so that the (1) and (35) are equal, but we need to find a general way to
estimate k2 like we have for k1. We shall do this in a similar way as we choose k1.

(a) n = 500 (b) n = 2000

Figure 12: Choosing k2

We see that p0 will converge to 0, but we choose k2 more in the beginning of the plot. At the
moment when it seems to become stable.

Instead of using the Hill estimator for γ, we can use 2 other estimators: the maximum likelihood
estimator (MLE) and the moment estimator (ME). As we also want our model to work for
distribution who don’t have a γ > 0, like the normal distribution, we use the more general
estimator the moment estimator to determine γ. We got γ ≈ 0.582 and k2 = 2925 for n = 500
and γ ≈ 0.610 and k2 = 9101 for n = 2000

N(0, 1):
n x∗ Probability (1) Estimate (35) with

p̂M0
500 3.04 0.445 0.445

2000 3.73 0.175 0.175

22

Now we will study the different proposed methods of estimating the probability with more
different distributions:

N(0, 1)

n x∗ Probability
(1)

Estimate
(33)

Estimate
(35) with

p̂0

Estimate
(35) with
p̂mle0

Estimate
(35) with

p̂M0
500 3.04 0.445 0.684 0.511 1.000 0.662

2000 3.73 0.175 0.726 0.565 1.000 0.837

5000 3.93 0.192 0.800 0.676 1.000 1.000

U(0, 1)

500 0.998 0.630 0.665 0.496 -∞ 1.000

2000 1.000 0.175 0.993 0.503 -∞ 1.000

5000 1.000 0.381 1.000 0.994 -∞ 1.000

EXP(3)

500 1.98 0.733 0.882 0.763 1.000 1.000

2000 2.13 0.964 0.985 0.974 1.000 1.000

5000 3.02 0.445 0.777 0.588 1.000 1.000

Student’s t (df = 3)

500 9 0.475 0.323 0.329 0.918 0.747

2000 13 0.605 0.789 0.791 0.500 0.601

5000 21 0.453 0.648 0.624 0.477 0.468

Lognormal(0,1)

500 21 0.445 0.616 0.527 0.030 0.060

2000 42 0.175 0.558 0.531 0.059 0.063

5000 51 0.192 0.742 0.750 0.015 0.031

Where we have used these parameter values:
N(0, 1)

n Estimated
γH

Estimated
γmle

Estimated
γM

k1 k2

500 0.181 0.000 -0.202 16 40

2000 0.167 0.000 -0.157 40 100

5000 0.149 0.000 -0.013 80 200

U(0, 1)

500 0.007 0.000 -0.449 12 30

2000 0.009 0.000 -0.803 40 80

5000 0.007 0.000 0.807 80 170

EXP(3)

500 0.266 0.000 -0.347 25 50

2000 0.224 0.000 -0.159 60 130

5000 0.193 0.000 -0.128 80 240

Student’s t (df = 3)

500 0.356 0.462 0.376 24 60

2000 0.445 0.269 0.309 50 150

5000 0.397 0.335 0.345 150 250

Lognormal(0,1)

500 0.410 0.397 0.256 33 75

2000 0.422 0.298 0.349 100 160

5000 0.428 0.319 0.302 210 300

23

3.3 Comparison study

Now we are going to compare 1 existing method to 2 proposed models. From the existing
ones we are going to use the Z-score. As that one is easily simulated and is the second best
overall. For the proposed models we use the extreme value function G (33) and (35) with the
tail probability p0 estimated via p̂0 (36).

(a) Z-score, n = 2000 (b) (33), n = 2000 (c) (35) with (36), n = 2000

Figure 13: Number of detected outliers of 100 data sets N(0, 1).

(a) Z-score, n = 2000 (b) (33), n = 2000 (c) (35) with (36), n = 2000

Figure 14: Number of detected outliers of 100 data sets Lognormal(0,1).

(a) Z-score, n = 2000 (b) (33), n = 2000 (c) (35) with (36), n = 2000

Figure 15: Number of detected outliers of 100 data sets student’s t (df = 3).

In the case of a normal distribution and lognormal it seems that the method of using the extreme
value function works the best. We see that in figures 13 and 14. In this data set there isn’t an

24

outlier and estimator (33) doesn’t detect any in all the 100 different data sets. We see that our
(35) sometimes detects 1 outlier, but in most cases it also detects 0. In figure 15 we see that
holds for both the 2 proposed methods. In all 3 cases, we see that the proposed methods work
better than the Z-score method.

Now we are going to put an outlier in the data set ourselves in the same way as we did before.
So as we did in the simulation of the existing methods via (17).

(a) Z-score, n = 2000 (b) (33), n = 2000 (c) (35) with (36), n = 2000

Figure 16: Number of detected outliers of 100 data sets N(0, 1).

(a) Z-score, n = 2000 (b) (33), n = 2000 (c) (35) with (36), n = 2000

Figure 17: Number of detected outliers of 100 data sets Lognormal(0,1).

(a) Z-score, n = 2000 (b) (33), n = 2000 (c) (35) with (36), n = 2000

Figure 18: Number of detected outliers of 100 data sets student’s t (df = 3).

25

We notice that, in the case of estimator (33), there are more times that it detects an outlier
in the data set, but this doesn’t happen very often. The same can be said about (35). Thus
the proposed methods are not as consistent as we would have liked. However compared to the
existing method the 2 proposed methods work well and those 2 methods detect far less points
that are not-outliers. The Z-score detects a lot of ”outliers” compared to the 2 proposed, while
most of those points are in fact not outliers.

3.4 Conclusions

The first thing that is of notice is that estimate of (35) with (48) and (49) is not very consistent.
It is sometimes very high and gives 1.000 as estimate. Or doesn’t give a proper probability and
gives -∞. This cannot be right as probability (1) is never so high or low. We also take Xn,n

as our x∗, not one we put in the data set ourselves, so naturally you would think there is at
least some chance of a larger value then that coming in your data set. This is clearly shown by
probability (1). It is true that in the case of distribution with a light tail, for example a N(0, 1)
or U(0, 1), this change would be high. Secondly, estimates (33) and (35) with p̂0 are not very
close to probability (1), which would be good, but they are close to each other. So it seems
something is a little of with (33) and (35) with p̂0, as most of the time the probability is higher
than the actual probability. But if we look at the comparison study those 2 methods are not so
bad after all. Lastly, the estimations of the γ are good. It is pretty close to the real value of γ
and thus the choice of k1 seems correct. So to get the probability closer to the real one maybe
a different choice of k2 should be made or the model has to be changed a little.

4 Conclusions and discussion

The goal was a method that would be better than the existing ones we studied. Based on the
results of the comparison study this has been achieved. The problem however is that it is not
consistent enough. It sometimes detects outliers while there are not and sometimes it doesn’t
detect them while they are. From the estimations of γ with the Hill estimator, we know that
the choice of k1 is not the problem, as the values are close to the real value of γ. Thus it could
be that k2 is not correctly chosen or that there is something wrong with the method. As we
hadn’t enough time to test it more, we cannot say for certain that the 2 proposed method in the
comparison study work all the time. We only tested it on a few distributions, one sample size
and only compared it to 1 existing method. For example Peirce’s and Grubb’s method would
most likely be better in the case of normality. However, the 2 proposed methods look to work
decent in the case of a heavy tailed distribution. The main problem is that the methods are not
consistent enough. With more simulations and changes in the method, this might be solved.

26

A R-code

1 #Peirce normal distribution

2 set.seed (349)

3
4 n = 500;

5 x = rnorm(n,0,1);

6 mu = mean(x);

7 sigma = sd(x);

8 alpha = 0.1;

9 xc = qnorm(nthroot(1-alpha ,n))

10
11 a = c(0.4094 , 0.4393 , 0.4565 , 0.4680 , 0.477 , 0.4842 , 0.4905 ,

0.4973 , 0.5046);

12 b = c(0.991 , 0.6069 , 0.3725 , 0.2036 , 0.0701 , -0.0401, -0.1358,

-0.2242, -0.3079);

13 R_values = a*log(n)+b

14
15 mad1 = sigma*R_values [1]

16
17 v1 <- vector ()

18 for (i in 1:n){

19 v1[i] <- abs(x[i]-mu)

20 }

21
22 v2 <- vector ()

23 for (i in 1:n){

24 if (mad1 < v1[i]){

25 v2[i] <- x[i]

26 }

27 }

28 outliers = na.omit(v2)

29
30 #then do it again with assuming i outliers.Then madi = sigma*R-

values[i], i is based on how many outliers there were

31 #detected with the assumption that there was 1 outlier. i can be

max 9

27

1 #Grubb normal distribution

2 set.seed (212)

3
4 n = 500;

5 x = rnorm(n,0,1);

6 alpha = 0.1;

7 xc = qnorm(nthroot(1-alpha ,n))

8 #x[n+1] <- xc*1.1

9 st = n;

10
11 for (t in 1:n){

12 mu = mean(x);

13 sigma = sd(x)

14 v1 <- vector ()

15 for (i in 1:st){

16 v1[i] = abs(x[i]-mu)

17 }

18 abnormalpoint = max(v1)+mu;

19
20 G = max(v1)/sigma;

21 alpha = 0.1;

22 p = 1-alpha/(2*n);

23 df = n-2;

24 t = qt(p,df)

25
26 G0 = ((n-1)/sqrt(n))*sqrt(t^2/(n-2+t^2))

27
28 if (G > G0){

29 outlier = abnormalpoint;

30 setdiff(x,outlier);

31 st = st - 1

32 }

33 }

28

1 #Chauvenet normal distribution

2 set.seed (501)

3
4 n = 500;

5 x = rnorm(n,0,1);

6 mu = mean(x);

7 sigma = sd(x)

8
9 v1 <- vector ()

10 for (i in 1:n){

11 v1[i] = (abs(x[i]-mu))/sigma

12 }

13
14 v2 <- vector ()

15 for (i in 1:n){

16 if (n*erfc(v1[i])< 0.5){

17 v2[i] <- x[i]

18 }

19 }

20
21 outliers = na.omit(v2)

1 #Z-score normal distribution

2 set.seed (66)

3
4 n = 500;

5 x = rnorm(n,0,1);

6 mu = mean(x);

7 sigma = sd(x);

8
9 Zscores <- vector ()

10 for (i in 1:n){

11 Zscores[i] <- (x[i]-mu)/sigma

12 }

13
14 v <- vector ()

15 for (i in 1:n){

16 if (abs(Zscores[i]) > 3){

17 v[i] <- x[i]

18 }

19 }

20 outliers = na.omit(v)

29

1 #MAD normal distribution

2 set.seed (666)

3
4 n = 500;

5 x = rnorm(n,0,1)

6 xs = sort(x)

7 b = 1/(quantile(xs, 0.75))

8 M = median(xs)

9
10 ab <- vector ()

11 for (i in 1:n){

12 ab[i] <- abs(xs[i]-M)

13 }

14
15 abs = sort(ab)

16
17 Mi = median(abs)

18 MAD = b*Mi

19 C = 2.5

20
21 v <- vector ()

22 for (i in 1:n){

23 if (abs((xs[i]-M)/MAD) > C){

24 v[i] <- xs[i]

25 }

26 }

27
28 outliers = na.omit(v)

1 set.seed (60)

2
3 #Student t

4 n = 5000

5 xt = rt(n,3)

6 xts = sort(xt)

7 xtm = max(xt)

8 Pt = 1 - (pt(xtm ,3))^n

9 plot(xt)

10 boxplot(xt)

11 qqnorm(xt);qqline(xt , col='red')
12
13 gammah <- function(k){

14 sum = 0

15 for (i in 1:k){

16 sum = sum + log(xts[n-i+1]/xts[n-k])

17 }

18 gammah <- (1/k)*sum

19 return(gammah)

30

20 }

21
22 gammaH <- vector ()

23 for (i in 5:(n/10)){

24 gammaH[i]<- gammah(i)

25 }

26 plot(gammaH , typ = "l", xlab = "k", ylab = "gamma_H")

27
28 k = 150

29 gamma = gammaH[k]

30 X = xts[n-k]

31 a = gamma*xts[n-k]*(k^gamma)

32 b = xts[n-k]*(k^gamma)

33 chanceEVT = 1-exp(-(1+ gamma*(xtm -b)/a)^(-1/gamma))

1 set.seed (60)

2
3 #Student t

4 n = 2000

5 xt = rt(n,3)

6 xts = sort(xt)

7 xtm = max(xt)

8 Pt = 1 - (pt(xtm ,3))^n

9
10 gammah <- function(k){

11 sum = 0

12 for (i in 1:k){

13 sum = sum + log(xts[n-i+1]/xts[n-k])

14 }

15 gammah <- (1/k)*sum

16 return(gammah)

17 }

18
19 gammaH <- vector ()

20 for (i in 5:n/10){

21 gammaH[i]<- gammah(i)

22 }

23 plot(gammaH , typ = "l", xlab = "k", ylab = "gamma_H")

24
25 k1 = 150

26 gamma = gammaH[k1]

27
28 k2 <- function(y){

29 1-(1-(y/n)*(xtm/xts[n-y])^(-1/gamma))^n

30 }

31
32 K2 <- vector ()

33 for (i in 5:n/3){

34 K2[i]<- k2(i)

35 }

31

36 plot(K2 , typ = "l", xlab = "k2", ylab = "p0")

37
38 k_2 = 250

39
40 chanceH = 1-(1-(k_2/n)*(xtm/xts[n-k_2])^(-1/gamma))^n

1 set.seed (60)

2
3 #Student t

4 n = 2000

5 xt = rt(n,3)

6 xts = sort(xt)

7 xtm = max(xt)

8 Pt = 1 - (pt(xtm ,3))^n

9
10 gammah <- function(k){

11 sum = 0

12 for (i in 1:k){

13 sum = sum + log(xts[n-i+1]/xts[n-k])

14 }

15 gammah <- (1/k)*sum

16 return(gammah)

17 }

18
19 gammaH <- vector ()

20 for (i in 5:(n/5)){

21 gammaH[i]<- gammah(i)

22 }

23 plot(gammaH , typ = "l", xlab = "k1", ylab = "gamma_H")

24
25 k1 = 50

26
27 f <- function(x){

28 sum = 0

29 for (i in 1:k1){

30 sum = sum + log(1+x*(xts[n-i+1]-xts[n-k1]))

31 }

32 f <- ((1/k1)*sum +1)

33 return(f)

34 }

35
36 g <- function(x){

37 sum = 0

38 for (i in 1:k1){

39 sum = sum + 1/(1+x*(xts[n-i+1]-xts[n-k1]))

40 }

41 g <- (1/k1)*sum

42 return(g)

43 }

44

32

45 mle <- function(x){

46 mle <- f(x)*g(x) - 1

47 return(mle)

48 }

49
50 #step 1

51 rx = uniroot(mle , lower = 0.1, upper = 100000000000000000)

52
53 #step 2

54 gammamle = f(rx$root) - 1

55
56 #step 3

57 sigmamle = gammamle/rx$root
58
59 k2 = 150

60 chancetail = max(0, (k2/n)*(1+ gammamle*(xtm -xts[n-k2]/sigmamle))

^(-1/gammamle))

61 chanceMLE = 1-(1- chancetail)^n

1 set.seed (60)

2
3 #student

4 n = 500

5 xt = rt(n,3)

6 xts = sort(xt)

7 xtm = max(xt)

8 Pt = 1 - (pt(xtm ,3))^n

9 plot(xt)

10 boxplot(xt)

11 qqnorm(xt);qqline(xt , col='red')
12
13 gammah <- function(k){

14 sum = 0

15 for (i in 1:k){

16 sum = sum + log(xts[n-i+1]/xts[n-k])

17 }

18 gammah <- (1/k)*sum

19 return(gammah)

20 }

21
22 gammaH <- vector ()

23 for (i in 5:(n/10)){

24 gammaH[i]<- gammah(i)

25 }

26 plot(gammaH , typ = "l", xlab = "k1", ylab = "gamma_H")

27
28 k1 = 24

29 gamma = gammaH[k1]

30 X = xts[n-k1]

31

33

32 S = 0

33 for (i in 1:k1){

34 S = S + (log(xts[n-i+1])-log(xts[n-k1]))^2

35 }

36
37 M = S/k1

38
39 gammaM = gamma + 1 -(1/2)*(1-(gamma^2/M))^(-1)

40
41 k2 = 60

42 aM = 0.5*xts[n-k2]*(1-(gamma^2/M))^(-1)

43 chancetail = max(0, (k2/n)*(1+ gammaM*(xtm -xts[n-k2]/aM))^(-1/

gammaM))

44 chanceME = 1 - (1- chancetail)^n

1 totalnumberoutliers <- vector ()

2
3 for (m in 1:100){

4 set.seed(m)

5
6 n = 2000;

7 x = rt(n,3);

8 alpha = 0.1;

9 xc = qt(nthroot(1-alpha ,n) ,3)

10 x[n+1] <- xc*1.1

11 mu = mean(x);

12 sigma = sd(x);

13
14 Zscores <- vector ()

15 for (i in 1:n+1){

16 Zscores[i] <- (x[i]-mu)/sigma

17 }

18
19 v <- vector ()

20 for (i in 1:n+1){

21 if (abs(Zscores[i]) > 3){

22 v[i] <- x[i]

23 }

24 }

25 outliers = na.omit(v)

26 numberoutliers = length(outliers)

27 totalnumberoutliers[m] <- numberoutliers

28 }

29
30 totalnumberoutliers

31 boxplot(totalnumberoutliers)

34

1 totalnumberoutliers <- vector ()

2
3 for (m in 1:100){

4 set.seed(m)

5
6 n = 2000

7 xt = rt(n,3)

8 xts = sort(xt)

9 xtm = max(xt)

10 alpha = 0.1;

11 xc = qt(nthroot(1-alpha ,n) ,3)

12 xts[n+1] <- xc*1.1

13
14
15 gammah <- function(k){

16 sum = 0

17 for (i in 1:k){

18 sum = sum + log(xts[n-i+1]/xts[n-k])

19 }

20 gammah <- (1/k)*sum

21 return(gammah)

22 }

23
24 gammaH <- vector ()

25 for (i in 5:(n/10)){

26 gammaH[i]<- gammah(i)

27 }

28
29 k = 50

30 gamma = gammaH[k]

31 X = xts[n-k]

32 a = gamma*xts[n-k]*(k^gamma)

33 b = xts[n-k]*(k^gamma)

34
35
36 chance <- vector ()

37 for (i in 1:n+1){

38 chance[i] = 1-exp(-(1+ gamma*(xts[i]-b)/a)^(-1/gamma))

39 }

40
41 chance2 = na.omit(chance)

42
43 alpha = 0.1

44 numberoutliers = 0

45
46 for (i in 1: length(chance2)){

47 if (chance2[i] < alpha){

48 numberoutliers = numberoutliers + 1

49 }

50 }

35

51
52 totalnumberoutliers[m] <- numberoutliers

53 }

54
55 totalnumberoutliers

56 boxplot(totalnumberoutliers)

1 totalnumberoutliers <- vector ()

2
3 for (m in 1:100){

4 set.seed(m)

5
6 n = 2000

7 xt = rt(n,3)

8 xts = sort(xt)

9 xtm = max(xt)

10 alpha = 0.1;

11 xc = qt(nthroot(1-alpha ,n) ,3)

12 xts[n+1] <- xc*1.1

13
14 gammah <- function(k){

15 sum = 0

16 for (i in 1:k){

17 sum = sum + log(xts[n-i+1]/xts[n-k])

18 }

19 gammah <- (1/k)*sum

20 return(gammah)

21 }

22
23 gammaH <- vector ()

24 for (i in 5:n/10){

25 gammaH[i]<- gammah(i)

26 }

27
28 k1 = 50

29 gamma = gammaH[k1]

30
31 k2 <- function(y){

32 1-(1-(y/n)*(xtm/xts[n-y])^(-1/gamma))^n

33 }

34
35 K2 <- vector ()

36 for (i in 5:n/3){

37 K2[i]<- k2(i)

38 }

39
40 k_2 = 150

41
42 chance <- vector ()

43 for (i in 1:n+1){

36

44 chance[i] = 1-(1-(k_2/n)*(xts[i]/xts[n-k_2])^(-1/gamma))^n

45 }

46
47 chance2 = na.omit(chance)

48
49
50 chance3 <- vector ()

51
52 for (i in 1: length(chance2)){

53 if (chance2[i] < 1 & chance2[i]>0){

54 chance3[i] <- chance2[i]

55 }

56 }

57
58 chance4 = na.omit(chance3)

59 alpha = 0.1

60 numberoutliers = 0

61
62 for (i in 1: length(chance4)){

63 if (chance4[i] < alpha){

64 numberoutliers = numberoutliers + 1

65 }

66 }

67
68 totalnumberoutliers[m] <- numberoutliers

69 }

70
71 totalnumberoutliers

72 boxplot(totalnumberoutliers)

37

References

[1] A. F. Rochim. Chauvenet’s Criterion, Peirce’s Criterion, and Thompson’s Criterion (Liter-
atures Review). University of Indonesia, Depok, 2016

[2] B. M. Tissue. Basics of Analytical Chemistry and Chemical Equilibria, John Wiley & Sons,
Hoboken , 2013

[3] K. Porter, R. Hamburger and R. Kennedy. Practical development and application of fragility
functions, American Society of Civil Engineers, Long Beach, 2007

[4] Sediment.uni-goettingen.de. (2019). Out. [online] Available at: http://www.sediment.uni-
goettingen.de/staff/dunkl/software/o l-help.html [Accessed 23 Sep. 2019].

[5] Tubbing, L. (2019). Z-score berekenen met de z-toets. [online] Available at:
https://deafstudeerconsultant.nl/statistiek-met-spss/data-analyse/z-score-berekenen-
met-de-z-toets/ [Accessed 22 Sep. 2019].

[6] A.F Ferreira and L. de Haan. Extreme Value Theory: An Introduction, Springer, New York,
2006

38

