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Abstract

To obtain unambiguous ground truth of water-ice residing in permanently shaded regions
of the Moon and to characterise the local regolith, ESA considers a mission involving an
instrumented penetrator implanted there by high-speed impact. Released into lunar orbit, the
European Lunar Penetrator (ELUPE) Descent Module will autonomously traverse a controlled
trajectory to its designated target. The associated attitude control problem involves highly
nonlinear large-angle slew manoeuvres and unstable minor-axis spin manoeuvres. To establish
a benchmark, a controller based on classical control techniques was designed, verified and
tested in a simulation. Legacy control algorithms were implemented and extended. A thruster
management function was developed to translate the control commands into thruster actions.
For the simulator, accurate models of the descent module and its environment were created.

A Monte Carlo simulation was run to determine the success rate of the ELUPE mission
from a descent-and-landing perspective, and to assess the performance of the controller under
off-nominal conditions. From the results, it was found that the success rate was 58.5% for a
surface slope of 20◦, and 74.2% for a slope of 10◦ or lower. Key factors affecting the success rate
were identified to be the centre-of-mass offset and the solid rocket motor thrust misalignment
angle. As further constraining these parameters would be unrealistic, it was recommended to
modify the thrust curve of the solid rocket motor to improve the success rate.

Analysis of the attack angle and the nutation angle just prior to impact, revealed their success
criteria were met in 98.7% and 99.8% of all cases, respectively. These successful results
confirmed the attitude control problem could be satisfactorily solved by a ‘classical’ controller.
However, despite its good global performance, the proposed controller was found to also exhibit
some serious shortcomings. For this reason, it was recommended to explore the possibilities
for a different controller.

To the best of the author’s knowledge, this thesis represented the first known attempt at de-
signing a comprehensive controller for a fully actuated, thruster-controlled penetrator mission
targeted for an airless body. In addition, it was the first known study to provide insight into
the feasibility and success rate of such a mission from a descent-and-landing perspective.
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ve Effective exhaust velocity m s−1

x State vector -

x Position in the x-direction m

y Position in the y-direction m

z̄ Centroid m

Z Unit vector in the z-direction -

z Position in the z-direction m

Greek Symbols

α Angular distance from xB-axis deg

α Attack angle deg

α Pressure drop factor -

β Angular distance from zB-axis deg

β Force drop factor -

δ Descent angle deg

δe Thrust misalignment angle deg

ε Offset -

η Impulse efficiency -

η Nadir angle deg

φ Phase angle deg

φ Roll angle deg

µ Arithmetic mean -

µ Gravitational parameter m3 s−2

µ Gyroscopic coupling torque damping factor -

µ Viscous damping coefficient -
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xxiv Nomenclature

φ Thruster cant angle from xG-axis deg

ρ Correlation coefficient -

ρ Density kg m−3

σ Relative angular velocity vector rad s−1

σ̇ Relative angular acceleration vector rad s−2

σ Standard deviation -

σ2 Variance -

σlocal Local surface slope deg

τ Variable of integration s

θ Eigenangle deg

θ Pitch angle deg

θ Thruster cant angle from zG-axis deg

θnut Nutation angle deg

ω Angular velocity vector rad s−1

ω̇ Angular acceleration vector rad s−2

ωn Natural frequency rad s−1

ωnut Nutation frequency rad s−1

ψ Heading angle deg

ψ Yaw angle deg

ζ Damping ratio -

Subscripts

s Spin-axis

ave Average

B Body frame

cap Hemispherical cap

ca Centre-of-area

cm Centre-of-mass

corr Corrected

cyl Cylinder

C Coriolis

c Commanded

denut Denutation

dry Without propellant

d Delay
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eff Effective

ext External

e Error

e Exhaust

fin Final

fly Fly-away

frus Hemispherical frustum

F Spacecraft-centred inertial frame

f Feed

G Geometric frame

g Gravity

hemi Hemisphere

hyd Hydrazine

ini Initial

liquid Liquid propellant slug

max Maximum

m Moon

nav Navigation

nom Nominal

nut Nutation

Pen Penetrator

p Pulse

rel Relative

reorient Reorientation

rot Rotational

solid Solid propellant slug

SR Solar radiation

tank Propellant tank

thres Threshold

tip Tip-off

togo To-go

tot Total

T Thrust

ullage Propellant tank ullage

wet With propellant
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xxvi Nomenclature

Superscripts

B/F From F -frame to B-frame

Acronyms

AOCS Attitude and Orbit Control System

CFRP Carbon Fiber Reinforced Polymer

CoA Centre of Area

CoG Centre of Gravity

CoM Centre of Mass

DCM Direction Cosine Matrix

DOM De-Orbit Manoeuvre

ELUPE European Lunar Penetrator

EoM Equations of Motion

ESA European Space Agency

ESTEC European Space Research and Technology Centre

FAM Fly-Away Manoeuvre

GES Goonhilly Earth Station

IMU Inertial Measurement Unit

ISRU In-Situ Resource Utilisation

JEOP Jupiter Europa Orbiter Penetrator

JGOP Jupiter Ganymede Orbiter Penetrator

L-DART Lunar Direct Analysis of Resource Traps

LCROSS Lunar Crater Observation and Sensing Satellite

LRO Lunar Reconnaissance Orbiter

MoonLITE Moon Lightweight Interior and Telecoms Experiment

MPC Model Predictive Control

MRAC Model Reference Adaptive Control

NASA National Aeronautics and Space Administration

OBC On-Board Computer

PCDU Power Conditioning and Distribution Unit

PD Proportional-Derivative

PDM Penetrator Descent Module

PDS Penetrator Delivery System

PID Proportional-Integral-Derivative
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PLM Periapsis Lowering Manoeuvre

PSR Permanently Shaded Region

RCS Reaction Control System

RK4 Runge-Kutta 4

SMC Sliding Mode Control

SPHERES Synchronized Position Hold Engage and Reorient Experimental Satellite

SRM Solid Rocket Motor

SSERVI Solar System Exploration Research Virtual Institute

SSTL Surrey Satellite Technology Ltd

TMF Thruster Management Function

VSC Variable Structure Control

Other Symbols

M Thruster torque response matrix

N Normal distribution

O Big O notation

U Uniform distribution
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Chapter 1

Introduction

This Master of Science thesis is concerned with the design of the European Lunar Penetrator
(ELUPE) descent module controller. First, some background information on the ELUPE
mission is provided in Section 1-1, followed by an outline of the anticipated mission in Sec-
tion 1-2. The problem central to this thesis, described in Section 1-3, along with the findings
from the literature study presented in Section 1-4, lead to the formulation of the research
question in Section 1-5. In Section 1-6, the contributions of this thesis to the open literature
are summarised. Finally, Section 1-7 provides an outline of the structure of the report.

1-1 Background and Motivation

In 2009, NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS) mission spectac-
ularly confirmed the presence of water molecules in a debris plume originating from the impact
of the inert upper rocket stage of NASA’s Lunar Reconnaissance Orbiter (LRO) mission into
a permanently shaded region (PSR) near the lunar south pole. The visible part of the plume
was measured to contain 155 ± 12 kg of water vapour and ice, from which it was deduced that
the estimated total mass of excavated lunar material comprised 5.6 ± 2.9% H2O (Colaprete
et al., 2010). Earlier suggestions of ‘lunar water’ were made by Nozette et al. (1996) and
Feldman et al. (1998, 2001), based on satellite data collected during NASA’s Clementine and
Lunar Prospector missions, respectively. More recently, additional analysis of the data gener-
ated by the M3 spectrometer aboard the Indian satellite Chandrayaan-1 was performed by Li
et al. (2018), who claim to have found “direct and definitive evidence” of water ice sitting at
the surface of a large amount of lunar PSRs. Yet, despite their significance, these discoveries
were solely made through remote spectral analysis. In the light of ESA’s future aspirations
for a sustained humanly inhabited lunar base, in-situ measurements are needed to obtain
unambiguous ground truth regarding the presence, abundance and distribution of water ice
(and other icy volatiles) contained in the lunar regolith.
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2 Introduction

Midway through the 20th century, the first theories were postulated about water ice being
present (Urey, 1952; Watson et al., 1961a) and stable (Watson et al., 1961b) in the heavily
cratered polar regions of the Moon. Since the Moon’s rotation axis is tilted a mere 1.54◦ with
respect to the ecliptic, the illumination conditions at the poles are predominantly subject to
local topography. As a consequence, some areas in the polar regions – in particular crater
floors – are shrouded in permanent darkness, making them exceptionally cold. Temperatures
within such ‘cold traps’ generally do not rise above 110◦K (Hayne et al., 2015) – a temperature
at which the sublimation rate of H2O is low enough to consider sublimation losses negligible
over geological timescales (Vasavada et al., 1999). Hayne et al. (2015) concludes that it is
in shaded areas where maximum temperatures stay below 110◦K, that spectral evidence for
water ice is found.

As another result of the Moon’s low rotational obliquity and rugged polar surfaces, there are
also regions near the poles that endure near-continuous illumination. They are particularly
found at topographic highs, such as crater rims and massif peaks (Speyerer & Robinson,
2013), and offer the potential for near-continuous generation of solar power during surface
missions. Considering the relative proximity of these long duration sunlit regions to potential
water ice-bearing PSRs, renders them particularly attractive for sustained human residence in
e.g., a ‘Moon Village’, which is an openly interpretable concept raised by ESA in the context
of the agency’s own announced new era for space activities – ‘Space 4.0’ (Wörner, 2016). In
this regard and in a more general context of in-situ resource utilisation (ISRU), recent studies
(e.g., Carpenter et al., 2016) mention the Cabeus and Shoemaker craters near the south pole
and the Peary crater near the north pole as potentially interesting locations.

Apart from being shrouded in permanent shadow, very little is currently known about PSRs.
Concluding from the findings of NASA’s Solar System Exploration Research Virtual Institute
(SSERVI, 2015), speculations on the composition and characteristics of PSR regolith have pri-
marily relied on remote measurements, or have otherwise been based on laboratory research
performed on soil samples acquired from ‘small’ PSRs (e.g., a permanent shadow cast by a
large rock) during the Apollo surface missions. Direct in-situ prospecting is indisputably key
to closing the knowledge gaps. That said, the absence of sunlight in the regions concerned,
their typically sloped and rugged landscapes, and their extraordinary cold environments im-
pose significant constraints on potential surface missions. Additionally, it is conjectured that
the soil in PSRs is “extremely soft and unconsolidated” (Carpenter et al., 2016), which would
make it difficult, if not impossible, to probe such regions using ‘conventional’ landers and
rovers. Hence, it is evident that in order to address the outstanding questions about PSRs
and their regolith constituents, alternative mission architectures must be considered.

To overcome the challenges mentioned, ESA is exploring the possibility of a surface mission
entailing one or more instrumented penetrators implanted inside the PSR regolith by high-
speed impact. The anticipated SSTL Lunar Pathfinder1 (Saunders et al., 2016) is considered to
deliver the mission to lunar orbit. As such, a study was conducted to assess the feasibility of a

1The 2016 announced Lunar Pathfinder mission – led privately by commercial enterprises Surrey Satellite
Technology Ltd (SSTL) and Goonhilly Earth Station Ltd (GES) – aims to deliver smaller missions to lunar
orbit and facilitate communications for a “ticket price” of 1 million GBP per kilogram. In the frame of a
confirmed new partnership scheme, ESA is currently investigating the possibility of utilising the Pathfinder
mission to bring payloads to the Moon relevant for future human exploration.
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penetrator mission as a payload option for the Lunar Pathfinder. The study was commissioned
by the Lunar Exploration Office (HRE-IL) at ESTEC, and carried out there over the course of
a six-month internship. The results of the study were condensed in Bouma (2017), presenting
a mission concept for ELUPE – a single-penetrator mission proposed to be the sole passenger
aboard a specially tailored Lunar Pathfinder.

Following separation from the Lunar Pathfinder in a polar and circular orbit of 200 km
altitude, the ELUPE spacecraft will autonomously traverse a controlled trajectory to its
designated target on the lunar surface. To this end, the spacecraft is equipped with a dedicated
Attitude and Orbit Control System (AOCS). Several hardware configurations, resulting from
trade-offs involving a variety of commercially available components, were proposed by Bouma
(2017). The eventual configuration, briefly addressed in Section 1-2-2 and further elaborated
in Chapter 2 and Appendix A, was selected based on its global performance in a first-order
simulation. In order to gain deeper insight into the performance of the selected current-
technology configuration, it must be investigated whether the AOCS is actually able to steer
the instrumented penetrator in a such way that implantation may occur successfully. Notably,
the success of implantation strongly depends on the orientation, or attitude of the penetrator
with respect to the surface the moment just prior to impact, see e.g., Lorenz (2011). To attain
the desired orientation, an attitude controller must be implemented, generating appropriate
control commands to be executed by the AOCS actuators. This Master of Science thesis will
be dedicated to the design, verification and testing of a suitable attitude controller for the
ELUPE spacecraft, so as to quantify the feasibility and success rate of the mission from a
descent-and-landing perspective.

1-2 The ELUPE Mission

This section provides an introduction to the ELUPE mission concept. The content relies on
Bouma (2017), and is complemented, improved and updated where necessary. Section 1-2-1
addresses the mission’s general goals, objectives and outcomes, followed by a brief introduction
to the spacecraft in Section 1-2-2. The section concludes with an outline of the baseline descent
scenario, provided in Section 1-2-3.

1-2-1 Mission Goals, Objectives and Outcomes

From a science perspective, the ELUPE mission is foreseen to conduct the first in-situ mea-
surements of the lunar PSR regolith and to establish a connection between in-situ acquired
data and existing (and future) remote data sets. In this respect, the focus is firstly on de-
tection and identification of lunar volatiles, secondly on characterisation of the geotechnical
properties of the regolith, thirdly on measuring the subsurface temperature environment, and
fourthly on capturing the macro-scale geological context of the landing site. The results will
assist in calibration of orbital data sets, and in addition provide crucial constraints for future
prospecting missions and science models. In a broader context, the measurements, albeit
taken from a single point, contribute to completion of the first step towards ISRU, that is
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Penetrator Delivery System (PDS)

Penetrator Descent Module (PDM)

Penetrator

Figure 1-1: CATIA render of the ELUPE spacecraft: the PDM. Indicated are the two distinct
systems that constitute the PDM, that is, the PDS and the Penetrator.

“find and characterise the resource deposits” (Carpenter et al., 2016), or even broader, towards
enabling sustained human exploration of the Moon.

The objectives of the mission are to implant an instrumented penetrator inside the lunar PSR
regolith, and to operate penetrator instrumentation and subsystems pre-, peri- and post-
impact until all in-situ experiments have been concluded and the data acquired has been
transmitted to the Lunar Pathfinder. If successful, the mission would demonstrate leading
European hard landing technology on the Moon – or more generally: on an airless body –
and as such could be a precursor to additional instrumented penetrator missions to the Moon
(to establish regionally distributed point measurements) or to other airless destinations of
interest, such as Enceladus, Europa and Ganymede.

1-2-2 Spacecraft

The ELUPE spacecraft, as currently proposed, is comprised of two distinct systems: an
instrumented penetrator and a Penetrator Delivery System (PDS), which ensures a three-axis
controlled descent trajectory from the Pathfinder to the lunar surface so as to deliver the
instrumented penetrator to its designated landing site, under desired impact conditions. The
ELUPE spacecraft, i.e., the penetrator attached to the PDS, is referred to as the Penetrator
Descent Module (PDM). The terminology is borrowed from Vijendran et al. (2010). A CATIA
render of the PDM is depicted in Figure 1-1.
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Pathfinder orbit
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Figure 1-2: Schematic representation of the PDM’s descent trajectory, which can be divided into
two phases, further elaborated in the text. The first phase is represented by the dashed green
line; the second by the solid blue line. The dotted line represents the orbit of the Pathfinder. The
coloured dots indicate relevant epochs in the trajectory. Notably, the schematic is not to scale.

1-2-3 Descent Scenario

Figure 1-2 shows a schematic representation of the PDM’s descent trajectory from separation
from the Pathfinder through to impact. Also depicted is the orbit of the Pathfinder, which is
polar and circular at an altitude of 200 km. Relevant epochs in the trajectory are indicated in
Figure 1-2 and accompanied by a numbering system that corresponds to the sequence of events
occurring during the descent phase, further detailed below and summarised in Table 1-1.

The baseline descent scenario of the PDM can be divided into two phases, which are outlined
as follows. In the first phase, the PDM separates from the Pathfinder spacecraft in a polar and
circular orbit of 200 km altitude by a relative linear tip-off velocity in the direction opposite
to the Pathfinder velocity vector. After some period of passive drift, the PDM determines its
orientation using the measurements of a star tracker and performs the required control actions
in anticipation of the first orbital manoeuvre. When both spacecraft are safely separated, the
PDM carries out a periapsis lowering manoeuvre (PLM) using its reaction control system
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Table 1-1: Sequence of events occurring during the descent scenario of the PDM, from separation
from the Pathfinder through to impact. Altitude and epoch values are indicative.

Event Description Altitude (km) Epoch (s)

First phase of the descent scenario

1 Separation from Pathfinder and drift 200 0
2 Attitude acquisition and control 200 900
3 Periapsis lowering manoeuvre 200 1000
4 Transfer and attitude maintenance 199 1060
5 Attitude acquisition and control 28 4470

Second phase of the descent scenario

6 Spin-up and de-orbit manoeuvre 28 4570
7 Spin-down and reorientation 28 4586
8 Free-fall descent and spin-up 25 4636
9 Penetrator separation from PDS and drift 22 4656
10a Penetrator passive free-fall descent 22 4656
10b PDS spin-down, reorientation and fly-away 19 4676
11a Penetrator impact 0 4758
11b PDS impact 0 4758

(RCS), in order to bring the periapsis of its orbit down to 28 km altitude – the altitude from
which an object in free-fall towards the Moon would reach a velocity2 of 300 m s−1 just prior
to impacting the surface.

Next, the PDM coasts towards the periapsis while maintaining an attitude such that the
communications link with the Pathfinder spacecraft remains intact and the star tracker’s field-
of-view is unobstructed. During the transfer, the PDM accelerates due to increased dominance
of the Moon’s gravitational pull and consequently overtakes the Pathfinder spacecraft. The
resulting lead is eventually key to ensure a continuous line-of-sight between the Pathfinder
and the PDM throughout the latter’s descent to the lunar surface, as it compensates for
the Pathfinder catching up to the PDM during the de-orbit phase. Before the PDM reaches
its orbital periapsis, it carries out an attitude acquisition and control sequence to align its
symmetry axis with the velocity vector, such that the nozzle of the solid rocket motor (SRM)
is pointing in the forward direction. This event marks the end of the first phase.

In the second phase of the descent scenario, the PDM spins up for gyroscopic stability in
anticipation of the de-orbit manoeuvre (DOM). Shortly after, the SRM ignites to fully cancel
the PDM’s orbital velocity of approximately 1705 m s−1. Following termination of the DOM,

2This impact velocity was chosen based on the few full-scale impact tests that were performed during
previous penetrator studies; impacts occurred at velocities around 300 m s−1 in sand and ice targets (Smith
et al., 2010; Vijendran et al., 2014). As some of the technologies that survived the tests are envisaged for the
ELUPE mission, it is prudent to adhere to the conditions under which they were tested. It is noted that lower
impact velocities, down to a minimum value required to ensure sufficient penetration, are inherently safer,
however also impose unwanted additional constraints on the mission.

W.J. Bouma Master of Science Thesis



1-3 Problem Statement 7

the PDM spins down and slews vertically so that its symmetry axis is directed towards the
surface. During its free-fall descent phase, the PDM spins up again, in order to provide the
penetrator with a final stabilising spin upon separation from the PDS. Next, the penetrator
separates from the spinning PDS, followed by a short period of drift. Finally, the PDS spins
down and performs a fly-away manoeuvre (FAM), so as to avoid crashing onto the implanted
penetrator, contaminating the landing site and as such compromising the measurements. The
penetrator continues its spin-stabilised descent until it impacts the surface at about 300 m s−1.
A schematic of the events occurring during the second phase of the descent scenario is depicted
in Figure 1-3.

1-3 Problem Statement

As was stated in Section 1-1, this thesis will be concerned with the design, verification and
testing of a suitable attitude controller (henceforth just controller) for the PDM. The candi-
date controller will be tested in a simulation of the second phase of the descent scenario (see
Section 1-2-3). This phase is of particular interest from a control perspective, as the following
challenging rotational manoeuvres are involved:

• Large-angle slew manoeuvres. The reorientation manoeuvres entail 90 degrees
slews, and may therefore be referred to as large-angle slew manoeuvres. Controlling
such manoeuvres generally poses a difficult problem, as their dynamics are highly non-
linear (Markley & Crassidis, 2014).

• Minor-axis spin manoeuvres. The spin manoeuvres are performed about the axis
of minimum moment of inertia – the minor axis. This renders the PDM a so-called
prolate spinner following a spin-up. It is commonplace (e.g., Wie, 2008) that prolate
spinners are unstable in the presence of internal energy dissipation (due to e.g., the
motion of liquid propellants). Under such circumstances, the spin-axis becomes subject
to a nutation, which, if left uncontrolled, will gradually amplify until the spacecraft
attains a minimum-energy state and spins about its axis of maximum moment of inertia
– the major axis. This type of spinning motion is also referred to as flat spin. In this
thesis, a minor-axis spin manoeuvre involves a spin-up about the minor axis, an actively
controlled subsequent spin and finally a spin-down.

In addition to the challenges these manoeuvres pose, the controller must also account for
varying system parameters. Over the course of the descent, control actions carried out by
the RCS require propellant be consumed, which brings about changes in the PDM’s inertial
parameters and torque capabilities. The latter not only due to a moving centre-of-mass, but
also because the RCS operates in a blow-down mode (see Section 2-2-1).

Concluding, the attitude control problem concerned involves highly nonlinear large-angle slew
manoeuvres and unstable minor-axis spin manoeuvres, which must be performed by a space-
craft whose inertial parameters and torque capabilities vary while in the act. A suitable
controller is thus defined as one that is able to satisfactorily address these manoeuvres, while
at the same time accounting for varying system parameters.
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Spin-up De-orbit manoeuvre Spin-down

Reorientation

Spin-up

Penetrator release

Spin-down

Reorientation

Fly-away manoeuvre

6 7

8

9

10b

11b

11a

Free-fall descent

10a

Figure 1-3: Schematic representation of the second phase of the PDM’s descent scenario. Refer
to Table 1-1 for clarification on the numbered dots. The schematic is not to scale.
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1-4 Literature Review

A literature review was conducted to attain an overview of the state-of-the-art with regard to
planetary penetrators and control techniques. The literature review is set out in two parts.
The first part (Section 1-4-1) touches briefly upon the history of planetary penetrators and
covers a survey of previous missions that resemble ELUPE, focusing on their control solutions.
The second part (Section 1-4-2) presents a review of the literature on control techniques for
large-angle slew manoeuvres and minor-axis spin manoeuvres – two challenging rotational
manoeuvres that are both part of the PDM’s attitude control problem (see Section 1-3).

1-4-1 Planetary Penetrators

Planetary penetrators are a peculiar case in the spaceflight arena. Although having received
persistent attention over the last four to five decades, seemingly benefiting from compelling
heritage in the defence sector, they never succeeded in a mission (Lorenz, 2011). Since the
beginning of the space era, there have been many planetary penetrator proposals, fewer com-
prehensive studies and only two actual missions: Russian Mars-96 (Surkov & Kremnev, 1998)
and NASA’s Deep Space 2 (Smrekar et al., 1999), which were both targeted for Mars. Mars-96
failed at the fourth stage of its launch and consequently burnt up into Earth’s atmosphere.
The two penetrators of Deep Space 2 succeeded to reach the surface of Mars, however for
reasons only speculated on, no signal was received from either afterwards. Similar to early
Mars proposals (Lumpkin, 1974; Manning, 1977), the penetrators were designed to take ad-
vantage of the Martian atmosphere to achieve acceptable impact conditions. Since the Moon
has a negligible atmosphere, aerodynamic control techniques are not relevant for the ELUPE
mission, hence further details will be omitted.

More representative penetrator concepts bear resemblance to ELUPE’s concept in two aspects:
1) they have an airless destination, and 2) they are released into orbit around the target body.
Most of the previous concepts sharing these aspects were anticipated for the Moon, and would
have been part of the missions LUNAR-A (Morita et al., 1992), Luna-Glob (Surkov et al.,
1999), Polar Night (Mosher & Lucey, 2006), and the Moon Lightweight Interior and Telecoms
Experiment (MoonLITE) (Gao et al., 2008), as well as its direct derivatives; LunarEX (Smith
et al., 2009); LunarNet (Smith et al., 2012); and the single-penetrator mission Lunar Direct
Analysis of Resource Traps (L-DART) (Barber et al., 2017). Two other representative con-
cepts, namely the Jupiter Ganymede Orbiter Penetrator (JGOP) (Vijendran et al., 2010) and
the Jupiter Europa Orbiter Penetrator (JEOP) (Barraclough et al., 2015), were envisaged to
penetrate airless Jovian moons Ganymede and Europa, respectively.

By and large the most mature penetrator concept of those mentioned was part of the Japanese
LUNAR-A mission. The mission came close to a launch, but was eventually cancelled in 2007
after a development period of 15 years characterised by many hurdles and delays (Shiraishi et
al., 2008). The AOCS of the LUNAR-A penetrator was modestly set up using only a sun sensor
and a single cold gas thruster for attitude determination and control, and a dedicated SRM to
cancel the orbital velocity (Nakajima et al., 1996). The module would be given a stabilising
spin upon release from its carrier at its de-orbit altitude, where it would execute a de-orbit
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manoeuvre followed by a rhumb line slew manoeuvre in order to precess the spin-axis towards
the vertical (Morita et al., 1992). Such reorientation of a spinning penetrator has recently been
topic of study, as similar slew strategies were foreseen for MoonLITE and LunarEX. Raus et
al. (2012) performed a comparative analysis of a series of open-loop manoeuvring techniques
for prolate spinners controlled by a single thruster. Si et al. (2018) extended this work by
incorporating attitude and spin-rate feedback into the control loops of two of these techniques,
greatly improving their robustness. As far as the open literature goes, it seems that these
have been the only closed-loop control algorithms that were developed in the context of one
of the aforementioned penetrator concepts.

It is safe to assume that no controller development took place for Luna-Glob and Polar Night,
as neither of those concepts progressed beyond their proposal phase (Lorenz, 2011). The
instrumented penetrators anticipated for MoonLITE (and its derivatives), JGOP and JEOP
were in fact further advanced, and prototypes of these penetrators were tested during a series
of impact trials (Smith et al., 2012; Vijendran et al., 2014). However, as the focus of these
studies was predominantly on maturing the penetrator system and to a lesser extent on the
delivery module, no effort went into the development of their respective controllers3. As such,
it appears that no comprehensive controller has ever been developed for a fully actuated,
thruster-controlled penetrator mission targeted for an airless body. The design of such a
controller and its testing in a simulation would provide better insight into the feasibility and
success rate of such a mission from a descent-and-landing perspective. This is particularly
relevant since ESA is considering a penetrator mission as a payload option for SSTL’s Lunar
Pathfinder.

1-4-2 Control Techniques

In the following, a brief review is presented of the various control techniques that have been
considered in the literature to address large-angle slew manoeuvres and minor-axis spin ma-
noeuvres. It should be noted that the specifics of the techniques mentioned below are not
provided here. Techniques relevant in the context of this thesis will be covered in later chap-
ters. For an elaboration of the other control techniques mentioned, the reader is referred to
the works cited.

• Control techniques for large-angle slew manoeuvres were a vivid topic of study in
1980s and 1990s. This period spawned some important solutions to this highly nonlinear
control problem. In particular, proportional-derivative (PD) quaternion-error feedback
laws were invented (Wie & Barba, 1985; Wie et al., 1989; Wen & Kreutz-Delgado,
1991; Joshi et al., 1995), as were robust control schemes based on Sliding Mode Control
(SMC), or more generally Variable Structure Control (VSC) techniques (Vadali, 1986; Lo
& Chen, 1995; Dwyer & Sira-Ramirez, 1988). Other well-known control techniques, such
as Model Reference Adaptive Control (MRAC) (Van Den Bosch et al., 1986; Singh, 1987)
and nonlinear H∞ (Kang, 1995; Dalsmo & Egeland, 1997; Yang & Kung, 2000), have

3Perkinson, M.-C., personal communication, 2017
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also been considered in the literature to address the problem of large-angle reorientation,
albeit to a seemingly lesser extent than SMC/VSC techniques.

• Control techniques for minor-axis spin manoeuvres, achieving spin-axis stabili-
sation or equivalently, Active Nutation Control (ANC) (Devey et al., 1977), were first
investigated in the 1960s in the context of spin-stabilised satellites and upper rocket
stages, and were analogue in nature (Grasshoff, 1968). More recent controllers were
based on linear proportional-integral-derivative (PID) techniques (Tsiotras & Longuski,
1994; Zhang et al., 2008; Gui & Vukovich, 2015) or nonlinear techniques such as non-
linear dynamic inversion (Elias & Vega-Nevarez, 2008) and Lyapunov feedback control
(Lawrence & Holden, 2007), and were developed for e.g., unbalanced ballistic missiles
and (small) spacecraft, controlled by either thrusters or reaction wheels or a combination
of both, under fully actuated or underactuated conditions.

Surveying the large body of literature that has been established on control techniques, it can
reasonably be concluded that their evolution has mainly been driven by the need for improved
methods to determine appropriate controller gains for increasingly complex systems. Advances
in applied mathematics and computer technology have enabled the design of stable controllers
for systems that are represented by time-varying, nonlinear or even unknown dynamics. For
most practical aerospace applications though, the use of classical PID control is still the
norm (Markley & Crassidis, 2014) – simply because this technique often suffices and there
is extensive heritage in its use. It would hence be of practical relevance to design a classical
controller for the PDM. In addition, given that in-depth studies on control solutions for
penetrator missions such as ELUPE appear to be lacking (Section 1-4-1), the design and
testing of a controller based on classical control techniques would establish a benchmark
for future work. In this respect, it is therefore decided to implement the PD quaternion-
error feedback controller as developed by Wie et al. (1989) to generate control commands for
the large-angle slew manoeuvres, and the ANC logic as described by Devey et al. (1977) to
stabilise the spin-axis during minor-axis spin manoeuvres. Notably, the control techniques
will be tailored to the needs of the PDM and will be refined where necessary.

1-5 Research Question

In line with the foregoing, the following twofold research question can be formulated:

Is it possible to satisfactorily solve the attitude control problem of a current-
technology penetrator mission targeted for an airless body through the use of classi-
cal control techniques, and if so, what are, from a descent-and-landing perspective,
the key factors affecting the success rate of such a mission?

To answer this question, a classical controller will be designed, verified and tested in a simula-
tion of the second phase of the PDM’s descent scenario. The controller will be provided with
realistic state feedback and its output will be fed to a thruster management function, which
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will generate the appropriate thruster commands. The simulator will comprise a model of the
PDM, which will be subject to uncertainty. The results of a sensitivity analysis will provide
insight into the performance of the controller, as well as the success rate of the mission from
a descent-and-landing perspective.

1-6 Contributions

To the best of the author’s knowledge, this thesis makes the following contributions to the
open literature:

• A classical controller and a thruster management function were developed for a fully ac-
tuated, thruster-controlled penetrator mission targeted for an airless body. In addition,
a simulator was developed to test their performance under nominal and off-nominal
conditions. This has provided insight into the success rate of such a mission from a
descent-and-landing perspective, and has set a benchmark.

• The work of Wie et al. (1989) was extended by the development of a method to em-
pirically derive a corrective factor to be applied to the standard expression for approxi-
mating the natural frequency – which is used by Wie et al. (1989) to calculate the gain
matrices – based on a chosen settling time, see Section 4-2-2. As such, it is possible to
satisfactorily address the nonlinear effects caused by the term sin (θ/2).

• The work of Devey et al. (1977) was extended by the development of a strategy to
determine the optimal thruster pulse width based on a chosen settling time and the
torque capabilities of the spacecraft perpendicular to the spin-axis, see Section 4-3-2-2.

• A procedure was developed to correct the solution to the general jet selection problem
for the anticipated pressure drop that occurs when multiple thrusters operating in blow-
down mode are simultaneously active, see Section 6-1-1.

• Based on findings of Stack Exchange-users ‘zeta’ and ‘probably someone’, analytic equa-
tions for the mass moments of inertia of a (hemi)spherical cap, in terms of its mass,
height and spherical radius, were derived and verified, see Appendix C-1. These equa-
tions were not found in the literature.

• Analytic equations for the centroid and the mass moments of inertia of a hemispherical
frustum, in terms of its mass, height and spherical radius, were derived and verified, see
Appendix C-1. These equations were not found in the literature.

1-7 Report Structure

The report is organised as follows. First, accurate models for the spacecraft and its environ-
ment will be created. In Chapter 2, this is done for the spacecraft, which will be represented in
the simulator by its inertial parameters and torque capabilities. In Chapter 3, the spacecraft’s
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dynamics and environment are modelled, by setting up the rotational equations of motion and
investigating the significance of the disturbance torques. In addition, the chapter covers the
reference frames considered, as well as the state representation. Chapter 4 is concerned with
the design of the controller. The control algorithms for the large-angle slew manoeuvres
and the minor-axis spin manoeuvres are described in detail, and refined where necessary.
Chapter 5 defines the mission manager logic, as well as the target states it transmits to the
controller. In Chapter 6, the remaining simulator elements, i.e., the thruster management
function and the navigation system are discussed, which is followed by an elaboration of the
architecture of the simulator. Then, the simulation set-up is described in detail, after which
the simulation results are presented, at the end of the chapter. Finally, in Chapter 7, the
most important conclusions drawn from the thesis are summarised, the limitations to which
the thesis was subject are discussed, and recommendations for future work are made.
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Chapter 2

Spacecraft Modelling

Crucial to an accurate simulation is an accurate model of the spacecraft. Starting with some
preliminaries regarding the configuration of the spacecraft in Section 2-1, a detailed description
of the AOCS model is provided in Section 2-2. In the simulator, the spacecraft is represented
by its inertial parameters, which are discussed in Section 2-3, and its torque capabilities, lastly
covered in Section 2-4

2-1 Preliminaries

As was stated in Sections 1-2-2 and 1-2-3, the PDM consists of the PDS and the instrumented
penetrator, which separate just prior to impact. In Figure 2-1, the PDM is schematically
depicted. The PDS incorporates the AOCS, which includes an SRM to perform the DOM
and a mono-propellant, or more specifically, a hydrazine RCS for all other manoeuvres. The
PDS also contains an avionics bay which accommodates the electronic equipment, including
the AOCS sensors (see Appendix A-2). The instrumented penetrator is connected to the PDS
via a release mechanism. Since the release mechanism is not yet specified, assumptions will
be made in regard to the tip-off velocities imparted to the penetrator upon release from the
PDS, see Section 5-2-1-2.

Physical positions on the spacecraft are measured from the centre of the geometric frame
(G-frame, see Section 3-1), a right-handed Cartesian reference frame whose origin is located
at the centre of the release mechanism between the PDS and the penetrator (see Figure 2-1).
The zG-axis is aligned with the symmetry axis and points towards the nose of the penetrator,
see Figure 2-1. The xG- and yG-axes are defined in Figure 2-2.

15
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penetrator

thruster support ring

(4 mm CFRP)

tubular section
(4 mm CFRP)
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tank
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thrusters (4x) bulkhead
(4 mm CFRP)

avionics bay
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solid rocket
motor

(PDM)

(PDS)

zG
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Figure 2-1: Schematic representation of the PDM configuration. The origin and z-axis of the
G-frame are depicted. The dimensions shown are in millimetres. The acronym CFRP stands for
Carbon Fiber Reinforced Polymer.

2-2 Attitude and Orbit Control System

This section is dedicated to modelling the actuating elements of the AOCS. In Sections 2-2-1
and 2-2-2, detailed descriptions of the RCS and the de-orbit motor are provided, respectively.
The AOCS elements are modelled using actual specifications and performance diagrams.

2-2-1 Reaction Control System

The hydrazine RCS includes four thrusters that are used for attitude and orbit control. The
thrusters are mounted on the thruster support ring and symmetrically canted off-axis to
enable three-axis control; see Figure 2-2 for a schematic representation of this configuration.
The thruster positions on the spacecraft are provided in Table 2-1.

The off-the-shelf thruster model selected for the RCS is Aerojet’s MR-111C hydrazine thruster.
The MR-111C is capable of delivering thrust forces between 1.3 and 5.3 N, depending on the
momentary propellant feed pressure. In Table G-1, further relevant specifications of this
thruster model are provided. The MR-111C performance diagram is depicted in Figure 2-3.
The diagram was generated using the empirical relations derived by Swink et al. (1999), which
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1 2

3 4

xG

yG

Figure 2-2: Schematic representation of the thruster configuration. The x- and y-axes of the
G-frame are depicted, as well as the thruster numbering. The dimensions shown are in millimetres.

Table 2-1: Thruster positions with respect to the G-frame.

Thruster x (mm) y (mm) z (mm)

1 152 −152 −660
2 152 152 −660
3 −152 −152 −660
4 −152 152 −660

were converted to SI units:

Fthruster =
16.3166 · pf
pf + 58.1864

(2.1)

Isp, thruster =
232.786 · pf
pf + 0.437 491

(2.2)

where Fthruster is the thruster force in Newtons, Isp, thruster is the thruster specific impulse in
seconds and pf is the feed pressure in bars. Fthruster and Isp, thruster are related through the
following expression:

Fthruster = g0 · Isp, thruster · ṁthruster = ve, thruster · ṁthruster (2.3)
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Figure 2-3: Performance diagram of Aerojet’s MR-111C hydrazine thruster (Swink et al., 1999),
converted to SI units.

where g0 = 9.806 65 m s−2 (e.g., Wertz, 2005) is the nominal gravitational acceleration near
the surface of the Earth, ṁthruster is the rate at which mass is expelled from the thruster
and ve, thruster is the effective exhaust velocity. Substituting Equations (2.1) and (2.2) in
Equation (2.3) and rearranging yields:

ṁthruster =
0.007 147 47 · pf + 0.003 126 95

pf + 58.1864
(2.4)

which calculates the mass flow as a function of feed pressure for the MR-111C. Via supplying
pipes, the four thrusters are fed from a propellant tank, which is filled with hydrazine and
an inert pressurant gas. The RCS operates in a so-called blow-down mode, meaning that the
pressure in the pre-pressurised tank drops as propellant is expelled. In the context of this
thesis, it is reasonable to assume that the pressure in the tank is equal to the feed pressure,
provided that only one thruster is firing. When multiple thrusters are simultaneously active,
there will be a slight pressure drop in the supplying pipes. The extent of this decrease in feed
pressure depends on the number of thrusters operational at the same time. Blanc-Paques
(2005) performed a thruster calibration exercise for the Synchronized Position Hold Engage
and Reorient Experimental Satellite (SPHERES) spacecraft and determined the feed pressure
drop factor αk as a function of the number of open thrusters k. The relevant results of this
exercise are presented in Table 2-2. For the purpose of introducing a feed pressure drop as a
consequence of multiple thrusters firing, the results in Table 2-2 are directly incorporated in
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Table 2-2: Feed pressure drop factor per number of open thrusters for SPHERES.

Number of open
thrusters, k

Pressure drop
factor, αk

1 1.00
2 0.96
3 0.90
4 0.83

the simulation model for the RCS. The actual feed pressure drop factors should be obtained
through dedicated experimentation, which is out of the scope of this thesis. Equations (2.1),
(2.2) and (2.4) are modified to include the feed pressure drop factor, as follows:

(Fthruster)k =
16.3166 · (αk pf )

(αk pf ) + 58.1864
(2.5)

(Isp, thruster)k =
232.786 · (αk pf )

(αk pf ) + 0.437 491
(2.6)

(ṁthruster)k =
0.007 147 47 · (αk pf ) + 0.003 126 95

(αk pf ) + 58.1864
(2.7)

The off-the-shelf propellant tank selected for the RCS is RAFAEL’s PEPT-230 tank, whose
specifications are listed in Table G-2. The nominal empty volume of this tank is 6 litres
and its operating pressure ranges between 5.5 and 24 bars. Notably, the liquid propellant is
separated from the pressurant gas by a rubber diaphragm, see Figure 2-4. This has several
advantages; for one, it helps to smoothly expel the propellant from the tank in a micro-gravity
environment. Another advantage is that a diaphragm restrains the so-called free surface of the
liquid, thereby preventing to a great extent any forms of lateral and vertical liquid sloshing in
the propellant tank. Since, in addition, the liquid propellant slug inside the PDM represents
only a small fraction of the overall spacecraft mass (4% in a worst-case scenario – i.e., the
PDM without solid propellant, see also Table A-1), of which only a small top layer would
be affected for a short period of time, it is reasonable to assume that the impact of these
types of liquid motion on the dynamics of the spacecraft can be neglected, thereby preventing
a great deal of unnecessary complexity from being added to the model. Swirling – that is,
rotational liquid motion – on the other hand, is typically not prevented by a diaphragm. The
significance of the disturbance torque that is exerted on the spacecraft by this type of liquid
motion will be investigated in Section 3-4-2-3.

In order to determine how the tank should initially be pressurised given a certain initial
amount of hydrazine, it is required to define how the RCS should perform in terms of out-
put thrust per thruster. Given the current RCS configuration, the upper pressure limit is
prescribed by the tank and the lower pressure limit by the thrusters, respectively 24 bars
(see Table G-2) and 6 bars (see Table G-1, with a margin of 0.5 bar). Using Equation (2.1),
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Figure 2-4: Schematic representation of a spherical propellant tank with a diaphragm.

the thrust values corresponding to these pressure limits are 4.8 N and 1.5 N, respectively.
Since the RCS operates in a blow-down setting, and thus pressure and output thrust are not
constant, it is convenient to define the performance of the RCS in terms of average output
thrust. As can be observed from Figure 2-3, the relation between pressure and output thrust
is represented by a nearly straight line. It may therefore be assumed that the average output
thrust per thruster is well approximated by:

Fave =
Fini + Ffin

2
(2.8)

where Fini and Ffin are the initial and final output thrust, respectively. In order to find the
initial pressure as a function of the tank volume, initial amount of hydrazine and average
output thrust, the ideal gas law (Émile Clapeyron, 1799-1864) is used:

pV = nRT (2.9)

where p is gas pressure, V is gas volume, T is temperature, n is the amount of substance
and R is the ideal gas constant. In this thesis, it is assumed that the process of expelling
propellant from the tank is isothermal, thus T is constant. This implies that:

pV = constant (2.10)

and thus:
pini Vini = pfin Vfin (2.11)

where pini and pfin are the initial and final pressure, respectively, Vini is the initial volume of the
pressurant gas, generally referred to as the initial ullage of the tank, so: Vini = Vullage, ini, and
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Vfin is the final volume of the pressurant gas, equal to the total tank volume, so: Vfin = Vtank.
It furthermore holds that:

Vtank = Vhyd, ini + Vullage, ini (2.12)

where Vhyd, ini is the initial volume of the hydrazine propellant. Solving Equation (2.1) for
feed pressure pf yields:

pf =
58.1864 · Fthruster

16.3166− Fthruster
(2.13)

The equation for the initial output thrust can be derived by first substituting Equation (2.13)
into Equation (2.11), such that:

58.1864 · Fini

16.3166− Fini
Vini =

58.1864 · Ffin

16.3166− Ffin
Vfin (2.14)

Then, using the information provided above, along with Equations (2.8) and (2.12), Equa-
tion (2.14) can be written as:

58.1864 · Fini

16.3166− Fini
(Vtank − Vhyd, ini) =

58.1864 · (2Fave − Fini)

16.3166− (2Fave − Fini)
Vtank (2.15)

Solving Equation (2.15) for Fini using Matlab’s Symbolic Math Toolbox finally gives:

Fini = Fave −

√
Vhyd, ini

2 (Fave − 8.1583)2 − 266.231 · Vhyd, ini Vtank + 266.231 · Vtank
2

Vhyd, ini

+
16.3166 · Vtank

Vhyd, ini
− 8.1583 (2.16)

To obtain the initial pressure pini, Equation (2.16) can be filled out in Equation (2.13). Equa-
tion (2.16) holds for a blow-down RCS, incorporating Aerojet’s MR-111C hydrazine thruster
connected to some propellant tank, under the assumptions that tank pressure is equal to
thruster feed pressure, the relation between feed pressure and output thrust is linear, the
pressurant behaves like an ideal gas, and the tank is isothermally depleted. When such a
system includes RAFAEL’s PEPT-230 tank, which implies that Vtank = 6 litres, selecting a
feasible average output thrust value to define the desired performance of the RCS can be done
using the diagram depicted in Figure 2-5, where the average output thrust capabilities of the
system, as a function of the initial hydrazine mass required for the mission, are grey-shaded.
In generating this diagram, it was assumed that the density of hydrazine ρhyd = 1008 kg m−3

(Ley et al., 2009).

From Figure 2-5, it can be deduced that the PDM’s RCS is able to handle a maximum initial
hydrazine mass of 4.5 kg, for which only one pressure setting is possible, leading to an average
output thrust of 3.15 N. Since this particular average output thrust value can be achieved for
the entire range of initial hydrazine mass values (0 - 4.5 kg), it is decided that, in the context
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Figure 2-5: Average output thrust capabilities (grey-shaded area) of Aerojet’s MR-111C hydrazine
thruster when connected to RAFAEL’s PEPT-230 tank, as a function of initial hydrazine mass
contained in the tank. Tank volume is 6 l, pressure limits are set at 24 and 6 bar. Maximum
hydrazine capacity for this setting is 4.5 kg. A maximally loaded tank can only be pressurised
such that an average thrust of 3.15 N is produced.

of this thesis, the desired average output thrust produced by the RCS will be 3.15 N, which
allows for a variable initial hydrazine mass without having to consider the feasibility of the
performance setting.

Given Fave = 3.15 N, Vtank = 6 l and a certain initial hydrazine mass, Equations (2.13)
and (2.16) can be used to calculate the initial pressure. Then using Equations (2.10) and (2.12),
the following equation can be derived for calculating the momentary pressure as a function of
the initial pressure, tank volume, initial hydrazine mass mhyd, ini and momentary hydrazine
mass mhyd:

p = pini

(
Vtank − Vhyd, ini

Vtank − Vhyd

)
(2.17)

with:

Vhyd =
mhyd

ρhyd
(2.18)
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Figure 2-6: Performance diagrams of Northrop Grumman’s STAR 13B motor. Top: vacuum
thrust produced by the motor as a function of burn time. Bottom: propellant mass as a function
of burn time. Data provided by M. Lara (Northrop Grumman), personal communication, 2018.

2-2-2 De-Orbit Motor

For the large braking impulse that must be imparted to the PDM during the DOM, Northrop
Grumman’s off-the-shelf STAR 13B solid rocket motor is selected. Capable of burning 41.2
kg of solid propellant in 14.8 s, STAR 13B produces an average thrust of 7598 N. Additional
relevant specifications of the SRM are listed in Table G-3. The full burn history of STAR 13B
is depicted in Figure 2-6. The two plots in this figure are generated using actual test data
provided by Northrop Grumman.

Considering the large amount of thrust the SRM will exert on the PDM, any inevitable
misalignment of the thrust vector could lead to significant parasitic torques. In order to ensure
that the PDM remains stable under such circumstances, it is spun up about its symmetry axis
before the SRM is ignited. The spin rate required to guarantee sufficient gyroscopic stability
during the DOM will be investigated in Section 5-2-1-1. Notably, the STAR 13B SRM has
been qualified for spin rates up to 120 rpm.

The amount of solid propellant needed for the DOM is currently estimated to be less than
41.2 kg, implicating that the SRM must be off-loaded. For STAR 13B, propellant off-loading
is allowed up to 20% without additional qualification testing (see Table G-3). The off-load will
be designed to match a point in time of the nominal burn profile, meaning that the starting
point on the thrust curve will be shifted from the left.
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Table 2-3: Inertia properties of the penetrator, dry PDS and dry PDM.

System Mass (kg)
CoM* (m) MoI (kg m2)

xG yG zG Ixx Iyy Izz

Penetrator 17.6 0 0 0.119 0.149 0.149 0.082
PDS (dry) 28.1 0 0 −0.441 2.553 2.553 0.526
PDM (dry) 45.7 0 0 −0.225 6.102 6.102 0.608

*The CoM is measured relative to the G-frame, see Figures 2-1 and 2-2 and Section 3-1

2-3 Inertial Parameters

The inertial parameters relevant to the design of the controller are the total mass, the location
of the centre of mass (CoM), the mass moments of inertia (MoI) and the products of inertia
(PoI) of the PDM, PDS and penetrator at each moment in time during the course of the
descent. The MoI and PoI constitute the so-called inertia tensor, defined as:

I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (2.19)

where the diagonal elements, Ixx, Iyy and Izz, represent the MoI – also referred to as the
principal MoI, as they are referenced to the principal axes of the body concerned – and the
nondiagonal elements, Ixy, Ixz and Iyz, represent the PoI, which can be regarded as a measure
of unbalance of the body. Due to the symmetry of the PDM, PDS and penetrator about the
zG-axis, the CoMs of these mass systems may be assumed to be nominally located on the zG-
axis. As a consequence, in the nominal case, the systems are balanced and the PoI are zero.
In Table 2-3, the inertia properties of the penetrator, dry PDS and dry PDM are presented.

In order to obtain the inertia properties for the wet PDM, the momentary inertia properties of
the solid and liquid propellant slugs must be combined with the inertia properties of the dry
PDM. In this regard, the total mass is calculated by a straightforward summation of masses:

mPDM,wet = mPen +mPDS,dry +msolid +mhyd (2.20)

The CoM of the wet PDM is calculated by:

(rcm)PDM,wet =
(mrcm)Pen + (mrcm)PDS, dry + (mrcm)solid + (mrcm)hyd

mPDM,wet
(2.21)

where m is the mass of the associated body and rcm is the position vector of the CoM of the
associated body, relative to the G-frame. The inertia tensor of the wet PDM is calculated by:

IPDM,wet = (IPen)PDM,wet + (IPDS,dry)PDM,wet + (Isolid)PDM,wet + (Ihyd)PDM,wet (2.22)
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solid propellant slug

liquid propellant slug

zG

Figure 2-7: Schematic cross-section of a wet PDM, showing the shape and position of both
propellant slugs inside the PDM at an arbitrary epoch. The z-axis of the G-frame is also depicted.
The dimensions shown are in millimetres.

where the elements on the right-hand side are the inertia tensors of, respectively, the pene-
trator, the dry PDS, the solid propellant slug and the liquid propellant slug, expressed with
respect to a coordinate system located at the CoM of the wet PDM. In order to first obtain
Isolid and Ihyd, assumptions are made with respect to the shapes of both propellant slugs, see
Figure 2-7 for their two-dimensional representation.

In Appendix C, it is comprehensively described how the CoMs and inertia tensors of the pro-
pellant slugs are calculated based on their momentary mass. It is assumed that the propellant
slugs have a symmetry axis which is nominally aligned with the symmetry axis of the dry
PDM. Using the parallel axis theorem, given by Equation (C.3), it is then possible to express
the inertia tensors of the slugs with respect to the aforementioned coordinate system located
at the CoM of the wet PDM.

2-4 Torque Capabilities

The ability of the spacecraft to control its attitude can be quantified in terms of torque
capabilities about a set of reference axes originating in the CoM the spacecraft. These reference
axes are chosen to be parallel to the axes of the G-frame, implying that in the nominal case,
they coincide with the principal axes of the spacecraft (see Section 2-3). Since the spacecraft
is thruster-controlled, the torque that each thruster produces is calculated by:

Mthruster = (rthruster − rcm)× Fthruster (2.23)

where rthruster is the position vector of the associated thruster (see Table 2-1) and rcm is the
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Table 2-4: Expressions to calculate the thruster force x- and y-components with respect to the
nominal principal axes. The thruster geometry and numbering is shown in Figure 2-8

Thruster Fx (N) Fy (N)

1 F
′
thruster cos (180◦ + φthruster) F

′
thruster sin (180◦ + φthruster)

2 F
′
thruster cos (180◦ − φthruster) F

′
thruster sin (180◦ − φthruster)

3 F
′
thruster cos (360◦ − φthruster) F

′
thruster sin (360◦ − φthruster)

4 F
′
thruster cos (φthruster) F

′
thruster sin (φthruster)

position vector of the CoM of the spacecraft, both expressed with respect to the G-frame, see
Figure 2-8. Fthruster is the thruster force vector expressed relative to the G-frame:

Fthruster =

 Fx

Fy

Fz


thruster

(2.24)

The z-component of the thruster force vector is calculated by:

Fz = Fthruster cos (θthruster) (2.25)

where Fthruster is obtained using Equation (2.1) and θthruster is the thruster cant angle from
the zG-axis, see Figure 2-8. In order to calculate the x- and y-components of the thruster
force vector, the following auxiliary parameter is defined:

F
′
thruster = Fthruster sin (θthruster) (2.26)

Additionally defined is φthruster, which represents the thruster cant angle from the xG-axis,
see Figure 2-8. Since the thrusters are symmetrically canted, the x- and y-components of the
thruster force vector are calculated differently for each individual thruster, see Table 2-4.

It is clear from Equation (2.23) that the torque generated by each thruster depends on a
continuously degrading thruster force vector (as the RCS operates in blow-down mode, see
Section 2-2-1) and a varying CoM position vector (as propellant is consumed). As such, the
torque capabilities of the spacecraft persistently vary. To give an impression of the order of
magnitude of the spacecraft’s torque capabilities, they are calculated for the case of a maxi-
mally loaded PDM. The values for the parameters required for this calculation are provided
in Table 2-5.

Using the parameter values from Table 2-5, Equations (2.13) and (2.16) are first evaluated to
determine the initial pressure inside the propellant tank. Next, Equation (2.17) is evaluated
to find the current pressure, which is filled out in Equation (2.1) to obtain the current thruster
force (assuming tank pressure is equal to thruster feed pressure). Then, using the expressions
listed in Table 2-4 and Equation (2.25), the thruster force components are calculated, consti-
tuting the thruster force vectors associated with each thruster. Finally, the CoM of the wet
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Figure 2-8: Schematic indicating the thruster numbering, cant angles, force components and
thruster moment arm. The location of the CoM in the figure is arbitrary.

PDM is obtained through Equation (2.21), which is then component-wise subtracted from
each of the thruster position vectors given in Table 2-1 to find the moment arm components
for each thruster. Table 2-6 presents the results of the above computations, i.e., the thruster
force components and moment arm components per thruster, for a maximally loaded PDM.

In order to provide a complete overview of the torque capabilities of a maximally loaded PDM,
the torques generated by each thruster combination must be calculated. To this end, first
the thruster force components per thruster are computed for each k, denoting the number
of thrusters active at once. This is done by repeating the procedure as described above,
albeit using Equation (2.5), which is a modification of Equation (2.1), to account for the feed
pressure drop that occurs when multiple thrusters are fired simultaneously (see Section 2-2-1).
Next, using the obtained results and the moment arms presented in Table 2-6, Equation (2.23)
is evaluated, providing the torque vectors per thruster for each k. The torques generated by
each thruster combination are then calculated by summing the torque vectors associated with
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Table 2-5: Parameter values for calculating the torque capabilities of a maximally loaded PDM.

Parameter Value Unit

mPDM, dry 45.7 kg
(zcm)PDM,dry −0.225 m

(Ixx)PDM, dry 6.102 kg m2

(Iyy)PDM, dry 6.102 kg m2

(Izz)PDM, dry 0.608 kg m2

msolid 41.2 kg
mhyd 4.5 kg
mhyd, ini 4.5 kg
Fave 3.15 N
Vtank 0.006 m3

pmax 24 bar
pmin 6 bar
θthruster 45 deg
φthruster 45 deg

the thrusters concerned, considering that four on/off -thrusters allow for 24 = 16 thruster
combinations.

Finally, the associated minimum angular impulse bits ∆L = [∆Lx, ∆Ly, ∆Lz]
T are computed

by multiplying the torques by the minimum pulse width, which is 0.020 seconds for Aerojet’s
MR-111C thruster, see Table G-1. The results of these computations, i.e., the torque capabil-
ities and minimum angular impulse bits per combination of thrusters, for a maximally loaded
PDM, are presented in Table 2-7. It should be noted that solely the results of 15 thruster
combinations are listed, as for the 16th combination no thrusters are firing.
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Table 2-6: Example thruster force components (N) and moment arm components (m) per
thruster, for a maximally loaded PDM.

Thruster Fx Fy Fz (rx)cm
thruster (ry)

cm
thruster (rz)

cm
thruster

1 −2.374 −2.374 3.358 0.152 −0.152 −0.248
2 −2.374 2.374 3.358 0.152 0.152 −0.248
3 2.374 −2.374 3.358 −0.152 −0.152 −0.248
4 2.374 2.374 3.358 −0.152 0.152 −0.248

Table 2-7: Example torque capabilities (N m) and minimum angular impulse bits (kg m2 s−1)
per combination of thrusters, for a maximally loaded PDM. In the table, ‘T1’ stands for ‘Thruster
1’, ‘T2’ for ‘Thruster 2’, etc.

Comb. T1 T2 T3 T4 Mx My Mz ∆Lx ∆Ly ∆Lz

1 1 0 0 0 −1.100 0.079 −0.722 −0.022 0.002 −0.014
2 0 1 0 0 1.100 0.079 0.722 0.022 0.002 0.014
3 0 0 1 0 −1.100 −0.079 0.722 −0.022 −0.002 0.014
4 0 0 0 1 1.100 −0.079 −0.722 0.022 −0.002 −0.014
5 1 1 0 0 0 0.154 0 0 0.003 0
6 1 0 1 0 −2.137 0 0 −0.043 0 0
7a 1 0 0 1 0 0 −1.402 0 0 −0.028
8a 0 1 1 0 0 0 1.402 0 0 0.028
9 0 1 0 1 2.137 0 0 0.043 0 0
10 0 0 1 1 0 −0.154 0 0 −0.003 0
11 1 1 1 0 −1.020 0.074 0.669 −0.020 0.001 0.013
12 1 1 0 1 1.020 0.074 −0.669 0.020 0.001 −0.013
13 1 0 1 1 −1.020 −0.074 −0.669 −0.020 −0.001 −0.013
14 0 1 1 1 1.020 −0.074 0.669 0.020 −0.001 0.013
15b 1 1 1 1 0 0 0 0 0 0
aThis thruster combination also imparts a velocity change along the zB-axis.
bThis thruster combination can be used to achieve pure translational motion along the zB-axis.
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Chapter 3

Spacecraft Motion and Disturbance
Modelling

In a simulation, real world systems and processes are represented by mathematical models.
Traditionally, they comprise a set of governing differential equations that must be integrated
to propagate the state of the system. In order to make mathematical models computationally
manageable, they are simplified by imposing reasonable assumptions. This always comes at
the cost of accuracy, and hence the extent of simplification should be the result of careful con-
sideration. This chapter investigates the mathematical representations and models available
to describe the state of the spacecraft, its dynamics and its environment.

In Section 3-1, relevant reference frames are defined. This is followed by a discussion on the
benefits and drawbacks of the various rotational state parameterisations in Section 3-2. In
Section 3-3, relations for the attitude kinematics are provided. Finally, in Section 3-4, the
rotational equations of motion of the spacecraft are set up, and a thorough assessment of the
significance of the disturbance torques acting on the spacecraft is presented.

3-1 Reference Frames

The current and target states of a spacecraft are always expressed with respect to some frame
of reference. In this section, three frames of reference – also called coordinate systems –
are defined. For one’s reference, they are also depicted in Figure 3-1. The reference frames
considered in this thesis are right-handed Cartesian (René Descartes, 1596-1650).

• Geometric Frame; denoted by index G. The origin of the G-frame is located at the
centre of the release mechanism between the PDS and the penetrator. The zG-axis
is aligned with the symmetry axis and points towards the nose of the penetrator; the
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Figure 3-1: Definitions of the geometric frame (G), the body frame (B) and the spacecraft-
centred inertial frame (F ) at t = 0. Note that the xF -axis points in the direction of the orbital
velocity. The xB-axis coincides with the zF -axis at t = 0. The location of the CoM in the figure
is arbitrary.

xG-axis is in the symmetry plane and points upward (see Figure 2-2 for the definition
of ‘upward’); the yG-axis completes the right-handed system.

• Body Frame; denoted by index B. The origin of the B-frame is located at the mo-
mentary CoM of the spacecraft. The axes of the B-frame coincide with the nominal
principal axes of inertia (see Section 2-3) of the spacecraft, and are hence parallel to
the G-frame.

• Spacecraft-Centred Inertial Frame; denoted by index F . The origin of the F -frame
is located at the momentary CoM of the spacecraft. The axes of the F -frame coincide
with those of the Local Vertical-Local Horizontal (LVLH) frame (e.g., Curtis, 2014) at
the start of the DOM. The zF -axis points radially outward from the centre of the Moon;
the xF -axis is aligned with the local horizontal; the yF -axis completes the right-handed
system. It is noted that, since the distance traversed by the PDM during the second
phase of the descent scenario is only small relative to the distance of the PDM from
the centre of the Moon, the rotation of the LVLH frame about its y-axis is considered
negligible. Hence, it is reasonable to assume that the F -frame is non-rotating, i.e.,
inertial, throughout the simulation.

3-2 State Representation

The rotational state of the spacecraft is given by its current orientation and rotation rate.
The orientation – also called the attitude – of the spacecraft (the B-frame) with respect to
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an inertial frame of reference (the F -frame) can be parameterised in different ways. Below,
three attitude parameterisations most common in aerospace applications are described, and
their advantages and disadvantages are discussed. The section closes with a decision on how
the attitude and rotation rate of the PDM will be represented in its rotational state vector.

• Euler Angles. Named after Leonhard Euler (1707-1783), the Euler angles are phys-
ically intuitive parameters to describe the attitude of a rigid body with respect to an
inertial reference frame. They are defined by {φ, θ, ψ}, where φ is the roll angle, θ
the pitch angle and ψ the yaw angle, resulting from rotations about the xB-, yB- and
zB-axes, respectively. The rotation sequence is important here, as it uniquely defines
the orientation. Most commonly in the field of aerospace engineering, a yaw-pitch-roll
(φ← θ ← ψ) sequence is used (Diebel, 2006). Associated with this sequence are singu-
larities that occur when θ equals an uneven multiple of 90◦. Under such circumstances,
the second rotation in the sequence will cause the first and third rotation axes to align.
Consequently, one degree-of-freedom is lost and a unique solution cannot be obtained.
This undesired phenomenon is also referred to as gimbal lock (e.g., Diebel, 2006).

• Quaternions. Introduced by William Rowan Hamilton (1805-1865), the unit quater-
nion (henceforth just quaternion) is a mathematical construct to parameterise the at-
titude of a rigid body with respect to an inertial reference frame. Its components are
known as quaternions or Euler symmetric parameters (Shuster, 1993), and are defined
by {q1, q2, q3, q4}, where

q ≡
[
q1:3

q4

]
(3.1)

with

q1:3 ≡

 q1

q2

q3

 = e sin

(
θ

2

)
(3.2a)

q4 = cos

(
θ

2

)
(3.2b)

In Equations (3.1), (3.2a) and (3.2b), q1:3 is the vector part and q4 is the scalar part of
the quaternion; e is the 3× 1 Euler eigenaxis vector, and θ is the rotation angle about
the Euler eigenaxis (e.g., Wie, 2008), also referred to as the eigenangle. The quaternion
uses four components to represent a three-dimensional attitude – the redundant fourth
component ensures a nonsingular representation. Not only do quaternions not suffer
from singularities, they are also computationally more efficient than Euler angles (Wie,
2008) and more accurate when integrating rotation rates over time (Diebel, 2006). That
said, the fact that quaternions are mathematical constructs makes it difficult to physi-
cally interpret them. Also, for a unit quaternion to be a valid rotation, the Euclidean
norm must be equal to one, such that:

‖q‖ =
√
q1

2 + q2
2 + q3

2 + q4
2 = 1 (3.3)

Equation (3.3) is referred to as the quaternion unity-norm constraint.
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• Modified Rodrigues Parameters. First described by Wiener (1962), the modified
Rodrigues parameters are another commonly used means of expressing the attitude of a
rigid body with respect to an inertial reference frame. They are defined by {p1, p2, p3},
where, in terms of quaternions,

p =
q1:3

1 + q4
= e tan

(
θ

4

)
(3.4)

As the modified Rodrigues vector p uses three components to encode a three-dimensional
attitude, it is nonredundant. It hence avoids the unity-norm constraint imposed on the
unit quaternion. The modified Rodrigues parameters are as mathematically elegant as
quaternions and enjoy the same advantages over Euler angles. However, they are only
able to describe rotations up to 360◦, which becomes problematic when describing the
attitude of a spinning spacecraft (Shuster, 1993).

It is clear from the foregoing that modified Rodrigues parameters are preferable over Euler
angles and quaternions when encoding rotations up to 360◦, as they are not affected by
singularities up to that point and not constrained by a unity-norm. The PDM however
will be spinning during parts of the descent scenario, implicating that rotations larger than
360◦ occur. It is therefore decided to parameterise the attitude of the PDM by quaternions.
To overcome the limitation that quaternions lack direct physical meaning, Euler angles are
used for the definition of the initial and target rotational states (see Chapter 5). Converting
between Euler angles and quaternions, and vice versa, is discussed in Appendix D.

Finally, the rotation rates – also called the angular velocities – are defined by {ωx, ωy, ωz};
where ω = [ωx, ωy, ωz]

T is the angular velocity vector of the spacecraft with respect to
the inertial reference frame, expressed in components along the xB-, yB- and zB-axes. The
rotational state vector of the PDM is hence parameterised by:

x =

[
q
ω

]
(3.5)

3-3 Attitude Kinematics

The attitude kinematics describe the rotational motion of the spacecraft without considering
the torques that initiated the motion. Since quaternions are used to parameterise the attitude
of the spacecraft, it is convenient to directly relate the time derivatives of the quaternion
components q̇ to the angular velocity vector. Wie (2008) provides these relations:

q̇ =


q̇1

q̇2

q̇3

q̇4

 =
1

2


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0



q1

q2

q3

q4

 (3.6)
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In compact form, Equation (3.6) can be rewritten as:

q̇1:3 =
1

2
(q4ω − ω × q1:3) (3.7a)

q̇4 = −1

2
ω · q1:3 (3.7b)

3-4 Attitude Dynamics

The attitude dynamics of the spacecraft are described by a set of differential equations, known
as the rotational equations of motion. In Section 3-4-1, these equations are set up. Then, in
Section 3-4-2, the disturbance torques acting on the spacecraft are assessed for their signifi-
cance in the context of the descent scenario.

3-4-1 Equations of Motion

By applying the three Laws of Motion1 of Isaac Newton (1642-1727), the rotational equations
of motion (EoM) of an arbitrary non-rigid mass-varying body can be derived as (Cornelisse
et al., 1979; Mooij, 1994):

Mcm =

apparent moment due to
angular acceleration︷ ︸︸ ︷∫

m
r̃dm ×

(
dω

dt
× r̃dm

)
dm +

apparent moment due to
angular velocity︷ ︸︸ ︷∫

m
r̃dm × [ω × (ω × r̃dm)] dm

+ 2

∫
m
r̃dm ×

(
ω × δr̃dm

δt

)
dm︸ ︷︷ ︸

Coriolis moment due to
variable mass

+

∫
m
r̃dm ×

δ2r̃dm

δt2
dm︸ ︷︷ ︸

relative moment due to
variable mass

(3.8)

where Mcm is the total (disturbing) moment about the CoM of the body, dm is the mass
of a mass element within the body and r̃dm is the position vector of the mass element with
respect to the CoM of the body. The first two terms on the right-hand side of Equation (3.8)
emerge as a result of the angular acceleration and angular velocity of dm with respect to the
inertial reference frame, respectively, and are also referred to as the tangential and centripetal
apparent moments. The last two terms are due to the velocity and acceleration of dm with
respect to the body frame (hence the symbol δ is used to denote the derivatives), as seen from
the inertial reference frame. Respectively, they are also referred to as the Coriolis and relative

1First Law: “Every particle continues in its state of uniform motion in a straight line (or rest), unless
compelled to change that state by forces acting upon it.” – Second Law: “The time rate of change of linear
momentum of a particle is proportional to the force acting upon that particle and is collinear with and in the
direction of that force.” – Third Law: “The mutual forces of two particle acting upon each other are equal
in magnitude and opposite in direction.” (Cornelisse et al., 1979)
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apparent moments. It should be noted that these latter two terms only arise when the body
has a variable mass distribution. In case of a rigid body2, the position vectors of the mass
elements with respect to the CoM of the body do not change over time, and the terms are
zero. Defining MC , the apparent Coriolis moment, and Mrel, the apparent relative moment:

MC = −2

∫
m
r̃dm ×

(
ω × δr̃dm

δt

)
dm (3.9)

Mrel = −
∫
m
r̃dm ×

δ2r̃dm

δt
dm (3.10)

then Equation (3.8) can be written as:

M̃cm = Mcm +MC +Mrel =

∫
m
r̃dm ×

(
dω

dt
× r̃dm

)
dm

+

∫
m
r̃dm × [ω × (ω × r̃dm)] dm (3.11)

Cornelisse et al. (1979) show that the terms on the right-hand side of Equation (3.11) rep-
resent the rotational EoM of an arbitrary rigid body, and state that through the Principle
of Solidification (Cornelisse et al., 1979, p. 41), Equation (3.8) at time t can be written as
Equation (3.11), if m is equal to the mass of the body at time t and two apparent moments,
being MC and Mrel, are added to the true total (disturbing) moment Mcm. In order to
simplify Equations (3.9) and (3.10), Cornelisse et al. (1979) make the following assumptions:

Assumption 1. The body is non-elastic, but not rigid. Its mass distribution changes when
propellant is consumed and the resulting combustion gasses are expelled.

Assumption 2. The flowfield of expelled combustion gasses is axisymmetric.

Assumption 3. The total mass of moving combustion gasses within the body is small as
compared to the mass of the body, making their contribution to the angular
momentum of the body negligible.

Assumption 4. The velocity of the CoM of the body with respect to the body is very small
as compared to the exhaust velocity.

Applying these assumptions, Equations (3.9) and (3.10) simplify to, respectively,

MC = −δI
δt
ω −

exhaust jet
damping moment︷ ︸︸ ︷
ṁre × (ω × re) (3.12)

2A rigid body is defined as a bounded mass system within which the distribution of mass does not change.
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Mrel =

moment due to
impulse thrust︷ ︸︸ ︷
− ṁre × ve (3.13)

where ṁ is the exhaust mass flow, re is the position vector of the centre of the exhaust mass
flow relative to the CoM of the body and ve is the effective exhaust velocity vector. The first
term on the right-hand side of Equation (3.12) – in some literature referred to as the inertia-dot
term (e.g. Van Der Ha & Janssens, 2005) – represents a loss of angular momentum occurring
as a direct result of propellant consumption. For spinning spacecraft, dynamic models that
include the inertia-dot term predict significant changes in the spin rate. However, no such
changes have been observed during actual single-nozzle SRM firings (Wertz, 1978). A physical
explanation for this is given by G. K. Tandon in Wertz (1978), who reasons that the angular
momentum flux is wholly conserved in the combustion gases, which are expelled from the
nozzle before noticeably interacting with the spacecraft. Hence, the inertia-dot term may be
dropped from Equation (3.12), such that

MC = −

exhaust jet
damping moment︷ ︸︸ ︷
ṁre × (ω × re) (3.14)

Equation (3.14) represents the exhaust jet damping moment, which emerges as a result of a
“wagging of the jet stream” (Armstrong, 1965), i.e., angular velocities perpendicular to re.
The term owes its name to its damping effect on these velocities. As for Equations (3.13)
and (3.14), it is clear that they only apply for a single firing thruster. When multiple thrusters
fire simultaneously, it is easily figured that Equations (3.13) and (3.14) expand as:

MC = −
k∑
i=1

ṁi (re)i × [ω × (re)i] (3.15)

Mrel = −
k∑
i=1

ṁi(re)i × (ve)i (3.16)

where k is the number of thrusters firing simultaneously. For the case of the PDM, the
assumptions underlying Equations (3.13) to (3.16) also apply. It should hereby be noted that
the liquid propellant slug inside the propellant tank is assumed to be a rigid body surrounded
by a viscous layer that is only coupled to the PDM by means of viscous friction. In Section 3-
4-2-3, the significance of the disturbance torque that is caused by viscous friction will be
investigated. The exhaust mass flow ṁi in Equation (3.15) is calculated as a function of the
feed pressure pf and the feed pressure drop factor αk, see Equation (2.7).

Examining Equation (3.16), it is clear that the apparent relative moment Mrel represents
the total torque produced by thrust forces. Therefore, the term will henceforth be denoted
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by MT . Using Equations (2.3), (2.5) and (2.23) in combination with Equation (3.16), the
following expression for MT can be derived:

Mrel ≡MT =
k∑
i=1

(re)i × (Fi)n (3.17)

As was shown before, the rotational dynamics of a rigid body are described by Equation (3.11).
However, they can also be described by Euler’s equations of motion (e.g., Mooij, 1994):

M̃cm = Iω̇ + ω × Iω (3.18)

where ω̇ = [ω̇x, ω̇y, ω̇z]
T is the angular acceleration vector of the body with respect to the

inertial reference frame, expressed in components along the axes of the B-frame, and I is
the inertia tensor of the body, referenced to the body frame (see Section 2-3). Solving for
the angular acceleration vector ω̇, Equation (3.18) can be rearranged such that the following
differential equations arise:

ω̇ = I−1
(
M̃cm − ω × Iω

)
(3.19)

where

M̃cm = Mcm +MC +MT (3.20)

and Mcm represents the sum of the individual disturbing moments – also referred to as
disturbance torques, see Section 3-4-2.

3-4-2 Disturbance Torques

Disturbance torques emerge as a result of disturbance forces not acting through the CoM
of the body. In space, typical external disturbance torques exerted on a spacecraft are the
gravity gradient torque, the solar radiation torque, the aerodynamic torque and the magnetic
disturbance torque (e.g., Ley et al., 2009). Since the PDM is in orbit around the Moon, which
has a negligible atmosphere and a very weak magnetic field (Lissauer & De Pater, 2013), the
impact of the latter two disturbance torques may be ignored. The significance of the gravity
gradient torque and solar radiation torque during the second phase of the PDM’s descent
scenario (see Section 1-2-3) will be investigated in Sections 3-4-2-1 and 3-4-2-2, respectively.
Lastly, in Section 3-4-2-3, the significance of an internal disturbance torque induced by viscous
friction between the liquid propellant slug and the PDM will be assessed.
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3-4-2-1 Gravity Gradient Torque

Gravity gradient torques arise when gravitational forces do not act through the CoM of the
body. Forces of gravitational origin always act through the centre of gravity (CoG) of the
body. The CoG coincides with the CoM if the body is spherically symmetric and uniform,
which is not the case for the PDM. This implicates that the PDM would indeed be affected
by gravity gradient torques, if the CoM is not aligned with the CoG along the line of action
of gravity. As Cornelisse et al. (1979) point out, gravity gradient torques are very small
relative to the torques produced by thrust forces. If nevertheless taken into account, the only
gravity gradient torque of interest would be the one generated by the gravitational force of
the central body, which for the case of the PDM is the Moon. The equation for the gravity
gradient torque in vector form is given by (Meyer, 1999):

Mg = 3
µ

r5
[rB × (IrB)] (3.21)

for which spherical gravity is assumed. In Equation (3.21), µ is the gravitational parameter
of the central body, r is the distance between the CoM of the body and the CoM of the
central body and rB is the position vector of the CoM of the body with respect to the CoM
of the central body, expressed in the B-frame. The gravitational parameter µ is calculated by
multiplying the gravitational constant G = 6.674× 10−11 m3 kg−1 s−2 (Lissauer & De Pater,
2013) by the mass of the central body. In Table 3-1, some physical properties of the Moon,
including its gravitational parameter, are listed.

Table 3-1: Relevant characteristics of the Moon.

Characteristic Value Comment

Rm 1.738× 106 m Equatorial radiusa

mm 7.349× 1022 kg Massa

µm 4.905× 1012 m3 s−2 Calculated
aSource: Lissauer and De Pater (2013).

In order to assess the significance of the gravity gradient torque during the second phase of
the PDM’s descent scenario, its worst-case magnitude is estimated for the separate cases of
the penetrator, dry PDS and dry PDM. To this end, each system is taken to be as close to the
Moon as possible, under the least favourable angle. As such, rB is taken to be the equatorial
radius of the Moon, Rm, in vector form, expressed in the B-frame, which is canted 45◦ with
respect to the z-axis of the F -frame. Transforming a vector expressed in the F -frame to the
B-frame is explained in Appendix E. The associated inertia tensors can be found in Table 2-3.
The resulting worst-case estimates for the gravity gradient torques are presented in Table 3-2.

As is seen in Table 3-2, the worst-case gravity gradient torque exerted on the controlled space-
craft during the second phase of the descent scenario is on the order of 10−6. Considering that
the spacecraft’s weakest torque capabilities are five orders of magnitude larger (see Table 2-7),
and that any irregularity in thruster performance (also called thruster roughness), which is

Master of Science Thesis W.J. Bouma



40 Spacecraft Motion and Disturbance Modelling

Table 3-2: Worst-case gravity gradient torque estimates.

System Mg (N m)

Penetrator 9.418× 10−8

PDS (dry) 2.837× 10−6

PDM (dry) 7.697× 10−6

typically as high as 2-3% of the nominal performance (Sidi, 1997), will introduce errors on
the order of 10−3, it is reasonably concluded that the impact of the gravity gradient torque
is too insignificant, hence it will not be included in the dynamics model.

3-4-2-2 Solar Radiation Torque

The Sun puts out radiation that exerts a force on a body in space. This so-called force due to
solar radiation pressure applies to the centre of area (CoA) of the body. When the CoM and
CoA are not aligned along the line of action of the solar radiation force, a torque is produced.
The magnitude of the solar radiation torque is calculated by (Wertz, 2005):

MSR =
S

c
A (1 + q) rca cos i (3.22)

where S = 1367 W m−2 (Wertz, 2005) is the solar constant at one astronomical unit from
the Sun (approximately the distance between the Moon and the Sun), c = 2.998× 108 m s−1

(Wertz, 2005) is the speed of light, A is the surface area of the body, q is the reflection
coefficient, rca is the distance between the CoM and CoA of the body and i is the angle of
incidence of the Sun. In order to assess the significance of the solar radiation torque during
the second phase of the PDM’s descent scenario, its worst-case magnitude is estimated for
the dry PDM. To this end, it is assumed that the PDM is oriented in such a way that it is
maximally exposed to the Sun and that any incident radiation is reflected maximally. As such,
q = 1 and i = 0◦. Table 3-3 provides the maximum surface area of the PDM as well as the
distance of the CoA of the PDM from the CoM of the dry PDM. Filling out Equation (3.22)
yields:

MSR = 5.618× 10−7 N m

which in fact is an order of magnitude smaller than the worst-case gravity gradient torque
exerted on the dry PDM. Since it was decided to exclude the latter from the model because
of lacking significance, so will be the solar radiation torque.

3-4-2-3 Viscous Friction Torque

The dynamic behaviour of the liquid propellant slug that is contained inside the propellant
tank is directly influenced by the motion of the spacecraft. In turn, a moving liquid also affects
the dynamics of the spacecraft. Hence, the dynamics of the liquid propellant slug and the
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Table 3-3: Surface properties of the PDM.

Characteristic Value Unit Comment

APDM,max 0.305 m2 Maximum surface area PDMa

zPDM, cm −0.225 m Location CoM in G-framea

zPDM, ca −0.427 m Location CoA in G-framea

rPDM, ca 0.202 m Calculated
aDerived from CATIA.

spacecraft are coupled. The lateral and vertical movement of a liquid in a container is referred
to as sloshing, which, strictly speaking, can only occur when the liquid has a so-called free
surface (e.g., Dodge, 2000; Ibrahim, 2005). As was explained in Section 2-2-1, the free surface
of the liquid propellant slug inside the tank is restrained by a diaphragm, which is assumed
to dampen any forms of lateral and vertical sloshing to such a degree that their impact on the
dynamics of the spacecraft may be neglected. As the tank does not incorporate any devices
that prevent the liquid from rotating, rotational liquid motion, also referred to as swirling,
can in fact occur, and therefore its impact on the dynamics of the spacecraft will be assessed.

The motion of a liquid inside a spinning body is very complicated (Ibrahim, 2005), as are
the mathematics behind it. It is considered beyond the scope of this thesis to provide a
full analysis of the swirling dynamics. For the purpose of investigating the effect of internal
energy dissipation caused by rotational liquid motion, the liquid propellant slug is modelled
as a rigid body surrounded by a viscous layer, coupled to the spacecraft only by means of
viscous friction. Rahn and Barba (1991) provide the full set of the equations of motion for
such a coupled system – comprised of a rigid spacecraft and a rigid spherical propellant slug,
which is enclosed by a viscous boundary layer and centred on the CoM of the spacecraft – as
follows:

ω̇ = (I − Iliquid)−1 (M + µσ − ω × Iω) (3.23a)

σ̇ = −ω̇ − I−1
liquid (µσ)− ω × σ (3.23b)

where I is the inertia tensor of the spacecraft including the propellant slug, Iliquid is the
inertia tensor of the spherical propellant slug, σ is the angular velocity of the slug relative to
the spacecraft and µ is the viscous damping coefficient. Before the impact of swirling on the
dynamics of the PDM is tested, it is first verified whether Equations (3.23a) and (3.23b) have
been correctly implemented. To this end, the results of a spin-axis transition manoeuvre as
presented by Rahn and Barba (1991), see Figure 3-2, are reproduced. Using the parameter
values from Table 3-4 and the following equation for the total angular momentum:

h2
tot = (Ixx ωx + Iliquid σx)2 + (Iyy ωy + Iliquid σy)

2 + (Izz ωz + Iliquid σz)
2 , (3.24)
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Table 3-4: Parameter values used by Rahn and Barba (1991) to simulate a spin-axis transition
manoeuvre. Note that since the liquid propellant slug is spherical, Iliquid is a singular value.

Parameter Value Unit

Ixx 2000 kg m2

Iyy 1500 kg m2

Izz 1000 kg m2

Iliquid 18 kg m2

µ 30 N m s
ωx 0.1224 rad s−1

ωy 0 rad s−1

ωz 2.99 rad s−1

Mx, My, Mz 0 N m
σx, σy, σz 0 rad s−1

Figure 3-3 is generated, which, when compared to its original, shows very good agreement.
The implementation of Equations (3.23a) and (3.23b) can hence be considered successful.

In order to validly apply Equations (3.23a) and (3.23b) to assess the impact of rotational
liquid motion on the dynamics of the PDM, some questionable assumptions must be made.
Namely, that the liquid propellant slug is a sphere, which is tightly enclosed by the propellant
tank and is centred on the CoM of the PDM, at all times. This is of course far from true, and
hence the outcome of simulating the PDM’s rotational dynamics using this model should be
regarded as a conservative estimate of the effects of swirling.

In selecting the appropriate test values, it is assumed that a spinning PDM has just completed
the DOM. As such, the PDM is nearly dry, except for 1.0 kg of liquid propellant remaining. At
this particular moment during the descent, the liquid propellant slug has maximum potential
to affect the dynamics of the PDM. The inertia of the hydrazine sphere can be calculated
using (e.g., Hibbeler, 2010):

Isphere =
2

5
mr2 (3.25)

where the radius r of the sphere can be obtained through:

r =

(
3m

4π ρ

) 1
3

(3.26)

Filling out m = 1.0 kg and ρ = 1008 kg m−3, the density of hydrazine, then gives Isphere =
0.0015 kg m2. Furthermore, the spin rate is assumed to be 4π rad s−1 and the transverse
angular rate to be 0.5 rad s−1, which is equal to the worst-case disturbance encountered during
the DOM, see Figure 5-5. Finally, the viscous damping coefficient µ must be determined.
Unfortunately, Rahn and Barba (1991) do not disclose how this is done. However, it is
plausible to assume that its value is proportional to area of the sphere times the radius, since
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Figure 3-2: Results of a spin-axis transition manoeuvre as presented in Rahn and Barba (1991).
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Figure 3-3: Reproduction of Figure 3-2, verifying the correct implementation of Equation (3.23).
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Table 3-5: Parameter values used to investigate the impact of viscous friction.

Parameter Value Unit

Ixx 6.102 kg m2

Iyy 6.102 kg m2

Izz 0.608 kg m2

Iliquid 0.0015 kg m2

µ 0.108 N m s
ωx 0.5 rad s−1

ωy 0 rad s−1

ωz 12.566 rad s−1

Mx, My, Mz 0 N m
σx, σy, σz 0 rad s−1

the amount of viscous friction, i.e., damping, is proportional to the area, and the torque that
is induced by such friction is proportional to the radius, i.e., the moment arm. To find the
ratio characterising µ ∝ (Asphere · r), the area and radius of the liquid sphere considered in
Rahn and Barba (1991) must be obtained. Since the liquid is not specified, it is assumed to
be hydrazine. The area of a sphere can be calculated using:

Asphere = 4π r2 (3.27)

Combining Equations (3.25) to (3.27) and rearranging yields:

r =

(
15 Isphere

8π ρ

) 1
5

(3.28)

and

Asphere = 4π

(
15 Isphere

8π ρ

) 2
5

(3.29)

Filling out Isphere = 18 kg m2 and ρ = 1008 kg m−3, gives r = 0.403 m and Asphere = 2.043
m2; the supposed radius and area of the liquid sphere considered in Rahn and Barba (1991).
Using these values and µ = 30 N m s, the aforementioned ratio is calculated to be 36.4. Then
multiplying this ratio by the product of the area and radius of the PDM’s hydrazine sphere
gives µ = 0.108 N m s. The parameter values are listed in Table 3-5. Now simulating the
dynamics of an uncontrolled PDM using these parameters and Equations (3.23a) and (3.23b)
indicates that it takes about 2 hours before the spin rate is reduced by 1 rad s−1. For the
short period considered after the DOM, this reduction is negligible. Hence, it is concluded
that the viscous friction torque, because of its apparent insignificance, will not be included in
the dynamics model.
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Chapter 4

Controller Design

This chapter is concerned with the design of the controller of the PDM, which will be based
on classical control techniques. First, a brief introduction to classical control is provided
in Section 4-1. Then, the control law implemented for the large-angle slew manoeuvres is
discussed in Section 4-2. Finally, Section 4-3 describes the control logic for the minor-axis
spin manoeuvres.

4-1 Introduction

Classical control, typically synonymous with PID control, is arguably the most applied control
strategy across many different industries requiring feedback controllers (e.g., Kozák, 2014),
including aerospace. For a standard PID controller, the following control law applies:

u (t) = Kp e (t) +Ki

t∫
0

e (τ) dτ +Kd
de (t)

dt
(4.1)

where u represents the output of the controller, e is the difference between the current state and
the target state, t is present time and τ is the variable of integration, taking on values between
0 and t. The parameters Kp, Ki and Kd are the proportional, integral and derivative controller
gains, respectively. Their values are usually heuristically selected in a process referred to as
gain tuning, such that the controller attains its desired performance. For each degree-of-
freedom in the dynamic model, a separate control law of the form given by Equation (4.1)
can be defined. The controller consequently generates an output vector of a size equal to the
number of control laws involved. Based on the design goals, the individual control terms – P,
I and D – can also be used selectively to form P, PI or PD controllers. PID still provides the
base structure for many of today’s advanced control algorithms, which in turn often rely on
more sophisticated methods to tune the controller gains.
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4-2 Large-Angle Slew Manoeuvres

For the large-angle slew manoeuvres, the well-known quaternion-error feedback controller
developed by Wie et al. (1989) is implemented. The governing control law is essentially
equivalent to a classical PD control law, and is further discussed in Section 4-2-1. Through
a Lyapunov stability analysis, Wie et al. (1989) demonstrated the global stability of the
controller in the presence of minor inertia uncertainty and small initial body rates. In addition,
they showed that in the ideal case of known inertia and zero initial body rates, the resulting
large-angle slew manoeuvre represents a so-called eigenaxis rotation. A rotation about the
Euler eigenaxis (see Section 3-2 for the mathematical definition) guarantees the shortest path
between two orientations, and can thus be considered ‘optimal’. In order for the controller
to deliver the desired performance, appropriate gains must be selected. The gain selection
process is discussed in Section 4-2-2. Finally, in Section 4-2-3, the successful implementation
of the controller is verified.

4-2-1 Control Law

The quaternion-error feedback control law as proposed by Wie et al. (1989) consists of two
linear feedback terms related to the error quaternion and the body-rate error, and one nonlin-
ear feedback term related to the body rate, which is in place to cancel the gyroscopic coupling
term appearing in Euler’s equations of rotational motion, see Equation (3.19). The control
law is defined by:

u = µ (ω × Iω)−Dωe − sgn (q4,0)K qe (4.2)

where u is the control torque vector; D and K are 3 × 3 constant gain matrices, further
discussed in Section 4-2-2; µ is gyroscopic coupling torque damping factor, which takes a
value between 0 and 1 and essentially represents a measure of uncertainty about the inertia
tensor; ωe is the body-rate error, which is in fact equal to the body rate ω, as the target
body rate is always zero; q4,0 is the initial value of the scalar element of the quaternion; sgn is

the sign function; and qe = [q1,e, q2,e, q3,e]
T is the vector part of the error quaternion, whose

elements are calculated by:


q1,e

q2,e

q3,e

q4,e

 =


q4,c q3,c −q2,c −q1,c

−q3,c q4,c q1,c −q2,c

q2,c −q1,c q4,c −q3,c

q1,c q2,c q3,c q4,c



q1

q2

q3

q4

 (4.3)

where [q1,c, q2,c, q3,c, q4,c]
T is the commanded quaternion defining the target orientation and

[q1, q2, q3, q4]T is the current quaternion defining the current orientation. It should be noted
that for slow rotational manoeuvres, i.e., ω ≈ 0, the gyroscopic coupling torque is very small,
which allows for discarding the nonlinear feedback term.
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4-2-2 Gain Selection

In order to achieve a large-angle rest-to-rest rotation about the eigenaxis, Wie et al. (1989)
find that the gain matrices D and K in Equation (4.2) should satisfy:

D = dI (4.4)

K = kI (4.5)

where d and k are positive scalars. In order to determine d and k, Equation (4.2) is filled out
in Equation (3.19), assuming that M̃cm = u, µ = 1 and q4,0 is positive. This yields:

ω̇ + dω + k qe = 0 (4.6)

Using Equation (3.2a) and the fact that for an eigenaxis rotation holds that ω = e θ̇, Equa-
tion (4.6) becomes:

(
θ̈ + d θ̇ + k sin

θ

2

)
e = 0 (4.7)

where θ is also referred to as the eigenangle. Since e 6= 0:

θ̈ + d θ̇ + k sin
θ

2
= 0 (4.8)

For small eigenangles,

sin
θ

2
≈ θ

2
(4.9)

is an acceptable approximation. Using Equation (4.9), Equation (4.8) takes the form of a
specific linear second-order differential equation, referred to as the damped harmonic oscillator
equation:

θ̈ + d θ̇ +
k

2
θ = 0 (4.10)

As such:

d = 2 ζ ωn (4.11)

k = 2ω2
n (4.12)
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Concluding from Equations (4.11) and (4.12), the damping ratio ζ and the natural frequency
ωn are the key parameters to be properly selected to define d and k, and ultimately gain
matrices D and K. In spacecraft attitude control, the damping ratio ζ is indicative of how
fast the controller is able to achieve the target state. A lower damping ratio is associated with
a faster response, however, in case of underdamping (ζ < 1), also with a greater overshoot,
meaning that the spacecraft goes beyond the target state and additional control effort is
needed in order to establish an equilibrium. When ζ = 1, the response is critically damped
and the target state is achieved fastest without overshoot. Generally in spacecraft attitude
control, some overshoot is acceptable if in return a much faster control law is obtained. A
commonly chosen damping ratio in this regard is one that leads to a zero peak frequency ωp
in the frequency domain (Nise, 2011, p. 581):

ωp = ωn
√

1− 2 ζ2 = 0 (4.13)

Solving Equation (4.13) for ζ then yields:

ζ =
1

2

√
2 (4.14)

or ζ = 0.707 (Pisacane, 2005, p. 296), which implies that the response is slightly underdamped.
For an underdamped second-order response, it is possible to relate the natural frequency ωn
directly to the more intuitive settling time Ts, through the following well-known approximation
(e.g., Nise, 2011):

ωn =
4

ζ Ts
(4.15)

for which a settling band of ±2% of the steady-state value assumed. It should however be
stressed that Equation (4.15) only holds true for linear systems. Due to the nonlinear effects
caused by the term sin (θ/2), the quaternion-error feedback controller as proposed by Wie et
al. (1989) may only be considered linear for small eigenangles. As can be seen from Figure 4-1,
where the relative difference between the chosen settling time and the actual settling time δTs
for q1, q2 and q3 is plotted against the eigenangle-to-go θtogo, the relation in Equation (4.15)
breaks down for larger eigenangles. Figure 4-1 was generated by integrating Equations (3.7)
and (4.10) over a time span of 150 seconds, using Equations (4.3), (4.11) and (4.12) and
the parameter values provided in Table 4-1, for each θtogo, ranging from 1◦ to 180◦. The
actual settling time for each response was obtained using the function lsiminfo provided in
Matlab’s Control System Toolbox, which by default defines the settling time as the time
it takes to reach and stay within a settling band of ±2% of the peak value, centred on the
the steady-state value. This makes it possible to calculate the settling time when the steady-
state value is zero, which was in fact the case during the simulations; see q1,c, q2,c and q3,c

in Table 4-1. The relative difference between the chosen settling time and the actual settling
time was calculated by:

δTs =
Ts, actual

Ts
− 1 (4.16)
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Table 4-1: Parameter values used to generate Figures 4-1 and 4-2.

Parameter Value Unit

Ixx 6.102 kg m2

Iyy 6.102 kg m2

Izz 0.608 kg m2

ωx, ωy, ωz 0 rad s−1

ζ 0.707 -
µ 1 -
e1, e2, e3 0.577 -
q1,c, q2,c, q3,c 0 -
q4,c 1 -

Observing Figure 4-1, it is clear that the magnitude of δTs is independent of the chosen set-
tling time. Additional testing confirmed that changing the inertia values or the direction of
the eigenaxis does not affect the magnitude of δTs either. However, δTs does depend on the
eigenangle-to-go and the damping ratio, which implies that the corrective factor that must
be applied to Equation (4.15) to effectively address the nonlinearities introduced by sin (θ/2)
is a function of the eigenangle-to-go and the damping ratio. For the purpose of deriving an
appropriate corrective factor specifically for the quaternion-error feedback controller consid-
ered in this thesis, for which the damping ratio is given by Equation (4.14), the average of
the five plots in Figure 4-1 was calculated and a two-term power series model was fitted to
the average data with a nonlinear least squares method. This was done using the function
fit provided in Matlab’s Curve Fitting Toolbox. The resulting fit is described by:

(δTs)ζ=0.707 = 0.0124 θ2.2220
togo + 0.0551 (4.17)

for which R2 = 0.999 86 and θtogo is expressed in radians. Equation (4.17) is plotted in
Figure 4-1 as a solid curve. It is not entirely clear what causes the baseline 5.5% offset
between the chosen settling time and the actual settling time, however it could be due to
Matlab’s definition of the settling time, which does not correspond to the definition of
the settling time underlying the relation in Equation (4.15). Additional testing revealed that
there is a positive relation between the offset and the damping ratio, which breaks down when
ζ > 0.775. Regardless of the cause, the offset is accounted for in Equation (4.17), which, when
applied as a corrective factor after filling out Equation (4.14) in Equation (4.15), yields the
following relation between the natural frequency and the settling time and eigenangle-to-go:

ωn =
4
√

2

Ts

(
1 + (δTs)ζ=0.707

)
=

4
√

2

Ts

(
0.0124 θ2.2220

togo + 1.0551
)

(4.18)

which holds for a damping ratio of 0.707. Repeating the simulations, using Equation (4.18)
to calculate the natural frequency, generates Figure 4-2, from which it can be seen that δTs
is reduced to nearly zero. A sinusoidal-like offset remains, implying that some trigonometric
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Figure 4-1: Relative difference between the chosen settling time and the actual settling time for
q1, q2 and q3, plotted against the eigenangle-to-go for a range of different chosen settling times.
The damping ratio used is 0.707 and ωn is calculated with Equation (4.15). The solid curve fits
the average of the plots, with R2 = 0.999 86.

term must be added to Equation (4.17) in order to fully eliminate δTs. However, in the context
of this thesis, the remaining offset is small enough to consider the correction that is established
with Equation (4.17) as sufficient. Finding the actual corrective factor as a function of both
θtogo and ζ would however make an interesting topic for future research. Concluding, the
gain matrices for the quaternion-error feedback controller are calculated by Equations (4.4)
and (4.5), where d and k are respectively calculated by Equations (4.11) and (4.12), and ζ
and ωn are respectively defined by Equation (4.14) and calculated by Equation (4.18).

4-2-3 Verification

In order to verify the correct implementation of Equation (4.2), the control design example as
presented in Wie et al. (1989) is reperformed. In the example, an asymmetric rigid spacecraft
is considered, characterised by the following inertia tensor:

I =

 1200 100 −200
100 2200 300
−200 300 3100

 kg m2 (4.19)

Additionally required parameter values are provided in Table 4-2. The response is assumed to
be critically damped, hence ζ = 1. Using Equations (4.11) and (4.12), d and k are respectively
calculated to be equal to 0.316 and 0.05. Gain matrix D is defined as:

D = d · diag (1200, 2200, 3100)
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Figure 4-2: Reevaluation of Figure 4-1, where ωn is calculated with Equation (4.18).

Gain matrix K is defined in four different ways:

Case 1: K = diag (201, 110, 78)

Case 2: K = diag (110, 110, 110)

Case 3: K = diag (72, 110, 204)

Case 4: K = diag (60, 110, 155)

Refer to Wie et al. (1989) for details on how these gain matrices were determined. Using
Equation (4.3) and the parameter values provided, Equations (3.7) and (3.19) were integrated
over a time span of 100 seconds. This process was repeated for each of the aforementioned
cases. For reference, the simulation results as presented by Wie et al. (1989) are depicted
in Figures 4-3 and 4-5. Reproductions of these figures are presented in Figures 4-4 and 4-6,
respectively. Comparing the reproductions to their respective originals, it can be concluded
that they match very well. This confirms the successful implementation of Equation (4.2).

Table 4-2: Parameter values used by Wie et al. (1989) to test the performance of their quaternion-
error feedback controller in a simulation.

Parameter Value Unit

q1, q2, q3 0.57 -
q4 0.159 -
ωx, ωy, ωz 0.01 rad s−1

ζ 1 -
ωn 0.158 rad s−1

µ 0.9 -
q1,c, q2,c, q3,c 0 -
q4,c 1 -
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Figure 4-3: Time histories of quaternions as presented in Wie et al. (1989).
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Figure 4-4: Reproduction of Figure 4-3, verifying the correct implementation of Equation (4.2).
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Figure 4-5: Time histories of body rates and eigenangle-to-go as presented in Wie et al. (1989).
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Figure 4-6: Reproduction of Figure 4-5, verifying the correct implementation of Equation (4.2).
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4-3 Minor-Axis Spin Manoeuvres

As was explained in Section 1-3, a minor-axis spin manoeuvre involves the consecutive execu-
tion of three different rotational manoeuvres: first, a spin-up manoeuvre about the minor axis
of the spacecraft; second, a denutation manoeuvre to remove any nutational angular motion
affecting the spin-axis; third and last, a spin-down manoeuvre. In the following, the specifics
and implementation of the control schemes governing the spin-up and spin-down manoeuvres,
and the denutation manoeuvres are covered, respectively in Sections 4-3-1 and 4-3-2.

4-3-1 Spin-Up and Spin-Down Manoeuvres

The control logic for spin-up or spin-down manoeuvres is very simple. Given that the actuators
used are on/off thrusters, for a spin-up, it is only a matter of activating the thrusters that
produce a positive torque about the zB-axis until the target spin rate is achieved. Conversely,
for a spin-down, those thrusters that produce a negative torque about the zB-axis are activated
until the angular velocity enters a so-called deadband, which is bounded by a positive and a
negative threshold value and centred on the zero line. This deadband is in place to prevent
the chatter effect, which is explained in Section 4-3-2-1.

Figure 4-7 shows the results of an example spin-up manoeuvre before the DOM, which takes
15.61 seconds to complete, and an example spin-down manoeuvre after the DOM, which is
performed in 8.62 seconds. Since the PDM burns about 40 kilograms of solid propellant
during the DOM, the MoI about the spin-axis decreases significantly and consequently, the
spin-down manoeuvre only needs half the time to complete. In order to verify the numerical
results, analytic results are obtained through Equation (5.20), which is first evaluated using
Is = 1.105 kg m2 and Mz = 0.892 N m, giving 15.56 seconds, and then with Is = 0.611
kg m2 and Mz = 0.892 N m, which yields 8.61 seconds. Comparing the analytic results to the
numerical results, it is noted that the latter are slightly larger. This can be explained by the
fact that the simulator accounts for varying inertial parameters and torque capabilities during
the spin manoeuvres, and Equation (5.20) does not. As such, the correct implementation of
the control logic can be confidently confirmed.

4-3-2 Denutation Manoeuvres

Following a spin-up, the spin-axis will inevitably exhibit some degree of nutation, which is
explained as a slow rotation – relative to the spin rate – of the spin-axis about the angular
momentum vector. Nutation is caused by disturbances transverse to the spin-axis, such
as torques emanating from e.g., sloshing propellants or the tip-off between two separating
spacecraft. In spaceflight, deliberately induced nutation is generally referred to as precession
(Wertz, 2005). The angle between the spin-axis and the angular momentum vector is called
the nutation angle θnut, see Figure 4-8, and is calculated by (Wie, 2008):

tan (θnut) =
ht
hz

=

√
h2
x + h2

y

hz
=

√
I2
xx ω

2
x + I2

yy ω
2
y

Izz ωz
(4.20)
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Figure 4-7: Results of an example spin-up manoeuvre before the DOM (left), for which the
target spin rate is assumed to be 4π rad s−1, and an example spin-down manoeuvre after the
DOM (right).

where:
h = [hx, hy, hz]

T

is the angular momentum vector expressed in the B-frame, and:

ht = [hx, hy]
T

is the transverse angular momentum vector, implying that hz is directed along the spin-axis,
see Figure 4-8. In order to reduce the nutation angle, the transverse angular momentum
must be counteracted by a control torque, which is most effectively applied when both vectors
are aligned and opposite to each other. As such, an adequate control logic for denutation
ensures the actuators are active precisely at that time. When the actuators used are on/off
thrusters, the control logic should arrange for the finite pulse width to be centred on the
instant of opposite alignment of the aforementioned vectors. In Section 4-3-2-1, a control
logic that achieves just that is described. Then in Section 4-3-2-2, a strategy to determine
the optimal width of a thruster pulse is developed. Lastly, in Section 4-3-2-3, the successful
implementation of the control logic and the pulse width determination strategy is verified.

4-3-2-1 Control Logic

For the denutation manoeuvres, the control logic as developed by Devey et al. (1977) is
implemented and extended. In order to schedule the thruster pulses, the control logic utilises
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Figure 4-8: The angular momentum vector h in B-frame coordinates. The original image is
credited to Hrastar (1974).

the response of the sensors that are in place to measure the components of the transverse
angular rate vector, which – notably – are collinear with the components of the transverse
angular momentum vector. This implies that thruster pulses must be applied around the peak
of the sensor signal, i.e., the peak of the transverse angular rate component as measured by
the sensor. In Figure 4-9, this timing strategy is visualised.

The control logic works by virtue of two detectors: one to detect when the signal exceeds a
certain threshold and one to detect a subsequent zero crossing. Following the zero crossing,
a timer is activated to fire the thruster(s) of concern exactly at that point in time such that
the pulse is centred on the peak of signal. This process is repeated until the signal settles
below said threshold. For a visualisation of this process, review Figure 4-9. The control logic
is depicted in Figure 4-10.

Ideally, the denutation manoeuvre reduces the transverse angular rate, i.e., the nutation angle
to down to zero. However, setting such an objective for the controller would be impractical,
as the minimum impulse bit that is delivered by a thruster (or a configuration of thrusters) is
finite. This means that at one point during the denutation process, the shortest thruster pulse
would impart a change in transverse angular rate more than twice as large as the excess rate
to be reduced to zero, consequently generating a greater excess rate in the opposite direction.
In response, the controller would try to compensate for the overshoot by commanding a
counter pulse, causing the signal to again cross the zero line, again requiring compensation.
This undesired phenomenon would continue indefinitely if not interrupted and is referred to
as chatter, which in the case of a thruster-controlled spacecraft can lead to a great waste of
propellant. To prevent the chatter effect, a so-called deadband is defined, which is bounded by
the positive and negative threshold value and thus centred on the zero line. When the signal
remains within this deadband, no control action is taken. In order to determine the minimum
threshold value for the transverse angular rate, first the minimum allowable threshold value
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Figure 4-9: Thruster pulse timing strategy as described by Devey et al. (1977), visualised using
an example time response for the y-component of the transverse angular velocity.

for the nutation angle is calculated by (Devey et al., 1977):

tan (θnut, thres, y,min) =
2My

Izz ωz ωnut
sin

(
ωnut ∆tp,min

2

)
(4.21)

where My represents a torque about the yB-axis (corresponding to the example time response
in Figure 4-9), which, without loss of generality, is assumed here to be smallest of transverse
torque capabilities. Furthermore, ∆tp,min is the minimum pulse width and ωnut is the nutation
frequency, calculated by (e.g., Devey et al., 1977):

ωnut =
√

(ωnut, x ωnut, y) (4.22)

where:

ωnut, x =
(Iyy − Izz)

Ixx
ωz (4.23)

ωnut, y =
(Ixx − Izz)

Iyy
ωz (4.24)

Equations (4.23) and (4.24) respectively represent the x- and y-component of the nutation
frequency. Now assuming that ωx = 0, Equation (4.20) and the result of Equation (4.21)
can be used to calculate the minimum allowable threshold value for the y-component of the
transverse angular rate, as follows:

ωy, thres,min =
Izz
Iyy

ωz tan (θnut, thres, y,min) (4.25)
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Figure 4-10: Control logic for the denutation manoeuvres. The colourless elements constitute
the original logic as developed by Devey et al. (1977). The grey-shaded elements represent an
extension to this logic.

For the x-component, the parameters associated with the y-axis in Equation (4.25) should be
modified accordingly. Equation (4.25) provides the first of three key parameters to be tuned
for the control logic, given the spin rate and the physical characteristics and transverse torque
capabilities of the spacecraft. The second key parameter is the delay time td following a zero
crossing, calculated by (Devey et al., 1977):

td =
N

4
Tnut −

1

2
∆tp (4.26)

where N = 1 for two thruster pulses, and N = 3 for only one thruster pulse per nutation
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period, Tnut, which is calculated by:

Tnut =
2π

ωnut
(4.27)

The pulse width ∆tp represents the third key parameter to be tuned. Two different strategies
to determine the pulse width were encountered in the literature. The first strategy, described
by Devey et al. (1977), entails selecting the pulse width heuristically and keeping it constant
throughout the control process. A second, more commonly employed strategy does not en-
tail selecting or calculating a pulse width, but rather activating the thruster(s) immediately
after the signal crosses the threshold and maintaining the pulse until the signal re-enters the
deadband, see e.g., Grasshoff (1968); Hrastar (1974); Webster (1985); Sidi (1997). This sec-
ond strategy thus ensures the nutational angular motion is damped fastest. However, when
a certain amount of time is allocated to the control process, and the goal is not necessarily
to reduce the nutation angle as fast as possible, it is not an optimal strategy in terms of
propellant usage. It is hence concluded that, although both strategies have proven to work
satisfactorily for the purpose intended, they lack the necessary refinement. For this reason, a
new pulse width determination strategy is developed in Section 4-3-2-2.

4-3-2-2 Pulse Width Determination

Thruster pulses fired to denutate the spin-axis are most effective, i.e., efficient, when delivered
closest to the peak of a transverse angular rate component. As such, the optimal pulse width is
as small as possible. Naturally, applying only minimum width pulses would be most efficient,
however would also result in an – for most cases – undesirably long acquisition time. To
limit the duration of a denutation manoeuvre, a new parameter, the settling time-to-go is
introduced: Ts, togo. The total number of thruster pulses, n, that can be fired within the time
period spanned by Ts, togo depends on the length of the nutation period, Tnut, and the desired
number of thruster pulses applied during one nutation period, as follows:

n =

⌊(
5

2
− 1

2
N

)(
Ts, togo

Tnut

)⌋
(4.28)

where b. . . c denotes the floor function, which effectively ensures all thruster pulses are fired
before Ts, togo runs out. In the following, it is without loss of generality assumed that the
transverse axis of concern is the yB-axis. As such, the total transverse angular rate to be
reduced ∆ωy, togo is defined as the difference between the peak value ωy,peak and the threshold
value ωy, threshold:

∆ωy, togo = ωy,peak − ωy, threshold (4.29)

The peak, or maximum value of the transverse angular rate of concern can be calculated using
the components of the current angular velocity vector and the MoI of the spacecraft. To this
end, the momentary rotational motion of the spacecraft is assumed to be torque-free. For a

Master of Science Thesis W.J. Bouma



60 Controller Design

rigid body in torque-free rotational motion it holds that the angular momentum as well as
the rotational kinetic energy are constant (e.g., Wie, 2008). As such:

h2 = (Ixx ωx)2 + (Iyy ωy)
2 + (Izz ωz)

2 = constant (4.30)

2Erot = Ixx ω
2
x + Iyy ω

2
y + Izz ω

2
z = constant (4.31)

Equations (4.30) and (4.31) can also be written as, respectively (Wie, 2008):

ω2
x(

h I−1
xx

)2 +
ω2
y(

h I−1
yy

)2 +
ω2
z(

h I−1
zz

)2 = 1 (4.32)

ω2
x(

2Erot I
−1
xx

) +
ω2
y(

2Erot I
−1
yy

) +
ω2
z(

2Erot I
−1
zz

) = 1 (4.33)

Equations (4.32) and (4.33) have the same structure as the equation to describe an ellipsoid,
which implies geometrically that the angular velocity vector must lie on the intersection
between the surfaces of the angular momentum ellipsoid and the kinetic energy ellipsoid.
This intersecting curve is also referred to as a polhode. Using Equations (4.32) and (4.33),
Wie (2008) derives the polhode equation:

Ixx (Ixx − J∗)ω2
x + Iyy (Iyy − J∗)ω2

y + Izz (Izz − J∗)ω2
z = 0 (4.34)

where J∗ is an auxiliary constant parameter, defined combining Equations (4.30) and (4.31):

J∗ ≡ h2

2Erot
=

(Ixx ωx)2 + (Iyy ωy)
2 + (Izz ωz)

2

Ixx ω2
x + Iyy ω2

y + Izz ω2
z

(4.35)

Now assuming that ωx = 0, Equation (4.34) can be rearranged to solve for the peak of the
transverse angular rate about the yB-axis, as follows:

ωy,peak = ωz

√
Izz (J∗ − Izz)
Iyy (Iyy − J∗)

(4.36)

Note that in order to calculate the peak of the transverse angular rate about the xB-axis, Iyy
in Equation (4.36) should be replaced by Ixx. The threshold value for the transverse angular
rate of concern, representing the second term on the right-hand side of Equation (4.29), can be
obtained through Equation (4.25), given a threshold value for the nutation angle. Then using
the results of Equations (4.28) and (4.29), it is possible to calculate the change in transverse
angular rate each thruster pulse must bring about:

∆ωy =
∆ωy, togo

n
(4.37)
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The change in transverse angular rate is related to the thruster pulse width through the
following expression (Devey et al., 1977):

∆ωy =
2My

Iyy ωnut
sin

(
ωnut ∆tp, y

2

)
(4.38)

Now equating Equation (4.37) to Equation (4.38), and solving for ∆tp, y, yields:

∆tp, y =
2

ωnut
sin−1

(
Iyy ωnut

2My

∆ωy, togo

n

)
(4.39)

for which it holds that:

∆tp,min ≤ ∆tp, y ≤ ∆tp,max (4.40)

where ∆tp,max is the time interval between two threshold crossings, see Figure 4-9. The
practical implications of the saturation constraint defined in Equation (4.40) entail that for a
calculated pulse width smaller than the minimum pulse width, no control actions are taken,
and for a calculated pulse width larger than the maximum pulse width, the thrusters will be
fired for the duration of the maximum pulse width.

In the foregoing, control solely about one of the transverse axes (that is: the yB-axis) was
considered. When the spacecraft has torque capabilities about both transverse axes, using
them in tandem can enhance either the accuracy or the efficiency of the denutation manoeuvre,
depending on how the transverse torque capabilities relate to each other. In this respect, two
cases are distinguished:

• Case 1: Mx > My or My > Mx. When the torque capabilities about one transverse
axis are greater than about the other, two different minimum deadbands can be defined.
The minimum deadband for the angular rate about the transverse axis associated with
the smallest torque capabilities is narrower, as the minimum angular impulse bit is
smaller. This implies that better accuracy can be achieved, i.e., the nutation angle can
reach closer to zero. However, it is only efficient to apply the smaller torques when
the peak of the signal is located within the other minimum deadband, that is, the
one defined for the angular rate about the transverse axis associated with the largest
torque capabilities (assuming the thrusters are of the same type). Outside this latter
deadband, the larger torques will first be applied to reduce the transverse angular rate.
In the special case of the PDM, where the same number of thrusters (that is: two) is used
to generate both the smaller and the larger torques, it is, in addition, only efficient to
use minimum width pulses when using the smaller torques to further decrease the peak
of the transverse angular rate from the outer to the inner threshold. To enable the use
of only minimum width pulses, the time period that is spanned by the initial settling
time-to-go is split into two sub-periods, of which the latter is of sufficient length to
accommodate the number of minimum width pulses needed to fulfil the objective. The
first sub-period is then reserved for any pulses needed to first attenuate the transverse
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angular rate towards the outer threshold, using the larger torques. As such, both torque
capabilities are leveraged consecutively. In case the larger torques are indeed needed,
the length of the first sub-period must be at least as long as one nutation period. If
this in turn leads to a second sub-period of insufficient length to enable the use of only
minimum width pulses, the widths of the pulses fired during this period will be slightly
enlarged, so that the objective may still be met.

• Case 2: Mx ≈ My. When the torque capabilities about the transverse axes are equal
or approximately equal (that is: the relative difference between them is no larger than
a certain predefined value), both can be applied in an alternating fashion. As such,
the maximum amount of thruster pulses that can be fired during one nutation period
is doubled to four. This implies that for a given settling time-to-go, the widths of the
thruster pulses can be reduced, consequently improving the efficiency of the denutation
manoeuvre.

Considering the PDM has torque capabilities about both transverse axes (see Section 2-4),
and their relation to one another can be classified as a Case 1 relation, the general pulse
width determination strategy as described above is implemented in conjunction with the
dual-axis control strategy as described for Case 1 relations, and incorporated as an extension
to the original control logic, see Figure 4-10. The algorithm will recalculate n and ∆ωy, togo or
∆ωx, togo using the current state, moments of inertia and settling time-to-go, at each threshold
crossing for N = 1, or each second threshold crossing for N = 3. Then, based on these newly
acquired parameters and the momentary torque capabilities, ∆tp, y or ∆tp, x will be calculated.
As such, the control logic is fully adaptive. If after Ts, togo = 0, the amount of time allocated
to the denutation manoeuvre has not fully elapsed (for instance because the initial settling
time-to-go was not set equal to the allocated amount of time), the mission manager (see
Figure 5-1) will redefine the settling time-to-go to be equal to the remaining time, so that any
transverse disturbances that might arise during this period will still be counteracted.

4-3-2-3 Verification

The correct implementation of the original, fixed-pulse-width control logic is verified in an ex-
ercise to reproduce the simulation results as presented by Devey et al. (1977), see Figures 4-11
and 4-13. To this end, new simulations are carried out using the exact same initial param-
eter values as used by Devey et al. (1977), see Table 4-3. The results of these simulations
are depicted in Figures 4-12 and 4-14. Comparing these figures to their respective originals,
it can be seen that they are fully identical, except for the plots representing the transverse
angular rate and acceleration about the yB-axis. In the original figures, these plots run in the
exact opposite direction as compared to those in the reproductions. However, when plotting
the analytic results for ωx and ωy, obtained through evaluation of the following equations
describing the torque-free motion of a spinning body (Devey et al., 1977):

ωx (t) = ωx,0 cos (ωnut t) (4.41)
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Table 4-3: Parameter values used by Devey et al. (1977) to test the performance of their nutation
control logic in a simulation.

Parameter Value Unit

Ixx 205 kg m2

Iyy 195 kg m2

Izz 185 kg m2

ωx 0.1 rad s−1

ωy 0 rad s−1

ωz 6.283 rad s−1

My 15 N m
∆t 0.140 s
θnut, thres 0.2 deg
N 3 -

ωy (t) = −ωx,0

√(
ωnut, y

ωnut, x

)
sin (ωnut t) (4.42)

where ωx,0 is the angular rate about the xB-axis at zero time, it can be observed that the
analytic results actually agree with the numerical results acquired for the torque-free part of
the simulations, see Figure 4-15. As such, it appears that the respective plots in the original
figures were erroneously printed, leading to the conclusion that the original control logic was
indeed correctly implemented.

The general pulse width determination strategy as developed in Section 4-3-2-2 is verified
through numerical simulation, using the initial parameter values provided in Table 4-3, ex-
cept for – of course – ∆t. For a range of different initial settling times-to-go, the responses for
ωy and θnut were numerically obtained and plotted in Figure 4-16. As can be seen from the top
plot, the responses for ωy settle neatly within the deadband bounded by ±0.02 rad s−1 thresh-
olds (corresponding to θnut, thres = 0.2 deg), only slightly before the time periods spanned by
their respective initial settling times-to-go have elapsed. This ‘premature’ settling is directly
attributed to the fact that the calculated total number of thruster pulses is floored in Equa-
tion (4.28), and is intended.

Verification of the dual-axis control strategy as described for Case 1 relations between trans-
verse torque capabilities is also done through numerical simulation, albeit using the initial
parameter values provided in Table 4-4. The MoI and transverse torque capabilities listed in
Table 4-4 are associated with a maximally loaded PDM, see also Section 2-4. The spin rate
is equal to 4π rad s−1 and the initial transverse angular rate about the xB-axis is assumed to
be 0.1 rad s−1. Furthermore, the minimum allowable pulse width is 20 milliseconds and the
initial settling time-to-go is chosen to be 10 seconds. Finally, the desired number of thruster
pulses applied during one nutation period is 2, hence N = 1. Plots of the simulation results
are depicted in Figure 4-17, from which a number of observations can be made. Firstly, it
can be seen that the response for ωx settles after about 6 seconds within a deadband bounded
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Table 4-4: Parameter values for testing the dual-axis control strategy as described for Case 1
relations between transverse torque capabilities, see Section 4-3-2-2.

Parameter Value Unit

Ixx 6.102 kg m2

Iyy 6.102 kg m2

Izz 0.608 kg m2

ωx 0.1 rad s−1

ωy 0 rad s−1

ωz 12.566 rad s−1

Mx 2.137 N m
My 0.154 N m
∆tp,min 0.02 s
Ts, togo 10 s
N 1 -

by ±0.007 rad s−1 thresholds. Secondly, in a similar fashion, the ωy response settles within
a deadband bounded by ±5× 10−4 rad s−1 thresholds in slightly less than 10 seconds – the
chosen initial settling time-to-go. Both thresholds were calculated using Equation (4.25).
Thirdly, the response for θnut is seen not to oscillate, as opposed to what is seen in e.g.,
Figures 4-11, 4-12 and 4-16. This is due to the symmetry of the PDM around the zB-axis,
which renders Ixx equal to Iyy. Any inequality between the transverse MoI will lead to an
oscillating nutation angle. Fourthly, and last, the bottom plot shows that the first pulse is
delivered only after about 2.5 seconds, despite it being preceded by multiple threshold cross-
ings. The reason for this is that, apparently, only 13 minimum width pulses are needed about
xB-axis – the transverse axis associated with the largest torque capabilities – to reduce the
peak of ωx to below its threshold. To execute this series of thruster pulses, about 3.5 seconds
suffice, which is 2.5 seconds shy of the total of 6 seconds allotted to the first sub-period, see
Section 4-3-2-2. Consequently, during the first 2.5 seconds of the denutation manoeuvre, the
pulse widths calculated are smaller than the minimum allowable pulse width. Therefore, the
controller initially refrains from taking action, which, as a matter of fact, nicely illustrates
the effect of the saturation constraint defined in Equation (4.40).
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Figure 4-11: Time histories of the body rates and the nutation angle as presented in Devey et
al. (1977). The original image is of poor quality.
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Figure 4-12: Reproduction of Figure 4-11, verifying the correct implementation of the original
control logic. The thick dot indicates when ωy settles below the threshold value.
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Figure 4-13: Time histories of the angular accelerations and the control torque about the yB-axis
as presented in Devey et al. (1977). The original image is of poor quality.
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Figure 4-14: Reproduction of Figure 4-13, verifying the correct implementation of the original
control logic. The thick dot indicates when ωy settles below the threshold value.
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Figure 4-15: Numerical and analytic results for ωx and ωy during the torque-free part of the
simulations.
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Figure 4-17: Example time histories of ωx, ωy, θnut and the transverse control torque Mt,
associated with the dual-axis controlled denutation process of a spinning, maximally loaded PDM.
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Chapter 5

Mission Manager Logic

The overarching logic deciding which target state is fed to the controller and which control
mode is active is called the mission manager. The underlying decision-making process operates
on the basis of time-tagged control phases, which, along with the various control modes, are
defined in Section 5-1. Then, in Section 5-2, target states are formulated for each control
phase.

5-1 Control Phases and Control Modes

The second phase of the descent scenario as delineated in Section 1-2-3, tabulated in Table 1-1
and illustrated in Figure 1-3 can be broken down into sub-phases related to the activity of the
controller. As such, these sub-phases are referred to as control phases. The following eight
consecutive control phases can be identified:

1. Initialisation phase. The controller is initialised and fed with the initial state and
the target state. In case of any deviations, the controller will command the actuations
required to attain the target state. Note that this phase is actually artificial, as in reality,
it will be preceded by the first phase of the descent scenario, for which the controller will
already have been initialised. This control phase is defined here only for the purpose of
initiating the control process.

2. Pre-de-orbit manoeuvre spin-up phase. The controller receives the current state
and target spin rate to initiate a spin-up about the symmetry axis, in anticipation of
the de-orbit manoeuvre. After the spin-up, the controller will actively suppress any
nutation affecting the spin-axis, until the timer triggers the next phase.

3. De-orbit manoeuvre phase. The SRM is ignited and the PDM will lose its orbital
velocity entirely. As the PDM is spin-stabilised during the de-orbit manoeuvre, which
will occur in an open loop manner, the controller is idle.
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4. Post-de-orbit manoeuvre spin-down and reorientation phase. Following the de-
orbit manoeuvre, the PDM will free-fall vertically towards the surface. The controller
will generate commands to denutate and spin-down the PDM, after which it will redirect
the PDM to align the symmetry axis with the local vertical.

5. Pre-penetrator release spin-up phase. Similar to Control Phase 2, the controller
initiates a spin-up, albeit in anticipation of the release of the penetrator. Likewise,
following the spin-up, the controller will actively suppress any nutation affecting the
spin-axis, until the timer triggers the next phase.

6. Penetrator release phase. The release mechanism is activated, pushing the penetra-
tor away from the PDS. The release is followed by a predefined period of drift. During
this phase, the controller is idle.

7. Pre-fly-away manoeuvre spin-down and reorientation phase. Similar to Control
Phase 4, the controller will sequentially denutate, spin-down and slew the PDM to align
the symmetry axis with the local horizontal.

8. Fly-away manoeuvre phase. All four thrusters will be activated in an open loop
manner to perform a final translational manoeuvre. The thrusters will remain active
until the propellant tank is depleted. No attitude control is required.

From the control phase definitions provided above and from Section 1-3, the following four
modes of operation, or control modes, can be identified for the PDM:

1. Reorientation mode.

2. Spin-up mode.

3. Denutation mode.

4. Spin-down mode.

Table 5-1 summarises the nominal controller activity anticipated for each control phase. The
full control process executed during the second phase of the descent scenario of the PDM is
visualised in Figure 5-1, providing the control phase and mode switch logic, i.e., the mission
manager logic.

5-2 Target States and Control Setpoints

The target states transmitted to the controller during Control Phases 1, 2, 4, 5 and 7 (see
Figure 5-1) are each comprised of seven target values, or setpoints – one for each variable
in the rotational state vector, see Equation (3.5). In Section 5-2-1, the target spin rates for
Control Phases 2 and 5 are determined. In Section 5-2-2, the target orientations for Control
Phases 1, 4 and 7 are parameterised. Finally, in Section 5-2-3, an overview of the defined
target states is provided.
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Figure 5-1: Mission manager logic for the second phase of the descent scenario of the PDM.
The grey-shaded parallelograms designate the target states for the different control phases. The
grey-shaded rectangles designate the control modes.
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Table 5-1: Control modes mapped to the various control phases.

Control Phase Control Modes

1 Reorientation
2 Spin-up, Denutation
3 No attitude control
4 Denutation, Spin-down and Reorientation
5 Spin-up, Denutation
6 No attitude control
7 Denutation, Spin-down and Reorientation
8 No attitude control

5-2-1 Target Spin Rates

The target spin rates fed to the controller during Control Phases 2 and 5 must ensure sufficient
gyroscopic stability during subsequent Control Phases 3 and 6, respectively. The spin rates
appropriate in this respect are determined in Sections 5-2-1-1 and 5-2-1-2, for the DOM and
the passive free-fall descent of the penetrator, respectively.

5-2-1-1 De-Orbit Manoeuvre Spin Rate

Considering the large amount of thrust that is produced by the SRM during the DOM (see
Figure 2-6), even the slightest misalignment of the thrust vector will lead to disastrous dis-
turbance torques. As the RCS is not sized to compensate for such torques, the PDM will
spin up prior to firing the SRM so that it is gyroscopically stable during the SRM burn. In
order to guarantee sufficient stability, the ideal DOM spin rate will be determined based on
worst-case expected misalignments.

The individual offsets that constitute the net misalignment of the thrust vector are of both
linear and angular nature. Figure 5-2 shows a misaligned thrust vector and its geometric
relation to the SRM nozzle throat. The linear offset of the thrust application point from
the nominal symmetry axis is denoted by de and its associated phase angle by φde . The
angular offset between the thrust vector and the nominal symmetry axis is denoted by δe and
its associated phase angle by φδe . These misalignments can be attributed to imperfections
within the SRM, which Knauber (1996) extensively describes and categorises. The individual
misalignments with respect to the SRM are aggregated into the effective misalignment angle,
which is the effective angular offset between the thrust vector acting at the nominal centre
of mass flow (see Section 3-4-1) and the nominal symmetry axis. Refer to e.g., Armstrong
(1965); Knauber (1996) for a mathematical definition of the effective misalignment angle.

Other sources of misalignment include 1) the lack of concentricity and parallelism of the
SRM with respect to the nominal symmetry axis of the PDM, 2) the angular offset of the
principal axes of inertia from the B-frame, and 3) the linear offset of the CoM from the
nominal symmetry axis (Wertz, 1978). The first source can become insignificant relative to
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Figure 5-2: Linear and angular SRM thrust misalignments. The image on the left represents
an enlarged rear view of the nozzle throat. The direction of the thrust vector in the right image
does not correspond to the direction of the thrust vector in the left image. The misalignments
are exaggerated for clarity. The location of the CoM in the figure is arbitrary.

the other sources if the SRM is carefully mounted onto the PDM, which may be assumed.
The intensity of the second source depends on the degree of asymmetry of the PDM, of which
the PoI are a quantitative measure. The PoI are nonzero if the actual CoM does not lie on
one of the axes of the B-frame, which implies that the intensity of the second source is in part
directly related to the linear offset between the actual CoM and the nominal CoM; the third
source of misalignment. Hence, in calculating the disturbance torques due to misalignment
of the thrust vector, only two offsets really need to be considered for the case of the PDM:
the effective misalignment angle with respect to the SRM, denoted by δe, eff , and the position
vector of the actual CoM from the nominal CoM, denoted by rcm, act

cm, nom.

Knauber (1996) states a common three-sigma value1 for δe, eff is 0.25◦. The excursion of the
CoM from the zB-axis is the combined result of the off-nominal positions of the CoMs of the
penetrator, the dry PDS, as well as the momentary solid and liquid propellant slugs, see also
Section 2-3. The linear offsets of the CoMs of the penetrator and the dry PDS are assumed
to remain within 5% of the maximum radius of the mass system concerned, i.e., 0.48 cm
for the penetrator and 0.88 cm for the PDS. The CoM of the solid propellant slug might
diverge from the nominal symmetry axis due to an asymmetric burn. The misalignments
that may occur because of this have already been accounted for in δe, eff (Knauber, 1996).
Finally, since the liquid propellant slug makes up only a small fraction of the total mass of the
PDM (see Section 2-2-1), and its shape remains well-conserved by a restraining diaphragm,
any deviation of its CoM with respect to the nominal symmetry axis may be considered
insignificant. Table 5-2 presents an overview of the significant offsets and their three-sigma

1‘Three-sigma’ stands for three standard deviations from the mean in a normal distribution, which implies
that 99.7% of the values are smaller than or equal to the given three-sigma value.
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Table 5-2: Three-sigma values and probability distributions for offsets significantly contributing
to the net misalignment of the thrust vector.

Parameter 3-sigma Distribution Unit

δe, eff 0.25 N (0, 0.00694) deg
φδe, eff

n/a U(0, 360) deg

δrcm, pen 0.48 N (0, 0.0256) cm
αδrcm, pen n/a U(0, 360) deg
βδrcm, pen n/a U(0, 360) deg

δrcm,PDS 0.88 N (0, 0.0860) cm
αδrcm,PDS

n/a U(0, 360) deg

βδrcm,PDS
n/a U(0, 360) deg

values and associated probability distributions; φδe, eff
is the phase angle associated with δe, eff ,

measured from the xB-axis; α and β are the angular distances from, respectively, the x-axis
and z-axis of the local body frame; N (µ, σ2) denotes a normal distribution with mean µ and
variance σ2; U(a, b) denotes a uniform distribution with minimum value a and maximum
value b.

In creating a worst-case scenario, the offsets are taken to be equal to their three-sigma values.
Then simulating the DOM for four different spin rates yields the results depicted in Figures 5-3
and 5-4. From the top-left plot in Figure 5-3, it can be seen that the disturbance torques due
to misalignment of the thrust vector are on the order of 101 N m. The shapes of the remaining
plots in Figure 5-3 show agreement with those depicted in the SRM performance diagrams
in Figure 2-6, confirming the correct functioning of the simulator. Additional verification is
provided by the end values of the plots top-right and bottom-left in Figure 5-3, which match
the actual values for the mass and the z-component of the CoM position vector for a dry
PDM, respectively 45.7 kg and -0.225 m. Figure 5-4 shows the time histories of the x- and
y-components of the angular velocity vector during and right after the DOM, for four different
spin rates: 0, π, 2π and 4π rad s−1. Note that the y-axis scaling in the top-left plot is different
from the other plots. As can be observed from Figure 5-4, the transverse angular rates keep
increasing until the DOM terminates at approximately 16 seconds, after which they settle
into steady oscillation about their respective mean values. It is also seen that, as the spin
rate increases, the responses show a more damped behaviour, which implies better stability.
It is generally true that gyroscopic stability increases as the spin rate increases.

Nonzero angular rates transverse to the jet stream will induce a jet damping moment, which
can be calculated by Equation (3.14). The jet damping moment counteracts the torques due
to misalignment of the thrust vector to some extent, yet lacks the strength to fully prevent
the nutation angle from growing. This can be seen in Figure 5-5, depicting the responses for
the transverse angular rates, the jet damping moment, the nutation angle and the effective
thrust force along the angular momentum vector h (see Section 4-3-2), during and right after
the DOM, for a 4π rad s−1 spin rate. Observing the plot top-right, the x- and y-components
of the jet damping moment increase in a direction opposite to the x- and y-components
of the angular velocity vector, demonstrating the actual damping effect of the jet damping
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Figure 5-3: Time histories of the disturbance torques due to thrust misalignment (top left),
the PDM wet mass (top right), the z-component of the CoM position vector (bottom left)
and the propellant mass flow from the SRM (bottom right) during and right after the DOM.
Misalignment settings: δe, eff = 0.25◦, φδe, eff = 100◦, δrcm, pen = 0.48× 10−2 m, αδrcm, pen =
120◦, βδrcm, pen

= 50◦, δrcm,PDS = 0.88× 10−2 m, αδrcm,PDS
= 150◦ and βδrcm,PDS

= 60◦.

moment. Notwithstanding, the nutation angle, which is calculated by Equation (4.20), is seen
to increase during the DOM. The concept of nutational motion will be further explained in
Section 4-3-2.

The bottom-right plot in Figure 5-5 depicts the response of the effective thrust force along
the angular momentum vector, which is a function of the nutation angle θnut, as follows:

Fz, SRM, eff = Fz, SRM · cos (θnut) (5.1)

For comparison, the nominal thrust curve (as shown before in Figure 2-6) is plotted next to
the effective thrust curve. The area in between both curves represents the loss of impulse due
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Figure 5-4: Time histories of the transverse angular rates during and right after the DOM, for
four different spin rates. Misalignment settings are the same as for Figure 5-3.

to misalignment of the thrust vector, which is calculated by:

∆Jloss = Jnom − Jeff =

∫ tDOM

0
(Fz, SRM − Fz, SRM, eff) dt (5.2)

where tDOM denotes the duration of the DOM, Jnom and Jeff respectively denote the nominal
and effective total impulse delivered by the SRM, and Fz, SRM and Fz, SRM, eff represent the
nominal and effective thrust force along the angular momentum vector, respectively. The
impulse efficiency of the DOM is then determined by:

ηDOM =
Jeff

Jnom
(5.3)

With regard to the bottom-right plot in Figure 5-5, the loss of impulse is about 3% of the
nominal total impulse, meaning that in the worst-case scenario considered, the orbital velocity
of approximately 1705 m s−1 (see Section 1-2-3) is reduced by only 97% and a horizontal
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Figure 5-5: Time histories of the transverse angular rates (top left), the x- and y-components
of the jet damping moment (top right), the nutation angle (bottom left) and the nominal and
effective thrust force along the angular momentum vector (bottom right) during and right after
the DOM, for a 4π rad s−1 spin rate. Misalignment settings are the same as for Figure 5-3.

velocity of about 51 m s−1 remains (provided that the angular momentum vector was in fact
aligned with the velocity vector). Given that the impact velocity will be about 300 m s−1

(see also Section 1-2-3), the descent angle δ, which is the angle between the local vertical
and the velocity vector, will then be about 9.6◦. This amply exceeds the 5◦ prescribed by
mission requirement RQ-AOCS-PEN-04 (see Appendix B-2). As such, it can be concluded
that a spin rate of 4π rad s−1 is not sufficient to guarantee enough stability under worst-case
expected misalignments, i.e., δe, eff = 0.25◦ and linear offsets of the CoMs of the penetrator
and the dry PDS of 5% of their respective maximum radii. In such a situation, the RCS
must be employed to reduce the horizontal velocity to acceptable limits before performing the
post-DOM reorientation manoeuvre. This naturally requires the use of additional propellant
and also leaves a narrower time window for subsequent control phases. A preventive measure
would be to increase the spin rate of the PDM, however the SRM is only qualified for spin
rates up to 120 rpm (= 4π rad s−1), see Table G-3.

In order to investigate the impact of the spin rate on the success rate of the DOM, a small
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simulation study is conducted. In this regard, five different spin rates are considered: 2π, 3π,
4π, 5π and 6π rad s−1. Additionally considered are three different three-sigma values for the
linear offsets of the CoMs of the penetrator and the dry PDS, being 5%, 10% and 15% of
their respective maximum radii. The three-sigma value for the effective thrust misalignment
angle remains 0.25◦. For each of the spin rates, three 1000-sample Monte Carlo simulations
(explained in Section 6-3-3) are run, each one sampling from different normal distributions
for the linear CoM offsets, defined based on one of the three associated three-sigma values.
A successful sample is defined to have achieved a minimum impulse efficiency of 98.5%. This
value was deduced from the prescribed maximum descent angle of 5◦, assuming a 300 m s−1

impact velocity and a 1705 m s−1 orbital velocity. Using Equation (5.1), the average nutation
angle corresponding to a 98.5% impulse efficiency is calculated to be 9.9◦. The success rates
associated with each of the Monte Carlo simulations are presented in Figure 5-6, from which
it can be observed that for the maximum allowed spin rate of 4π rad s−1, the success rate
is 93% under currently assumed three-sigma values for the thrust misalignments considered.
This rate increases to 99% for a 5π rad s−1 spin rate. Furthermore it is seen that a spin rate
of 6π rad s−1 offers sufficient confidence to allow for increased uncertainty on the position
of the CoM. Selecting a spin rate larger than 4π rad s−1 would however require additional
qualification testing for the currently proposed SRM. That said, it is concluded that, under
the thrust profile of the current SRM, a 4π rad s−1 spin rate manages to keep the risk of an
insufficient DOM within acceptable limits, be it as long as the penetrator and the dry PDS
are, qualitatively speaking, properly balanced.

5-2-1-2 Penetrator Release Spin Rate

Prior to releasing the penetrator, the PDM performs a spin-up about its symmetry axis to
provide the uncontrolled penetrator with a stabilising spin upon release. Besides a linear
tip-off velocity vtip, the mechanism separating the penetrator from the PDS also imparts a
perturbing transverse angular tip-off velocity ωtip to the penetrator, causing a nutation in
the spin-axis that, in the most pessimistic case, directly adds to any pre-existing nutation.
Table 5-3 presents the anticipated nominal values for the relative linear and angular tip-off
velocities, for which it holds that:

vtip = vtip,PDS + vtip,Pen (5.4)

ωtip = ωtip,PDS + ωtip,Pen (5.5)

Table 5-3: Anticipated relative tip-off velocities at separation of the penetrator from the PDS.

Parameter Mean 3-sigma Distribution Unit

vtip 1.0 0.1 N (1.0, 0.00111) m s−1

ωtip 1.0 0.1 N (1.0, 0.00111) deg s−1
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of the CoMs of the penetrator and the dry PDS, against a range of different spin rates. Each
bar represents the percentage of successes in a 1000-sample Monte Carlo simulation. The success
criterion was 98.5% impulse efficiency.

The net tip-off velocities imparted to the penetrator and the PDS can be determined using
the law of conservation of momentum:

mPDS · vtip,PDS = mPen · vtip,Pen (5.6)

It,PDS · ωtip,PDS = It,Pen · ωtip,Pen (5.7)

where It denotes the MoI about the transverse axis. Combining Equations (5.4) and (5.6),
the following equations for the net linear tip-off velocities can be derived:

vtip,PDS =
mPen · vtip

mPDS +mPen
(5.8a)

vtip,Pen = vtip − vtip,PDS (5.8b)

Similarly, the net angular tip-off velocities can be calculated through:

ωtip,PDS =
It,Pen · ωtip

It,PDS + It,Pen
(5.9a)

Master of Science Thesis W.J. Bouma



80 Mission Manager Logic

ωtip,Pen = ωtip − ωtip,PDS (5.9b)

The net linear tip-off velocity vectors with respect to the B-frames of the PDS and the
penetrator are, respectively,

vtip,PDS, B = [0, 0, −vtip,PDS]T and vtip,Pen, B = [0, 0, vtip,Pen]T .

These vectors can be transformed to the F -frame with Equation (E.1), using the inverse of
the direction cosine matrix CB/F , which is obtained through Equation (E.2). The x- and y-
components of the angular tip-off velocity are calculated by:

ωx, tip = ωtip · cos
(
φωtip

)
(5.10a)

ωy, tip = ωtip · sin
(
φωtip

)
(5.10b)

where φωtip ∼ U(0◦, 360◦) is the phase angle associated with ωtip, measured from the xB-
axis. The net angular tip-off velocity vectors for the PDS and the penetrator then become,
respectively,

ωtip,PDS = [−ωx, tip,PDS, −ωy, tip,PDS, 0]T and ωtip,Pen = [ωx, tip,Pen, ωy, tip,Pen, 0]T ,

where the x- and y- components of both vectors can be calculated using Equation (5.9), filling
out the appropriate MoIs and angular tip-off velocity values. In order to provide insight into
the relation between the spin rate of the penetrator and the nutation angle resulting from the
tip-off, the following equation is used (Wie, 2008):

θnut,Pen = arctan

(
It,Pen · ωt,Pen

Izz,Pen · ωz,Pen

)
(5.11)

where θnut,Pen is the nutation angle of the spinning penetrator, ωt,Pen is the transverse an-
gular velocity of the penetrator, Is,Pen is the MoI about the spin-axis of the penetrator and
ωs,Pen is the spin rate of the penetrator. The parameters in the numerator of the fraction in
Equation (5.11) are defined by:

It,Pen = Ixx,Pen = Iyy,Pen ; ωt,Pen =
√
ωx,Pen

2 + ωy,Pen
2 = ωtip,Pen

Using the inertial parameter values provided in Table 2-3, the worst-case expected value for
ωtip,Pen is calculated to be 1.039 deg s−1. The relation between the spin rate of the penetrator
and the nutation angle associated with this particular angular tip-off velocity is visualised in
the top plot in Figure 5-7. From this plot, it is clear that the penetrator is more resilient
against transverse disturbances when the spin rate is higher. There are, however, a few
drawbacks to a higher spin rate. For one; more propellant is needed. Also; the vertical
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Figure 5-7: Nutation angle of the spinning penetrator and final landing distance between the PDS
and the penetrator as a function of the spin rate of the penetrator. Settings: ωtip,Pen = 1.039
deg s−1 and vtip = 0.9 m s−1.

velocity increment generated as a ‘by-product’ of the spin-up and spin-down manoeuvres (see
Section 2-4) will be larger. The latter has two implications: 1) the free-fall time decreases,
since the PDM gains more speed during the spin-up; 2) the drift time following the release of
the penetrator increases, as the vertical distance between the PDS and the penetrator must
grow larger to account for the larger linear impulse the PDS receives during the spin-down.
Consequentially, the final horizontal distance that can be achieved between the PDS and the
penetrator at landing will be smaller. Concluding, to select the appropriate spin rate for the
penetrator, the impact on the landing distance must also be taken into account.

The first step in approximating the relation between the penetrator spin rate and the landing
distance is to calculate the time available for the PDS to ‘fly away’ after it has spun down
and slewed horizontally. To this end, the altitude at which the fly-away manoeuvre is set in
must be determined. This can be done by evaluating the following equations:

s5 =
1

2
gmt4

2 (5.12)

s6 = s5 + (gm t4 + vspin, 5) t5 +
1

2
gmt5

2 (5.13)

s7 = s6 + (gm (t4 + t5) + vspin, 5) t6 +
1

2
gmt6

2 (5.14)

s8 = s7 + (gm (t4 + t5 + t6) + vspin, 5 + vspin, 7) t7 +
1

2
gmt7

2 (5.15)
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with:

t4 = tspin, 4 + treorient + Ts (5.16)

t5 = tspin, 5 + Ts (5.17)

t7 = tspin, 7 + treorient + Ts (5.18)

and:

t6 =
vspin, 7 t7
vtip

(5.19)

tspin =
Is ωs
M

(5.20)

vspin =
F tspin

m
(5.21)

In Equations (5.12) to (5.21), si is the total vertical distance traversed at the start of control
phase i (see Section 5-1), ti is the duration of control phase i, tspin is the time needed to
perform a spin-up or spin-down manoeuvre, vspin is the velocity change imparted during a
spin-up or spin-down manoeuvre, vtip is the linear tip-off velocity (Section 2-1), treorient is
the time needed to perform a reorientation manoeuvre, Ts is the settling time following a
manoeuvre and gm is the Moon’s gravitational acceleration, computed as:

gm =
µm

Rm
2 =

4.905× 1012(
1.738× 106

)2 = 1.624 m s−2

In approximating s8, some restrictive assumptions are made. First of all, it is assumed that
gm is constant throughout the descent. Also, the inertial parameters and forces and torques
remain constant during a control phase. Then, t8 – the time available for the PDS to ‘fly
away’ – is obtained by finding the positive root of the following quadratic equation:

(
1

2
gm

)
t8

2 +

(
gm

7∑
i=4

ti + vspin, 5 + vspin, 7

)
t8 + (s8 − hfreefall) = 0 (5.22)

where hfreefall is the free-fall altitude. To determine the final horizontal landing distance
that can be achieved, first the velocity increment resulting from the fly-away manoeuvre is
calculated by:

vfly =
F8 tfly

m8
(5.23)

where:

tfly =
mhyd, 8

ṁ8
(5.24)
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Table 5-4: Parameter values used to visualise the relation between the spin rate of the penetrator
and the achievable horizontal distance between the PDS and the penetrator at landing.

Parameter Value Unit

msolid 0 kg
mhyd, 5 0.2 kg
mhyd, ini 2.1 kg
Fave 3.15 N
Vtank 0.006 m3

pmax 24 bar
pmin 6 bar
θthruster 45 deg
φthruster 45 deg
hfreefall 28 km
gm 1.624 m s−2

treorient 2.5 s
treorient,burn 0.5 s
Ts 10 s

and:

mhyd, 8 = mhyd, 7 − ṁ7 (tspin, 7 + treorient, burn) (5.25)

mhyd, 7 = mhyd, 5 − ṁ5 tspin, 5 (5.26)

mhyd, 5 = mhyd, 4 − ṁ4 tspin, 4 (5.27)

The parameters on the right-hand sides of Equations (5.23) and (5.24) are assumed to be
constant during the fly-away manoeuvre. The mass flow parameters showing up in Equa-
tions (5.24) to (5.26) can be calculated using Equation (2.7), remarking that for ṁ5 and ṁ7,
n = 2, and for ṁ8, n = 4. A conservative approximation of the landing distance between the
PDS and the penetrator is then obtained by:

∆xlanding =
1

2
afly t

2
fly + vfly (t8 − tfly) = vfly

(
t8 −

1

2
tfly

)
(5.28)

Using the parameter values provided in Tables 2-3 and 5-4, the procedure as described at the
end of Section 2-4 is followed to determine the force and torque capabilities of the PDM/PDS
at the start of, and during each control phase. Then, the landing distance between the PDS
and the penetrator is calculated as a function of the spin rate of the penetrator for the worst-
case expected relative linear tip-off velocity; vtip = 0.9 m s−1. The results of these calculations
are plotted in the bottom plot of Figure 5-7. As can be seen, in regard to the landing distance,
which preferably is as large as possible, a lower penetrator spin rate is desired. This contradicts
the desire to minimise the nutation angle arising from the tip-off, for which a higher penetrator
spin rate is in turn preferred.
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Mission requirement RQ-AOCS-PDS-01 (see Appendix B-2) prescribes a minimum landing
distance of 50 m. When observing the bottom plot in Figure 5-7, it is concluded that this
requirement is met even for a spin rate of 200 rpm. However, when examining the top plot
in Figure 5-7, it can be seen that a 200 rpm spin rate offers only little improvement over e.g.,
a spin rate of 120 rpm: ∆θnut,Pen = −0.060◦ for the worst-case expected net angular tip-off
velocity (ωtip,Pen = 1.039 deg s−1). As a lower spin rate inherently requires less propellant,
it is hence decided to select a penetrator release spin rate of 120 rpm (= 4π rad s−1), for
which the tip-off in a worst-case scenario will lead to a 0.15◦ increase in nutation angle.
The corresponding achievable landing distance is approximated to be 580 m, yet this is only
indicative, as the eventual landing distance will depend strongly on the time slots assigned
to the various control phases, as well as the amount of liquid propellant left in the tank to
perform the FAM.

5-2-2 Target Orientations

Control Phases 1, 4 and 7 involve a reorientation manoeuvre, which means that the controller
requires the input of a target orientation. Obviously in such cases, the target angular velocity
vector is zero. The target orientations for Control Phases 1, 4 and 7, respectively referred to
as the initial orientation, the free-fall orientation and the fly-away orientation, are defined in
Sections 5-2-2-1 to 5-2-2-3, respectively.

5-2-2-1 Initial Orientation

From Figure 3-1, it is clear that for Control Phase 1, the B-frame must be rotated by 90◦ in
the negative direction about the yB-axis, such that the nozzle of the SRM is directed forward
(i.e., in the direction of the orbital velocity vector). As such, the target orientation expressed
in Euler angles with respect to the F -frame becomes:

[
φ θ ψ

]T
1

=
[

0 −90◦ 0
]T

which, when converted to quaternions using Equation (D.1), transforms to:

q1 =
[

0 −0.7071 0 0.7071
]T

where the subscript 1 indicates that the vector is associated with Control Phase 1.

5-2-2-2 Free-Fall Orientation

The target orientation for Control Phase 4 depends on the expected direction of the velocity
vector at impact, with respect to the F -frame. The objective for this control phase is to align
the zB-axis, the nominal symmetry axis of the PDM, with the velocity vector as expected at
impact, so as to minimise the angle-of-attack (see Appendix B-1). In order to approximate the
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components of the velocity vector at impact, it is assumed that the gravitational acceleration
of the Moon is constant and the magnitudes of the velocity components in the xF - and yF -
directions at the start of Control Phase 4 do not change. As such, the velocity vector at
impact can be approximated by:

vimpact ≈ v4 +

 0
0

−gm tfreefall

 m s−1 (5.29)

where tfreefall is equal to the positive root of the quadratic equation

1

2
gm t

2
freefall − (vz)4 tfreefall − h4 = 0,

v4 is the 3× 1 velocity vector and h4 is the altitude of the PDM at the start of Control Phase
4, and gm = 1.624 m s−2 (calculated in Section 5-2-1-2). Now the target orientation can be
derived from vimpact, knowing that the zB-axis must point in the same direction. The angle
between the zF -axis and vimpact is the angle of rotation about a unit vector perpendicular to
the plane of the zF -axis and vimpact. If this angle of rotation is called the eigenangle, then
the unit vector in question represents the eigenaxis, see Section 3-2. Using this information,
the target orientation can directly be computed in terms of quaternions. In order to obtain
the eigenangle θ, as well as the components of the eigenaxis e, one takes the cross product of
the unit vector in the zF -direction and the normalised vimpact:

e4 · sin (θ4) =

 0
0
1

× vimpact

‖vimpact‖
(5.30)

where sin (θ4) is equal to the magnitude of the resultant vector, e4 represents the normalised
result of the resultant vector and subscript 4 indicates the parameters or vectors are associated
with Control Phase 4. By definition, θ4 is the angle between the two vectors and e4 is the unit
vector perpendicular to the plane containing the two vectors. Then using Equations (3.2a)
and (3.2b), the quaternion components can be calculated, constituting the target orientation
for Control Phase 4:

q4 =
[

(e1)4 sin (θ4/2) (e2)4 sin (θ4/2) (e3)4 sin (θ4/2) cos (θ4/2)
]T

5-2-2-3 Fly-Away Orientation

For Control Phase 7, the desired orientation is such that the zB-axis of the PDS is aligned
with the local horizontal. The shortest angular path towards the horizontal is achieved when
the zB-axis is pointing in the direction of the resultant of the x- and y-components of the
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momentary velocity vector. The unit vector in this direction, with respect to the F -frame, is
calculated by:

ZF
B =

Z ′FB∥∥Z ′FB ∥∥ (5.31)

where:

Z ′FB =

 (vx)7

(vy)7
0

 m s−1 (5.32)

Then, in a similar fashion as for Control Phase 4, the eigenangle between ZF
B and the unit

vector in the zF -direction, as well as the associated eigenaxis are obtained through:

e7 · sin (θ7) =

 0
0
1

×ZF
B (5.33)

Using the result of Equation (5.33), the target orientation for Control Phase 7 can be calcu-
lated in terms of quaternions:

q7 =
[

(e1)7 sin (θ7/2) (e2)7 sin (θ7/2) (e3)7 sin (θ7/2) cos (θ7/2)
]T

where subscript 7 indicates the parameters or vectors are associated with Control Phase 7.

5-2-3 Overview of Target States

Table 5-5 presents an overview of the target rotational states for each control phase. In
addition, the maximum duration per control phase is provided in seconds.

Table 5-5: Target rotational states and maximum duration per control phase.

Phase Target Rotational State Duration (s)

1 x1 =
[

0 −0.7071 0 0.7071 0 0 0
]T

10

2 x2 =
[

n/a n/a n/a n/a 0 0 4π
]T

20
3 No attitude control 16

4* x4 =
[

(q1)4 (q2)4 (q3)4 (q4)4 0 0 0
]T

50

5 x5 =
[

n/a n/a n/a n/a 0 0 4π
]T

20
6 No attitude control 20

7* x7 =
[

(q1)7 (q2)7 (q3)7 (q4)7 0 0 0
]T

50
8 No attitude control n/a

*Refer to Section 5-2-2 for specifics on how the quaternion components
are determined.
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Chapter 6

Simulation Study

In order to test the performance of the controller and determine the success rate of the
mission from a descent-and-landing perspective, simulations will be performed. To this end, a
simulator is built, incorporating the models created for the spacecraft and its environment, the
controller and the mission manager logic. In addition, the simulator will include a thruster
management function and a navigation system, which will both be covered in Section 6-1.
Then, in Section 6-2, the architecture of the simulator will be explained. In Section 6-3, a
detailed description of the set-up of the simulation study will be provided, for the purpose
of reproducibility. Finally, the results of a nominal-case system test and the Monte Carlo
simulation are presented and discussed in Section 6-4.

6-1 Simulator Elements

Besides the controller and the mission manager, there are other elements included in the
simulator that need addressing before a full simulation can take place. First of all, the
thruster management function, which is tasked with converting control commands received
from the controller into operating commands comprehensible to the thrusters. The design
of the thruster management function is discussed in Section 6-1-1. Secondly, the naviga-
tion system, which processes sensor measurements to provide an estimate of the state of the
spacecraft. The implementation of a surrogate navigation system is discussed in Section 6-1-2.

6-1-1 Thruster Management Function

The Thruster Management Function (TMF) determines the firing duration ∆ti for each
thruster i = 1, . . . , n, where n is the number of thrusters, based on the 3×1 control torque vec-
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tor u received from the controller. The sought-for n× 1 firing duration vector ∆t, containing
each ∆ti, must be defined in such a way that the following condition is satisfied:

Mnom ∆t = u (6.1)

whereMnom is the 3×n thruster torque response matrix, whose columns contain the compo-
nents of nominal torque generated by each thruster. For the case of the PDM: n = 4, which
implies that:

Mnom =

 (Mx)T1 (Mx)T2 (Mx)T3 (Mx)T4

(My)T1 (My)T2 (My)T3 (Mx)T4

(Mz)T1 (Mz)T2 (Mz)T3 (Mx)T4


nom

(6.2)

where ‘T1’ stands for ‘Thruster 1’, ‘T2’ for ‘Thruster 2’, etc. Since the number of thrusters
exceeds the number of degrees-of-freedom, it generally holds that for any given control torque
vector u, there is a variety of firing duration vectors that satisfy Equation (6.1). In order
to find the one solution for ∆t that minimises the propellant consumption, the following
optimisation problem is solved:

minimise
∆t

n∑
i=1

∆ti

subject to Mnom ∆t = u,

0 ≤ ∆ti, i = 1, . . . , n.

(6.3)

Problem (6.3) is also referred to as the jet selection problem and was first described by
Crawford (1969). It should be noted that the objective function to be minimised here is
the sum of the individual firing durations calculated for each thruster. Minimising the total
firing duration of all thrusters combined in fact minimises the propellant consumption, as the
PDM is equipped with on/off -type thrusters, see also Section 2-2-1. Problem (6.3) is subject
to one equality constraint, defined by Equation (6.1), and one inequality constraint, that is,
0 ≤ ∆ti. The latter prohibits negative firing duration values. Notably, there is no upper
bound defined for ∆ti in Problem (6.3). This reduces the complexity of the optimisation
problem and actually guarantees convergence for a torque response matrix similar to the one
associated with the thruster geometry of concern (see Figure 2-2). In reality, ∆ti is bounded
by the minimum pulse width on the lower end, and by the controller’s sampling time Tsampling

on the upper end, such that:

∆tp,min ≤ ∆ti ≤ Tsampling (6.4)

Rather than handling these lower and upper bounds in Problem (6.3) directly, they are im-
posed on ∆t after the optimisation process. However, before imposing them, the firing
duration vector must first be corrected for the force drop that occurs as a result of multiple
thrusters firing simultaneously (see Section 2-2-1). The limitation of solving Problem (6.3)
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T1

T2

T3

T4

β−1
4 ·∆t1,4

Time

β−1
3 ·∆t1,3 β−1

2 ·∆t1,2 ∆t1,1

∆ti, corr

Figure 6-1: Graphical representation of the second step of the firing duration correction procedure,
showing the obtained optimal firing durations (solid bars) and the applied corrections (hatched
bars) to account for the force drop that occurs when multiple thrusters are fired at once. In this
particular example, a configuration of four thrusters is considered. The bar length is arbitrary.

as is, is that it yields a solution that is calculated based only on the nominal torque response
matrix and does not account for potential force drops. Hence, a correction must be applied,
for which the following two-step procedure is devised:

1. At the start of each control cycle, the off-nominal torque response matrices are calculated
based on the predetermined pressure drop factors (see Table 2-2). The ratio between an
arbitrary element in the k-th off-nominal matrix and its corresponding element in the
nominal matrix should be the same for all other element pairs and represents the momen-
tary force drop factor βk associated with off-nominal matrix Mk, where k = 2, . . . , n,
M1 =Mnom and β1 = 1. Notably, the index of the torque response matrix corresponds
to the number of thrusters that are firing at the same time (see also Section 2-2-1).

2. Using the obtained force drop factors, the individual firing durations in ∆t are corrected
for by increasing the parts that overlap with other firing durations proportional to
the inverse of the relevant force drop factor. This process is graphically depicted in
Figure 6-1. When each part ∆ti,k of an individual firing duration ∆ti has been modified
accordingly, the separate parts are glued together to form the corrected firing duration
∆ti, corr. The corrected individual firing durations are finally assembled in the corrected
firing duration vector ∆tcorr, ready for further processing.

Now that ∆tcorr has been obtained, the pulse constraints can be imposed. If the maximum
element of ∆tcorr exceeds Tsampling, the corrected firing duration vector is normalised by its
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maximum value, and then multiplied by the sampling time:

∆t∗corr =

{
∆tcorr, max (∆tcorr) ≤ Tsampling

∆tcorr
max(∆tcorr)

· Tsampling, max (∆tcorr) > Tsampling
(6.5)

Equation (6.5) was slightly modified from Silva et al. (2005) to account for a non-unity sam-
pling time. Notably, Jackson and Gonzalez (2007) use a similar method to impose the upper
pulse constraint. Lastly, the lower bound is applied as follows:

∆t∗i, corr =

{
∆tp,min,

∆tp,min

2 ≤ ∆t∗i, corr < ∆tp,min

0, ∆t∗i, corr <
∆tp,min

2

(6.6)

Returning to Problem (6.3), it is noted that the objective function as well as the constraints
are linear, which renders Problem (6.3) a so-called linear optimisation problem. Two well-
known classes of algorithms to solve a linear optimisation problem are the simplex class and
the interior-point class. Since there is existing software in place that offers powerful solvers
based on algorithms from both classes, it would be highly cumbersome to construct a solver
from scratch. It is therefore chosen to employ an off-the-shelf solver to find an optimal so-
lution to Problem (6.3). In selecting the most efficient solver, a performance comparison is
drawn between a variety of solvers that can either be called directly from Matlab or in-
directly through cvx, which is described as a “Matlab-based modelling system for convex
optimisation”1. Since a linear programming problem is a special case of the general convex
optimisation problem (Boyd & Vandenberghe, 2009), cvx is able to transform Problem (6.3)
to a form compatible with any of its available solvers. Refer to Grant and Boyd (2008) for
further details on cvx. For specifics on the simplex class of algorithms and the interior-point
class of algorithms, refer to e.g., Ficken (2015) and Boyd and Vandenberghe (2009), respec-
tively. Table 6-1 presents a list of the different solvers considered along with their performance
expressed in average time required to solve Problem (6.3) with similar precision. Clearly, the
built-in Matlab solvers outperform the cvx solvers by length in this respect. Among the
algorithms that Matlab’s Optimization Toolbox provides, the interior-point-legacy2

algorithm proves to be fastest and is hence selected as the preferred algorithm to solve Prob-
lem (6.3).

In order to verify the correct implementation of the TMF as proposed, a reorientation manoeu-
vre is simulated. For such manoeuvres, the quaternion-error feedback controller described in
Section 4-2-1 calculates the appropriate control torque vectors. Using the parameter values
provided in Table 6-2, along with the inertial parameters for the dry PDM from Table 2-3,
the RCS parameters from Table 2-5 and the pressure drop factors from Table 2-2, Figures 6-
2 to 6-5 are generated, depicting the time histories of the quaternions, body rates, torque
commands and actual torques, respectively. Notably, the natural frequency that is used to
calculate the controller gains is computed using Equation (4.18), assuming a settling time

1See: CVX: MATLAB Software for Disciplined Convex Programming (Visited: July 15, 2019)
2See: Linear Programming Algorithms - MATLAB & Simulink (Visited: July 15, 2019)
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Table 6-1: Approximate time required for the solvers and algorithms considered to solve Prob-
lem (6.3) with similar precision.

System Solver Algorithm Time (s)

Matlab linprog dual-simplex 0.044
Matlab linprog interior-point 0.030
Matlab linprog interior-point-legacy 0.026
cvx SDPT3 4.0 Interior-point method 0.22
cvx SeDuMi 1.34 Interior-point method 0.19
cvx Gurobi 7.52 Interior-point method 0.11
cvx MOSEK 8.0.0.60 Interior-point method 0.55

of 20 seconds and an eigenangle-to-go of 90 degrees. In Figures 6-2 to 6-4, the actual re-
sponses are plotted next to their associated theoretical, or nominal responses to allow for
comparison. It should be noted that in the nominal case, the commanded control torques are
executed perfectly. For the actual case, this is by definition impossible, since 1) the torque
capabilities of the PDM are finite, implicating that for control torques commanded outside
the controllability envelope, the TMF will either refrain from taking action (when the torque
command is too small) or saturate (when the torque command is too large), and 2) moreover,
the PDM’s minimally set up canted thruster configuration is inherently unable to directly
replicate a commanded control torque vector containing more than one nonzero component,
due to cross-coupling between the axes. The latter explains the somewhat erratic course of
some of the plots representing the actual case in Figures 6-2 to 6-4.

Comparing the actual torques generated by the thrusters in Figure 6-5 with the actual torque
commands in Figure 6-4, it is noted that, at first sight, there appears to be significant discrep-
ancy. For example, at approximately one second into the simulation, the commanded torques
about the xB-axis are only mildly positive (on the order of 10−2), whereas the corresponding
actual torques reach values about 100 times as large. However, these torques are actually of
very short duration (most of them of minimum duration, that is: 0.02 seconds), such that the
impulses produced are, at maximum, ‘only’ one order of magnitude larger than the impulses
otherwise generated by the commanded torques during corresponding control cycles. Still,
the total angular impulse imparted by the thrusters (3.866 N m s) ends up being more than
five times as large as commanded (0.736 N m s). It is not straightforward to pin down the
immediate cause of this overshoot, yet a plausible explanation might come from the fact that,
besides the inability of the thruster configuration as proposed to achieve direct replication of
multidimensional commanded torques, the pulse constraints are applied outside of the opti-
misation problem. The latter in fact leads to suboptimal solutions. Nonetheless, the TMF
is seen to translate the commanded control torques quite effectively, as the components of
the rotational state of the PDM settle below their predefined thresholds (see Table 6-2) for
the first time after about 22 seconds; very close to the predefined settling time of 20 seconds.
As such, it can be concluded that the TMF as proposed is correctly implemented and, in
addition, seems to be operating as desired.

However, further testing reveals a caveat. Figures 6-6 and 6-7 depict the results of three
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Figure 6-2: Time histories of the nominal and actual quaternions.
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Figure 6-3: Time histories of the nominal and actual body rates and eigenangle-to-go.
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Table 6-2: Parameter values used to verify the correct implementation of the TMF as proposed.

Parameter Value Unit

msolid 0 kg
mhyd 1.0 kg
mhyd, ini 2.1 kg
q1, q4 0.7071 -
q2, q3 0 -
ωx, ωy, ωz 0.01 rad s−1

ζ 0.707 -
µ 1 -
q1,c, q2,c, q3,c 0 -
q4,c 1 -
ωx,c, ωy,c, ωz,c 0 rad s−1

‖ω‖thres 0.01 rad s−1

θtogo 90 deg
θthres 1 deg
Ts 20 s
∆tp,min 0.02 s
Tsampling 0.1 s

different reorientation manoeuvres executed by the PDM during Control Phase 4 (at which
moment the SRM is depleted, yet the penetrator is still attached to the PDS), and the PDS
during Control Phase 7 (at which moment the penetrator has been released and just the
PDS remains), respectively. The results of concern are the time histories of the eigenangle-
to-go and the angular velocity norm. Each reorientation manoeuvre starts from a different
initial orientation, defined by a set of Euler angles (see Section 3-2); from left to right in
Figures 6-6 and 6-7: {90◦, 0, 0}, {0, 90◦, 0} and {0, 0, 90◦}. In generating these figures, the
parameter values from Table 6-2 were used, with the exception of the initial quaternions,
which are different for each manoeuvre, and mhydrazine, which was assumed to be 0.5 kg for
Control Phase 7 reorientation manoeuvres. From Figure 6-6, it is clear that the PDM proves
successful in executing a Control Phase 4 reorientation manoeuvre about any of the body axes
given a target settling time of 20 seconds. The PDS, on the other hand, is seen to experience
difficulties performing a Control Phase 7 reorientation manoeuvre about the yB-axis given
that setting. The reason being that the torque capabilities of the PDS about the yB-axis are
significantly weaker than those of the PDM about the yB-axis; compare the second rows of
the nominal torque response matrices for Control Phase 4 and 7, respectively:

(Mnom)4 =

 −0.993 0.993 −0.993 0.993
0.334 0.334 −0.334 −0.334
−0.466 0.466 0.466 −0.466

 N m,

and
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(Mnom)7 =

 −0.619 0.619 −0.619 0.619
0.008 0.008 −0.008 −0.008
−0.432 0.432 0.432 −0.432

 N m.

Responsible for this strong decrease is the large backward shift of the CoM following the
release of the penetrator. This shift (about −20 cm) causes the torques generated by thruster
forces parallel to the xB-axis to decrease, whereas those generated by thruster forces parallel
to the zB-axis – and thus going in the opposite direction – remain unchanged. The net result
is that the torque capabilities about the yB-axis diminish. This is a purely geometric issue,
and hence the inability of the PDS to carry out a 90 degrees slew about the yB-axis in 20-
30 seconds has little to do with the performance of the TMF, which merely translates the
control commands received into thruster commands. Rather, the controller should account
for the different torque capabilities about each axis, and prevent control about ‘weaker’ axes
as much as possible. The quaternion-error feedback controller as currently employed is unable
to do as such. Clearly, in this respect, a different controller is recommended; namely one that
solves an optimisation problem to generate the control commands. The development of such
a controller would make an interesting topic for future work.

To improve the slew performance of the PDS about the yB-axis, the target settling time
is increased from 20 to 35 seconds. This value was determined by trial-and-error, and was
found to yield acceptable responses, regardless the axis of rotation. This can be seen from
Figure 6-8, depicting the results of three different reorientation manoeuvres executed by the
PDS during Control Phase 7, given Ts = 35 s. Observing the responses, it is noted that the
PDS needs about 40 seconds on average to reach an equilibrium. However, it is also seen that
the target state is never reached. This is a direct result of raising the target settling time,
which effectively reduces the controller gains (see Section 4-2-2) to such a degree that the
torques commanded by the controller close to the target state are too small to be executed.
Yet, as the Control Phase 7 reorientation manoeuvre is performed in anticipation of the FAM,
for which it is only required that the front end of the PDS is pointing away from the penetrator
(though preferably in a horizontal direction), a few degrees off the target state is acceptable.

6-1-2 Navigation System

The purpose of the navigation system is to process measurement data generated by the AOCS
sensors in order to obtain a best estimate of the state of the spacecraft. The PDM is equipped
with two sensing instruments: an inertial measurement unit (IMU) and a star tracker (see
also Appendix A-2). Sensor measurements are inherently corrupted by systematic and random
errors, which can be reduced by applying a filtering technique. Such techniques are generally
also in place to fuse measurements from different sensors. A comprehensive design of the
navigation system will not be covered in this thesis. Instead, realistic uncertainty (see Table 6-
3) will be added to the propagated rotational state, such that the effects of noisy measurements
and an imperfect navigation system are mimicked.
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Figure 6-6: Nominal and actual time histories of the eigenangle-to-go and the angular velocity
norm for three different Control Phase 4 reorientation manoeuvres; mhydrazine = 1.0 kg.
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Figure 6-7: Idem to Figure 6-6, albeit for Control Phase 7; mhydrazine = 0.5 kg.
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Figure 6-8: Idem to Figure 6-7, albeit given a target settling time of 35 seconds.

Table 6-3: Eigenangle and angular rate uncertainties caused by noisy sensor measurements.

Parameter 3-sigma Distribution Unit

δθnav 0.5 N (0, 0.0278) deg
‖δωnav‖ 0.01 N (0, 1.11× 10−5) rad s−1

6-2 Simulator Architecture

Figure 6-9 presents the architecture of the simulator, which was designed in Simulink. The
simulator comprises the following interconnected blocks:

1. Mission Manager. Decides based on time-tagged Control Phases and the current
‘measured’ state of the spacecraft which Control Mode should be active. Its correct
functioning was verified by inspection of the Control Phase and Control Mode histories,
which matched expectations (see Figure 6-12).

2. Controller. Based on the Control Mode received from the Mission Manager block,
the Controller block switches between Reorientation, Spin-Up/Down and Denutation
algorithms, and generates a commanded control torque vector, based on the target ro-
tational state received from the Mission Manager block. The algorithms were separately
verified, in Sections 4-2-3, 4-3-1 and 4-3-2-3, respectively.
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3. Thruster Management Function. The commanded control torque vector received
from the Controller block is translated into appropriate firing durations for each thruster
by the Thruster Management Function block. This is done once each control cycle of
length Tsampling, based on the nominal thruster torque response matrix and the force drop
factors received from the Force & Torque Capabilities block, see below. The Thruster
Management Function block was verified in Section 6-1-1.

4. Thrusters. The firing duration vector generated by the Thruster Management Func-
tion block is converted into actual thruster torques by the Thrusters block, based on
the momentary feed pressure calculated by the Force & Torque Capabilities block (see
below), the actual position of the CoM of the spacecraft calculated by the Inertial
Parameters block (see below), and the actual thruster geometry. The associated jet
damping moment is also calculated, based on the actual rotational state received from
the Rotational EoM PDM/PDS block (see below), the momentary moment arms and
the momentary propellant mass flow. The Thrusters block was verified along with the
Thruster Management Function block in Section 6-1-1.

5. Rotational EoM PDM/PDS. The torques produced by the Thrusters block are
processed by the Rotational EoM PDM/PDS block, which propagates the rotational
state of the PDM/PDS based on Equations (3.19) and (3.20). The integrator used is
discussed in Section 6-3-2. The Rotational EoM PDM/PDS block was verified implicitly
in Sections 4-2-3, 4-3-1, 4-3-2-3, 5-2-1-1 and 6-1-1.

6. Navigation System Surrogate. Adds uncertainty to the true rotational state received
from the Rotational EoM PDM/PDS block, so as to simulate the presence of a navigation
system. The correct functioning of this block was verified by inspection of its output.

7. Inertial Parameters. Based on the momentary propellant masses and the Control
Phase, the Inertial Parameters block calculates the momentary total mass, nominal and
actual CoM, and nominal and actual MoI of the spacecraft. This block was verified by
comparing the output to values provided by CATIA.

8. Force & Torque Capabilities. Based on the momentary liquid propellant mass
and the momentary nominal CoM of the spacecraft, the Force & Torque Capabilities
block calculates the momentary thruster capabilities table (see Table 2-7), the nominal
thruster torque response matrix, the feed pressure and the force drop factors. The
correct functioning of this block was verified by inspection of its output.

9. De-Orbit Manoeuvre. Simulates the SRM burn by calculating the effective thrust in
the zB-direction and the resulting disturbance torques. The De-Orbit Manoeuvre block
was verified in Section 5-2-1-1.

10. Penetrator Release. Simulates the release of the penetrator by adding the appropriate
parts of the linear and angular tip-off velocities to the translational and rotational state
vectors of the PDS and the penetrator. The correct functioning of this block was verified
by close inspection of the responses for the linear and angular velocities.
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11. Fly-Away Manoeuvre. Simulates the FAM by activating all four thrusters until the
liquid propellant tank has been depleted.

12. Translational EoM PDM/PDS. The net forces produced by the SRM and the
thrusters are processed by the Translational EoM PDM/PDS block, which propagates
the translational state of the PDM/PDS based on Equation (F.4). The Translational
EoM PDM/PDS block was verified in Section 5-2-1-1.

13. Rotational & Translational EoM Penetrator. Propagates the rotational and trans-
lational state of the released penetrator. The verified code of Blocks 5 and 12 was
combined in this block. Verification was performed by inspection of the output.

It is interesting to note that Blocks 1 to 6 constitute a traditional feedback control loop. The
correct functioning of the simulator architecture as a whole will be verified in Section 6-4-1.

6-3 Simulation Set-Up

For the purpose of reproducibility, this section provides a complete description of the simula-
tion set-up. The input to the simulator is discussed in Section 6-3-1. The integrator chosen to
solve the EoM is covered in Section 6-3-2. In Section 6-3-3, the general principle of a Monte
Carlo simulation is briefly explained and the uncertain parameters are specified. Finally, the
simulation output is discussed in Section 6-3-4.

6-3-1 Simulation Input

The input to the simulator can be divided into two groups: the model parameters, which
represent the fixed nominal properties of the spacecraft, and the decision variables, which can
be varied to attain the desired mission performance. In Table 6-4, an overview is provided
of the nominal model parameters, which are subdivided into inertial parameters, geometric
parameters and AOCS parameters. Notably, all positions are measured with respect to the
G-frame. Table 6-5, in turn, presents an overview of the decision variables.

6-3-2 Integrator

Since the EoM defined in Section 3-4 and Appendix F cannot be solved analytically, a numer-
ical integrator is employed to propagate the state of the spacecraft. The solutions obtained
through numerical integration are approximate and discrete, and hence suffer from two types
of errors: truncation errors, which originate from the inner workings of the integration scheme,
and rounding errors, which arise as a result of the finite precision of the floating-point arith-
metic used by computers to represent real numbers. The first type of error is typically on
the order of O (hn), where h denotes the integration step-size and n is the order of the inte-
gration scheme. The relevance of this error will thus depend on the size of these parameters.
The second type of error is considered irrelevant in the context of integrating the EoM of
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Table 6-4: Overview of nominal model parameters.

Parameter Value Unit Comment

Inertial Parameters
mPen 17.6 kg
(zcm)Pen* 0.119 m
(Ixx)Pen 0.149 kg m2

(Iyy)Pen 0.149 kg m2

(Izz)Pen 0.082 kg m2

mPDS 28.1 kg
(zcm)PDS* −0.441 m
(Ixx)PDS 2.553 kg m2

(Iyy)PDS 2.553 kg m2

(Izz)PDS 0.526 kg m2

msolid 39.0 kg
mhyd, ini 2.1 kg Value at separation from Pathfinder
mhyd 1.0 kg Value at start simulation

Geometric Parameters
rPen 0.096 m Max. radius penetrator
rPDS 0.176 m Max. radius PDS
xthruster* ±0.152 m T1, T2: +; T3, T4: −
ythruster* ±0.152 m T2, T4: +; T1, T3: −
zthruster* −0.660 m
θthruster 45 deg Thruster cant angle from zG-axis
φthruster 45 deg Thruster cant angle from xG-axis
zSRM, front* −0.433 m
zSRM, throat* −0.825 m
ztank, rear* −0.388 m

AOCS Parameters
Vtank 0.006 m3 Tank volume
pmax 24 bar Max. tank pressure
pmin 6 bar Min. feed pressure
∆tp,min 0.02 s Min. pulse width

*Measured relative to the G-frame.
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Table 6-5: Overview of decision variables.

Parameter Value Unit Comment

Nominal Initial State
q1,0, q3,0 0 -
q2,0 −0.707 -
q4,0 0.707 -
ωx,0, ωy,0, ωz,0 0 rad s−1

x0, y0 0 m Values at start DOM
z0 28 km Value at start DOM
vx,0 1704.827 m s−1 Value at start DOM
vy,0, vz,0 0 m s−1 Values at start DOM

Phase Durations
Control Phase 1 10 s
Control Phase 2 20 s ωz,c = 4π rad s−1

Control Phase 3 16 s
Control Phase 4 50 s
Control Phase 5 20 s ωz,c = 4π rad s−1

Control Phase 6 20 s vtip = 1 m s−1, ωtip = 1 rad s−1

Control Phase 7 50 s

AOCS Parameters
Fave 3.15 N
Pressure drop factors
α1 1 - 1 active thruster
α2 0.96 - 2 active thrusters
α3 0.90 - 3 active thrusters
α4 0.83 - 4 active thrusters

Reorientation Controller
ζ 0.707 - Damping ratio
µ 1 - Coupling torque damping factor
Ts, 4 20 s Control Phase 4
Ts, 7 35 s Control Phase 7
Tsampling 0.1 s

Denutation Controller
Ts,denut 10 s For Control Phases 4 and 7
N 1 - ≡ 2 pulses per nutation period
Optimal pulse width mode ON -

Thresholds
θthres 1 deg Eigenangle threshold
‖ω‖thres 0.01 rad s−1 Angular rate norm threshold
θnut, thres 1 deg Nutation angle threshold
ωz, thres 0.01 rad s−1 Spin-down spin rate threshold
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the spacecraft, as Matlab uses 16 digits by default to represent floating-point numbers (also
referred to as the double-precision format). This is deemed sufficiently accurate for the type
of application concerned. It should however be noted that rounding errors do cause the norm
of the unit quaternion to drift away from unity, rendering the quaternion an invalid rotation.
This problem is solved by re-normalising the quaternion after each integration step, through:

q =
q

‖q‖
(6.7)

There are two main types of integrators: fixed-step integrators, which keep h constant during
the simulation, and variable-step integrators, which recompute h at each step based (in-
directly) on the momentary rate of change of the state. Variable-step integrators can be
substantially more efficient, yet fixed-step integrators are the preferred choice when simulat-
ing a model that contains algorithms designed to run on a real-time system. Therefore, the
integrator used in the simulator is based on the fourth-order four-stage Runge-Kutta (RK4)
scheme, which utilises an average slope to propagate state xn over one fixed integration step.
The slope is obtained by taking a weighted average of four values of f (tn,xn), each calculated
at different points on the interval tn ≤ t ≤ tn+1. The RK4 formula is given by (e.g., Boyce &
DiPrima, 2010):

xn+1 = xn + h

(
kn,1 + 2 kn,2 + 2 kn,3 + kn,4

6

)
(6.8)

with:

kn,1 = f (tn, xn)

kn,2 = f (tn + 0.5h, xn + 0.5h kn1)

kn,3 = f (tn + 0.5h, xn + 0.5h kn2)

kn,4 = f (tn + h, xn + h kn3)

(6.9)

where x is the time-dependent state vector, f (tn, xn) is the time-derivative of vector x at
time-step n and h is the fixed step-size, which was chosen to be equal to 0.001 s for the
simulator. As such, truncation errors will be on the order of 10−12, and can hence be safely
neglected.

6-3-3 Monte Carlo Simulations

The nominal model parameters in Table 6-4, as well as several of the decision variables in
Table 6-5, are each subject to some degree of uncertainty. In order to study the effects of
uncertainty on the performance of the modelled system, a so-called Monte Carlo simulation
is carried out. Monte Carlo simulations provide a means to gain insight into the probability
distribution of the outcome of models dealing with uncertain input. To this end, typically
a large number of simulations is run. Each simulation starts with different values for the
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Table 6-6: Overview of model parameter and decision variable uncertainties.

Parameter 3-sigma Distribution Unit

State Uncertainty
δθini 3 N (0, 1) deg
‖δωini‖ 0.03 N (0, 1× 10−4) rad s−1

δθnav 0.5 N (0, 2.78× 10−2) deg
‖δωnav‖ 0.01 N (0, 1.11× 10−5) rad s−1

δhfreefall 300 N (0, 1× 104) m

Inertial Uncertainty
δrcm, pen 0.48 N (0, 2.56× 10−2) cm
αδrcm, pen n/a U(0, 360) deg
βδrcm, pen n/a U(0, 360) deg

δrcm,PDS 0.88 N (0, 8.60× 10−2) cm
αδrcm,PDS

n/a U(0, 360) deg

βδrcm,PDS
n/a U(0, 360) deg

Thrust Uncertainty
δe, eff 0.25 N (0, 6.94× 10−3) deg
φδe, eff

n/a U(0, 360) deg

δFthruster 0.03 N (0, 1× 10−4) %
δθthruster 0.25 N (0, 6.94× 10−3) deg
δφthruster 0.25 N (0, 6.94× 10−3) deg

Tip-Off Uncertainty
δvtip 0.1 N (0, 1.11× 10−3) m s−1

δωtip 0.1 N (0, 1.11× 10−3) deg s−1

φδωtip
n/a U(0, 360) deg

uncertain input parameters, which are (pseudo)randomly drawn from associated probability
distributions. The latter can be achieved through a pseudorandom number generator.

The pseudorandom number generator used for the Monte Carlo simulation in this thesis is the
Mersenne Twister, with seed 0. Table 6-6 provides an overview of the uncertainties considered,
along with their three-sigma values (where applicable) and probability distributions. For
each simulation run, pseudorandom offsets are generated, which are then added to their
associated nominal value. The output of each simulation, as well as the input, is stored for
post-processing.

6-3-4 Simulation Output

Since the Monte Carlo simulation is carried out in the Matlab/Simulink environment, the
output of the individual simulations will be stored in .mat-format. In order to avoid memory
allocation errors, all but the recurring parameters are cleared from the workspace after a run
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Table 6-7: Overview of simulation output parameters.

Output Parameter Parameter Name Simulator Block

Commanded Torques M command Controller
Transverse Angular Rate Threshold omega thres Denutation Algorithm
SRM Net Force Body Z-Axis F z SRM net B De-Orbit Manoeuvre
SRM Mass Flow m dot solid De-Orbit Manoeuvre
SRM Jet Damping Moment M jet SRM De-Orbit Manoeuvre
SRM Disturbance Torque M SRM De-Orbit Manoeuvre
Nutation Angle DOM theta nut DOM De-Orbit Manoeuvre
Force Drop Factors force drop factors Force & Torque Capabilities
Feed Pressure p feed Force & Torque Capabilities
Actual CoM PDM/PDS CoM act Inertial Parameters
Nominal CoM PDM/PDS CoM nom Inertial Parameters
Actual Inertia Tensor PDM/PDS I act Inertial Parameters
Nominal Inertia Tensor PDM/PDS I nom Inertial Parameters
Total Mass PDM/PDS m tot Inertial Parameters
Total Force Body Z-Axis F z tot B Main
Liquid Propellant Mass m liquid history Main
Solid Propellant Mass m solid history Main
Control Mode control mode vs time Mission Manager
Control Phase control phase vs time Mission Manager
Target Rotational State x rot target Mission Manager
Measured Rotational State PDM/PDS x rot measured Navigation System Surrogate
Rotational State Penetrator x rot Pen Rot. & Trans. EoM Penetrator
Translational State Penetrator x trans Pen Rot. & Trans. EoM Penetrator
Total Torque M tot Rotational EoM PDM/PDS
Actual Rotational State PDM/PDS x rot actual Rotational EoM PDM/PDS
Thruster Combinations thruster combi Thruster Management Function
Thruster Force Body Z-axis F z thrusters B Thrusters
Thrusters Mass Flow m dot thrusters Thrusters
Thrusters Jet Damping Moment M jet thrusters Thrusters
Thruster Torque M thrusters Thrusters
Total Force Inertial Frame F tot F Translational EoM PDM/PDS
Actual Translational State PDM/PDS x trans actual Translational EoM PDM/PDS

has been concluded. Table 6-7 presents a complete overview of the simulation output. The
collected raw data contains the information needed to answer the research question, which is
extracted during two post-processing steps, further elaborated in Section 6-4.

6-4 Simulation Results

In this section, the simulation results are presented. Section 6-4-1 covers the results of a
nominal-case system test, verifying the correct functioning of the simulator. Then, in Sec-
tion 6-4-2, the results of the Monte Carlo simulation are discussed. Also, the performance of
the controller under off-nominal conditions is evaluated.
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6-4-1 Nominal Case

In order to verify the correct functioning of the simulator as a whole, a nominal-case system
test is performed, using the parameters from Tables 6-4 and 6-5. In the nominal case, the
simulation input is assumed to be free from uncertainty.

A three-dimensional representation of the descent trajectory, resulting from the nominal-case
simulation, is depicted in Figure 6-10. It should be noted that the trajectory shown starts at
ignition of the SRM. The first three plots in Figure 6-11 represent side views of Figure 6-10.
The fourth plot (bottom right) is a zoom in on the first plot (top left), showing the absolute
distance between the landing sites of the PDS and the penetrator. In the top-right plot of
Figure 6-11, it can be seen that the landing occurs slightly ahead of the along-track position
reached at the end of the DOM, implying that the PDM had a velocity in the negative along-
track direction during its free-fall descent to the surface. This velocity surplus is caused by
parasitic velocity increments in the zB-direction, generated as a by-product of the spin-up and
spin-down manoeuvres. These velocity increments were not accounted for when determining
the amount of solid propellant required to cancel the orbital velocity. This, in itself, is not
considered to be really problematic, as in the off-nominal case, the efficiency of the DOM will
be less than 100%, rendering such velocity increments a form of compensation.

In Figure 6-12, the nominal time histories of the rotational state variables of the PDM/PDS
are shown. For reference, the time histories of active control phases and control modes are also
depicted. Contrary to Figures 6-10 and 6-11, the plots in Figure 6-12 cover the entire second
phase of the descent scenario. It is noted that the penetrator lands after 217.66 seconds from
the start of the simulation; only slightly before the PDS, which lands after 217.72 seconds.
This very subtle difference of less than one-tenth of a second is traced back to the release of
the penetrator, where the penetrator is pushed away from the PDS, gaining some velocity,
and the PDS endures a recoil, losing some. Although this loss is amply made up for during
the spin-down, it is still the penetrator that reaches the surface earlier, in the nominal case.

Observing the first plot in Figure 6-12, it is easy to distinguish between the reorientation
manoeuvres, which are characterised by relatively slowly changing quaternion elements, and
the minor-axis spin manoeuvres, which are associated with rapidly oscillating quaternion
elements. The minor-axis spin manoeuvres can also be recognised from the second plot,
where it is seen that the angular velocity about the zB-axis increases towards the target spin
rate during the spin-up, remains constant during the actively controlled subsequent spin, and
finally decreases to nearly zero during the spin-down. The third and fourth plot in Figure 6-12
confirm the correct functioning of the mission manager logic, seeing the control phases and
control modes switch as intended.

The first plot in Figure 6-13 shows the time history of the thruster-generated torques. Clearly
noticeable are two periods of increased control activity about all three axes. Chronologically,
these periods designate the reorientation manoeuvres performed during Control Phase 4 and
Control Phase 7. The ‘rectangular’ responses seen spread across the plot represent the spin-
up manoeuvres (when positive) and spin-down manoeuvres (when negative). Notably, said
responses coincide with the ‘spikes’ observed from the second plot in Figure 6-13, represent-
ing the time history of the Coriolis moments induced by thruster firings. During the spin-up

W.J. Bouma Master of Science Thesis



6-4 Simulation Results 107

0

0 1.5
1

1

0.5

Along-Track Distance (m)

×104

A
lt

it
u
d
e

(m
)

×104

Cross-Track Distance (m)

×1040

2

-0.5
-1

3

-1.5

PDM/PDS

Penetrator

Penetrator Release

3

2

1

Figure 6-10: Nominal descent trajectory of the PDM/PDS and the penetrator. The point at
which the penetrator separates from the PDS is denoted by an asterisk.

manoeuvres, a Coriolis moment solely about the zB-axis arises, which – although negligibly
small – is seen to increase in the negative direction. This is expected. First of all, Equa-
tion (3.14) dictates that when the mass flow and angular velocity are both nonzero, and the
position vector of the centre of mass flow and the angular velocity vector are not collinear, the
Coriolis moment will be nonzero. The Coriolis moments emerging about the xB- and yB-axes
cancel out in this case, because a spin-up (or spin-down, for that matter) is achieved using
a diagonal pair of thrusters, whose xB and yB position coordinates are mutually mirrored,
nominally. Secondly, Equation (3.14) shows that the Coriolis moment (which is assumed to be
only caused by the jet damping effect, see Section 3-4-1) is proportional to the angular rate,
which increases during a spin-up. As such, the Coriolis moment also increases, albeit, in the
opposite direction – hence its damping effect. Conversely, during a spin-down, the magnitude
of the Coriolis moment is seen to decrease, as a result of a decreasing angular rate.

In the third plot of Figure 6-13, which represents the time history of thruster forces in the
zB-direction, positive responses can be observed during the spin-up and spin-down manoeu-
vres. It is these forces that underlie the aforementioned parasitic velocity increments. It is
also interesting to note that activating all four thrusters during the FAM, which starts at
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Figure 6-11: Side views of Figure 6-10, and a close-up of the landing area of the PDS and the
penetrator (bottom right).

approximately 185 seconds into the simulation, does not produce twice as much thrust as
two thrusters do. This illustrates the effect of the pressure drop that occurs when multiple
thrusters are simultaneously active. Also, the thrust level is seen to gradually decrease during
the FAM, which is a direct consequence of the RCS operating in a blow-down mode. Lastly,
in the fourth and fifth plot of Figure 6-13, the time histories of the hydrazine mass and the
tank pressure are depicted, respectively. As expected, they show a similar downward course,
where the steepness of the different slopes observed depends on the number of thrusters active
at that time.

In Figure 6-14, the time histories of the inertial parameters are plotted, along with the time
history of active control phases, for reference. The first plot of Figure 6-14 concerns the total
mass of the spacecraft, which starts at 85.7 kg. This is 1.1 kg less than the actual starting mass
(see Table A-1) – a reduction equivalent to the amount of liquid propellant consumed during
the first phase of the descent scenario, which is not simulated. During the DOM (Control
Phase 3), 39.0 kg of solid propellant is burned in less than 16 seconds. This event can be
recognised as a steep decrease in the total mass of the spacecraft, which indeed ends up at 46.7
kg after the SRM burns out. Lastly, 116 seconds into the simulation, there is a sudden drop
in the total mass of the spacecraft, which is caused by the release of the penetrator (Control
Phase 6). From the second and third plot in Figure 6-14, representing the time histories
of the CoM and MoI of the spacecraft, respectively, similar phenomena can be observed at
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Table 6-8: Descent parameters for the nominal case.

Descent Parameter Symbol Value Unit

Eigenangle Offset
Control Phase 1 εθ,1 0 deg
Control Phase 4 εθ,4 0.797 deg
Control Phase 7 εθ,7 0.204 deg

Angular Rate Offset
Control Phase 1 εω,1 0 rad s−1

Control Phase 4 εω,4 0.010 rad s−1

Control Phase 7 εω,7 0.011 rad s−1

DOM Efficiency ηDOM 100 %
Propellant Consumption ∆mhyd 0.383 kg

the epochs mentioned. Note that the CoM gradually moves forward during the DOM, which
improves control capabilities about the yB-axis (see Section 6-1-1), and then falls backward
when the penetrator is released, significantly diminishing said control capabilities. On a final
note: the inertial parameters prove to vary only very mildly during rotational manoeuvres.

To assess the performance of the controller in the nominal case, a first post-processing step
is applied to obtain the results for the descent parameters. Table 6-8 presents these descent
parameters, which consist of the eigenangle offsets and angular rate offsets at the end of each
reorientation manoeuvre, as well as the impulse efficiency rate of the DOM and the amount of
liquid propellant consumed during the second phase of the descent scenario. The eigenangle
offsets are obtained through Equation (3.2b), using the scalar part of the error quaternion,
which is calculated by Equation (4.3). The angular rate offsets are calculated by simply taking
the norm of the momentary angular velocity vector (as the target angular rate is zero). The
DOM efficiency is determined by Equation (5.3). Lastly, the difference between the starting
mass and end mass of the liquid propellant yields the propellant mass consumed.

Inspecting the results presented in Table 6-8, the first thing to note is that the offsets at the
end of Control Phase 1 are zero. This is because the nominal initial state already matches
the target state. Secondly, it is seen that the eigenangle offsets at the end of Control Phase 4
and Control Phase 7 are both below 1◦, the threshold value for the eigenangle (see Table 6-
5). In addition, the angular rate offsets are observed to be on or very close to the threshold
value of 0.01 rad s−1. As such, it is concluded that the controller performs the reorientation
manoeuvres as desired. No conclusion can be drawn as to the performance of the controller
in regard to denutation, as it turns out that in the nominal case, no significant nutational
motion arises. Denutation manoeuvres will be further investigated in Section 6-4-2. Lastly, it
can be seen from Table 6-8 that the efficiency of the DOM is 100%, which is expected for the
nominal case, and the propellant mass consumed amounts to 0.383 kg, which is much lower
than the 1.0 kg of liquid propellant allotted to the second phase of the descent scenario. As
a result, the amount of liquid propellant could be slightly reduced.

To assess whether the penetrator has in fact landed successfully, success criteria have elabo-
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Table 6-9: Criteria for a successful penetrator landing.

Landing Parameter Symbol Value Unit

Nadir Angle η < 10 deg
Attack Angle α < 5 deg
Distance from PDS ∆xlanding > 50 m
Impact Velocity vlanding <315 m s−1

rately been defined in Appendix B. For convenience, they are summarised in Table 6-9. The
landing parameters of concern are presented in Table 6-10, and consist of four key angles,
which are defined in Figure B-1, as well as two parameters of translational nature, i.e., the
landing distance achieved between the PDS and the penetrator and the impact velocity.

In order to find the results for the landing parameters, a second post-processing step is applied.
The key angles related to penetration can be deduced from their associated vector pair, see
Figure B-1. For example, the nadir angle is defined as the angle between the zB-axis, whose
unit vector is given by [0, 0, 1]T with respect to the B-frame, and the local vertical ZF , which
is given by [0, 0, −1]T and expressed relative to the F -frame. Transforming the unit vector
in the direction of the zB-axis to the F -frame using Equations (E.1) and (E.2), along with
the quaternion elements just prior to impact, gives ZB. The nadir angle η between the two
vectors ZB and ZF can then best be obtained by (e.g., Acampora et al., 2020, p. 78):

η = atan2 ( ‖ZB ×ZF ‖, ZB ·ZF ) (6.10)

where atan2 is the four-quadrant inverse tangent, a built-in Matlab function used to avoid
the ambiguities encountered with regular atan. In a similar fashion, the remaining key angles
can be calculated. The landing distance between the PDS and the penetrator can be obtained
by taking the norm of the vector difference between the mutual xF - and yF -coordinates of
both position vectors. Lastly, taking the norm of the velocity vector just prior to impact
yields the impact velocity.

The results for the nominal landing parameters are presented in Table 6-10, from which
it can be concluded that the penetrator landed successfully: the resulting nadir angle and
attack angle are both well below their maximum allowed value, the landing distance achieved
between the PDS and the penetrator amply exceeds the minimum value defined, and the
impact velocity is, as planned, 300 m s−1. In Figure 6-15, the time histories of the rotational
state variables of the penetrator, the key angles and the relative distance and velocity between
the PDS and the penetrator are plotted. In the first plot, quaternion elements q1 and q2 are
seen to oscillate about the zero line, which is the result of a positive spin about the zB-axis, see
the second plot. More difficult to notice is that quaternion elements q3 and q4 also oscillate,
due to the angular rates about the xB- and yB-axes being slightly nonzero. Better visible
proof of this can be found in the third plot of Figure 6-15, where it is seen that the nutation
angle is slightly larger than zero. This also explains the oscillating behaviour of the nadir angle
and attack angle, which both vary as a function of ZB on the nutation cone. The decreasing
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Table 6-10: Penetrator landing parameters for the nominal case.

Landing Parameter Symbol Value Unit

Nadir Angle η 0.724 deg
Attack Angle α 0.469 deg
Descent Angle δ 0.712 deg
Nutation Angle θnut 0.137 deg
Distance from PDS ∆xlanding 161 m
Impact Velocity vlanding 300 m s−1

trend observed for the attack angle and the descent angle during the penetrator’s passively
stable free-fall descent to the surface is attributed to an increasing velocity in the negative
zF -direction, which changes the direction of the velocity vector. This was already anticipated
for in formulating the target state for the reorientation manoeuvre of Control Phase 4 (see
Section 5-2-2-2), which predominantly determines the final attitude of the penetrator. Finally,
in the fifth plot of Figure 6-15, which represents the relative velocity between the PDS and
the penetrator, it is seen that immediately after separation, there is a positive relative velocity
along the zB-axis of 1 m s−1, which is equal to the linear tip-off velocity defined in Table 6-5.
After 20 seconds of drift, which indeed creates a relative distance of 20 m between the PDS
and the penetrator (see the fourth plot in Figure 6-15), the relative velocity decreases to zero
as the PDS performs a spin-down in anticipation of the reorientation manoeuvre of Control
Phase 7. As was mentioned multiple times throughout this report, spin-up/down manoeuvres
also impart a velocity change in the positive zB-direction. Lastly, when Control Phase 8 sets
in at around 185 seconds into the simulation, the relative distance and velocity between the
PDS and the penetrator are seen to increase due to the FAM. Hence, considering all of the
above, it can be concluded that the nominal-case system test was successful.

6-4-2 Off-Nominal Cases

In order to investigate the sensitivity of the system to off-nominal conditions, a 1000-sample
Monte Carlo simulation is carried out. This particular number of samples was chosen so
as to maintain a proper balance between representative statistical results and computation
time. Using the parameters from Tables 6-4 and 6-5, along with their associated uncertainties
listed in Table 6-6, the Monte Carlo simulation is executed. The observations made from the
results of the Monte Carlo simulation are discussed in Section 6-4-2-1. Then, in Section 6-4-
2-2, a statistical analysis is conducted, in an attempt to identify those factors that affect the
performance of the system the most.

6-4-2-1 Observations

In Figure 6-16, the penetrator landing sites resulting from the Monte Carlo simulation are
plotted. In the figure, successful landings are represented by blue dots, whereas orange dots
designate failed landings. For reference, the nominal landing site (see also Figure 6-10) is
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Figure 6-15: Nominal time histories of the rotational state variables of the penetrator, the key
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Table 6-11: Penetrator landing success and failure rates related to the local surface slope, based
on numerical data from a 1000-sample Monte Carlo simulation. Note that the success rate does
not increase further below 10 degrees.

Local Slope Max. Nadir Angle Success Rate Failure Rate

20◦ 10◦ 58.5% 41.5%
10◦ 20◦ 74.2% 25.8%
0◦ 30◦ 74.2% 25.8%

marked by an asterisk. The landing parameters for each individual sample were obtained
by applying the relevant post-processing step described in Section 6-4-1. Evaluating the
obtained results against the success criteria listed in Table 6-9, it can be concluded that,
from a descent-and-landing perspective, the success rate of the mission is 58.5%. Considering
that in spaceflight, it is conventional to design to a ‘three-sigma’, i.e., 99.7% success rate
(Lorenz, 2011), this value is rather low. The success rate can be artificially boosted to 74.2%,
when assuming a local slope of 10◦, instead of 20◦. This allows for an increased tolerance on
the nadir angle, which, so it appears, has a significant positive influence on the success rate.
Notwithstanding, from Table 6-11, it can be seen that increasing the tolerance even further
does not deliver additional improvements. Through a statistical analysis, an attempt will be
made at revealing the key factors ultimately driving the success rate of the mission.

That said, first some remarks in regard to Figure 6-16 are made. What immediately stands out
when observing Figure 6-16, is the imaginary parabolic line beyond which the overwhelming
majority of the landings take place. This rather non-conventional footprint can be attributed
to a non-conventional descent trajectory, involving a de-orbit manoeuvre which reduces the
orbital velocity to zero, 28 km above the surface. Given that the SRM performing this
manoeuvre is loaded accordingly, there are only two ways in which the PDM could eventually
gain speed in the negative along-track direction: firstly, through parasitic velocity increments
imparted during the spin-up manoeuvre in anticipation of the DOM, as well as during the
spin-down manoeuvre afterwards (as was seen in Section 6-4-1); secondly, when the DOM is
performed at a higher altitude than expected, implying a lower orbital velocity, which will
lead to an overcompensating SRM burn. Regarding the latter, it is noted that the three-
sigma value for the altitude offset is assumed to be 300 m, see Table 6-6. At a worst-case
28.3 km altitude, the orbital velocity is only 0.2 m s−1 less than at 28 km. Concluding, the
PDM cannot gain substantial velocity in the negative along-track direction, which explains
why there are no landings observed substantially ahead of the nominal landing site.

The parabolic shape of the landing footprint can be explained as follows. When the orientation
of the PDM is slightly off during the DOM, both radial and cross-track velocities can occur.
In such cases, the orbital velocity will not be fully cancelled and a residual velocity in the
positive along-track direction remains. Generally, the larger the radial and/or cross-track
velocities, the larger the residual along-track velocity. Larger velocities will in turn lead to
larger distances, which is what can be observed from Figure 6-16. Inspection of some of the
outliers revealed that those beyond the imaginary parabolic line had an upward radial velocity,
giving them more ‘airtime’ to traverse a larger distance, whereas those ahead of this line were

W.J. Bouma Master of Science Thesis



6-4 Simulation Results 117

-4 -3 -2 -1 0 1 2 3 4

Cross-Track Distance (m) ×104

0

1

2

3

4

5

6

7

8
A

lo
n
g
-T

ra
ck

D
is

ta
n
ce

(m
)

×104

Failures

Nominal Landing Site

Successes

Figure 6-16: Penetrator landing sites resulting from a 1000-sample Monte Carlo simulation.
Based on the success criteria defined in Table 6-9, the success rate is 58.5%. Relevant statistics
are presented in Table 6-12.

affected by the DOM in the downward radial direction, resulting in a premature landing.

Further inspection of the output of the Monte Carlo simulation revealed some noteworthy
off-nominal phenomena. First of all, it was seen with many of the samples that, during the
DOM, the spin rate would either increase or decrease. Figure 6-17, for example, shows a
decreasing spin rate for sample 93 in its first plot. Responsible for this decrease is a negative
torque about the zB-axis, which, as can be seen from the second plot in Figure 6-17, has a
shape consistent with the thrust curve of the SRM (see Figure 2-6). The disturbance torque
about the zB-axis was able to arise due to misalignment of the principal axes, meaning that
the principal axes do not coincide with the axes of the B-frame. Equivalently it can be stated
that the products of inertia were nonzero, leading to an unbalanced condition. Such unbalance
can directly be attributed to an offset CoM position. The stronger the offset, the stronger the
change in spin rate.

On a final note regarding Figure 6-17, in the second plot, some erratic behaviour can be
observed in the period between 50 and 56 seconds. This is caused by irregularity in thruster
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Figure 6-17: Time histories of the angular rate about the zB-axis, total torque about the zB-axis
and thruster torques about the xB-axis, around the period of the DOM. The output is associated
with Monte Carlo sample 93.

performance, which was assumed to be as high as 3% of the nominal performance (see Table 6-
6). During this period, the PDM executes a denutation manoeuvre, which can be recognised
from the spikes in the third plot of Figure 6-17, representing the time history of the thruster
torques about the xB-axis. As thrust levels vary irregularly per thruster, firing them in
pairs with the intention to generate a torque solely about the xB-axis unintentionally induces
torques about the zB-axis (and yB-axis). This is reflected in the second plot of Figure 6-17.
Although more difficult to see, the third plot also shows traces of thruster roughness. That
is, at the start of the curve, when a spin-up manoeuvre is carried out, and at the end, during
a spin-down manoeuvre.

Another noteworthy off-nominal issue often encountered in the sample set, is the unfortunate
ineffectiveness of the denutation algorithm in the presence of (larger) inertia uncertainty. To
illustrate this, the first plot in Figure 6-18 depicts the time histories of the transverse angular
rates around the period of release of the penetrator, associated with sample 93. From this
plot, it can be clearly seen that, while the penetrator is still attached to the PDS, the velocities
transverse to the spin-axis oscillate about separate nonzero means. Following the spin-up at
104 seconds into the simulation, the response for the angular rate about the xB-axis is seen to
initially cross the zero line periodically. As can be observed from the second plot in Figure 6-
18, which represents the time history of the thruster torques about the xB-axis, these zero
crossings (in conjunction with the threshold crossings) trigger the denutation algorithm four
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Figure 6-18: Time histories of the transverse angular rates and corresponding thruster torques
about the xB-axis, around the period of release of the penetrator. The dashed lines in the top
plot represent a deadband. The output is associated with Monte Carlo sample 93.

consecutive times, until the response settles below the zero line. Both transverse angular rates,
however – and in particular ωy – have not settled within the deadband. Since neither response
crosses the zero line, the controller remains idle, which represents a major shortcoming of the
denutation algorithm as currently implemented. To address this issue, it is recommended to
develop a more intelligent controller, incorporating a routine that is able to deduce the actual
CoM and products of inertia in real-time, based on which appropriate control commands can
be generated. An example controller in this sense was proposed by Elias and Vega-Nevarez
(2008), in the context of unbalanced ballistic missiles. This controller leveraged the routine
developed by Wilson et al. (2002) to identify the inertia properties.

To conclude the discussion on the first plot of Figure 6-18, it is lastly noted that, following
the release of the penetrator at 116 seconds into the simulation, the transverse angular rates
of the spinning PDS are seen to immediately start oscillating about their associated close-
to-zero mean values. As the threshold, calculated by Equation (4.25), is also crossed, the
controller is triggered and is subsequently seen to command three short torques about the
xB-axis, reducing the transverse angular rates to within the deadband. This, in fact, confirms
the proper functioning of the denutation algorithm on a system level.
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Table 6-12: Penetrator landing site statistical descriptors, based on numerical data from a 1000-
sample Monte Carlo simulation.

Case µx (km) µy (km) 3σx (km) 3σy (km)

Nominal 13.9 0 n/a n/a
Off-Nominal

All 16.0 0.2 7.5* 31.0
Successes 14.8 0.1 2.6* 15.2

*The distribution for the along-track distance is positively skewed.

6-4-2-2 Statistical Analysis

Table 6-12 presents the statistical descriptors of the penetrator landing site distribution. These
characterise the landing footprint, which, though out of the scope of this thesis, can be used
in selecting an appropriate landing site. Nominally, the penetrator lands at an along-track
distance of 13.9 km, measured from the start of the DOM. The mean along-track distance
for the off-nominal cases is 16.0 km with a three-sigma value of 7.5 km. Considering only
successful landings, these values reduce to 14.8 km and 2.6 km, respectively. Notably, the
along-track distance distribution is positively skewed. Furthermore, it can be seen that the
mean cross-track distance is close to the centre line, both for the entire group of landings as
for the success group. The associated three-sigma values, on the other hand, do vary, and
come down to 31.0 km and 15.2 km, respectively.

Histograms representing the distributions of the landing parameters are depicted in Figure 6-
19. In addition, associated statistical descriptors, i.e., the measures of central tendency ; the
mean, median and mode, are presented. The distributions are, each to a varying extent, ob-
served to be positively skewed, which implies that the mean and median are both greater than
the mode. Evaluating the statistics of the landing parameters by which success is measured
(see Table 6-9), it can be concluded that their measures of central tendency all pass their asso-
ciated success criterion. As such, it can be stated that, on average, the system performs well.
This is also reflected in the success rate, which is higher than 50%. The landing parameters
indicative of the performance of the controller are the attack angle and the nutation angle.
Close evaluation of their distributions reveals that in 98.7% of all cases, the success criterion
for the attack angle is met, while in 99.8% of all cases, the controller manages to reduce the
nutation angle to below the maximum prescribed value of 1◦ (see Appendix B).

The descent parameters of relevance in assessing the performance of the controller are the
eigenangle offsets and angular rate offsets at the end of each reorientation manoeuvre. Fig-
ure 6-20 depicts the histograms of the descent parameters. As can be seen from the upper
two histograms, the distributions of the eigenangle offset and angular rate offset at the end
of Control Phase 4 centre around 1◦ and 0.01 rad s−1, respectively. These values correspond,
not quite accidentally, to the thresholds defined in Table 6-5. Furthermore, the mean values
of the distributions of said offsets at the end of Control Phase 1 are observed to be lower than
the thresholds defined. This is not surprising, since the initial state uncertainty distributions
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Figure 6-19: Histograms of the penetrator landing parameters and associated statistical descrip-
tors, based on numerical data from a 1000-sample Monte Carlo simulation.

have standard deviations equal to these thresholds (see Table 6-6). As such, in roughly 68%3

of the cases, the initial eigenangle and angular velocity will already be within their respective
deadbands. Another factor probably contributing to these lower-than-anticipated mean val-
ues, is the fact that initial state offsets, when larger than their thresholds, will still be small.
In combination with a commanded settling time of 10 seconds (see Table 6-5), which is rela-
tively large in this respect, this leads to low gains for the quaternion-error feedback controller.
As a result, more delicate control commands are generated, which, when executed, may be
more likely to reduce the offsets to below their thresholds. This would also explain why the
mean angular rate offset at the end of Control Phase 7 is lower than 0.01 rad s−1. In regard
to this latter distribution, it is noted that it is positively skewed, with a rather long tail. This
illustrates the erratic performance of the controller during Control Phase 7 (see Section 6-1-1).
Another testimony of this, is the rather flat distribution of the eigenangle offset at the end of
Control Phase 7, the mean of which lies between 1◦ and 2◦. Nevertheless, it can be concluded
that, given the successful results obtained for both the landing parameters and the descent

3Representing a bandwidth of two standard deviations centred on the mean in a normal distribution.
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Figure 6-20: Histograms of the descent parameters, based on numerical data from a 1000-sample
Monte Carlo simulation. The mean DOM efficiency is 0.995 and the mean liquid propellant
consumption is 0.45 kg.

parameters, the controller generally performs very well.

As was shown in Section 6-4-2-1, the success rate of the mission from a descent-and-landing
perspective turned out to be merely 58.5%. To identify the underlying cause(s) behind this
relatively low success rate, the group of failed landings is analysed. In Table 6-13, the landing
parameters are ranked, based on the percentage of failures that did not achieve their success
criterion. It turns out that in 83% of the failed cases, the nadir angle was larger than 10◦,
which explains why increasing the tolerance on the nadir angle had such a beneficial effect
on the success rate, see Table 6-11. The runner-up to the nadir angle is the impact velocity,
whose prescribed maximum value was violated in 47% of the failed cases. To investigate the
correlation between the nadir angle and the impact velocity, their correlation coefficient ρ
was calculated. This was done using the built-in Matlab function corrcoef, which also
returns the p-value for testing the null hypothesis that there is no relationship between the
two parameters. When the p-value is smaller than the 0.05 significance level, the correlation
is qualified to be statistically significant. As can be seen from Table 6-13, the correlation
coefficient between the nadir angle and the impact velocity, ρη,vlanding

, was found to be 0.362,
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Table 6-13: For each key landing parameter, 1) the percentage of failures attributed to not
achieving its success criterion, and 2) its correlation coefficient ρi,j with respect to other key
landing parameters.

# Landing Parameter i Rate ρi,η ρi,vlanding
ρi,∆xlanding

ρi,α

1 Nadir Angle 83% 1 0.362 0.111 0.712
2 Impact Velocity 47% 0.362 1 −0.246 −0.092*
3 Distance from PDS 22% 0.111 −0.246 1 0.064*
4 Attack Angle 3% 0.712 −0.092* 0.064* 1

*p-value is larger than 0.05 significance level, so correlation is statistically insignificant.

implying there is some correlation between them. This is expected, considering the nadir
angle varies as a function of the velocity vector. Next in ranking is the landing distance
between the PDS and the penetrator, which turned out to be insufficient in 22% of the failed
cases. Notably, there is a statistically significant negative correlation of −0.246 between the
landing distance and the impact velocity. This makes sense, as the PDS has less time to
perform the FAM when it has an increased velocity in the downward radial direction (due
to the DOM). The fourth and last landing parameter in ranking is the attack angle, whose
success criterion was not met in 3% of the failed cases. This, in fact, reaffirms the proper
performance of the controller. Finally, the fact that the nadir angle varies as a function of
the attack angle explains the relatively strong positive correlation found between the two
parameters, see Table 6-13.

It is clear from the foregoing that the vast majority of failed landings can be traced back
to insufficient translational control, given that violations of the maximum nadir angle and
the maximum impact velocity were listed as the main causes of failure. It is highly likely
that an unsuccessful DOM leads to such violations. Table 6-14 indeed statistically confirms a
moderately negative and a strong negative correlation between the efficiency of the DOM, and
the nadir angle and the impact velocity – their respective coefficients being −0.39 and −0.91.
Previous analysis in Section 5-2-1-1 already revealed that the efficiency of the DOM is affected
by CoM offsets and the effective SRM thrust misalignment angle. Generally, the larger these
parameters, the less efficient is the DOM. Observing the correlation coefficients between said
parameters and the efficiency of the DOM from Table 6-15, statistically significant negative
correlations can indeed be confirmed: respectively, −0.54, −0.19 and −0.23, for the CoM
offset of the PDS, the CoM offset of the penetrator and the thrust misalignment angle.

However, it should be noted that the mean efficiency of the DOM was found to be 0.995
(see Figure 6-20). Also, the success rate for the DOM was previously shown to be 93% (see
Figure 5-6), under currently assumed uncertainties (see Table 6-6). Hence, the low success
rate of the mission cannot be solely attributed to the DOM efficiency, that is, the way the
parameter is currently defined. Evaluating its definition, which is given by Equation (5.3),
it is noted that the effective impulse efficiency in the numerator is calculated by integrating
the effective thrust force – given by Equation (5.1) – over time. As the effective thrust force
directly depends on the nutation angle, so does implicitly the efficiency of the DOM. The
above mentioned statistics were obtained based on this very definition. However, it should
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Table 6-14: Correlation coefficients ρ between the descent parameters and penetrator landing
parameters of the failure group, along with their associated p-values. Statistically significant
correlations (p < 0.05) are printed in bold.

Nadir Angle Impact Velocity Distance from PDS Attack Angle

ρ p ρ p ρ p ρ p

Eigenangle Offset
Control Phase 1 0.12 0.03 0.06 0.26 0.00 0.99 0.09 0.08
Control Phase 4 0.10 0.06 −0.16 0.00 0.08 0.11 0.43 0.00
Control Phase 7 0.00 0.98 0.35 0.00 −0.24 0.00 −0.04 0.47

Angular Rate Offset
Control Phase 1 0.04 0.43 0.01 0.80 0.09 0.09 −0.01 0.84
Control Phase 4 0.12 0.02 −0.15 0.00 0.10 0.06 0.45 0.00
Control Phase 7 −0.02 0.67 0.28 0.00 −0.16 0.00 0.00 0.97

DOM Efficiency −0.39 0.00 −0.91 0.00 0.16 0.00 0.07 0.18

in fact also be taken into account that the effective thrust force, which is defined in the B-
frame and directed along the zB-axis, is transformed to the F -frame, as propagation of the
translational state is done with respect to the latter. In the presence of nutational motion,
the attitude of the PDM varies continuously, meaning that the direction of the effective thrust
force, expressed in the F -frame, does so as well. This imparts velocity changes not only in the
intended negative along-track direction, but also in the cross-track and radial directions, the
result of which is seen in Figure 6-16. These effects are moreover exacerbated by a growing
nutation angle as a result of increasing disturbance torques during the DOM (see the plot
top-left in Figure 5-3). All of the above affects the efficiency of the DOM as well. Concluding,
the underlying cause behind the low success rate is indeed the DOM efficiency, albeit more
broadly defined than before in this report.
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Chapter 7

Conclusions and Recommendations

This thesis was concerned with the design, verification and testing of a suitable attitude con-
troller for the thruster-controlled descent module of a current-technology penetrator mission
targeted for an airless body – specifically: ELUPE. In designing the controller, two differ-
ent types of rotational manoeuvres needed to be addressed: 1) large-angle slew manoeuvres,
which entail a 90 degree, highly nonlinear reorientation, and 2) minor-axis spin manoeuvres,
which involve a spin-up, an actively controlled subsequent spin and a spin-down about the
minor axis. Furthermore, varying system parameters had to be accounted for, i.e., the iner-
tial parameters and the torque capabilities of the descent module. The latter not only due
to shifts in the centre-of-mass, but also because the descent module incorporates a reaction
control system operating in a blow-down mode.

It was decided to design a controller based on classical control techniques. First of all, because
such techniques are still the norm in the aerospace industry and, hence, the design of a classical
controller would be of good practical value. Secondly, the test results obtained for a classical
controller would establish a benchmark for potential future research.

For the large-angle slew manoeuvres, a legacy quaternion-error feedback controller was im-
plemented, which is theoretically able to generate control commands for a rotation about the
eigenaxis. The original method to determine the gains of the controller was slightly modified
to address the nonlinear effects introduced by one of its underlying assumptions. For the
minor-axis spin manoeuvres, a legacy algorithm for spin-axis denutation was implemented.
The algorithm was extended by the development of an adaptive logic to obtain the optimal
thruster pulse duration, as well as a strategy to enable dual-axis control for enhanced nuta-
tion damping. In order to translate the control commands into appropriate thruster actions, a
thruster management function was developed, which solves the classical jet selection problem
at each control cycle by means of an interior-point method. A two-step procedure was devised
to correct the resulting firing duration vector for the force drop that occurs when multiple
thrusters operating in a blow-down setting fire simultaneously. The correct implementation
of the aforementioned control algorithms was verified by reproducing the results presented in
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their associated papers. The correct functioning of the thruster management function was
demonstrated by simulating a large-angle slew manoeuvre, for which the control commands
were generated by the quaternion-error feedback controller.

In order to test the performance of the verified controller in the context of the ELUPE
mission, a simulator was developed. To this end, models were created for the descent module
and its environment. The reaction control system elements and the de-orbit motor were
modelled using actual specifications and performance diagrams. The pressure drop factors
associated with multiple thrusters firing simultaneously were obtained from the literature. The
inertial parameters of the dry descent module were provided by CATIA. To attain the inertial
parameters of the wet descent module, assumptions were made in regard to the geometries of
the propellant slugs, which were in part composed of a (hemi)spherical cap and a hemispherical
frustum. Analytic equations for the mass moments of inertia of both geometrical objects and
for the centroid of a hemispherical frustum, in terms of their mass, height and spherical radius,
were derived and verified. These equations were not found in the open literature. In modelling
the dynamics, the disturbance torques caused by the gravity gradient, solar radiation and
viscous friction between the liquid propellant slug and the propellant tank were considered.
None were found to be significant enough to be included in the dynamics model. However,
investigating the effects of viscous friction involved making some questionable assumptions.
As such, some restraint is appropriate. Finally, as part of the simulator, a mission manager
logic was developed, centrally coordinating which target state is transmitted to the controller
and which control mode is active.

The controller was tested in a simulation of the second phase of ELUPE’s descent scenario,
which involves both types of rotational manoeuvres mentioned. A nominal system test showed
the simulator functioning as intended. To assess the performance of the controller under off-
nominal conditions, a 1000-sample Monte Carlo simulation was run, involving variations on
the initial state vectors (both translational and rotational), the centre-of-mass (and implicitly
the inertia tensor) of the dry descent module, the effective SRM thrust misalignment angle,
the penetrator tip-off velocities, the thruster cant angles, the thruster performance, and the
actual state (to simulate the output of a navigation system). Based on the results of this
Monte Carlo simulation, it was found that the success rate of the ELUPE mission, from a
descent-and-landing perspective, is 58.5% for a local surface slope of 20◦, and 74.2% for a slope
of 10◦ or lower. Analysis of the attack angle and the nutation angle – two key penetrator
landing parameters – revealed their success criteria were met in 98.7% and 99.8% of all cases,
respectively. These successful results can be fully attributed to the controller. In addition,
further inspection of the failure group revealed that only 3% of the failures was caused by
violation of the maximum attack angle. As such, an answer can be formulated to the first
part of the research question:

Is it possible to satisfactorily solve the attitude control problem of a current-
technology penetrator mission targeted for an airless body through the use of clas-
sical control techniques, ...

In short: yes, it is possible, yet not completely satisfactory. Although the thruster manage-
ment function showed to operate as desired, early simulation results revealed that for a large
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backward shift of the centre-of-mass, the gain determination method for the quaternion-error
feedback controller proved to be no longer applicable. The reason being that, due to the
strong centre-of-mass shift, the torque capabilities about one of the body axes of the descent
module were greatly diminished. This turned out to be a thruster geometry issue, which the
quaternion-error feedback controller was not able to address in a proper way. The problem
was unsatisfactorily solved by reducing the controller gains, for which a great deal of perfor-
mance was traded. It is clear that, in this respect, a different controller is desired, preventing
control about ‘weaker’ axes as much as possible. Seeing the nature of this objective, it is likely
that such a controller solves an optimisation problem to generate the control commands. The
development of a controller of this kind is a recommended topic for future work.

In addition to the restricted quaternion-error feedback controller, the denutation algorithm
also demonstrated a significant flaw, as it proved to be ineffective in the presence of (larger)
inertia uncertainty. For the denutation algorithm to be activated, the responses for the trans-
verse angular rates need to consecutively cross the zero line and a threshold. Misalignment of
the principal axes causes the responses to oscillate about nonzero means, which can lead to
a situation where the responses do not even cross the zero line. In such cases, the controller
remains idle, which represents a major shortcoming. To address this issue, it is recommended
to implement a different controller, incorporating a routine that is able to deduce the ac-
tual inertial parameters from sensor measurements. Based on this, it would be possible to
reevaluate the torque capabilities and generate correct control commands. Perhaps, such an
identification routine could be combined with the controller outlined above.

With regard to the efforts made in this thesis to improve the general performance of the
legacy control algorithms considered, it can be stated that, given the revealed limitations,
and the recommendation to implement a different controller, these contributions are solely of
theoretical value.

On to answering the second part of the research question:

...and if so, what are, from a descent-and-landing perspective, the key factors
affecting the success rate of such a mission?

A success rate of 58.5% is not particularly high, especially when compared against the ‘three-
sigma’, i.e., 99.7% success rates to which spacecraft are typically designed. Analysis of the
failure group revealed that in 83% of the failed cases, the maximum nadir angle was violated.
The runner-up cause was a violation of the maximum impact angle, in 47% of the failed
cases. Notably, the nadir angle and impact velocity distributions were found to be partially
correlated, with a correlation coefficient of 0.36. As the nadir angle varies as a function of
the impact velocity, this correlation entails that part of the cases that violated the maximum
impact angle, also violated the maximum nadir angle. Failing to meet the success criteria of
said parameters can be traced back to insufficient translational control. It was shown that
the nadir angle and the impact velocity had a moderately negative and a strong negative
correlation with the DOM efficiency; −0.39 and −0.91, respectively. Early simulation results
already revealed that the efficiency of the DOM was strongly affected by the centre-of-mass
offset and the effective SRM misalignment angle. Indeed, statistical analysis confirmed a
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negative, and statistically significant correlation between these parameters and the efficiency
of the DOM. As such, the centre-of-mass offset and the effective SRM misalignment angle
can be identified as the key factors affecting the success rate. As further constraining these
parameters is not preferred, it is hence recommended to modify the thrust curve of the SRM
or incorporate a different SRM.

To conclude this thesis, some noteworthy limitations, as well as some recommendations for
future work, are summarised below.

Limitations

• The simulator lacked a comprehensive model of the navigation system. Sensor per-
formance and placement were not considered, and the observability of the system
was not assessed.

• Assumptions were made in regard to:

– the shape and sloshing characteristics of the liquid propellant slug inside the
PEPT-230 tank, as test data could not be obtained.

– the shape of the solid propellant slug and the centre-of-mass shift during the
SRM burn, as test data was not available.

– the feed pressure drop when multiple thrusters are operated simultaneously,
as these have to be obtained through dedicated experimentation.

Besides that it is recommended to address the above mentioned limitations in future work,
the following additional recommendations are made.

Recommendations

• Design a different controller, which solves an optimisation problem at each control
cycle to generate the control commands, and incorporates a routine to identify the
actual inertial parameters.

• Find the ideal thrust curve for the SRM, so that disturbances emerging during
the DOM are minimised, and the success rate of the mission is improved.

• Simulate the first phase of the descent scenario, for which it is necessary to develop
a guidance routine for the periapsis lowering manoeuvre.
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Appendix A

Penetrator Descent Module

This appendix is intended for the interested reader and serves to provide complementary infor-
mation about the design of the instrumented penetrator and the PDS, which together form the
PDM. These systems are discussed in Appendices A-1 and A-2, respectively. Appendix A-3
presents a mass budget of the PDM and briefly addresses potential mass savings.

A-1 Penetrator

Based on European heritage (Smith et al., 2010; Vijendran et al., 2014), the instrumented pen-
etrator is baselined to be comprised of a 5 mm steel outer shell with a reinforced spherically
blunted ogive nose, and a 4 mm aluminium internal compartment containing the penetra-
tor science payload and subsystems. See Figures A-1 and A-2 for a CATIA render and a
schematic representation of the penetrator body, respectively. Out of thermal considerations,
the internal compartment is decoupled from the outer shell by leaf springs fabricated of a
low-conductive material (such as Torlon). The resulting void between the outer wall of the
internal compartment and the inner wall of the outer shell is evacuated of any medium (anal-
ogous to the concept of a vacuum flask), thereby minimising heat exchange through thermal
conduction and convection.

The suite of science instruments incorporated in the penetrator has been adopted from the
L-DART penetrator mission proposal (Barber et al., 2017) and includes a mass spectrometer,
a set of accelerometers and a thermal sensor package. It should be noted that there is no drill
mechanism included in the science payload to acquire regolith samples, as mechanisms are
inherently susceptible to high-g deceleration. Rather than by mechanical means, sampling
is proposed to be performed passively by allowing ingress of gaseous volatiles, released as
a direct and indirect result of the penetration event, through one or more apertures in the
penetrator shell. The working of a similar ‘sniffing’ method was successfully demonstrated on-
board of the Philae lander during surface operations on Comet 67P (Wright et al., 2015). The
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132 Penetrator Descent Module

Figure A-1: Render of the instrumented
penetrator body with a spherically blunted
ogive nose.

reinforced
ogive nose

(steel)

inner
compartment

(4 mm

aluminium)

backplate

(4 mm aluminium)

outer shell
(5 mm steel)

vacuum
gap

(3 mm)

Figure A-2: Schematic representation
of the penetrator body. The dimensions
shown are in millimetres.

implementation of apertures in the shell does however have implications on the penetrator’s
structural and thermal integrity. The extent of these implications should be topic of further
investigation.

Inspired by the JEO Penetrator concept proposed at the end of its Phase 2 study (Waugh
& Perkinson, 2013), the penetrator science payload is supported by an Integrated Avionics
System (incorporating the penetrator on-board computer (OBC), UHF transceiver and Power
Conditioning and Distribution Unit (PCDU)), a battery of lithium carbon monofluoride pouch
cells and a patch antenna mounted on the rear plate of the penetrator. To protect the antenna
from a backfill of regolith after penetration, it is enclosed by a dedicated radome. Data
transmission will occur through the lunar regolith – the extent to which the signal is attenuated
during its propagation through the overlying layer of material is currently under research at
The Open University1. Given the vacuum gap between the penetrator rear plate and the
internal compartment, a wireless connection between antenna and transceiver is established
by means of capacitive coupling. The antenna beamwidth is reasonably assumed to be ±30
degrees centred on a vertical boresight. This assumption has a direct impact on the design of
the descent trajectory, as the penetrator must be ‘visible’ to the Pathfinder at impact.

The penetrator system design strategy aimed at implementation of ruggedised solutions, im-
plying that resilience to high-g deceleration is either proven or almost certainly expected. As
such, the instruments and subsystems included in the design comply with this criterion. It
is though emphasised that still a substantial lot of development would be required before the
system could be flight-ready. In this respect, the instruments and subsystems would gener-
ally ‘only’ need to be tailored to the mission needs, as they were either already successfully
impact tested during previous penetrator studies, or are otherwise inherently shock tolerant.
The penetrator structure would however require more work, as its shape and size must be

1Barber, S.J., personal communication, 2017
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optimised to maximise structural integrity, maximise stability and minimise mass, while also
fitting the (spatial) needs of the payload and subsystems.

A-2 Penetrator Delivery System

As is schematically depicted in Figure 2-1, the PDS consists of an avionics compartment and
a structure providing support to the SRM and the hydrazine RCS with four thrusters. The
avionics compartment houses the electronic equipment (OBC, battery, PCDU and ancillaries)
and the AOCS sensors (IMU and star tracker), and is made of a 4 mm thick aluminium alloy
to sufficiently shield its contents from incoming radiation. Attached to the small circular end
of the avionics compartment is a yet to be designed release mechanism that separates the
passive penetrator from the PDS before impact. Notably, the design of this mechanism is not
within the scope of this thesis. Therefore, assumptions are made regarding tip-off velocities
during simulations of the descent trajectory.

The PDS supporting structure is fabricated of 4 mm carbon fiber reinforced polymer (CFRP)
and has the shape of a truncated hollow cone. Within, a compartment is created for the
hydrazine tank, separated from the SRM by a bulkhead. The rear end of the cone transitions
into a tubular section to which a 4 mm thick CFRP ring is attached, providing structural
support to the thrusters. The outside of the PDS offers a platform for a descent camera to be
mounted on, as well as an array of omni-directional patch antennas that are coupled to the
penetrator transceiver, removing the need for an extra transceiver in the PDS. It is proposed
for the descent camera to employ a push broom imaging technique sampling a >90 degrees
wide swath parallel to the PDM spin-axis, covering the region between nadir and the local
horizon. As the rotation of the PDM will provide the scanning of the sampling swath across
the surface, the camera is effectively passive. In front of the camera, multiple fixed filters are
mounted covering different spectral ranges, so that multispectral imaging can be achieved.

It is noted that no mechanism has yet been specified or designed to separate the PDM from the
Pathfinder, however it is contemplated that it could be similar to a bomb ejector mechanism
seen with military aircraft. As such, the mechanism would stay attached to the Pathfinder
rather than to the PDM after separation, which would hence preserve the latter’s symmetry.
The PDM could in this respect be clamped at its tubular sections.

A-3 Mass Budget

The instrumented penetrator is currently estimated to weigh 17.6 kg, including maturity
margins and a 20% system margin. The PDS has an estimated mass of 28.1 kg, also including
these margins. The total PDM wet mass amounts to 86.8 kg (39.0 kg of which is attributed
to solid propellant and 2.1 kg to liquid propellant). In Table A-1, a detailed breakdown of
the total mass – the mass budget – is provided. It is noted that potential mass savings are
identified in e.g., the adoption of a penetrator outer shell made of titanium (instead of steel),
and an efficient cutaway format for the PDS structure.
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Table A-1: Mass budget of the PDM.

System
Basic mass

(kg)
Margin

(%)
System mass

(kg)

Payload
Mass spectrometera 0.750 20% 0.900
Accelerometer (+ datalogger)a 0.218 20% 0.262
Thermal sensor packagea 0.010 50% 0.015
Descent imagerb 0.160 20% 0.192

Penetrator
Avionics 0.970 20% 1.164
Communications 0.340 20% 0.408
Battery 0.066 20% 0.079
Interfacing 0.200 20% 0.240
Packing materials 1.569 20% 1.883
Structure 8.120 20% 9.744

PDS
Propulsion

Solid rocket motor 5.800 5% 6.090
Mono-propellant blowdown system

Thrusters 2.362 5% 2.480
Tank 1.300 5% 1.365
Ancillaries 1.390 5-20% 1.500

Avionics 0.850 20% 1.020
Sensors 0.590 20% 0.708
Communications 0.400 20% 0.480
Interfacing 0.800 20% 0.960
Mechanisms 0.540 20% 0.648
Structure 6.658 20% 7.989

PDM dry mass (incl. maturity margins) 38.1
System margin 20%

PDM dry mass (incl. system margin) 45.7
Propellant

Solid propellant 39.0
Liquid propellant 2.1

PDM wet mass 86.8

aIncorporated in the penetrator.
bMounted on the PDS.
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Appendix B

Mission Requirements

Key to a successful mission from a descent-and-landing perspective is successful penetration,
that is, the instrumented penetrator penetrates the surface under desired impact conditions.
In addition, the PDS, after releasing the penetrator, must land at a sufficient distance away
from the impact site of the penetrator. To help constrain the design of the controller and
eventually assess its performance, a set of top-level mission requirements is formulated, related
to penetration (Appendix B-1) and the fly-away manoeuvre (Appendix B-2).

B-1 Penetration

The moment just prior to impact, it is of vital importance that the penetrator has achieved
the right orientation (and velocity) with respect to the surface, so that penetration may
occur successfully. Figure B-1 provides a schematic to define the key angles related to the
penetration event. They are described as follows:

ZF = normal to local horizontal (-)
nactual = normal to actual horizontal (-)
VB = velocity vector (m s−1)
ZB = symmetry axis of the body (-)
h = angular momentum vector (kg m2 s−1)
θnut = nutation angle (deg)
α = angle-of-attack (deg)
ψ = heading angle (deg)
i = impact angle (deg)
σlocal = local slope (deg)
δ = descent angle (deg)
η = nadir angle (deg)
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ZB

VB

ZF

nactual

h
α

θnut

δ

i

η

actual horizontal

local horizontal

ψ

σlocal

σlocal

Figure B-1: Definition of key angles related to the penetration event.

Ideally, vectors ZF , nactual, VB, ZB and h are aligned at impact, zeroing out the angles
concerned and minimising the ricochet potential and any transverse loads emerging during
the penetration event. Achieving impact under such conditions should be the ultimate goal,
however expecting such performance would be unrealistic. Therefore, the requirements listed
below not only specify a target value for the parameter concerned, but also state an associated
error margin.

Penetration - Top-Level Requirements:

RQ-AOCS-PEN-01. The impact angle i shall be 0 ± 30◦.

Comment: The impact angle is defined as the angle between ZB and nactual. It comprises
the contributions of the nadir angle and the local slope. In a worst case scenario the
angles are co-planar, so that i = η + σlocal. Based on a study carried out for NASA’s
Deep Space 2 (Braun et al., 1999), the tolerance for the impact angle is set at 30◦. Due
to lacking detailed knowledge of the terrain, it is difficult to properly anticipate on the
local slope. From a control perspective, the goal is therefore to align the symmetry axis of
the body with the nadir (normal to local horizontal), hence minimising the nadir angle,
which is controllable. For repartition of the error margin, it is assumed that σlocal = 20◦,
implying that the nadir angle η may be no larger than 10◦.

W.J. Bouma Master of Science Thesis



B-1 Penetration 137

RQ-AOCS-PEN-02. The nadir angle η shall be 0 ± 10◦.

Comment: The nadir angle is defined as the angle between ZB and ZF . The tolerance
is directly derived from RQ-AOCS-PEN-01. The nadir angle may not exceed 10◦.

RQ-AOCS-PEN-03. The angle-of-attack α shall be 0 ± 5◦.

Comment: The angle-of-attack is defined as the angle between ZB and VB and varies
as a function of the position of ZB on the nutation cone; see Figure B-1. When the
nutation angle is zero, the angle-of-attack is also defined as the angle between h and
VB. Previous studies for LUNAR-A (Shiraishi et al., 2008) and MoonLITE (Smith et
al., 2009) defined a maximum tolerable angle-of-attack of 8◦. For ELUPE, this error
margin is brought down to 5◦, so that the margin for the descent angle can be raised from
a narrow 2◦ to a better achievable 5◦, while still complying with RQ-AOCS-PEN-02.

RQ-AOCS-PEN-04. The descent angle δ shall be 0 ± 5◦.

Comment: The descent angle is defined as the angle between ZF and VB. It varies as
a function of the residual horizontal velocity, thus is solely influenced by translational
factors. The error margin is derived from equal repartition of the 10◦ nadir angle margin
into an the attack angle margin and a descent angle margin.

RQ-AOCS-PEN-05. The nutation angle θnut shall be 0 ± 1◦.

Comment: The nutation angle is defined as the angle between ZB and h. Nutation arises
as a result of a perturbing angular rate transverse to the spin-axis, and is for example
caused by the angular tip-off velocity imparted to the penetrator during its separation
from the PDS. The 1◦ tolerance covers the nutation originating from the release event
as well as any pre-existing nutation.

RQ-AOCS-PEN-06. The impact velocity magnitude |V| shall be 300 ± 15 m s−1.

Comment: The error margin is based on the results of impact tests conducted in the
context of previous penetrator studies, which demonstrated the survivability of the tech-
nologies tested at impact velocities of 315 m s−1 (Smith et al., 2010; Vijendran et al.,
2014).
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B-2 Fly-Away Manoeuvre

Following release of the spin-stabilised penetrator, the PDS autonomously completes a se-
quence of operations to prevent itself from landing on top of or in close vicinity to the pene-
trator. This sequence of operations is referred to as the fly-away manoeuvre (see Section 1-2-3).
As part of a successful mission, the PDS must achieve landing at a certain safe distance away
from the penetrator impact site, formalised in the requirement below.

Fly-Away Manoeuvre - Top-Level Requirement:

RQ-AOCS-PDS-01. The horizontal distance between the impact sites of the pene-
trator and the PDS shall be at least 50 m.

Comment: The distance specified is adopted from Vijendran et al. (2010), however
should actually result from analysis of the ballistics of the debris plume that is expected
to emerge from the impact of the PDS, which is out of the scope of this thesis.
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Appendix C

Propellant Slugs

During translational and rotational manoeuvres, the inertia tensor of the wet PDM/PDS can
be calculated by adding the momentary inertia tensors of the solid and liquid propellant slugs
to the inertia tensor of the dry PDM/PDS, provided that each inertia tensor is expressed
with respect to a coordinate system located at the momentary CoM of the wet PDM/PDS.
While the inertia tensor of the dry PDM/PDS is known and assumed to be constant, the
inertia tensors of the solid and liquid propellant slugs change as the slugs are consumed. In
Appendix C-1, relations between the mass of the solid propellant slug and its CoM and MoI
are derived. In Appendix C-2, the same is done for the liquid propellant slug.

C-1 Solid Propellant Slug

For the derivation of the relations between the mass of the solid propellant slug and its
CoM and MoI, it is to a good approximation assumed that the slug follows the shape of the
SRM case and burns uniformly across the surface. As such, the slug can be represented by a
composition of simple geometries, whose individual inertia tensors are easily calculated. From
Figure C-1, which shows a schematic of a partial slug inside the SRM case, it can be seen
that when the SRM is fully loaded, the slug is comprised of two hemispheres and a cylindrical
section. As the slug is consumed, its composition changes, and throughout the SRM burn,
four consecutive compositions (abbreviated Comp.) can be distinguished:

• Solid Comp. 0: Hemisphere + cylinder + hemisphere (fully loaded SRM)

• Solid Comp. 1: Hemisphere + cylinder + hemispherical frustum

• Solid Comp. 2: Hemisphere + cylinder

• Solid Comp. 3: Hemispherical cap
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hemispherical
frustum

hemispherical
cap

cylinder

case-side
hemisphere

nozzle-side
hemisphere

0 1 2 3

Figure C-1: Schematic representation of a partial solid propellant slug (light grey area) inside
Northrop Grumman’s STAR 13B motor. The definitions of the geometries are given. The num-
bered circles indicate the consecutive geometric compositions of the slug. The dimensions shown
are in millimetres.

Figure C-1 shows the geometries associated with the aforementioned compositions. Given
that the slug has a symmetry axis and is furthermore assumed to have uniform density ρ, the
CoM travels along the symmetry axis and the nondiagonal elements of the inertia tensor are
zero. As such, the inertia tensor of the solid propellant slug can be written as:

Isolid =

 Ixx 0 0
0 Iyy 0
0 0 Izz


solid

(C.1)

where Ixx, Iyy and Izz are the MoI of the slug about the centroidal x-, y- and z-axis, respec-
tively. These parameters can be found by summing the corresponding elements of the inertia
tensors of the individual geometries that constitute the slug, after each of these elements has
been recalculated about an axis that 1) passes through the centroid (CoM) of the slug and 2)
is parallel to the reference axis that passes through the centroid of the geometry concerned.
This can be achieved with the parallel axis theorem (Jakob Steiner, 1796-1863), which in
scalar form is written as:

I = I0 +md2 (C.2)

or in tensor form as (Balafoutis & Patel, 1991, p. 100):

I = I0 +m
[(
R ·R

)
E3 −RRT

]
(C.3)
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where I is the mass moment of inertia to be calculated, I0 is the reference mass moment of
inertia, m is the mass of the rigid body, d is the perpendicular distance between the parallel
axes, I is the inertia tensor to be calculated, I0 is the reference inertia tensor, R is the
displacement vector from the reference point to the new point and E3 is the 3 × 3 identity
matrix. The CoM of a system of masses is calculated by:

rcm =
1

mtot

n∑
i=1

miri (C.4)

where rcm are the coordinates of the CoM with respect to the origin of the coordinate system
concerned, mtot is the sum of masses, mi is the mass of mass i and ri are the coordinates of
mass i. In the following, expressions to calculate the volume, centroid and MoI of each of the
geometries depicted in Figure C-1 are presented.

Cylinder. The volume of a uniform cylinder is calculated by:

Vcyl = πrcyl
2hcyl (C.5)

where rcyl is the radius and hcyl is the length of the cylinder. The centroid of a uniform
cylinder is calculated by:

z̄cyl =
hcyl

2
(C.6)

where z̄cyl is measured with respect to the base of the cylinder. The MoI of a uniform
cylinder about the centroidal axes are calculated by (Kane & Levinson, 1985, p. 368):

Ixx, cyl = Iyy, cyl =
1

12
mcyl

(
3rcyl

2 + hcyl
2
)

(C.7a)

Izz, cyl =
1

2
mcylrcyl

2 (C.7b)

where mcyl is the mass of the cylinder.

Hemisphere. The volume of a uniform hemisphere is calculated by:

Vhemi =
2

3
πrhemi

3 (C.8)

where rhemi is the radius of the hemisphere. The centroid of a uniform hemisphere is
calculated by (Kane & Levinson, 1985, p. 369):

z̄hemi =
3

8
rhemi (C.9)

where z̄hemi is measured with respect to the base of the hemisphere. The MoI of a
uniform hemisphere about the centroidal axes are calculated by (Kane & Levinson,

Master of Science Thesis W.J. Bouma



142 Propellant Slugs

1985, p. 369):

Ixx, hemi = Iyy,hemi =
83

320
mhemirhemi

2 (C.10a)

Izz, hemi =
2

5
mhemirhemi

2 (C.10b)

where mhemi is the mass of the hemisphere.

Hemispherical Cap. The volume of a uniform hemispherical cap is calculated by
(Harris & Stocker, 1998, p. 107):

Vcap =
1

3
πhcap

2
(
3rhemi − hcap

)
(C.11)

where hcap is the height of the cap. The centroid of a uniform hemispherical cap is
calculated by (Harris & Stocker, 1998, p. 107):

z̄cap =
3
(
2rhemi − hcap

)2
4
(
3rhemi − hcap

) (C.12)

where z̄cap is measured with respect to the centre of the associated sphere. Equations
for the MoI of a uniform hemispherical cap about the centroidal x-, y- and z-axes were
not found in the literature and will therefore be derived. Starting with the general
Cartesian definitions of the MoI of a solid object occupying region E about the three
coordinate axes (Stewart, 2008, p. 996):

Ixx =

∫∫∫
E

(
y2 + z2

)
ρ (x, y, z) dV (C.13a)

Iyy =

∫∫∫
E

(
x2 + z2

)
ρ (x, y, z) dV (C.13b)

Izz =

∫∫∫
E

(
x2 + y2

)
ρ (x, y, z) dV (C.13c)

where dV is a volume element. For the case of a uniform axisymmetric hemispherical
cap, it holds that ρ (x, y, z) = constant and Ixx = Iyy. Figure C-2 depicts the geometry of
a hemispherical cap with respect to its associated sphere. Given the rotational symmetry
about the z-axis, the triple integrals in Equations (C.13a) to (C.13c) can be simplified
using cylindrical coordinates.
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Figure C-2: Geometry of a hemispherical cap with respect to its associated sphere.

To express Cartesian coordinates in cylindrical coordinates, the following relations are
used (Stewart, 2008, p. 1001):

x = r cos θ y = r sin θ z = z (C.14)

where r and θ are the polar coordinates of point Q, which is the projection of point
P onto the xy-plane, and z is the distance between Q and P . Other useful relations
to convert Equations (C.13a) to (C.13c) from Cartesian to cylindrical coordinates are
(Stewart, 2008, pp. 1001-1002):

x2 + y2 = r2 (C.15)

dV = r dr dz dθ (C.16)

Considering the geometry of a hemispherical cap as depicted in Figure C-2, it is conve-
nient to define the limits of integration for r, z and θ with respect to the centre of the
associated spherea, so that:

E =
{

(r, θ, z) | 0 ≤ θ ≤ 2π, rhemi − hcap ≤ z ≤ rhemi, 0 ≤ r ≤
√
rhemi

2 − z2
}
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Filling out Equations (C.14) and (C.16) in Equation (C.13a) and applying the limits
defined for region E gives:(

Ixx, cap

)
sphere

=
(
Iyy, cap

)
sphere

=
mcap

Vcap

∫ 2π

0

∫ rhemi

rhemi−hcap

∫ √rhemi
2−z2

0

(
r2sin2θ + z2

)
r dr dz dθ (C.17a)

where mcap is the mass of the cap. Equation (C.17a) calculates the MoI of the hemi-
spherical cap about the x- and y-axes passing through the centre of the associated
sphere. Given that the centroid of a hemispherical cap z̄cap is measured with respect
to the centre of the associated sphere, the MoI about the centroidal x- and y-axes can
be derived using the parallel axis theoremb. Using Equation (C.11), Equation (C.17a)
solves as:(

Ixx, cap

)
sphere

=
(
Iyy, cap

)
sphere

=
mcap

20(3rhemi − hcap)

(
−9hcap

3 + 45hcap
2rhemi

− 80hcaprhemi
2 + 60rhemi

3
)

(C.17b)

The MoI about the centroidal x- and y-axes can now be derived using Equation (C.2),
for which I =

(
Ixx, cap

)
sphere

, d = z̄cap and I0 =
(
Ixx
)

cap
. Solving for

(
Ixx
)

cap
then

yields:

Ixx, cap = Iyy, cap =
mcaphcap

80(hcap − 3rhemi)3
(−9hcap

3 + 72hcap
2rhemi

− 220hcaprhemi
2 + 240rhemi

3) (C.18)

As the z-axis passing through the centre of the associated sphere coincides with the cen-
troidal z-axis of the hemispherical cap, the mass moment of inertia about the centroidal
z-axis is obtained by filling out Equations (C.15) and (C.16) in Equation (C.13c) and
applying the limits defined for region E, which gives:

Izz, cap =
mcap

Vcap

∫ 2π

0

∫ rhemi

rhemi−hcap

∫ √rhemi
2−z2

0
r3 dr dz dθ (C.19a)

Using Equation (C.11), Equation (C.19a) then solves as:

Izz, cap =
mcaphcap

10(3rhemi − hcap)

(
3hcap

2 − 15hcaprhemi + 20rhemi
2
)

(C.19b)

Equations (C.18) and (C.19b) have been implemented as Matlab functions and were
verified by comparing their output to the values CATIA provides for a hemispherical
cap, see also Table C-2.

aSee also: https://physics.stackexchange.com/q/123556 (Visited: February 7, 2019)
bSee also: https://physics.stackexchange.com/q/459054 (Visited: February 7, 2019)

W.J. Bouma Master of Science Thesis

https://physics.stackexchange.com/q/123556
https://physics.stackexchange.com/q/459054


C-1 Solid Propellant Slug 145

Hemispherical Frustum. A hemispherical frustum can be described as a hemisphere
with the top truncated by a plane parallel to its base. The volume of a uniform hemi-
spherical frustum is calculated by (Harris & Stocker, 1998, p. 107):

Vfrus =
1

6
πhfrus

(
3rhemi

2 + 3rfrus
2 + hfrus

2
)

(C.20)

where hfrus is the height and rfrus is the radius of the upper base of the hemispherical
frustum, calculated by:

rfrus =
√(

rhemi
2 + hfrus

2
)

(C.21)

which when substituted in Equation (C.20) gives:

Vfrus =
1

3
πhfrus

(
3rhemi

2 − hfrus
2
)

(C.22)

The centroid of a uniform hemispherical frustum was not found in het literature, yet
can be derived using Equation (C.4), along with m = ρV , Vhemi = Vfrus + Vcap and
rhemi = hfrus + hcap, as well as Equations (C.8), (C.9), (C.11) and (C.12). After some
algebraic manipulation, the centroid is found to be:

z̄frus =
3hfrus

(
2rhemi

2 − hfrus
2
)

4
(
3rhemi

2 − hfrus
2
) (C.23)

where z̄frus is measured with respect to the centre of the associated sphere, or equiva-
lently, the centre of the base of the hemispherical frustum. In an analogous fashion, the
MoI of a uniform hemispherical frustum, which were also not found in the literature,
can be derived using Equation (C.2). Realising that Ihemi =

(
Ifrus

)
hemi

+
(
Icap

)
hemi

and

mcap = VcapmfrusVfrus
−1, the following equation can be set up for the MoI about the

centroidal x- and y-axes:

Ixx, frus = Iyy, frus = Ixx,hemi − Ixx, cap

−
(
VcapmfrusVfrus

−1
)(
z̄cap − z̄hemi

)2 −mfrus

(
z̄frus − z̄hemi

)2
(C.24a)

With the knowledge that hcap = rhemi − hfrus, Equation (C.24a) solves as:

Ixx, frus = Iyy, frus =
mfrus

80
(
3rhemi

2 − hfrus
2
)2 (180rhemi

6 − 120rhemi
4hfrus

2

+ 32rhemi
2hfrus

4 − 9hfrus
6
)

(C.24b)

For the mass moment of inertia about the centroidal z-axis, the following equation can
be set up:

Izz, frus = Izz,hemi − Izz, cap (C.25a)

which solves as:

Izz, frus =
mfrus

30rhemi
2 − 10hfrus

2

(
15rhemi

4 − 10rhemi
2hfrus

2 + 3hfrus
4
)

(C.25b)
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Equations (C.24b) and (C.25b) have been implemented as Matlab functions and were
verified by comparing their output to the values CATIA provides for a hemispherical
frustum, see also Table C-2.

In order to calculate the inertia tensor of the solid propellant slug, its composition must first
be determined. This can be done by calculating the propellant mass fraction:

nsolid =
msolid

msolid,max
(C.26)

where msolid is the current mass of the slug and msolid,max is the maximum mass of the slug.
The latter and other characteristics of the slug are listed in Table C-1.

Table C-1: Characteristics of the solid propellant slug.

Characteristic Value Comment

hcyl, solid 0.0574 m Derived from CATIA
rhemi, solid 0.170 m Derived from CATIA
msolid,max 41.2 kg Source: STAR 13B specificationsa

Vsolid,max 0.0256 m3 Calculated
ρsolid 1.61× 103 kg m−3 Calculated
aNorthrop Grumman Innovation Systems - Propulsion Products Catalog (2018)

The composition of the slug can be derived from nsolid, as follows:

Vsolid =


Vsolid,max, nsolid = 1 (C.27a)

Vhemi, solid + Vcyl, solid + Vfrus (rhemi, solid, hfrus) , c2 < nsolid < 1 (C.27b)

Vhemi, solid + Vcyl (rhemi, solid, hcyl) , c3 < nsolid ≤ c2 (C.27c)

Vcap (rhemi, solid, hcap) , 0 ≤ nsolid ≤ c3 (C.27d)

where

c2 =
Vhemi, solid + Vcyl, solid

Vsolid,max
(C.28)

c3 =
Vhemi, solid

Vsolid,max
(C.29)

with Vhemi, solid = Vhemi (rhemi, solid) and Vcyl, solid = Vcyl (rhemi, solid, hcyl, solid). The current
volume of the slug is calculated by:

Vsolid =
msolid

ρsolid
(C.30)
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For Solid Comp. 1, the height of the hemispherical frustum can be calculated by:

hfrus = Re

[−(1 + i
√

3)
3

√√
9Vfrus

2 − 4π2rhemi
6 − 3Vfrus

2 3
√

2π

− (1− i
√

3) 3
√
πrhemi

2

2
2
3

3

√√
9Vfrus

2 − 4π2rhemi
6 − 3Vfrus

]
(C.31)

where i is the unit imaginary number, rhemi = rhemi, solid and Re [. . . ] is the real part of a
complex number. From Equation (C.27b) it can be derived that Vfrus = Vsolid − Vhemi, solid −
Vcyl, solid. The inertia tensor of Solid Comp. 1 can be obtained by carrying out the following
three steps:

1. Calculate the individual MoI of the hemisphere, cylinder and hemispherical frustum us-
ing Equations (C.10a) and (C.10b), Equations (C.7a) and (C.7b), and Equations (C.24b)
and (C.25b), respectively, as well as their masses, and centroids, using Equation (C.9),
Equation (C.6) and Equation (C.23), respectively.

2. Express the found centroids in vector form with respect to the centre of the outer edge
of the case-side hemisphere (see Figure C-1), and use Equation (C.4) to find the CoM
of the composition.

3. Use Equation (C.3) to express the inertia tensors of the individual geometries with
respect to the parallel coordinate system located at the CoM of the composition, and
add them together to find the inertia tensor of the composition.

For Solid Comp. 2, the height of the cylinder can be calculated by:

hcyl =
Vcyl

πrhemi
2

(C.32)

where from Equation (C.27c) it can be derived that Vcyl = Vsolid − Vhemi, solid. The inertia
tensor of Solid Comp. 2 can be obtained by first calculating the individual MoI of the hemi-
sphere and cylinder using Equations (C.10a) and (C.10b), and Equations (C.7a) and (C.7b),
respectively, as well as their masses and centroids, using Equation (C.9) and Equation (C.6),
respectively. Then steps 2 and 3 as described above must be completed.

For Solid Comp. 3, the height of the hemispherical cap can be calculated by:

hcap = Re

[− (1 + i
√

3
)

3

√
√

3
√

3Vcap
2 − 4πrhemi

3Vcap + 2πrhemi
3 − 3Vcap

2 3
√

2π

−
(
1− i

√
3
)

2
√
πrhemi

2

2
2
3

3

√
√

3
√

3Vcap
2 − 4πrhemi

3Vcap + 2πrhemi
3 − 3Vcap

+ rhemi

]
(C.33)
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Table C-2: Overview of the equations in this section that are implemented as Matlab functions
and their means of verification.

Equation(s) Function Verification

(C.4) centre of mass.m b

(C.5), (C.6) cylinder.m a

(C.32) cylinder height.m a

(C.7a), (C.7b) cylinder inertia.m b

(C.8), (C.9) hemisphere.m b

(C.10a), (C.10b) hemisphere inertia.m b

(C.11), (C.12) hemispherical cap.m b

(C.33) hemispherical cap height.m c

(C.18), (C.19b) hemispherical cap inertia.m b

(C.22), (C.23) hemispherical frustum.m b

(C.31) hemispherical frustum height.m c

(C.24b), (C.25b) hemispherical frustum inertia.m b

(C.3) parallel axis.m d

(C.27) solid propellant slug.m b

a Analytically.
b Comparing output to values CATIA provides.
c Plugging in volume of hemisphere and comparing output to radius of hemisphere.
d Combining inertias hemispherical frustum and cap to find inertia hemisphere.

where from Equation (C.27d) it can be derived that Vcap = Vsolid. The inertia tensor of
the hemispherical cap that is Solid Comp. 3 can be calculated using Equations (C.18)
and (C.19b). Its centroid can be calculated using Equation (C.12), which is then expressed
with respect to the centre of the outer edge of the case-side hemisphere.

Table C-2 shows which of the expressions discussed in this section are implemented as Matlab
functions and how they were verified. Using solid propellant slug.m and the constants
listed in Table C-1, the relations between the mass of the solid propellant slug and its CoM
and MoI are visualised, see Figures C-3 and C-4. To reduce computational loads during the
simulation study, each relation is stored as a Matlab callable piecewise linear interpolant,
which can be evaluated at each msolid.
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Figure C-3: CoM of the solid propellant slug (with respect to the centre of the outer edge of the
case-side hemisphere) as a function of the mass of the slug.
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Figure C-4: MoI of the solid propellant slug about its centroidal axes as a function of the mass
of the slug.
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hemispherical
frustumhemisphere

tank

diaphragm

Figure C-5: Schematic representation of an arbitrary partial liquid propellant slug (light grey
area) inside RAFAEL’s PEPT-230 propellant tank. The definitions of the geometries are given.
The radius shown is in millimetres.

C-2 Liquid Propellant Slug

For the derivation of the relations between the mass of the liquid propellant slug and its CoM
and MoI, it is assumed that the slug is bounded by a spherical propellant tank on the one
side, and a flat surface representing a diaphragm (see Section 2-2-1) on the other side. The
shape of the slug is thus composed of simple geometries, see Figure C-5. While the slug is
consumed, two consecutive slug compositions are distinguished:

• Liquid Comp. 1: Hemisphere + hemispherical frustum

• Liquid Comp. 2: Hemispherical cap

The liquid propellant slug has a symmetry axis and is assumed to be uniformly hydrazine,
hence the CoM of the slug lies on the symmetry axis and the inertia tensor is diagonal:

Iliquid =

 Ixx 0 0
0 Iyy 0
0 0 Izz


liquid

(C.34)

The inertia tensor of the liquid propellant slug can be calculated once its composition is
established. The first step in deriving the composition is to calculate the following mass
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fraction:

nliquid =
mliquid

mliquid,max
(C.35)

where mliquid is the current mass and mliquid,max is the maximum mass of the liquid propellant
slug. Table C-3 provides values for the latter as well as for other relevant characteristics.

Table C-3: Characteristics of the liquid propellant slug.

Characteristic Value Comment

rhemi, liquid 0.113 m Derived from CATIA
mliquid,max 4.3 kg Calculated in Section 2-2-1
ρhyd 1.008× 103 kg m−3 Source: Ley et al. (2009)
Vliquid,max 4.266× 10−3 m3 Calculated

The mass fraction nliquid is then used to determine how the momentary volume of the liquid
propellant slug is obtained:

Vliquid =

{
Vhemi, liquid + Vfrus (rhemi, liquid, hfrus) , d1 < nliquid ≤ 1 (C.36a)

Vcap (rhemi, liquid, hcap) , 0 ≤ nliquid ≤ d1 (C.36b)

where

d1 =
Vhemi, liquid

Vliquid,max
(C.37)

with Vhemi, liquid = Vhemi (rhemi, liquid). The momentary volume of the liquid propellant slug is
calculated by dividing its momentary mass by its density:

Vliquid =
mliquid

ρhyd
(C.38)

For Liquid Comp. 1, the height of the hemispherical frustum can be calculated using Equa-
tion (C.31). From Equation (C.36a) it can be derived that Vfrus = Vliquid − Vhemi, liquid. The
inertia tensor can be obtained by carrying out the following three steps:

1. Calculate the individual MoI of the hemisphere and the hemispherical frustum using
Equations (C.10a) and (C.10b), and Equations (C.24b) and (C.25b), respectively, as well
as their masses, and centroids, using Equation (C.9) and Equation (C.23), respectively.

2. Express the found centroids in vector form with respect to the centre of the edge of the
tank-side hemisphere (see Figure C-5), and use Equation (C.4) to find the CoM of the
composition.
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3. Use Equation (C.3) to express the inertia tensors of the individual geometries with
respect to the parallel coordinate system located at the CoM of the composition, and
add them together to find the inertia tensor of the composition.

For Liquid Comp. 2, the height of the hemispherical cap can be calculated with Equa-
tion (C.33), where from Equation (C.36b) it can be derived that Vcap = Vliquid. The inertia
tensor of the hemispherical cap that solely constitutes the composition can be calculated using
Equations (C.18) and (C.19b). Its centroid can be calculated using Equation (C.12), which
is then expressed with respect to the centre of the edge of the tank-side hemisphere.

Equation (C.36) is implemented as the Matlab function liquid propellant slug.m with
calls to the relevant functions listed in Table C-2, and is verified by comparing its output to
the values CATIA provides for a render of the liquid propellant slug.

Using liquid propellant slug.m in conjunction with the constants provided in Table C-
3, the relations between the mass of the liquid propellant slug and its CoM and MoI are
obtained, see Figures C-6 and C-7. Similar to what was done for the solid propellant slug
(see Appendix C-1, each relation is stored as a Matlab callable piecewise linear interpolant
to be evaluated at each mliquid, so as to save computational power during the simulations.
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Figure C-6: CoM of the liquid propellant slug (with respect to the centre of the edge of the
tank-side hemisphere) as a function of the mass of the slug.
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Figure C-7: MoI of the liquid propellant slug about its centroidal axes as a function of the mass
of the slug.
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Appendix D

State Variable Transformations

This appendix is dedicated to providing the necessary mathematics for converting one state
variable set into another.

D-1 Euler Angles to Unit Quaternions

Given an orientation expressed in Euler angles {φ, θ, ψ} and a (φ← θ ← ψ) rotation sequence
(most commonly used in aerospace applications, see Section 3-2), the corresponding unit
quaternion {q1, q2, q3, q4}, where q4 is the scalar part, can be calculated by (Diebel, 2006):

q123 (φ, θ, ψ) =


q1

q2

q3

q4

 =


sin φ

2 cos θ2 cos ψ2 − cos φ2 sin θ
2 sin ψ

2

cos φ2 sin θ
2 cos ψ2 + sin φ

2 cos θ2 sin ψ
2

cos φ2 cos θ2 sin ψ
2 − sin φ

2 sin θ
2 cos ψ2

cos φ2 cos θ2 cos ψ2 + sin φ
2 sin θ

2 sin ψ
2

 (D.1)

Equation (D.1) has been implemented as the Matlab function euler2quat.m, which was
verified by performing back-and-forth conversions with quat2euler.m (see Appendix D-2).

D-2 Unit Quaternions to Euler Angles

Given an orientation expressed in quaternions {q1, q2, q3, q4}, where q4 is the scalar part, and
the rotation sequence is (φ ← θ ← ψ), then the quaternion set can be converted to Euler
angles {φ, θ, ψ} by (Diebel, 2006):

u123 (q1, q2, q3, q4) =

 φ
θ
ψ

 =

 atan2
(
2 q2 q3 + 2 q1 q4, q3

2 + q4
2 − q1

2 − q2
2
)

− arcsin (2 q1 q3 − 2 q2 q4)
atan2

(
2 q1 q2 + 2 q3 q4, q1

2 + q4
2 − q2

2 − q3
2
)
 (D.2)
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where atan2 is a built-in Matlab function. However, when θ ≈ ±90◦, or equivalently,
(1− |2 q1 q3 − 2 q2 q4|) ≈ 0, a singularity occurs. To programmatically account for this singu-
larity, the quaternion set is converted by Equation (D.3)1 in case the aforementioned term
goes below 1× 10−5.

u123 (q1, q2, q3, q4) =

 φ
θ
ψ

 =

 0
− arcsin (2 q1 q3 − 2 q2 q4)
atan2

(
−2 q1 q2 − 2 q3 q4, q2

2 + q4
2 − q1

2 − q3
2
)
 (D.3)

It should be noted that in order for a quaternion to be a valid rotation, its Euclidean norm
must be equal to one. Equations (D.2) and (D.3) have been implemented as the Matlab
function quat2euler.m, which was verified by performing back-and-forth conversions with
euler2quat.m (see Appendix D-1).

1Extracted from the source code of Three.js, see https://github.com/mrdoob/three.js/blob/dev/src/

math/Euler.js (Visited: March 10, 2019)
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Appendix E

Frame Transformations

Vectors given with respect to one right-handed Cartesian frame of reference can be expressed
with respect to another by applying the following transformation (Diebel, 2006):

xQ = CQ/PxP (E.1)

where xQ is the vector expressed in an arbitrary Q-frame, xP is the vector expressed in an
arbitrary P -frame and CQ/P is the so-called Direction Cosine Matrix (DCM). The DCM
rotates the vector concerned without changing its magnitude, and is defined depending on the
attitude parameterisation. The DCM in terms of quaternions is given by (e.g., Diebel, 2006):

CQ/P = C
(
qQ/P

)
=

 1− 2
(
q2

2 + q3
2
)

2 (q1q2 + q3q4) 2 (q1q3 − q2q4)
2 (q2q1 − q3q4) 1− 2

(
q1

2 + q3
2
)

2 (q2q3 + q1q4)
2 (q3q1 + q2q4) 2 (q3q2 − q1q4) 1− 2

(
q1

2 + q2
2
)

Q/P

(E.2)

where qQ/P is the quaternion associated with the transformation from the P -frame to the
Q-frame. In case this transformation involves two successive rotations, such that:

qP
′
/P : P

′ ← P (E.3a)

qQ/P
′

: Q← P
′

(E.3b)

then:
C
(
qQ/P

)
= C

(
qQ/P

′)
C
(
qP
′
/P
)

= C
(
qQ/P

′
⊗ qP

′
/P
)

(E.4)

where the notation ⊗ for quaternion multiplication, which is noncommutative, is adopted from
Shuster (1993) and

qQ/P = qQ/P
′
⊗ qP

′
/P =

 q4
Q/P

′
qP
′
/P + q4

P
′
/PqQ/P

′
+ qP

′
/P × qQ/P

′

q4
P
′
/P q4

Q/P
′
−
(
qP
′
/P
)T
qQ/P

′

 (E.5)
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which can also be written as (Shuster, 1993):

qQ/P =


q1

q2

q3

q4


Q/P

=


q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q3

−q1 −q2 −q3 q4


Q/P ′


q1

q2

q3

q4


P ′/P

(E.6)

Equation (E.6) is known as the composition rule and its 4× 4 orthonormal matrix is referred
to as the quaternion matrix (Wie, 2008).
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Appendix F

Translational Equations of Motion

Analogous to Equation (3.8), the translational EoM of a non-elastic mass-varying body, rela-
tive to an inertial reference frame, can be written as (Cornelisse et al., 1979):

Fext + FC + Frel = m
d2rI

dt2
= m r̈I (F.1)

with:

FC = −2 ṁω × re (F.2)

Frel = −ṁve (F.3)

where FC and Frel are the Coriolis force and relative force arising as a result of a variable
mass distribution, respectively. Furthermore, Fext is the sum of external forces acting on
the body, expressed in the inertial frame and rI is the position of the CoM of the body
with respect to the inertial frame. Notably, FC and Frel are apparent forces that, when
examining Equations (F.2) and (F.3), emerge only when propellant is being consumed. When
this happens, it is noted that the following holds for the DOM as well as during thruster
firings:

|ω × re| � |ve|

meaning that, in effect, FC can be neglected. Redefining Frel as FT – the thrust force –
neglecting any environmental disturbance forces, and rewriting Equation (F.1) then yields:

m r̈I = FT (F.4)
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Appendix G

Hardware Specifications

Table G-1: Specifications of Aerojet’s MR-111C hydrazine thruster.

Characteristic Valuea

Manufacturer Aerojet
Model MR-111C
Propellant Hydrazine (N2H4)
Minimum Pulse Width 0.020 s
Inlet Pressure Range 27.6 - 5.5 bar
Thrust Range 5.3 - 1.3 N
Specific Impulse Range 229 - 215 s
aAerojet - Monopropellant Rockets Catalog

Table G-2: Specifications of RAFAEL’s PEPT-230 mono-propellant tank.

Characteristic Valuea

Manufacturer RAFAEL
Model PEPT-230
Material Titanium
Propellant Hydrazine (N2H4)
Propellant Storage Rubber Diaphragm
Nominal Volume 6 l
Operating Pressure Range 24 - 5.5 bar
aRAFAEL - Space Propulsion Catalog (2014)
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Table G-3: Specifications of Northrop Grumman’s STAR 13B rocket motor.

Characteristic Valuea

Manufacturer Northrop Grumman Innovation Systems
Model STAR 13B
Maximum Propellant Loading 41.2 kg
Minimum Propellant Loading 33.0 kgb

Average Thrust 7598 N
Maximum Thrust 9608 N
Burn Time 14.8 s
Action Time 16.1 s
Spin Experience 120 rpm
aNorthrop Grumman Innovation Systems - Propulsion Products Catalog (2018)
bCorresponds to a 20% off-loading – maximum off-loading before any motor modifica-
tions are necessary. Source: Lara, M. (Northrop Grumman), personal communication,
2018.
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