
TU Delft

Bachelorproject

TI3806

Predicting customer loyalty

Final Report

Authors:
Jason Raats
Lars van der Zwan
.
Bachelor Coordinator:
Martha Larson

Supervisor:
Hayley Hung

.
Client:

Chris Broeren
Jornt de Nekker
Richard Verburg

December 2, 2015

Preface

This report is created by Jason Raats and Lars van der Zwan as part of the Bachelor Computer
Science program at Delft University of Technology. In this thesis we will discuss the process of
creating useful machine learning models to predict NPS scores at ING. The results of those models
are then visualized in a dashboard.

Spending three months at ING in their main office in Amsterdam was an enjoyable experience.
We would like to thank ING for giving us the opportunity to successfully complete our project
and in particular we want to thank Jornt de Nekker for setting up the project and Chris Broeren
for being our full-time mentor. Without Chris, we could not have achieved the same result.

Finally, we want to thank Hayley Hung, assistant professor at TU Delft and part of the Pattern
Recognition & Bioinformatics Group for her feedback and the time she has spent on our project.

Jason Raats
Lars van der Zwan

1

Contents

1 Introduction 5

2 Problem definition 6
2.1 Project . 6

2.1.1 Objective . 6
2.1.2 Description . 6
2.1.3 Input and Output . 6
2.1.4 Requirements . 6

3 NPS 8
3.1 Theory . 8
3.2 Opponents . 8
3.3 Alternatives in the market . 9

3.3.1 Customer Satisfaction Score . 9
3.3.2 Customer Effort Score . 9

4 Prepare data 11
4.1 Which data to use? . 11
4.2 Feature extraction . 12

4.2.1 Feature construction . 12
4.2.2 Feature selection . 13

4.3 Missing data . 14
4.4 Conclusion . 15

5 Machine learning 16
5.1 Approach . 16

5.1.1 Linear regression . 16
5.1.2 Logistic classification . 17
5.1.3 Online learner . 18
5.1.4 Boosting . 20

5.2 Resampling . 21
5.2.1 Cross-validation . 21
5.2.2 Bootstrap . 22

5.3 Regularization . 22
5.3.1 Lasso (L1-norm). 23
5.3.2 Ridge (L2-norm). 23

5.4 Conclusion . 24

6 Results 25
6.1 Performance metrics . 25

6.1.1 Accuracy . 25
6.1.2 Area under the curve . 25
6.1.3 Precision and recall . 26

6.2 Performance results . 26
6.2.1 Promoters with text mining . 28
6.2.2 Promoters without text mining . 29
6.2.3 Detractors with text mining . 30
6.2.4 Detractors without text mining . 31

6.3 Conclusion . 31

2

7 Dashboard 32
7.1 Power BI . 32
7.2 D3 . 33

7.2.1 Data preparing . 33
7.2.2 Implementation . 33
7.2.3 Testing . 35

7.3 SIG evaluation . 35
7.4 Conclusion . 36

8 Conclusion 37

9 Recommendations 38
9.1 Feature extraction . 38
9.2 Machine learning . 38
9.3 Dashboard . 38

References 39

3

Summary

The Investment Department of ING asked us to build a model that predicts customer loyalty using
the Net Promoter Score (NPS) system and a dashboard that would show the results of the model.
With this model and dashboard ING may be able to get an insight into which groups of customers
are at risk to complain.

In the first weeks we researched various techniques in machine learning and got a grasp on the
NPS system and we decided to make our problem a classification problem. Instead of predicting
the score of a customer, we decided to predict whether a customer is a promoter, a passive or
a detractor. In this project we have built multiple kinds of models using different techniques of
machine learning, compared them and chose the best performing ones. For choosing the best
models we used Receiver Operating Characteristic (ROC) curves and precision/recall curves.

We made two dashboards: one by using the Microsoft Power BI tool and one with the
JavaScript D3 library. The Power BI dashboard will be implemented in the business, the D3
dashboard, while locally stored and more accessible, unfortunately is too hard to maintain.

4

1 Introduction

ING wants to give its customers the best service possible. But to know whether you are improving,
you need to measure customer satisfaction and loyalty in some way. One way would be to use the
Net Promoter Score (NPS).

This score is generated by asking a customer how likely he/she would be to recommend the
company to others. The scale from which customers can choose is zero to ten. When a customer
responds with a nine or ten, the customer is called a promoter; when he/she responds with seven
or eight a passive; and otherwise a detractor. The NPS is the percentage of promoters minus the
percentage of detractors. ING has data about Net Promoter Scores of customers. However, this
data only covers a small percentage of all the customers at ING, so it is not a good representation
of the overall NPS.

In this project we would like to predict the NPS of all the other customers, so ING can get
a better overall view of customer loyalty. To be able to do this, we need information about the
customers that gave feedback. In the end we want to see the predicted NPS per customer segment
or product so that ING can investigate on which points to improve customer loyalty.

In the next chapter we define the problem and we describe what the objective of this project
is, what the input and output will be, and the requirements of this project. Chapter 3 includes
some background information about NPS; in chapter 4 we will describe how to obtain the data
to train and test the models; and we will discuss different types of machine learning models in
chapter 5. The next chapter describes how to measure the performance of these models. Chapter 7
elaborates on building the dashboard and how we implemented it in the business. Finally in the
last chapters we will provide our conclusions and recommendations.

DISCLAIMER: For security and privacy reasons, some parts have been redacted. This might
influence the readability of this document.

5

2 Problem definition

As stated in the introduction, only a small percentage of customers participate in satisfaction
questionnaires. It is possible to calculate NPS from these responses, but you would not know
whether the group is representative of the whole user base. Perhaps only a specific kind of people
are willing to fill in these forms and this can make the results biased.

Another problem is that is is unclear what the exact NPS is for each customer segment or
product. If the ING would have this kind of information, it would be able to monitor customer
loyalty and experiment to improve it. The ultimate goal is to have the best NPS score possible,
but reaching this goal requires better (statistical) models to gain new insights.

2.1 Project

In this section we will describe the organisation of the project. We will describe the objectives
of the project, what we will deliver as end product, the input and output of our model and the
requirements for our project.

2.1.1 Objective

The scope of this project is only to predict the NPS; analyzing where improvements can be made is
a task for other teams. So our objective is to deliver a model that predicts the average NPS score
of groups of customers. When the NPS is predicted, a (management) report should demonstrate
the development of the NPS; besides predictions, this will also show past changes on which the
predictions are based. Users of this report can slice and dice through the data and understand
how the business is doing, based on the numbers in the report. They will also be able to see the
predicted NPS score filtered by investment products, segments or filtered by client characteristics
(in that order).

2.1.2 Description

In this project, we aim to produce a model that can predict how loyal customers are to ING’s
services. This model will apply machine learning algorithms on the extracted data in order to
produce a report about the NPS of different dimensions in the business. We also aim to discover
which groups of customers score higher than others, so the business is able to increase their
customer satisfaction. Our focus will be strictly on the Investment department. When the model
has predicted the NPS for groups of customers, the results will be shown in a (management)
report.

2.1.3 Input and Output

The input of our model will be two sets of customers as documented in the database of ING.
The first set contains customers with a known NPS, and the second set contains groups of similar
customers without a known NPS. The output of our model will be a list of expected NPS values
per group of similar customers.

2.1.4 Requirements

• Hardware

– 64 Bit computers

– Minimum of 8 GB RAM

– Minimum of 1.90 GHz CPU

• Development tools

– RStudio (R development tool for data modelling)

6

– IPython (Python development tool for text mining)

– Aginity (Netezza database access tool)

– Cygwin (Linux environment for Windows to run Vowpal Wabbit)

7

3 NPS

3.1 Theory

In 2003 the American business strategist Frederick Reichheld introduced NPS in his paper “The
one number you need to grow” [Reichheld, 2003]. He stated that customer satisfaction is hard
to measure, but that satisfaction leads to loyalty. But what does ‘loyalty’ mean? Loyalty is not
simply the rate of visiting a company. A customer that visits the only supermarket in his town
every week does not have to be loyal to that company. He just visits it because it is the only
supermarket. A customer that always buys his car at the same company may be very loyal, but
does not visit the company often, because he does not need a new car very often. Reichheld
therefore stated that customer loyalty is the willingness of a customer to recommend the company
to his friends, family and colleagues. With this in mind loyalty could be measured by one simple
question, instead of long and complex customer surveys:

On a scale from zero to ten, how likely is it that you would recommend [company X]
to a friend or colleague?

The results of this question leads to three major groups that Reichheld calls “detractors” for
scores zero to six, “passively satisfied” for scores seven and eight and “promoters” for scores nine
and ten. Detractors have a negative influence on the company, because they will spread negative
feedback about the company. Promoters have a positive effect on the company, because they will
recommend the company to others. The Net Promoter Score is therefore determined by:

NPS = percentage of promoters− percentage of detractors

A positive NPS thus means that there are more promoters than detractors and a negative NPS
means that there are more detractors than promoters. Reichheld stated that the NPS correlates
with the growth of the company, so when the NPS increases, it means that the company will grow.

3.2 Opponents

Although NPS is used by companies all around the world, not everyone is convinced of its useful-
ness. For instance, Grisaffe admitted that NPS could be an indication of the state of a company,
but stated that NPS has its weaknesses. Grisaffe questions Reichheld’s definition of loyalty and
criticises the fact that NPS is said to be ’the one’ number that companies should increase. Ac-
cording to Grisaffe it is just ”a number among others” [Grisaffe, 2007].

One of the main problems of NPS is placing the customers in the three groups. This is especially
the case when NPS is used for comparing two companies in different countries or continents.
Americans for example are known for giving more ’extreme’ scores, whereas Europeans (and
especially the Dutch) are more reserved in their scores. In Europe, an eight is seen as a very
good score, so Europeans do not tend to give nines and tens. Europeans may give a six or
a seven, whereas an American would give an eight or a nine and otherwise an American may
give a zero where a European would give a three or a four. This difference in scoring causes
American companies to have fewer passives and more promoters or detractors and therefore score
more extreme NPS. ING Direct USA for example scored a positive NPS of 60% in July 2008
[CustomerGauge News, 2008], while the average NPS for the nine biggest banks in Australia in
2006 was around -30% [Ritson, 2007].

Due to these differences some propose a European NPS system, where one is marked as a
detractor when giving a score of zero to five, passive for scores six and seven and a promoter for
scores eight to ten [Dobronte, 2012]. This system is visualized in figure 2a.

In August 2015, ING had a NPS of +3% (calculated in the normal NPS system). The distri-
bution of the customer scores was normally distributed around the average of eight, as to see in
the histogram in figure 2b.

8

(a) Difference between normal- and European NPS
categorization

(b) NPS scores at ING in August 2015

Figure 2

3.3 Alternatives in the market

NPS is not the only metric that is used to measure customer satisfaction and loyalty. There are
others like the Customer Satisfaction Score (CSAT) and the Customer Effort Score (CES). These
differ from NPS, but not by much; we will discuss these other metrics below.

3.3.1 Customer Satisfaction Score

For the Customer Satisfaction Score, the respondent has answer on a scale of 1-5 to express
his/her satisfaction to a certain topic [van Dessel, 2014]. With this information, one is able to
show whether a product or service has met or surpassed the expectations of the customer. One of
the possible questions to ask customers is:

How would you rate your experience with [X]?

Respondents can choose between Very unsatisfied, Unsatisfied, Neutral, Satisfied or Very sat-
isfied. To calculate the final CSAT, we sum up only the score of customers who have indicated
they were satisfied or very satisfied. The higher the score, the better. The formula for the score
is:

CSAT =
of satisfied customers

of satisfaction survey responses
× 100

CSAT can be very useful to ask customers about specific products or services. The outcome
of those questions will be very specific to these products or services, so it is easy to see which
products or services to improve. This is however also its weakness: you cannot really tell to what
degree the customer likes the company as a whole. If e.g. the customer is happy with the company,
but does not like a specific product, the score of that product will be low but the company is doing
a good job overall and that will not be measured through CSAT. This is where NPS can make a
difference.

Another difference between CSAT and NPS is that CSAT captures the short term- and NPS
the long term satisfaction of customers. Since their usefulness is dependent on what you want to
measure, some companies use a mixture of NPS and CSAT to measure customer satisfaction.

3.3.2 Customer Effort Score

The Customer Effort Score is a rather new metric [van Dessel, 2014]. It was invented in 2010 and
the first version of this measure was very confusing. CES was designed to measure how much
effort a customer had to put into a certain interaction with the company. The question of the first
version was:

9

How much effort did you personally have to put forth to handle your request?

The customer has to answer on a scale from 1 to 5, but this scale is inverted from the other
metrics, so a 1 meant good and 5 bad. Additionally, the word ’effort’ is not easy to translate to
different languages. This lead to the second (and latest) version.

The question for the second version changed to the following one:

The organization made it easy for me to handle my issue.

The scale also changed to Strongly disagree, Disagree, Somewhat disagree, Neutral, Somewhat
agree, Agree and Strongly agree. This made the metric easier as well as more popular to use.

However, even with these changes, the metric is not very versatile. The measurements only
apply to services and they do not pinpoint what the problem was in the first place. These problems
cannot be solved by using NPS as a second metric, but studies show that there is a correlation
between the two [Qu, 2013]. So when using CES, another metric than NPS must be used to
compensate for these shortcomings.

10

4 Prepare data

Now that we now what NPS is and why it is often used in the industry, we are going to take a look
at predicting the NPS for ING. We need to make predictions, because a customer has to fill in a
form before we know their NPS and not everyone did this. So while we know for some customers
what they have filled in, for the majority of customers we do not. We would like to know the
NPS for every customer, or in our case a group of customers, to get a more accurate score. This
is where machine learning comes into play.

Machine learning is a subfield of computer science and combines techniques from pattern
recognition and artificial intelligence. It is used to create algorithms that learn from and make
predictions with data. The algorithms that are created are called models and the data that is
used is called a featureset. In this chapter we will describe how we obtained the data; in the next
chapter we will describe different algorithms to create these predictions.

4.1 Which data to use?

Figure 3 shows how ING stores the NPS results in a database. A customer fills in a questionnaire
and the answers are stored in a central database, to which only a few employees have access.
There is a special table in the database that stores all these forms in one place. This is where we
started our search for relevant data. The same database also houses other available information
about transactions, balances and other financial information. The majority of data that we used
was abstracted from this database. We also used other sources like AEX stock information and
specific investment information, which is stored in another database at ING.

To prepare the data for the models, we structured the data as a big table in the following way.
Each row represents a customer that has filled in the form at least once. Each column represents
a feature. A feature is an attribute or aspect of something, in our case of the customer. Features
can be binary, categorical or continuous. An example of a feature is whether the customer has a
savings account or not (binary feature). All the features combined are called the featureset. A
larger featureset is not necessarily better, because results depend on the features that are used.
There might be one feature that is very useful to predict results, or perhaps a combination of
features is needed. It is however very important to keep the featureset as small as possible to
make the models run fast. The bigger the featureset, the longer it will take for the model to
complete.

Our approach was to use as many features as possible and after collecting them selecting only
the ones that contribute to our predictions. This approach is shown in figure 4. First we obtain
data from the database, store this into multiple csv files (because we use so much data that it is not
possible to obtain everything at once), combine this data in R, transform some of the features and
finally store the data in one large csv file. R is a software environment for statistical computing. It
is important to note that the csv at the end of this process has the structure of the table described
earlier. The other csv files in earlier steps in the process did not necessarily have this structure
but were transformed in R to suit our needs.

Figure 3: Step 1 of the process

11

Figure 4: Step 2 of the process

4.2 Feature extraction

The data that is imported into R is called our original featureset. We can make changes to
some of the features to make them more useful or to just ignore them so that we are left with a
featureset that is most efficient as possible. This process is defined as feature extraction. Feature
extraction is the process of transforming or selecting features to improve the quality of the original
featureset [Guyon and Elisseeff, 2006]. Improving the quality of the original featureset can be
done in different ways. For example, it is possible to make the set more efficient or decrease the
required data storage. The ultimate goal is to create the optimal featureset that can build accurate
and efficient models. To reach this goal, there are two aspects of feature extraction that can help:
feature construction and feature selection. We will describe these aspects in the following sections.

4.2.1 Feature construction

Feature construction is about preprocessing the data for feature selection or for direct modelling.
This preprocessing is almost always necessary, because it is usually not possible to use the original
featureset as input for the models. The structure of the data that is gathered (from a database or
sensor) needs to be altered for the models to reach their full potential. Transforming the data is
also useful for getting a better understanding of the data that you are dealing with.

We used feature construction in a number of ways. To extract data from the database, we
used some tricks to alter the data already in the query. This saves time in future steps in the
process and sometimes it also makes sure that the csv files do not take up a lot of data storage,
which makes the importing and other feature transformations quicker. The rest of the feature
transformations were done in R. Examples of feature transformations that we used are converting
categorical or continuous features into binary features, creating extra features that describe the
historical changes of another feature and combining multiple features into a single feature.

Principal Component Analysis. A very common feature transformation method is the Prin-
cipal Component Analysis (PCA). This transformation falls under the last example given in the
previous section. PCA takes n original features, transforms them into one or more linear com-
binations and creates m new features from these linear combinations. This process is shown in
figure 5. This figure shows a scatterplot of two variables and two arrows that represent two linear
combinations. Important to note is that these linear combinations are perpendicular to each other,
so the sample variance is maximized. This way the linear combinations are uncorrelated and this
helps in the feature selection. We will cover this in the next section.

We have decided not to use PCA in our project, because we think it would not improve our
featureset significantly (because the majority of our features are binary [R-Bloggers, 2013]) and
we preferred to spend our time constructing more new features from different sources. However,
this technique could be helpful to discover interesting relationships between variables and maybe
increase the amount of useful features in future work.

12

Figure 5: PCA example

Text mining. Some of the information contained in the database is represented in long strings
(e.g. answers to questions.) To use this information we have to make it possible for the model to
interpret these strings in some way. This is called text mining.

The TM package of the R programming language can easily mine the database. First, all the
text that needs to be analyzed is transformed to lower case and punctuation and numbers are
removed. After this, a so called Corpus is built: a collection of text documents or pointers to
these documents. In our case a text document is one text entry of a client. We decided to use
the VCorpus which physically contains the text documents instead of the PCorpus which contains
just pointers to the text documents. All our text documents are in the same file, so it would not
make sense to access this file outside R for every text document. Instead, we simply load the file
in R once and are able to convert everything to a VCorpus. With this Corpus, all the words in
the text can be brought back to their stem so verb conjugations are considered as the same words
and plurals are considered as their singulars.

We want to make binary features of words that are used in the answers. When a customer uses
a word, he gets a 1 as value for the feature, otherwise a 0. However, because the data contains
thousands of answers, it would be senseless to make a feature of every used word. The featureset
would simply become too big and filled with features that only occur for a very small group of
customers. Therefore, when the document has been stemmed, a list of frequent terms is composed.
These terms will be used as features.

4.2.2 Feature selection

Feature selection is the process of selecting features of the original featureset that contribute most
to the end result, the predictions. This is also an important step in the process, because in our
case it would not be possible to use thousands of features due to our computational limitations.
We need to select only the features that make the predictions more accurate and ignore the noisy
features. There are two ways to select features: using filters or wrappers.

A filter is an independent criterion that selects a feature subset without using machine learning
algorithms [Motoda and Liu, 2002]. Filters are computationally less expensive than wrappers,
because the performance evaluation metrics used come directly from the data. There are dozens
of filters that can be used, but it is hard to know beforehand which will give the best result.
A couple of popular filters are Correlation based features, Distance between distributions and
Decision Trees [Guyon and Elisseeff, 2006]. We will not discuss them further here, because we
decided to use wrappers only.

A wrapper is a dependent criterion that selects features based on machine learning algorithms.
The reason why we have decided to use wrappers only, is because in our opinion wrappers con-
tribute more to the end result than filters. It should be noted that while it was possible in our
case to only use wrappers, a larger featureset would have required the use of filters. Again, there
are a couple of wrappers that can be used.

13

Exhaustive. The exhaustive approach will apply the chosen machine learning algorithm on
every possible feature subset. After each subset is evaluated, the one that scores best is selected.
How these machine learning algorithms evaluate which featureset is best is discussed in section 5.
It is easy to see this method is very computation heavy and that there are probably more efficient
approaches to reach the same goal.

Heuristic. There are two heuristic approaches that are popular: Sequential forward search (SFS)
and sequential backward search (SBS). SFS will start with an empty set of features, searching for
the next best feature and then adding it to the set of features. This greedy approach will also
take a long time if the featureset is large, but is an improvement from the exhaustive approach.
Greedy is an algorithm that iteratively combines the locally optimal choice at each stage of the
algorithm [Roughgarden et al., 2013]. The downside to this approach is that we may end up with
a suboptimal featureset, because it could be possible that the best featureset is a combination of
features that do not excel on their own. This way the features are not added to the featureset,
because there are other features that score better individually. SBS is almost the same approach,
but reversed.

Nondeterministic. A nondeterministic approach chooses random features and checks if they
perform well. It then picks random features again and checks if this set is better than the previous
one. If it does, then it replaces the newest set with the old, otherwise the new one is ignored.
With this approach it is not known when the best featureset is checked; you only know whether
the new set is better than the saved one.

We have used our own approach in searching for the best featureset. We decided to use
an online learner package called Vowpal Wabbit and a booster package called xgboost. These
modelling packages both have the ability to determine the relevance of different features. Vowpal
wabbit produces a list with the percentages of relevance per feature, whereas xgboost just produces
a list of the most relevant ones. With these lists, useless features can be filtered out, so modelling
will be easier and thus faster. This is a big advantage when using the slower glmnet package for
building models. We will discuss these different packages in section 5.

4.3 Missing data

After we completed our featureset, we noticed there were some problems with missing data. There
were a couple of columns (variables) with so-called NAs (not available) in them. This was a
problem, because some models cannot work with missing data. There are a few solutions to this
problem.

The first one is to simply ignore the variables where NAs occur. This method is very simple
to execute, but is not preferred. These variables might be very useful for our model and we would
have disregarded them using this method.

Another solution is to fill in a value where NAs occur. This value could be 0, −1000, the mean
of the variable or some other arbitrary value. This solution is better than the previous one, but
is also not the best way to handle missing data. Filling in one of these values will transform the
distribution of the variable and will therefore influence the model in an unknown way. However,
this is the way we have dealt with missing data, because we did not want to lose data and we
needed another simple solution. In the case of binary variables, we just assumed that when there
was no data available we could put a 0 there without losing the quality of the variable. For
example: if someone has a product, he/she gets a 1 in the database. If it is unknown whether
someone has the product, then we assumed that the answer is no. Logically this is true, but
dealing with unknown situations calls for more in-depth research.

The last method we will discuss is seeing the missing data as a predictive problem in itself. It is
exactly the same problem as we are trying to solve. We have data from some of the customers, but
we want to predict the value of the customers for whom we do not know the data. Determining
values for the missing data can be done via density estimation [Ghahramani and Jordan, 1994].

14

The variable that is missing data is compared with another variable to look at the density between
the two variables, after which we can choose values that will fit in the density to keep it the same
as the original. This way we will not influence the data. For continuous variables mixture of
Gaussians can be used and for discrete variables mixture of Bernoullis. We will not dive deeper
into these methods, because we have not used them, but future work could expand on this.

4.4 Conclusion

We have seen that finding the right features is very important in the process of predicting the
NPS for groups of customers. We have applied feature extraction in several steps of the process,
used text mining to see if answers of customers are useful, came up with a solution for feature
selection and we made a decision what to do with missing data. We are aware that there is still a
lot of room for improvement, but given the short amount of time, we are confident that we worked
as efficiently as possible. In the next section we will discuss different kinds of machine learning
algorithms. We will also discuss the abovementioned software packages.

15

5 Machine learning

After selecting the features it is possible to build the models. We will use machine learning to
predict NPS. Machine learning is the field of artificial intelligence that covers the development of
algorithms that computers can learn from. There are two ways to continue our process: supervised
learning or unsupervised learning. Supervised learning is the process of applying machine learning
algorithms on labeled data (for both the input object and output object), whereas unsupervised
is just using an input object. In this project we only used supervised learning algorithms, because
our input data was labeled.

5.1 Approach

We wanted to start simple and built the complexity over time. After a couple of weeks we created
more complex algorithms which were more suited for our project. We ended up with the process
described in figure 6. We have used three different kind of models; how we built these are describe
in this section.

5.1.1 Linear regression

In machine learning there are two different kind of predictive tasks: predicting a value or predict
a category. When you want to predict a value, then we call this regression. If the algorithm has
to choose between a finite set of categories it is called classification. We started building a simple
linear regression model.

Linear regression will fit a line (in case of one feature as input) or a plane (in case of multiple
features as input) through the data points according to some error function to predict the desired
value. An error function is also called a loss function; we will further discuss this in the paragraph
below. When there is only one feature as input, we call the model a Simple Linear Regression
(SLR) and otherwise call it Multiple Linear Regression (MLR). The general formula of linear
regression is as follows:

Y = β0 + β1X1 + β2X2 + · · ·+ βnXn + ε

where Y is the predicted value, βi is the unknown regression coefficient of feature i, Xi is the
value of feature i and ε is the error that occurs. In the case of SLR, the simple Y = β0 + β1X1

problem needs to be solved. To find the best values for all β, a so-called loss function needs to be
solved.

Figure 6: Step 3 of the process

16

(a) Linear Regression example (b) Logistic Regression example

Figure 7

Loss function. A loss function is a function that will express the cost of values of one or more
variables as a real number. We will demonstrate how a loss function works with the help of
figure 7a where an example of a MLR model is shown. In this case there are two variables shown
(x1 and x2) and y is the value we want to predict. As shown, the plane cannot go through all the
data points. So which plane is going to be the best plane for predicting y? To find out, we need
to be able to compare two planes and show which one is better.

To do this we are going to give a penalty if the plane is far away from most of the data points
and reward it if it is close to the data points. A simple example of this method is the least squares
loss function. Least squares will calculate the euclidean distance from the plane to each point (as
shown in the figure) and square this distance. The formula looks like this:

RSS =

n∑
i=1

(yi − ŷi)2 =

n∑
i−1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · · − β̂pxip)2

where RSS is the residual sum of squares, yi is the real value, ŷi is the predicted value, βi is
the estimated regression coefficient and xi is the value of feature i. In order to get the best fitted
plane, we need to minimize RSS so that the euclidean distance from the data points to the plane
is minimal [James et al., 2014].

Least squares is not the only loss function you can apply. One of the main disadvantages of
least squares is that outliers dominate the result. Other loss functions have their own advantages,
it is the job of the data scientist to choose the right loss function for the right problem.

The first models we built were not very good and took a long time to complete. We came to the
conclusion that fitting a straight plane through our data points is not an effective way of making
predictions. In figure 7a it is shown how the algorithm tries to fit a plane between the data points.
If there is no linear correlation between the points, then the errors will get very large. This was
the case in our data set.

5.1.2 Logistic classification

At this point we decided to convert our regression problem into two classification problems. To
calculate the NPS we only need two measures: how many promoters and detractors are there? We
will build two models: one predicts if someone is a promoter (1 if true, otherwise 0) and the other
will predict if someone is a detractor. If someone is not a promoter, it does not automatically
mean that he/she is a detractor, because they could also be a passive. Recall from section 3 that
passives do not influence the NPS.

We found a special case of linear regression that is designed for classification: logistic classifi-
cation. The base of this model is the same as linear regression, but we transform each term into its
log. In figure 7b it is shown why logistic classification is an useful model to apply in our project.

It is easy to see that the line shown is closer to values 0 and 1 than when we would use a
straight line. Converting to this new method takes only one transformation in the formula:

17

(a) Gradient descent

(b) Convex function

Figure 8

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + · · ·+ βpXp

We need to apply the log function; this is where the name logistic comes from. This formula
will construct the characteristic line shown in figure 7b. This is an example with just one feature,
but it is possible to apply this to multiple features as stated in the formula. This method increased
our prediction accuracy, so we decided to use this algorithm.

We found a package in R that could easily help us build the logistic models. This package
is called glmnet, where glm stands for generalized linear model and net refers to elastic-net
regularization[Friedman et al., 2010]. Elastic-net regularization is a combination of Lasso and
Ridge regularization, which we will cover section 5.3. glmnet is thus in fact a linear model
generator, but you can also create logistic models with it. This is because linear and logistic
models are inhererently not that different.

There was however still a problem. Even though the predictions were getting better, it still
took quite some time to calculate them. When we gave a featureset with 4000 features as input,
the model took more than an hour to complete. Since we had limited time during this project,
we wanted to decrease the run time but also wanted to keep the quality of the predictions. This
is where the online learner Vowpal Wabbit comes into play.

5.1.3 Online learner

The algorithms described earlier are considered to be offline learners. This means that all the
data points have to be in memory to make calculations. With an online learner it is possible to
load in one data point at a time and update the model accordingly. This prevents many memory
issues and it is also quicker to compute correlations between features of just one data point than
of thousands at a time.

We found an online learning package called Vowpal Wabbit. It is built with speed in mind and
we noticed that from the beginning. By the end of the project we could create 1700 models in just
one day with the same 4000 features we putted into glmnet. There are a few reasons why it is
this much faster. Because VW can update the model with just one ”submodel” at a time, it can
run on multiple threads. This means it can build multiple models at the same time in parallel. It
also uses a trick that is called online gradient descent. We will first explain what offline gradient
descent is.

18

Gradient descent. The concept of gradient descent is shown in figure 8a. The red arrows are the
negative gradients of each point xi and the blue lines are contour lines of the loss function. In this
figure it is shown that gradient descent estimates a minimum (x0) of the chosen loss function and
then calculates in which direction it should go to come closer to that minimum. If the loss function
is convex, then gradient descent will always find the global minimum; otherwise a local minimum
may be found (this depends on the first estimated point). A convex function is a continuous
function where every pair of points on the line lies below or above the function. This situation is
shown in figure 8b. For more information about convexity, read [Boyd and Vandenberghe, 2004].

To determine in which direction to move next, it is necessary to know in which direction the
slope is minimal. This could be achieved by minimizing the derivative of the loss function. Note
that in figure 8a the red arrows are orthogonal to the blue lines, because that is the minimum
distance between the contour lines. The formula to simulate this process looks as follows:

w = w − η
n∑

i=1

∇Qi(w)

where w is to estimated, η is the step size (learning rate) and Qi is the i-th observation in the
training set. We will discuss train and test sets in section 5.2, but the main idea is to split the data
with labels in a train and test set to be able to evaluate the created model. Notice we could fill in
the formula of RSS for Q to apply gradient descent for least squares. It is necessary to pick a value
for η, because gradient descent needs to know when to stop. When the improvement of the next
step is lower than ηQi, the algorithm will stop. Otherwise the algorithm might take a very long
time to stop, or not stop at all, and after many iterations w will converge eventually. Choosing a
good value for η will keep the algorithm fast, accurate and will ensure that the algorithm stops.

Now we now how a traditional gradient descent works, we will take a look at the online version
which Vowpal uses. This is a slightly different approach, because Vowpal only loads one data
point at a time. Vowpal does not have to estimate a local minimum, because it will start at the
first data point in the training set. Then for every next data point it will update w the following
way:

w = w − η∇Qi(w)

It is possible to run over the same data point multiple times to improve w. In the worst case
the first data point is a bad estimate of the local minimum; then online gradient descent has to
travel a long distance to reach that minimum. But because it improves slowly (since it loads in
one data point at a time), it is possible that you need to load data points multiple times. The
best way to read data points more often is to randomize the order in which the data is loaded, so
after every data point is processed the order is randomized to prevent cycles. It is also possible to
use a dynamic learning rate η. Vowpal has the option to use more types of gradient descent, but
these types are out of the scope of this project. To read more about these and other functions of
Vowpal Wabbit, read [Langford, 2015].

We have experimented with different Vowpal settings and we noticed that after 70 iterations
over all data points the improvements converged. Passing all the data 70 times sounds inefficient,
but Vowpal is still very fast because of the reasons stated earlier. This was not the only reason
we used Vowpal, because it also has the option to show the relevancy percentage of each feature.
This percentage indicates how much the feature contributes to the model. If a feature does not
improve the model, then it will display a percentage of 0. If the feature is positively correlated, a
positive percentage is shown (with a maximum of 100%), otherwise a negative percentage is shown
(with minimum of -100%). We will explain how to get features to 0% in section 5.3. This way we
could make a featureset where only relevant features are included.

This function is helpful to make the featureset for glmnet smaller. We deleted all features where
the relevancy percentage was between 20% and -20%, because those features do not contribute
much to the model. Normally you only delete features with a percentage of 0%, but we would

19

(a) Decision Tree (b) Three region partition

Figure 9

still have too many features left if this criterion were to be used. This improved the speed of
glmnet dramatically, but the quality of the predictions also decreased. Luckily this decrease was
not significant, so we did not have to ignore glmnet: it was still useful to run. Results can be
found in section 6.

5.1.4 Boosting

After improving the speed of glmnet and using a new model, we wanted to add one more model.
In other projects at ING they use the package xgboost [Chen et al., 2015]. This package helps to
build a booster in R. Boosting is based on the idea of building a model multiple times, combining
the results and therefore reducing bias and variance. This is one of the main reasons boosting
is one of the most state-of-the-art methods for supervised learning [Hastie et al., 2009]. At ING,
they use decision trees to boost the model.

Decision Trees. Decision Trees are easy to understand, because of the way they can be visual-
ized. Figure 9a shows how to construct a tree. This model was built to predict salary of baseball
players. There are two variables used in this example: years and hits. In the first internal node
(also called the root), the first data split is located. If a player is active for less than 4.5 years,
then we go to the left; otherwise we go to the right. In case of the first event we are done after
this step, because there are no more internal nodes. In the other case we need to take one more
step: if the player hit less than 117.5 times, we go to the left; otherwise we go to the right. The
values displayed at the leaves represent the log of the predicted salary.

The model is easy to follow, but it clearly has its weaknesses. Trees on their own are not very
accurate because of their structure. In figure 9b the model is plotted over the data points and
the quality of the predictions is not very high. We can further divide the data by adding more
internal nodes, but if we do this too many times the model will overfit. Overfitting means that a
model will predict the values of the training set very well, but when the model wants to predict
the values of test data it performs badly. This is because the model is trained too tightly on the
training data and has lost its flexibility. We will discuss how to solve this problem in section 5.3.

If Decision Trees are not very accurate for our data, why are we using them as a model? As
stated earlier, boosting can help to make every model less biased and reduce the variance. Boosting
will stepwise improve one tree through creating new trees and combine the results. The algorithm
will begin by setting f̂(x) = 0 and ri = yi for all i in the training set. f̂(x) is the model we will
optimize and ri is the residual for element i, which is the predictor yi in the beginning of the
process. Then the model will loop B times and at each iteration it does the following: it will take
a bootstrap sample from the training data (discussed in section 5.2.2), fits a tree out of this data

with D leafs and calculates f̂(x) = f̂(x) +λf̂ b(x) and ri = ri−λf̂ b(xi). B,D and λ are chosen by
the user, where B is the number of iterations (number of trees to build), D is the number of leaves

20

Figure 10: Cross validation

the tree should contain and λ is a penalty to prevent overfitting. To learn more about overfitting,
see section 5.3. The output of this model can be summarized with the following formula:

f̂(x) =

B∑
b=1

λf̂ b(x)

There are a lot of parameters that the user has to give as input. To run lots of models with
different parameters we made a script that automated this process and fills in multiple combina-
tions of parameters. Then we choose the best model on some metric (described in section 6.1 and
the features that are used in the tree are passed on as a featureset for the glmnet model, just as
we did with Vowpal.

To get the best results with boosting, λ is usually very small. This means that there is a large
penalty involved and that the model is learning very slowly. This is why boosting models need a
very big B to become successful: it needs to build many trees to make significant changes in the
model. It is however one of the fastest methods in machine learning, so this does not have to be a
problem with today’s hardware. For example, we made 1400 xgboost models with more than 4000
features in just two hours, whereas glmnet could only produce one model with the same amount
of features in one hour. This is because xgboost can run on multiple threads on the computer
and building trees is computationally less expensive than to fit a plane between millions of data
points.

5.2 Resampling

To be able to evaluate a created model, it is necessary to resample the data with labels. Resampling
will refit models to different samples from the data set. If we would use all the data to build our
models, we cannot test how well the performance of that model is. This is because when running
the created model on the same data that it was trained on, it would give a biased result, because
the model has already ”seen” the data.

The solution is to split the data randomly into two parts: a training and a test set. The
model will be trained on the training set and evaluated on the test set. This will give the most
unbiased view of how well the model performs. However, doing this just once will not give the
actual performance of the model, because splitting the data randomly again will give a different
result. There are a couple of ways to resample the data multiple times.

5.2.1 Cross-validation

Cross-validation is the process of splitting the data into multiple parts and using some parts as
training data and the rest as test data. An example is shown in figure 10. There are two ways to
do this: exhaustive and non-exhaustive.

21

Exhaustive. Exhaustive cross-validation will train and test on every possible combination of
the original data set. This could be done by choosing p data points as the validation set and the
rest as the training set. This method is called Leave-p-out cross validation (LpO CV). This is
however very inefficient, because the complexity of this method is O(2n). This means that a larger
input n (the amount of data points in the training set) takes exponentially more time to compute.
This is why this method is almost never used.

A special case of LpO CV is when p = 1. This is called leave-one-out cross validation (LOOCV).
This is also an exhaustive method, but the complexity is O(n), which is much better than LpO
CV (where p > 1). There are only n ways to use one data point as validation set, so the algorithm
has to apply cross-validation n times. So now there is a linear relation with input n instead of
exponential. Even though this method is better, for large n this still takes too long to compute,
so a non-exhaustive method is preferred.

Non-exhaustive. Instead of specifying how many data points should be used as validation set,
it is now necessary to specify how much equally divided partitions of the data set should be made.
This is called k-fold cross validation, where k stands for the amount of equally sized subsamples.
One partition will be used as test set; the other k − 1 partitions as training set. Note that when
k = n this is exactly the same as LOOCV and this becomes an exhaustive method.

We used k-fold cross validation in all our models. The default value of k for glmnet and
xgboost is 10, which means 9 partitions will be used for training and 1 as testing. Another often
used value for k is 5, which we used. Research has shown that these values result in the best
performance [Kohavi, 1995]. This research also shows that the use of stratification is very helpful
in finding the best performance as well. Stratification will make sure that the mean of the labels
is approximately the same for each partition in case of regression. In the case of classification each
fold will have roughly the same ratio of zero and ones.

Even when there is not much labeled data, cross-validation can help to make an accurate model.
Running the models multiple times on different subsets of the data will give a more accurate result
than training and testing once. This is because all the data is used to train the final model. When
the dataset is really small, then there is another solution: bootstrapping.

5.2.2 Bootstrap

Bootstrapping is a form of sampling with replacement. This is useful to do when the training set
is small. Bootstrapping works as follows: if n is the amount of datapoints, then we will take a
sample of size n with replacement, which means that some data points may be repeated. We will
take B bootstraps and for each sample we will run the model. Bootstrap can then estimate the
standard error or a confidence interval for each coefficient [Hastie et al., 2009].

So even if the original dataset is small, we can create ”new” datasets with this method. This
way we can investigate a few attributes of the estimated sampling distribution: bias, variance and
confidence interval are a couple of examples. Doing bootstrap in combination with decision trees
is an effective way of building a model. In the results section 6 we describe how useful boosting
was in comparison with logistic classification and an online learner.

5.3 Regularization

Regularization is used to prevent overfitting of the models. An example of overfitting is shown in
figure 11. Here you can see that the error of a model has two values: a training error and a test
error. The objective of the model is to find the minimum for the test error, not the training error.
At first, the more complex the model, the lower both errors. But after a while, the test error begins
to increase. When this happens, it is called overfitting. The model is adding too much noise (uses
too many features) and this will have a negative impact on validation. To reduce the chance of
overfitting, regularization is used. There are a couple of methods to apply regularization. We will
only discuss Lasso and Ridge.

22

Figure 11: Train and test error

5.3.1 Lasso (L1-norm).

Recall the loss function RSS, where the distance between the predicted value and the real value
was squared to penalize models that did not predict accurately. The goal was to minimize this
value in order to get the best fitting model for the test data. If the model uses too many features,
noise will eventually increase the RSS, as shown in figure 11. To make sure that only useful
features are used to predict, we are going to use the Lasso method. The formula will change to:

Ex(β) = min(RSS +R(β))

Ex(β) =

n∑
i=1

(yi − ŷi)2 + λ1

m∑
j=1

|βj |

Where Ex is the error we want to minimize, RSS still has the same formula, R(β) is the
penalty function we will apply, λ1 is the weight of the Lasso method and |βj | is the L1-norm of
coefficient vector β. The idea is to shrink the value of βj so that its estimate will go to zero. If
the coefficient is zero, the feature is not used in the model which will not only lead to a faster
model, but also lowers the chance of overfitting. Note that when λ1 has a value of zero, the normal
RSS function has returned and no Lasso is applied. The higher λ1, the larger the influence on
coefficient βj . It is normal to pick λ1 = 0.001 to give a soft penalty for noisy features. We have
run multiple models with different values for λ1. The results of these models will be discussed in
section 6.

5.3.2 Ridge (L2-norm).

While Lasso will force the coefficients to zero, Ridge will force coefficients to nearly zero. This
means that no coefficients will drop to zero and will always contribute to the model in some way.
Sometimes this is preferred over Lasso (for example if there are not so many features available).
The formula will almost look the same as with Lasso:

Ex(β) = min(RSS +R(β))

Ex(β) =

n∑
i=1

(yi − ŷi)2 + λ2

m∑
j=1

β2
j

Here we need to choose another λ2 value and the coefficient vector βj is squared. Because βj
is squared, the value will never be zero. This is shown in figure 12. On the left we see the Lasso
method, on the right Ridge is shown. The blue areas are the constraint regions |β1|+ |β2| < t and
β2
1 +β2

2 < t respectively. The red ellipses are the contour line of the RSS function. The estimated

23

Figure 12: Lasso and Ridge regularization

β̂ is the same for both plots. The goal is to follow the contour starting from β̂ and return the
values of both β1 and β2 when a contour line (red ellips) hits the constraint function (the blue
area) for the first time. Because the contour lines are elliptical, the odds are higher that they
will hit the blue area of Lasso in one of the corners of the square. At every corner of the square
there is one coefficient that is zero. This is not the case in Ridge: when the ellips hits the circle,
both coefficients have a positive value greater than zero. This is why Lasso eliminates features
completely and Ridge only weakens them.

It is also possible to combine Lasso and Ridge together, and make use of both advantages. This
is a simple step from the formulas above:

Ex(β) =

n∑
i=1

(yi − ŷi)2 + λ1

m∑
j=1

|βj |+ λ2

m∑
j=1

β2
j

Notice we can derive both formulas from this one, with setting either λ1 = 0 or λ1 = 0. If we
set both weights to zero, the normal RSS function is obtained. We have made a script that will
create multiple models with different values for Lasso and Ridge. The results are described in the
next section.

5.4 Conclusion

There are many models, loss functions, regularization techniques and other machine learning
elements to choose from. Combining the right algorithms to obtain the best model is very hard
and one needs to have lots of experience and knowledge to be able to find this model. What is
described in this section does not even scratch the surface of all possible kinds of machine learning
tools, but it is a good starting point for people that are new to machine learning.

In the end we used three kinds of models: a logistic classifier, a boosting model and an online
learner. Each of those models has their own strengths and weaknesses, but we will see in the next
section that the results do not differ much from each other.

24

6 Results

After building the models, we have to determine which ones perform best; see Figure 13. In this
chapter we will discuss the results of our models. However, we have to determine how we measure
our models before we can view any results. Therefore we start this chapter with a description of
performance metrics.

6.1 Performance metrics

Several metrics are used to measure the performance of our models so we can compare them. In
this section we will discuss the metrics we (do not) use and why we (do not) use them. Figure 14
shows the confusing matrix containing the different kind of conditions and the metrics that can
be calculated.

6.1.1 Accuracy

The easiest metric for the performance of a model is the accuracy, which is basically just the
percentage of well-predicted values. Accuracy may sound very intuitive, but it has some disad-
vantages. The first disadvantage is that the raw predictions we get are not binary. They give
a probability of being 1. Therefore, when using accuracy, a cutoff is needed to determine which
predictions should be mapped to 1 and which should be mapped to 0. The second disadvantage is
that accuracy does not deal with unbalanced classes. Let us presume that we have a class contain-
ing 98 observations represented as value 0 and a class that has just 2 observations represented as
value 1. It is easy to build a model that always predicts 0 and this model would have an accuracy
of 98%, but in fact the model does not have any value. Therefore, when comparing models, we
will not use accuracy as a meaningful metric.

6.1.2 Area under the curve

The area under the curve (AUC) is a metric for measuring binary predictions. With AUC actually
the area under the ROC curve (Receiver Operating Characteristic) is meant. ROC analysis was
developed during World War II for radars in order to decide whether the signal they received was

Figure 13: Step 4 of the process

25

Figure 14: Confusion matrix [Hanson, 2014]

an enemy target, a friendly ship or just noise. The ability of a radar to make the right choices
was called ROC. In the 1970s the metric appeared to be very useful for interpreting (medical) test
results [Tape, 2005]. The ROC curve contains the relationship between the amount of positive
predicted values that should be positive and the amount of positive predicted values that should
be negative, in other words, the true positive rate (TPR) and the false positive rate (FPR). An
AUC of 0.5 means that the predictions are random; an AUC of 1 means that all the predictions
are correct. The advantage of AUC over accuracy is that it deals with unbalanced classes and the
cutoff of the raw predictions.

6.1.3 Precision and recall

Whereas AUC looks at the true and false positive rate, precision and recall are metrics that look
at relevance. Precision is defined as

Precision =
amount of true positives

amount of true positives + amount of false positives

and recall as

Recall =
amount of true positives

amount of true positives + amount of false negatives

Precision may be considered as the metric that indicates whether a model produces more
relevant than irrelevant results, whereas recall indicates whether a model produces most of the
relevant results. As precision and recall are two metrics instead of one, it is difficult to state when
a model is better. It depends on the purpose of the model; sometimes high precision is needed,
sometimes a higher recall may be more useful. Because our model will be used for multiple
purposes, we look at precision/recall curves, but don’t choose which of both metrics we want to
optimize.

6.2 Performance results

In this project we distinguish between two different groups of customers on which we will run our
models. There is a group of customers who filled in a survey on the ING website, or had a planned
conversation with ING, but did not answer the question about NPS and a very large group that
did not fill in any survey and did not have a planned conversation. For the first group, we can use
the features obtained by text mining. For the second group we cannot, because we do not have
any information of them. For this reason we have built models with the text mining features and

26

without these features. Of course, this separation is made for models that predict promoters, as
well as for models that predict detractors. Because of this separation, we split the known data
in three parts. The models were trained on 80% of the data and the other 20% was split in two
test sets: one set contains the features obtained by text mining; the other one does not. The
training set contained 28666 observations, the text mining test set 3583 and the test set without
text mining features 3584.
For all four kinds of models we have made ROC and Precision/Recall plots of the models generated
by glmnet, xgboost and Vowpal. Beside those plots, we created plots of the glmnet, xgboost and
Vowpal model with the highest AUC. Finally, we plotted the scores of models with and without
text mining in plot, so we can see the difference that text mining makes. In the following sections
we will discuss all four sorts of models and their best working glmnet, xgboost and Vowpal models.
We will discuss the plots of their performance and their five most important features. This is just
a very small selection, but it would be impossible to discuss them all.

Table 1: AUC of the best glmnet models

Model AUC
promoters with text mining 0.8152856
promoters without text mining 0.6053267
detractors with text mining 0.7980818
detractors without text mining 0.6109227

Table 2: Parameters and AUC of the best xgboost models

Model nthread lambda maxdepth AUC
promoters with text mining 3 0.012 12 0.8213348
promoters without text mining 2 0.015 9 0.6096526
detractors with text mining 3 0.012 12 0.7976572
detractors without text mining 2 0.003 9 0.6175699

Table 3: Parameters and AUC of the best Vowpal models

Model nn layers L1 L2 lr AUC
promoters with text mining 0.00001 0 0.9 0.8135206
promoters without text mining 8 0.1 0.5705313
detractors with text mining 0 0.0007 0.4 0.79474
detractors without text mining 0 0.0009 0.2 0.5992647

27

6.2.1 Promoters with text mining

(a) ROC curves (b) Precision/recall curves

Figure 15: Best promoter with text mining

We built 27 glmnet models, 27 xgboost models and 1010 Vowpal models using text mining
features. In figures ??, ?? and ?? the results of these models are shown.

With text mining, we obtained some features that really contributed to the model. In the case
of the promoters model, the top 5 of features is a text mining feature. The features <removed for
security>, <removed for security> and <removed for security> are a strong indication of being a
promoter. The features <removed for security> and <removed for security> also score very well,
but they indicate that a customer is not a promoter. The full list of features that are used in the
glmnet and xgboost models can be found in table ??.

In figure 15a we see that the differences between the best glmnet, xgboost and Vowpal models
are quite small. The AUC of the xgboost is the highest, 0.8213348. The glmnet scores second,
0.8152856 and the Vowpal model scores 0.8135206. So, although the xgboost model scores best,
all three methods deliver a well scoring model. Looking at the precision/recall curve in figure 15b
we also see small differences. When the recall is between 0.0 and 0.2 the glmnet model has a
higher precision; between a recall of 0.2 and 1.0 the xgboost model scores slightly better than the
other two. The parameters and scores of the models can be found in tables 1, 2 and 3.

28

6.2.2 Promoters without text mining

(a) ROC curves (b) Precision/recall curves

Figure 16: Best promoter without text mining

We built 125 glmnet models, 125 xgboost models and 1010 Vowpal models that do not use
text mining features. In figures ??, ?? and ?? the results of these models are shown.

When the text mining is not used, we obviously see that other features become important.
In this case the top 5 of features is <removed for security>, <removed for security>, <removed
for security>, <removed for security> and <removed for security>. The <removed for security>
feature may be interesting when we want to know the NPS of different years. The full list of
features that are used in the glmnet and xgboost models can be found in table ??.

The results of these models are less accurate than those of the models with text mining. In
figure 16 we see that the differences between the best glmnet, xgboost and Vowpal models are
again quite small, but are far below the results of the models with text mining. The differences
between those two kinds of models are plotted in figure ??. Looking at the ROC curve of the best
models, it immediately becomes clear that the best Vowpal model is less accurate than best model
of the other two methods. In this case the xgboost model scores best with an AUC of 0.6096526,
closely followed by the glmnet model that has an AUC of 0.6053267. The best Vowpal model has
an AUC of only 0.5705313. The precision/recall curve shows the same results; the xgboost and
glmnet models perform almost equally. In this plot, the curve of the Vowpal model is below the
other two models, especially when we look at a recall higher than 0.2. The parameters and scores
of the models can be found in tables 1, 2 and 3.

29

6.2.3 Detractors with text mining

(a) ROC curves (b) Precision/recall curves

Figure 17: Best detractor with text mining

We built 27 glmnet models, 27 xgboost models and 1010 Vowpal models using text mining
features. In figures ??, ?? and ?? the results of these models are shown.

For this type of models, again, we obtained strongly contributing features through text min-
ing. Not surprisingly, these were the same features as in the promoters model, but in this case,
they indicate the opposite. So <removed for security> and <removed for security> indicate a
detractor, <removed for security>, <removed for security> and <removed for security> indicate
”not a detractor”. The full list of features that are used in the glmnet and xgboost models can be
found in table ??.
Whereas the xgboost had the highest AUC for the models concerning promoters (using text min-
ing), here the AUC of the glmnet model is the highest; 0.7980818. The xgboost scores second,
0.7976572; and the Vowpal model scores 0.79474. So, again all 3 methods deliver a well-scoring
model and the differences between them are small. We can see these small differences in figure 17.
The ROC curve of the glmnet model is a bit higher than the other two models. However, looking
at the precision/recall the xgboost model scores better for a recall smaller than 0.2. With a recall
between 0.2 and 1.0 the models almost perform similarly. The parameters and scores of the models
can be found in tables 1, 2 and 3.

30

6.2.4 Detractors without text mining

(a) ROC curves (b) Precision/recall curves

Figure 18: Best detractor without text mining

We built 125 glmnet models, 125 xgboost models and 1010 vowpal models that do not use text
mining features. In figures ??, ?? and ?? the results of these models are shown.

For the models predicting detractors without text mining the <removed for security> and
<removed for security> are important, just as for the promoters model. The other three features
of the top 5 are <removed for security>, <removed for security> and <removed for security>.
The full list of features that are used in the glmnet and xgboost models can be found in table ??.

The results of the models are slightly better than those of the promoter models without text
mining. The xgboost model is the best model once more, with an AUC of 0.6175699. The glmnet
scores similarly with an AUC of 0.6109227 and the Vowpal is again the worst with an AUC of just
0.5992647. However, the precision/recall curves are all lower than those of the promoter models.
Compared to the ROC curves we see a similar picture. The xgboost and glmnet models perform
almost the same, the Vowpal models perform worse. The parameters and scores of the models can
be found in tables 1, 2 and 3.

6.3 Conclusion

We decided to use ROC curves and precision/recall curves to compare our models. The AUC of
the ROC curve was chosen as metric to choose the best models. For all four sorts of models we
built models using xgboost, glmnet and Vowpal. When predicting promoters, the xgboost models
have the highest AUC. When predicting detractors with text mining features, the glmnet model is
the best one and when predicting detractors without text mining features, again a xgboost model
has the highest AUC. The features obtained through text mining make a huge difference. When
using these features, we achieve AUCs around 0.8. When they are not used, we obtain AUCs
around 0.6.

31

7 Dashboard

Part of the project was to deliver a dashboard so we can show ING employees how the NPS is
distributed. Not everyone in the business understands these types of complicated models and
a dashboard would thus be easier for employees to work and communicate with. In the end we
delivered two versions of the dashboard. The first version will be implemented in the business after
we are gone, the second is made to meet the software engineering requirement of this project. In
this section we will describe how we made both versions and what their strengths and weaknesses
are.

Building the dashboard is the last step of the process. This is shown in figure 19. We selected
the best models and stored the data of all investment customers in a csv file. We ran the selected
models on the rest of the customers (of whom we do not know their NPS) and saved the predictions
in one or more csv files. The last step is to make a dashboard out of these csv files. As mentioned
in the previous paragraph, we execute this last step for two different dashboards.

DISCLAIMER: The Power BI dashboard screenshot is removed for security and privacy rea-
sons and the D3 dashboard contains fake data.

7.1 Power BI

The dashboard that we implemented in the business was built with Power BI. Power BI is a rather
new Business Intelligence software package from Microsoft. It is still in beta, but the functions
that were available were more than enough to suit our needs. Power BI is also used by another
team at ING, to which we will hand over our product, so they are familiar with the software and
know how to maintain it. A screenshot of the dashboard is shown in figure ??.

Power BI is one of the most innovative BI packages to date. It is really simple to use and
even non-technical people can drag and drop variables to build charts. It has support for a lot of
Microsoft software built in, so if the business uses their software suite it is very easy to combine
multiple programs with each other. A couple of well known programs are Excel, Access and Azure.

We organized multiple presentations for other teams within ING to show the dashboard and
they loved the clear visualizations. For example, it is possible to select a specific bar from a bar
chart, after which the other charts on the same page will filter their data for that selected group.
The other BI tools that are used at ING do not offer this type of interaction, so we received
positive feedback about this functionality. One team even wanted to implement our dashboard as

Figure 19: Step 5 in the process

32

a weekly report. Together we built the first beta version. Unfortunately there was no time left to
finish the dashboard completely, because that team shifted their goals after a couple of weeks.

There are however also downsides to Power BI. To really make use of all its features, you have
to upload the data to Microsoft’s cloud storage. Big companies like ING do not want to do this,
because they need to know where their customers’ data is stored and who has access to it. Since
storing the data in the cloud is not an option, we used a local version of Power BI. This makes it
more difficult to distribute the dashboard to other parties, but ING is working on a solution.

We think our product is in good hands and the business can do great things with it in the
future. We tried to match the expectations of our client as much as possible and we think we
have succeeded in that goal. It is unfortunate that a reorganization at ING occurred during this
project, but the latest version of our dashboard could be changed quickly to better suit their new
needs. Next we are going to discuss the dashboard that had to be made to meet the software
engineering requirement of this project.

7.2 D3

We made the second dashboard from scratch. We wanted to make a dashboard that would meet
the software engineering requirement of this project, but also wanted to address the shortcomings
of Power BI. We decided that a website would be the best choice to build our own dashboard. We
used an open source javascript library called D3 in combination with HTML and CSS. We used
Jasmine for testing purposes.

D3 is a powerful library to visualize anything you want. You can for example make spinning
globes, make little games and most importantly show charts. There is however a slight learning
curve. We spent over three weeks finishing the dashboard, but we think it was the right call to use
D3. Although we had less time to spend on solely improving our models, it allowed us to deliver a
product that we built ourselves, showing what we learned during our bachelor programme as well
as during this project. A screenshot of the dashboard is shown in figure ??.

It looks almost the same as Power BI and that is because Power BI uses D3 too. We tried to
replicate the first version of our Power BI dashboard and it is almost identical. Our D3 dashboard
is in some aspects a better choice to implement than the Power BI version. Its data does not
have to be in the cloud: with a simple internal server it is possible to host the website for ING
employees only. You can also alter the dashboard to make it exactly as the business requires,
whereas Microsoft will decide which features are going to be implemented in Power BI.

<removed for security>

7.2.1 Data preparing

The D3 dashboard will need multiple csv files with specific information. These csv files are built
in the csv builder which we have written in R. The csv builder needs a dataset in order to make
subsets of it. First, there is a function that selects the data of the last month in the database.
Then, there are functions to calculate the amount of promoters in a matrix or list, a function
that calculates the amount of detractors and a function that calculates the NPS. Then, there are
functions that use these calculations and export various csv files. These are the print functions.
A description of these functions can be found in Appendix ??.

7.2.2 Implementation

We will now get a little more technical. In figure 20 the structure of the D3 dashboard is shown.
You can see that it is possible to make a dashboard with just a couple of files. We have divided
the different aspects of websites into different folders. There is a dedicated folder for each css,
javascript and data file. We will now explain the most important files of the dashboard.

index.html This is the HTML file where the structure of the website is declared. We used six
different div elements that hold the six different charts. See figure ?? for more information. Each

33

Figure 20: D3 src folder structure

of these div elements has its own id, so the charts can be allocated to their position. There is also
a button placed in the lower right corner for the user to refresh the charts.

This file is the heart of the website: it will call all the other files that are necessary. It will call
styles.css to style the website and init.js to generate the charts. When the button is pressed, a
function inside of init.js will update the charts with the data that is stored in the specific data
folder.

styles.css This file is used to style the graphs and the div elements. Here we declared for
example how the axes of the bar chart should look; that negative NPS scores should have a red
color; and which font size the chart titles should be. Doing this in one file make it easy to change
multiple aspects of the website with minimal code. This makes the site maintainable and flexible.

init.js There are three functions in this file: init(), updateCharts() and isNumeric(n). The
function init() will be called when the website finishes loading the html elements. This is to make
sure every id is declared so that the charts created can be placed inside that div element. When
it is called, it will create one GaugeChart and five BarChart objects. It will render them all and
in the end all the charts are updated via the updateCharts() function. This function is also called
when the button is pressed.

barchart.js This is where D3 is used to create a bar chart. We will only cover barchart.js,
because gaugechart.js has the same structure. A BarChart object consists of two parts: the axes
and a body part. Two different functions will take care of rendering the axes. When the chart
has just been created, renderAxes() will be called to initialize the components of the axes. If the
chart is already in use and the chart has to update the axes, then rescaleAxes() is called. This
is where the chart determines whether the data of the x-axis is linear or ordinal and rescale the
axes if necessary. The x-axis will be linear if the data contains only numerical values and will be
ordinal if the values are strings.

The body will always be re-rendered. The body contains the bars that will represent the data.
If the value of a bar is negative, then the class attribute of that bar is neg and otherwise it is
pos. This way, we can declare in the style.css what the color should be for both classes. This
functionality is also present in the GaugeChart, but instead of using bars there is an arc that
changes color.

34

Figure 21: Jasmine structure

7.2.3 Testing

We are using the Jasmine library to help us test the code. The structure of the website had
to be extended to use this library. This structure is shown in figure 21. To run the tests, the
SpecRunner.html file has to be opened in a browser. This file contains the references to the
source code and the tests. There are three folders: in the lib folder all the code to use the Jasmine
package can be found, in the src folder the source code described in section 7.2.2 is saved, and the
spec folder is where all the tests are stored.

We wrote two test files: BarChartSpec.js and GaugeChartSpec.js. Each file only contains
tests that are relevant to their subject. There are tests for checking the dimensions of the charts,
whether they created the right class attributes and whether the chart is placed in the right position.
There are around 200 lines of code versus 300 lines of source code. This shows that we took testing
seriously and we wanted to deliver high-quality code. We are not the only one who think our code
is of above average quality, as is described in the next section.

7.3 SIG evaluation

We sent the code of our own dashboard to the Software Improvement Group (SIG) in week 8 and
12 of the project. The evaluations can be found in appendix ??. The first time we sent our code,
our dashboard was far from done. We had spend only two weeks on building it and at that time
we did not really understand how D3 worked. It came as a surprise that we still earned four out
of five stars for this unfinished code.

The reason we did not earn five stars was because we had lots of duplicated code and the size
of the methods were too large. At that time, we had five different files to create five different bar
charts. These files looked almost identical, which is an inefficient programming concept. We knew
that this was going to be a problem for our evaluation, but there was no time left to change it.

We fixed this issue in the final version of the dashboard. As showed in figure 20 we now only
use one bar chart file to create multiple instances. We are pleased with the solution; it was difficult
to understand D3 in a short time and implement the features in the correct way. We fixed the
issue by making BarChart(id, path) a class which takes an id and the path to the data. The id
refers to the id of the div the chart should go in. This way you can add multiple charts to different
div elements and each chart will only take care of its own environment.

We also improved the amount of tests. In the first edition of the dashboard there were no tests.
After fixing the issue described above, we started writing tests for the new situation. We built
little unit tests that test only one thing at a time. SIG is also positive about these added tests.
They stated that the ratio between source code and test code is very healthy. We have worked to
reach this result and we are very pleased with SIG’s response.

35

Unfortunately, we could not improve our four star rating to five. We were close to achieving
this, but the unit size of the methods were still too large. This is partly because of how D3 works
and partly because we did not want to implement extra methods just to keep unit size small.
Looking back, we could have put in more effort in decreasing unit size, but we think we used our
limited time to fix other more urgent issues.

7.4 Conclusion

We have created two dashboards: one in the powerful program Power BI and one we developed
ourselves. The Power BI version received positive feedback from the business and the D3 version
received positive feedback from SIG. Both dashboards have their own strengths and weaknesses,
but overall we are very pleased with the results. Both versions could be used by ING, but they
are only interested in the Power BI version. This is the version that will be implemented and
hopefully used for a long time.

36

8 Conclusion

Although we experienced a very busy three months, they were absolutely worth it. We have
learned a lot and we might have found our future profession. Working together with the team at
ING was very satisfying and it was interesting to see how the business operates. This made the
project a success for us.

We have mixed feelings about the results. On one hand we score above our expectations with
the text mining features, but if we leave them out the performance drops significantly. Although
this is unfortunate, we should keep in mind that this is the first time we have applied machine
learning algorithms and we have not identified other research instance of predicting NPS using
this method.

We can see that the models we used gave approximately similar accuracy levels. xgboost and
glmnet performed almost identically, as is to be expected because we used important features of
xgboost as imput for glmnet. It was interesting to see how Vowpal Wabbit works and the results
show it works significantly differently from the other models. Unfortunately this did not mean it
outperformed the other models, but maybe in a different environment it can excel.

Building the dashboards took quite some time. Looking back, we have put in more time than
we anticipated at the start of the project. We do not regret this, since we intended to deliver
quality work. <Removed for security>

It was a delight to work with the people at ING and with our supervisor Hayley. They all
wanted us to succeed and put a lot of effort into our project. At the start of the project, the
expectations were unknown and this made it exciting to begin the project.

<Removed for security>

37

9 Recommendations

There are many things in our project we could improve on. Since the project only lasted about
three months, we had limited time to explore all possible solutions. We have also found a lot of
literature and information during our research that we were unable to experiment with. We will
sum up our recommendations in this chapter.

9.1 Feature extraction

Although we used many features, the results were subpar without the text mining. We would like
to find new features that we can apply on all customers and not only on those that have filled in
a questionnaire. If we had more time, we would have tried web scraping a news site or combining
more information from other databases at ING.

For xgboost and Vowpal we used the complete featureset to build the models, but for glmnet
we used the relevant features of xgboost. In our case glmnet still performed as well as the other
models, but we do not know whether another approach would have made an improvement. More
research should be done to know the impact on the performance of glmnet.

9.2 Machine learning

An obvious recommendation is to try other machine learning methods. We read that neural
networks perform really well, so this is one model that we want to try to build.

We have made a script to automate the process of building different models with different
parameters, but if we would have access to a more powerful machine we could have produced
more models with other parameters. Parameters we would have liked to experiment (more) on are
e.g. which cross-validation to use; the amount of regularization; and how deep the decision trees
are allowed to be.

9.3 Dashboard

The D3 dashboard we made does not have many functions. It would be nice to be able to filter
or to choose the type of data you want to see. This is what is possible in Power BI and one of the
reasons ING does not want to use our dashboard. If more time were spent on the functionality of
the D3 dashboard, this would make it more valuable.

38

References

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization.
Cambridge University Press.

[Chen et al., 2015] Chen, T., He, T., and Benesty, M. (2015). xgboost: Extreme Gradient Boosting.
R package version 0.4-2.

[CustomerGauge News, 2008] CustomerGauge News (2008). Ing direct
usa bank hits nps hi-score of 60. http://customergauge.com/news/

ing-direct-usa-bank-hits-nps-hi-score-of-60/.

[Dobronte, 2012] Dobronte, A. (2012). Why there needs to be a european variant of the net
promoter score. https://nl.checkmarket.com/2012/01/we-need-an-nps-eu/.

[Friedman et al., 2010] Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths
for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22.

[Ghahramani and Jordan, 1994] Ghahramani, Z. and Jordan, M. (1994). Supervised learning from
incomplete data via an em approach. pages 120–127.

[Grisaffe, 2007] Grisaffe, D. B. (2007). Questions about the ultimate question: conceptual consid-
erations in evaluating reichheld’s net promoter score (nps). Journal of Consumer Satisfaction
Dissatisfaction and Complaining Behavior, pages 20–36.

[Guyon and Elisseeff, 2006] Guyon, I. and Elisseeff, A. (2006). An Introduction to Feature Extrac-
tion, volume 207 of Studies in Fuzziness and Soft Computing. Springer Berlin Heidelberg.

[Hanson, 2014] Hanson, N. (2014). De-confusion tables, a shiny application for understanding
binary classifiers.

[Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statis-
tical Learning. Springer Series in Statistics. Springer-Verlag New York.

[James et al., 2014] James, G., Witten, D., Hastie, T., and Tibshirani, R. (2014). An Introduction
to Statistical Learning: With Applications in R. Springer Publishing Company, Incorporated.

[Kohavi, 1995] Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estima-
tion and model selection. pages 1137–1143.

[Langford, 2015] Langford, J. (2015). Vowpal wabbit. https://github.com/JohnLangford/

vowpal_wabbit/wiki.

[Motoda and Liu, 2002] Motoda, H. and Liu, H. (2002). Feature selection, extraction and con-
struction. Communication of IICM (Institute of Information and Computing Machinery, Tai-
wan) Vol, 5:67–72.

[Qu, 2013] Qu, Y. (2013). Nps vs. ces – are they mutually exclusive? https://www.cebglobal.

com/blogs/nps-vs-ces-are-they-mutually-exclusive-3/.

[R-Bloggers, 2013] R-Bloggers (2013). Finding patterns amongst bi-
nary variables with the homals package. http://www.r-bloggers.com/

finding-patterns-amongst-binary-variables-with-the-homals-package/.

[Reichheld, 2003] Reichheld, F. F. (2003). The one number you need to grow. Hardvard Business
Review, 81(12):46–54.

[Ritson, 2007] Ritson, M. (2007). Net promoter scores australia 2006. http://www.tmiaust.com.
au/downloads/NPS/Mark_Ritson_NPS_Survey.pdf.

39

[Roughgarden et al., 2013] Roughgarden, T., Sharp, A., and Wexler, T. (2013). Guide to greedy
algorithms. http://web.stanford.edu/class/archive/cs/cs161/cs161.1138/handouts/

120%20Guide%20to%20Greedy%20Algorithms.pdf.

[Tape, 2005] Tape, T. G. (2005). The area under an roc curve.

[van Dessel, 2014] van Dessel, G. (2014). Measuring customer satisfaction: Csat, ces and nps
compared. https://www.checkmarket.com/2014/11/csat-ces-nps-compared/.

40

Appendices

Removed for security.

41

