
 
 

Delft University of Technology

Formal synthesis of analytic controllers
An evolutionary approach
Verdier, C.F.

DOI
10.4233/uuid:70f6704f-30e4-4e1a-8c74-9fe2b699a80d
Publication date
2020
Document Version
Final published version
Citation (APA)
Verdier, C. F. (2020). Formal synthesis of analytic controllers: An evolutionary approach. [Dissertation (TU
Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:70f6704f-30e4-4e1a-8c74-9fe2b699a80d

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:70f6704f-30e4-4e1a-8c74-9fe2b699a80d
https://doi.org/10.4233/uuid:70f6704f-30e4-4e1a-8c74-9fe2b699a80d


Cees Ferdinand Verdier

Formal Synthesis of 
Analytic Controllers

An Evolutionary Approach





Formal synthesis of analytic controllers
An evolutionary approach





Formal synthesis of analytic controllers
An evolutionary approach

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magni�cus Prof. dr. ir. T.H.J.J. van der Hagen;
chair of the Board of Doctorates

to be defended publicly on
Wednesday 21 October 2020 at 15:00 o’clock

by

Cees Ferdinand Verdier

Master of Science in Systems and Control,
Delft University of Technology, the Netherlands

born in Heemskerk, the Netherlands



This dissertation has been approved by the promoters.

Composition of the doctoral committee:

Rector Magni�cus chairperson
Dr. M. Mazo Espinosa Delft University of Technology, promotor
Prof. dr. R. Babuška Delft University of Technology, copromotor

Independent members:
Prof. dr. ir. B. H. K. de Schutter Delft University of Technology
Prof. dr. P. A. N. Bosman Delft University of Technology
Prof. dr. A. Abate University of Oxford, United Kingdom
Prof. Dr.-Ing. M. Altho� Technical University of Munich, Germany
Dr. ir. R. Toth Eindhoven University of Technology

This research is supported by the Dutch Organization for Scienti�c Research (NWO, do-
main TTW, grant: 13852) which is partly funded by the Ministry of Economic A�airs.

This dissertation has been completed in ful�lment of the requirements of the Dutch Insti-
tute of Systems and Control (DISC) for graduate study.

Keywords: Formal controller synthesis, hybrid systems, temporal logic,
genetic programming, Lyapunov methods, reachability analysis

Printed by: Print Service Ede

Front & Back: Cees F. Verdier

Copyright © 2020 by C. F. Verdier

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


This dissertation is dedicated to my parents, for their great dedication to my education.

“Every now and then a man’s mind is stretched by a new idea or sensation, and never
shrinks back to its former dimensions

-Oliver Wendell Homes Sr.





Contents

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Hybrid systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Temporal speci�cations . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 The design process . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Abstraction-based methods. . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Certi�cate-based approaches . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Optimization-based methods . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.5 Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Research goal and contributions . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 13
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Hybrid systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Temporal logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Quantitative semantics . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Connection to jump-�ow systems . . . . . . . . . . . . . . . . . 18
2.3.3 Reachset temporal logic . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Satis�ability modulo theories solvers . . . . . . . . . . . . . . . . . . . . 20

3 Grammar-guided genetic programming 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Grammar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Algorithm details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . 28
3.4.3 Parameter optimization . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



viii Contents

4 Certi�cate-based synthesis 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Lyapunov barrier functions . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Relaxations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Automatic synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.1 SMT solver-based veri�cation . . . . . . . . . . . . . . . . . . . 40
4.5.2 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.3 Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.1 Continuous open-loop systems . . . . . . . . . . . . . . . . . . . 42
4.6.2 Bounded uncertainties . . . . . . . . . . . . . . . . . . . . . . . 45
4.6.3 Switching controllers. . . . . . . . . . . . . . . . . . . . . . . . 45
4.6.4 Discovering controller structures. . . . . . . . . . . . . . . . . . 47
4.6.5 Jump-�ow systems . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6.6 Design of �ow and jump maps . . . . . . . . . . . . . . . . . . . 50
4.6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Specialized synthesis for sampled-data systems . . . . . . . . . . . . . . 51
4.7.1 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7.2 Control strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7.3 One-step ahead reachable set. . . . . . . . . . . . . . . . . . . . 53
4.7.4 Automatic synthesis . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7.6 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 Veri�cation of near-optimal controllers. . . . . . . . . . . . . . . . . . . 58
4.8.1 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.8.3 Case study: Anti-lock braking system . . . . . . . . . . . . . . . 61

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Reachability-based synthesis 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Problem de�nition and solution approach . . . . . . . . . . . . . . . . . 68
5.3 Quantitative semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Candidate controller synthesis . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Outline of the candidate controller synthesis . . . . . . . . . . . . 71
5.4.2 Reference-tracking controllers . . . . . . . . . . . . . . . . . . . 72

5.5 Counterexample generation and veri�cation . . . . . . . . . . . . . . . . 73
5.5.1 Robustness measure bounds . . . . . . . . . . . . . . . . . . . . 73
5.5.2 Counterexample generation . . . . . . . . . . . . . . . . . . . . 74
5.5.3 Veri�cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Contents ix

5.6 Dealing with conservatism . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7.1 Car benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7.2 Input saturation . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7.3 Path planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7.4 Landing maneuver . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Discussion 87
6.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Extension of certi�cate-based approaches . . . . . . . . . . . . . . . . . 90
6.3 Extension of reachability-based approaches . . . . . . . . . . . . . . . . 90
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Conclusions and recommendations 93
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . 94

A Mathematical proofs 97
A.1 Proof Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 Proof Corollary 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3 Proof Proposition 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.4 Proof Corollary 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.5 Proof Corollary 4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.6 Proof Corollary 4.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.7 Proof Theorem 4.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.8 Proof Corollary 4.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.9 Proof Theorem 4.7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.10 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B Standard forms of the LBF and CLBF inequalities 103

Bibliography 105

Acknowledgements 119

List of Symbols 121

Abbreviations 123

Curriculum Vitæ 125

List of Publications 127





Summary

Modern technology has resulted in a widespread availability of advanced hardware and
computation power, enabling the increase of automation. However, control design for
safety-critical cyber-physical systems still requires signi�cant expert knowledge, ham-
pering large scale automation. Cyber-physical systems typically exhibit both continu-
ous and discrete behavior, and are therefore paradigmatic examples of hybrid systems.
Their (safety-critical) speci�cations, which can be formalized using e.g. temporal logic,
go beyond classical system properties such as stability. While there exist constructive
design methods for certain sub-classes of systems and speci�cations, for general hybrid
systems with temporal logic speci�cations, methods are still lacking. Nevertheless, in re-
cent years multiple approaches have been proposed to automatically synthesize correct-
by-construction controllers, i.e. controllers that are guaranteed to satisfy a pre-de�ned
speci�cation by their synthesis method. However, typically these approaches su�er from
one or more of the following disadvantages: the method relies on discretization of the state
space and therefore su�ers from the curse of dimensionality; the resulting controllers are
in the form of enormous look-up tables, hence impractical for implementation in embed-
ded hardware; the method relies on online optimization and therefore has a high compu-
tation cost; the method is only applicable for a limited class of systems or speci�cations;
or the methodology is highly dependent on expert knowledge.

The goal of this thesis is to propose a novel approach that overcomes these limitations.
That is, our goal is to propose a framework for automatic controller synthesis, capable
of synthesizing closed-form controllers for hybrid systems with temporal logic speci�ca-
tions, without a heavy reliance on expert knowledge. To this end, we draw inspiration
from the human design process, and utilize two methods that show great similarities to it,
namely evolutionary algorithms and counterexample-guided inductive synthesis.

More speci�cally, in this work we use genetic programming (GP), an evolutionary algo-
rithm which is capable of evolving entire programs, in our case controllers. This makes it
possible to automatically discover the structure of a solution, rather than being dependent
on the user to supply an adequate template solution. Moreover, it enables the synthesis
of compact closed-form controllers, circumventing the need for look-up tables or online
optimization. While GP can be used to discover the controller structures from scratch,
the use of expert knowledge does improve the convergence to a solution. To enable such
provision of expert knowledge, we use grammar-guided genetic programming, a variant
that restricts candidate solutions to adhere to a user-de�ned grammar. Nevertheless, the
use of expert knowledge remains optional; a user can provide a very general grammar, or
use their expertise to bias the search direction.

In combination with GP, we use the concept of counterexample-guided inductive syn-
thesis (CEGIS) to re�ne candidate solutions based on counterexamples, until the controller
is guaranteed to satisfy the desired speci�cation. In this thesis we propose two CEGIS-
based synthesis frameworks, which di�er in the employed veri�cation paradigms. The
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xii Summary

�rst approach uses an indirect method, namely certi�cate functions, whereas the second
approach uses a direct method, namely reachability analysis.

The �rst framework proposed in this thesis co-synthesises both controllers and cer-
ti�cate functions, where the latter is used to (indirectly) verify the desired system speci�-
cation. We propose a novel Lyapunov barrier function (LBF) which, if it exists, implies a
reach-avoid property. The LBF is de�ned such that its conditions are veri�able by means
of a satis�ability modulo theories (SMT) solver; a tool capable of determining whether a
�rst-order logic formula is satis�ed or not. We use genetic programming to synthesize
pairs of candidate controller and candidate LBF based on a �nite number of samples of the
state space. Synthesized pairs meeting the LBF conditions over the �nite set of states are
subsequently formally veri�ed by means of an SMT solver. If the LBF conditions are not
met, a counterexample is extracted, which is used to re�ne the synthesis procedure. This
�rst methodology is applied to general hybrid systems modelled as jump-�ow systems,
subjected to reach-avoid speci�cations. Additionally, we propose a specialized framework
for smooth nonlinear systems with sampled-data controllers, based on control Lyapunov
barrier functions. Finally, we demonstrate how the proposed framework can be used to
verify (near) optimal controllers, which are obtained by means of reinforcement learning.

The second framework relies on the reachability analysis of the system. To this end
we use recent advances on model checking for signal temporal logic (STL) and counterex-
ample generation based on reachability analysis. STL reasons over singular trajectories,
whereas reachability analysis returns reachable sets. To bridge the gap between singular
trajectories and reachable sets, we use a sound transformation from STL to reachset tem-
poral logic (RTL), which directly reasons over reachability sets. To quantify the satisfaction
of an RTL formula, we introduce the quantitative semantics of RTL, which provides an op-
timization criterion that is used in our synthesis. We use genetic programming to optimize
controllers, based on a �nite set of simulated trajectories. Controllers which satisfy the
speci�cation for this �nite number of trajectories are subsequently veri�ed with respect
to the entire initial set by means of reachability analysis. If the speci�cation is violated
based on the reachability analysis, a corresponding initial condition resulting in the viola-
tion is extracted. This counterexample is then used to re�ne the controller synthesis. This
second methodology is applied to nonlinear systems with a sampled-data implementation
of the controller, subjected to general STL speci�cations.

We demonstrate the e�ectiveness of both approaches on multiple (academic) case stud-
ies. The proposed frameworks are best suited for di�erent use cases; the certi�cate-based
approach is best suited for low-dimensional systems with large initial sets, whereas the
reachability-based approach is best suited for higher-dimensional systems with small ini-
tial sets, subjected to intricate speci�cations in the form of temporal logic. While the
two presented frameworks deal with either general hybrid systems or general temporal
logic speci�cations, we propose future extensions to general hybrid systems subjected
to general temporal logic. Both frameworks result in correct-by-construction compact
closed-form controllers, where the use of expert knowledge is optional. Their capability
to synthesize sampled-data controllers enables easy implementation in embedded hard-
ware with limited memory and computation power, forming a stepping stone towards
faster automation.



Samenvatting

Moderne technologie heeft geresulteerd in de wijdverspreide beschikbaarheid van gea-
vanceerde hardware en rekenkracht, waardoor de automatisering toe kan nemen. Echter,
het ontwerpen van regelaars voor veiligheidskritische cyberfysieke systemen vereist nog
steeds aanzienlijke expertise, waardoor automatisering op grote schaal wordt geremd. Cy-
berfysieke systemen vertonen doorgaans zowel continu als discreet gedrag, en zijn daarom
typische voorbeelden van hybride systemen. De bijbehorende (veiligheidskritieke) speci�-
caties, die bijvoorbeeld kunnen worden geformaliseerd met temporele logica, gaan voorbij
klassieke systeemeigenschappen zoals stabiliteit. Hoewel er constructieve ontwerpmetho-
den bestaan voor bepaalde subklassen van systemen, zijn deze methoden voor algemene
hybride systemen met temporele logica speci�caties niet voorhanden. Desondanks zijn er
in de afgelopen jaren meerdere methoden voorgesteld voor het automatisch synthetiseren
van ‘correct-door-constructie’ regelaars, d.w.z. regelaars die dankzij de synthesemethode
aan vooraf gede�nieerde speci�caties gegarandeerd voldoen. Deze methoden hebben ech-
ter doorgaans een of meer van de volgende tekortkomingen: de methode is afhankelijk van
discretisatie en leidt daarom aan de vloek van dimensionaliteit; de resulterende regelaar
heeft de vorm van een enorme opzoektabel en is daarom onpraktisch om te implemen-
teren in embedded hardware; de methode is afhankelijk van online optimalisatie en heeft
daarom een hoge rekenkracht; de methode is enkel van toepassing op een beperkte set
systemen of speci�caties; of de methode is zeer afhankelijk van expertise.

Het doel van dit proefschrift is het voorstellen van een nieuwe aanpak, die deze beper-
kingen niet heeft. Met andere woorden, het doel is om een methode voor te stellen voor
het automatisch synthetiseren van regelaars, die in staat is gesloten-vorm regelaars voor
hybride systemen met temporele-logicaspeci�caties te ontwerpen, zonder een sterke af-
hankelijkheid van expertise. Om dit te bewerkstelligen, combineren we methoden die een
grote overeenkomst vertonen met het menselijke ontwerpproces, namelijk evolutionaire
algoritmes en tegenvoorbeeld-gestuurde inductieve synthese.

Speci�ek gezien, gebruiken we in dit werk genetisch programmeren (GP), een evolu-
tionair algoritme, dat in staat is om gehele programma’s te evolueren, in onze context zijn
dat regelaars. Deze methode maakt het mogelijk om automatisch de structuur van een
oplossing te ontdekken, in plaats van afhankelijk te zijn van een adequate sjabloonoplos-
sing, die is aangedragen door de gebruiker. Daarnaast maakt GP het mogelijk om compacte
gesloten-vorm regelaars te synthetiseren, waardoor het gebruik van opzoektabellen of on-
line optimalisatie omzeild wordt. Hoewel GP gebruikt kan worden om de structuur van
de regelaar te ontdekken vanaf nul, wordt door het gebruik van expertise de convergen-
tie naar een oplossing verbeterd. Om een dergelijke voorziening van expertise mogelijk
te maken, gebruiken we grammatica-gestuurd genetisch programmeren, een variant die
kandidaatoplossingen beperkt om zich aan een door de gebruiker de�nieerde grammatica
te houden. Desondanks blijft het gebruik van expertise optioneel; een gebruiker kan een
erg generieke grammatica gebruiken, of diens expertise gebruiken om de zoekrichting te

xiii
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beïnvloeden.
In combinatie met GP, gebruiken we het concept van tegenvoorbeeld-gestuurde induc-

tieve synthese (TGIS) om kandidaatoplossingen te ver�jnen op basis van tegenvoorbeel-
den, totdat de regelaar gegarandeerd voldoet aan de gewenste speci�catie. In dit proef-
schrift stellen we twee TGIS-gebaseerde methoden voor, die verschillen in het gebruikte
veri�catieparadigma. De eerste aanpak gebruikt een indirecte methode, namelijk certi�-
caatfuncties, terwijl de tweede aanpak gebruik maakt van een directe methode, namelijk
bereikbaarheidsanalyse.

De eerste aanpak die wordt voorgesteld in dit proefschrift, co-synthetiseert zowel re-
gelaars als certi�caatfuncties, waarbij het laatstgenoemde gebruikt wordt om (indirect)
de gewenste systeemspeci�catie te veri�ëren. We introduceren een nieuwe Lyapunov-
barrièrefunctie (LBF) die, indien deze bestaat, een bereik-vermijd eigenschap impliceert.
De LBF is zo gede�nieerd dat diens condities veri�eerbaar zijn door middel van een satis-
�ability modulo theories (SMT) solver; een hulpmiddel dat in staat is om te bepalen of aan
een eerste-orde logicaformule wordt voldaan. We gebruiken genetisch programmeren om
een paar, bestaande uit een kandidaat regelaar en een kandidaat LBF, te synthetiseren op
basis van een eindig aantal staat-ruimtemonsters. Gesynthetiseerde paren die aan de LBF-
condities voldoen over deze eindige set van staten worden vervolgens formeel geveri�eerd
aan de hand van een SMT solver. Indien niet aan de LBF-condities wordt voldaan, wordt
er een tegenvoorbeeld geëxtraheerd, dat wordt gebruikt voor het ver�jnen van het syn-
theseproces. Deze eerste methodologie passen we toe op algemene hybride systemen die
zijn gemodelleerd als jump-�ow systemen, onderhevig aan bereik-vermijd speci�caties.
Additioneel stellen we een gespecialiseerde aanpak voor gladde niet-lineaire systemen
met bemonsterde-data regelaars voor, gebaseerd op controle Lyapunov-barrièrefuncties.
Tot slot demonstreren we hoe de voorgestelde aanpak gebruikt kan worden voor de ve-
ri�catie van (bijna) optimale reglaars, die zijn ontworpen aan de hand van reinforcement
learning.

De tweede aanpak is afhankelijk van bereikbaarheidsanalyse van het systeem. Hier-
toe gebruiken we recente ontwikkelingen op het gebied van modelcontrole voor signaal
temporele logica (STL) en de generatie van tegenvoorbeelden op basis van bereikbaar-
heidsanalyse. STL redeneert over enkele banen, terwijl bereikbaarheidsanalyse resulteert
in bereikbare sets. Om de kloof te overbruggen tussen enkele banen en bereikbare sets,
gebruiken we een geldige transformatie van STL naar reachset temporele logica (RTL), die
direct over bereikbare sets beredeneert. Om de mate waarin een RTL-formule voldaan
wordt te kwanti�ceren, introduceren we de kwantitatieve semantiek van RTL, die onze
synthese van een optimalisatiecriterium voorziet. We gebruiken genetisch programme-
ren om regelaars te optimaliseren, op basis van een eindige set aan gesimuleerde banen.
Regelaars die voor deze banen aan de speci�catie voldoen, worden vervolgens geveri�eerd
met betrekking tot de gehele initiële set aan de hand van bereikbaarheidsanalyse. Indien
aan de speci�catie niet wordt voldaan op basis van de bereikbaarheidsanalyse, wordt een
bijbehorende initiële conditie geëxtraheerd die resulteerde in de overtreding. Dit tegen-
voorbeeld wordt vervolgens gebruikt om de regelaarsynthese te ver�jnen. Deze tweede
methodologie wordt toegepast voor niet-lineaire systemen met bemonsterde-data imple-
mentatie van de regelaar, onderhevig aan generieke STL-speci�caties.

We demonsteren de e�ectiviteit van beide aanpakken op meerdere (academische) ca-
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sestudies. De voorgestelde methoden hebben verschillende gebruiksgevallen waarvoor
ze beter geschikt zijn; de certi�caat-gebaseerde methode is het best geschikt voor laag-
dimensionale systemen met grote initiële sets, terwijl de bereikbaarheid-gebaseerde me-
thode het beste geschikt is voor hoger-dimensionale systemen met kleine initiële syste-
men, onderhevig aan ingewikkelde speci�caties, uitgedrukt in temporele logica. Hoewel
de twee voorgestelde methoden ofwel geschikt zijn voor algemene hybride systemen of
algemene temporele logicaspeci�caties, stellen we toekomstige uitbreidingen voor naar
algemene systemen onderworpen aan algemene temporele logica. Beide aanpakken re-
sulteren in correct-door-constructie regelaars in een compacte gesloten vorm, waarbij het
gebruik van expertise optioneel is. De mogelijkheid van beide methoden om bemonsterde-
data regelaars te synthetiseren maakt het mogelijk dat deze regelaars eenvoudig worden
geïmplementeerd in embedded hardware met gelimiteerd geheugen en rekenkracht, wat
dient als opstap naar snellere automatisering.
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Introduction

1.1. Motivation
Since the dawn of mankind, humans have sought to simplify life, ranging from the in-
vention of tools to the extremes of modern automation. As a result, human civilization
evolved as our technology improved. At the time of writing, robots have been around for
decades and a large percentage of the population has a ‘super computer’ in their pocket.
However, our imagination regarding automation and robotics surpasses the current state
of a�airs. What is the limiting factor?

The word technology is derived from the Greek word “techne”, which is often translated
as ‘craft’ and ‘art’. In automation, we try to replace this craft and art by a process with
minimal human assistance. While modern technology provides the muscles and brain for
automation in the form of mechatronics and the computation power, replacing the art of
the human is still in itself an art. The design of algorithms, or controllers, that actuate a
system in a desired way, is still a nontrivial challenge and has been extensively studied
within the �eld of control engineering. In this dissertation, the research goal is to automate
the controller design for a broad class of applications, namely nonlinear/hybrid systems
with temporal logic speci�cations.

1.1.1. Hybrid systems
While our focus will be on nonlinear/hybrid systems, historically the primary focus of
classical control has been on linear systems. As a result, linear control theory has ma-
tured, resulting in a range of constructive methodologies for controller design, such as the
root locus and LQR control [48, 89], and has a wide range of methods dealing with dis-
turbances and model uncertainties, such as H-in�nity synthesis, µ-synthesis, and the use
of linear matrix inequalities [22, 146]. Unfortunately, nonlinear control theory does not
share the same level of maturity as linear control and, with the exception of speci�c sub-
classes of systems, lacks the same level of constructive control design methods [83, 144].
Regardless, smooth nonlinear systems is an important class of systems, with applications
in e.g. robotics, automotive and aerospace engineering. For a wide class of modern cyber-
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Start Analysis Synthesis Simulation Evaluation DecisionSynthesis Simulation Evaluation Decision Controller

Figure 1.1: Basic cycle of the design process.

physical systems, smooth nonlinear systems are not su�cient to capture the dynamics:
these systems exhibit both continuous and discrete behavior, and are referred to as hybrid
systems [57, 156]. Sources of such behavior include electronic switches, mechanical phe-
nomena, such as impacts and hysteresis, but also the digital implementation of controllers
are sources of hybrid behavior, such as sampled data and quantization [57, 156]. Formal
synthesis for general hybrid systems lacks constructive controller design methods, mak-
ing it an intricate process heavily reliant on expert knowledge. To push the automation
further, design methods for this complex class of systems is critical.

1.1.2. Temporal specifications
Where the system model describes the system we have at hand, the control speci�ca-
tion describes the desired performance. The �eld of control theory has classically focused
on ‘complex systems with relatively simple performance criteria’, i.e. dynamical systems
modelled by di�erential equations and stability requirements. On the other hand, the �eld
of computer science focuses on ‘relatively simple systems with complex speci�cations’, i.e.
discrete systems with �nite states and intricate system requirements. To formalize correct-
ness of the behavior of computer systems, these complex system requirements have been
formulated in temporal logics [14], i.e. logic formulae quali�ed over time. For example,
temporal speci�cations include statements as ‘eventually system trajectories reach set A’,
‘the system trajectories are always in set B’, and ‘the system trajectories visit regions C
andD in�nitely often’. In recent years, with the rise of cyber-physical systems, these tem-
poral logic speci�cations have been introduced to the �eld of control [16]. Of particular
interest are temporal logic variants such as signal temporal logic (STL), which directly
reason over continuous-time signals [100]. These temporal logics provide a formal frame-
work for specifying the control speci�cations.

1.1.3. The design process
Given the complex task of controller synthesis for nonlinear/hybrid systems with temporal
logic speci�cations, the main objective of this work is to shift the controller design by
human engineers to an automated process. To this end, let us examine the human design
process as a source of inspiration. Let us consider the ‘basic cycle of design’ model [127],
shown in Figure 1.1. This cycle has �ve phases: analysis, synthesis, simulation, evaluation
and decision. In the analysis phase, the desired functionality of the design is evaluated
and translated into formal speci�cations. In the synthesis phase, a tentative design is
constructed. This design is believed to be a good solution, but still requires testing. Given
the tentative design, in the simulation phase, the behavior of the product is emulated and
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Figure 1.2: The cycles of CEGIS and EA for controller design. Both cycles follow similar steps as the basic cycle
of a design process in Figure 1.1.

its properties derived by means of reasoning and/or models. This model is compared to
the desired speci�cations in the evaluation phase. Based on this comparison, a decision is
made on whether the design is satisfactory or not. Typically, the �rst design can, or needs,
to be improved. In this case, the cycle returns to the synthesis step to improve upon the
previous design. It is also possible that the previous design criteria or speci�cations did
not properly re�ect the intended functionality, and the analysis needs to be re�ned.

Within the context of control, the analysis phase is the formulation of the controller
speci�cations, e.g. in the form of step-response characteristics or temporal logic speci�ca-
tions. In the synthesis phase the engineer could, e.g., select a set of PID values, formulate
a cost function for e.g. LQR control or optimal control, or propose a structure of a nonlin-
ear controller. In the simulation and veri�cation phase the closed-loop behavior is tested
or evaluated based on, e.g., simulating system trajectories or verifying stability using a
Lyapunov function. Based on these results, the controller can be re�ned or deemed satis-
factory.

In this work we use two methodologies closely resembling the human design cycle,
namely Counterexample-guided Inductive Synthesis (CEGIS) [147] and Evolutionary Al-
gorithms (EAs) [43]. Counterexample-guided inductive synthesis is an iterative design
method, in which candidate solutions are synthesized based on iteratively added coun-
terexamples. That is, a candidate solution is proposed and subsequently veri�ed. If the
desired speci�cation is not met, a counterexample is extracted, which is used to re�ne the
candidate solution. This design cycle is illustrated in Figure 1.2a.

Evolutionary algorithms is a class of optimization methods inspired by the concept of
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evolution. Algorithms within this class include Genetic Algorithm (GA) [69], Evolution
Strategy (ES) [140], and Genetic Programming (GP) [85]. These methods are population-
based algorithms following a similar cycle, shown in Figure 1.2b. Within evolutionary
algorithms, a randomly initialized population is ‘evolved’ based on a �tness function; a cost
function capturing the desired objective. Based on the �tness values of candidate solutions,
candidates are selected, altered, and/or recombined by means of genetic operators to form
new candidates, which form a new population. This cycle, or generation, is repeated until
a pre-de�ned stopping criterion is met. The underlying hypothesis is that over a number
of these cycles the average �tness increases.

Assuming proper controller speci�cations are known beforehand, and therefore omit-
ting the analysis phase from the basic design cycle in Figure 1.1, the basic design cycle
closely resembles the cycles of CEGIS and EA, illustrated in Figure 1.2. That is, �rst can-
didate solutions are synthesized based on counterexamples or genetic operators. Subse-
quently the solutions are simulated and evaluated through veri�cation or �tness assess-
ment. If none of the candidate solutions satisfy a pre-determined stopping criterion (i.e.
the decision), solutions are re�ned and re-designed in a new synthesis step. These two
methods di�er from each other in that within CEGIS the objective is typically qualitative
i.e. true/false, whereas within EA the objective is quantitative, i.e. optimization of a cost
function.

In this work we combine both of these methods to synthesize correct-by-construction
controllers. Whereas evolutionary algorithms such as GA and ES evolve parameters, GP
sets itself apart by its capability to evolve entire programs. In this work we use variants
of GP and ES to propose candidate controller structures and their parameters, based on a
�nite set of training data. Subsequently, these candidate controllers are veri�ed by means
of a formal veri�cation method. If the desired control speci�cation is not met, a coun-
terexample is extracted for which this speci�cation is violated. This counterexample is
then added to the training data and used to re�ne the candidate controllers. This com-
bination of CEGIS and EA provides a framework resembling the human design process,
with the goal to fully automate the controller synthesis for hybrid systems with temporal
logic speci�cations.

1.2. Related work
In recent years, tools have been developed for automatic formal control synthesis for hy-
brid systems with temporal logic speci�cations or subproblems thereof. Most of these
methods �t into one of three main paradigms: synthesis by means of 1) �nite (bi-) simula-
tion abstractions [17, 150], 2) control Lyapunov and/or barrier functions [12, 163] and 3)
online optimization-based methods [16].

1.2.1. Abstraction-based methods
The �rst paradigm �nds its roots in the �eld of computer science, in which temporal logic
has been used to describe the correctness of complex system behaviors of intricate com-
puter systems [14]. As it originally dealt with �nite systems, (bi-)simulation approaches
have been proposed to abstract in�nite systems to �nite systems [17, 150]. However, as a
downside, these approaches (e.g. [55, 63, 99, 124]) su�er from the curse of dimensional-
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ity and return controllers in the form of enormous look-up tables [170]. This makes this
method especially troublesome for implementation in embedded hardware with limited
memory capabilities. To partly overcome the limitations due to the curse of dimension-
ality, recent work has focused on improving scalability, e.g. by the decomposition into
subsystems [79, 101, 105, 113, 153], using multiscale discretization [26, 54, 71], or using
discretization-free approaches [169]. Tools implementing these abstraction-based meth-
ods include PESSOA [102], SCOTS [131], CoSyMa [107] and ROCS [94]. In this thesis the
goal is to avoid state-space discretization and synthesize controllers in the form of compact
expressions.

1.2.2. Certificate-based approaches
The second paradigm �nds its root in more traditional control theory, as it utilizes cer-
ti�cate functions, i.e., functions that by their existence imply certain system behavior of
autonomous systems. Examples include the well-known Lyapunov function [77] and bar-
rier certi�cates [115], which are used to prove stability and invariance (safety), respec-
tively. Similarly, control certi�cate functions are design tools for non-autonomous sys-
tems to modify the system behavior such that the closed-loop system satis�es the desired
system properties. Examples of these control certi�cates are control Lyapunov function
(CLF) [12, 35, 135, 136] and control barrier function (CBF) [163], which are design tools for
stabilization and safety speci�cations, respectively. Using these (control) certi�cate func-
tions or combinations thereof, (a subset of) temporal properties can be inferred indirectly
[10, 52, 96, 126, 148, 167]. For general hybrid systems, [64, 65] recently proposed a set of
su�cient conditions for certi�cate functions for temporal logic operators, such as always,
eventually and until. To go beyond single temporal operators, the temporal logic formula
can be decomposed into a sequence of sub formulae, resulting in a sequence of certi�cate
functions that impose the full speci�cation [19, 20, 36, 65, 165]. However, synthesizing
these functions for general hybrid systems is nontrivial.

In the remainder, our focus lies on the synthesis of certi�cate functions in the context
of control design, rather than the analysis of autonomous systems; a review of computa-
tional methods for Lyapunov function can be found in [53]. In recent years, we observe
two main trends for certi�cate-based controller synthesis: methods relying on sum-of-
squares (SOS) programming and semi-de�nite programming relaxations, and CEGIS ap-
proaches. The SOS approaches, see e.g. [111, 115, 116, 152], require polynomial systems
and/or solutions. However, even if a polynomial closed-loop system is asymptotically sta-
ble, this does not imply that there exists a polynomial Lyapunov function, as shown in
[3]. Additionally, these methods typically require a template solution and can su�er from
numerical sensitivity issues.

CEGIS approaches, including [4, 74, 118, 120, 121], synthesize controllers and/or cer-
ti�cate functions by iteratively proposing and verifying candidate solutions, typically by
means of a Satis�ability Modulo Theories (SMT) solver; a numerically sound tool capable
of verifying whether a �rst-order logic formula is satis�ed or not. The synthesis of these
certi�cates typically does not restrict the class of systems and solutions to polynomials,
but does require the user to provide a template solution. In recent work, neural networks
have been used within a CEGIS framework for veri�cation and/or formal controller syn-
thesis [1, 27]. Neural networks are known to serve as universal function approximators,
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hence they provide a good candidate as Lyapunov function representation.
Other certi�cate-based approaches include e.g. [59, 145], which rely on the use of

templates of solutions in order to �nd Lyapunov functions, based on relaxations and the
subsequent solving of semi-algebraic systems. Several approaches have also combined
Lyapunov-like functions in conjunction with arti�cial intelligence techniques [166], such
as Reinforcement learning [18, 93] and neural networks [34]. In these instances, a cer-
ti�cate function is typically used to restrict policies to a safe set of inputs, or are used a
posteriori to verify the system behavior.

Overall, these existing methods are limited to a subclass of systems, such as poly-
nomial systems, and/or require expert knowledge in the form of an adequate template
solution. In this thesis the goal is to address general systems and minimize the need of
expert knowledge.

1.2.3. Optimization-based methods
In the �nal paradigm, optimization-based methods are employed, typically to optimize
a cost function related to the temporal logic speci�cation [16]. In these approaches, the
quantitative semantics of STL [40, 45] are utilized, which provides a quantitative score
on how robustly the formula is satis�ed. The quantitative semantics provides a clear opti-
mization criterion, enabling optimization-based methods for temporal logic, such as model
predictive control (MPC) [46, 95, 117, 133, 134], optimal trajectory planning [110], and re-
inforcement learning [5, 92]. Typically, these approaches only deal with a single initial
condition, with the notable exceptions of [46, 117]. In [134], tube MPC is used, in which
a tube around a nominal initial condition is found for which the robustness score is guar-
anteed. Other optimization-based approaches such as [112] are similar to the abstraction
methods in that they are automaton-based, but do not require abstraction.

As an alternative, to be able to consider multiple initial conditions, optimization ap-
proaches using reachability analysis [6] have been proposed [37, 138, 139, 141]. Reach-
ability analysis constructs an over-approximation of all the states which can be reached,
starting in a given initial set. By relying on reachability analysis, controllers are optimized
w.r.t. a reachable set, rather than a single trajectory. In [139], MPC is combined with
reachability analysis, whereas in [37, 138] reach-avoid problems for nonlinear systems
are tackled by synthesizing a sequence of optimal control inputs [37] or linear controllers
[138] for a sequence of time intervals. The approach in [138] is extended to piecewise
a�ne systems in [141].

The downside of these optimization methods is that they are only applicable to a sin-
gle initial condition, they require online optimization, e.g. when using MPC-based ap-
proaches, or, in case the optimal solution is computed o�ine, the controller is typically
stored as a look-up table. Our goal is to synthesize a controller that has a relative low
computation cost and can be stored e�ciently.

1.2.4. Other approaches
While the three aforementioned paradigms cover a wide range of approaches, not all re-
lated work belongs to one of these approaches. In this section we cover some of these
other alternatives.

In [2] a CEGIS approach is used for the synthesis of digital controllers for linear
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continuous-time systems. The authors in [151] use constraint solving is to synthesize
a switching law for a hybrid system under a safety speci�cation, based on template so-
lutions. In [97, 98] the synthesis for a fragment of STL is reformulated as a prescribed
performance control (PPC) problem, resulting in a continuous state-feedback control law.

Finally, with the enormous surge in interest in arti�cial intelligence, methodologies
exploring the combination of arti�cial intelligence and formal methods for controller syn-
thesis have arisen, see e.g. the survey in [166]. Approaches of interest outside the afore-
mentioned paradigms include [41], in which neural network controllers are synthesized
for nonlinear system with STL speci�cations and veri�ed by means of reachability analy-
sis for neural networks. Similarly, in [168] a CEGIS-like approach is proposed, which uses
reinforcement learning to design neural network controllers for nonlinear discrete-time
systems under STL speci�cations. This controller is designed such that the satisfaction
of the STL speci�cation is maximized for an initial set. Rather than using a formal veri�-
cation method based on reachability analysis, the method relies on the falsi�er S-TaLiRo
[11] to provide counterexamples, which are used to improve the worst-case performance.
Therefore, the property can not always be guaranteed without additional veri�cation.

1.2.5. Evolutionary algorithms
Over the years, multiple evolutionary approaches have been applied to control problems,
see e.g. the surveys [47, 91, 142]. Speci�cally, genetic programming has been proposed
for the discovery of Lyapunov functions, see e.g. [62, 103], control Lyapunov functions
[154], and controllers, see e.g. [28, 30, 38, 87, 90, 143] to name a few. The survey in [86]
provides several anecdotal success stories of the application of genetic programming for
control, in which the resulting controllers were ‘competitive’ with controllers designed by
experts. However, in all the aforementioned work, the �tness is based on speci�c samples
and/or simulations and no formal guarantees can be given on the behavior of the system,
other than for the speci�c test cases. Only a limited number of publications consider some
form of veri�cation, including [122, 123], in which quadratic Lyapunov functions are used
based on the linearized system, and [28], in which the stability of the closed-loop system
is guaranteed by using the Kharitonov Theorem, but is therefore only applicable to linear
systems.

On the other hand, in the �eld of computer science, methods have been proposed
which combine genetic programming with formal veri�cation methods, such as model
checking [68, 73, 75, 76] or SMT solvers [21]. These methods are used to synthesize prov-
ably correct programs, which satisfy temporal logic speci�cations. However, these frame-
works have not been applied to the �eld of control, i.e. the synthesis of controllers for
dynamical systems. In this thesis the goal is to use genetic programming with formal
veri�cation methods to synthesize correct-by-construction controllers.

1.3. Research goal and contributions
A brief overview of general shortcomings of the methods in Section 1.2 is shown in Table
1.1. Overall, existing work su�ers from one or more of the following shortcomings:

1. Resulting controllers are in an impractical form for the implementation in embedded
hardware with limited memory, e.g. a sizable look-up table.
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Table 1.1: Comparison of the synthesis approaches in literature.

Method Advantages Limitations

• Curse of dimensionalityAbstraction-based • Complete method • Look-up table controller
Certi�cate-based • Compact representation • Requires expert knowledge

• Online computation cost orOptimization-based • Optimal control Look-up table controller
• Little expert knowledge • Challenging toAI/GP-based required provide guarantees

2. Resulting controllers su�er from a considerable online computation cost, such as
MPC-based approaches, and are therefore impractical for embedded implementa-
tions.

3. The method is only applicable to subclasses of systems, e.g. linear, polynomial, or
smooth nonlinear systems.

4. The methodology is only capable of handling a limited class of speci�cations, such
as reach-avoid problems.

5. The methodology relies on expert knowledge, e.g. by requiring solution templates.

The goal of this dissertation is to develop a framework capable of addressing all of these
issues. To overcome the �rst two issues, our approach is to synthesize controllers in the
form of compact closed-form expressions, such that we obtain a controller which is to im-
plement and does not su�er the same computational burden compared to methods relying
on online optimization. Speci�cally, the goal is summarized as follows:

Research goal

Develop a framework for automated correct-by-construction synthesis of closed-
form controllers for nonlinear/hybrid systems under temporal speci�cations,
where the use of expert knowledge is optional.

In order to synthesize controllers in the form of closed-form expressions without the
reliance on expert knowledge, we use genetic programming. Genetic programming sets
itself apart by evolving entire programs, rather than optimizing parameters within a pre-
de�ned structure. In our case, the evolved program is a controller that is built up and
modi�ed (evolved) based on elementary building blocks. These building blocks consist of
e.g. the state variables and basic functions such as addition and multiplication. Speci�-
cally, we propose the use of Grammar-Guided Genetic Programming (GGGP) [104, 162],
which allows users to provide a grammar. This enables the user to take a hands-o� ap-
proach by considering general grammars, ranging from general polynomial expressions
to grammars including transcendental functions, or to use expert knowledge and bias the
search space to structures for which there is likely to exist a solution. In this sense, there is
no requirement of expert knowledge, but using it could yield a speed-up in the synthesis.
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In order to design controllers that guarantee temporal logic speci�cations, we combine
genetic programming with formal veri�cation within a Counterexample-guided Inductive
Synthesis (CEGIS) framework. That is, candidate controllers are proposed using GP and
are veri�ed using formal veri�cation. If the proposed controllers violate the speci�cation,
the veri�cation method returns a counterexample, which is used to improve the proposed
controllers. In this work we propose the use of two di�erent veri�cation paradigms, result-
ing in two di�erent synthesis frameworks, namely an indirect and direct method. The �rst
method builds upon one of the corner stones of nonlinear control: Lyapunov functions,
or in a broader sense, certi�cate functions. This results in the following framework:

Indirect method: certi�cate-based synthesis

Genetic programming-driven co-synthesis of controllers and candidate certi�cate
functions, evaluated based on the conditions of the certi�cate function.

The second approach relies on the direct evaluation of the closed-loop behavior of
the system and controller. This method builds upon one of the fundamental tools of con-
troller evaluation: simulating the behavior of a system. Instead of relying on simulation
of singular trajectories, we over-approximate the set of all possible trajectories by means
of reachability analysis. This yields the following framework:

Direct method: reachability-based synthesis

Genetic programming-driven controller synthesis, evaluated based on an over-
approximation of all the system trajectories.

In general, our main contribution is the proposal of these two approaches, in which
we combine existing techniques, including GP, SMT solvers, certi�cate functions, reach-
ability analysis and CEGIS, to solve the nontrivial problems stated in the research goal,
i.e., the automatic synthesis of closed-form controllers for nonlinear/hybrid systems under
temporal logic speci�cations, where the controller structure can be discovered automati-
cally. To enable the combination of these techniques into a single framework, additional
contributions are made within this dissertation:

• We introduce (specialized) Lyapunov-like functions for sampled-data and hybrid
systems for speci�c reach-avoid problems, which are automatically veri�able by
means of state-of-the-art SMT solvers (Sections 4.3, 4.4, and 4.7.2).

• We de�ne the quantitative semantics of reachset temporal logic (Section 5.3).

Finally, the proposed framework enables our �nal contribution:

• We use our certi�cate-based framework to automatically verify near-optimal control
policies by means of formal synthesis of Lyapunov-like functions (Section 4.8).

1.4. Outline
In this section we provide the outline of this dissertation. Figure 1.3 illustrates the class of
systems and speci�cations tackled per chapter.
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Figure 1.3: Classes of systems and speci�cations in increasing complexity, and the corresponding chapters that
address the corresponding problems.

• Chapter 2: Preliminaries. In this chapter we recap the fundamentals underlying
this thesis. After introducing the general notation, we introduce the mathematical
framework of the class of hybrid systems considered in this work, namely jump-�ow
systems. Subsequently, an introduction to temporal logic is provided, speci�cally
signal temporal logic and reachset temporal logic, which enables model checking
for STL by means of reachability analysis. Finally, we cover satis�ability modulo
theories solvers, which form the backbone of verifying the certi�cate functions in
Chapter 4 and satisfaction of STL formulae in Chapter 5.

• Chapter 3: Grammar-guided genetic programming. In this chapter we detail
our evolutionary algorithm driving the heuristic search for controllers in Chapters
4 and 5, namely a variant of grammar-guided genetic programming.

• Chapter 4: Certi�cate-based synthesis. In this chapter we propose an indirect
formal controller synthesis approach, i.e. a framework in which the formal veri�ca-
tion relies on the co-synthesized (control) certi�cate function. We consider hybrid
systems modelled as jump-�ow systems with reach-avoid problems. Additionally,
we develop a specialized approach for nonlinear systems with a sampled-data im-
plementation of the controller. Finally, based on the developed framework, we de-
sign certi�cate functions to verify (near) optimal controllers obtained by means of
reinforcement learning.

• Chapter 5: Reachability-based synthesis. In this chapter we propose a direct
formal controller synthesis approach, i.e. a framework in which the formal veri-
�cation relies on reachability analysis. We consider smooth nonlinear open-loop
systems with a sampled-data implementation of the controller, designed for general
speci�cations expressed as STL formulae.

• Chapter 6: Discussion. In this chapter we compare the indirect and direct method
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in Chapters 4 and 5. Besides the fact that these two method address a di�erent
combination of system class and type of speci�cation (see also Figure 1.3), both
methods have their own weaknesses and advantages, resulting in di�erent use cases,
which are addressed in this chapter. Additionally, extensions of both methods to a
larger class of systems or speci�cations is also addressed in this chapter.

• Chapter 7: Conclusions and recommendations. In this �nal chapter, we sum-
marize the main contributions and provide an outlook of promising future work.





2
Preliminaries

In this chapter, we introduce notation and preliminary notions regarding the class of sys-
tems and classes of speci�cations relevant to this dissertation, namely hybrid systems in
the form of jump-�ow systems and temporal logics, in particular signal temporal logic and
reachset temporal logic. The chapter is concluded with the preliminaries on satis�ability
modulo theories solvers, which play an important role in the veri�cation used within this
work.

2.1. Notation
The sets of natural, integer, rational and real numbers are denoted by N, Z, Q and R, re-
spectively, where N = {0, 1, 2 . . . }. A non-negative subset is denoted using the subscript
·≥0, e.g., R≥0 = {x ∈ R | x ≥ 0}. Given a setD ⊆ Rn, we denote the boundary, the inte-
rior and its power set with ∂D, int(D), and 2D , respectively. A vector in Rn comprising
of only zeros or ones in denoted as 0n and 1n respectively. The image of set A under f is
denoted by f [A] . Finally, the Euclidean norm is denoted by ‖ · ‖.

2.2. Hybrid systems
Throughout this work, hybrid systems are modeled as jump-�ow systems, following the
framework from [57]. We brie�y recall the following de�nitions:
De�nition 2.2.1 (Hybrid time domains [57, Def. 2.3]). A subsetE ⊂ R≥0×N is a compact
hybrid time domain if E =

⋃J−1
j=0 ([tj , tj+1], j) for some �nite sequence of times 0 = t0 ≤

t1 . . . ≤ tJ . It is a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, . . . J}) is
a compact hybrid time domain.

Given a hybrid time domain E and a given j ∈ N, we denote a time interval T j :=
{t | (t, j) ∈ E}.
De�nition 2.2.2 (Hybrid arc [57, Def. 2.4]). A function φ : E → Rn is a hybrid arc if E
is a hybrid time domain and if for each j ∈ N the function t 7→ φ(t, j) is locally absolutely
continuous on the interval T j .

13
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Now a hybrid jump-�ow system is de�ned as follows:

De�nition 2.2.3 (Hybrid system [57, §2.1]). A hybrid systemH is de�ned as a tuple
(C,F,D,G), where set C ⊂ Rn is the �ow set, set-valued function F : C ⇒ Rn the �ow
map, set D ⊂ Rn the jump set, and set-valued function G : D ⇒ Rn the jump map.

Given a set-valued function M : Rm ⇒ Rn, we denote its domain with domM , de-
�ned as domM := {x ∈ Rm | M(x) 6= ∅}. In this work, we assume that the considered
hybrid systems satisfy the following conditions, also referred to as the hybrid basic con-
ditions in [57]:

Assumption 2.2.1 (Hybrid basic conditions [57, Ass. 6.5]).

1. C and D are closed subsets of Rn.

2. F : Rn ⇒ Rn is outer semicontinuous and locally bounded relative toC , C ⊂ domF ,
and F (x) is convex for every x ∈ C .

3. G : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to D, and D ⊂
domG.

For the exact de�nition of outer semicontinuity and local boundedness for set-valued
mappings we refer to De�nition 5.9 and 5.14 in [57]. A special class of systems satisfying
these conditions are those whose �ow and jump maps are described by continuous func-
tions f : Rn → Rn and g : Rn → Rn. If a hybrid system H does not satisfy the hybrid
basic conditions, one could construct the Krasovskii regularization (see De�nition 4.13 in
[57]), which by de�nition satis�es these conditions. Under the hybrid basic conditions,
solutions to the hybrid system are de�ned as follows:

De�nition 2.2.4 (Solution to a hybrid system [57, §6.2.1]). A hybrid arc φ : E → Rn is a
solution to a hybrid systemH if φ(0, 0) ∈ C ∪D and

• ∀j ∈ N and almost all t ∈ T j :

φ(t, j) ∈ C,
φ̇(t, j) ∈ F (φ(t, j)).

• ∀(t, j) ∈ {(t, j) ∈ E | (t, j + 1) ∈ E}:

φ(t, j) ∈ D,
φ(t, j + 1) ∈ G(φ(t, j)).

Figure 2.1 illustrates an example of the �ow and jump sets C and D, and a solution
φ(t, j). In this work, we distinguish the following classes of hybrid arcs φ:

De�nition 2.2.5 (Types of hybrid arcs [57, Def. 2.5]). A hybrid arc φ : E → Rn is called

• complete if its domain E is unbounded;
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C

D

Figure 2.1: Example of a �ow set C , jump set D and a solution φ(t, j).

• Zeno if it is complete and sup{t ∈ R≥0 | ∃j ∈ N : (t, j) ∈ E} < ∞, i.e. there is an
in�nite number of jumps within a �nite time interval;

• maximal if there exists no solution ψ to H such that domφ ⊂ domψ and φ(t, j) =
ψ(t, j) for all (t, j) ∈ domφ.

Finally, we denote SH(I) as the set of all maximal solutions φ : E → Rn to H with
φ(0, 0) ∈ I :

SH(I) = {φ | φ(0, 0) ∈ I and φ(t, j) is a solution toH}. (2.1)

Throughout this dissertation, we consider two classes of nonlinear systems which can
be considered as special cases of jump-�ow systems. These two classes are continuous
systems and continuous open-loop systems with sampled-data controllers. The subclass
of continuous-time systems, as the name suggests, only has continuous data, i.e. it is
described by hybrid systems H = (C,F, ∅, ∅). Since this subclass has no jump set and
map, we de�ne it with the reduced data as follows:

De�nition 2.2.6 (Continuous-time system). A continuous-time system Σ is de�ned as a
tuple (C,F ), where C ⊂ Rn is the �ow set and the set-valued function F : C ⇒ Rn is the
�ow map.

Since solutions φ : E → Rn have a constant jump argument, i.e. E = T 0 × {0}, we
denote these solutions with ξ : T 0 → Rn, where ξ(t) = φ(t, 0).

Next, let us consider the subclass of continuous open-loop systems with a sampled-
data implementation of the controller. Consider a continuous open-loop system described
by the data (X , Fol), where X ⊆ Rn and Fol : Rn × Rm ⇒ Rn, such that for almost all
t ∈ T 0

ξ̇(t) ∈ Fol(ξ(t), u(t)), (2.2)
ξ(t) ∈ X , (2.3)

where u(t) ∈ U ⊆ Rm denotes the control input. Consider a sampled-data implementa-
tion of a state-feedback controller κ : X → U , i.e., the control input is updated periodically
after η seconds and is held constant in between updates. Using the jump-�ow framework,
this system can be modelled asH = (C,F,D,G) with

C = X 2 × [0, η], F (s) = (Fol(sx, κ(sq)),0n, 1),

D = X 2 × {η}, G(s) = (sx, sx, 0),
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where the state vector s = (sx, sq, st) ∈ Xn × [0, η] consists of the continuous states
sx ∈ X , the sampled states sq ∈ X and a timer state st ∈ [0, η]. Similar to the partition of
the state vector, let us partition solutions φ as φ(t, j) = (ξ(t, j), ξq(t, j), τ(t, j)), where
ξ denotes the continuous states, ξq(t, j) ∈ Rn the sampled states, and τ(t, j) ∈ [0, η] the
timer state. Since the jump instances and the state evolution of the sampled and timer
states are easily derived from ξ and t1, we typically omit these in our analysis of this
class of systems. That is, the class of continuous open-loop systems with sampled-data
controller, with solutions ξ : R≥0 → Rn, is de�ned as follows:

De�nition 2.2.7 (Continuous open-loop system with sampled-data controller).
A continuous open-loop system with sampled-data controller Σsd is de�ned as a tuple
(X , Fol, κ, η), where set X ⊂ Rn is the state space, set-valued function Fol : X × U ⇒ Rn
the open-loop �ow map, the function κ : X → U the controller, and scalar η > 0 the
sampling time.

2.3. Temporal logic
Stemming from the �eld of computer science, temporal logic (TL) has been used to describe
the correctness of the behavior of complex software and hardware systems [14]. In recent
years, temporal logic has been applied to the �eld of control [16]. In this work we are
particularly interested in signal temporal logic (STL), which reasons over continuous-time
signals [100]. STL is de�ned through the following recursive grammar:

ϕ := true | h(s) ≥ 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b]ϕ2, (2.4)

where ϕ, ϕ1, ϕ2 are STL formulae, and h(s) ≥ 0 is a predicate over a signal s : R≥0 → Rn
and a function h : Rn → R. The Boolean operators ¬ and ∧ denote negation and con-
junction, respectively, and U[a,b] denotes the until operator. Using the given STL grammar,
one can also de�ne other standard (temporal) operators, such as

• disjunction: ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2),

• next:©aϕ := true U[a,a]ϕ,

• eventually: ♦[a,b]ϕ := true U[a,b]ϕ,

• always: �[a,b]ϕ := ¬♦[a,b]¬ϕ.

Given a set Y ⊂ Rn which can be expressed as

Y :=

x ∈ Rn
∣∣∣∣∣∣
∨
i

∧
j

hij(x) ∼ 0

 , ∼∈ {≥, >},

we denote the logic function indicating set membership by ϕY =
∨
i

∧
j hij(x) ∼ 0. The

satisfaction relation (s, t) |= ϕ indicates that the signal s starting at t satis�es ϕ. The STL

1That is, j =
⌊
t
η

⌋
, ξq(t, j) = ξ (jη, j) and τ(t, j) = t− jη.
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semantics is de�ned recursively as:

(s, t) |=h(s) ≥ 0 ⇐⇒ h(s(t)) ≥ 0,

(s, t) |=¬ϕ ⇐⇒ (s, t) 6|= ϕ,

(s, t) |=ϕ1 ∧ ϕ2 ⇐⇒ (s, t) |= ϕ1 and (s, t) |= ϕ2,

(s, t) |=ϕ1U[a,b]ϕ2 ⇐⇒ ∃t′ ∈ [t+ a, t+ b], (s, t′) |= ϕ2

and ∀t′′ ∈ [t, t′), (s, t′′) |= ϕ1.

Note that our semantics of the until operator U conforms to the de�nition in [125], which
deviates from the de�nition in e.g. [100]. In the latter, ϕ1 and ϕ2 have to hold simultane-
ously at t = t′. Our choice for our adapted de�nition is motivated by our use of the results
in [125] (see Section 2.3.3). Using these semantics, we can also derive the semantics for
the derived operators:

(s, t) |=ϕ1 ∨ ϕ2 ⇐⇒ (s, t) |= ϕ1 or (s, t) |= ϕ2,

(s, t) |=©a ϕ ⇐⇒ (s, t+ a) |= ϕ,

(s, t) |=♦[a,b]ϕ ⇐⇒ ∃t′ ∈ [t+ a, t+ b], (s, t′) |= ϕ,

(s, t) |=�[a,b]ϕ ⇐⇒ ∀t′ ∈ [t+ a, t+ b], (s, t′) |= ϕ.

2.3.1. �antitative semantics
STL is equipped with a quantitative semantics that provides a robustness score of how
well a signal s starting at time t satis�es or violates the STL speci�cation [40, 45]. The
quantitative semantics are given by a function ρ(s, ϕ, t) recursively de�ned as:

ρ(s, true, t) = +∞,
ρ(s, h(s) ≥ 0, t) =h(s(t)),

ρ(s,¬ϕ, t) =− ρ(s, ϕ, t),

ρ(s, ϕ1 ∧ ϕ2, t) = min(ρ(s, ϕ1, t), ρ(s, ϕ2, t)),

ρ(s, ϕ1U[a,b]ϕ2, t) = max
t′∈[t+a,t+b]

(
min

(
ρ(s, ϕ2, t

′), min
t′′∈[t,t′)

ρ(s, ϕ1, t
′′)

))
.

For the derived operators we get:

ρ(s, ϕ1 ∨ ϕ2, t) = max(ρ(s, ϕ1, t), ρ(s, ϕ2, t)),

ρ(s,©aϕ, t) =ρ(s, ϕ, t+ a),

ρ(s,♦[a,b]ϕ, t) = max
t′∈[t+a,t+b]

ρ(s, ϕ, t′),

ρ(s,�[a,b]ϕ, t) = min
t′∈[t+a,t+b]

ρ(s, ϕ, t′).

The quantitative semantics is sound and complete [39, 45], that is:

ρ(s, ϕ, t)>0⇒(s, t) |= ϕand(s, t) |= ϕ⇒ ρ(s, φ, t) ≥ 0,

ρ(s, ϕ, t)<0⇒(s, t) 6|= ϕand(s, t) 6|= φ⇒ ρ(s, φ, t) ≤ 0.

Additionally, if ρ(s, ϕ, t) is negative, lower values imply that ϕ is more strongly violated.
Conversely, if ρ(s, ϕ, t) is positive, higher values imply that ϕ is satis�ed more robustly.
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2.3.2. Connection to jump-flow systems
In Section 2.2, hybrid systems were modelled as jump-�ow systems, where solutions are
de�ned w.r.t. hybrid time domains, whereas signal temporal logic is de�ned for signals
over time. To bridge this gap, we could rede�ne STL for signals over the hybrid time
domain. In this case, we rede�ne the until operator UI , where I ⊂ R≥0 × N denotes
a hybrid time interval. The satisfaction relationship (φ, t, j) |= ϕ, for φ : E → Rn,
indicates then that the hybrid arc at time t and jump j satis�es ϕ. Moreover, the semantics
is rede�ned as

(φ, t, j) |=h(φ) ≥ 0 ⇐⇒ h(φ(t, j)) ≥ 0,

(φ, t, j) |=¬ϕ ⇐⇒ (φ, t, j) 6|= ϕ,

(φ, t, j) |=ϕ1 ∧ ϕ2 ⇐⇒ (φ, t, j) |= ϕ1 and (φ, t, j) |= ϕ2,

(φ, t, j) |=ϕ1UIϕ2 ⇐⇒ ∃(t′, j′) ∈ ((t, j) + I) ∩ E, (φ, t′, j′) |= ϕ2 and
∀(t′′, j′′) ∈ ([t, t′)× [j, j′)) ∩ E, (φ, t′′, j′′) |= ϕ1.

Alternatively, given a hybrid arc φ : E → Rn, we can omit the explicit jump argument,
resulting in a set-valued solution ξφ : R≥0 ⇒ Rn, satisfying

∀t′ ∈ {t | (t, j) ∈ E} : ξφ(t′) = {φ(t′, j) | (t′, j) ∈ E}. (2.5)

Rede�ning STL for set-valued functions, the grammar remains identical as in Section 2.3
and the semantics is rede�ned with

(ξφ, t) |= h(ξφ) ≥ 0 ⇐⇒ ∀s ∈ ξφ(t) : h(s) ≥ 0, (2.6)

where the remainder of the semantics follows verbatim to the semantics in Section 2.3.
In this work we are not interested in STL speci�cations w.r.t. the jump argument, and
therefore we will adopt the latter de�nition of STL for jump-�ow systems.

2.3.3. Reachset temporal logic
The STL formulae previously de�ned reason over a singular trajectory. However, in this
dissertation, we are not only interested in the performance of the system for a singular ini-
tial condition, but rather for a pre-de�ned set of initial conditions. That is, given a system
H and a set of initial conditions I , we are interested in the behavior of all trajectories in
SH(I). In this thesis, we only consider STL speci�cations with respect to only continuous
time, and therefore we consider trajectories in which we omit the explicit jump argument.
Therefore, abusing notation, we use ξ ∈ SH(I) to denote ξ ∈ {ξφ | φ ∈ SH(I)}, where
ξ, ξφ : R≥0 ⇒ Rn and ξφ is de�ned as in (2.5). Now let us de�ne a reachable set:

De�nition 2.3.1 (Reachable set). Given a system H and initial set I , a mapping Re :
R≥0 → 2R

n

is an exact reachable set if and only if:

∀t ∈ R≥0 : {x | ξ ∈ SH(I) and x ∈ ξ(t)} = Re(t). (2.7)

A mapping R : R≥0 → 2R
n

is a reachable set if and only if ∀t ∈ R≥0 : Re(t) ⊂ R(t).
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That is, a reachable set satis�es ∀t ∈ R≥0,∀ξ ∈ SH(I) : ξ(t) ⊆ R(t). Note that
typically the exact reachable set cannot be computed [6]. Tools for reachability analysis
include Flow∗ [29], CORA [8], dReach [84] and SpaceEx [49]. In this work, we use the
reachability analysis tool CORA, which returns a sequence of sets

R = R{t0}R(t0,t1)R{t1}R(t1,t2) . . .R{tm}, (2.8)

that form a reachable set given by

R(t) =

{
R{ti} if t = ti,

R(ti,ti+1) if t ∈ (ti, ti+1).
(2.9)

The STL semantics over singular trajectories does not directly translate to the evaluation
over reachable sets. To be able to reason directly over a reachable set, [125] introduced
reachset temporal logic (RTL). The RTL fragment relevant for this work is given by:

ψ := true | h(x) ≥ 0 | ¬ψ | ψ1 ∧ ψ2,

Ψ := Aψ | Ψ1 ∨Ψ2 | Ψ1 ∧Ψ2 | ©aΨ,

where ψ, ψ1, ψ2 are propositional formulae over a state x ∈ Rn, h : Rn → R, Ψ, Ψ1, Ψ2

are formulae over a reachable set R : Rn → 2R
n , and A denotes the all operator. The

semantics is de�ned as follows:

x |=h(x) ≥ 0 ⇐⇒ h(x) ≥ 0,

x |=¬ψ ⇐⇒ x 6|= ψ,

x |=ψ1 ∧ ψ2 ⇐⇒ x |= ψ1 and x |= ψ2,

(R, t) |=Aψ ⇐⇒ ∀x ∈ R(t) : x |= ψ,

(R, t) |=Ψ1 ∨Ψ2 ⇐⇒ (R, t) |= Ψ1 or (R, t) |= Ψ2,

(R, t) |=Ψ1 ∧Ψ2 ⇐⇒ (R, t) |= Ψ1 and (R, t) |= Ψ2,

(R, t) |=©a Ψ ⇐⇒ (R, t+ a) |= Ψ.

To enable a transformation from STL to RTL, we pose the following assumption on the
STL formula:

Assumption 2.3.1. The STL formulaϕ is c-divisible, i.e., all interval bounds of the temporal
operators of ϕ are divisible by c.

Given an STL formula ϕ satisfying Assumption 2.3.1, the results in [125, Lemma 2 &
Lemma 4] provide a sound transformation Υ to transform STL to RTL2:

Theorem 2.3.1 (Sound transformation [125, Theorem 1]). Given a system H and initial
set I , let ϕ be an STL formula satisfying Assumption 2.3.1 for some value c, and R(t) be the
reachable set of Σ in the form of (2.9) with ti+1 − ti = c. The transformation Υ from [125],
bringing the STL formula ϕ into an RTL formula Ψ = Υ(ϕ), is sound, i.e.:

∀ξ ∈ SH(I) : (ξ, t) |= ϕ ⇐= (R, t) |= Ψ. (2.10)
2The full de�nition of the transformation Υ is quite involved, yet not essential for the understanding of the ideas
presented in this thesis. Therefore, we refer to [125] for the full de�nition of the transformation Υ.
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The transformation Υ from [125] from STL yields RTL formulae of the form

Ψ =
∧
i∈I

∨
j∈Ji

©j c
2

∨
k∈Kij

Aψijk, (2.11)

where I, Ji,Kij are �nite index sets and ψijk are non-temporal subformulae. As can be
seen, j closely relates to a time step c/2, whereas i and k relate to the number of conjunc-
tions and disjunctions. The reachable set in (2.9) is formed by the reachable sequence R,
which partitions time into an alternating sequence of points and open intervals. Similarly,
the transformation from STL to RTL transforms the reasoning over an in�nite set of time
instances to reasoning over an alternating sequence of points and intervals. In this par-
tition, the value c/2 can be seen as the time step between the points and a time interval.
Due to this partitioning, the transformation Υ is a sound transformation, but in general
not complete, i.e., the converse of (2.10) does generally not hold. Therefore, the trans-
formation Υ is subjected to some conservatism3, which can be reduced by taking smaller
values of c.

2.4. Satisfiability modulo theories solvers
In this thesis we prove properties of systems through Lyapunov-like functions or reach-
ability analysis. However, checking whether a function is a Lyapunov-like function, or
whether a reachable set satis�es some (nonlinear conditions), can be nontrivial problems
in themselves. These problems boil down to determining whether �rst-order logic formu-
lae over the reals are satis�ed or not. To this end, we use Satis�ability Modulo Theories
(SMT) solvers [15], which are tools capable of reasoning over �rst-order logic formulae,
based on a set of background theories. Let us consider the following standard form of a
�rst-order logic formula:

ϕ = ∀x ∈ X :

(∧k

i=1

(∨li

j=1
fij(x) ≤ 0

))
, (2.12)

where X ⊆ Rn and fij : Rn → R. If fij is polynomial, this problem is decidable, and we
can use SMT solvers such as Z3 [32] to prove or disprove such statements. However, for
the most general statement of the problem, �rst-order logic formulae of the form (2.12) are
undecidable [50]. To address these general cases, we use a δ-complete decision procedure
[50], which determines whether a �rst-order logic formula is unsatis�able (unsat) or if the
δ-weakening is satis�able (δ-sat). The δ-weakening can be seen as a perturbed version of
the original inequality, which renders the decision process decidable.

A �rst-order logic formula (2.12) can be veri�ed using a δ-complete decision procedure
by using it to prove that ¬ϕ is unsatis�able. The formula ¬ϕ is equivalent to a logic
formula ϕ′ of the form4

ϕ′ := (∃z ∈ Z)

(∧k′

i=1

(∨l′i

j=1
f ′ij(z) = 0

))
, (2.13)

3If the considered STL fragment is restricted to sampled-time STL [125], the transformation is sound and com-
plete, and therefore no conservatism is introduced.

4First, the negated form ¬φ is rewritten as ∃x ∈ X : P (x), where P (x) denotes a propositional formula in
conjunctive normal form. Secondly, the strict inequalities in P (x) are replaced by equalities by introducing
auxiliary variables, as shown in [51, Lemma 2.1].
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where Z ⊂ Rn+m, m = Σk
′
i=1l

′
i is the number of introduced auxiliary states, and f ′ij :

Rn+m → R. Given this formula, the δ-weakening is given by

ϕδ := (∃z ∈ Z)

(∧k′

i=1

(∨l′i

j=1
|f ′ij(z)| ≤ δ

))
, (2.14)

where δ ∈ Q≥0 is a positive rational number speci�ed by the user. If the δ-complete
decision procedure returns unsat for ϕ′ in (2.13), which is equivalent to ¬ϕ, we obtain a
proof of the satis�ability of the original formula ϕ in (2.12). Note that unsat and δ-sat are
not mutually exclusive. Intuitively, it is possible that a formula is not satis�ed, while it is
satis�ed under a small perturbation. This is illustrated in the following example:

Example 2.4.1. Let us consider ∀x ∈ [−1, 1] : −x2 ≤ 0, which is obviously true. First,
taking the negation, we have

¬∀x ∈ [−1, 1] : −x2 ≤ 0 ≡ ∃x ∈ [−1, 1] : −x2 > 0. (2.15)

As shown in [51, Lemma 2.1], the right-hand side is equivalent to the following formula,
which is in the form in (2.13):

∃x ∈ [−1, 1],∃y ∈ (0,m] : −x2 − y = 0, (2.16)

where m ∈ Q≥0 is any value greater than the maximum of −x2 over [−1, 1], i.e. m > 0.
This logic formula in (2.16) is unsatis�ed, as expected. The δ-weakening is given by

∃x ∈ [−1, 1],∃y ∈ (0,m] : | − x2 − y| ≤ δ, (2.17)

which is satis�ed for any arbitrary small value of δ ∈ Q≥0, hence the answer to the δ-
complete decision process is both unsat and δ-sat. Now let us consider

∀x ∈ [−1, 1] : −x2 ≤ ε. (2.18)

for some ε > 0. Rewriting its negation in the form in (2.13), we get

∃x ∈ [−1, 1],∃y ∈ (0,m′] : −x2 − ε− y = 0, (2.19)

wherem′ ∈ Q≥0 is any value greater than themaximum of−x2−ε over [−1, 1], i.e. m′ > 0.
Again, this inequality in (2.19) is unsatis�ed. The δ-weakening is given by

∃x ∈ [−1, 1],∃y ∈ (0,m′] : | − x2 − ε− y| ≤ δ. (2.20)

If δ is chosen such that δ ≤ ε, the δ-weakening is not satis�ed, hence the answer to the
δ-complete decision process is unambiguously unsat.

In this work we use the SMT solver dReal [51], which implements this δ-complete
decision procedure. In case a formula is both unsat and δ-sat, the solver can return either
answer. In our synthesis and veri�cation approaches, we circumvent this ambiguity by
synthesizing solutions that satisfy the relevant inequalities robustly, such that an overlap
between these two cases does not occur. Speci�cally, this is addressed in Remark 4.5.1 and
Section 5.5.3.





3
Grammar-guided genetic

programming

In this chapter we outline the main grammar-guided genetic programming algorithm used
throughout this thesis. Each step of the algorithm is addressed, including the encoding of
individuals, the use of grammars, the selection and genetic operators.

Parts of this chapter have been published in [161] and [157].
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Figure 3.1: Outline of genetic programming.

3.1. Introduction
In this dissertation we design controllers using Genetic Programming (GP) [85], which
sets itself apart by evolving entire programs, rather than optimizing parameters within
a pre-de�ned structure, as is typically the case for Genetic Algorithm (GA) or Evolution
Strategy (ES). In our case, the evolved program is a controller that is built up and modi�ed
(evolved) based on elementary building blocks. These building blocks consist of e.g. the
state variables and basic functions such as addition and multiplication.

Evolutionary Algorithms (EAs), including genetic programming, seem to satisfy the
No Free Lunch theorem [164]. Informally, it entails that the average performance over
the entire space of possible problems is equal for all non-revisiting1 black-box algorithms
[43]. However, it is possible to circumvent the No Free Lunch theorem by incorporating
problem-speci�c knowledge. To this end, we use the variant Grammar-Guided Genetic
Programming (GGGP) [104, 162], in which we add structure and expert-knowledge to
solutions by means of grammars.

This chapter is organised as follows. First, we outline the general outline of genetic
programming in Section 3.2. Secondly, we introduce the use of a grammar in Section 3.3.
In Section 3.4 we provide general algorithm details. Finally, the chapter is concluded with
a discussion on the advantages and limitations of the chosen algorithm in Section 3.5

3.2. Algorithm outline
Within genetic programming, candidate solutions, also referred to as individuals, have two
types of representation, namely the phenotype and genotype. The phenotype is the actual
solution, in our case the controller in the form of a closed-form expression. The genotype
is an encoding of the phenotype in a form that allows for easy manipulation, typically
an expression tree. This manipulation is done using so-called genetic operators, that e.g.
change the genotype of an individual, or recombines multiple genotypes. Given an indi-
vidual, a metric on how well the objective is achieved is captured in a �tness function. In

1Non-revisiting means that each candidate solution is only visited once. This can be achieved in EA through the
use of an archive.
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our context, the �tness function captures how well the controller yields a closed-loop sys-
tem that satis�es a user-de�ned control speci�cation. For example, a �tness function for
the satisfaction of a temporal logic formula can be de�ned using the corresponding quan-
titative semantics (see Section 2.3.1), which gives a score for how well a signal satis�es the
formula.

The algorithm is initialized with a randomly generated population of individuals. Sub-
sequently, each individual is scored using the �tness function. Depending on their �tness
value, individuals can be selected to be recombined or modi�ed using genetic operators,
such as crossover andmutation. In the former, two subtrees of individuals are interchanged,
whereas in the latter, a random subtree is replaced by a new random subtree. Each genetic
operator has a user-de�ned rate, which determines the probability of the operator being
applied to the selected individuals. The process of selection and modi�cation through ge-
netic operators is repeated until a new population is created, with the hypothesis that the
average �tness of the population increases over cycles, which are referred to as genera-
tions. This cycle is repeated until a satisfactory individual is found or a maximum number
of generations is met. For example, when co-synthesizing Lyapunov functions and con-
trollers, a satisfactory individual consists of a pair that satis�es the Lyapunov function
conditions, which can be checked by an SMT solver. Similarly, when synthesizing con-
trollers for STL/RTL speci�cations, a satisfactory individual results in a reachable set that
satis�es the speci�cation. Since the algorithm is not guaranteed �nd such a solution in
a �xed number of generations (see Section 3.5), the user-de�ned maximum number of
generations is to prevent an in�nite search.

To summarize, the algorithm goes through the following steps, also illustrated in Fig-
ure 3.1:

1. A random population of candidate solutions is generated.

2. For each individual the �tness is computed.

3. A new population is generated by repeatedly selecting individuals and modifying
them using genetic operators.

4. Steps 2 to 3 are repeated until a satisfactory solution is obtained, or a maximum
number of generations is met.

3.3. Grammar
As stated before, we use grammar-guided genetic programming [104, 162], which imposes
that the genotypes of all individuals adhere to a certain grammar. That is, the population
is initialized by creating random individuals adhering to the grammar and the used ge-
netic operators are de�ned such that the resulting individuals also adhere to the grammar.
This enables the user to constrain the search space and potentially incorporate expert-
knowledge. The used grammar is in Backus-Naur form (BNF) [13], de�ned by the tuple
(N ,S,P), where N denotes a set of nonterminals, S ∈ N is a starting tree, and P are
the production rules.

To illustrate the use of grammars, we consider two cases. In Chapter 5, we use a
grammar to design time-varying controllers, whereas in Chapter 4 we co-design state-
feedback controllers κ and Lyapunov-like functions V , i.e. we use a grammar to design
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Nonterminals N and starting tree S

N = {〈pol〉 , 〈mon〉 , 〈const〉},
S = 〈pol〉x1 + 〈pol〉x2

〈pol〉 ::= 〈const〉 | 〈const〉 × 〈mon〉 | 〈pol〉+ 〈pol〉
〈mon〉 ::= t | t× 〈mon〉
〈const〉 ::= RandomReal ∈ [−10, 10]

Production rules P

(a)

Nonterminals N and starting tree S

N = {〈pol〉 , 〈mon〉 , 〈lin〉 , 〈var〉 , 〈const〉},
S = Tuple (〈pol〉 , 〈lin〉)

〈pol〉 ::= 〈const〉 | 〈const〉 × 〈mon〉 | 〈pol〉+ 〈pol〉
〈mon〉 ::= 〈var〉 | 〈var〉 × 〈mon〉
〈lin〉 ::= 〈const〉 × 〈var〉 | 〈lin〉+ 〈lin〉
〈var〉 ::= x1 | x2
〈const〉 ::= RandomReal ∈ [−10, 10]

Production rules P

(b)
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Figure 3.2: Examples of grammars for (a) time-varying linear controllers and (b) tuple of polynomial Lyapunov-
like function V and linear controller κ. Corresponding fully expanded genotypes are shown in (c) and (d). To
obtain the phenotype, �rst the nonterminal nodes are removed, resulting in the expression trees in (e) and (f).
The corresponding phenotypes are 9.5x1 + 4.2tx2 and (1.5x1x2, 2.3x1) for (c) and (d), respectively.

tuples (V, κ). An example of the former is shown in Figure 3.2a. In this grammar, the
nonterminals correspond to polynomials 〈pol〉, monomials 〈mon〉 over the variable time
t, and constants 〈const〉. The starting tree S restricts the class of controllers to time-
varying state-feedback laws, linear in the state x ∈ R2. An example of a grammar to
design the tuple (V, κ) is shown in Figure 3.2b. Similarly, the nonterminals 〈pol〉, 〈mon〉,
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(a) Crossover.
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(b) Mutation.

Figure 3.3: Illustrative examples of the grammar-aware crossover and mutation operators, adhering to the pro-
duction rules in 3.2b.

〈const〉 denote polynomials, monomials and constants. Additionally, the nonterminals
〈lin〉 and 〈var〉 denote linear expressions and variables, respectively. Given the starting
tree S , the tuple (V, κ) is restricted to polynomial Lyapunov-like functions and linear state
controllers.

Given the grammar, a genotype is constructed as follows: beginning with the starting
tree, for all leaf nodes containing a nonterminal, a subtree is randomly selected from the
corresponding production rules and put under the leaf node. This procedure is repeated
until all leaf nodes are free of nonterminals. To prevent in�nite depth trees due to recursive
production rules, all recursive rules are omitted from the production rules after a �xed
number of expansions of the nonterminals. Given the grammars in Figures 3.2a and 3.2b,
examples of corresponding fully expanded genotypes are shown in Figures 3.2c and 3.2d.
To obtain the phenotype from a genotype, �rst all nonterminal nodes are replaced with
their underlying subtrees. This is illustrated for the genotypes in Figures 3.2c and 3.2d in
Figures 3.2e and 3.2f. Given this form, a phenotype is obtained by rewriting the resulting
expression tree as an analytic expression. The phenotypes corresponding to the genotypes
in Figures 3.2c and 3.2d are given by 9.5x2 + 4.2tx2 and (1.5x1x2, 2.3x1), respectively.
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In this work, the considered genetic operators are de�ned such that the resulting trees
still adhere to the same grammar as before. We consider crossover and mutation. In the
crossover operator, given two individuals, for each individual a random subtree with the
same nonterminal root is selected and these are interchanged. In the mutation operator,
a random subtree is selected and replaced with a newly grown subtree with the same
nonterminal root. Illustrative examples of both operators are shown in Figure 3.3.

3.4. Algorithm details
In this section we discuss key elements within the GP algorithm and the choices we have
made in this thesis. We limit our scope to the methods employed in this dissertation.
For reviews on challenges and approaches within genetic programming we refer to, e.g.,
[31, 109].

3.4.1. Selection
The purpose of selection is to select a candidate solution with a proportionate likelihood to
its �tness value. In order to form a full new population, this selection is repeated multiple
times. Several selection methods have been proposed, with the most well known being
proportional selection, ranking selection, and tournament selection [43, 58, 70]. In this
work we use tournament selection, in which a �xed number of individuals are randomly
chosen from the population, and the individual with the highest �tness is returned as the
selected individual. The bene�ts of this approach are the simple implementation and its
low computation cost.

3.4.2. Multi-objective optimization
Throughout this dissertation, we sometimes have multiple �tness criteria, resulting in a
multi-objective optimization (MOO). These types of problems arise naturally in genetic
programming; besides optimizing a certain cost function natural to the problem, it might
also be desired to minimize the complexity or the number of parameters of an automat-
ically synthesized expression. In our context, this can be bene�cial, as it can result in
controllers that are e.g. easier to interpret or require less memory in its implementa-
tion. MOO is a widely studied �eld in EA, and multiple approaches have been proposed,
which can be classi�ed as classical approaches and contemporary approaches [31]. In the
�rst class, a trade-o� between all objectives is (implicitly) made a priori by formulating a
single �tness function, whereas in the second class all objectives are optimized simulta-
neously, resulting in a set of optimal solutions. An overview of approaches can be found
in [31, 42, 44, 106]. The approaches relevant for this work are brie�y highlighted below.

Single �tness function In Chapter 4, the �tness function is based on the satisfaction of
multiple conditions on a Lyapunov-like function. Each condition is captured in an inde-
pendent �tness measure, indicating its (level of) satisfaction; the maximum �tness value
implies the satisfaction of the condition, whereas lower values imply that the condition
is not met. All conditions need to be eventually satis�ed, i.e. attain the maximum �tness
value, thus no trade-o� has to be made. Therefore, all measures are combined into a sin-
gle �tness function. To aid convergence, we adopt a weighted aggregation methodology
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[72]. That is, the total �tness is dependent on a weighted sum of all sub measures, where
the weights vary over time. Our speci�c approach is described in further detail in Section
4.5.2.

Pareto-aware optimization In most cases, multiple objectives cannot be resolved into
one �tness function without resulting in an implicit trade-o� between the di�erent ob-
jectives. An example arising naturally in our context is the trade-o� between controller
performance and complexity of the expression. In this case we utilize a contemporary ap-
proach based on Pareto optimality, in which a set of optimal controllers is returned, rather
than a singular controller. A solution is Pareto optimal (or non-dominated) if there exists
no Pareto-dominating solution, which is de�ned as follows:

De�nition 3.4.1 (Pareto dominance). Given a multi-objective minimization problem and
two objective vectors x, x′ ∈ Rn, the vector x is said to Pareto dominate x′ if

1. ∀i ∈ {1, . . . , n} : xi ≤ x′i,
2. ∃j ∈ {1, . . . , n} : xj < x′j .

An overview of Pareto-aware methods for evolutionary algorithms can be found in,
e.g., [31, 44, 106, 108]. In this work we use the non-dominated sorting algorithm NSGA-II
[33], a Pareto optimal-aware sorting algorithm, which ranks candidate controllers based
on the Pareto optimality of all criteria. This rank is then used as the �tness value within
the selection. While we resort to NSGA-II, this method can be interchanged by any other
Pareto-aware approach.

Secondary �tness measures In Pareto-aware ranking or ranking-based selection such
as tournament selection, secondary �tness measures are used to break the tie in case mul-
tiple individuals have the same �tness. In the case of NSGA-II, candidates are primarily
ranked based on their Pareto optimality, and secondarily on the crowding distance [33],
which is an indication of the uniqueness of the solution. In Section 4.5.2 we discuss the
secondary �tness measures used in the certi�cate-based synthesis.

3.4.3. Parameter optimization
In classical genetic programming, the constants within a solution are derived from the
recombination of a set of pre-de�ned constants. However, this constant generation has
proven to be ine�cient [85, 132] and therefore alternative approaches have been proposed
[31]. A common approach is the hybridization of genetic programming with a local search
technique [61], in which the constants are optimized for every genetic programming gen-
eration, using the local search technique. In this work we adopt such a hybridization
method and use Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [67] as the
local search method. CMA-ES is a di�erentiation-free optimization method, regarded to
be robust with respect to discontinuous �tness functions [66]. More speci�cally, we use
the variant sep-CMA-ES [128], which has the advantage that it is linear in space and time
complexity. In this method it is assumed that the parameters are independent. While this
assumption generally does not hold for our applications, the advantage of the complexity
outweighs the loss in performance.
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3.5. Discussion
Convergence properties of evolutionary algorithms, including genetic programming and
evolution strategies, have been studied, see e.g., [78, 129, 130]. In [78], it has been proven
that candidate solutions within the population asymptotically converge to a global opti-
mum within the solution space spanned by the grammar. Intuitively, the proofs go along
the line that, due to in�nite exploration thanks to random search, if time goes to in�nity,
the entire search space is explored. However, these asymptotic convergence results are ir-
relevant to the scope of this work, since we are only interested in �nding a solution within
a �nite number of generations. This is strengthened by an ‘all or nothing’ requirement to
the solutions: if the controller does not satisfy the speci�cation, it is essentially useless.
When considering GP with a �nite number of generations, it is not a complete method,
i.e. there is no guarantee a solution is found within a �nite number of generations, even
if it exists within the search space. Regardless, the bene�ts of GP, namely the automatic
exploration of solution structures and the provision of closed-form solutions, outweigh
the lack of completeness.



4
Certificate-based synthesis

In this chapter a framework is proposed for automatic formal controller synthesis for general
hybrid systems with a subset of safety and reachability speci�cations. The framework uses ge-
netic programming to automatically co-synthesize controllers and candidate Lyapunov-like
functions. These candidate Lyapunov-like functions are used to formally verify the control
speci�cation, and are veri�ed themselves using an SMT solver. The advantages of this ap-
proach are that very few restrictions are made to the class of systems and solutions, the syn-
thesized controllers are expressed as compact expressions, and no explicit solution structure
has to be speci�ed beforehand. We demonstrate the e�ectiveness of the proposed framework in
several case studies, including non-polynomial systems, sampled-data systems, systems with
bounded uncertainties, switched systems, and systems with jumps.

Parts of this chapter have been published in [159–161]. Speci�cally, Sections 4.2 to 4.6 are verbatim from [161],
Section 4.7 from [159] and Section 4.8 from [160].
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4.1. Introduction
In this chapter we utilize the paradigm of certi�cate functions, without the need to re-
strict the class of functions present in the dynamics and solutions. Inspired by the idea
of counterexample-guided inductive synthesis (CEGIS) (see e.g. [121], [74]), we propose
a framework that relies on a combination of Genetic Programming (GP) and Satis�abil-
ity Modulo Theories (SMT) solvers [15] to automatically synthesize and verify controllers
for hybrid systems. This is done by co-designing a controller and Lyapunov barrier-like
function. The subclass of temporal logic speci�cations we deal with are simple safety
and reachability speci�cations. Using genetic programming, the structure of a solution
is evolved, and therefore is not required to be speci�ed beforehand. This is particularly
useful when no solution exists in a certain solution parameterization, e.g. a second-order
polynomial, as the algorithm explores other structures automatically. Finally, the resulting
controllers are compact analytic expressions, as opposed to the abstraction-based meth-
ods.

Several studies have proposed CEGIS based on SMT solvers for the synthesis of (con-
trol) certi�cate functions. In [74] Lyapunov and barrier functions are synthesized for the
veri�cation of continuous-time switched systems. In [118] and [121], SMT solvers have
been used for counterexample-guided synthesis of control Lyapunov barrier-like functions
for switched nonlinear systems. Our main contributions are the extension to general hy-
brid systems, as well as being able to evolve the solutions structure.

This chapter is organized as follows. First, the class of systems (i.e. hybrid systems) and
the subclass of speci�cations (i.e. reachability and safety) are formally de�ned in the prob-
lem de�nition in Section 4.2. Secondly, in Section 4.3, we introduce a Lyapunov barrier
function which infers the desired system speci�cations, followed by various relaxations in
Section 4.4. The automatic synthesis approach is described in Section 4.5, followed by case
studies, including continuous-time systems, sampled-data systems, systems subjected to
bounded disturbances, switching controllers and full jump-�ow systems. In Section 4.7
we introduce a specialized approach for continuous-time sampled-data systems. In Sec-
tion 4.8 we use the proposed framework to verify near-optimal controllers which were
designed using reinforcement learning. Finally, the chapter is concluded in Section 4.9.

4.2. Problem definition
Let us consider a state space Rn, input space Rm and output space Rl. Given a �ow
set C , jump set D, and open-loop �ow map Fol : Rn × Rm ⇒ Rn, open-loop jump
map Gol : Rn × Rm ⇒ Rn and output map h : Rn → Rl, in this chapter we propose
a methodology to design a static output-feedback controller κ : Rl → Rm, resulting
in a closed-loop hybrid system Hcl = (C,F,D,G) with F (s) = Fol(s, κ ◦ h(s)) and
G(s) = Gol(s, κ ◦ h(s)). In this work, controllers are designed for speci�cations in terms
of safety w.r.t. a safe set and reachability w.r.t. a goal set for solutions starting in an initial
set. We consider compact safe sets S ⊂ C ∪D, compact initial sets I ⊂ S and compact
goal sets O ⊂ S, which can be represented as

Y =

{
s ∈ C ∪D

∣∣∣∣ ∧iY

i=1
bY,i(s) ≤ 0

}
(4.1)
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Figure 4.1: Example of a �ow set C , jump set D, safe set S, initial set I and goal set O.

for Y ∈ {S, I,O}, with iY > 0 and bY,i : Rn → R for all i ∈ {1, . . . iY }. The main reason
for choosing bounded sets is for numerical and practical reasons within the automatic
synthesis and veri�cation. An example of a safe, initial and goal set projected on a 2D
space is shown in Figure 4.1.

For a solution φ : E → Rn, let us de�ne the hybrid time intervals E≤(T,J) := E ∩
([0, T ]× [0, J ]) and E≥(T,J) := E\([0, T )× [0, J)). Now given the safe, initial and goal
sets, and solutions φ : E → Rn, consider the following desired closed-loop speci�cations:

CS1 Reach while stay (RWS): all maximal solutions φ to Hcl starting from the initial set
I eventually reach the goal set O, while staying within the safe set S:

∀φ ∈ SHcl
(I),∃(T, J) ∈ E,∀(t, j) ∈ E≤(T,J) :

φ(t, j) ∈ S ∧ φ(T, J) ∈ O. (4.2)

CS2 Reach and stay while stay (RSWS): all maximal solutions φ to Hcl starting from the
initial set I eventually reach and stay in the goal setO, while always staying within
the safe set S:

∀φ ∈ SHcl
(I),∃(T, J) ∈ E,∀(t, j) ∈ E,

∀(a, b) ∈ E≥(T,J) : φ(t, j) ∈ S ∧ φ(a, b) ∈ O. (4.3)

These speci�cations CS1 and CS2 can be rewritten in STL, de�ned in Section 2.3, as:

∀φ ∈ SHcl
, (ξφ, t) |= ϕCSi , i = 1, 2, (4.4)

with set-valued function ξφ(t′) = {φ(t′, j) | (t′, j) ∈ E}, and

ϕCS1 = ϕSU[0,∞)ϕO,

ϕCS2 = �[0,∞)ϕS ∧ ♦[0,∞)�[0,∞)ϕO.

Note that satisfying speci�cation CS1 or CS2 does not preclude that complete solutions
of system Hcl exhibit Zeno behavior. Corollaries 4.3.2 and 4.4.2 will address this issue.
Moreover, note that speci�cation CS2 does not impose that solutions should stay in O
after the �rst time instant it enters O, but rather that for each solution there exists a
time instant (T, J) ∈ E after which it stays in O. With the de�nition of the system and
speci�cations, we are ready to de�ne the following problem:
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Problem 4.2.1

Given a speci�cation CS1 or CS2 w.r.t. compact sets (S, I,O) and the open-loop
system (C,Fol, D,Gol, h), synthesize an analytic controller κ : Rl → Rm such
that the closed-loop system satis�es the speci�cation.

Next to synthesizing the controller for the �ow/jump map, in some applications it is
desired to design the �ow set and jump set as part of the hybrid controller, for example in
the synthesis of a supervisory controller that determines which controller mode should
be active. Consider open-loop �ow and jump sets Col, Dol dependent on the controller
κ : Rl → Rm such that C = Col(κ ◦h(x)), D = Dol(κ ◦h(x)). This yields the following
variation of Problem 4.2.1:

Problem 4.2.2

Given a speci�cation CS1 or CS2 w.r.t. compact sets (S, I,O) and the open-loop
system (Col, Fol, Dol, Gol, h), synthesize an analytic controller κ : Rl → Rm such
that the closed-loop system satis�es the speci�cation.

4.3. Lyapunov barrier functions
In this chapter we verify speci�cation CS1 or CS2 by means of a Lyapunov barrier function
(LBF), introduced in this section, which is co-evolved with the controller. In this section,
we present an LBF in De�nition 4.3.1 and present relaxations thereof in Section 4.4. The
proofs of the technical results are presented in Appendix A. De�nition 4.3.1 is similar to
Lyapunov and/or barrier functions for hybrid systems as proposed in [64, 65, 115], to which
we consider slight modi�cations for the purpose of automatic synthesis. In particular, the
LBF conditions are posed as nonlinear inequalities over the reals, which are in general
not decidable. Therefore, the synthesis and veri�cation rely on δ-decidability instead, in
which a perturbed version of the inequalities are used, see Section 2.4. As a consequence,
the LBF conditions are proposed with this constraint in mind. With a similar reasoning,
we assume that the goal set O has a nonempty interior. As remarked earlier, with the
purpose of using SMT solvers to verify the conditions, we assume that the sets (S, I,O)
are compact. Consider the following assumption:

Assumption 4.3.1 (Speci�cation sets assumption). The compact sets (S, I,O) can be ex-
pressed in the form (4.1), S ⊂ C ∪D, O, I ⊆ int(S) and int(O) 6= ∅.

Remark 4.3.1 (Existence of solutions). Under the hybrid basic conditions onHcl, it follows
from Proposition 6.10 in [57] that for all s ∈ I ⊆ int(S) ⊂ C ∪D, there exists a nontrivial
solution φ toHcl with φ(0, 0) = s.

De�nition 4.3.1 (Lyapunov barrier function). A function V ∈ C1(S,R) is a Lyapunov
barrier function w.r.t. the compact sets (S, I,O) and system Hcl, if there exist γc, γd > 0
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Figure 4.2: Example of the sublevel set A and sets A∗, A∗
C and A∗

D .

such that

∀s ∈ I : V (s) ≤ 0, (4.5a)
∀s ∈ ∂S : V (s) > 0, (4.5b)
∀s ∈ A∗D : G(s) ⊆ S, (4.5c)

∀s ∈ A∗C ,∀f ∈ F (s) : 〈∇V (s), f〉 ≤ −γc, (4.5d)
∀s ∈ A∗D,∀g ∈ G(s) : V (g)− V (s) ≤ −γd, (4.5e)

where A∗ := A\O, for Y ∈ {C,D}, A∗Y := A∗ ∩ Y and

A := {s ∈ S | V (s) ≤ 0}. (4.6)

The sublevel set A and its subsets are illustrated in Figure 4.2. Set A is in some sense
similar to both a basin of attraction of O and a forward invariant set (up until the goal set
is reached), and it contains the initial set I , as by condition (4.5a). The basin of attraction-
like nature stems from (4.5d) and (4.5e), which impose that during �ow and jumps the
value of the LBF decreases. The forward invariant-like nature of A stems from conditions
(4.5b) and (4.5c), which impose that during �ow and jumps, solutions cannot leave the
safe set S and due to the decrease need to remain within A. Finally, it can be proven that
these properties are su�cient to imply that trajectories eventually have to enter O while
staying in S, as is formalized in Theorem 4.3.1 and its proof.

Remark 4.3.2 (Parameter choice). Without loss of generality, we can select γc and γd to be
equal, as we can always select the minimum of the two, i.e. γ = min(γ′c, γ

′
d). Subsequently,

the choice of this γ is arbitrary, because if a solution V ∗ exists for γ∗, there always exists a
linear transformation of V ∗ such that the inequalities in (4.8) are satis�ed for any γ.

An LBF can be used to verify speci�cation CS1, as shown in the following theorem.

Theorem 4.3.1 (Reach while stay). Given the closed-loop system Hcl, if there exists an
LBF V w.r.t. compact sets (S, I,O) satisfying Assumption 4.3.1, then the closed-loop system
satis�es (4.2).

The LBF implies that states within the sublevel set A enter the goal set O in �nite
time. However, it does not imply that trajectories entering O stay there, nor stay in the
safe set. The following corollary to Theorem 4.3.1 gives su�cient conditions such that
speci�cation CS2 is enforced.
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Figure 4.3: Given the sets from Figure 4.2a, an example of (a) the sublevel set B, (b) set O∗ := O\int(B) , and
(c) set O∗

D := O∗ ∩D.

Corollary 4.3.1 (Reach and stay while stay). Given a closed-loop system Hcl and LBF V
w.r.t. compact sets (S, I,O) satisfying Assumption 4.3.1, if ∃β ∈ R such that V additionally
satis�es

∀s ∈ O∗D : G(s) ⊆ S, (4.7a)
∀s ∈ O∗C ,∀f ∈ F (s) : 〈∇V (s), f〉 ≤ −γc, (4.7b)
∀s ∈ O∗D,∀g ∈ G(s) : V (g)− V (s) ≤ −γd, (4.7c)

∀s ∈ ∂O : V (s) > β, (4.7d)
∀s ∈ B ∩D : G(s) ⊆ B, (4.7e)

where B := {s ∈ O | V (s) ≤ β}, O∗ = O\int(B) and for Y ∈ {C,D}, O∗Y = O∗ ∩ Y ,
then the closed-loop systemHcl satis�es (4.3).

The sublevel set B and some subsets are illustrated in Figure 4.3. Set B is a forward
invariant set inside the interior ofO and all maximum solutions starting in I enter this set
within �nite time. Intuitively, (4.7a)-(4.7c) extend the set on which conditions (4.5c)-(4.5e)
hold to include O\int(B). Condition (4.7d) and (4.7a) render B forward invariant, simi-
larly to the role of conditions (4.5b) and (4.5c) w.r.t S. Together, they imply that solutions
enter a forward invariant subset of O.

Speci�cation CS2 reasons over maximal solutions, but it does not exclude the possibil-
ity of Zeno behavior, as shown in the following example:

Example 4.3.1 (Zeno behavior). Consider a hybrid system withG(s, u) = 0 andD = {0}.
This system admits complete solutions that are Zeno, i.e. in�nite jumps within a �nite time
interval, as each jump goes into the jump set. Now if the goal set is de�ned such thatD ⊆ O,
the existence of an LBF which satis�es the additional conditions (4.7) is not contradicted by
G, D and O. Therefore, an LBF satisfying Corollary 4.3.1 is not su�cient to exclude the
admittance of Zeno solutions.

The next corollary to Theorem 4.3.1 establishes a su�cient condition on V such that
the maximal solutions are non-Zeno. We provide no proof for this result, as it is analogous
to the proof of Corollary 4.4.2 in the next Section.

Corollary 4.3.2 (Zeno-free maximal solutions). Given a closed-loop system Hcl, LBF V
w.r.t. compact sets (S, I,O) satisfying Assumption 4.3.1, and there exists a β ∈ R such that
V satis�es (4.9), if B ∩D = ∅, all solutions φ ∈ SHcl

(I) are non-Zeno.
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4.4. Relaxations
In this section, without limiting the class of considered systems, the system states are
explicitly divided into three types, allowing for specialized and relaxed Lyapunov-like
conditions. Given a solution φ(t, j), we distinguish continuous states φx(t, j), discrete
states φq(t, j) and timer states φt(t, j). The continuous states can change during both
�ow and jumps, whereas the discrete states can only change during jumps. The timer
states increase at a constant rate during �ow and each timer state φt,i(t, j) is reset after
ηi seconds. Now, φ(t, j) is partitioned as

φ(t, j) = (φx(t, j), φq(t, j), φt(t, j)),

φx(t, j) ∈ X ⊆ Rnx , φq(t, j) ∈ Q ⊆ Rnq ,

φt(t, j) ∈ T := Πnt
i=1[0, ηi], ηi > 0.

Here C ∪ D ⊆ X × Q × T ⊆ Rn and n = nx + nq + nt. Similarly, a point s ∈ Rn
is partitioned as s = (sx, sq, st). The timer reset motivates the distinction in two types
of jumps: a timer jump if φ(t, j) ∈ Dt is induced by the timer resets, and a system jump
if φ(t, j) ∈ Ds is induced by the system states (φx, φq). During system jumps, the timer
states remain constant, whereas during timer jumps, the timer state that triggered the
jump is reset to zero. This yields the following system structure:

Fol(s, u) =
(
Fol,x(s, u),0nq

,1nt

)
,

Gol(s, u) =

 Gol,s(s, u), if s ∈ Ds\Dt,
Gol,t(s, u), if s ∈ Dt\Ds,
Gol,s(s, u) ∪Gol,t(s, u), if s ∈ Ds ∩Dt,

Gol,s(s, u) =
(
Gxq

ol,s(s,u), st

)
, Gol,t(s,u) =

(
Gxq

ol,t(s,u), reset(st)
)
,

Ds ⊆ X ×Q× T , Dt ⊆
⋃nt

i=1
Dt,i,

Dt,i ⊆ X ×Q×Πi−1
k=1[0, ηk]× {ηi} ×Πnt

k=i+1[0, ηk]

reset(c) = (reset1(c1), . . . , resetnt
(cnt

)),

reseti(ci) =

{
0 if ci = ηi,
ci otherwise,

where Fol,x : Rn × Rm ⇒ Rnx denotes the �ow map for the continuous states and
Gxq

ol,s, G
xq
ol,t : Rn × Rm ⇒ Rnx+nq are the jump maps for the continuous and discrete

states, triggered by the system states and timer state. The jump set of the entire system
is given by D = Ds ∪Dt. The distinction between continuous, discrete and timer states
and their respective behavior is illustrated in Figure 4.4. In the remainder we use the
notation Gs(s) = Gol,s(s, κ ◦ h(s)) and Gt(s) = Gol,t(s, κ ◦ h(s)) for the jump maps of
the closed-loop system.

Examples of states that could be modeled as discrete states include logic states, discrete
states, and sampled states for sampled-data systems. The timer state can be used to model
the sample update of sampled-data systems.

Remark 4.4.1 (Absence of state types). We allow the possibility for nx, nq, nt to be zero,
i.e. the absence of continuous, discrete or timer states. Subsequently, with abuse of notation,
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(a) Continuous state φx(t, j).
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(b) Discrete state φq(t, j).
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(c) Timer state φt(t, j).

Figure 4.4: Example of the evolution of the di�erent types of states for a sampled-data system with the sampled
state as discrete state. The system is subjected to Ds = {s ∈ R3 | sx ≤ −3}, Dt = R2 × {2}, Gs(s) =
(1, sq, st), Gt(s) = (sx, sx, 0), resulting in timer state-induced jumps j ∈ {1, 2} and system state-induced
jump j = 3.

we de�ne for the corresponding ‘non-existing’ space R0 such that A × R0 := A. Note that
the object R0 is not equal to the empty set, as A× ∅ = ∅.

For the three types of states, we assume that the safe set, initial set and goal set satisfy
the following assumption, which helps to further relax the conditions on the candidate
LBF.

Assumption 4.4.1 (Speci�cation sets assumption revised). Given compact sets Sx ⊆ X ,
Ix ⊂ int(Sx), Ox ⊂ int(Sx), Sq ⊆ Q, and Oq ⊆ Sq, the compact safe, initial and goal sets
(S, I,O) can be expressed as in the form in (4.1) and are de�ned such that:

1. S := Sx × Sq × T ⊆ C ∪D.

2. I ⊆ Ix × Sq × T ⊂ S.
3. O := Ox ×Oq × T ⊂ S and int(Ox) 6= ∅.

Here Sx, Ix and Ox are the safe, initial and goal set of the continuous states and Sq

and Oq the safe and goal set of the discrete states. Note that by de�nition the entire timer
state space is considered to be in the safe and goal set.

Remark 4.4.2 (Existence of solutions, revisited). Analogous to Remark 4.3.1, for all s ∈
I ⊆ (int(Sx)×Sq×T ) ⊂ C∪D, there exists a nontrivial solution φ toHcl with φ(0, 0) = s.

The explicit division between continuous, discrete and timer states allows for relax-
ations on the conditions on the candidate LBF. The proofs are presented in the Appendix
A.

Proposition 4.4.1 (Su�cient conditions for RWS). Given the closed-loop system Hcl and
compact sets (S, I,O) satisfying Assumption 4.4.1, if there exists a candidate LBF V that
satis�es (4.5a), (4.5c), (4.5d) and

∀s ∈ ∂Sx × Sq × T : V (s) > 0, (4.8a)
∀s ∈ A∗Ds

,∀gs ∈ Gs(s) : V (gs)− V (s) ≤ −γd, (4.8b)
∀s ∈ A∗Dt

,∀gt ∈ Gt(s) : V (gt)− V (s) ≤ 0, (4.8c)

where for Y ∈ {Ds, Dt}, A∗Y := A∗ ∩ Y , then the closed-loop system satis�es (4.2).
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Compared to the original LBF, it is su�cient if V (s) > 0 holds only at the boundaries
of the safe set of the continuous states, i.e. ∂Sx × Sq × T , as during �ow the discrete
states and timer states cannot escape the safe set. Furthermore, due to persistent �owing
and systems jumps, there is no need for the decrease during timer jumps in (4.8c).

Similarly, Corollary 4.3.1 and 4.3.2 can be relaxed:

Corollary 4.4.1 (Su�cient conditions for RSWS). Given a closed-loop systemHcl, compact
sets (S, I,O) that satisfy Assumption 4.4.1, and a candidate LBF V satisfying all conditions
in Proposition 4.4.1, if ∃β ∈ R such that V additionally satis�es (4.7a), (4.7b), (4.7e) and

∀s ∈ O∗Ds
,∀gs ∈ Gs(s) : V (gs)− V (s) ≤ −γd, (4.9a)

∀s ∈ O∗Dt
,∀gt ∈ Gt(s) : V (gt)− V (s) ≤ 0, (4.9b)
∀s ∈ ∂Ox ×Oq × T : V (s) > β, (4.9c)

where for Y ∈ {Ds, Dt}, O∗Y = O∗ ∩ Y , then the closed-loop systemHcl satis�es (4.3).

Corollary 4.4.2 (Zeno-free maximal solutions). Given a closed-loop system Hcl, a candi-
date LBF V satisfying all conditions in Corollary 4.4.1 w.r.t. compact sets (S, I,O) satisfying
Assumption 4.4.1, if B ∩Ds = ∅, all solutions φ ∈ SHcl

(I) are non-Zeno.

Similar to the Lyapunov relaxations for hybrid inclusions in [57, §3.3], we can relax
the LBF conditions further, if we have persistent jumping or persistent �owing. In this
chapter we only consider the latter.

Assumption 4.4.2 (Restricted jumps). All jumps cannot be followed by additional jumps,
i.e. ∀s ∈ S ∩D : G(s) /∈ D.

Maximal solutions to systems that satisfy this assumption are intrinsically subjected
to persistent �owing and therefore no decrease along V for every jump is required:

Corollary 4.4.3 (Su�cient LBF conditions: Persistent �ow). Given a closed-loop system
Hcl which satis�es Assumption 4.4.2, Theorem 4.3.1, Proposition 4.4.1 and Corollaries 4.3.1
and 4.4.1 hold with respect to γd = 0.

4.5. Automatic synthesis
In the previous sections we derived conditions on a candidate LBF to infer that the closed-
loop system satis�es speci�cation CS1 or CS2. Based on these fundamentals, we propose
a framework to co-synthesize a controller κ and relaxed LBF candidate V , such that the
closed-loop systems provably satis�es these speci�cations. The synthesis method uses
genetic programming (see Chapter 3) to propose candidate controllers and LBF functions,
i.e. the tuple (V, κ), which are subsequently formally veri�ed using an SMT solver. If a
candidate solution is disproved to be a solution, the SMT solver provides a counterexample
which is then used to re�ne the candidate solutions. The use of the SMT solver is described
in Section 4.5.1. The �tness within GP is detailed in Section 4.5.2. Finally, the overall
algorithm outline is given in Section 4.5.3.
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4.5.1. SMT solver-based verification
The veri�cation of the desired controller speci�cations is reduced to verifying nonlinear
inequalities on a candidate LBF, as shown in Section 4.3 and 4.4. These inequalities are
veri�ed by means of the SMT solver dReal [51], as described in Section 2.4. Recall that
dReal either returns unsat or δ-sat, which are not mutually exclusive. If there is an overlap,
dReal can return either case. This issue is addressed in Remark 4.5.1. In case a formula is
δ-sat, dReal provides a domain in which the formula is δ-sat. From this domain we can
sample states that are counterexamples where the inequality is (close to be) violated.

4.5.2. Fitness
The evolutionary search is driven by the �tness function. In this section we elaborate
on how the �tness function is constructed. Based on the inequalities in Proposition 4.4.1
and Corollary 4.4.1, we employ both testing and veri�cation techniques to assign a �tness
value to a candidate solution. Given an inequality over a set, the testing is done on a �nite
subset of the original in�nite set. This test provides us with a quality measure of candidate
solutions, and thus provides a search direction for the genetic evolution. The veri�cation
method uses the SMT solver to determine a Boolean answer to whether the inequality is
satis�ed over the entire set.

The conditions on the LBF in Proposition 4.4.1 and Corollary 4.4.1 can be expressed as
a propositional formula ϕ in the standard form:

ϕ := ∀x ∈ X :

(∧k

i=1

(∨li

j=1
fij(x) ≤ 0

))
, (4.10)

where fij : Rn → R. The standard form of the conditions in Proposition 4.4.1 and Corol-
lary 4.4.1 can be found in Appendix B. Similar to the quantitative semantics of STL (see
Section 2.3), given a formula ϕ in the form in (4.10), we formulate for a point x ∈ X a
satisfaction measure ρϕ : Rn → R as:

ρϕ(x) = max
i∈{1,...,k}

(
min

j∈{1,...,li}
fij(x)

)
. (4.11)

Note that here fij(x) is negative if the inequality in (4.10) is satis�ed. As a result, if ρϕ(x)
is negative, ϕ is true and ρϕ(x) is positive otherwise. Now, based on the measure ρϕ, we
construct an error metric:

eϕ(x) := max(ρϕ(x), 0), (4.12)
which for a given point x is equal to zero if ϕ is true and positive if not. Based on the
error metric (4.12), we construct a sample-based �tness over a �nite set of samples X̂ =
{x1, . . . , xp} ⊂ X as:

Fsamp,ϕ := (1 + ‖[eϕ(x1), . . . , eϕ(xp)]‖)−1. (4.13)

By de�nition Fsamp,ϕ ∈ [0, 1] and is equal to 1 if for all x ∈ X̂ the propositional logic
formula ϕ is true.

Besides sample-based testing, the logic formula is formally veri�ed by means of the
SMT solver. Given the output of the SMT solver, the SMT-based �tness is de�ned as

FSMT,ϕ =

{
1, if ¬ϕ is unsat,
0, if ¬ϕ is δ-sat. (4.14)
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Finally, the full �tness of a pair (V, κ) satisfying the conditions in Proposition 4.4.1 is
de�ned as a weighted sum of the sample-based and SMT-based �tness for each condition.
The weighting is motivated by the intuition that prior to checking the conditions of the
derivative and the jumps (inequalities (4.5c), (4.5d), (4.8b), and (4.8c)), V must �rst have
the ‘correct shape’, i.e. satisfy the conditions with respect to the initial set and safe set
(inequalities (4.5a) and (4.8a)). Therefore, the conditions are sequentially weighted with

wi = bwi−1Fsamp,ϕi−1c, i ∈ {2, . . . 6},
and w1 = 1, where for each ϕi the corresponding inequality is shown in Appendix B in
Table B.1. The �nal overall �tness is then de�ned as:

F :=
1

12

6∑
i=1

wi (Fsamp,ϕi
+ FSMT,ϕi

) . (4.15)

Note that F ∈ [0, 1] and only if F = 1, all conditions are formally proven by means of
the SMT solver, hence the candidate function V is an LBF. In case it is desired to verify
conditions from Corollary 4.4.1, the �tness function is extended in a similar way.

Remark 4.5.1 (Robustness w.r.t. δ-sat). As stated before in Section 2.4, δ-sat and unsat
are not always mutually exclusive. If both are true, dReal can return either case. To circum-
vent this overlap, candidate solutions are synthesized such that they are robust w.r.t. the δ
perturbation. This is done by strengthening the inequalities used in the sample-based �tness
relatively to the δ perturbation. That is, for some ε ≥ δ and a formula expressed as (4.10),
the sample-based �tness is rede�ned using the following strengthened formula:

ϕ′ := ∀x ∈ X,
(∧k

i=1

(∨li

j=1
fi,j(x) + ε ≤ 0

))
.

Secondary fitness measures
In case two or multiple individuals have the same �tness value, secondary �tness measures
are used to rank individuals. The �rst secondary �tness value is based on the number of
parameters and the second secondary �tness is based on the norm of all the parameter
values. The latter promotes less complex but equivalent individuals, and the former aims
to prevent parameters to blow up without improving the �tness.

4.5.3. Algorithm outline
Given a system Hcl, compact sets (S, I,O) and a grammar, the algorithm undergoes the
following steps:

1. A random population of (V, κ) tuples is generated adhering to the provided gram-
mar.

2. The parameters of each individual are optimized w.r.t. the sample-based �tness us-
ing CMA-ES.

3. For all individuals with full sample-based �tness, an SMT solver is used. If there is
a violation, counterexamples are generated by the SMT solver, which are added to
the set employed in the sample-based �tness.
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4. The overall �tness in (4.15) is computed for all individuals.

5. A new population is generated by:

(a) Copying the best individuals of the current generation.
(b) Selecting individuals using tournament selection and modifying them using

genetic operators.

6. Steps 2 to 5 are repeated until the maximum �tness value (i.e. 1) is obtained, or a
maximum number of generations is met.

4.6. Case studies
In this section we demonstrate the e�ectiveness of the proposed approach on several
benchmark systems. Here we consider continuous-time systems, sampled-data systems,
uncertain systems, switching controllers, and fully hybrid systems. All benchmarks were
performed using an Intel Xeon CPU E5-1660 v3 3.00GHz using 14 parallel CPU cores. The
GGGP and CMA-ES algorithms were both implemented in Mathematica 11.1.

Within the synthesis, the choice of the grammar is essential. In this work, we use a
grammar covering polynomials and/or use case-speci�c insights to bias the grammar. Here
the use of polynomials is motivated by the Weiestrass approximation theorem, stating
that any continuous function on a closed interval can be approximated arbitrarily close
by a polynomial. Regardless, there still might not exist a polynomial LBF [3] or it might
yield a very high-order polynomial, such that the use of transcendental functions like sine
functions or exponentials might be more bene�cial.

4.6.1. Continuous open-loop systems
First of all, we consider fully continuous-time open-loop systems, i.e. with Ds = ∅. We
consider �ve systems, adopted from [119] and [158] and references therein, de�ned by
the open-loop continuous dynamics fol,x : Rnx × U → Rnx , with U ⊂ Rm, shown in
Table 4.1. These systems are: a linear system, 2nd- and 3rd-order polynomial systems, a
pendulum system, and a pendulum-on-cart system.

We consider saturated control inputs, i.e. controllers of the form
κ(x) = sat(u,u) ◦ κ′(x),

sat(u,u)(x) = max(u,min(u, x)),

where κ′ : Rnx → Rm is an analytic controller to be synthesized by the proposed frame-
work. Furthermore, we consider the system with continuous full state-feedback and with
sampled-data input. In the former case the system dynamics is given byHct with data

C = Rnx , F (s) = fol,x(sx, κ ◦ h(s)),

D = ∅, G(s) = ∅, h(s) = sx.

Given a sampling time η > 0, the e�ect of sampled data can be modeled by adding the
sampled states as additional discrete states, resulting in the systemHsd with

C = R2nx × [0, η], F (s) =
(
fol,x(sx, κ ◦ h(s)), 0nx

, 1
)
,

D = Dt = R2nx × {η}, G(s) = (sx, sx, 0), h(s) = sq.
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Table 4.1: Continuous-time systems with input u ∈ U = [u, u]. 1: linear system. 2: 2nd-order polynomial
system. 3: 3rd-order polynomial system. 4: Pendulum system. 5: Pendulum-on-cart system.

System fol,x(x, u) (Sx, Ix, Ox) (u, u)

1
(

x2

−x1 + u

) ([−1, 1]2,
[−0.5, 0.5]2,
[−0.1, 0.1]2)

(-1,1)

2
(
x2 − x3

1

u

) ([−1, 1]2,
[−0.5, 0.5]2,
[−0.05, 0.05]2)

(-1,1)

3

−10x1 + 10x2 + u
28x1 − x2 − x1x3

x1x2 − 2.6667x3

 ([−5, 5]3,
[−1.2, 1.2]3,
[−0.3, 0.3]3)

(-100,100)

4

(
x2

mlg
J sin(x1)−

(
b
J + K2

JRa

)
x2 + K

JRa
u

)
m = 5.50 · 10−2 kg, l = 4.20 · 10−2 m,
J = 1.91 · 10−4 kg m2, g = 9.81 m/s2,
K = 5.36 · 10−2 Nm/A, Ra = 9.50Ω.
b = 3.0 · 10−6Nms

([−2π, 2π]
× [−100, 100] ,
[−π, π]
× [−10, 10],
[−1.0, −0.5]
× [−1.0, 1.0])

(-10,10)

5

(
x2

g
l sin(x1)− b

ml2x2 + 1
ml cos(x1)u

)
g = 9.8 m/s2, b = 2 Nms
l = 0.5 m, m = 0.5 kg.

([−2π, 2π]
×[−10, 10],
[−0.5, 0.5]2,
[−0.25, 0.25]2

(-6,6)

Note that here h(s) is dependent on the discrete states sq. Given these models Hct and
Hsd, we synthesize controllers κ′ and LBFs V for speci�cation CS1 with (S, I,O) as
(Sx, Ix, Ox) for Hct and as (S2

x × T , {(sx, sq, st) ∈ I2
x × {0} | sq = sx}, O2

x × T )
for Hsd, where (Sx, Ix, Ox) are de�ned for each system in Table 4.1, and η as shown in
Table 4.2.

As a baseline of the proposed framework, we synthesize controllers and LBFs based
on parameterized candidate solutions with �xed structures. Since the structure is �xed,
no genetic operators are applied. This is a special case of the full framework, where the
grammar speci�es a single full candidate template. For these parameterized solutions, we
consider for modelsHct templates of the form:

V (s) = xTA1x+ c,

κ′(z) = Kx,

x = sx − xO,

and for modelHsd:

V (s) = xTA1x+ (η − st)(x− z)TA2(x− z) + c,

κ′(s) = Kz,

x = sx − xO,
z = sq − xO,
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Table 4.2: Results across 10 runs for continuous-time systems with continuous controllers, using a �xed template.
µ: mean, σ: standard deviation.

System number of generations time [s]
min max µ σ min max µ σ

1 1 1 1.0 0.00 3.44 3.87 3.61 0.14
2 1 3 2.1 0.57 3.44 11.30 7.85 2.21
3 2 4 2.7 0.82 8.10 23.00 13.45 5.54
4 4 9 7.0 1.76 15.90 47.29 33.63 10.95
5 2 5 2.9 0.99 7.60 23.29 12.32 5.00

Table 4.3: Results across 10 runs for continuous-time systems with sampled-data controllers, using a �xed tem-
plate. µ: mean, σ: standard deviation. 1 SMT time-out, 2 No convergence.

System η
number of generations time [s]

min max µ σ min max µ σ

1 0.01 1 7 2.7 1.83 14.49 126.28 49.82 36.00
2 0.01 2 6 4.1 1.37 30.33 179.11 107.35 53.13
3 0.001 −1 - - - - - - -
4 0.001 −2 - - - - - - -
5 0.01 3 16 8.6 3.66 36.80 576.35 178.98 153.87

where A1, A2 are upper-triangular matrices, c a constant, and xO the center of Ox. We
consider 14 individuals and start with 100 test samples and a maximum of 300 counterex-
amples, where a �rst-in-�rst-out principle is used. We use per iteration 30 CMA-ES gen-
erations and we set the maximum number of iterations to 200. The results are shown in
Tables 4.2 and 4.3. Here we observe that for modelHsd of system 3 the computation time
of the SMT solver surpassed the user-imposed time-out limit of 20 seconds for all indi-
viduals in a generation. In this case no counterexamples are generated, nor an answer
is provided whether an individual is a solution, hence the algorithm is terminated. For
model Hsd of system 4 and the given template, we observe that no solutions are found
within the maximum number of iterations. Note that this is no guarantee that no solution
exists within this solution structure.

Let us consider the solutions for model Hct of system 5. Using a line search over β
and checking the inequalities in Corollary 4.3.1 using an SMT solver, we found that for 9
out of 10 solutions we could �nd a β such that Corollary 4.3.1 holds, i.e. the closed-loop
system also satis�es CS2. An example of a solution that also satis�es CS2 is given by

V (s) = −14.4983 + 23.06s2
1 + 11.6469s1s2 + 17.9399s2

2,

κ(s) = −11.0776s1 − 9.32858s2,

with β = −14.0381. The sets S, I , O, A, and B are shown in Figure 4.5. Since Corollary
4.3.1 holds, A is a forward invariant set which is found automatically using the proposed
framework. Moreover, note that given the found solution, we cannot trivially increase
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Figure 4.5: Speci�cation sets (S, I,O) and the sublevel sets A and B of a found result for system 5 with
continuous-time controller. The red areas indicate where the derivative V̇ (s) = 〈V (s), F (s)〉 is above γc.

1

x

y

(a) y=σ(x).

1

x

y

(b) y = σ̂(x).

Figure 4.6: Switching function σ(x) and its outer semicontinuous variant σ̂(x).

the size of this forward invariant set A, e.g. by shifting V , as we can observe that for
some neighboring states of A we have 〈∇V (s), f(s)〉 > −γc, which would then violate
condition (4.5d).

4.6.2. Bounded uncertainties
Let us consider a continuous-time system described by ẋ(t) = f(x, d), where d ∈ ∆ is a
bounded disturbance and ∆ is compact. This system can be modeled in the framework by
writing the dynamics as the following set-valued function:

F (s) = {f(s, d) ∈ Rn | d ∈ ∆}.

Let us reconsider modelHct of system 5 (pendulum-on-cart) from Table 4.1 and adapt
F (s) to

F (s) =

(
s2{

g
l sin(s1)− bs2

ml2 + 1
ml cos(s1)κ(s) + d | d ∈ ∆

}) ,
with ∆ = [−0.5, 0.5]. Using the same solution template as before, for 10 runs, synthesis
took on average 3.3 generations and 24.22 seconds.

4.6.3. Switching controllers
Using the proposed framework, it is possible to consider switching controllers. Let us
consider the DC-DC boost converter system from [55], modeled as a switched system
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Table 4.4: Production rules P .

N Rules
〈pol〉 ::= 〈pol〉+ 〈pol〉 | 〈const〉 × 〈mon〉
〈mon〉 ::= 〈var〉 | 〈var〉 × 〈mon〉
〈var〉 ::= s1 | s2

〈const〉 ::= Random Real ∈ [−10, 10]

with q ∈ {0, 1} :

fq(s) = Aqs+ b, b = (vs, 0)T

A0 =

(− rl
xl

0

0 − 1
xc

1
r0+rc

)
,

A1 =

(
− 1
xl

(
rl + r0rc

r0+rc

)
− 1
αxl

r0
r0+rc

α
xc

r0
r0+rc

− 1
xc

1
r0+rc

)
.

The parameters of the model are as taken in [55]. In order to control the system, one has
to design the switching signal q. We approach this by designing a state-dependent control
law with the following structure:

q(s) = σ(κ(s)),

σ(x) =

{
1 if x ≥ 0,
0 if x < 0.

Rewriting this system as a hybrid system (as in de�nition 2.2.3), we haveH = (C,F, ∅, ∅)
with:

F (s) = {A′(s)q + b′(s) | q ∈ σ̂(κ(s))},

A′(s) =

(− s1xl

r0rc
r0+rc

− s2
xl

r0
r0+rc

s1
xc

r0
r0+rc

)
, b′(s) =

(− s1rlxl
+ vs

− s2
xc

1
r0+rc

)
,

where σ̂ is an outer semicontinuous over-approximation of σ de�ned as

σ̂(x) =

 1 if x > 0,
[0, 1] if x = 0,

0 if x < 0.
(4.16)

Note that this system satis�es the hybrid basic conditions in assumption 2.2.1. The dif-
ference between σ and σ̂ is illustrated in Figure 4.6. Note that this hybrid model includes
the original dynamics, i.e. if κ(s) > 0, F (s) = f1(s), if κ(s) < 0, F (s) = f2(s), and if
κ(s) = 0, {f0(s), f1(s)} ⊂ F (s).

We synthesize a controller κ for speci�cation CS1 with the safe, initial and goal set
as in [121], i.e. S = [0.65, 1.65] × [4.95, 5.95], I = [0.85, 0.95] × [5.15, 5.25], O =
[1.25, 1.45]×[5.55, 5.75]. Given that the initial and goal sets are relatively close to the safe
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set, a second-order polynomial is likely not to su�ce, and therefore we bias our solutions
by including a pre-speci�ed barrier function of the form:

B(c, s) =
c1

1.66 − s1
+

c2
5.96 − s2

+
c3

s1 − 0.64
+

c4
s2 − 4.94

.

Using this barrier function, we employ the start tree of the candidate LBF SV given by the
sum of a constant 〈const〉, polynomial 〈pol〉 and the barrier function B(c, s):

SV = 〈const〉+ 〈pol〉+ 〈const〉B(c, s),

c =
(
〈const〉 , 〈const〉 , 〈const〉 , 〈const〉

)
.

Furthermore, taking inspiration from synthesis of switching controllers based on a CLFB
(see e.g. [121], [159]), the controller is based on the candidate LBF V , such that

q = σ̂(κ(s)) = 1 if 〈∇V (s), f0(s)〉 > 〈∇V (s), f1(s)〉 ,
q = σ̂(κ(s)) = 0 if 〈∇V (s), f0(s)〉 < 〈∇V (s), f1(s)〉 .

In other words, a mode q is selected so that it minimizes 〈∇V (s), fq(s)〉. This is achieved
by the following controller:

κ(s) = 〈∇V (s), f0(s)〉 − 〈∇V (s), f1(s))〉 . (4.17)

Based on this prior knowledge, we use the start tree Tuple(SV , κ(s)) and the production
rules in Table 4.4. We used 8 individuals, a maximum tree depth of 10, a mutation chance of
0.8, crossover chance of 0.3, 30 generations in CMA-ES, 100 test samples and a maximum of
300 counterexamples. In 10 di�erent runs with a maximum of 200 generations, we found
in 3 runs a solution in the 104th, 115th, and 151st generation with on average 20 seconds
per generation. An example of a found solution is given by:

V (s) =1.66125B(c, s)− 2.96592s3
1 − 5.36934s2

1s
2
2

− 26.175s2
1 − 5.55243s1s

2
2 + 26.763s1s2

− 17.0781s1 − 0.0612397s3
2 − 10.2641s2

2

+ 48.5132s2 + 32.6963,

c =
(
28.2706, 16.4118, 2.64323, 3.967

)
,

and the corresponding controller given by (4.17). Given this solution, the set A and the
controller regions are shown in Figure 4.7. While the controller is synthesized for states
that start in I , speci�cation CS1 holds for all states starting in A.

4.6.4. Discovering controller structures
In this section we illustrate how our method can be used to automatically �nd an ap-
propriate controller structure. Here we consider the nonholonomic integrator with H =
(R3, Fol(s, κ(s)), ∅, ∅) and

Fol(s, u) =
(
u1, u2, s1u2 − s2u1

)
,



4

48 4. Certificate-based synthesis

O
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κ(s)<0 κ(s)>0

0.65 1.15 1.65
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s1
s 2

Figure 4.7: Speci�cation set (S, I,O) and the level sets for a found LBF for the DC-DC boost converter system

which does not satisfy Brockett’s necessary condition [24, 156]. Therefore, while this sys-
tem is controllable, there exists no continuous-time state-feedback law to asymptotically
stabilize the system. However, note that this does not automatically imply that there does
not exist a continuous state-feedback law which satis�es the speci�cations CS1 and CS2

for a given (S, I,O). Moreover, we consider a saturated input ui = sat(−1,1) ◦ κi(s) for
i ∈ {1, 2} and a safe set S = [−5, 5]3, initial set I = [−3, 3]2 × [−0.1, 0.1] and goal set
O = [−0.5, 0.5]3. That is, it is desired to steer the system to a neighborhood around the
origin, where initially x3 is close to zero.

For simplicity, we consider a parameterized quadratic LBF and for the controller a
grammar containing multiple controller classes, namely linear, polynomial, and discon-
tinuous controllers. The start symbol is given by S = Tuple (〈V〉 , (〈κi〉 , 〈κi〉)), with

〈V〉 ::= 〈const〉+ 〈const〉 s2
1 + 〈const〉 s2

2 + 〈const〉 s2
3,

and the (other) production rules are given in Table 4.5. In the grammar, 〈disc〉 is the non-
terminal for discontinuous expressions and sign denotes the outer semicontinuous sign
function, de�ned as sign(x) := 2σ̂(x) − 1, where σ̂ is de�ned in (4.16). Finally, the dis-
continuities are limited to sign(s3), to limit the search space and because it is a repeating
element in the controllers found in [156]. We used 28 individuals, a maximum tree depth
of 4, a mutation chance of 0.8, crossover chance of 0.3, a maximum of 200 generations, 30
generations in CMA-ES, 100 test samples and a maximum of 300 counterexamples.

Out of 10 independent runs, the algorithm found in 7 runs a solution within 200 gen-
erations. On average, these 7 runs took 19.76 minutes and 110 generations. Of these 7, 6
controllers contained a discrete element in both inputs, 1 controller was fully polynomial,
and no linear controllers were found. The polynomial controller is given by

V (s) = −5.3754 + 0.3457s2
1 + 0.2184s2

2 + 21.6876s2
3,

κ(s) =

(
−0.523878s1 + 1.47349s2s3

−0.169653s2 − 5.76889s1s3 + 1.16537s2
3

)
.

Therefore, despite the system not meeting Brockett’s necessary condition, for this speci-
�cation, the algorithm was able to automatically �nd a su�cient continuous control law,
whereas no linear controller was found.
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Table 4.5: Production rules P

N Rules
〈κi〉 ::= 〈lin〉 | 〈pol〉 | 〈pol〉+ 〈const〉 〈disc〉
〈lin〉 ::= 〈const〉 s1 + 〈const〉 s2 + 〈const〉 s3

〈pol〉 ::= 〈pol〉+ 〈pol〉 | 〈const〉 × 〈mon〉
〈disc〉 ::= sign(s3) | 〈pol〉 sign(s3) |
〈mon〉 ::= 〈var〉 | 〈var〉 × 〈mon〉
〈var〉 ::= s1 | . . . | s3

〈const〉 ::= Random Real ∈ [−10, 10]

∆

−∆ s1

s2

Figure 4.8: Hysteresis.

4.6.5. Jump-flow systems
Let us consider a system with Ds 6= ∅, namely a hysteresis system adopted from [23],
graphically illustrated in Figure 4.8. This system can be modeled as a hybrid automaton,
as shown in [23]. Using the jump-�ow formalism, the system states s = (sx, sq) ∈ R ×
{−1, 1} consist of a single continuous state sx ∈ R and a discrete state, which models the
state of the hysteresis sq ∈ {−1, 1}. The data of this system is given by:

Fol(s, u) =
(
sq + u, 0

)
,

Gol(s, u) =

{ (
sx,−1

)
if s ∈ D1,(

sx, 1
)

if s ∈ D2,

H1 = {sx ∈ R | sx ≥ ∆}, H2 = {sx ∈ R | sx ≤ −∆},
C = [−∆,∆]× {−1, 1} ∪H1 × {−1} ∪H2 × {1},
D1 = H1 × {1}, D2 = H2 × {−1}, Ds = D1 ∪D2,

h(s) = sx.

Setting ∆ = 1, we consider the safe, initial and goal set as (S, I,O) = ([−5, 5] ×
{−1, 1}, [−2, 2]× {−1, 1}, [−1, 1]× {−0.5, 0.5}). Using the solution template

V (s) = sA1s+ c,

κ(s) = cs1,

where A1 is an upper-triangular matrix and c a constant, and using the same settings
as before, we synthesized solutions across 10 runs in 2.4 generations and 5 seconds. An
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example of a solution is given by

V (s) =− 228.165 + 25.0271s2
1

+ 0.189837s1s2 + 84.7784s2
2,

κ(s) =− 11.7482s1.

4.6.6. Design of flow and jump maps
Finally, we demonstrate that the approach can also be used to design the �ow and jump sets
C and D. We revisit the DC-DC boost converter from Section 4.6.3. Instead of designing
a switching signal, we augment the state space with a logic state and design a map κ :
R2 → R that partitions the state space. The closed-loop system is given by the hybrid
data (C,F,D,G):

F (s) =

(
A(sx)sq + b(sx)

0

)
, G(s) =

(
sx

1− sq

)
,

C = {(x, 0) ∈ S | κ(x) ≤ ε} ∩ {(x, 1) ∈ S | κ(x) ≥ 0},
D = {(x, 0) ∈ S | κ(x) ≥ ε} ∩ {(x, 1) ∈ S | κ(x) ≤ 0},

where x ∈ Rnx and ε > 0. Note that in�nite switching between the modes is prevented
by design by a hysteresis parameterized by ε > 0. Moreover, as C ∩ D 6= ∅, solutions
are not unique, but regardless, the synthesis guarantees that all maximal solutions satisfy
the speci�cation. We use again the same expert insight as in Section 4.6.3 and set κ(x) to
be equal to the controller structure in (4.17). We �nd that for ε = 0.001, the previously
found solution in Section 4.6.3 is again an LBF.

4.6.7. Discussion
We proceed now to discuss the results of the case studies and compare them to results in
the literature. The average computation time in the results of continuous-time systems
in Table 4.2 suggests that the computational time increases as the systems become more
nonlinear. However, general conclusions on the computation time are speculative. That
is, besides that the method is not guaranteed to �nd a solution within a �nite number
of generations, the computation time can highly vary depending on factors including the
system dynamics, the system order, provided expert-knowledge in the form of a grammar,
and the genetic programming parameters.

Comparing the method with SCOTS and ROCS for the inverted pendulum system (sys-
tem 5 in Table 4.1), we obtained a controller in the form of a simple expression, whereas
according to [94], with a state grid size of 0.001 the abstraction used in SCOTS took more
than 12 hours and did not return a result, and ROCS generated a controller in 400 seconds
with a controller consisting of 26340 partitions. Using the proposed methodology, syn-
thesis took on average 178.98 seconds and the controller was given by a single analytic
expression. Another advantage of the proposed method over these abstraction-based ap-
proaches is that it does not directly depend on discretization of the state and input space,
resulting in potentially better scalability, as the proposed method requires less memory.
Finally, the speci�cation is guaranteed for continuous-time trajectories, rather than for
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discrete-time trajectories instances, which is the case for these abstraction-based meth-
ods.

Comparing our method with the counterexample-guided synthesis methods presented
in [118, 121], the method presented in this chapter is overall slower, but is able to discover
the solution structures itself, whereas e.g. for the DC-DC boost converter the authors [121]
had to iteratively add barrier functions by hand before a solution could be found. More-
over, in our benchmarks we provided sampled-data controllers with a larger sampling
time than the minimum dwell-times presented in [118, 121], and the presented framework
is able to cope with hybrid systems described with di�erential and di�erence inclusions,
whereas the methods in [118, 121] are restricted to nonlinear switched systems.

The proposed method is not complete, i.e. solutions may not be found even if they
exist. This may stem from a not su�ciently expressive choice of grammar, or due to the
used optimizers (GGGP and CMA-ES), which do not guarantee �nding a solution within
a �xed number of generations. Therefore, the method is best used in combination with
expert-knowledge, incorporated in the grammar, which biases the search to viable candi-
date solutions. Nonetheless, the required expert-knowledge is less than the one required
when employing e.g. sum of squares programming or counterexample-guided synthesis
approaches, where the user has to provide a solution structure.

The computation time of the framework can be improved in several instances. First of
all, GGGP and CMA-ES are implemented in Mathematica. Implementation in lower-level
languages could speed up the computation time. Additionally, more e�cient implementa-
tions exploiting paralellization, e.g. by using GPU-based computation and more advanced
GP variants should improve speed and scalability.

Finally, using the proposed framework, we did not �nd sampled-data controllers for
all systems in Table 4.1 (systems 3 and 4). In the next section we present a specialized ap-
proach for sampled-data nonlinear systems which is able synthesize controllers for these
systems.

4.7. Specialized synthesis for sampled-data systems
The framework introduced in Section 4.5 is for very general hybrid systems. In this sec-
tion we explore a specialized approach for sampled-data systems. Using this specialized
approach, controllers are synthesized for cases in which in Section 4.6.1 no sampled-data
controller was found. Additionally, in this section we utilize a control Lyapunov barrier
function (CLBF), rather than an LBF. Where an LBF is used to verify reach-avoid prob-
lems for an autonomous system, a CLBF can be used to derive a control input such that
the speci�cation is guaranteed. Speci�cally, we consider a set of controller modes, either
pre-de�ned or co-evolved with the CLBF, and use a periodic switching law based on the
CLBF.

This approach presented in this section is a follow-up to [158], in which also a combi-
nation of GP and SMT solvers is used. The main contributions of this section w.r.t. [158]
are: 1) synthesis w.r.t. a pre-de�ned periodic sampling time, rather than arbitrary switch-
ing with a (more conservative) minimum dwell-time and 2) the use of a di�erent and less
conservative CLBF.
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4.7.1. Problem definition
Let us consider nonlinear continuous-time systems described by

ξ̇(t) = f(ξ(t), u(t)), (4.18)

where the variables ξ(t) ∈ X ⊆ Rn and u(t) ∈ U ⊆ Rm denote the state and input
respectively. We assume that the dynamics satisfy the following assumption:

Assumption 4.7.1. The derivative ∂f(x,u)
∂x exists for all x ∈ X .

In this section we design sampled-data state-feedback controllers κ : Rn → U , such
thatu(t) = κ(ξ(tk)), ∀t ∈ [tk, tk+η), where η > 0 denotes a constant sampling time. This
yields a closed-loop system Σsd described by the data (X , f, κ, η) (see De�nition 2.2.7).
We address the same problem as described in Section 4.2, here simpli�ed for the subclass
of continuous-time systems with sampled-data controllers. That is, given a compact safe
set S ⊆ X , compact initial set I ⊂ S and compact goal set O ⊂ S, we consider the
following speci�cations:
CS1 Reachwhile stay (RWS): all solutions ξ to Σsd starting from the initial set I eventually

reach the goal set O, while staying within the safe set S:
∀ξ ∈ SΣsd(I),∃T, ∀t ∈ [0, T ] : ξ(t) ∈ S ∧ ξ(T ) ∈ O. (4.19)

CS2 Reach and stay while stay (RSWS): all solutions ξ to Σcl starting from the initial set
I eventually reach and stay in the goal set O, while always staying within the safe
set S:

∀ξ ∈ SΣsd(I),∃T, ∀t ≥ 0,∀τ ≥ T :ξ(t) ∈ S ∧ ξ(τ) ∈O. (4.20)
We address the following problem:
Problem 4.7.1

Given the compact sets (S, I,O) and system (4.18), synthesize a controller κ :
Rn → U such that the closed-loop system Σsd = (X , f, κ, η) satis�es speci�cation
CS1 or CS2.

4.7.2. Control strategy
In this section we discuss the used control strategy and establish how it solves problem
4.7.1 by means of Theorem 4.7.1 and Corollary 4.7.1, which can be seen as specialized
variants of Theorem 4.3.1 and Corollary 4.3.1, respectively. The main di�erence here is
that we consider a CLBF, rather than an LBF. The proofs of the theorem and corollaries in
this section can again be found in Appendix A.

Consider a set of controller modes with index set Q⊂Z≥0:

G = {gq : X → U | q ∈ Q}. (4.21)

Given the system (4.18), an initial state x = ξ(tk), let us denote the (over-approximated)
reachable set for t ∈ [tk, tk + η] under a controller mode q as Rq(x) s.t. given a q, ∀t ∈
[tk, tk + η] : ξ(t) ∈ Rq(ξ(tk)). In this section we consider a switching controller based
on a CLBF, which is de�ned as follows:
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De�nition 4.7.1 (Control Lyapunov Barrier Function). A function V ∈ C1(S,R) is a
Control Lyapunov Barrier Function w.r.t. the compact sets (S, I,O), S ⊆ X , I,O ⊆ int(S),
system (4.18), and controller modes (4.21) if there exists a scalar γ > 0 such that

∀x ∈ I : V (x) ≤ 0, (4.22a)
∀x ∈ ∂S : V (x) > 0, (4.22b)

∀x ∈ A\O,∃q ∈ Q,∀z ∈ Rq(x) : V̇q(x, z) ≤ −γ, (4.22c)

where A := {x ∈ S | V (x) ≤ 0} and V̇q(x, z) = 〈∇V (z), f(z, gq(x))〉.

Remark 4.7.1. Similar to Remark 4.3.2, the choice of γ is arbitrary, because if a solution V ∗

exists for γ∗, there always exists a linear transformation of V ∗ such that the inequalities in
(4.22) are satis�ed for any γ.

Given a CLBF V , we consider periodically switching controllers of the form such that
for all t ∈ [tk, tk + η) 

u(t) = κ(ξ(tk)),
κ(x) = gqk(x),

qk = arg min
q∈Q

max
z∈Rq(x)

V̇q(x, z).
(4.23)

This controller strategy based on the CLBF enforces speci�cation CS1, as shown in the
following theorem.

Theorem 4.7.1 (Reach while stay). Given a system (4.18), CLBF V w.r.t. compact sets
(S, I,O) and controller (4.23), then (4.19) holds.

Similarly as the result in Theorem 4.3.1 in Section 4.3, these conditions are not su�-
cient for forward invariance of (a subset of) the goal set, hence trajectories might leave
the goal set after entering it. The following corollary establishes su�cient conditions for
speci�cation CS2.

Corollary 4.7.1 (Reach and stay while stay). Given a system (4.18), CLBF V w.r.t. compact
sets (S, I,O), and a controller (4.23), if ∃β ∈ R such that

∀x ∈ ∂O : V (x) > β, (4.24a)
∀x ∈ O\int(B),∃q ∈Q,∀z ∈Rq(x) : V̇q(x, z) ≤ −γ, (4.24b)

where B := {x ∈ S | V (x) ≤ β}, then (4.20) holds.

4.7.3. One-step ahead reachable set
In this chapter the reachable set is constructed by using Euler’s forward method and
bounding the local truncation error (LTE). This yields the following analytic expression

rq(x, τ, e) = x+ τf(x, gq(x)) +
1

2
τ2e,
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such that the over-approximated reachable set is given by

Rq(s) =
⋃

(τ,e)∈E

rq(s, τ, e) (4.25)

with E := [0, η]×Πn
i=1[−εi, εi] and

εi = max
(x,u)∈X×U

∣∣∣∣∂fi(x, u)

∂x
fi(x, u)

∣∣∣∣ . (4.26)

While this construction can be quite conservative, it allows for relatively simple analytic
expressions.

4.7.4. Automatic synthesis
To solve problem 4.7.1, we synthesize the pair (V,G) similarly as the pair (V, κ) as de-
scribed in Section 4.5. The �tness function, based on the inequalities in Theorem 4.7.1 and
Corollary 4.7.1, is constructed as described in Section 4.5.2. To this end, these inequalities
are rewritten to the standard form in 4.10, and are shown in Appendix B.

Additional operations
To aid in �nding the correct shift ofV (x) such that (4.22a) is satis�ed, the following biasing
is performed before each �tness evaluation within CMA-ES:

V ′(x) = V (x)−max
(

max
x∈Isamp

(V (x)), 0
)
, (4.27)

where Isamp denotes a subsampled set of I . To guide the search further, we impose the
additional condition

∀x ∈ S\O : V (x) ≥ V (xc), (4.28)

where xc denotes the center of the goal set.

4.7.5. Implementation
The switching law in (4.23) is computationally intensive to check online. By o�ine de-
signing αq : Rn → R for all q ∈ Q such that

∀x ∈ D,∀q ∈ Q : max
z∈Rq(x)

V̇q(x, z) > −γ =⇒
min
p∈Q

(V̇p(x, x) + αp(x)) < V̇q(x, x) + αq(x),
(4.29)

allows us to replace the switching law with:

qk(tk) = arg min
q∈Q

(V̇q(ξ(tk), ξ(tk)) + αq(ξ(tk))). (4.30)

Intuitively, when at a point x a mode q′ is not viable under the reachable set Rq(x), the
nominal system V̇q′(x, x) plus bu�er αq′(x) should not minimize the set

⋃
q∈Q V̇q(x, x)+

αq(x), such that it is not selected by the switching law. The functions αq(x) can be de-
signed and veri�ed o�ine using again an SMT solver.
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Table 4.6: Controller modes G and bounded ε corresponding to the systems in Table 4.1.

System G ε

1 {−1, 0, 1} (2, 1)
2 {−1, 0, 1} (7, 0)
3 {−100,−50,−5, 0, 5, 50, 100} (3800, 6800, 1900)
4 {−10,−5, 0, 5, 10} (600, 12700)
5 {−6,−2, 0, 2, 6} (200, 3200)

Theorem 4.7.2 (Reach while stay). Given a CLBF, if ∀q ∈ Q, αq(x) satis�es (4.29) for
D = A\O, switching law (4.30) yields that (4.19) holds.

Corollary 4.7.2 (Reach and stay while stay). Given a CLBF satisfying (4.24), if ∀q, αq(x)
satis�es (4.29) for D = A\int(B), using switching law (4.30) yields that (4.20) holds.

The proof of Corollary 4.7.2 is analogous to the proof of Theorem 4.7.2 and Corollary
4.7.1 and therefore not presented in Appendix A

4.7.6. Case studies
Let us revisit the systems in Table 4.1. For these case studies, we �x the control mode
vector �eld G and synthesized controllers for the reach-while-stay speci�cation CS1, as
speci�ed for each system in Table 4.6. Across all these case studies, we use a population
of 16 individuals, a maximum of 50 generations, and a maximum of 30 generations within
CMA-ES. The mutation and crossover rates are both chosen to be 0.5. The number of
test samples and maximum number of additional counterexamples are set to 100 and 300
respectively. For the counterexamples, a �rst-in-�rst-out principle is used. The (arbitrary)
γ of the CLBF was set to γ = 0.1 and the precision parameter of dReal set to δ = 0.001.
The values of εi are obtained using bisection and the SMT solver and are also reported in
Table 4.6. The GGGP algorithm and CMA-ES are implemented in Mathematica, running
on an Intel Xeon CPU E5-1660 v3 3.00GHz using 8 CPU cores.

The used grammar is de�ned by SV = 〈const〉+ 〈expr〉, N and P as shown in Table
4.7, and P∗ is obtained by removing all recursive rules from P . While this grammar re-
stricts to polynomial CLBFs, the proposed approach can also be used for non-polynomial
CLBFs. Finally, the maximum recursive rule depth is set to 7.

To show repeatability, the synthesis is again repeated 10 times for each benchmark.
Statistics on the number of generations and the total synthesis time are shown in Table
4.8. With the exception of the third-order polynomial system, in all 10 runs a solution
was found for each benchmark. For the third-order system only a single run did not �nd
a solution within 50 generations. Given the found solutions, we use again bisection and
the SMT solver to �nd a β such that the conditions in Corollary 4.7.1 hold. We �nd a β
such that the conditions in Corollary 4.7.1 hold for: 4 solutions of the linear system, 1
of the 2nd-order system, 8 of the 3rd-order system, 0 of the pendulum system and 6 of
the pendulum on cart system. Hence for these solutions the stronger speci�cation CS2 is
guaranteed.
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Table 4.7: Production rules P .

N Rules
〈expr〉 ::= 〈expr〉+ 〈expr〉 | 〈pol〉
〈pol〉 ::= 〈pol〉+ 〈pol〉 | 〈const〉 × 〈mon〉
〈mon〉 ::= 〈var〉 | 〈var〉 × 〈var〉
〈var〉 ::= x1 − xc,1 | . . . | xn − xc,n
〈const〉 ::= Random Real ∈ [−10, 10]
〈G〉 ::= {〈lin〉} | . . . | {〈lin〉 , 〈lin〉 , 〈lin〉},
〈lin〉 ::= 〈const〉 (x1 − xc,1) + · · ·+ 〈const〉 (xn − xc,n)

| 〈const〉 〈var〉 | 〈const〉

Table 4.8: Results across 10 runs for continuous-time systems with sampled-data controllers, using a �xed tem-
plate. µ: mean, σ: standard deviation.

System η
number of generations time [s]

min max µ σ min max µ σ

1 0.01 3 5 3.8 0.79 11.55 21.34 15.67 0.79
2 0.01 7 11 9.1 1.52 32.26 67.92 47.81 12.32
3 0.001 6 50 16.7 16.03 86.39 524.96 205.08 138.02
4 0.001 3 12 7.6 3.03 32.97 185.96 106.72 54.84
5 0.001 5 16 8.6 3.47 48.02 155.17 85.2 35.18

One of the found solutions for the pendulum system is

V (x)=−4015.83 + 10.8526x′1 + 199.048x′21 + 0.311673x2 + 18.8116x′1x2 + 2.23916x2
2,

where x′1 = (0.75 + x1). We manually design αq(x) for all q ∈ Q to be:

α1(x) = 100, α2(x), α3(x), α4(x) = 0, α5(x) = 500,

for which (4.29) holds. Figure 4.9 shows the phase plot of the closed-loop system for
ξ(0) ∈ {(−π, 10), (−2,−5), (1.5, 0), (π, 10)}. It can be seen that indeed all trajectories
satisfy CS1.

For this solution, we could not �nd a β such that Corollary 4.7.1 holds. Nevertheless,
by increasing the goal set to O to [−1,−0.5] × [−1.5, 1.5], it can be veri�ed that for
β = −4012.3 the conditions in Corollary 4.7.1 hold.

The used sampling times η are signi�cantly larger than the minimal dwell-times re-
ported in [158] and [120]. For example, for the pendulum on cart system benchmark
we used η = 0.001 seconds, whereas [120] reports a theoretical minimum dwell-time of
2 · 10−6 seconds.
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Figure 4.9: Phase diagram of di�erent initial conditions for the pendulum system using a found CLBF. Dashed:
initial set, red: goal set.

Table 4.9: Results for 10 runs for the Pendulum on a cart system without pre-de�ning G.

Min Max µ σ

number of generations 4 14 7.6 2.84
t [s] 135.59 536.12 267.82 124.48

Evolving G
Let us reconsider system 5 (i.e., pendulum on a cart) from Table 4.1 and speci�cation CS1,
but without pre-specifying G. We saturate the input with

u(tk) = max(−6,min(6, gqk(ξ(tk)))).

A separate gene for the controller modes G is used with start symbol SG = 〈G〉 and the
product rules in Table 4.4. The results for 10 runs are shown in Table 4.9. Comparing Table
4.8 with 4.9 we observe a comparable number of generations required to �nd a solution,
although a longer computation time per generation is observed. However, the bene�t is
that no discretization of the input space is required. One of the found solutions is given
by

V = −22.2281 + 52.1542x2
1 + 13.0965x1x2 + 17.3873x2

2,

G = {−11.0824x1 − 13.2558x2}.

Note that G consists of only a single mode, hence no switching law is required when
implementing this controller. Finally, for β = −19.5313, V satis�es (4.9), hence using
this controller also guarantees CS2.

4.7.7. Discussion
Comparing the hybrid framework to the specialized synthesis for sampled-data systems,
we observe that we are not able to �nd sampled-data controllers for all systems in Table
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4.1 (systems 3 and 4 failed) using the hybrid framework, as opposed to the specialized case.
In the case of system 3, this is due to time-out issues with the SMT solver as a result of the
increased complexity w.r.t. the increased system order. For system 4, the hybrid approach
is too conservative. Nevertheless, the specialized case requires the additional assumption
4.7.1 on the system dynamics, which is not required in the hybrid framework. Moreover,
in this specialized framework, the user needs to bound the Lagrangian remainder before-
hand, whereas in the hybrid framework in Section 4.5, this is not required.

Comparing our approach to [120], in which a switching controller is proposed based
on an automatically synthesized CLBF, our method does not require a template solution,
does not require a pre-speci�ed set of controller modes, and our used sampling time is
larger than the (conservative) lower bounds on the minimum dwell-times of the switching
controller in [120].

The sampling times in our framework can be made less conservative by using less
conservative over-approximations of the reachable set, e.g. by using higher order Taylor
series approximations or using local bounds rather than for the entire domain. Finally, the
functions αq(x) that simplify the switching condition are currently synthesized by hand.
In future work, the aim is to automate this synthesis as well, for example by again using
the combination of GP with SMT solvers.

4.8. Verification of near-optimal controllers
In the previous sections, we synthesized controllers by co-evolving them together with a
(C)LBF. In this section we use the proposed framework to verify near-optimal controllers
obtained through near-optimal control synthesis. The controllers are obtained through
reinforcement learning (RL) [149], and are veri�ed using the certi�cate function synthesis
presented before. Speci�cally, we apply model-based RL control design which returns a
near-optimal controller described by an analytic expression [88]. The proposed approach
is demonstrated on the synthesis of an optimal controller for an Anti-lock Braking System
(ABS), which actively controls the wheel dynamics during severe braking. Its purpose is
to maximize braking performance while avoiding excessive wheel slip or wheel lock and
thus maintaining the vehicle’s ability to steer. RL is used to design a controller to minimize
the braking distance and through the use of the Lyapunov Barrier function we formally
verify convergence to standstill and bounds on the braking distance.

4.8.1. Problem definition
Let us again consider a nonlinear system of the form

ξ̇(t) = f(ξ(t), u(t)), (4.31)

where ξ(t) ∈ X ⊂ Rn and u(t) ∈ U ⊂ Rm denote the state and input respectively.
In this section we consider an optimal control design method for discrete-time systems,
requiring system (4.31) to be discretized. To ensure aspects like reachability and safety
are not lost for the original system, we formally verify the resulting control law w.r.t. the
original continuous-time model.
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Optimal control design
The discretized system (4.31) is described by the state transition function

xk+1 = f ′(xk, uk), (4.32)

with xk, xk+1 ∈ X and uk ∈ U . This function is assumed to be available, but it does not
have to be stated by explicit equations; it can be, for instance, a generative model given
by a numerical simulation of complex di�erential equations. The control goal is speci�ed
through a reward function which assigns a scalar reward rk+1 ∈ R to each state transition
from xk to xk+1:

rk+1 = ρ(xk, uk, xk+1) . (4.33)

This function is de�ned by the user and typically calculates the reward based on the dif-
ference between the current state and a given constant reference state xr that should be
attained.

The goal is to �nd an (approximately) optimal control policy π : X → U such that in
each state it selects a control action so that the cumulative discounted reward over time,
called the return, is maximized:

Rπ = E
{ ∞∑
k=0

γkρ
(
xk, π(xk), xk+1

)}
. (4.34)

Here γ ∈ (0, 1) is a discount factor and the initial state x0 is drawn uniformly from the
state-space domain X or its subset. Hence the considered control problem is:

Problem 4.8.1

Design a control policy π : X → U such that the return is maximized.

Formal verification
Given the closed-loop system Σcl given by the data (X , fcl) (see De�nition 2.2.6), where
fcl(x) = f(x, π(x)), the next goal is to formally verify whether it satis�es speci�cation
CS1, here reformulated for continuous-time systems:

CS1 Reach while stay (RWS): all solutions ξ to Σcl starting from the initial set I eventually
reach the goal set O, while staying within the safe set S:

∀ξ ∈ SΣcl
(I),∃T, ∀t ∈ [0, T ] : ξ(t) ∈ S ∧ ξ(T ) ∈ O. (4.35)

We addresses the following problem:

Problem 4.8.2

Given the compact sets (S, I,O) and closed-loop system Σcl, verify that speci�-
cation CS1 is satis�ed.

This veri�cation is done by means of automatic synthesis of a Lyapunov Barrier function.
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4.8.2. Methodology
Optimal controller design
The return (4.34) is approximated by the value function Vπ : X → R de�ned as:

Vπ(x) = E
{ ∞∑
k=0

γkρ
(
xk, π(xk), xk+1

)∣∣∣x0 = x
}
. (4.36)

An approximation of the optimal value function, denoted by V̂∗(x), can be computed by
solving the Bellman optimality equation

V̂∗(x) = max
u∈U

[
ρ
(
x, π(x), f ′(x, u)

)
+ γV̂ ∗

(
f ′(x, u)

)]
. (4.37)

To simplify the notation, in the sequel, we drop the hat and the star superscript, i.e. V(x)
is used to denote the approximately optimal value function.

To compute V(x), we use the fuzzy V-iteration algorithm [25]. Given the process
model (4.32) and the reward function (4.33), de�ne the setC = {c1, . . . , cN} of points on a
regular grid in the state space. Further de�ne a vector of triangular membership functions
φ = [φ1(x), . . . , φN (x)]

> so that each φi(x) is centered at ci, i.e., φi(ci) = 1 and φj(ci) =

0, ∀j 6= i. The membership functions are normalized so that
∑N
j=1 φj(x) = 1, ∀x ∈ X .

Finally, de�ne a �nite set of discrete control input values U =
{
u1, u2, . . . , uM

}
⊂ U .

The value function is approximated by the following basis-function expansion

V(x) = θ>φ (x) ,

where θ = [θ1, . . . , θN ]
> ∈ RN is a parameter vector found through the following value

iteration:
θi ← max

u∈U

[
ρ(ci, u, f

′(ci, u)) + γθ>φ (f ′(ci, u))
]

(4.38)

for i = 1, 2, . . . , N . This iteration is guaranteed to converge [25] and terminates when
the following condition is satis�ed:

||θ − θ−||∞ ≤ ε, (4.39)

with θ− the parameter vector calculated in the previous iteration and ε a user-de�ned
convergence threshold. Fuzzy value iteration is very e�ective for second and third-order
systems; computing the optimal value function is a matter of seconds. However, the com-
putational and memory requirements grow exponentially and the method becomes im-
practical for systems above order four.

There are two principal ways to derive the control policy from the value function [88].
The �rst one is based on an online maximization of the Bellman optimality equation’s
right-hand side (hill-climbing policy), while the second one applies the Bellman equation
o�ine and uses basis functions to interpolate online (interpolated policy). Here we ap-
ply the latter method. For all states ci, i = 1, 2, . . . , N , the optimal control action pi is
computed o�ine as follows:

pi = arg max
u∈U

[
ρ(ci, u, f

′(ci, u)) + γθ>φ (f ′(ci, u))
]

(4.40)
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and the control actions are collected in a vector: p = [p1, . . . , pN ]
> ∈ UN . In an arbitrary

state x, the corresponding control action is then obtained by interpolation:

u = p>φ (x) , (4.41)

where φ (x) are the same basis functions as de�ned for V(x). An obvious advantage of
this method is its computational simplicity: most computations are done o�ine (vector
p is actually obtained for free as a byproduct of the fuzzy value iteration algorithm) and
the online interpolation is computationally cheap. Another advantage is that (4.41) di-
rectly produces continuous control actions. However, the control signal is not necessarily
smooth and the interpolation can also result in a steady-state error. Therefore, we use
a simpli�ed version of the symbolic approximation method proposed in [88], which is
computationally e�ective and also yields smooth controls. We build an analytic approx-
imation of the policy in the following way. For a typical optimal control problem, the
policy surface can be split into saturated parts where the control signal attains the mini-
mal or maximal possible value, and a rather steep transition between the two parts. The
transition is generally nonlinear, but often can be well enough approximated by a linear
function. The overall policy is then described by:

u = sat
(
Kx
)
, (4.42)

where K is obtained by using linear regression on samples of the steep transition aug-
mented with samples on the boundaries between the transition and the saturated hyper
planes. The function sat(·) de�ned as follows:

sat(z) = max (Umin,min (Umax, z)) .

For general systems for which such an approximation does not su�ce; the aforementioned
symbolic approximation in [88] can be used within the framework presented in this chap-
ter.

Verification through Lyapunov Barrier functions
The safety and reachability speci�cation CS1 is again veri�ed indirectly by means of a
LBF (see De�nition 4.3.1). For the considered continuous-time system, the LBF conditions
reduce to:

∀x ∈ I : V (x) ≤ 0, (4.43a)
∀x ∈ ∂S : V (x) > 0, (4.43b)
∀x ∈ A\O : 〈∇V (x), f(x, π(x))〉 ≤ −γ, (4.43c)

where S ⊆ X , I,O ⊆ int(S), γ > 0 and A := {x ∈ S | V (x) ≤ 0}. As we have seen
before, it follows from Theorem 4.3.1 that existence of a LBF V implies that the closed-loop
system satis�es speci�cation CS1. This LBF is synthesized as described in Section 4.5.

4.8.3. Case study: Anti-lock braking system
The proposed methodology is demonstrated on an anti-lock braking system. The control
synthesis for an ABS system poses challenges due to the highly nonlinear and uncertain
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Figure 4.10: Longitudinal force vs. tire slip for a wet asphalt with a water level of 3 mm.

dynamic behavior of the wheel slip phenomenon. A longitudinal model of a corner vehicle
is given by: 

v̇(t) = − 1
mF (κ),

ω̇(t) = rt
J F (κ)− σ(ω(t))

J u(t),
ṡ(t) = v(t),

(4.44)

where v(t) denotes the vehicle velocity, ω(t) the wheel angular velocity, s(t) the braking
distance, rt the tire e�ective rolling radius, u(t) the braking torque, m the corner vehicle
mass and J the wheel moment of inertia. Moreover, F (κ) is the longitudinal force due to
the wheel slip κ:

F (κ) = mgd sin(c tan−1
(
b(1− e)κ+ e tan−1(bκ)

)
, (4.45)

with b, c, d and e road surface-speci�c constants and

κ = 1− ω(t)rt
v(t)

the tire slip. Finally, σ : R → R is a continuous approximation of the signum function
de�ned as

σ(x) = tanh(100x). (4.46)

In this case study we use the parameters J = 1.2 kg ·m2, rt = 0.305 m, m = 407.75 kg
and g = 9.81 m/s2. We consider the slip force parameters b = 55.56, c = 1.35, d = 0.4
and e = 0.52, which correspond to wet asphalt for a water level of 3 mm [56]. Figure 4.10
shows the resulting force for di�erent wheel slip values.

The choice of safe set, goal set and initial set are motivated as follows. According to the
EU regulation N13 [155], for wet asphalt the maximum (initial) longitudinal velocity is 90
km/h (=25 m/s). The ABS is initialized of a slip angle of approximately 0 (i.e. x2 = x1/rt)
and is active until the longitudinal velocity meets the threshold of 5 km/h (= 5/3.6 m/s).
Since the radius rt can deviate slightly, we in�ate the initial angular velocity to be bounded
by x1/(rt + δr) ≤ x2 ≤ x1/(rt − δr). Finally, we impose an absolute maximum braking
distance of 100 meters. This motivates the following choices for the safe set, initial set and
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Table 4.10: Value iteration parameters.

Parameter Symbol Value Units

State domain X [0, 10]× [0, 33] m/s ×rad/s
Num. of membership func. N 961 = 31× 31 –
Discount factor γ 0.9999 –
Convergence threshold ε 0.001 –
Sampling period Ts 0.001 s

goal set:

S = [0, 30]× [−10, 30/rt]× [−10, 100] ,

I =

{
x ∈ S

∣∣∣∣ 5

3.6
≤ x1 ≤ 25,

x1

rt + δr
≤ x2 ≤

x1

rt − δr
,

0 ≤ x3 ≤ 0.1} ,
O = {x ∈ S | x1 ≤ 5/3.6} .

Given this safe set, the upper bound on the braking distance compared to the braking
distance obtained from simulation is quite conservative. The bounds on the safe set could
be chosen to be tighter, but this comes at the cost of longer computation times of the used
SMT solver, assuming for the chosen bound a solution exists.

Controller design
For optimal control design, we use a discrete-time model obtained by numerically inte-
grating the continuous-time dynamics (4.44) using the fourth-order Runge-Kutta method
with the sampling period of Ts = 0.001 s. The state is the car velocity, xk = [vk, ωk]>,
and the reward function is de�ned as:

rk+1 = ρ(xk, uk, xk+1) = −x>Qx (4.47)

with Q = diag(1, 0) a weighting matrix, specifying that the car velocity must reach zero,
regardless of the wheel angular velocity.

The parameters of the fuzzy value iteration algorithm are listed in Table 4.10. The
number of membership functions for each state variable was chosen quite large (31) in
order to get a dense coverage of the state-space domain of interest. The discount factor
γ = 0.999 is selected close to one, so that not too much discounting takes place even at
the end of a typical closed-loop transient which lasts about 1200 samples (γ1200 ≈ 0.3).

The resulting policy is:

u(x) = sat
(
k1x1 + k2x2 + k0

)
, (4.48)

with k1 = 474.4, k2 = 152.2 and k0 = 1091.4. This policy is shown in Figure 4.11. For an
initial condition of 90 km/h with a zero wheel slip and a sampling time of 0.001 seconds,
we obtain from simulation a braking distance of 81.7874 meter. In comparison, in the case
of a wheel lock, the braking distance is 90 meter.
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Figure 4.11: Piecewise linear policy (4.48) for wet asphalt with water level of 3 mm.

Table 4.11: Production rules P .

N Rules
〈pol〉 ::= 〈pol〉+ 〈pol〉 | 〈const〉 × 〈mon〉
〈mon〉 ::= 〈var〉 | 〈var〉 × 〈mon〉
〈var〉 ::= x1 | . . . | x3

〈const〉 ::= Random Real ∈ [−10, 10]

Verification
The LBF synthesis is implemented in Mathematica 11.1 and performed on a desktop with
Intel Xeon CPU E5-1660 v3 3.00 GHz using 14 parallel CPU cores. Given the speci�cation
sets S, I ,O, we bias our search by having a grammar that imposes a template for the LBFs
that consists of a polynomial plus a pre-de�ned barrier function. With the safe set written
as S = Π3

i=1[si, si], we use a pre-de�ned barrier function B : R3 → R of the form:

B(x) =

3∑
i=1

〈const〉
x1 − si + ε

, (4.49)

where ε is a parameter that is chosen to be ε = 0.001. In our grammar, the starting symbol
of the LBF is then selected to be

V (x) = S = 〈const〉+ 〈pol〉+B(x), (4.50)

where 〈const〉 and 〈pol〉 denote nonterminals of a constant and polynomial. Besides the
starting symbol, the remainder of the grammar is chosen to be as given in Table 4.11.

We consider a population of 28 individuals with a maximum of 500 generations and
�x the number of CMA-ES generations to be 40. For the sample-based �tness, we start per
inequality with a set of 100 samples, which can be complemented with up to 300 coun-
terexamples, where a �rst-in-�rst out principle is used. The rates of the genetic operators
are 0.5 for both crossover and mutation and the maximum tree recursion depth is chosen
to be 6.

Synthesis is performed over 8 independent runs, in which 5 times an LBF is found
before the maximum number of generations is met. For the 5 successful runs, the statistics
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Table 4.12: Statistics on the number of generations and total time for 5 successful LBF synthesis runs.

Min Max Mean SD
# generations 142 437 257.4 118.2

Total time [min] 51.3 315.6 161.1 104.4

Figure 4.12: Sublevel set A of the synthesized LBF, initial set I and goal set O. Trajectories starting in I remain
in A until they eventually reach O.

on the number of generations and elapsed time is shown in Table 4.12. An example of a
found solution is:

V (x) =− 590553.+ 985.64x1 + 2303.02x2
1 + 1230.37x2

− 1035.76x1x2 + 167.855x2
2 − 1003.36x3

+ 94.5467x1x3 + 6.13646x2
1x3 + 69.6233x2

3.

B(x) =
685.651

0.001 + x1
+

621.366

10.001 + x2
+

631.618

10.001 + x3
.

The corresponding sublevel setA and sets I andO are shown in Figure 4.12. Note that
set A can be seen as a forward invariant sublevel up until O is reached.

By the existence of an LBF, speci�cation CS1 holds w.r.t. the safe set, initial set and
goal set. This implies that for all trajectories starting in the initial set, eventually the target
velocity op 5km/h is reached and the braking distance up to that point is guaranteed to
be below 100 meters. Note that if we select the initial set to be equal to the found sublevel
set A, the conditions in (4.8) still hold, hence for all trajectories starting in A speci�cation
CS1 holds.
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4.9. Conclusion
In this chapter we proposed a framework for formal controller synthesis for hybrid sys-
tems, by means of co-evolution of controllers and Lyapunov-like functions. Addition-
ally, we discussed a specialized framework for nonlinear systems with sampled-data con-
trollers, and used the synthesis of LBF for the veri�cation of near-optimal controllers ob-
tained through reinforcement learning.

The methods have been shown for systems with up to 5 states (in case of the sampled-
data system modelled as a hybrid system). However, general conclusions about scalability
and computation time are highly speculative. To improve the convergence, the method is
best used in combination with expert-knowledge by means of the grammar.
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In this chapter we propose a counterexample-guided inductive synthesis framework for the
formal synthesis of closed-form sampled-data controllers for nonlinear systems to meet gen-
eral STL speci�cations. Rather than stating the STL speci�cation for a single initial condition,
we consider an (in�nite) set of initial conditions. Candidate solutions are proposed using ge-
netic programming, which evolves controllers based on a �nite number of simulations. Sub-
sequently, the best candidate is veri�ed using reachability analysis; if the candidate solution
does not satisfy the speci�cation, an initial condition violating the speci�cation is extracted as
a counterexample. Based on this counterexample, candidate solutions are re�ned until even-
tually a solution is found. The resulting sampled-data controller is expressed as a closed-form
expression, enabling the implementation in embedded hardware with limited memory and
computation power. The e�ectiveness of our approach is demonstrated for multiple systems.

This chapter has been published in [157]. Speci�cally, all sections with the exception of Section 5.1 and 5.5 are
verbatim from [157]; Section 5.5 is an extension on [157, Section 6].
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5.1. Introduction
In the previous chapter, we used genetic programming to co-evolve controllers and can-
didate certi�cate functions, where the latter enabled the veri�cation of the closed-loop
system. However, by also synthesizing both a certi�cate function next to the controller,
the search space is increased considerably. In this chapter, we only synthesize a controller
and verify the closed-loop system by means of reachability analysis [6]. Whereas in the
previous chapter certi�cate functions could only address a subset of signal temporal logic
(STL) speci�cations, in this chapter, we synthesize controllers for full STL speci�cations.
However, instead of considering general hybrid systems, we restrict our focus to continu-
ous systems with disturbances and a sampled-data implementation of the controller. The
approach proposed in this chapter takes again the shape of a CEGIS framework, where we
utilize the recent work on model checking for STL [125] and counterexample generation
using reachability analysis [82].

Previous work using reachability analysis for formal controller synthesis for reach-
avoid problems include [138, 139, 141]. In [138, 141] a framework is proposed to synthe-
size linear controllers for a sequence of time intervals, whereas [139] proposed an MPC-
based approach. Our main contributions are twofold: �rst of all, our framework is able
to synthesize closed-form sampled-data controllers for full STL speci�cations; our second
contribution is the de�nition of quantitative semantics for RTL (see Section 2.3.3), and we
prove that the quantitative semantics is sound and complete. Similar to the quantitative
semantics of STL (see Section 2.3.1), these quantitative semantics provide a measure of
how robustly a formula is satis�ed.

This chapter is organized as follows. First, the problem de�nition and solution ap-
proach are de�ned in Section 5.2. In Section 5.3 we de�ne the quantitative semantics of
RTL. In Section 5.4 and 5.5, we detail how candidate solutions are proposed and veri�ed,
respectively. Section 5.6 discusses dealing with conservatism. The e�ectiveness of the ap-
proach is demonstrated on several case studies in Section 5.7. The results are discussed in
Section 5.8 and the chapter is concluded in Section 5.9.

5.2. Problem definition and solution approach
In this chapter we consider disturbed continuous open-loop systems Σol = (Rn, Fol),
where

Fol(x, u) = {f(x, u, ω) | ω ∈ Ω}, (5.1)

with f : Rn × Rm × Rl → Rn, and x ∈ Rn, u ∈ Rm and ω ∈ Ω ⊂ Rl denote
states, inputs and bounded disturbances, respectively. Note that under this model, the
disturbance ω ∈ Ω acting on the system can change at every time instant. We consider
disturbance realizations w : R≥0 → Ω, which are time-dependent realizations of this
uncertainty parameter ω. We consider sampled-data time-varying state-feedback con-
trollers κ : R≥0 × Rn → Rn such that u(t) = κ(tk, ξ(tk)) for all t ∈ [tk, tk + η), where
tk denotes the k-th sampling instant and η denotes the sampling time. This results in a
sampled-data closed-loop system Σsd with data (Rn+1, F ′ol, κ

′, η) (see De�nition 2.2.7),
where F ′ol(s, u) = (Fol(sx, u), 1), κ′(s) = κ(st, sx), s = (sx, st).

The goal of this chapter is formalized in the following:
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Figure 5.1: Schematic overview of the algorithm.

Problem 5.2.1

Given an STL formula ϕ satisfying Assumption 2.3.1, initial set I ⊂ Rn, and the
open-loop system (5.1), synthesize a closed-form sampled-data time-varying con-
troller κ : R≥0 × Rn → Rm such that the closed-loop system Σsd satis�es

∀ξ ∈ SΣsd(I) : (ξ, 0) |= ϕ (5.2)

In Theorem 2.3.1 in Section 2.3.3, we have seen that (5.2) can be proven by translating
the STL formula ϕ to the RTL formula Ψ using the transformation Υ, and subsequently
proving (R, 0) |= Ψ. In this chapter, we propose a counterexample-guided inductive syn-
thesis (CEGIS) framework to synthesize a controller such that (R, 0) |= Ψ, thereby solving
Problem 4.2.1. The proposed framework consists of iteratively proposing a controller ob-
tained through GGGP1 and then formally verifying the RTL formula using reachability
analysis. The proposed controller is designed based on a set of simulated trajectories,
which correspond to pairs of initial conditions and disturbance realizations. The under-
lying idea is that these simulations are relatively fast to compute and provide a sensible
search direction for the synthesis, whereas the reachability analysis veri�es the resulting
controller.

For a given open-loop system Σol, STL formulaϕ, initial set I , and grammar (N ,S,P),
the algorithm is initialized as follows:

I1) The RTL formula Ψ is computed using Ψ = Υ(ϕ) (see Theorem 2.3.1).

I2) The set of pairs of initial conditions and disturbance realizations I is initialized
by randomly choosing ns initial conditions {x1, . . . , xns} ⊂ I and with random
disturbance realizationswi : R≥0 → Ω, such that I =

{(
x1, w1

)
, . . . , (xns , wns)

}
.

Given the initialized data, the algorithm goes through the following cycle, illustrated in
Figure 5.1, where each cycle is referred to as a re�nement:

A1) A candidate solution is proposed using GGGP, based on simulation trajectories cor-
responding to the set I .

1While GGGP evolves a population of controllers, only the controller with the highest �tness is returned as the
proposed controller.
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A2) For the given candidate controller, the reachable set is computed.

A3) Based on the reachable set, either:

(a) (R, t) |= Ψ, thus a controller solving Problem 4.2.1 is found.
(b) (R, t) 6|= Ψ, and a counterexample is extracted in the form of an initial condi-

tion for which there exists a disturbance realization s.t. the RTL speci�cation
is violated. For this initial condition, a disturbance realization is optimized.
This pair of initial condition and disturbance realization is added to I and the
algorithm returns to step A1).

(c) (R, t) 6|= Ψ and a maximum of re�nements is reached, therefore the algorithm
is terminated.

To quantify the violation or satisfaction of an RTL formula, we introduce quantitative
semantics for RTL in the next section. The proposal of a candidate controller in step A1)
is discussed in Section 5.4. The veri�cation and counterexample generation in step A3) is
discussed in Section 5.5.

5.3. �antitative semantics
Inspired by the quantitative semantics of STL [40, 45], we de�ne quantitative semantics
for RTL in this section. These quantitative semantics provide a robustness measure on
how well the formula is satis�ed. For an RTL formula Ψ with propositional subformulae
ψ, the quantitative semantics is given by functions P (R,Ψ, t) and %(x, ψ), respectively,
recursively de�ned as:

%(x, true) = +∞,
%(x, h(x) ≥ 0) =h(x),

%(x,¬ψ) =− %(x, ψ),

%(x, ψ1 ∧ ψ2) = min(%(s, ψ1), %(s, ψ2)),

P (R,Aψ, t) = min
x∈R(t)

%(x, ψ),

P (R,Ψ1 ∨Ψ2, t) = max(P (R,Ψ1, t), P (R,Ψ2, t)),

P (R,Ψ1 ∧Ψ2, t) = min(P (R,Ψ1, t), P (R,Ψ2, t)),

P (R,©aΨ, t) =P (R,Ψ, t+ a).

The quantitative semantics of STL are sound and complete [39, 45]. The quantitative se-
mantics of RTL also have these properties:

Theorem 5.3.1 (Soundness and completeness). Let Ψ be an RTL formula, R a reachable
set, and t a time instance, then:

1) P (R,Ψ, t) > 0⇒ (R, t) |= Ψ and (R, t) |= Ψ⇒ P (R,Ψ, t) ≥ 0,

2) P (R,Ψ, t) < 0⇒ (R, t) 6|= Ψ and (R, t) 6|= Ψ⇒ P (R,Ψ, t) ≤ 0.
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Remark 5.3.1. Note that P (R,Ψ, t) = 0 does not imply (R, t) |= Ψ nor (R, t) 6|= Ψ. This
is because on the boundary of an inequality, the distinction between inclusion or exclusion is
lost within the quantitative semantics. That is, if %(x, ψ) = 0, we also have %(x,¬ψ) = 0,
hence the quantitative semantics of two mutually exclusive logic formulae evaluate to the
same value.

The proof of Theorem 5.3.1 can be found in Appendix A.10. Consider an STL formulaϕ
satisfying Assumption 2.3.1 for some c and the corresponding RTL formula Ψ = Υ(ϕ) in
the form of (2.11). Using the equivalences©a(Ψ1∧Ψ2) =©aΨ1∧©aΨ2 and rewriting
ψijk in disjunctive normal form, we can express the RTL formula as:

Ψ =
∧
i∈I

∨
j∈Ji,k∈Kij

Ψ′ijk, (5.3a)

Ψ′ijk =©j c
2
A

∨
a∈Aijk

∧
b∈Bijk

a

hijkab (x) ∼ 0, (5.3b)

where Aijk and Bijka denote �nite index sets, ∼∈ {≥, >} and hijkab (x) ∼ 0 is a predicate
over x. Using the quantitative semantics de�ned in Section 5.3, the robustness measure of
this RTL formula is given by

P (R,Ψ, 0) = min
i∈I

(
max

j∈Ji,k∈Kij

P (R,Ψ′ijk, 0)

)
, (5.4a)

P (R,Ψ′ijk, 0) = min
x∈R(j c

2 )

(
max
a∈Aijk

(
min
b∈Bijk

a

hijkab (x)

))
. (5.4b)

5.4. Candidate controller synthesis
In this section, we detail step A1) of the proposed algorithm in Section 5.2, i.e., the pro-
posal of a candidate controller. The candidate controller is synthesized using GGGP, by
maximizing an approximation of the robustness measure, which is based on a �nite num-
ber of simulated trajectories. The sampling time is equal to c/2 to coincide with the
time instances at which the robustness measure P (R,Ψ, 0) is evaluated. For an RTL
formula of the form (2.11), the �rst and the �nal time instances of relevance τ0 and τf ,
are given by τ0 = 0 and τf = c

2 maxi∈I |Ji|, respectively. Given a candidate controller
κ : R≥0 × Rn → Rm, a set of pairs of initial conditions and disturbance realizations I ,
and a time instance τq , we consider an approximated reachable set R̂κI(τq) formed by all
corresponding simulated trajectories x : R≥0 → Rn:

R̂κI(τq)={x(τq) | (x(τ0), w) ∈ I}.

Provided this set R̂κI(τq), we approximate the robustness measure by P (R̂κI ,Ψ, 0).

5.4.1. Outline of the candidate controller synthesis
The proposal of a candidate controller in step A1) undergoes the following steps, which
are also illustrated in Figure 5.2:
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Figure 5.2: Schematic overview of the synthesis of candidate controller.

A1.a) We synthesize an analytic expression κ : R×Rn → Rm by using GGGP to solve:

arg max
κ

P (R̂κI ,Ψ, 0). (5.5)

If for the resulting controllerκ the robustness measure approximationP (R̂κI ,Ψ, 0)
is negative, this optimization step in (5.5) is repeated. Otherwise, the algorithm
continues to the next step.

A1.b) For each initial condition xi in I , an analytic expression for a disturbance realiza-
tion wi : R → Ω is synthesized using GGGP, in which the robustness measure
approximation is minimized, i.e.:

arg max
wi

−P (R̂κI ,Ψ, 0),

subject to I = {(xi, wi)}.
(5.6)

If the corresponding robustness degree approximation P (R̂κI ,Ψ, 0) is negative,
the algorithm returns to step A1.a). Otherwise, if for all updated disturbance
realizations the robustness measure approximation is positive, i.e., ∀i, we have
P (R̂κ{(xi,ωi)},Ψ, 0) > 0, the algorithm returns a candidate controller.

5.4.2. Reference-tracking controllers
To speed up the synthesis, we impose a structure to the solution, based on a nominal
reference trajectory xref(t) and a corresponding feedforward input uff(t). That is, we
consider time-varying reference-tracking controllers of the form:

κ(t, x(t)) = uff(t) + κfb(t, x(t)− xref(t)). (5.7)

where κfb : R≥0 × Rn → Rm is a time-varying feedback controller. The feedforward
input and reference trajectory can be computed beforehand as follows:

R1) Given a point x0 ∈ int(I), (e.g. the centroid of I if I is convex), an analytic expres-
sion for uff : R→ Rm is synthesized using GGGP, by maximizing the approximated
robustness measure for a nominal trajectory starting at x0, i.e. a trajectory with no
disturbance:

arg max
uff

P (R̂uff

I ,Ψ, 0),

subject to I = {(x0, 0l)}.



5.5. Counterexample generation and verification

5

73

R2) Given the feedforward input uff , an analytic expression for the corresponding refer-
ence trajectory xref : R→ Rn is synthesized using GGGP, by �tting an expression
to simulated solution xi(τk) for i ∈ {1, . . . , n}, based on the Euclidean norm of
the error vector ei = [ei(τ0), . . . , ei(τf)], with ei(τk) = xi(τk) − xref,i(τk), i.e.,
maximizing:

arg max
xref,i

(1− ‖ei‖)−1.

Using the synthesized pair (uff(t), xref(t)), the user-de�ned grammar used within GGGP
can be used to enforce the structure of a time-varying reference controller in (5.7) within
step A1), as is demonstrated in the case studies in Section 5.7.

5.5. Counterexample generation and verification
In this section we detail step A3) of the algorithm. First, we detail how a (tight) upperbound
on the robustness measure is derived. Secondly, if this bound implies that the RTL formula
is violated, a corresponding counterexample is extracted. Since an upperbound can only
be used to invalidate the controller, we conclude this section by presenting a method to
formally verify whether the RTL formula is satis�ed.

5.5.1. Robustness measure bounds
In this chapter, we consider polynomial zonotopes PZ as the set representation of the
reachable set:

De�nition 5.5.1 (Polynomial zonotope). Given a generator matrix G ∈ Rn×h and expo-
nent matrix E ∈ Zp×h≥0 , a polynomial zonotope PZ is de�ned as

PZ :=
{∑h

i=1

(
Πp
k=1α

E(k,i)

k

)
G(·,i)

∣∣∣ αk ∈ [−1, 1]
}
.

The vectorα = [α1, . . . , αp]
T is referred to as the parameterization vector of the polynomial

zonotope.

Remark 5.5.1. In this de�nition, without loss of generality and for the ease of exposition,
we only consider (dependent) generators G and we omit independent generators; for the full
de�nition we refer to [81].

The use of polynomial zonotopes is motivated by its useful properties for counterex-
ample generation, discussed in Section 5.5.2. Consider a parameterization vector α and a
reachable set R(t) expressed as a polynomial zonotope. The corresponding point in the
reachable set z(α, R(t)) ∈ Rn is given by:

z(α, R(t)) =

h∑
i=1

(
Πp
k=1α

ER(k,i)

k

)
GR(·,i), (5.8)

whereER andGR denote the exponent matrix and generator matrix ofR(t), respectively.
Given an RTL formula ψ in the form of (5.3) and a reachable set R : R≥0 → 2R

n , the
robustness measure is upperbounded as follows:
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B1) For all subformulae Ψ′ijk in (5.3b), the corresponding robustness sub-score (5.4b) is
computed by solving the following nonlinear optimization problem over the corre-
sponding set R(jc/2):

p∗ijk=min
αijk

(
max
a∈Aijk

(
min
b∈Bijk

a

hijkab (z(αijk, R( jc2 )))

))
. (5.9)

B2) Given the robustness sub-scores p∗ijk , compute the full robustness measure (5.4a):

p∗ = min
i∈I

max
j∈Ji,k∈Kij

p∗ijk. (5.10)

B3) As we rely on nonlinear optimization, we cannot guarantee to �nd the global op-
timum p∗, but rather an upperbound p̂, such that P (R,Ψ, 0) = p∗ ≤ p̂. Given p̂,
either:

(a) p̂ < 0, hence the RTL speci�cation is violated. In this case, given the argument
(ijk)∗ solving (5.10), we use the parameterization vector α(ijk)∗ to extract a
counterexample, as described in Section 5.5.2.

(b) p̂ ≥ 0, hence the RTL speci�cation is potentially satis�ed. However, to guaran-
tee this, we perform an additional veri�cation step, described in Section 5.5.3.

Remark 5.5.2. To use gradient-based optimization, the max and min function can be ap-
proximated by the smooth and di�erentiable function

Mβ
a∈A

(xa) =

∑
a∈A xae

βxa∑
a∈A e

βxa
, (5.11)

where A denotes an iterator set and for β →∞, Mβa∈A(xa)→ maxa∈A xa and β → −∞,
Mβa∈A(xa)→ mina∈A xa.

5.5.2. Counterexample generation
If the RTL formula is not satis�ed, we want to obtain a counterexample, which can be
subsequently used to re�ne the controller design. This counterexample is a pair of ini-
tial condition and disturbance realization (x,w), such that the corresponding trajectory
results in a violation of the RTL formula. As mentioned before, we use polynomial zono-
topes as the set representation of the reachable set. The bene�t of polynomial zonotopes
as set representation is that dependencies between points in subsequent reachable sets is
maintained under the reachability analysis operations [82]. That is, for a reachable set
R : R≥0 → 2R

n and parameterization vector α, we have for two time instances t and τ :

ξ(t) = z(α, R(t)) =⇒ ξ(τ) = z(α, R(τ)). (5.12)

A counterexample corresponding to the optimization steps in B1) and B2) is extracted as
follows. Given the reachable set R, the argument (ijk)∗ solving (5.10) in step B2) and the
corresponding parameterization vector α(ijk)∗ from (5.9) in step B1), the corresponding
initial condition is given by ξ(0) = z(α(ijk)∗ , R(0)). This procedure based on polyno-
mial zonotopes is described in exact detail in [82]. For this counterexample x = ξ(0), a
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disturbance realization w is optimized similarly to step A1.b), i.e., GGGP is used to solve
the following problem:

arg max
w

−P
(
R̂κ{(x,w)},Ψ, 0

)
.

The pair (x,w) is subsequently added to I . This new set I is then used to improve upon
the synthesized controller in step A1).

5.5.3. Verification
Computing the robustness degree (5.4) for general formulae results in nonlinear optimiza-
tion problems, originating from the set representation of R(t) and the function hijkab :
Rn → R (see also Section 5.5.2). Therefore, instead of exactly computing the robustness
degree in order to formally verify the RTL formula, we employ Satis�ability Modulo The-
ories (SMT) solvers [15], which are capable of verifying �rst-order logic formulae. The
subformula (5.3b) holds if the following �rst-order logic formula holds:

∀x ∈ R
(
j
c

2

)
:
∨

a∈Aijk

∧
b∈Bijk

a

hijkab (x) ∼ 0, (5.13)

where again ∼∈ {≥, >}. Suitable SMT solvers to verify (5.13) include Z3 [32] when
R(jc/2) and hijkab are expressed as polynomials, and dReal [51] when these are expressed
as general nonlinear expressions 2. Given the Boolean answer to the subformula (5.3b) for
all ijk, it is trivial to compute the Boolean answer to (5.3a).

5.6. Dealing with conservatism
Due to both the conservatism in the reachability analysis and the transformation from
STL to RTL, it is possible that (R, 0) 6|= Ψ, whereas ∀ξ(0) ∈ I , (ξ, 0) |= ϕ, i.e., the desired
STL speci�cation holds for all initial conditions, whereas based on the reachability set, the
RTL speci�cation is not met. To counter this, the reachability analysis can be made less
conservative by re�ning settings such as the time steps or Taylor order (see [7]). Secondly,
the transformation Υ could be performed for a smaller time-discretization parameter c to
obtain a less conservative RTL formula Ψ.

Issues due to conservatism can also be dealt with within the synthesis of a candidate
controller in step A1). For example, the population of controllers within GGGP could be
further optimized w.r.t. the robustness measure approximation, such that the added ro-
bustness could potentially compensate for the conservatism within the reachability anal-
ysis. Additionally, controllers can be optimized with respect to both robustness measure
and complexity, as less complex controllers might result in less conservatism within the
reachability analysis. This results in a multi-objective optimization problem. In this work
we consider the �tness criteria for complexity to be de�ned as the the number of non-
terminals of an individual. We use the non-dominated sorting algorithm NSGA-II [33], a
Pareto optimal-aware sorting algorithm, which ranks candidate controllers based on the
Pareto optimality of both �tness criteria. This rank is then used as �tness value within
2Recall that dReal implements a δ-complete decision procedure [50]. However, if the reachable set is robust w.r.t.
the RTL formula, this caveat has no consequence.
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Table 5.1: General settings for each of the case studies. The number of individuals, GGGP generations and
CMA-ES generations are shown for each controller component and disturbance realizations.

System ns
Individuals GGGP generations CMA-ES generations

uff xref κ wi uff xref κ wi uff xref κ wi

Car 7 14 14 14 14 30 10 3 3 20 10 10 3
Path planning 10 28 28 14 14 30 50 3 3 40 40 10 3

Aircraft 5 28 42 14 14 50 50 5 5 40 60 10 3

Table 5.2: Production rules P .

N Rules

〈expr〉 ::= 〈pol〉 | 〈pol〉 × 〈trig〉 | 〈expr〉+ 〈expr〉
〈trig〉 ::= tanh(〈pol〉) | sin(〈pol〉) | cos(〈pol〉)
〈pol〉 ::= 0 | 〈const〉 | 〈const〉 × 〈mon〉 | 〈pol〉+ 〈pol〉
〈mon〉 ::= t | t× 〈mon〉
〈const〉 ::= Random Real ∈ [−1, 1]

the selection. To make sure the controller with the best robustness measure is always
maintained within the population, this controller is always directly copied into the new
generation.

Finally, there is a gap between the approximated reachable set R̂κI and the reachabil-
ity analysis. There are two sources that can cause signi�cant mismatches between this
approximation and actual robustness measure. The �rst source is truncation errors of the
integration scheme. Secondly, due to the added conservatism within reachability analysis,
the reachable set can contain additional trajectories which are not admitted by the original
system. To bridge this mismatch, we can consider an optional error signal ε added to the
simulated trajectory x(τq), which is co-synthesized with the disturbance realizations, as
will be shown in the case studies in the next section.

5.7. Case studies
In this section we demonstrate the e�ectiveness of the proposed framework on a car
benchmark, path planning problem and aircraft landing manoeuvre. The case studies are
performed this section is performed using an Intel Xeon CPU E5-1660 v3 3.00GHz us-
ing 14 parallel CPU cores. The GGGP and CMA-ES algorithms are both implemented in
Mathematica 12 and the reachability is performed using CORA in MATLAB. For the non-
linear optimization and veri�cation in Section 5.5, we use particle swarm optimization of
the global optimization toolbox in MATLAB, and the SMT solver dReal with δ = 0.001,
respectively.

Across all benchmarks, the probability rate of the crossover and mutation operators
being applied on a selected individual are 0.2 and 0.8, respectively. Each generation, pa-
rameters within an individual are optimized using CMA-ES. Benchmark-speci�c settings
are shown in Table 5.1, which include the number of simulations ns, number of individu-
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als, and the number of GGGP and CMA-ES generations. Note that the number of GGGP
generations for κ and wi is the number of generations per step A1.a) and A1.b), and not
the total of GGGP generations per proposal of a controller in step A1), which depends
on the number of times step A1.a) and A1.b) are repeated. For each case study, we use a
grammar with nonterminals and production rules as shown in Table 5.2. These nontermi-
nals correspond to general expressions 〈expr〉, trigonometric functions 〈trig〉, polynomial
expression 〈pol〉, monomials 〈t〉 and constants 〈const〉. The expressions are formed by
polynomials, a product of a polynomial and trigonometric functions, and a sum of two
expressions. The trigonometric functions are restricted to hyperbolic tangents, sines and
cosines with polynomial arguments. The polynomials are restricted to polynomials over
time t. Note that per case study, di�erent starting trees are used, such that potentially only
a subset of the grammar is available. E.g., if the starting tree is 〈pol〉, candidate solutions
are restricted to polynomial solutions.

We use Runge-Kutta as numerical integration scheme. To keep a constant number of
initial conditions in I , counterexamples are added using a �rst-in, �rst-out principle. To
compensate for the gap between the simulation and the reachability analysis (as discussed
in Section 5.6), we consider an added error signal bounded by the scaled vector �eld of the
dynamics f , parameterized by

ε(t, x) = δσ(t)f(t, x(t), u(t), w(t)), (5.14)

where δ is a constant and σ : R≥0 → [−1, 1]n×n a time-varying diagonal matrix which
determines the sign and magnitude of the error signal. The constant δ is optimized after
each reachability analysis such that the mismatch between the robustness measure and
the approximated robustness measure is minimized, i.e.:

arg min
δ

∥∥∥P (R,Ψ, 0)− P
(
R̂κ{(x,w)},Ψ, 0

)∥∥∥ , (5.15)

where {(x,w)} is the counterexample pair computed in Section 5.5.2.
Finally, in reporting the synthesized controllers, its parameters are rounded from six

to three signi�cant numbers for space considerations.

5.7.1. Car benchmark
Let us consider a kinematic model of a car from [138]: f(x, u, w) = (u1 + w1, u2 + w1, x1 cos(x2), x1 sin(x2)T ,

I = [19.9, 20.2]× [−0.02, 0.02]× [−0.2, 0.2]2,
Ω = [−0.5, 0.5]× [−0.02, 0.02].

where the states x1, x2, x3, x4 denote the velocity, orientation, and x and y position of the
car, respectively. Furthermore, u1 and u2 denote the inputs and w1 and w2 disturbances.
The sampling time of the sampled-data controller is set to be 0.025 seconds. Similarly to
[138], we consider a “turn left" maneuver over a time interval T = [0, 1], where within T ,
the trajectories stay within the safe set S and at the �nal time instant, the system is in the
goal set, captured by the STL speci�cation:

ϕ1 = �[0,1]ϕS ∧�{1}ϕO, (5.16)
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(a) (b) (c) (d)

Figure 5.3: Reachable set for the �rst controller for the car benchmark, which violates the desired controller
speci�cation. Figures (c) and (d) illustrate the reachable set near the goal set. Red dots: a point in the �nal
reachable set that is outside of the goal set and it’s corresponding initial state, yellow: initial set, green: goal set
G, gray: reachable set, red: safe set S, blue: reachable set at t = 1, black: example of simulation traces.

(a) (b) (c) (d)

Figure 5.4: Reachable set for the �nal controller for the car benchmark, which formally satis�es the desired
controller speci�cation. Figures (c) and (d) illustrate the reachable set near the goal set. Sets and simulation
traces are indicated as in Figure 5.3.

where ϕS , ϕO denote the logic formulae capturing the set membership of S and O (see
Section 2.3). We consider the following safe set S and goal set O:

S = [19.5, 20.5]× [−0.1, 0.3]× [−1, 25]× [−1, 5],

O = [19.95, 20.05]× [0.18, 0.22]× [19.85, 19.9]× [1.98, 2].

To guide the synthesis, we impose the reference-tracking controller structure from Section
5.4.2 and therefore we �rst design a feedforward signal and reference trajectory using
GGGP. For uff , xref , we use polynomial expressions as a function of time t, for the feedback
law κwe restrict the search space to reference-tracking controllers which are linear in the
tracking error and polynomial in time:

κ(x, t) = uff(t) +K(t)(x− xref), (5.17)
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and for wi we consider saturated polynomials in time. This is done using the grammar
with starting trees:

Suff
= (〈pol〉 , 〈pol〉)T , Sxref,i

= 〈pol〉 ,

Sκ = uff +

(
〈pol〉 , . . . , 〈pol〉
〈pol〉 , . . . , 〈pol〉

)
(x− xref),

Swi =
(
sat(ω1,ω1)(〈pol〉), sat(ω2,ω2)(〈pol〉)

)T
.

Here, sat(ωi,ωi) denotes a saturation function such that wi(t) ∈ Ω, where

sat(ωi,ωi)(x) = max(ωi,min(x, ωi)). (5.18)

Finally, for each disturbance realization, we co-evolve the error signal εi in (5.14), which
is dependent on the candidate controller κ and disturbance realization wi:

Sεi = δσf(t, x, κ(x), wi),

σ = diag(sat(−1,1)(〈pol〉), . . . , sat(−1,1)(〈pol〉)),

where diag denotes a diagonal matrix. For the simulations and reachability analysis, we
use a sampling time of 0.025 seconds and 0.0125 seconds, respectively.

First, a feedforward control input and reference trajectory for a nominal initial con-
dition are synthesized as described in Section 5.4.2. An example of a found feedforward
controller and corresponding reference trajectory are shown in Table 5.5. For 10 indepen-
dent runs, the average synthesis times of uff and the reference trajectory per dimension
xref,i are shown in Table 5.4. Using these uff and xref as building blocks for the controller,
κ is synthesized as described in step A1). An example of a synthesized K(t) in (5.17) is
given by

K(t) =

(
−41.5 −6.48t2 −84.3958 9.45
3.58 −30.1 −8.22 3.62t1− 49.2t2

)
.

The corresponding reachable set is shown in Figure 5.3. We observe that the �nal reachable
set is not within the goal set. The red dots represent the violation and the corresponding
initial condition. For this violation x, a disturbance realizationw is optimized and the pair
(x,w) is added to I and fed back to the GGGP algorithm. After re�ning the controller
iteratively, an example of a controller satisfying ϕ1 after 3 re�nements is shown in Table
5.5. The corresponding reachability analysis is shown in Figure 5.4 and it shows that for
this controller the controller speci�cation is formally met.

For 10 independent synthesis runs of κ, the statistics on the number of generations,
number of re�nements, complexity in terms of number of nonterminals, and computation
time is shown in Tables 5.3 and 5.4, and Figure 5.8. In most cases, a solution was obtained
around 3 re�nements. However, due to the stochastic nature of the approach, in one case
it took 20 re�nements before a solution was found.

5.7.2. Input saturation
In our general framework, we do not canonically consider input saturation. Input satura-
tion can be considered in multiple ways, such as restricting the grammar of the controller
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(a) (b) (c) (d)

Figure 5.5: Reachable set of the controller for the car benchmark under input constraints. Figure (c) and (d) show
the reachable set of the input over time. Sets and simulation traces are indicated as in Figure 5.3.

to include a saturation function, or even a continuous approximation using e.g. a sigmoid
function. However, the downside of such an approach is that the reachability analysis un-
der these functions is typically challenging for state-of-the-art reachability tools, due to
the strong nonlinearity or hybrid nature. Instead, for illustrative purposes, we incorporate
the constraint within the STL speci�cation, such that for all states in the reachable set the
saturation bounds are not exceeded. Let us revisit the car benchmark, where we consider
the same input constraints as in [138], namely u ∈ U = [−9.81, 9.81] × [−0.4, 0.4]. The
STL speci�cation is extended to:

ϕ2 = ϕ1 ∧�[0,1]ϕU (5.19)

with
U =

{
x ∈ Rn | κ(x) ∈ U

}
. (5.20)

The synthesis statistics are shown in Tables 5.3 and 5.4, and Figure 5.8. An example of
a synthesized K(t) in (5.7) is given by

K(t) =


−18.1 + 18.2t− 65.9t6 0.22t

0 −8.26− 41.8t
−29.6− 48.7t 0
−11.2t −33.1t2


T

.

The corresponding reachability set is shown in Figure 5.5. In most cases, a solution was
found in around 4 to 5 re�nements, with the exceptions of two runs with 20 and 40 re�ne-
ments, respectively.

5.7.3. Path planning
Let us consider the path planning problem for a simple robot adopted from [95]. We
deviate from [95] in considering the system in continuous time and consider bounded
disturbances. The system is described by: f(x, u, w) = (u1 + w1, u2 + w2, x1, x2)T ,

I = {0}2 × [0.5, 1.5]2,
Ω = [−0.05, 0.05]2,
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(a) (b)

Figure 5.6: Reachable set of a found controller for the path planning benchmark. (a) Reachable set of the x-y
position. (b) Reachable set of the input over time. Yellow: initial set, gray: reachable set, red: safe set S and input
constraints, green: target sets P1, P2, and P3, black: selection of simulated trajectories, blue: reachable sets at
certain time instances within one of the target sets.

where the state vector represents the x-velocity, y-velocity, x-position and y-position,
respectively. The sampling time of the sampled-data controller is chosen to be 0.5 seconds.
Similar to [95], we consider the speci�cation in which the system needs to remain in a safe
set S and eventually visit regions P1, P2 and P3:

ϕ′ = �[0,25]ΨS ∧ ♦[5,25]ΨP1
∧ ♦[5,25]ΨP2

∧ ♦[5,25]ΨP3
. (5.21)

with S = {x ∈ Rn | (x3, x4) ∈ [0, 10]2}, P1 = {x ∈ Rn | (x3, x4) ∈ [8, 10]2},
P2 = {x ∈ Rn | (x3, x4) ∈ [8, 10] × [0, 2]}, P3 = {x ∈ Rn | (x3, x4) ∈ [0, 2] × [8, 10]}.
In [95], the input is constrained s.t. u ∈ U = [−1, 1]2. Similar to Section 5.7.2, we impose
this constraint through the STL speci�cation, yielding the following STL speci�cation:

ϕ = ϕ′ ∧�[0,25]ϕU , (5.22)

where U is given by (5.20). We consider the same controller structure and grammar as
the previous benchmark, with the exception of the grammar of the feedfoward input and
reference trajectory. For these elements, we extend the grammar to expressions which
can include trigonometric functions, by using the grammar in Table 5.2 and the follow-
ing starting trees Suff

= (〈expr〉 , 〈expr〉) and Sxref,i
= 〈expr〉. For the simulations and

reachability analysis, we use a sampling time of 0.5 seconds. The statistics on the synthe-
sis is again shown in Tables 5.3 and 5.4. An example of the controller elements uff , xref and
K(t) of a synthesized controller are shown in Table 5.5 and Figure 5.8. The corresponding
reachable set of the state and input is shown in Figure 5.6. Across 10 independent runs,
commonly in 1 to 2 re�nements a solution was found, with one run requiring 8 re�ne-
ments.
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5.7.4. Landing maneuver
Let us consider the landing aircraft maneuver, adopted from [124]. The system model is
given by 

f(x, ν, w)=

 1
m (ν1cos ν2−D(ν2, x1)−mgsinx2)
1

mx1
(ν1sin ν2+L2(ν2, x1)−mgcosx2)

x1 sinx2

 ,

D(ν2, x1) = (2.7 + 3.08(1.15 + 4.2ν2)2)x2
1,

L(ν2, x1) = (68.6(1.25 + 4.2ν2))x2
1,

νi = ui + ωi, i = 1, 2,
I = [80, 82]× [−2◦,−1◦]× {55}
Ω = [−5 · 103,−5 · 103]× [−0.25◦, 0.25◦],

where the states x1, x2, x3 denote the velocity, �ight path angle and the altitude of the
aircraft, νi denotes a disturbed input, where u1 denotes the thrust of the engines and u2 the
angle of attack. Finally, D(ν, x1) and L(ν, x1) denote the lift and drag, respectively, and
m = 60 · 103 kg, g = 9.81m/s2. The sampling time of the sampled-data controller is set
at η = 0.25 seconds. Compared to [124], we do not consider measurement errors, but the
proposed framework can be adapted arbitrarily to accommodate this type of disturbance.
We de�ne the following safe set, goal set and input bounds:

S =[58, 83]× [−3◦, 0◦]× [0, 56],

G =[63, 75]× ([−2◦,−1◦]× [0, 2.5])

∩ {x ∈ R3 | x1 sinx2 ≥ −0.91},
U =[0, 160 · 103]× [0◦, 10◦]

and consider the following speci�cation:

ϕ = (ϕS ∧ ϕU )U[18,20]ϕG, (5.23)

where the set U is given by (5.20). That is, trajectories are always within the safe set and
satisfy the input constraints, until between 18 and 20 seconds the goal set is reached.

We use the same controller structure and grammar as the path planning problem. For
the simulations and reachability analysis, we use a sampling time of 0.25 seconds. The al-
gorithm settings are shown in Table 5.1. The statistics of 10 independent synthesis runs are
again shown in Tables 5.3 and 5.4, and Figure 5.8. An example of the controller elements
uff , xref and K(t) of a synthesized controller are shown in Table 5.5. The corresponding
reachable set of the altitude over time, as well as the reachable sets of the pitch angles at
multiple time instances are shown in Figure 5.7.

5.8. Discussion
In this section we discuss the main results from Section 5.7 and compare them to the
results in the literature. Recall that a GGGP generation is the cycle of creating a new pop-
ulation through �tness evaluation, selection and applying genetic operators. A re�nement
is de�ned as the cycle of proposing a candidate solution based on GGGP, validation us-
ing reachability analysis, and extracting counterexamples. Therefore, in each re�nement,
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Figure 5.7: Time evolution of the reachable set of the altitude x3 under a synthesized controller for the landing
maneuver. Gray: Reachable set over time of the altitude x3. Blue: the set of the aircraft pitch x2 +u2 for 8 time
intervals.

Table 5.3: Statistics over an average of 10 independent synthesis runs. Total gen.: total number of GGGP gener-
ations for κ before a solution was found; Total ref.: total number of re�nements; Complexity: number of total
nonterminals within the genotype of the synthesized controller; min: minimum; med: median; max: maximum.

System Total gen. Total ref. Complexity

min med max min med max min med max

Car 63 205.5 1410 3 6 19 14 27 69
Constrained car 84 318 933 2 5 8 24 35.5 56

Path planning 3 16.5 117 1 2.5 9 8 11.5 15
Aircraft 45 342.5 1165 2 5 16 24 36 58

there are one or multiple GGGP generations. First of all, Figure 5.8a shows a polynomial
relation between the number of re�nements and the total number of GGGP generations.
Secondly, Figure 5.8b shows a polynomial relation between the number of re�nements
versus the total computation time. Finally, Figure 5.8c illustrates that more re�nements
does not imply that complexity of the controller increases. However, the complexity of
the found controller does seem to be dependent on the system and STL speci�cation.

While the computation time is related to the number of re�nements, this relationship
depends on the STL speci�cation and the dynamics. For the car benchmark without and
with input constraints, we observe that the added constraints within the STL speci�ca-
tion increased the required number of generations, and typically required more time per
re�nement. Hence, the total computation time heavily depends on the STL speci�cation,
as expected. Additionally, we observe an increase in the median of the complexity of the
resulting controllers. The input-constrained car and path planning benchmarks are both
four-dimensional systems, where the STL speci�cation of the latter is more involved. Re-
gardless, the path planning problem has a lower computation time and requires less gen-
erations and number of re�nements, indicating a dependency between the computation
time and the dynamics of the system, which is also as expected.

In [138], the synthesis time for the car benchmark is around 10 seconds, which is sig-
ni�cantly shorter than the synthesis time of the proposed framework. The resulting con-
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Table 5.4: Time statistics over an average of 10 independent synthesis runs. Time FF: average computation
time of the feedforward components; Time: total time of the controller synthesis (excluding the feedforward
synthesis); GP κ: synthesis of candidate κ using GGGP; GP ω: disturbance realization optimization; RA: reach-
ability analysis; CE: counterexample extraction; SMT: verifying the speci�cation through an SMT solver; min:
minimum; med: median, max: maximum. The average contribution percentages do not sum up to one, as the
contribution of routines such as writing (SMT) �les are not displayed.

System Time FF [s] Time [min] Average contribution to total time [%]

uff xref,i min med max GP κ GP ω RA CE SMT

Car 45.1 1.2 16.5 41.6 204.1 37.9 26.2 3.15 19.3 3.44
Constrained car - - 28.0 61.2 117.0 42.5 17.2 1.70 15.8 9.19

Path planning 254.0 19.1 14.1 23.8 61.8 7.61 9.50 3.05 17.2 27.8
Aircraft 708.2 46.2 44.0 165.1 422.8 36.7 22.5 12.9 10.29 7.71

Table 5.5: Examples of synthesized controllers. Numerical values are rounded for space considerations.

System Car (unconstrainted) Path planning Aircraft

uff

(
0.01835
0.1995

) (
0.500 cos(0.362t+ 0.0733)
−0.190 sin(0.678 − 0.324t)

) (
255.68 + 107.57t2

0.00956 + 0.00419t

)

xref


19.999 + 0.020567t

0.19954t
19.981t− 0.10838t4

1.9915t2.




0.03t− 3.81 cos(0.361t) + 4.72
1.38 sin(0.361t) + 0.024

0.406t+ 1.88 cos(0.312t+ 0.949),
0.427− 0.583 cos(0.765 − 0.325t)


 81.5− 0.380t− 1.28 sin(0.393 + 0.164t)

(−0.164− 1.59 · 10−3t) cos(0.103t) + 0.138 cos(0.120t)
55.7− 0.674 cos(0.354t)− 2.96t sin(0.788 + 0.062t)



K(t)


−43.4 −8.28t5

3.94 −33.3
−89.6 −6.21
307.3t2 −10.1


T 

−0.264 0
−0.125t −0.204

0 −0.781
0.209t −1.35


T  −2.67t3 −0.00607

−0.407− 0.0636t −0.0217− 0.237t− 0.0348t2

−0.788− 0.461t −0.00023t2

T

troller consists of a linear controller for each sampling time, resulting in 10 controllers in
total. For longer time horizons and/or �ner time discretization, this number of controllers
increases. On the other hand, our method is able to �nd a single controller, independent
of the sampling time.

Comparing the proposed framework to MPC approaches, such as the approach used
for the path planning problem in [95], we obtain a closed-form controller for which the STL
speci�cation is guaranteed, whereas MPC-based approaches require online optimization
to compute the controller input.

For the aircraft benchmark, the abstraction-based method in [124] yields a controller
which can be seen as a look-up table, in which the state space is partitioned into over
2.26 million states. For each region within this partition, a �nite set of admissible inputs
are stored, resulting in a nondeterministic controller. This controller is stored as a binary
decision diagram (BDD) with the size of 2.87 MB and can be further reduced to 0,15 MB
by removing nondeterminism (see [170]). Additionally, to parse the BDD format, special
libraries are required. On the other hand, our controller can be stored in a text �le within
916 bytes and is simply expressed as single analytic function. The synthesis time in [124]
is 674 seconds for the abstraction and 26 seconds for the controller synthesis, which is
again signi�cantly shorter than the presented framework. However, one could leverage
that storage space in embedded hardware is �nite, whereas bounds on o�ine computa-
tion time are typically less restrictive. Moreover, the abstraction yields a �nite transition
system with 9.38 · 109 transitions. For higher dimensional systems, due to the curse of
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Figure 5.8: Number of re�nements versus (a) number of GGGP generations, (b) time in minutes, and (c) com-
plexity of the controller, measured in number of nonterminals.

dimensionality, the platform used to synthesize the controller can run into memory con-
straints. While the proposed framework in this work is computationally intensive, it does
not su�er from the same curse of dimensionality w.r.t. memory constraints. Additionally,
our framework is capable of guaranteeing the speci�cation over continuous-time trajec-
tories, as opposed to over discrete-time trajectories, as is done in [124].

Relying on GP, the proposed framework is not a complete method. That is, the method
is not guaranteed to �nd a solution in a �nite number of iterations, regardless of its exis-
tence. Nevertheless, for the presented case studies, in 10 independent runs a solution was
always found. Since the search space is navigated nondeterministically, we observed that
the number of GGGP generations, number of re�nements and computation time can vary
signi�cantly for each run.

Across all benchmarks, the o�ine computation time for the proposed method is signi�-
cantly larger than corresponding references. However, there are several elements in which
the computation time can be improved. First of all, GGGP and the reachability tool are
implemented in Mathematica and Matlab. By implementing these elements in lower-level
programming languages, a speed-up is expected. Analyzing the contribution to the total
computation time in Table 5.3, we observe that, in general, GGGP takes up the majority of
the computation time. GGGP is highly parallelizable and is in this work not fully exploited,
as we only consider 14 individuals, matching the number of used processor cores. By fur-
ther exploiting the parallelizable nature of GGGP and therefore exploring a larger part of
the search space each generation, a signi�cant speed-up is expected. Thirdly, by limiting
to a fragment of STL, e.g., by restricting h(s) to be linear, computing the robustness de-
gree can be simpli�ed and therefore improve the computation time of counterexamples.
If additionally the robustness measure is upper bounded in a non-conservative manner,
the use of SMT solvers becomes redundant. This would signi�cantly reduce the compu-
tation time for benchmarks such as the path planning problem. Finally, we imposed input
constraints through the STL speci�cation. By using saturation functions in our grammar,
the input constraints are satis�ed by de�nition, simplifying the synthesis. However, as
caveat, discontinuous functions such as saturation functions signi�cantly complicate the
reachability analysis.
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5.9. Conclusion
We have proposed a framework for CEGIS-based correct-by-construction controller syn-
thesis for STL speci�cations based on reachability analysis and GGGP. The e�ectiveness
has been demonstrated based on a selection of case studies. While the synthesis time is
signi�cantly longer compared to the methods in e.g. [138] and [124], the proposed method
results in a compact closed-form analytic controller which is provably correct when im-
plemented in a sampled-data fashion. This enables the implementation in embedded hard-
ware with limited memory and computational resources.



6
Discussion

In this chapter we discuss the main di�erences between the methodologies based on cer-
ti�cate functions and reachability analysis from Chapter 4 and 5, respectively. Addition-
ally, we discuss how both methods can be extended to cover a wider class of systems or
speci�cations in Sections 6.2 and 6.3.

6.1. Comparison
In this section we compare the two approaches: based on certi�cate functions and em-
ploying reachability analysis, in terms of scalability with respect to the computational
cost, initial set size, system dimensions, and the capability to deal with input saturation
and general hybrid e�ects, and �nally the class of speci�cations the method addresses.

Computational cost First, let us consider the computational complexity of the �tness
function for a reach-while-stay speci�cation w.r.t. a safe set S and goal set O that are
expressed the form:

Y =
{
s ∈ Rn

∣∣∣ ∧nY

i=1
bY,i(s) ≤ 0

}
, (6.1)

where Y ∈ {S,O}, nY > 0 and bY,i : Rn → R for all i ∈ {1, . . . nY }.
For the certi�cate-based approach, let us consider the reach-avoid speci�cation ϕ =

ϕSU[0,∞)ϕO . The sample-based �tness is computed by computing for a number of state-
space samples a satisfaction measure (4.11) for each of the LBF conditions. For the reach-
avoid speci�cation, the worst-case complexity of (4.11) is O(nS), where nS denotes the
number of inequalities used to de�ne the safe set in (6.1). As a result, the complexity of the
sample-based �tness isO(nSnsamp), where nsamp denotes the total number of state-space
samples considered. For purely continuous-time systems (see Section 4.8) the complexity
isO(nsamp) and for the specialized framework for continuous-time systems with sampled
data controllers (see Section 4.7.2) the complexity is O(nqnsamp), where nq denotes the
number of controller modes.
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For the reachability-based approach, let us consider the reach-avoid speci�cation ϕ =
�[0,T ]ϕS ∧ �{T}ϕO1. For this STL speci�cation, the RTL formula is given by Ψ =∧
i∈I© c

2
AψS ∧ ©TAψO , where I = {0, 1, . . . , 2T/c}, ψS = ϕS and ψO = ϕO

2. The
corresponding robustness measure is given by

P (R,Ψ, 0) = min

(
min
i∈I

(
min
x∈R(i)

ρ(x, ψS)

)
, min
x∈R(T )

(ρ(x, ψO))

)
. (6.2)

The �tness is computed by performing ns numerical simulations to form an approximated
reachability set R̂ and computing the corresponding robustness measure. For the simula-
tions, assuming a Runge-Kutta numerical integration scheme with a time step of c/2, the
complexity is O(Tc ns). Let us assume the complexity of the max and min operators to be
O(n), where n denotes the number of function arguments. The complexity of P (R̂,Ψ, 0)
is O(Tc nsnS), where we assumed T

c nsnS � nsnO .
To summarize, the complexity of the certi�cate-based approach scales w.r.t. the num-

ber of considered state-space samples and, depending of the class of system, the de�nition
of the safe set and the number of controller modes. On the other hand, the complexity of
the reachability-based approach scales with the number of simulated trajectories, the sam-
pling time, the considered time horizon, and the de�nition of the considered sets. Whereas
the certi�cate-based approach is completely independent of the time, the complexity of the
reachability approach scales with the time horizon and the time step c.

In terms of veri�cation, for the the certi�cate-based approach the veri�cation solely
relies on SMT solvers, whereas for the reachability-based approach it relies on both reacha-
bility analysis and SMT solvers. For the certi�cate-based approach, the number of inequal-
ities to verify with an SMT solver is dependent on the speci�cation, i.e. reach-while-stay
or reach-and-stay-while-stay, whereas for the reachability-based approach, the number
of inequalities to verify with an SMT solver depends on both the speci�cation and the
sampling time chosen for the reachability analysis.

Finally, let us discuss the total computation time. For the certi�cate-based approach,
the total computation time depends on the number of considered state-space samples,
but also the system dynamics and system order. For the reachability-based approach, the
computation time depends on the number of simulated trajectories, numerical integration
scheme and its step size, but also the STL speci�cation and system dynamics. However,
for both methods, more experiments and analysis are required to solidify claims regarding
the relation between the computation time and these factors.

Scalability w.r.t. initial set For the certi�cate-based approach, the size of the initial set
is of limited in�uence. However, for better convergence, more test samples of the initial set
could be considered. On the other hand, for the reachability-based approach, the impact
of the initial set’s size is signi�cant. First of all, to cover the full range of representable
system behaviors starting in the initial set, a higher number of simulations can be con-
sidered. While an added sampled state in the certi�cate-based approach corresponds to a
single additional function evaluation, the additional simulation in the reachability-based
1Alternatively we could considerϕ = ϕSU[0,T ]ϕO , but its RTL formula is less practical for illustrative purposes.
2Note that this RTL formula is not expressed in the standard form in (2.11)
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approach has a signi�cantly higher computation cost. Secondly, the increased size of the
initial set can also have negative consequences for the reachability analysis. That is, in the
employed reachability tool CORA [8], a larger initial set is likely to either introduce ad-
ditional conservatism, as the abstraction errors in the reachability analysis increase with
larger sets, or the problem is split up into several reachability problems, increasing the
computation cost.

Scalability w.r.t. system dimension For the certi�cate-based approach, we have seen
in Section 4.6.7 that higher system dimensions correlate with longer computation times.
This is expected, as the complexity of the co-synthesized certi�cate functions signi�cantly
increases for higher-dimensional systems and more samples are required to cover the sets.
Additionally, in some cases no solution was found. However, this can partly be coun-
tered by supplying additional expert-knowledge. The reachability-based approach has
been shown to be e�ective on larger system dimensions. Nevertheless, as discussed be-
fore, the computation time is dependent on a wide range of factors and further research
is required to establish more solid conclusions.

Input saturation Input saturation can be applied naturally within the certi�cate-based
approach, without signi�cantly impacting the synthesis time. This is done by either di-
rectly using discontinuous functions to bound the input, e.g. by using a saturation func-
tion, or by considering a �nite discretized set of controller inputs as done in Section 4.7.
On the other hand, for the reachability-based approach, saturation signi�cantly compli-
cates the synthesis, as discussed in Section 5.7.2. This is because discontinuous functions
signi�cantly a�ect the complexity of the reachability analysis. However, as we have seen,
it is possible to include the input saturation as an additional speci�cation, such that for
all trajectories the saturation bounds are never met. However, this added constraint can
result in longer synthesis times, as the complexity of the approach scales with the number
of constraints and because the controller has to evolve additional nonlinearities to counter
input constraint violations.

General hybrid e�ects As we have seen in Chapter 4, the certi�cate-based approach is
capable of handling general hybrid e�ects, such as sampled-data systems and jumps in the
state space. For the reachability-based approach, we have only considered sampled-data
systems; the extension to hybrid systems is discussed in more detail in Section 6.3.

Complex speci�cations For the certi�cate-based approach, we only considered two
speci�c types of speci�cations, both reach-avoid problems. However, these problems can
be used as building blocks for more intricate speci�cations, as will be discussed in Section
6.2. The reachability-based approach is capable of handling STL speci�cations satisfying
Assumption 2.3.1. In practise, this means that this method only deals with �nite trajecto-
ries. However, a similar extension as will be described in 6.2 can be applied here.
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Figure 6.1: Overview of the addressed class of systems and speci�cations and future extensions.

6.2. Extension of certificate-based approaches
The certi�cate-based approach presented in Chapter 4 has been applied to reach-avoid
problems, however, it can be extended to full temporal logic properties. Similar to e.g.
[20, 36, 80, 121, 165], this could be done by combining Büchi automata and our current
approach to simple safe reachability. Intuitively, the TL speci�cation would be split up
into reach-avoid sub-problems, and for each sub-problem a controller is synthesized. The
overall controller becomes a hybrid controller with multiple modes, e.g. in the form an
automaton, rather than a single closed-form expression, as compared to the reachability-
based approach.

6.3. Extension of reachability-based approaches
The reachability-based approach in Chapter 5 has been presented for continuous-time sys-
tems with sampled-data controllers, but can be extended to general hybrid systems, similar
to the extension of [138] to piecewise a�ne systems in [141]. In Chapter 5, we used the
reachability tool CORA, which also supports reachability analysis for hybrid automata,
enabling the extension to hybrid systems. However, in the proposed reachability-based
approach, we relied on simulations to guide the proposal of candidate controllers; the
simulation of hybrid systems is more intricate, as one needs to make sure the simulated
trajectories do not miss the jump set3 due to numerical errors [9]. Similarly, the reacha-
bility analysis becomes more intricate, and an increase in computational cost and conser-
vatism is expected. However, similar to [141], this can be (partly) countered by designing
the controller such that the number of jumps of the hybrid system are minimized.

6.4. Conclusion
In this chapter we brie�y compared the two approaches proposed within this dissertation
on a selection of criteria. Per category, an indicative assessment of the performance is
summarized in Table 6.1. In conclusion, the respective methods are best used for:
3Or in case of a hybrid automata, the guard set.
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Table 6.1: Comparison of the synthesis approaches based on certi�cate functions (CF) and reachability analysis
(RA).

CF-based RA-based

Computation cost + −
Scalability w.r.t. initial set ++ −

Scalability w.r.t. system dimension − +
Input saturation +++ −

General hybrid e�ects + −−
Complex speci�cations − ++

• Certi�cate-based: low-dimensional systems with potential hybrid e�ects, such as
input saturation and jumps, and a large initial set.

• Reachability-based: ‘higher-dimensional’ continuous-time systems with a small ini-
tial set, subjected to (�nite horizon) STL speci�cations.

Finally, we discussed the extension of both methods to a wider class of systems or speci-
�cations, illustrated in Figure 6.1.





7
Conclusions and

recommendations

In this concluding chapter we summarize the main contributions of the dissertation and
provide an outlook for potential future work.

7.1. Conclusions
The goal of this thesis is to develop a framework for automatic synthesis of closed-form
controllers for hybrid systems, such that temporal logic speci�cations are formally guar-
anteed. The closed-loop nature of the controllers enables the implementation in embedded
hardware with limited memory and/or limited computation power, as opposed to e.g. con-
trollers in the form of enormous look-up tables or controllers relying on online optimiza-
tion methods. To achieve this goal, we have proposed two CEGIS frameworks, in which
we combined the proposal of candidate controllers through GGGP with formal veri�ca-
tion and counterexample generation. The two proposed frameworks di�er in the veri�-
cation method, i.e., indirectly by means of co-synthesized certi�cate functions, or directly
through reachability analysis.

In Chapter 3 we introduced our grammar-guided genetic programming algorithm. The
use of grammar-guided genetic programming allows for the synthesis of closed-form ex-
pressions, without the need of pre-de�ning a template solution, i.e., it is capable of dis-
covering the correct controller structure automatically. Furthermore, the use of a gram-
mar enables the restriction of the search space and enables the incorporation of expert-
knowledge. While expert-knowledge can greatly speed up the synthesis, it is completely
optional.

In Chapter 4 we introduced an indirect method, in which the veri�cation relies on
the co-synthesis of a controller and a certi�cate function. This method is suitable for
hybrid systems modelled as jump-�ow systems with reach-avoid speci�cations. In this
chapter, we introduced a Lyapunov barrier function which by its existence implies the
desired speci�cation, and we introduced several relaxations. Additionally, we considered
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a specialized synthesis approach for continuous open-loop systems with sampled-data
controllers, based on a control Lyapunov barrier function. Finally, we demonstrated how
this framework can also be used for the formal veri�cation of (near) optimal controllers,
obtained through reinforcement learning. The e�ectiveness of the methods in this chapter
was illustrated on several benchmarks from the literature.

In Chapter 5, we introduced a direct method, in which the veri�cation relies on reach-
ability analysis. This method is suitable for continuous open-loop systems with STL spec-
i�cation, where the controller is implemented in a sampled-data fashion. This method
relies on model checking for STL, based on reachability analysis, in which an STL formula
is transformed to an RTL formula. To be able to quantify the performance with respect to
an RTL formula, we introduced quantitative semantics for RTL. The e�ectiveness of this
approach was shown on several benchmarks found in literature.

In Chapter 6, we compared the certi�cate-based and reachability-based methods. The
former is better suited for low-dimensional hybrid systems with large initial sets, whereas
the latter is better suited for comparatively higher-dimensional continuous open-loop sys-
tems with more intricate speci�cations. However, both methods can synthesize closed-
form sampled-data controllers, which simplify the implementation in digital platforms
with limited memory and computation power. Finally, both methods have a potential to
be extended to handle general hybrid systems with general STL speci�cations.

In conclusion, the two frameworks presented in this dissertation have the potential
to overcome all shortcomings listed in Section 1.3. Both frameworks return correct-by-
construction closed-form controllers, which solve problems 1 and 2, i.e. their compact rep-
resentation and relatively low online computation cost enable the implementation in em-
bedded hardware. While the presented methods deal with either general hybrid systems
or general STL speci�cations, we proposed realistic extensions to general hybrid systems
with general STL speci�cations, addressing problems 3 and 4. Finally, using grammar-
guided genetic programming, the use of expert-knowledge is optional, which addresses
problem 5.

7.2. Recommendations for future work
Building upon the foundations laid out in this thesis, in this section we discuss open chal-
lenges and explore possible directions for future research.

• In the case studies for both methods in Chapters 4 and 5, it was shown that the
computation time depends on a range of factors and no conclusive statements on
the scalability could be made. In�uencing factors depend on an interplay of the
dynamics, speci�cation, and the supplied expert-knowledge. Further research is
required to solidify claims regarding these relations.

• In this work we have limited our synthesis to static feedback controllers. In future
work, one could extend our framework to the design of dynamic controllers, e.g.
controllers including an observer.

• The computation time of the presented methods can be improved. First of all, the
bene�t of GP is that it is highly parallelizable. In the presented work, parallelization
has only been utilized on a small scale. In future work, it is highly encouraged



7.2. Recommendations for future work

7

95

to further exploit parallelization to improve on the synthesis time. Secondly, in
our work, we used a relatively simple implementation of GGGP and e�ciency can
potentially be improved in a number of ways, see e.g. the survey in [31]. Finally, the
frameworks presented in this work are implemented in high-level languages, such
as Mathematica and Matlab. To help improve the computation time, it is advised to
implement these approaches in lower-level languages such as C/C++.

• As we have seen in Section 6, both certi�cate-based and reachability-based ap-
proaches, can be extended in future work to a wider class of speci�cations and
systems, respectively. However, despite these extensions, each method has their
di�erent use cases based on their respective strengths and weaknesses, as was dis-
cussed in Section 6.3.

• While genetic programming has the advantage of synthesizing compact expressions,
the expressive power of neural networks is widely acknowledged in a broad range of
studies. In the recent works [1, 27], neural networks are combined with formal veri-
�cation, illustrating the potential of neural networks as Lyapunov functions and/or
controllers. Along the same lines, in future work, one can replace genetic program-
ming with neural networks and adapt the veri�cation accordingly.

• In Chapter 4.8, we employed reinforcement learning and the automatic synthesis of
a certi�cate function for the synthesis of a near-optimal controller with safety and
reachability guarantees. There are great similarities between a Lyapunov function
and the value function in Reinforcement learning [114]. An interesting direction for
future work is to exploit these similarities for simultaneous synthesis and veri�ca-
tion.

• In this work, we employed automatic formal control synthesis methods with respect
to a given model. In the absence of such a model, similar evolutionary methods as
used in this dissertation can be employed to derive a model, see e.g., [60, 78, 137]. In
future work, the merging of these methods into an integrated framework for both
system identi�cation and formal controller synthesis, similar to, e.g., [134], would
further increase the automation of end-to-end controller design.





A
Mathematical proofs

A.1. Proof Theorem 4.3.1
Given that φ(0, 0) ∈ I , if φ(0, 0) ∈ O, (4.2) holds trivially. For φ(0, 0) ∈ I\O, from (4.5a)
we have that V (φ(0, 0)) ≤ 0 and thus φ(0, 0) ∈ A∗ := A\O. From condition (4.5b)
and the de�nition of A in (4.6) we have A ∩ ∂S = ∅. Consider a hybrid time interval
[tj , tj+1] × {j} ⊆ domφ. For almost all t ∈ [tj , tj+1] such that φ(t, j) ∈ A∗C , we have
from (4.5d) that

d

dt
V (φ(t, j)) ≤ max

f∈F (φ(t,j))
〈∇V, f〉 ≤ −γc,

i.e. V decreases along the �ow, hence solutions remain in the sublevel set A ⊂ S and
thus cannot leave the safe set within an arbitrarily small time step. From (4.5c) it follows
that all jumps starting from A∗D jump to the safe set S. Moreover, from condition (4.5e) it
follows that for φ(t, j) ∈ A∗D with (t, j + 1) ∈ domφ:

V (φ(t, j + 1)) ≤ V (φ(t, j))− γd,

i.e. V decreases along a jump, hence solutions remain in the sublevel setA. Summarizing,
all φ(t, j) ∈ A∗ remain in A ⊂ S ⊂ C ∪ D under an arbitrarily small interval of time
and/or jump.

Now, by contradiction, we prove that eventually all trajectories starting inA∗ enterO.
Consider a complete solution which always remains within A∗. Since V (s) is continuous
andS is compact, V [S] ⊂ R is compact and hence V [S\O] ⊆ V [S] is bounded, i.e. ∃e ∈ R
such that ∀s ∈ A∗, V (s) ≥ e. Using ∀(t, j) ∈ domφ : V (φ(t, j)) ∈ A∗, equation (4.5e),
integrating both sides of (4.5d), and V (φ(0, 0)) ≤ 0, we have

V (φ(t, j)) ≤ −tγc − jγd. (A.1)

Since the maximal solution φ is complete, j is unbounded and/or t is unbounded, which
implies in both cases that there exists a �nite T and J such that V (φ(T, J)) < e and thus
φ(T, J) /∈ A∗, contradicting the premise. Since all φ(t, j) ∈ A∗ cannot leave A ⊂ S ⊂
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C ∪ D within an arbitrarily small interval of time and/or a number of jumps, the only
possibility is that there exists a (T, J) ∈ domφ such that φ(T, J) ∈ O, and thus (4.2)
holds.

A.2. Proof Corollary 4.3.1
From Theorem 4.3.1 we have that for all maximal solutions φ ∈ SHcl

(I), there exists a
pair (T, J) ∈ domφ such that φ(T, J) ∈ O. Analogous to the proof of Theorem 4.3.1,
conditions (4.7a), (4.7b), and (4.7c) imply that ∀φ(t, j) ∈ O, ∃(T1, J1) ∈ domφ such that
φ(T1, J1) ∈ B.

Since B := {s ∈ O | V (s) ≤ β} and O is compact, it follows that B is compact.
Condition (4.7b) implies that

∀s ∈ ∂B ∩ C, ∀f ∈ F (s) : 〈∇V (s), f〉 ≤ −γc. (A.2)

Combining this with (4.7d), we have that all states φ(t, j) ∈ ∂B ∩ C cannot reach ∂O.
Therefore it follows that during �ow, trajectories starting in B remain within B ⊂ O.
From (4.7e) we have if {(t, j), (t, j + 1)} ⊂ domφ and φ(t, j) ∈ B ∩ D, it follows that
φ(t, j + 1) ∈ B, hence for all jumps starting in B the solutions φ remain within B ⊂ O.
Summarizing, solutions within B stay within B and thus B is forward invariant. Since
O ⊂ S, we have that (4.3) holds.

A.3. Proof Proposition 4.4.1
From condition (4.8a) and the de�nition of A in (4.6) we have A ∩ (∂Sx × Sq × T ) = ∅.
During �ow, the discrete states φq remain constant and the timer states φt remain within
T . Therefore, the solution can only escape the safe set S := Sx × Sq × T through the
boundary of the safe set of continuous states ∂Sx × Sq × T . Analogous to the proof of
Theorem 4.3.1, trajectories in A∗C result in a decrease along V , and therefore trajectories
cannot leave the sublevel set A and thus neither the safe set S within an arbitrarily small
time step. Analogous to the proof of Theorem 4.3.1, jumps from A∗D remain in A.

Now, one can show by contradiction that complete solutions cannot remain forever
in A∗. Again, ∃e ∈ R such that ∀s ∈ A∗, V (s) ≥ e. Let us denote the number of
jumps resulting from (Ds, Gs) and (Dt, Gt) by js and jt, respectively. Using ∀(t, j) ∈
domφ : V (φ(t, j)) ∈ A∗, equations (4.8b), (4.8c), integrating both sides of (4.5d), and
V (φ(0, 0)) ≤ 0, yields

V (φ(t, j)) ≤ −tγc − jsγd. (A.3)
By the de�nition of the dynamics of the timer states we have that jt depends on time,
i.e.: jt(t) =

∑nt

i=1

⌊
t+φt,i(0,0)

ηi

⌋
. Since the maximal solution φ is complete, t is unbounded

and/or j = js + jt is unbounded because t is unbounded or js is unbounded. In all cases
there exists a �nite T and J such that V (φ(T, J)) < e and thus φ(T, J) /∈ A∗. The
remainder of the proof is analogous to the proof of Theorem 4.3.1.

A.4. Proof Corollary 4.4.1
This proof is analogous to the proof of Corollary 4.3.1, where Proposition 4.4.1 is used
instead of Theorem 4.3.1. Analogous to condition (4.7d) in Corollary 4.3.1, condition (4.9c)
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yields that all statesϕ(t, j) ∈ ∂B∪C cannot reach ∂Ox×Oq×T . Since the discrete states
φq(t, j) remain constant during �ows and the timer states φt(t, j) always stay within T , it
follows that during �ow, trajectories starting inB remain withinB ⊂ O := Ox×Oq×T .
The remainder of the proof is analogous to Corollary 4.3.1.

A.5. Proof Corollary 4.4.2
From the proof of Corollary 4.4.1 it follows that ∀φ ∈ SHcl

(I), ∃(T, J) ∈ domφ such
that ∀(t, j) ∈ E≥(T,J), φ(t, j) ∈ B. Since B ∩ Ds = ∅, the only jumps taking place for
(t, j) ∈ E≥(T,J) are because φ(t, j) ∈ Dt, i.e. due to timer updates. Since every jump
induced by a timer state has a �xed minimal dwell-time of ηi and there are only a �nite
number of timer states, it follows that all solutions φ ∈ SHcl

(I) are non-Zeno.

A.6. Proof Corollary 4.4.3
As a consequence of the conditions in Theorem 4.3.1, Proposition 4.4.1 or Corollaries 4.3.1
and 4.4.1, after a jump φ(t, j) ∈ S ⊂ C ∪ D and under Assumption 4.4.2, we have that
φ(t, j) /∈ D. Therefore solutions can only be extended through �ow, along which the LBF
decreases.

A.7. Proof Theorem 4.7.1
For ξ(t0) ∈ I it follows from (4.22a) and the de�nition of A that ξ(t0) ∈ A. From (4.22c)
it follows that for all ξ(tk) ∈ A\O there exists a q ∈ Q such that ∀t ∈ [tk, tk + h] :
V̇q(ξ(tk), ξ(t)) ≤ −γ. Selecting such a mode using controller (4.23), applying the com-
parison theorem (see e.g. [77]), and using ∀x ∈ A, V (x) ≤ 0, it follows that ∀k ∈ Z≥0,
∀t ∈ [tk, tk + h], ∀ξ(tk) ∈ A\O: V (ξ(t)) ≤ V (ξ(tk)) − γh ≤ −γh. Therefore, ξ(tk) ∈
A\O implies ∀t ∈ [tk, tk + h], V (ξ(t)) will decrease and thus cannot reach ∂S, as from
(4.22b) we have ∀x ∈ ∂S : V (x) > 0. Since V (x) is continuous and S is compact,
V [S] ⊂ R is compact and hence V [S\O] ⊆ V [S] is bounded, V (ξ(t)) will decrease until
in �nite time ξ(t) leaves A\O and can only enter O, therefore (4.2) holds.

A.8. Proof Corollary 4.7.1
From Theorem 4.7.1 we have that there exists a time tK ≥ t0 such that ξ(tK) ∈ O.
Analogous to the proof of Theorem 4.7.1, from (4.24b) it follows that ∀ξ(tK) ∈ O, ξ(t)
with t ≥ tK enters in �nite timeO∩B. From the de�nition ofB and since every sublevel
set Lc := {x ∈ S | V (x) ≤ c} is compact, it follows that B is compact and thus O ∩ B
is compact. From (4.24b) and controller (4.23) we have that ∀x ∈ ∂(O ∩ B), z ∈ Rq(x) :

V̇q(x, z) ≤ −γ. Combining this with (4.24a), we have that all states ξ(t) ∈ ∂(O ∩ B)
cannot reach ∂O and V (ξ(t)) decreases, thus these trajectories will remain withinO∩B.
Therefore it follows that O ∩ B ⊆ O is forward invariant. As O ⊆ int(S), we have that
(4.3) holds.
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A.9. Proof Theorem 4.7.2
This proof is by contradiction. By de�nition of the CLBF, for all x ∈ A\O, there al-
ways exists a q such that maxz∈Rq(x) V̇q(x, z) ≤ −γ. Assume that when using switching
law (4.30), we have maxz∈Rqk

(ξ(t)) V̇qk(ξ(t), z) > −γ. It then follows from (4.29) that
minq∈Q(V̇q(x, x) +αq(x)) < V̇qk(x, x) +αqk(x). This directly contradicts the switching
law

qk = min
q∈Q

(V̇q(x, x) + αq(x)).

Hence switching law (4.30) can only select a qk such that maxz∈Rqk
(ξ(tk)) V̇qk(ξ(tk), z) ≤

−γ, which is guaranteed to exist by the design of the CLBF. The remainder of the proof is
analogous to the proof of Theorem 4.7.1.

A.10. Proof of Theorem 5.3.1
Theorem 5.3.1 is proven by induction over the structure of the RTL formula Ψ and subfor-
mula ψ. This is only done for the �rst statement in Theorem 5.3.1, as the second statement
is logically equivalent to the �rst, i.e.:

P (R,Ψ, t)>0⇒ (R, t) |=Ψ ≡ (R, t) 6|=Ψ⇒P (R,Ψ, t)≤0,

(R, t) |=Ψ⇒P (R,Ψ, t)≥0 ≡ P (R,Ψ, t)<0⇒(R, t) 6|= Ψ.

• Case ψ = true: By de�nition x |= ψ and %(x, ψ) > 0.

• Case ψ = h(x) ≥ 0: For this formula ψ, the quantitative semantics is given by
%(x, ψ) = h(x). (i) If %(x, ψ) > 0, then h(x) > 0, thus from the semantics it fol-
lows that x |= ψ. (ii) If x |= ψ, then from the semantics we have h(x) ≥ 0, thus from
the quantitative semantics it follows that %(x, ψ) ≥ 0.

• Case ψ = ¬ψ1: For this formula ψ, the quantitative semantics is given by %(x,¬ψ1) =
−%(x, ψ1). (i) If %(x,¬ψ1) > 0, then %(x, ψ1) < 0. By the induction hypothesis, we
get x 6|= ψ1 and thus from the semantics it follows that x |= ¬ψ1. (ii) If x |= ¬ψ1, then
from the semantics we have x 6|= ψ1. By the induction hypothesis and the equivalence
%(x, ψ) > 0 ⇒ x |= ψ ≡ x 6|= ψ ⇒ %(x, ψ) ≤ 0, we get %(x, ψ1) ≤ 0, thus
%(x,¬ψ1) ≥ 0.

• Case ψ = ψ1 ∧ψ2: For this formula ψ, the quantitative semantics is given by %(x, ψ1 ∧
ψ2) = min(%(x, ψ1), %(x, ψ2)). (i) If %(x, ψ1 ∧ ψ2) > 0, then %(x, ψ1) > 0 and
%(x, ψ2) > 0. By the induction hypothesis, we get x |= ψ1 and x |= ψ2, thus from
the semantics it follows that x |= ψ1 ∧ψ2. (ii) If x |= ψ1 ∧ψ2, then from the semantics
we have x |= ψ1 and x |= ψ2. By the induction hypothesis, we get %(x, ψ1) ≥ 0 and
%(x, ψ2) ≥ 0, thus %(x, ψ1 ∧ ψ2) ≥ 0.

• Case Ψ = Aψ: For this formula Ψ, the quantitative semantics is given by P (R,Aψ, t)
= minx∈R(t) %(x, ψ). (i) If P (R,Aψ, t) > 0, then ∀x ∈ R(t) : %(x, ψ) > 0. By the
induction hypothesis, ∀x ∈ R(t) : x |= ψ, thus from the semantics we have (R, t) |=
Aψ. (ii) If (R, t) |= Aψ, then from the semantics we have ∀x ∈ R(t) : x |= ψ. By the
induction hypothesis, we get ∀x ∈ R(t) : %(x, ψ) ≥ 0, thus P (R,Aψ, t) ≥ 0.
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• CaseΨ = Ψ1∨Ψ2: For this formula Ψ, the quantitative semantics is given byP (R,Ψ1∨
Ψ2, t) = max(P (R,Ψ1, t), P (R,Ψ2, t)). (i) If P (R,Ψ1 ∨Ψ2, t) > 0, then P (R,Ψ1, t)
> 0 or P (R,Ψ2, t) > 0. By the induction hypothesis, we get (R, t) |= Ψ1 or (R, t) |=
Ψ2, thus from the semantics it follows that (R, t) |= Ψ1 ∨ Ψ2. (ii) If (R, t) |= Ψ1 ∨
Ψ2, then from the semantics we have (R, t) |= Ψ1 or (R, t) |= Ψ2. By the induction
hypothesis, we get P (R,Ψ1, t) ≥ 0 or P (R,Ψ2, t) ≥ 0, thus P (R,Ψ1 ∨Ψ2, t) ≥ 0.

• CaseΨ = Ψ1∧Ψ2: For this formula Ψ, the quantitative semantics is given byP (R,Ψ1∧
Ψ2, t) = min(P (R,Ψ1, t), P (R,Ψ2, t). (i) If P (R,Ψ1∧Ψ2, t) > 0, then P (R,Ψ1, t) >
0 and P (R,Ψ2, t) > 0. By the induction hypothesis, we get (R, t) |= Ψ1 and (R, t) |=
Ψ2, thus from the semantics it follows that (R, t) |= Ψ1 ∧Ψ2. (ii) If (R, t) |= Ψ1 ∧Ψ2,
then from the semantics we have (R, t) |= Ψ1 and (R, t) |= Ψ2. By the induction
hypothesis, we get P (R,Ψ1, t) ≥ 0 and P (R,Ψ2, t) ≥ 0, thus P (R,Ψ1 ∧Ψ2, t) ≥ 0.

• Case Ψ = ©aΨ1: For this formula Ψ, the quantitative semantics is given by P (R,
©aΨ1, t) = P (R,Ψ, t + a). (i) If P (R,©aΨ1, t) > 0, then P (R,Ψ1, t + a) > 0. By
the induction hypothesis, we get (R, t + a) |= Ψ1, thus from the semantics we have
(R, t) |=©aΨ1. (ii) If (R, t) |=©aΨ1, then from the semantics we have (R, t+ a) |=
Ψ1. By the induction hypothesis, we get P (R,©aΨ1, t) ≥ 0.





B
Standard forms of the LBF

and CLBF ineqalities

The conditions in Proposition 4.4.1, Corollary 4.4.1, De�ntion 4.7.1 and Corollary 4.7.1 can
be written in the standard form (4.10):

ϕ := ∀x ∈ X :

(∧k

i=1

(∨li

j=1
fij(x) ≤ 0

))
,

as shown in Table B.1 and B.2. In these tables c > 0 is an arbitrary positive constant, used
to cast strict inequalities to non-strict inequalities. In Table B.2, for conditions ϕ3 and
ϕ5, the state x is partitioned as x = (sx, sτ,1, se,1, . . . , sτ,|Q|, se,|Q|), and V̇q(x) is used to
denote

V̇q(x) = 〈∇V (rq(sx, sτ,q, se,q)), f(rq(sx, sτ,q, se,q), gq(sx))〉 , (B.1)

where rq is given in (4.7.3).
We brie�y demonstrate how the inequalities formulated over a sublevel set can be

formulated in the standard form (4.10). Given a general sublevel set LaX(V ) := {x ∈ X |
V (x) ≤ a}, a logic formula of the form ∀x ∈ LcX : f(x) ≤ 0, can be expressed using
a logical implication as ∀x ∈ X : V (x) ≤ a =⇒ f(x) ≤ 0, which is equivalent to
∀x ∈ X : V (x) > a ∨ f(x) ≤ 0. Putting this expression in standard form yields:

∀x ∈ X : −V (x) + a+ c ≤ 0 ∨ f(x) ≤ 0, (B.2)

with some c > 0, which is in the standard form (4.10).
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Table B.1: Standard form (4.10) of the LBF conditions in Proposition 4.4.1 and Corollary 4.4.1.

ϕi eq. X fij(x)

ϕ1 (4.5a) I f11(x) = V (x).
ϕ2 (4.8a) ∂Sx × Sq × T f11(x) = −V (x) + c.
ϕ3 (4.5c) {(x1, x2) ∈ (S\O ∩D)× Rn | x2 ∈ G(x1)} fi1(x) = −V (x1) + c,

fi2(x) = bS,i(x2), i ∈ {1, . . . , iS}.
ϕ4 (4.5d) {(x1, x2) ∈ (S\O ∩ C)× Rn | x2 ∈ F (x1)} f11(x) = −V (x1) + c,

f12(x) = 〈∇V (x1), x2〉+ γc.
ϕ5 (4.8b) {(x1, x2) ∈ (S\O ∩Ds)× Rn | x2 ∈ Gs(x1)} f11(x1) = −V (x1) + c

f12(x) = V (x2)− V (x1) + γd.
ϕ6 (4.8c) {(x1, x2) ∈ (S\O ∩Dt)× Rn | x2 ∈ Gt(x1)} f11(x) = −V (x1) + c,

f12(x) = V (x2)− V (x1).
ϕ7 (4.7a) {(x1, x2) ∈ (O ∩D)× Rn | x2 ∈ G(x1)} fi1(x) = V (x1)− β + c,

fi2(x) = bS,i(x2), i = {1, . . . , iS}.
ϕ8 (4.7b) {(x1, x2) ∈ (O ∩ C)× Rn | x2 ∈ F (x1)} f11(x) = V (x1)− β + c,

f12(x) = 〈∇V (x1), x2〉+ γc.
ϕ9 (4.9a) {(x1, x2) ∈ (O ∩Ds)× Rn | x2 ∈ Gs(x1)} f11(x) = V (x1)− β + c,

f12(x) = V (x2)− V (x1) + γd.
ϕ10 (4.9b) {(x1, x2) ∈ (O ∩Dt)× Rn | x2 ∈ Gt(x1)} f11(x) = V (x1)− β + c,

f12(x) = V (x2)− V (x1).
ϕ11 (4.9c) ∂Ox ×Oq × T f11(x) = −V (x) + β + c.
ϕ12 (4.7e) {(x1, x2) ∈ (O ∩D)× Rn | x2 ∈ G(x1)} fi1(x) = −V (x1) + β + c,

f12(x) = V (x2)− β,
f(k+1)2(x) = bO,k(x2),
k ∈ {1, . . . , iO}, i ∈ {1, . . . iO + 1}.

Table B.2: Standard form (4.10) of the CLBF conditions in De�ntion 4.7.1 and Corollary 4.7.1.

ϕi eq. X fij(x)

ϕ1 (4.22a) I f11(x) = V (x).
ϕ2 (4.22b) ∂S f11(x) = −V (x) + c.
ϕ3 (4.22c) S\O ×Πq∈QE f11(x) = −V (sx) + c, f1(q+1)(x) = V̇q(x) + γ, q ∈ Q.
ϕ4 (4.24a) ∂O f11(x) = −V (x) + β + c.

ϕ5 (4.24b) O ×Πq∈QE f11(x) = −V (sx) + β, f1(q+1)(x) = V̇q(x) + γ,q ∈ Q.
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