
 
 

Delft University of Technology

Thermal-Aware Channel Capacity

Chee, Yeow Meng ; Etzion, Tuvi ; Schouhamer Immink, Kees A.; Nguyen, Tuan Thanh ; Vu, Van Khu ;
Weber, Jos H.; Yaakobi, Eitan
DOI
10.1109/ISIT54713.2023.10206738
Publication date
2023
Document Version
Final published version
Published in
2023 IEEE International Symposium on Information Theory, ISIT 2023

Citation (APA)
Chee, Y. M., Etzion, T., Schouhamer Immink, K. A., Nguyen, T. T., Vu, V. K., Weber, J. H., & Yaakobi, E.
(2023). Thermal-Aware Channel Capacity. In 2023 IEEE International Symposium on Information Theory,
ISIT 2023 (pp. 2661-2666). (IEEE International Symposium on Information Theory - Proceedings; Vol. 2023-
June). IEEE. https://doi.org/10.1109/ISIT54713.2023.10206738
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ISIT54713.2023.10206738
https://doi.org/10.1109/ISIT54713.2023.10206738


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Thermal-Aware Channel Capacity

Yeow Meng Chee∗, Tuvi Etzion†, Kees A. Schouhamer Immink‡, Tuan Thanh Nguyen§,

Van Khu Vu∗, Jos H. Weber¶, and Eitan Yaakobi†

∗ Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore
† Department of Computer Science, Technion — Israel Institute of Technology, Haifa, 3200003 Israel

‡ Turing Machines Inc., 3016 DK Rotterdam, The Netherlands
§ Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore
¶ Department of Applied Mathematics, Delft University of Technology, 2628 CD Delft, The Netherlands

Abstract—High temperatures in electronic devices have a
negative effect on their performance. Various techniques have
been proposed and studied to address and combat this thermal
challenge. To guarantee that the peak temperature of the devices
will be bounded by some maximum temperature, the transmitted
signal has to satisfy some constraints.

With this motivation, we study the constrained channel that
only accepts sequences that satisfy prescribed thermal con-
straints. The main goal in this paper is to compute the capacity
of this channel. We provide the exact capacity of the channel
with some certain parameters and we also present some bounds
on the capacity in various cases.

Finally, we consider the model that multiple wires are available
to use and find out the smallest number of wires required to
satisfy the thermal constraints.

I. INTRODUCTION

High temperatures in electronic components should be

avoided as they degrade their performance and lifetime. Var-

ious thermal-aware design techniques have been proposed

to lower the average dissipation of electronic products by

lowering the number of pulses in signal state transitions [1]

used, for example, in a parallel on-chip bus [2, 3] or in laser-

based recording [4]. Several coding techniques are proposed

to combat the challenges of high temperature [5]–[9]. Cod-

ing techniques are designed to minimize the average power

consumption by using (sets of) constant-weight codes of low

weight [10, 11]. Coding schemes that make it possible to

directly control the peak temperature of the hottest wires of

a parallel bus have been presented recently [3, 11]. In these

schemes, it is required to use n > k wires to encode a given

k-bit bus. However, no coding technique was provided to

detect and control the hottest wires on the chip. To control the

temperature of each wire with coding techniques one should

start to apply coding technique on a single wire. Coding for

serial single-wire buses or electronic components such as laser

diodes requires a different coding approach.

Laser diodes have been widely used in optical communica-

tions and data storage, both optical and heat assisted magnetic

recording [12]. For example, in binary recording channels, a

high-power laser diode is used to record (burn) data into an

optical disc [13]. In numerous channels, data are recorded or

transmitted by switching a laser on and off. As temperature

increases, threshold current increases while lasing efficiency

decreases, and as a result more drive current is required to

turn on the laser diode [14]. In order to reduce the dissipation

and extend the life of the electronic component, prior art code

design has been guided by minimizing the average number of

laser pulses [4].

We study systems where the maximum temperature of the

electronic components must be bounded by a given number. It

is assumed that the chip temperature rises by t1 (degrees) after

a current ‘on’ period and that its temperature lowers by t0,

after an ‘off’ period. The maximum allowed chip temperature

is tmax and the base (ambient) temperature is tmin where

tmax > tmin. Clearly, at most ⌊(tmax − tmin)/t1⌋ consecutive

pulses can be applied before the chip reaches its maximum

allowed temperature, where the integer function ⌊x⌋ maps x
to the largest integer less than or equal to x. When the chip is

at its base temperature, tmin, the temperature cannot decrease

further. To guarantee that the temperature stays within desired

bounds, we present and analyze coding techniques that encode

data into sequences that satisfy some certain constraints. We

then focus on the channel that only accepts these sequences.

The rest of the paper is organized as follows. Firstly,

we provide some necessary notations and definitions of the

thermal-aware channel and codes in Section II. Next, we

present numerous results on the capacity of the channel in

various cases in Section III. Finally, in Section IV, we study

a model where multiple wires are available to the users.

II. NOTATIONS AND DEFINITIONS

We start with a description of the thermal-aware channel

model. The general modelling of the component temperature

due to electrical activity might be complex and thus we have

opted for a simpler model which is amenable for code design

and analysis.

It is assumed that the temperature increases by t1 after

a current ‘on’ period and the temperature decreases by t0,

after an ‘off’ period. The maximum allowed temperature is

tmax while the base temperature is tmin. Without loss of

generality, we assume that the base temperature is tmin = 0.
All temperature variables are non-negative real numbers.

Let Σ = {0, 1}, [[n]] = {1, 2, . . . , n}, and let the signal be

defined by the binary sequence x = (x1, . . . , xn) ∈ Σn, where

a ‘1’ denotes a current ‘on’ period and a ‘0’ denotes the ‘off’
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period. Given a sequence x = (x1, . . . , xn) ∈ Σn, we denote

x[i, j] = (xi, . . . , xj) as a substring of x from index i to index

j. Given two real positive numbers t0, t1 ∈ R, we define the

following temperature map, Ψt0,t1 : Σn → R
n, such that, for

each sequence x = (x1, . . . , xn) ∈ Σn, we obtain

Ψt0,t1(x) , s = (s1, . . . , sn) ∈ R
n,

where s0 = 0 and for all i = 0, 1, . . . , n − 1, si+1 = si +
t1 if xi+1 = 1 and si+1 = max{si − t0, 0} if xi+1 = 0.

The sequence s = Ψt0,t1(x) is called the (t0, t1)-temperature

sequence of x. It is assumed that the temperature of the device

at the initial point is the base temperature s0 = tmin = 0, and

that the temperature of the device at time i is si when x is

the transmitted signal.

To guarantee that the device will not be over-heated, the

peak temperature of the device must be bounded by tmax, that

is, max16i6n si 6 tmax. In this work, we are interested in

sequences that satisfy the above constraint and we consider

the channel that only accepts these sequences.

Definition 1 Let tmax, t0, t1 be some positive real numbers.

• A sequence x = (x1, . . . , xn) ∈ Σn is called a

(tmax, t0, t1)-thermal-aware sequence if the (t0, t1)-
temperature sequence of x, s = Ψt0,t1(x) =
(s1, . . . , sn), satisfies 0 6 si 6 tmax, ∀1 6 i 6 n.

• The set of all (tmax, t0, t1)-thermal-aware sequences of

length n is called the maximal (tmax, t0, t1)-thermal-

aware code, and is denoted by A(tmax, t0, t1, n).
• The channel that only accepts (tmax, t0, t1)-thermal-

aware sequences is called the (tmax, t0, t1)-thermal-

aware channel.

Given three parameters tmax, t0, t1, let k = t1
t0

and

M = tmax

t0
. We observe that a (tmax, t0, t1)-thermal-aware

sequence is also an (M, 1, k)-thermal-aware sequence. For

simplicity, if t0 = 1, a (tmax, t0, t1)-thermal-aware sequence

is called an (M,k)-thermal-aware sequence and similarly

the (tmax, t0, t1)-thermal-aware channel is referred to as the

(M,k)-thermal-aware channel. The maximal (M,k)-thermal

aware code of length n is denoted by A(M,k, n).

Example 1 Let k = 1 and M = 3. We consider the

sequence x = (1, 1, 0, 1, 0, 0, 0, 1, 1, 1) and the (1, 1)-
temperature sequence of x is s = (1, 2, 1, 2, 1, 0, 0, 1, 2, 3).
Since si 6 3 for all i, the sequence x is called a (3, 1)-
thermal-aware sequence. Now, we consider the sequence y =
(1, 0, 0, 0, 1, 1, 1, 1, 0, 0) and its (1, 1)-temperature sequence

v = (1, 0, 0, 0, 1, 2, 3, 4, 3, 2). Since v8 = 4 > 3 = M , we see

that the sequence y is not a (3, 1)-thermal-aware sequence.

Given M and k, the maximal asymptotic rate of the maximal

(M,k)-thermal-aware codes is

capTA(M,k) = lim sup
n→∞

log |A(M,k, n)|

n
.

The maximal asymptotic rate capTA(M,k) is also referred

as the capacity of the (M,k)-thermal-aware channel. In

this work, we are interested in finding the maximal code

A(M,k, n), its size, and the capacity of the (M,k)-thermal-

aware channel.

III. THE CAPACITY OF THE THERMAL-AWARE CHANNEL

In this section, we aim to compute the capacity of the

thermal-aware channel which is also the maximal asymptotic

rate of the thermal-aware codes. For k > M , it is not possible

to store even a single one and hence only the all-zero sequence

is an (M,k)-thermal-aware sequence which directly implies

that the capacity is zero in this case. Thus, we only focus on

the case k 6 M . We also note that k > 1 is more suitable

for practical purpose, however for a comprehensive theoretical

study, we investigate in this work both cases of k > 1 and

k < 1.

We first provide some good bounds on the capacity of this

channel in Subsection III-A. These bounds usually hold for

some family of infinitely many parameters in various cases,

however, they are not tight. Then, in Subsection III-B and

Subsection III-C, we present some techniques to compute the

capacity of the channel exactly in the case k is an integer

and the case that k is a rational number, respectively. In both

cases, we provide some numerical results on the capacity of

the channel. Furthermore, when k = 1, we show an explicit

formula of the capacity of the (M, 1)-thermal-aware channel.

Due to the lack of space, we skip some proofs of our results

in this version.

A. General bounds on the capacity

In Subsection III-C, we compute some numerical results on

the capacity of the channel in general case when k = p/q
is rational. However, when the parameters p, q are large,

the computation becomes much more complicated. In this

subsection, we provide some mathematical bounds on the

capacity in general case.

Theorem 1 When 1 < k, it holds that

capTA(M,k) 6 H(α)

where α = 1
1+k and H(α) is the entropy function of α.

Theorem 2 When 1 > k, let δ = ⌊M
k ⌋, it holds that

capTA(M,k) > log(2 cos
π

δ + 2
).

B. The capacity when k is a positive integer

In this subsection, we focus on computing the capacity

of the channel exactly when k is a positive integer. Let

N = ⌊M⌋, we observe that the maximal (M,k)-thermal-

aware code is the maximal (N, k)-thermal-aware code since

the temperature of the device is always an integer. We can

view this code as a constrained code where the codewords

can be generated by all paths in a labelled graph with a set of

N+1 states. The states set is denoted by [N ] = {0, 1, . . . , N},
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where every state represents a temperature level. For each

i = 0, . . . , N − k, there is an edge from state i to state i+ k,

corresponding to a signal 1 which increases the temperature

from i to i+ k. For each i = 1, . . . , N , there is an edge from

state i to state i−1, associated with a signal 0 which decreases

the temperature from i to i − 1. There is also a self loop at

state 0 for the case of a signal 0 at the minimum temperature.

This (N +1)× (N +1) transition matrix is denoted by DN,k

and is formally defined as follows:

dN,k(0, 0) = 1,

dN,k(i, i− 1) = 1, i = 1, . . . , N,

dN,k(i, i+ k) = 1, i = 0, . . . , N − k,

dN,k(i, j) = 0, otherwise. (1)

Example 2 Figure 1 describes the labelled graph when N =
4, k = 1 and Figure 2 describes the labelled graph when

N = 4, k = 2. The transition matrix when N = 4 and k = 1
is

D4,1 =













1 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0













. (2)

21 30 40

1 1 1 1

0000

Figure 1. The labelled graph for the (4,1)-thermal-aware channel.

21 30 40

1

1

1

0000

Figure 2. The labelled graph for the (4,2)-thermal-aware channel.

We observe that the (N, k)-thermal-aware channel is ac-

tually a constrained channel which can be represented by

the above labelled graph. Hence, the capacity of the (N, k)-

thermal-aware channel is also the capacity of the constrained

channel represented by DN,k. Now we turn our attention to

the computation of the capacity of this constrained channel.

Let

ΓN,k(z) = det[zI −DN,k]. (3)

The determinant ΓN,k(z) is an (N+1)-th degree polynomial in

z, and is called the characteristic polynomial of DN,k. Hence,

it is well known that, the capacity of the above constrained

channel [16] is

capTA(N, k) = log2 λN,k, (4)

where λN,k is the largest real root of the equation

ΓN,k(z) = 0. (5)

In other words, λN,k is the largest real eigenvalue of the matrix

DN,k. It is possible to compute λN,k in every case and thus

find the capacity. Several results are computed and tabulated

in Table I.

Next, we are interested in an explicit formula for the channel

capacity in the general case. For this end, we investigate the

characteristic polynomial ΓN,k(z). First, we define a slightly

different matrix, namely the (N +1)× (N +1) integer matrix

EN,k with elements eN,k(i, j) ∈ {0, 1} by

eN,k(0, 0) = 0,

eN,k(i, j) = dN,k(i, j), otherwise. (6)

Let

ΦN,k(z) = det[zI − EN,k] (7)

denote the characteristic polynomial of EN,k.

We observe that, for the case k = 1, EN,k is the transition

matrix of the state machine for the well-known RDS codes

[17], [19], [20]. In this case, ΦN,1(z) is often called a Vieta-

Fibonacci-like polynomial, which is closely related to the well-

known Chebyshev polynomial of the second kind [18] and

ΦN,1(2 cosx) =
sin(N + 2)x

sinx
.

We generalise these results to obtain some interesting proper-

ties of ΦN,k(z) for any k. Define Φ0,k(z) = 1,Φ1,k(z) = z
and Φi,k(z) = 0, i < 0. The connection between ΦN,k(z) and

ΓN,k(z) is derived in the next lemma.

Lemma 1 It holds that

ΓN,k(z) = ΦN,k(z)− ΦN−1,k(z).

From Lemma 1, we see that ΦN,k(z) and ΓN,k(z) are

closely related, and thus, the RDS codes and the thermal-aware

codes are closely related. Following the argument in [18], we

derive an explicit formula for the characteristic polynomial, as

follows,

ΦN,k(z) =

⌊(N+1)/(k+1)⌋
∑

i=0

(−1)i
(

N + 1− ki

i

)

zN+1−i(k+1).

(8)

Using Equation (8) together with Lemma 1, we can find the

characteristic polynomials ΓN,k(z) and compute the capacity

of the channel. For example, when N = k, we obtain the

following characteristic polynomial

ΓN,N (z) = zN+1 − zN − 1. (9)

The characteristic polynomial (9) is well-studied for a family

of run length constrained codes and the capacity of the channel

in this case is known [15]. Furthermore, we can find an explicit

formula of the capacity of the (N, 1)-thermal-aware channel

as follows.
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Theorem 3 The capacity of (N, 1)-thermal-aware channel is

capTA(N, 1) = log(2 cos(
π

2N + 3
)).

Proof: From [20], pp. 200–203, the polynomial ΦN,1(z)
can be written as follows.

ΦN,1(2 cosx) =
sin(N + 2)x

sinx
, (10)

where z = 2 cosx. Using Lemma 1 with k = 1 and z =
2 cosx, we obtain

ΓN,1(2 cosx) =ΦN+1,1(2 cosx)− ΦN,1(2 cosx)

=
sin(N + 2)x

sinx
−

sin(N + 1)x

sinx

=cos(
2N + 3

2
x)

2 sin(x/2)

sinx
.

The largest root of ΓN,1(z) is λ = 2 cos π
2N+3 . Hence, the

capacity of (N, 1)-thermal-aware channel is capTA(N, 1) =
log(2 cos π

2N+3 ), which concludes the proof.

C. The capacity when k is a positive rational number

We now consider a more general case when k is a positive

rational number. Let k = p
q , where the two positive integers

p, q are co-prime. Let N = ⌊qM⌋. Hence, an (M,k)-thermal-

aware code is an (N, q, p)-thermal-aware code, where all three

parameters N, p, q are integers. Since p and q are two positive

integers, it follows that the temperature of the device is an

integer from 0 to N . Let [N ] be the set of states. We can view

the (N, q, p)-thermal-aware channel as a constrained channel

and we can build a states machine of the channel. Each state

of the machine represents a temperature level. We can build a

states machine (the labelled graph) of the channel as follows.

The graph GN,q,p has N +1 vertices, corresponding to N +1
states. For each i = 0, . . . , N−p, there is an edge from vertex

i to vertex i+p, corresponding to signal 1 and the temperature

increases from i to i + p. For each i = q, . . . , N , there is an

edge from vertex i to vertex i− q, corresponding to signal 0

and the temperature decreases from i to i − q. And for each

i = 0, . . . , q − 1, there is an edge from vertex i to vertex

0, corresponding to signal 0 and the temperature decreases to

the base temperature. Each (N, q, p)-thermal-aware sequence

of length n can be represented as a path of length n from

the vertex 0 to any vertex among N + 1 vertices in the

above labelled graph. The number of (N, q, p)-thermal-aware

sequences of length n is the number of distinct paths of length

n from the vertex 0 to any vertex in the graph. The capacity

of the (N, q, p)-thermal-aware channel is the capacity of the

constrained channel represented by the above states machine.

We now focus on the transition matrix of the states machine.

The (N + 1)× (N + 1) transition matrix DN,q,p with binary

elements dN,q,p(i, j) ∈ {0, 1} is

dN,q,p(i, 0) = 1, i = 0, . . . , q − 1,

dN,q,p(i, i− q) = 1, i = q, . . . , N,

dN,q,p(i, i+ p) = 1, i = 0, . . . , N − p,

dN,q,p(i, j) = 0, otherwise. (11)

For example, Figure 3 shows the states machine when N =
7, p = 3, q = 2.

0

1

2

3

4

5

6

7

0

1
1

1
0

1

1

0

0

0

0

0

0

Figure 3. The labelled graph for the (7,2,3)-thermal-aware channel

Since an (N, q, p, n)-thermal-aware sequence is equivalent

to a path of length n from the vertex 0 in the above state

machine, the maximum size of the (N, q, p, n)-thermal-aware

code is the number of distinct paths of length n from the

vertex 0 in the above labelled graph. Since the matrix DN,q,p

is of size (N + 1) × (N + 1), we can compute Dn
N,q,p in

O(log n) time, given N, q, p. If the matrix AN,q,p = Dn
N,q,p,

then ai,j is the number of paths of length n from vertex i
to vertex j in the graph GN,q,p. Hence, the number of paths

of length n from vertex 0 to any vertex in the graph GN,q,p

is
∑N

j=1 a0,j which can be computed in O(1) time. Hence,

we can count the number of valid sequences in the (N, q, p)-
thermal-aware channel in O(log n) time. We state the result

formally as follows.

Theorem 4 Given M,k, n, there is an algorithm to com-

pute the maximal size of the (M,k, n)-thermal-aware code

|A(M,k, n)| with at most O(log n) operations.

In other words, we have a sub-linear algorithm to compute

the maximal size of the (M,k, n) thermal-aware code, given

M,k. Furthermore, we also can compute the capacity of the

thermal-aware channel using the states machine. Apply the

well-known Perron-Frobenius theory [23], we know that the

matrix DN,q,p has the largest real eigen value λN,q,p. Then,

we calculate the capacity capTA(M,k) = log λN,q,p. Given

M,k, we can compute the capacity capTA(M,k) and tabulate

some selected results in Table I. As expected, capTA(M,k)
is increasing in M and decreasing in k. Further, note that

it follows from Theorem 1 that capTA(M,k) cannot exceed

H(1/(1 + k)) for all M and k > 1.

IV. THERMAL-AWARE CHANNEL WITH MULTIPLE WIRES

In this section, we introduce the thermal-aware channel

when multiple wires are available to the user. When the

chip reaches its maximum allowed temperature in some of

the wires, the pulses can be applied in one of the other

available wires. We observe that as the number of wires

increases, the information rate can be significantly increased

as compared to the single wire case. To minimize the cost and

power supply, we are interested in determining the minimum

number of wires necessary so that the temperature always stays

within the desired boundaries for arbitrary transmitted signals.
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TABLE I
CAPACITY cap

TA
(M,k) VERSUS k AND M .

M k = 1/2 k = 2/3 k = 1 k = 4/3 k = 3/2 k = 2 k = 5/2 k = 3 k = 7/2 k = 4 k = 5

2 0.969757 0.925323 0.84955 0.679286 0.6509 0.551463 - - - -
3 0.990431 0.964523 0.91026 0.803641 0.759177 0.64060 0.52934 0.46496 - - -
4 0.996655 0.983464 0.94034 0.854675 0.81677 0.72631 0.597003 0.52448 0.45164 0.40569 -
5 0.998774 0.9911 0.95746 0.88822 0.859232 0.76745 0.662721 0.58152 0.498964 0.44894 0.36199
6 0.999541 0.995122 0.96812 0.911378 0.882798 0.79917 0.699842 0.63462 0.544883 0.49034 0.39519
7 0.999826 0.997202 0.97522 0.925765 0.899583 0.82017 0.730043 0.66284 0.588095 0.52910 0.42694
8 0.999934 0.998371 0.98019 0.936103 0.911923 0.83628 0.753438 0.68628 0.613699 0.56500 0.45681
9 0.999975 0.999035 0.98380 0.943895 0.92099 0.84836 0.769528 0.70509 0.635383 0.58535 0.48464
10 0.99999 0.999424 0.98650 0.949854 0.928043 0.85792 0.782481 0.71908 0.653458 0.60285 0.51046

This approach can be applied when we are interested in

transmitting information on a set of wires which do not exceed

the maximum allowed temperature. One of the motivations

to consider multiple wires is to use the coding scheme also

to send information of a bus which has m wires to send

information words of a larger size.

Given a binary sequence x = (x1, x2, . . . , xn) ∈ Σn and

a set I ⊆ [[n]] = {1, 2, . . . , n}, the complete-projection

of x in I , denoted by PI(x), is the binary sequence y =
(y1, y2, . . . , yn) where yi = xi if i ∈ I , and yi = 0 otherwise.

For example, consider I1 = {1, 3, 4, 5}, I2 = {2, 6}, and

x = (1, 0, 0, 1, 0, 1). We then have PI1(x) = (1, 0, 0, 1, 0, 0)
and PI2(x) = (0, 0, 0, 0, 0, 1).

Definition 2 A binary sequence x ∈ Σn is called an

(m;M,k)-thermal-aware sequence or in short an (m;M,k)
sequence, if there exists a partition of [[n]] into m mutually

disjoint subsets I1, I2, . . . , Im, such that
⋃

i∈[[m]] Ii = [[n]]
and for all j ∈ [[m]], the complete-projection of x in

Ij , PIj (x), is an (M,k)-thermal-aware sequence. A set of

(m;M,k)-sequences is called an (m;M,k)-thermal-aware

code.

For simplicity, we consider the case when M and k are

positive integers. We observe that if x is an (m;M,k)-
sequence, there exists a coding scheme over m wires, that the

electric pulses are applied on the jth wire on those indices

i ∈ Ij , and the maximum temperature over each of the m
wires is at most M . Given M,k, we aim to determine ν(M,k),
which is the minimum number of wires necessary to transmit

every sequence. We define ν(M,k) as the following value,

min
{

m : x is an (m;M,k)-sequence for all x ∈ {0, 1}∗
}

.

Example 3 Consider M = 2, k = 1, and n = 8. When x

is the all-one sequence of length n = 8, we observe that it

is impossible to transmit x when there is only one wire. On

the other hand, with only one additional wire, there is an

efficient coding scheme to transmit x through two available

wires so that the maximum temperature on each wire is at

most M = 2. For example, we can partition [[n]] into two

parts, I1 = {1, 2, 5, 6} and I2 = {3, 4, 7, 8}, and obtain two

corresponding complete-projection sequences as

PI1
(x) = (1, 1, 0, 0, 1, 1, 0, 0),

PI2
(x) = (0, 0, 1, 1, 0, 0, 1, 1).

We observe that each complete-projection sequence is a (2, 1)-
thermal-aware sequence, and hence, x is a (2; 2, 1)-thermal-

aware sequence.

Remark 1 We observe that, to decode the transmitted sig-

nals, it is not necessary to require every (m;M,k)-sequence

to share the same m partitions of indices I1, I2, . . . , Im.

Since Ij1 ∩ Ij2 = ∅ for all j1 6= j2, a transmitted signal

x can be decoded uniquely by implying the bitwise OR

over all the sequences. For example, when m = 2, if

PI1(x) = (1, 1, 0, 0, 0, 1) and PI2(x) = (0, 0, 0, 1, 1, 0) then

x = (1, 1, 0, 0, 0, 1) OR (0, 0, 0, 1, 1, 0) = (1, 1, 0, 1, 1, 1).

Theorem 5 We have ν(M,k) = k + 1 for all M > k.

Proof: We first show that when m = k + 1, for all n,

every binary sequence x ∈ Σn is an (m;M,k)-thermal-aware

sequence. Indeed, for all j ∈ [[k+1]], we consider Ij = {t ∈
[[n]] : t ≡ j (mod k+1)}. Then Ij1 ∩ Ij2 = ∅ for all j1 6= j2
and

⋃

j∈[[m]] Ij = [[n]]. Furthermore, for all j ∈ [[k + 1]], the

complete-projection of x in Ij is y = (y1, y2, . . . , yn) where

yi = 0 for all i 6≡ j (mod k + 1). Since y is an (M,k)-
thermal-aware sequence for all M > k, x is an (m;M,k)-
thermal-aware sequence.

Next, we observe that when m = k, the all-one sequence

of length n is not an (m;M,k)-thermal-aware sequence when

n is large enough. Hence, ν(M,k) = k+1 for all M > k.

V. CONCLUSION

In this work, we have studied a new coding scheme to

control the peak temperature of some electronic devices. We

first presented new constraints and investigated the channel

that only accepts sequences that satisfy these constraints. Next,

we provided some lower and upper bounds of the capacity of

the channel and compute the exact capacity in various cases.

Finally, we have studied the channel when multiple wires are

available to use. Due to the lack of space in this version, we

will provide all the definitions, detailed proofs, related works,

and further analysis in the full version of this work.
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