

Delft University of Technology

Code Phonology
An exploration into the vocalization of code
Hermans, Felienne; Swidan, Alaaeddin; Aivaloglou, Efthimia

DOI
10.1145/3196321.3196355
Publication date
2018
Document Version
Final published version
Published in
Proceedings of the 26th Conference on Program Comprehension, ICPC 2018

Citation (APA)
Hermans, F., Swidan, A., & Aivaloglou, E. (2018). Code Phonology: An exploration into the vocalization of
code. In Proceedings of the 26th Conference on Program Comprehension, ICPC 2018 (pp. 308-311).
Association for Computing Machinery (ACM). https://doi.org/10.1145/3196321.3196355

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3196321.3196355
https://doi.org/10.1145/3196321.3196355

Code Phonology: An Exploration into the Vocalization of Code

Felienne Hermans, Alaaeddin Swidan
Delft University of Technology

f.f.j.hermans,alaaeddin.swidan@tudelft.nl

Efthimia Aivaloglou
Open University of the Netherlands

fai@ou.nl

ABSTRACT

When children learn to read, they almost invariably start with oral

reading: reading the words and sentences out loud. Experiments

have shown that when novices read text aloud, their comprehension

is better then when reading in silence. This is attributed to the

fact that reading aloud focuses the child’s attention to the text.

We hypothesize that reading code aloud could support program

comprehension in a similar way, encouraging novice programmers

to pay attention to details. To this end we explore how novices

read code, and we found that novice programmers vocalize code

in different ways, sometimes changing vocalization within a code

snippet. We thus believe that in order to teach novices to read code

aloud, an agreed upon way of reading code is needed. As such,

this paper proposes studying code phonology, ultimately leading

to a shared understanding about how code should be read aloud,

such that this can be practiced. In addition to being valuable as an

educational and diagnostic tool for novices, we believe that pair

programmers could also benefit from standardized communication

about code, and that it could support improved tools for visually

and physically disabled programmers.

CCS CONCEPTS

• Social and professional topics→ Computing education; K-

12 education;

ACM Reference Format:

Felienne Hermans, Alaaeddin Swidan and Efthimia Aivaloglou. 2018. Code

Phonology: An Exploration into the Vocalization of Code. In ICPC ’18: ICPC

’18: 26th IEEE/ACM International Confernece on Program Comprehension ,

May 27–28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3196321.3196355

1 INTRODUCTION

Everyone that has ever seen a young child that has just learned to

read, knows they do not read like adults. Young children read aloud,

not just to demonstrate their newly acquired skill, but also because

they simply cannot do it in a different fashion yet. Most children

take years to learn to read silently, during which they go through a

number of phases including whispering and lip movement. Several

studies have shown that, for novice readers, reading aloud supports

comprehension [10]. This should not come as a surprise, even expert

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196355

readers on their native language sometimes fall back to this behavior

when reading text that is difficult, or written in a foreign language

they have not fully mastered yet.

We observe that, in learning how to program, no attention is

given to the pronunciation, or rather the phonology of code, i.e. the

way we read code aloud.

When teaching programming, we simply assume that students

can read the code silently, in their head, while also processing what

the code does, an activity known as tracing. We do not practice

the vocalization as a skill in isolation, leading to various different

ways in which code is pronounced by programmers. The fact that

vocalization is not standardized might, inadvertently, impose a high

cognitive load on novice learners, since they have to both read the

code in their head, and ‘execute’ the functionality of the code, an

activity often referred to as ‘tracing’ [11]. We propose exploring

the idea of code phonology, ultimately leading to consensus in the

field about how code snippets should be pronounced.

This can be challenging, even for simple statements. For example,

how should we pronounce an assignment statement like x = 5? Is
it “x is 5”? Or “set x to 5”? Or “x gets 5”? And what about an equality

check? Is it “if x is is 5”? Or “if x is 5”? Or “is x is equal to 5”?

We see two distinct phases in this process. Firstly, language

communities will have to define a shared phonology for their lan-

guages, answering the vocalization question for simple statements

like the ones above, but also for higher level concepts like classes

and modules. Discussing questions of the vocalization like the ones

above can reveal how we think about code. In our exploratory ex-

periments, we found that teenage novices show little consensus in

how to read code, so there is a lot to learn from. For example, one

participant read a function application as “f of x” while reading the

definition of that function as “f takes x” which might lead to a great

discussion in language design whether they should or should not

be the same character. After this phase in which vocalization is ex-

plored, we envision that communities would converge on a shared,

unambiguous phonology of their language. While this may seem

like a daunting task, we think it compares to how programming

language communities agreed on style guides, even after languages

had been in use.

We hypothesize that such a shared phonology of source code will

be useful in teaching in a variety of ways. Firstly, it helps teachers

to read code in a systematic way, allowing them to explain more

precisely, and removing the need for conversations like “You need a

bracket there. No a round one"". Secondly, reading code aloud could

be a diagnostic tool, helping teachers to assess what learners have

understood from their reading of a piece of source code. Finally, we

expect the activity of reading code aloud to contribute to better un-

derstanding of what the code does, following findings from natural

language acquisition.

In addition to uses in education, we see broader applications too.

An agreed upon understanding of how code is vocalized can help

308

2018 ACM/IEEE 26th International Conference on Program Comprehension

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Felienne Hermans, Alaaeddin Swidan and Efthimia Aivaloglou

pair programmers in their communication, as well as visually and

psychically impaired developers in hearing and dictating code to

their programming interface.

2 BACKGROUND AND MOTIVATION

Ourmainmotivation for this work is observing the struggles novices

have in learning to program. When teaching or pairing, we have

observed programmers learning a new language spending effort

on communicating clearly. “A bracket. Now a curly one. And then a

closing bracket. Yes a round one.” Such statements can be heard in

programming classes worldwide. We seem to be spending insuffi-

cient effort on how to vocalize code. In that, the field of program-

ming clearly differs from the field of natural language acquisition, in

which reading aloud or oral reading as it is more commonly referred

to in literature, is studied extensively. For example, researchers have

found that comprehension of text is better when reading aloud [10].

According to literature, this is due to the fact that, when reading

aloud, children are less likely to skip parts of the text, leading to

better understanding [5].

This made us wonder if reading aloud would also improve pro-

gram comprehension, but for that, we need a shared way of pro-

nouncing code, for which we coin the term code phonology. The

focus of this paper is to explore how we would define and use such

a phonology. In future full length papers we plan to run studies to

measure the effect of vocalizing code on comprehension.

3 A FIRST EXPLORATORY EXPERIMENT

To explore the idea of code phonology, we conducted a first ex-

ploratory experiment with novice programmers reading Python

out load. The subjects were 10 Dutch high school students: 8 boys

and 2 girls participated in the experiment, all between 11 and 13,

with an average of 12. At the time of the experiment, the students

had received about 20 hours of Python lessons. We asked them

to read the some snippets of Python code aloud 1 in such a way

that a student that knows Python would be able to type the code, a

method similar to the one used by Begel and Graham [2].

3.1 Observations

Reading the code in a consistent fashion proved a daunting task to

our 10 participants. All of them read at least one symbol, keyword

or variable in an inconsistent way. Children aged 11 to 13 should

not have any issues in reading their native language in a consistent

way, and even with English they should be able to read with relative

ease. The fact that they struggle and make conflicting decisions

strengthens our belief that an agreed upon way to read code could

help them comprehend it. In the following subsections we will

zoom in on some of these inconsistencies, but the fact that they

appear in itself is interesting.

Natural language effects In addition to generic inconsisten-

cies, we saw specific ones. For example, participants struggled with

choosing between Dutch and English reading. None of the children

in the study were native speakers of English. Most of the children

(8) had Dutch as their native language, 2 were bilingual children

naming Turkish as their first language, however still being fluent

in Dutch.

1Read the program here: https://pastebin.com/n36Upp1p

While reading the code, some children used Dutch pronunciation

of English words, saying “wheel” rather than “while”. Two children

spelled out if in Dutch, saying it as “ie-ef”. The most interesting
natural language effect though was on the variable i. In Dutch, i
is read as “ee” as in “to breed". In English of course it is read as “ai”

like in “fry". Just one child pronounced the variable in a consistent

way (the Dutch way). The other 9 all mixed the Dutch and English

vocalization, sometimes even within the same code block.

A different effect was that on word order. One of the subjects

changed the order of the words to form a proper Dutch sentence.

Rather than saying “if temperatuur is 20”, he said “als temperatuur

20 is” which is grammatically correct.

Symbols Since these students did not learn about lists yet, we

did not include statements with lists and symbols [] in the reading

exercise. The symbols included were: (,), ==, !=, <, += and =. An

interesting vocalization (which we hardly ever encountered with

professional developers) is to say == as “is is”, which 7 children in
the experiment did. There were also other ways that the symbols

confused the children. The symbol <was vocalized inmany different
ways, including smaller than and lower than, but also arrow or

bracket, or was skipped entirely.

One participant struggled specifically with combinations of two

symbols like != and ==, and systematically only reading the first

symbol. This behavior is likely to be influenced by their experience

in mathematics where there usually is only one symbol, and that

carries over as an assumption into programming. Misconceptions

often move from one field to another in such a way [3].

Syntactic versus semantic level Some children read things

that were not technically in the code, adding meaning. One partici-

pant read for i in range(0,15) as “for i in a range 0 comma 15”,
adding the meaning that the numbers occur in a range and making

the sentence more like a sentence in natural language. Another

participant read def kwadraat(x): as “def function kwadraat x
colon” adding the meaning that this is a function definition. That

might be good practice for novice learners, or a hint to language

designers that function is a better keyword.

Omissions There were symbols that were omitted by students

consistently. Some did not read the double prime symbol (“"”) any-

where, which is somewhat reasonable since it occurred only in print

statements and is thus somewhat implied. One student omitted “:”

consistently which can also be said to be implied after an if or
a while. Most students, however, were inconsistent and omitted
some symbols selectively. One of the most common omissions are

the open brackets and the colon in the first snippet, which com-

prises a for loop ranging from 0 to 15. It was was read as “"for

i in range 0 comma 15"” by 5 participants, who however all did

pronounce the brackets or the colon in other snippets.

3.2 Oral Reading and Programming

Capabilities

Even though the scale of this experiment is small, we observed that

the students that were able to read the programs more consistently

and more ‘semantically’ were also the students that were ranked as

the best programmers by their teacher. Of course, an open question

here is whether the students read better because they comprehend

better or the other way around.

309

Code Phonology: An Exploration into the Vocalization of Code ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

3.3 Summary

In the exploratory study we have seen confusion over how to pro-

nounce source code, confirming our hypothesis that how to read

code is not a given.

We observed students struggling with reading keywords, pro-

nouncing variables and symbols. Even though we did not explicitly

measure cognitive load in our experiment, it seems that students

were spending energy on deciphering symbols, such as < and ==, on
what to read and what to skip, and—in case of bilingual learners—

on choosing between English and their native language. Cognitive

load theory [17] suggests that to free up mental room for more com-

plex thoughts, easier processes must be automated. For example,

before reading full words at once, children first automate the skill

of reading letters. Before being able to process large multiplications,

children need to have automated additions. We believe that the

cognitive load spent on deciding how to read a variable or keyword,

cannot be spent on comprehension, and must thus be automated by

separate practice, making room for the more complicated process

of metal execution of a program, often called ‘tracing’ [11].

4 CODE PHONOLOGY

Based on research into learning natural language, and on the above

described experiment, we believe that a focus on reading code

aloud is needed. As such, our goal is for programming language

communities to converge on a common vocalization of their pro-

gramming language, which could have the form of a mapping from

syntax elements to their sounds. We use the word vocalization here,

rather than verbalization as previous papers have used, since we

can imagine that communities would use sounds rather than words

to express syntax elements. Why not use a tongue click for a curly

bracket?

We envision two steps in this process: establishing the phonol-

ogy, and using it. In the following subsections we sketch these

phases. We, however, are looking for feedback of the program com-

prehension community on how to shape these phases.

4.1 Establishing the phonology

Before we can use the phonology for teaching, it needs to be stan-

dardized. While our end goal is to put the phonology to use, we

do believe that its creation has value itself. For example, studying

where syntax and sound disagree, gives us insight into how people

interpret code, and how they give meaning to syntax. As described

in Section 3, some participants vocalized the open bracket differ-

ently dependent on its context. A participant would say “f of x”

when reading a function call, while that same participant used “f

takes x” when reading the definition of a function. This gives rise

to the question of whether a function call and its definition should

be represented with the same symbol. On one hand, using the same

symbol seems logical because of the close relationship between def-

inition and application. On the other hand, if many programmers

vocalize it differently, is it really a good choice?

Similarly, programming languages can have symbols written in

different ways, but vocalized the same by many developers. For

example, both = and == are read in the same way by some expe-

rienced developers. Some picked “is” while others said “equals”,

but they used the same term for all these, and never used “is-is” as

novices did. That gives rise to the question of whether these should

be different symbols. A study by Stefik and Siebert [16] that showed

that it is best for programmers to use = for both assignment and

equality checks seems to confirm the way programmers pronounce

symbols. That gives credibility to our hypothesis that pronunciation

can give insights into the quality of programming syntax.

We are however aware that the question of how to pronounce

code can be seen as controversial, since one can argue that code is

meant to be written by humans and executed by machines. But can

we really comprehend and communicate source code if we cannot

vocalise it? When exploring the shared phonology, we expect to

gain a deeper understanding on program comprehension from a

fresh angle.

While reaching a shared phonology seems very far away, we

imagine the process similar to that of agreeing on a style guide,

with rules for naming and whitespace.

4.2 Using the phonology

After the establishment of the shared phonology, we see several

uses for it.

Firstly, we envision a use in programming education, for both

learners and teachers. For teachers, the phonology could be a way

to communicate more efficiently with learners. Agreeing on how

to vocalize keywords and symbols eases communication. We also

see reading code aloud as a valuable tool for diagnosing learners’

understanding of code. For reading natural language, this is seen as

an important aspect of reading aloud; it transforms what is being

read into an observable artifact [6, 9, 13]. As a result, it becomes

simpler for educators and researchers to reflect upon the student’s

understanding of the text. We hypothesize that this will be a benefit

of reading code aloud too. It can be hard for novice programmer

to clearly articulate what they have understood about a program-

ming concept and its execution, hampering a meaningful exchange

with teachers. Reading code aloud might ease this process. In some

cases, the vocalization of code could help educators identify mis-

conceptions novices hold about programming. A misconception is

an incorrect understanding of a concept, leading to mistakes in

writing or reading programs [15]. For example, imagine “x becomes

5” being the agreed upon reading for the assignment of 5 to x, and

a student reads it like “x is 5”. This might mean that the student

focuses on the symbol of the = as known from mathematics class,

and the associated meaning of equality, rather than on storing a

number.

We also see value in using the activity of reading code. We ex-

pect it to engage children in programming a fresh way, connecting

programming more to reading natural language than to mathemat-

ics, a potentially more inclusive frame. With a shared and agreed

upon phonology, learners can practice reading the code separately

from comprehension, much like learners of a language first practice

speaking and reading the "a" and only then use it in words, which

could result in lower cognitive load when tracing programs [11, 17].

In addition to novices, we see broader usage too. A group of

people that could benefit from phonology are adult professional

programmers engaging in (distributed) pair programming. Research

shows that defective communication is one of the four causes of

the pair dismissal [4] and that vocal dialog helps the pair cooperate

310

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Felienne Hermans, Alaaeddin Swidan and Efthimia Aivaloglou

more realistically than with written means. Pairs often also need

audio communication in order to search for information and solu-

tions on the web and use them for modifying the code [14], and

therefore pair programmers could benefit from a consistent way

to ‘speak’ code to each other. A code phonology could also be use-

ful when designing tools for programming, since an agreed upon

method to read code aloud would allow computers to also read

the code consistently, possibly aiding blind and visually impaired

programmers. Inversely, there are programmers that can read but

not easily write code because they lack full control over their arms.

A phonology of code will ease the dictation, since it defines how a

language should be pronounced. IDE’s or programming-by-voice

tools (e.g. [2, 7, 12]) could offer more powerful dictation support by

taking advantage of that.

5 RELATEDWORK

We are not the first to explore how code could sound. Related to our

current research question are two lines of work. The most related

are programming-by-voice tools. Inspired by the need to provide an

alternative input method for programmers suffering from repetitive

stress injuries, after observing that “spoken programs contain lexical,

syntactic and semantic ambiguities that do not appear in written

programs", Begel and Graham designed Spoken Java, a semantically

identical variant of Java that is easier to say out loud [2]. Other

natural language interfaces for programming include NaturalJava

[12] and VoiceCode [7]. While some of these papers, most notably

[1] also describe experiments in which developers read code aloud,

the goal of these papers was to create a version of Java that could

be spoken and do not further explore the issues in vocalization and

its effect on comprehension. For example, an issue like the context

dependent vocalization of (was not in the scope of these papers.
Another category of work related to ours is work on program

auralization, an idea firstly coined by DiGiano and Baecker [8]. Pro-

gram auralization is the idea to use non-speech audio to increase the

ease by with programmers comprehend source code, for example

by playing a note for every execution of a loop to quickly hear how

often is was executed, or to lower the note in case of recursive calls

to a function. Some experiments [18, 19] have demonstrated that

program auralization can help novice programmers to comprehend

code, indicating that ‘hearing’ code, albeit different from how we

propose, can be an aide for code comprehension.

6 CONCLUSION AND OUTLOOK

In this paper we propose to start working towards a standard

phonology of programming languages, which prescribes how to

read source code aloud. We performed an exploratory study with

10 novices reading code, in which we observed subjects struggling

with reading the code, and a preliminary link between code reading

and performance in programming.

The difficulties we observed among these non-native English

learners of code have increased the confidence in our idea that

in teaching attention should be devoted to how to read source

code aloud. The fact that better programmers also read code in a

more consistent way indicates that reading code aloud could be a

useful diagnostic instrument, and potentially even increase code

comprehension.

We have a broad group of future studies in mind. Firstly, we

want to measure the correlation between program comprehension

and consistency of oral reading. Furthermore we plan to measure

the quality of oral reading in a more systematic way to be able

to compare that to comprehension too. Subsequently, we plan to

design a teaching method for oral reading of code and measure its

effect on program comprehension in a controlled study. In parallel,

we will explore various different phonologies, their attractiveness

to programmers and the ease with which they can be taught to

both novice programmers and experts.

REFERENCES
[1] A. Begel and S. L. Graham. 2005. Spoken programs. In 2005 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC’05). 99–106. https:
//doi.org/10.1109/VLHCC.2005.58

[2] A. Begel and S. L. Graham. 2006. An Assessment of a Speech-Based Programming
Environment. In Visual Languages and Human-Centric Computing (VL/HCC’06).
116–120. https://doi.org/10.1109/VLHCC.2006.9

[3] B. Du Boulay. 1986. Some Difficulties of Learning to Program. Journal of Educa-
tional Computing Research 2, 1 (1986), 57–73.

[4] G. Canfora, A. Cimitile, and C. A. Visaggio. 2003. Lessons learned about
distributed pair programming: what are the knowledge needs to address?.
In WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises, 2003. 314–319.
https://doi.org/10.1109/ENABL.2003.1231429

[5] Peter F. de Jong and David L. Share. 2007. Orthographic Learning During Oral
and Silent Reading. Scientific Studies of Reading 11, 1 (2007), 55–71. https:
//doi.org/10.1080/10888430709336634

[6] Ryan Deschambault. 2011. Thinking-Aloud as Talking-in-Interaction: Reinter-
preting How L2 Lexical Inferencing Gets Done. Language Learning 62, 1 (2011),
266–301. https://doi.org/10.1111/j.1467-9922.2011.00653.x

[7] Alain Désilets, David C. Fox, and Stuart Norton. 2006. VoiceCode: An Innovative
Speech Interface for Programming-by-voice. In CHI ’06 Extended Abstracts on
Human Factors in Computing Systems (CHI EA ’06). ACM, New York, NY, USA,
239–242. https://doi.org/10.1145/1125451.1125502

[8] Christopher J DiGiano and Ronald M Baecker. 1992. Program auralization: sound
enhancements to the programming environment. In Proceedings of the conference
on Graphics interface’92. Morgan Kaufmann Publishers Inc., 44–52.

[9] Andrea D. Hale, Renee O. Hawkins, Wesley Sheeley, Jennifer R. Reynolds,
Shonna Jenkins, Ara J. Schmitt, and Daniel A. Martin. 2010. An investiga-
tion of silent versus aloud reading comprehension of elementary students us-
ing Maze assessment procedures. Psychology in the Schools 48, 1 (2010), 4–13.
https://doi.org/10.1002/pits.20543

[10] Sherry Kragler. 1995. THE TRANSITION FROM ORAL TO SILENT READ-
ING. Reading Psychology 16, 4 (1995), 395–408. https://doi.org/10.1080/
0270271950160402

[11] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships Between Reading, Tracing and Writing Skills in Introductory Pro-
gramming. In Proceedings of the Fourth International Workshop on Comput-
ing Education Research (ICER ’08). ACM, New York, NY, USA, 101–112. https:
//doi.org/10.1145/1404520.1404531

[12] David Price, Ellen Rilofff, Joseph Zachary, and BrandonHarvey. 2000. NaturalJava:
A Natural Language Interface for Programming in Java. In Proceedings of the 5th
International Conference on Intelligent User Interfaces (IUI ’00). ACM, New York,
NY, USA, 207–211. https://doi.org/10.1145/325737.325845

[13] Suzanne M Prior and Katherine A Welling. 2001. " Read in Your Head": A
Vygotskian Analysis of the Transition from Oral to Silent Reading. Reading
Psychology 22, 1 (2001), 1–15.

[14] Till Schummer and Stephan Lukosch. 2009. Understanding Tools and Practices
for Distributed Pair Programming. 15, 16 (oct 2009), 3101–3125.

[15] J. Sorva. 2012. Visual program simulation in introductory programming education.
PhD Thesis, Aalto University. (2012), 428 pages.

[16] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. Trans. Comput. Educ. 13, 4, Article 19 (Nov.
2013), 40 pages. https://doi.org/10.1145/2534973

[17] John Sweller. 1994. Cognitive load theory, learning difficulty, and instructional
design. Learning and Instruction 4, 4 (1994), 295 – 312. https://doi.org/10.1016/
0959-4752(94)90003-5

[18] Paul Vickers and James L Alty. 1996. Caitlin: A musical program auralisation
tool to assist novice programmers with debugging. ICAD.

[19] Paul Vickers and James L. Alty. 2005. Musical Program Auralization: Empirical
Studies. ACM Trans. Appl. Percept. 2, 4 (Oct. 2005), 477–489. https://doi.org/10.
1145/1101530.1101546

311

