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Abstract  
Introduction 
Timely personalized treatment of functional decline depends on early ambulant identification of 
persons at risk. Regularity of daily body acceleration, quantified by sample entropy (SampEn), is 
associated with fall risk and is a potential proxy for functional (biopsychosocial) resilience. 
Objective 
This cross-sectional study associates SampEn of daily life accelerometry with physical (short 
physical performance battery, SPPB [0 12]) and cognitive functioning (cognitive impairment test, 
6 CIT [0-28]). 
Method 
Data was provided from the HIPCARE cohort of 51 community-dwelling adults [81 (75 – 89)] after 
femur fracture. The SPPB, CIT, and 7 days accelerometry were recorded at three months follow-
up after hip surgery. The mean SampEn for different activities was compared between patients with 
low (<4), moderate (4-9), and high (>9) SPPB and between low (<8) and high (>7) CIT with a 
significance of p≤0.05.  
Results 
Moderate SPPB scores had more regularity (lower SampEn) in complete daily life acceleration 
signals and during stair-walking than the high SPPB group. In addition, the cognitive impaired group 
(i.e., high CIT) had more regularity (lower SampEn) than the healthy group during cycling and sitting 
activities. 
Discussion and conclusions  
More regular accelerations indicate the development of limited physical performance and 
deterioration of cognitive functions. The findings advocate that acceleration entropy in daily life 
activities is a promising proxy for physical and mental (biopsychological) functions. A large-scale 
longitudinal study is needed to examine the potential added value of daily acceleration for the early 
detection of biopsychosocial functioning.  
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Introduction  
Functional decline is described as a loss of independence in self-care activities or deterioration in 
self-care skills (i.e., movement and performance of activities of daily life (ADL)) [1]. Individuals with 
functional decline are more prone to adverse events in comparison with healthy individuals [2]. In 
combination with a decline in functioning, these adverse events can lead to reduced quality of life, 
frailty, and hospitalization [3]. Subsequently, individuals with functional decline have a high need 
for medical attention, leading to increased healthcare costs and increasing demands on the 
healthcare system [4]. Chronic conditions and related multi- or comorbidities have become 
increasingly prevalent globally. (Acute) exacerbations of chronic multimorbid conditions may cause 
deterioration in health, leading to more functional decline [2,3]. Hence, the functional status should 
be a priority in managing patients with multimorbidity [3]. The current healthcare system uses a 
linear approach, where symptoms lead to a diagnosis and treatment [5,6]. This approach does not 
highlight the functional status of the patient. Therefore, the linear approach is not appropriate to 
detect functional decline.  
 
A shift towards a holistic and ambulatory approach is required for early detection of functional 
decline [5]. Early detection of patients at risk for functional decline can lead to early personalized 
care to avert functional decline. Therewith, early detection minimizes the risk for further 
deterioration of the patient's functional status, for example, by less accidents of falling, fractures, 
hospitalization, or institutionalization, and more years of independence at home. The 
biopsychosocial model (BPS) can assess the individual's functional status in a holistic approach. 
The BPS defines biological, physical, and social factors that play a role in functional decline [7]. 
However, the current assessments to measure BPS functioning in ambulant settings have some 
limitations [8]. Commonly used assessments are subjective measurements that require clinical 
interpretation and therefore introducing inter-rater variability [9]. Additionally, patient-reported 
outcome measures (PROMs) like diaries, questionnaires, and interviews are sensitive for socially 
desirable answers or bias due to cognitive impairment such as memory loss [10].  
 
In the healthcare sector, accelerometers are upcoming to assess functioning. Literature supports 
the possibility to assess both physical and mental functioning using an accelerometer [11,12]. The 
sensor offers a quantitative alternative and minimizes the risk of self-reported input [13]. 
Accelerometers are commonly used to monitor characteristics that represent physical activity, such 
as gait speed, variation, and amount of physical activity [10, 14]. Besides the correlation between 
gait speed and physical activity, gait speed and cognitive functioning are also associated [15]. 
However, the used features obtained from accelerometers still have some limitations concerning 
generalizability, validity, and adaptability [16]. For example, the widely used characteristic gait 
speed methodologies and descriptions vary in each study. This variation makes it difficult to 
compare the results [17]. Besides, existing normative values or thresholds to differentiate between 
healthy and diseases often lack sensitivity [11,18]. Another major challenge is to process large files 
created by the acceleration sensor and to extract relevant information. Because of these issues, 
there is a need to develop a high-performance method to analyze raw acceleration signals, 
enabling caregivers to assess BPS functioning.  
 
Entropy is an upcoming method to analyze raw acceleration signals [19]. Sample entropy 
(SampEn) is a measure of the regularity of a time series. Previous studies demonstrated that 
SampEn of daily life trunk accelerometry could discriminate between fallers and non-fallers [20]. In 
this study, fallers had less regularity in acceleration than healthy individuals. Functional decline is 
often associated with falls and the fear of falling [21]. Based on previous studies, SampEn of daily 
life trunk acceleration might be a sensitive biomarker for changes in biopsychosocial functioning 
since daily activities not only depend on physical components but also cognitive and behavioral 
components [10,22]. However, there are still inconsistencies between studies on how SampEn 
should be used and interpreted [19]. 
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Objective   
This study aimed to examine the association between sample entropy of daily life trunk 
accelerometry signals and clinimetrics that assess biopsychosocial functioning. The short physical 
performance battery and the cognitive impairment test were used as clinimetrics, representing 
biopsychosocial functioning. The secondary aim was to analyze the influence of different filter 
settings on the entropy outcome.  

Outline 
For the analyses of the association between sample entropy and BPS functioning, a proper 
inspection concerning the use of sample entropy is required. First, background knowledge obtained 
from the literature is outlined in the next chapter. This knowledge was necessary to answer the 
research questions, especially to select the correct settings for calculating the sample entropy. 
Each chapter starts with a short introduction concerning the relevance and the content. Thereafter, 
the method for the analysis is described, and the results, discussion, and conclusion are given. 
Additionally, supplementary files are added in the appendices.  
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Background  

Biopsychosocial model  
The following chapter will shortly describe the 
concept of the biopsychosocial model and its use in 
the healthcare system. The knowledge is necessary 
to underpin the importance of the study's primary 
aim and the healthcare system's needs.  
 

Concept  
In 1977 George Engel concluded that the 
biomedical approach, which focuses only on 
biological factors, did not consider the social, 
psychological, and behavioral dimensions of illness 
[23,24].  To overcome the incompleteness of the 
biomedical model, Engel introduced the 
biopsychosocial (BPS) model. This model 
represents a dynamic, interactional, and holistic 
view of human health [26]. The BPS model reflects 
the interaction between biological, social, and psychological aspects. Therefore, the model not only 
captures changes in health biologically but also on how thoughts, feelings, and the society around 
the patient influence the perception and determination of health. Essential to keep in mind is the 
interaction between the components of health. This interaction is a dynamic process, which means 
that the influences on health are not fixed but interact with each other over time [5]. Figure 1 shows 
an example of the BPS model and the content of the different components of health. In general, 
the biological component captures the physical elements of the body. The psychological 
component includes cognition, emotional status, motivation, attitudes, and the behavioral system. 
The social component describes the socioeconomic characteristics, environmental, and physical 
influences. [5,25]. Concluding, the model highlights the role and importance of personal, 
environmental, and contextual factors in an individual's life.  
 

The current state of the BPS approach and issues that withhold implementation  
The World Health Organization describes health as a state of complete physical, mental, and social 
well-being and not merely the absence of disease or infirmary [26].  Functional assessments based 
on the BPS model can give a broad and complete inside into an individual's health status. 
Therefore, it leads to specific care without loss of focus on medical problems [4]. The BPS model 
is increasingly becoming implemented in the healthcare system. Nevertheless, the urge is high to 
speed up the implementation process. [27,28,29]. Currently, there is little acknowledgment that 
illness and health-related problems are multi-factorial. Often, there is a categorization of health and 
non-health issues. However, this categorization is not always appropriate [25,26,30]. 
 
Some issues are withholding the implementation and daily use of the BPS approach [24]. Some 
say the model only gives a general description of the individual, which is inefficient, time-
consuming, and not applicable for individual patients on a daily basis [5]. A comprehensive 
evaluation can be even more time-consuming [31]. Another problem is the applicability of the 
theory. The BPS approach is vaguely defined and not operationalized in behavioral terms for the 
patient [32]. Several authors describe the BPS just as a theory for the mind-body connection. The 
main issue is the fact that predictions concerning functioning and health are hard to make and test. 
There is no specified method to measure the BPS status of the individual patient [5,33]. Some 
assessments capture a part of the BPS functioning; however, there are no guidelines or 
recommendations on which measure is best to use [8]. All the disadvantages concerning the BPS 
model lead to one central question: how to efficiently quantify essential BPS data of an individual 
patient at a given point in time. A repeatable and valid method that consistently identifies relevant 
BPS information to define functioning is needed.  

Figure 1 The biopsychosocial model. The model consists of a 
biological, social, and psychological component. Together 
this forms the health status of an individual [25].  
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Accelerometers  
Information concerning the measurement of daily life accelerometry is needed to examine the 
association between BPS functioning and accelerometry entropy. First, there is a description 
concerning the movement assessments currently used in the healthcare system and their 
(dis)advantages, including the limitations and issues that withhold the implementation of daily life 
accelerometer. The chapter ends with a short description of the mechanics behind the 
accelerometer sensor.  

 

Daily life movement analysis  
The performance of humans' daily life movement is dependent on the physical and cognitive 
components of functioning and environmental factors. Therefore, characteristics of daily life 
movement could be a biomarker for physical and cognitive functioning [34]. Gait analysis is the 
most commonly performed movement assessment. Gait analysis aims to observe, record, analyze 
and interpret motion patterns [36, 35] using biomechanical measurements of gait. Gait may be the 
most commonly analyzed activity, while gait is only one part of daily life movement. Focusing on 
only one aspect of daily movement may be insufficient to understand behavior and functional 
status. Examining both active and sedentary tasks provide a more complete inside into daily life 
movement [37]. 
 

Status of accelerometers  
Movement analysis can be performed in different ways, as shown in figure 2. It can be done through 
self-reporting, observation by trained clinicians, with the use of motion capture systems and with 
(wearable) motion sensors [34,35,38]. These methods help to understand movement, improve 
performance, diagnose disorders, and evaluate treatment and interventions. Besides, associations 
between physical activity and (development) of medical conditions or even mortality have been 
proven based on these methods to analyze movement [39]. Nevertheless, some limitations arise 
performing movement assessments. A disadvantage of (visual) observation and motion capture 
systems is the need for laboratory measurements, which is expensive, and patients are only 
assessed infrequently under controlled situations [34,35,36]. In this way, the analysis does not 
reflect the regular daily activity pattern. Additionally, visual gait analysis depends on the experience 
of the observer [36].   

 

 

 

 

 

 

 

 

 

 
Figure 2 Different methods used for analysis of movement. A) Motion capture systems using inertial sensors that are recorded 
with cameras and a Kinect system [40], B) questionnaire, C) EMG sensors and visual observation [41], D) Accelerometers [42] 

A) B) 

D) C) 
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Accelerometers are upcoming in the current healthcare system. They are used to monitor and 
control diseases, but also for prevention and individualized therapeutic applications [43] 
These sensors eliminate the need for individual self-report and, therefore, reduce bias caused by 
individual recall [13]. Additionally, a wearable sensor is under free-living conditions [44] instead of 
in laboratory measurements. Measurements during free-living conditions do not only detect gait but 
all activities during the day, like sedentary tasks and sleep, are measured. Besides, the sensors 
have low costs, low power consumption and are suitable to use in the daily environment due to the 
small size and weight of the sensors [42, 34]. However, daily life measurements result in collecting 
long-term multi-direction data recordings [43,45]. These recordings become large quickly and are 
sometimes clinically uninterpretable. It is challenging to process such large files and to extract 
relevant information. Although many algorithms are available to evaluate acceleration signals, there 
is still no standard method for doing so [13]. Previous research demonstrates the applicability of 
different algorithms. Nevertheless, there is still an amount of data that remains unprocessed. The 
unused data may contain relevant information for improving the current healthcare system [43]. 
There is a need to develop a high-performance method that can process and obtain all relevant 
information from raw acceleration signals, enabling caregivers to follow rehabilitation progress.  
 

A tri-axial seismic acceleration sensor  
Accelerometers measure the acceleration of the body [46]. Acceleration is the rate of change in 
velocity with respect to time [47]. A vector quantifies how fast the velocity is changing. Equation 1 
shows the formula to calculate the acceleration.  
 
A triaxial seismic accelerometer measures the rate of change in velocity in three directions: vertical 
(V), mediolateral (ML), and anterior posterior (AP). The V direction is the acceleration linear to the 
body's craniocaudal axis (figure 3). The ML direction is the acceleration linear to the left-right axis, 
and the AP direction is the acceleration linear to the anteroposterior axis (also dorsoventral). Medial 
means towards the midline of the body, and 
lateral is away from the midline. Anterior is on 
the stomach side and posterior on the 
backside. 
A positive acceleration in V direction 
represents a movement towards cranial 
(upwards), in ML direction towards medial, 
and in AP direction, the movement is towards 
anterior (forward).  
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 3 The human body with the anatomical planes and axis, 
including the three directions of a tri-axial acceleration sensor. Blue 
arrow: vertical acceleration. Red arrow: medio-lateral acceleration. 
Black arrow: anterior posterior acceleration [48]. 

Equation 1 Formula for 
calculation the acceleration. The 
outcome approaches the  
acceleration based on the 
change in velocity over time [47].  
 

Abbreviations: a=acceleration,  
t=time,v=velocity, ∆  =change 
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Entropy   
Entropy is a promising concept to overcome the limitations of long-term multi-direction data 
recordings. The next chapter will provide the theory behind entropy, which is needed to perform 
the analysis and interpret the results correctly. Additionally, the chapter describes the proper use 
and possibilities of entropy. The first three paragraphs also contain some technical concepts. 
Finally, the last paragraph discusses previous literature and the clinical relevance of using entropy 
in the healthcare sector.  
 

Single scale entropy   
Single-scale entropy quantifies the regularity of a time series. Regularity evaluates the appearance 
of (repetitive) patterns in a time series or signal [19]. In 1991 Pincus introduced approximate 
entropy (ApEn) as a mathematical tool for biological time series. An example of a biological time 
series is the output of an electrocardiogram that measures the heart's signals [50]. The ApEn value 
represents the amount of new information in the next state of the time series [49]. A value of 0 
represents a system with no new information, and higher values indicate a higher amount of new 
information in the next state of the time series [50]. 
 
Thus, single-scale entropy 
represents the regularity of the 
time series. Where 0 indicates a 
total regular signal, like a sinusoid 
(figure 4A). The more irregular 
signal, the higher the entropy 
value. Noise (i.e., random signals) 
has a high entropy value, as 
shown in figure 4B. A signal 
representing a (semi)-regular 
pattern and some noise (figure 4C) 
will score a moderate entropy 
value lying between a sinusoid and 
noise. Signals in biological 
processes, like daily life 
movement, are most comparable 
with the example in figure 4C.  
 
 
ApEn was the first developed single-scale entropy measure for biological signals. Unfortunately, 
ApEn is highly dependent on data length, and the algorithm includes self-matches for each vector. 
Self-matching leads to a lack of relative consistency and creates a bias towards a more probable 
outcome (a lower entropy value) [52, 53]. Because of these issues, Richman and Moorman 
introduced Sample entropy as an alternative. SampEn is supposed to eliminate the bias caused by 
self-matches [53]. The SampEn value is the negative logarithm of the conditional probability that 
two similar sequences of m points remain similar at the next point (m+1), leading to equation 2 [52]. 
Appendix A describes an example of the calculation.   
 
 
 
 
 
 
 
 
 
 

: 

Equation 2: Sample entropy.  
 Abbreviations: m = embedding 
dimensions, r = tolerance 
radius, N = number of data 
points, ∑= summation, ≠ = is 
not equal to, || = distance 
between, x = vector [52]. 

Figure 4 Three different time series with the corresponding entropy value 
[51]. A) A sinusoid, which represent a total regular signal. This signal has an 
entropy value of 0. B) Noise, which has a high entropy value  
C) A sinusoid combined with some noise, this signal has a moderate entropy 
value in between the values of A and B.  

C) 

A) 

B) 
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Parameters settings  
Entropy is a function of three parameters, the embedded dimension (m), the tolerance (r), and the 
number of samples (N). The embedded dimension (m) is the length of the vectors compared across 
the entire time series to determine the conditional probabilities (figure 5 A). The tolerance radius (r) 
is the threshold to determine whether patterns within the time series are similar (Figure 5 B). Lastly, 
the number of samples (N) is the length of the time series of interest (i.e., the number of data points 
the signal contains) [50,52].  

The user needs to select the parameters for every calculation. However, the parameters should 
not be selected arbitrarily because improper values can lead to incorrect findings [19]. The 
embedded dimension (m) depends on the content of the signal and the research question. Most 
important is to think about the biological meaning. For example, the researcher should wonder if 
the duration of the vectors has clinical relevance. The parameter r has the highest impact on the 
results. Too small values will lead to only a few matches, while a high value could lead to too many 
matches and increase regularity wrongly [19]. Most entropy algorithms multiply the r with the 
standard deviation of the signal to reduce the influence of the amplitude [52,53].   
The time series (N) length depends primarily on the signal of interest and the sampling rate. 
Theoretically, the outcome of sample entropy is not dependent on the length of N. Earlier research 
already showed valid results for ≥100 and ≤ 1000 [53]. Before choosing the value for N, one should 
check if the sampling rate is appropriate for the signal of interest [54]. There is a recommendation 
to rescale (downsampling) the data to an appropriate rate in case of oversampling. Oversampling 
leads to redundant data points (i.e., data points with less new information) and will increase 
regularity, see appendix B for more detailed information. If the data is under-sampled, the time 
series will not represent the signal of interest and would therefore be inappropriate to calculate the 
SampEn. When there is an appropriate sample rate, the N could be selected based on the research 
question.  
 

Multi-Scale Entropy   
Multi-Scale Entropy (MSE) is a concept to calculate the entropy of different time scales (from micro 
to macro). The idea behind MSE is that the complexity of biological systems arises from the 
interaction of components on multiple scales [19]. The MSE algorithm creates multiple new time 
series from the original time series (figure 6). The new rescaled time series is comparable to the 
downscaling. The SampEn of each newly created time series together represents the MSE.  

Figure 5 A time series of 9 data points (i.e., N = 9) is shown in the figure. A)  the vector created by an embedded dimension of 
m = 2 and an embedded dimension of m = 3. B) example of the tolerance radius (r = 0.15). r is the maximum distance 
allowed for two points to be similar. All the points in the green plane have a distance smaller than 0.15 (< r) and thus are 
similar.  
Abbreviations: u = the time series, i = index, A,B = vector , || = distance between, < = smaller than, > = greater than, = = 
equal to  

r = |0.15| 

m = 2 

m = 3 

A) B) 
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Perform the following steps to calculate the 
MSE:  
1. Derive multiple time series from the original 

time series by:  
- Divide the original time series into 

nonoverlapping windows of equal length. 
- Average these windows to create a new value  
- All the new values together represent the new 

rescaled time series. The rescaled time-series 
length is equal to the length of the original time 
series divided by the scale (figure 6 A). 

2. Iterate these steps for all scales of interest.  
3. Calculate the SampEn of each of the new 

scaled time series. Use the same input 
parameters m and r for all scales.  An example 
of the MSE is given in figure 7.   [55].  

 
 
 
 

 

The entropy of daily movement  
In 1998 the entropy was first used to analyze human gait, and entropy of daily movement signals 
has grown ever since. However, there is still no consensus concerning the expected outcome. 
Based on the individuality of the datasets and the parameter settings, it is hard to compare the 
results of different research groups. There is a possibility that it is not even valid to compare findings 
across papers [19]. 
 
Results of earlier performed studies concerning the association between entropy and age are an 
excellent example of the disagreement of the expected outcome. The results show that an increase 
in entropy is not specifically correlated with increased or decreased functioning. Older sedentary 
adults, for example, have a more regular walking pattern (lower entropy) compared to younger 
healthy adults [56]. On the other hand, older adults have a less regular (higher entropy) joint angle 
range of motion than younger healthy adults [57]. Another study noticed a U-shaped pattern in MSE 
outcome concerning entropy vs. age for all the time scales. They saw a decrease from childhood 
to early adulthood and an increase from early adult to middle-aged and older adults. Although, this 
was a statistically non-significant difference [58].  
 
Research indicates that the entropy of movement analyses depends on multiple factors. When 
people were forced to walk at another speed than comfortable, the entropy changed. Walking 
slower or faster than preferred decreased the regularity (lower entropy) [59]. A decrease in 
regularity also occurred as one walked on a surface with less stiffness than a walking ground with 
high stiffness [60]. These factors can cause a higher entropy in healthy individuals, as they have a 
higher chance of performing activities outside the comfort zone than older sedentary elderly. 
Furthermore, increasing task demands decreases the regularity of walking patterns in adults [19]. 
The latter means that the entropy is not only dependent on physical functioning but also on cognitive 
functioning. In addition, MSE analysis of postural instability can identify the elderly prone to falling 
[61]. In this way, early treatment can be offered to prevent falls. Finally, MSE can detect the small 
adjustment transitions from unbalanced to balanced [63]. All these findings together suggest 
entropy may detect changes in BPS functioning. 

Figure 6 A) Example how to create the new time series for scale 3, by 
averaging the original time series. B) Two plots showing the data points 
of the original time series (upper plot) and the rescaled time series of 
scale 3 (lower plot). The braces represent the difference in time 
between two different time scales. Abbreviations: y = time series, i = 
index, j = length time-series / scale.  
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Figure 7 
Representation of 
the MSE. For each 
scale (1-6) the 
SampEn is 
calculated [55]. 
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Filtering   
There is not yet enough research done concerning the influence of filters on the entropy outcome. 
Filtering may remove fluctuations that are of biological importance. However, others implicated that 
filtering is warranted [19]. In general, it is essential to pay careful attention to the filtration process 
in movement analyses. Inappropriate filtering may produce bias or inaccurate results [13]. 
Therefore, this chapter will shortly describe the most common filters. The information is helpful to 
understand the question of our secondary aim. However, the information is not necessary to 
understand the main aim.  
 

Content of signal   
Different accelerometers have different sample frequencies and therefore contain different 
information. The sensor measures a signal of interest and usually contains some amount of noise. 
External vibrations, objects bouncing against the sensors, soft tissue under the accelerometers, 
and displacement of the sensor due to lose attachment, resulting in mechanical resonance, 
primarily causes noise [64]. Filters remove redundant information or noise from the raw signal [65]. 
Choosing the right filter depends on the content of the signal (i.e., frequency and amplitude) and 
the research question [19]. The frequency range of the human body's acceleration depends on the 
placement of the sensor. However, voluntary muscular work does not exceed a frequency of 15 
Hertz (Hz); higher results do not directly result from voluntary muscle contraction [36,64]. The 
frequency range also depends on the performed activity. For instance, the frequency peak of 
tremors ranges within 4-10 Hz [67], and the postural balance control (involuntary muscle activity) 
ranges between 25 and 40 Hz [68]. Though, the most common frequencies of daily life range 
between 0.3 – 3.5 Hz [14].  
 

Different filters  
There are different types of 
filters. Commonly used are high-
pass, low-pass, or band-pass 
filters (figure 8) [65]. A low-pass 
filter attenuates signals with 
frequencies higher than a 
prespecified cut-off frequency 
(figure 8A). All signals beneath 
the cut-off are passed through 
the filter. Most filters are not 
ideal, which means they have a 
transition band. As a result, the 
frequencies in the transition band 
are increasingly attenuated. A 
high-pass filter is the opposite of 
a low-pass filter (figure 8B). It 
passes the signal above the cut-
off frequency and attenuates the 
signals beneath. A band-pass 
filter is the combination of a high 
and low-pass filter. Instead of 
one cut-off frequency, there are  
two (figure 8C). The filter passes all the signals within the two specified cut-off frequency range. 
Figure 9 shows a sinus with a low frequency, a high frequency, and the combined signal. Most 
articles performing gait analyses use a low-pass cut-off frequency of 20 Hz. This limit is set based 
on the range of voluntary muscle work. The low-pass filter passes through muscle activity with high 
and low frequencies. These studies are interested in the gait signal (i.e., pattern with a low 
frequency); however, the signal may contain a tremor with a high frequency (8-12 Hz). The 
combination of high and low-frequency activities is comparable with figure 9C. Combining different 
activities could be a problem for the calculation of the SampEn. Therefore, the cut-off frequencies 
should be considered carefully.  

 

 

 

Figure 8 Three types of filters[65]. 
A)low pass, filter, B) high-pass 
filter, C) Band-pass filter 

Figure 9 Two signals with different 
frequency [69]. A) sinus with low freqeuncy, 
B)sinus with high frequency, C) combined 
signal. 
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Methods and Materials  

Participants  
Data was provided from the HIPCARE cohort of 61 community-dwelling adults after femur fracture. 
People were eligible for the study if they were aged 70 years and older with a unilateral proximal 
femur fracture, admitted to HMC Bronovo hospital.  Additionally, the patients need to be eligible for 
(geriatric) rehabilitation needed after hip surgery.  
 

Assessments  

Patient characteristics   
Patient characteristics were collected during visits at the laboratory. Multiple questionnaires were 
conducted during baseline and follow-up (at 12 months). Global cognitive functioning was assessed 
with the 6-item cognitive impairment test (6-CIT) test and physiological functioning with the short 
physical performance battery (SPPB). In addition, physical activity was measured with a wearable 
motion sensor.  
 

SPPB 
The SPPB is an assessment that measures physical performance based on multiple aspects. It 
gives insight into walking speed, balance, and muscle strength. The assessment is a commonly 
used assessment for community-dwelling elderly to assess movement and as an indicator for 
health status. The SPPB assesses three different tests: a walking speed test, a balance test, and 
the repeated chair test. The sub-score from each test is 0,1,2 or 4 points, resulting in a maximum 
score of 12 points. The higher the score, the better the physiological performance of the patient 
(table 1) [70].  

 
Table 1 Score system of the SPPB [70] 

Score Risk zone Actions  Group 
> 9 Not in the risk zone,  

healthy functioning  
No actions needed Healthy physical 

functioning 
4-9 Increased risk to (new) 

disabilities  
Indicated for 
treatment to improve 
functional status  

Risk group 

< 4 Already limited in 
functioning  

Indicated for 
treatment to stop 
functional decline  

Limited physical 
functioning  

 

6-CIT test   
The 6-CIT is a brief cognitive screening instrument used in primary care settings, which takes 
approximately 3 minutes and covers a couple of cognitive domains. It consists of 6 questions, 
where a total score of 28 points is the maximum. A score of 0-7 points indicates normal cognitive 
functioning, 8 or 9 points indicates cognitive impairment, and between 10-28 points, there is a 
significant cognitive impairment (table 2) [71].  
 
Table 2 Score system of the 6-CIT [71] 

Score Risk zone 
0 – 7 Normal functioning   
8 – 9 Indicate cognitive impairment  

10 – 28 Significant cognitive impairment  
  



18 
 

 

Movement assessment  
Participants were asked to wear an ambulatory physical activity monitoring system for seven days. 
The measurement took place three months after hip surgery. The movement assessment was 
performed using the MoveMonitor (McRoberts B.V. The Hague, The Netherlands, see figure 10). 
The MoveMonitor is a back-worn sensor composed of a triaxial seismic accelerometer. The sensor 
is worn on the back of the trunk at belt height using an elastic band (figure 10 C). The triaxial 
accelerometer measures the rate of change in velocity in the directions: vertical (V), medio-lateral 
(ML), and anterior posterior (AP). The sensors had a sampling frequency of approximately 100 Hz 
and a range of 8g (i.e., 78,5 𝑚/𝑠2). A secure flash memory card of 1 Gigabyte can save up to two 
weeks of continuous data acquisition [72].  
 
The MoveMonitor has a pattern recognition algorithm that classifies several types of activity based 
on accelerometry. It can differentiate the activities: (stair)walking, standing, sitting, shuffling, 
cycling, and lying. It also calculates movement parameters such as duration, intensity, and 
frequency [72]. 
 

 

Preprocessing of the data  
We decided to use two different filters to separate the high-frequency activities from the low-
frequency activities.  For an overview of all the preprocessing steps, see figure 11.  
The Movemonitor measurements resulted in a file of raw acceleration signals for each patient. Each 
file consists of the signals in three directions (V, ML, and AP), the time, and the sample frequency. 
The first and last days were removed so that only full days were included in the analyses. For each 
file with raw acceleration signals, there is a corresponding file with the activity classification. In this 
way, the signal is into different activities (figure 12), which results in many short episodes of different 
activities between 0 – 60 seconds. See appendix D for a visualization of the distribution of episode 
lengths for each activity. The analysis is performed per activity and for the whole unclassified signal 
to obtain the SampEn (i.e., regularity) from the different daily life activities.  
 
There is no consensus yet concerning the proper filter settings for calculating the entropy of daily 

activity [13,19].  Choosing the right filter depends on the content of the signal and the research 
question. To calculate the entropy, we aimed to separate the high-frequency accelerations from 
the low-frequency accelerations. A cut-off frequency of 6 Hz is chosen, based on the content of the 
signal (see appendix E for more information), and to separate the voluntary muscle control from 
the involuntary muscle control. 
 
 

Figure 10 Movemonitor [72]. A) Placement of the sensor with the elastic band on the waist, B) the Movemonitor sensor 
with the corresponding dimensions, C) The sensor with the corresponding measurement directions.  
Abbreviations: mm = millimeter, V = vertical, ML = mediolateral, AP = anterior posterior.  
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Figure 11 Overview of the steps to prepare the data. From raw data to calculation of the sample entropy. Hz = Hertz. SampEn = Sample entropy 
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A low-pass filter of 6 Hz was applied to capture the most relevant acceleration signals representing 
functional motions by voluntary muscle contraction. According to the Nyquist theorem, the sample 
frequency must be at least two times the highest frequency of the input signal [62]. Therefore, the 
data was resampled to 15 Hertz. Secondly, a high-pass filter of 6 Hertz was applied to obtain the 
high-frequency accelerations, mainly caused by involuntary muscle contraction. Compared with the 
raw signal, the low-pass filter has smoothed the signals (figure 13 B). 
Additionally, the amplitude of the acceleration becomes smaller after the application of a low-pass 
filter. After applying the high-pass filter, the signal has a high intensity with lower amplitudes (figure 
13 C). Besides the two filters, the signal was also rescaled based on the multi-scale theorem 
described in the background. No other filter was applied since the MSE acts like a filter because 
rescaling to a larger scale can be compared to low-pass filtering. The MSE resulted in ten rescaled 
time series with the range 1 to 19 in steps of 2, as shown in table 3. 
  

Data analyses, Sample Entropy  
The main aim of our study is to examine the association between accelerometry entropy and two 
different clinimetrics (SPPB and CIT). SampEn is used as the outcome measure for the single scale 
entropy values. SampEn was chosen above ApEn because previous literature has shown less bias 
in SampEn. Additionally, we calculated the MSE to investigate the entropy of different time scales.  
 
Acquired data from the activity sensor is analyzed using MATLAB R2020A software package.  
The SampEn is calculated with the use of a MATLAB toolbox called Sample Entropy. The SampEn 
algorithm computes the entropy according to the Richman and Moorman recommendations [51]. 
The MSE was also calculated with the use of a MATLAB package [73] 
 
There are three input parameters needed to calculate the entropy. 

- N: The number of data points wherefrom the entropy will be calculated. 
- m: (the embedded dimension): The length of the segments compared with the rest of the 

dataset.  
- r (Tolerance): Threshold for the allowed distance between segment and data points.  

Parameters m, r, and N must be prespecified to compute the SampEn. In this research, the 
embedded dimension was 2. This value was chosen based on the theory described in the 
background. The embedded dimension is set to a minimum because the signal was already 
downsampled to remove redundant information
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Figure 12 The raw signal in three directions of 40 seconds of functioning. The signal describes five different activities: 
lying, standing, sitting, shuffling, and walking. Abbreviations: v = vertical, ml = mediolateral, ap = anterior posterior,          
g = gravity (9.8 meter/seconds2), h = hours, m = minutes, s=  seconds.  
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N was defined using the time bouts of 10 seconds and the sampling frequency of the measurement. 
A length of 10 seconds results in a range of N values. It leads to approximately 1000 data points 
for the high-pass signal and the low-pass signal to approximately 150 data points. This range is 
already proven to be valid [53]. The exact amount of data points differs for each calculation because 
of the variation in sample frequency. The tolerance was 0.3 based on earlier performed calculations 
of the SampEn with comparable data and a selection of data from this study [74]. Thus, the SampEn 
was calculated for each of the 10-second bouts. Finally, we took the median of all the bouts over 
the week to represent the gait regularity. 
 
Table 3 Rescaled time series and the corresponding characteristics 

Rescaled time 
series 

Sample frequency of the 
signal 

Data points / 10 
seconds (N) 

Time between 
data points (m) 

Scale 1 (original)  100 Hz 1000 0.01 s 
Scale 3 33 Hz 333 0.03 s 
Scale 5 20 Hz 200 0.05 s 
Scale 7 14 Hz 143 0.07 s 
Scale 9 11 Hz 111 0.09 s 
Scale 11 9 Hz 91 0.11 s 
Scale 13 8 Hz 77 0.13 s 
Scale 15 7 Hz 67 0.15 s 
Scale 17 6 Hz 59 0.17 s 
Scale 19 5 Hz 53 0.19 s 
 
Abbreviations: N = length of the time series, m = embedded dimension  

Table 3 Presenting the sample frequency, length of the time series for the SampEn calculation, and 
the duration of the embedded dimension (m) for all the MSE rescaled time series. For the 
calculation of the MSE, the N ranges from 1000 data points to 53 data points. The embed dimension 
is set to 2 (m = 2) for every calculation. The vector created by m will represent different lengths of 
time for each scale, shown in table 3 by the time between data points.  
 

Statistics  
Statistical analyses were performed in R studio and SPSS [75,76]. Descriptive characteristics were 
compared between the three groups (for both SPPB and CIT), using the t-test (for age, weight, 
height, BMI, and time spending the activity) and the Kruskal-Wallis test (for gender and FESI). The 
distribution of time spend for each activity differed between patients. The total time spent was 
divided into bouts of 10 seconds, leading to a different amount of 10-second bouts for each patient. 
The number of activities and bouts determined the number of calculations performed, affecting the 
SampEn outcome. Therefore, the time spending per activity was also compared between groups.  
 
Pearson's correlation was used to investigate the correlation between entropy values and the SPPB 

or CIT score. The statistics were done for the entropy in V, ML, and AP directions. The correlation 

coefficient (r) indicates whether one variable increases as the other increases. The outcome ranges 

from -1 to 1, where 1 indicates a perfect positive linear correlation, -1 a perfect negative linear 

correlation, and 0 represents no correlation. Furthermore, a score between 0.1 and 0.3 is classified 

as small, 0.3 and 0.5 as moderate, and higher than 0.5 is a large correlation [77].   

The SampEn of each scale from the MSE was compared between groups (for SPPB and CIT) 

using the t-test. In addition, the SampEn of each rescaled time series was plotted as a function of 

scale for visual insight.  

The limit for the statistically significant difference was set to a p-value of 0.05. However, there were 

multiple tests performed in the research. Therefore, the Bonferroni method was used to counteract 

the problem of multiple comparisons. The SampEn value was calculated for the 7 different activities 

and the unclassified signal, which led to the following calculation: 0.05 / (7+1) = 0.006. Therefore, 

a p-value lower than 0.006 was considered as a statistically significant difference. 
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Figure 13 The left side of the figure represents 10 seconds signal during walking. The signal is given in the three different 
directions from the A) raw signal, B) signal after low-pass filtering, C) signal after high-pass filtering. On the right side, the 
corresponding periodogram is given.  
Abbreviations g= gravity (9.8 meter/seconds2), v = vertical, ml =mediolateral, ap =anterior-posterior, dB = decibels, Hz = Hertz 
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Results  

Patient characteristics    
In the HIP-care study, a total of 61 patients obtained the Movemonitor for a week. Among these 
patients, 10 were not included. Reasons for the exclusion were incomplete measurements (n = 8, 
13%) and missing classification files (n =2, 3%). As a result, 51 (84%) patients were included in 
this study (figure 14). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
In table 4, a summary of the patient characteristics is shown. The population consisted of 36 women 
(71 %). The median (interquartile range) age was 81 (75 – 89) years with a mean (standard 
deviation) BMI of 24 (3.0). Not all patients wore the sensor the whole day. The amount of time the 
sensor was not worn and the time spend for each activity is also noted in table 3. Every patient 
performed the activities walking, shuffling, standing, sitting, and lying. A total of 36 (71.6%) patients 
walked the stairs, and 38 (75%) patients cycled during the week.  
 
Besides the patient characteristics for the total sample, the characteristics are given for the 
subgroups. Following the SPPB score, ten patients were classified as healthy functioning (29 %), 
28 patients have an increased risk of development of disability (55 %), and 11 patients were already 
limited in functioning (22%). For the CIT score, 38 patients were classified as healthy cognitive 
functioning (75%), four patients had a moderate cognitive impairment (7.8 %), and eight patients 
scored significant cognitive impairment (16%). Due to the small groups of significant and moderate 
cognitive impairment, we decided to merge these two groups to perform stratification based on the 
CIT score. There were no differences between the subgroups of the CIT and SPPB concerning 
patient characteristics.  
 
 
 

Received Movemonitor 

HIP-Care cohort, N = 61 

Met the inclusion 

criteria, N = 51 

Missing accelerometry 

data (N = 8) 

Missing classification 

files (N=2) 

SPPB score  

N = 49 

Increased 

risk N = 28 

Limited 

 N = 11 

Healthy  

N = 10 

CIT score  

N = 50 

Moderate 

impairment 

N = 4 

Significant 

impairment 

 N = 8 

Healthy  

N = 38 

Figure 14 Flowchart patient inclusion.  
Abbreviations: N = number of patients, SPPB = short physical performance battery, CIT = cognitive impairment test.  
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Table 4 Descriptive characteristics of the total sample and for the subgroups for the SPPB and 6-CIT test  

Descriptive 
characteristics  

Total sample  SPPB healthy 
functioning  

SPPB 
increased risk 
disability  

SPPB limited 
functioning  

CIT healthy 
functioning  

CIT moderate 
cognitive 
impairment  

CIT significant 
cognitive 
impairment  

Number of participants  51 10 (19.6%) 28 (54.9%) 11 (21.6%) 38 (74.5 %) 4 (7.8%) 8 (15.7%) 
Number of females 
 (n, %) 

36 (70.6 %) 6 (16.7 %) 20 (55.6 %) 9 (25 %) 29 (80.1 %) 3 (8,3%) 4 (11.1 %) 

Age (years)  81 (75 – 89) 77 (74.3 – 82.3) 81 (75 – 89) 87 (78.8 – 91) 80 (75 – 87) 76.5 (63.5 – 85) 89 (79.5 – 91) 
Body height  
(Cm; mean (SD)) 

166.1 (8.3) 169.3 (6.2) 165 (6.2) 165.8 (6.2) 165.4 (6.2) 170.5 (6.2) 167.9 (6.2) 

Body weight  
(Kg; mean (SD))  

66.9 (11.5) 71.5 (9.9) 63.8 (12.3) 69.9 (9.6) 65.9 (11.4) 68.5 (17.9) 72.1 (8.6) 

BMI  
(Kg / m2, mean (SD)) 

24.1 (3.0) 24.9 (2.8) 23.2 (2.6) 25.5 (3.5) 24.0 (2.9) 23.2 (3.9) 25.6 (3.3) 

Time spent cycling 
(hours/week) 1 

0.1 (0 – 0.3)  0.2 (0 – 0.3)  0.1 (0 – 0.4)  0 (0 – 0.1)  0.1 (0 – 0.3)  0.1 (0.1 – 0.3)  0.2 (0.1 – 1.1)  

Time spent stair walking 
(hours/week) 2 

0 (0 – 0.1)  0.1 (0 – 0.5)  0 (0 – 0.1)  0 (0 – 0)  0 (0 – 0.1)  0 (0 – 0.2)  0 (0 – 0)  

Time spent walking 
(hours/week) 

1.8 (0.7 – 3.5)  6.0 (2.0 – 10.7)  2.0 (0.8 – 3.4)  0.7 (0.3 – 1.0)  1.9 (0.8 – 3.6)  2.4 (0.8 – 5.3)  1.7 (0.7 – 3.2)  

Time spent shuffling 
(hours/week) 

1.3 (0.7 – 2.5)  1.5 (0.9 – 2.3)  2.1 (1.1 – 2.9)  0.9 (0.5 – 1.2)  1.3 (0.8 – 2.5)  2.9 (1.7 – 3.0)  1.2 (0.8 – 1.6)  

time spent standing 
(hours/week) 

12.1 (6.0 – 17.4)  13.1 (6.2 – 17.9)  14.2 (8.1 – 18.3)  5.7 (4.5 – 14.2)  11.1 (5.0 – 18.0)  11.8 (7.3 – 20.7)  13.1 (8.6 – 14.9)  

time spent sitting 
(hours/week) 

59.4 (34.6 – 72.8)  58.9 (37.5 – 72.1)  59.8 (35.1 – 69.3)  56.4 (23.9 – 75.8)  63.4 (36.9 – 75.0)  60.9 (37.0 – 66.7)  34.8 (22.9 – 55.9)  

time spent lying 
(hours/week) 

27.1 (8.9 – 70.7) 16.1 (7.4 – 24.0) 29.0 (9.4 – 73.7) 46.5 (20.9 – 74.8) 29.0 (9.1 – 70.2) 42.5 (7.1 – 75.1) 24.0 (10.2 – 44.5) 

not worn  
(hours/week) 3 

65.5 (3.7 – 78.8)  66.9 (58.5 – 98.7)  65.5 (2.0 – 76.5)  70.1 (6.4 – 91.8)  64.2 (2.4 – 76.2)  68.8 (34.5 – 75.7)  88.5 (69.4 – 92.0)  

 
Note: Values represent the median (IQR) unless noted otherwise.  
Abbreviations: CM= centimeters, KG= kilograms, M= meters, IQR= interquartile range, SD= standard deviation. BMI calculated with the function= 𝐵𝑀𝐼 = 𝑤𝑒𝑖𝑔ℎ𝑡/𝑙𝑒𝑛𝑔𝑡ℎ2 
SPPB= Short physical performance battery, CIT= cognitive impairment test  
1: 38 patients have cycled, 2: 36 patients walked the stairs, 3: 51 patients did not wear the sensor for some amount of time
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Entropy calculations    

High-pass and Low-pass filtered signals  
Table 5 presents the correlation between the SampEn and the SPPB score for the high-pass and 
low-pass filtered signals. The corresponding scatterplots are shown in appendix F. For the high-
pass filtered signal, there is a large correlation between the SPPB and the SampEn in V and ML 
directions for stair walking. The correlation indicates that a lower SampEn value measured during 
stair walking is associated with a higher SPPB value, which means that more regularity correlates 
with fewer limitations in physical functioning. In addition, during sitting, a lower entropy in V direction 
(for both high- and low-pass signals) indicates more cognitive impairment.   
Lastly, there is a high correlation between the SPPB and the SampEn in the V direction walking 
signals for the low pass filtered signal, meaning a lower entropy correlates with healthy physical 
functioning. The other activities had no correlations between SampEn and SPPB or CIT score.  
 
 
Table 5 Correlation between the sample entropy and the SPPB and CIT scores for the high-pass filter signals 

 
 
Activity       clinimetric 

 
Vertical 
ρ (p)  

High-pass          Low-pass 

Sample Entropy 
Mediolateral 

ρ (p) 
High-pass          Low-pass 

 
Anterior posterior 

ρ (p) 
High-pass          Low-pass 

Cycling1              CIT   
                        SPPB                 

0.03 (0.87)  
-0.10 (0.54) 

0.13 (0.46) 
-0.03 (0.87) 

0.05 (0.77) 
0.03 (0.84) 

-0.02 (0.91) 
0 (1) 

0.11 (0.54) 
-0.08 (0.64) 

0.20 (0.24) 
-0.04 (0.80) 

Stair -                  CIT  
Walking2         SPPB 

-0.09 (0.69) 
-0.60 (0.003) 

0.27 (0.22) 
-0.11 (0.64) 

-0.13 (0.58) 
-0.58 (0.005) 

0.09 (0.78) 
0.11 (0.62) 

-0.21 (0.35) 
-0.43 (0.04) 

0.06 (0.82) 
0.23 (0.31) 

Walking              CIT   
                        SPPB                 

0 (0.82) 
-0.24 (0.11) 

0.02 (0.94) 
-0.69 (0.00) 

0.05 (0.76) 
-0.27 (0.06) 

0.21 (0.28) 
0.02 (0.91) 

0.06 (0.67) 
-0.43 (0.04) 

0.04 (0.83) 
-0.16 (0.42) 

shuffling             CIT   
                        SPPB                 

-0.21 (0.17) 
-0.17 (0.27) 

-0.03 (0.85) 
-0.03 (0.84) 

-0.21 (0.17) 
-0.03 (0.87) 

-0.17 (0.26) 
-0.25 (0.11) 

-0.17 (0.26) 
-0.08 (0.61) 

-0.06 (0.69) 
0.02 (0.91) 

standing             CIT   
                        SPPB                 

-0.20 (0.17) 
-0.05 (0.72) 

-0.24 (0.10) 
-0.01 (0.95) 

-0.28 (0.06) 
-0.12 (0.40) 

-0.12 (0.40) 
-0.27 (0.06) 

-0.05 (0.73) 
0.02 (0.91) 

0.10 (0.51) 
-0.11 (0.47) 

Sitting                 CIT   
                        SPPB                 

-0.39 (0.006) 
-0.06 (0.69) 

-0.39 (0.005) 
-0.06 (0.70) 

-0.33 (0.023) 
-0.06 (0.67) 

-0.31 (0.03) 
-0.03 (0.85) 

-0.33 (0.022) 
-0.13 (0.38) 

-0.17 (0.24) 
-0.04 (0.81) 

Lying                  CIT   
                        SPPB                 

-0.28 (0.05) 
-0.11 (0.44) 

-0.18 (0.23) 
-0.11 (0.44) 

-0.23 (0.11) 
-0.12 (0.40) 

-0.16 (0.27) 
-0.18 (0.23) 

-0.28 (0.05) 
-0.16 (0.29)  

-0.04 (0.81) 
-0.11 (0.44)  

Unclassified       CIT   
                        SPPB                 
 

-0.21 (0.16) 
-0.20 (0.18) 

-0.18 (0.23) 
0.12 (0.41) 

-0.15 (0.29) 
-0.03 (0.86) 

0.03 (0.82) 
0.22 (0.14) 

-0.15 (0.31) 
-0.11 (0.44) 

0.07 (0.66) 
0.15 (0.31) 

Note: Bold values represent a statistically significant correlation after Bonferroni correction (p <0.006).  
Abbreviations: CIT = cognitive impairment test; SPPB = short physical performance battery; ρ = Pearson’s correlation 
coefficient, p = p-value, 1: 38 patients have cycled, 2: 36 patients walked the stairs 

 

Multi-scale Entropy   
The MSE profile, presenting the SampEn from the unclassified signal for each group of the SPPB, 
is visualized in figure 15. Visual inspection shows higher SampEn for healthy individuals on all the 
scales. However, except for scale 5, there were no statistically significant differences between 
healthy and limited functioning and non between the healthy and the risk group. The SampEn value 
from scale 5 (in ML direction) indicated that the group of patients that scored healthy functioning (μ 
=1.50, σ =0.09) have less regularity in their daily life movement than patients who were at risk for 
limited functioning or disabilities (μ =1.37, σ =0.18). The SampEn calculated from the unclassified 
signal showed no between healthy cognitive individuals and the patients with cognitive impairment 
(see Appendix H for detailed information).  
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In figure 16, the visualization of the MSE is shown for the activities walking and stair walking. For 
stair walking (figure 16 A), the mean SampEn for the healthy functioning group was higher than the 
risk group of the SPPB for all the time scales, except scale 1. There were differences in the AP 
direction and ML direction (See appendix G). These findings indicate that healthy individuals have 
less regularity in acceleration signals during stair walking than the risk group. During walking 
(Figure 16 B), the mean entropy for the at-risk group and limited patients was higher than the group 
mean for healthy individuals, which means that healthy individuals have more regularity in their 
acceleration during walking. Additionally, for the signals during lying and sitting (ML direction), more 
regularity in acceleration on one scale was associated with cognitive decline, see appendix H for 
more detailed information. The other activities showed no different group means for both SPPB 
and CIT scores, indicating no difference in regularity during these activities (i.e., cycling, standing, 
and shuffling) based on cognitive and physical functioning. The MSE profiles of all activities (of all 
acceleration directions) are presented in appendix G & appendix H.   
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Figure 15 Multi-Scale Entropy profile 
(μ +/- σ) representing the SampEn 
group means for the SPPB score for 
each time scale. The means are 
calculated from the unclassified 
signal (i.e., interval), in ML direction. 
The entropy is derived for the healthy 
subgroup (blue), the risk group (red) 
and the limited group (green).  
 Abbreviations: SampEn = sample 
entropy, SPPB = short physical 
performance battery, μ = mean,  
σ = standard deviation. SD = standard 
deviation, samp_ml = sample entropy 
in mediolateral direction.  
*p = 0.005 

       1               3              5               7              9            11           13            15           17            19 

(100 Hz) (33 Hz) (20 Hz) (14 Hz) (11 Hz) (9 Hz)  (8 Hz)  (7 Hz)  (6 Hz)  (5 Hz) 

         Scale 

Figure 16 Multi-Scale Entropy outcomes (μ +/- σ) represents the SampEn group means for the SPPB score. The means 
are calculated from the signals during A) stair walking (vertical direction), B) walking (anterior-posterior direction).  
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation. SD = standard deviation,           
samp_ml = sample entropy in mediolateral direction, samp_v = sample entropy in vertical direction 

B) A) 
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Discussion  

Take home message  
This study aimed to examine the association between sample entropy of daily life trunk 
accelerometry signals and clinimetrics that assess biopsychosocial functioning. The results show 
that patients with moderate SPPB scores had more regularity (lower SampEn) in their complete 
daily life acceleration signal and during stair-walking than the high SPPB group. This indicates that 
patients at risk for developing limited physical performance have more regularity in their daily life 
movement than healthy physical functioning patients. In addition, the cognitive impaired group (i.e., 
high CIT) had more regularity (lower SampEn) than the healthy group during cycling and sitting 
activities. However, the difference was only seen on one time scale. The SampEn of healthy 
cognitive individuals was not different from the cognitive impaired group during other activities. 
Nevertheless, the findings suggest daily life acceleration entropy is a promising measure to identify 
and signal functional decline. 
The secondary aim was to analyze the influence of different filter settings on the entropy outcome. 
There were no SampEn differences in the low and high-frequency domains concerning the 
correlation between the clinimetrics and the SampEn. However, the MSE showed opposite 
associations between SampEn and clinimetrics compared to the high- and low-pass filter. The 
contrary results advocate for an influence of the filter setting on the outcome of the SampEn. These 
findings underline the importance of the prespecified settings and the possibility that research with 
different filter/parameter settings cannot be compared with each other.   
 

Comparison with previous literature  
Our study is the first to our knowledge that calculated the regularity of all activities captured in daily 
life movement and associated the corresponding SampEn with physical and cognitive functioning. 
Thus, the study distinguishes itself from earlier performed research since the SampEn was 
calculated for daily life movement instead of merely walking activity. Additionally, different filter 
settings were applied to investigate the influence of prespecified settings 
 
There were contrary findings in the MSE calculation between the SampEn during walking compared 
to the other activities. The activity walking showed less regularity in patients at risk for limited 
physical functioning and already limited patients than healthy individuals. The literature also 
describes this association. For example, higher fall risk is associated with less regularity in 
acceleration signals while walking [19,20]. So, looking at pure walking activities, the existing 
literature and our result indicate that healthy individuals' acceleration shows more regularity than 
physically impaired individuals. Thus, there are differences between the healthy population and the 
individuals at risk or already limited during walking. However, the SampEN of the other activities 
was only different between the healthy population and the individuals at risk for physical limitation. 
The other activities showed no differences between healthy and physically limited individuals. This 
could indicate a nonlinear correlation between the regularity of acceleration signals and the physical 
functional status of individuals. On the lower scale of the MSE, the comparison between the three 
groups of the SPPB resulted in a U-shape-like image (figure 15, scale 1-3). Although, there was no 
significant difference. Bisi and colleagues described the same U-shape difference between the 
MSE curve associated with age [58]. The U-shape-like results suggest linear correlation or 
regression analysis may not be appropriate to analyze the SampEn.  
 
The use of entropy in medical research has grown over the last few years. Still, there are a lot of 
unsolved problems concerning the use of entropy measures [78,79]. For example, there is little 
knowledge concerning the selection of appropriate parameter settings [78]. In addition, the 
literature did not extensively describe the influence of filters on the entropy outcome [19]. Our 
results corroborate these challenges. The results from the high and low-pass filtered signals were 
comparable. However, the multi-scale method resulted in contrary findings. These contrary results 
highlight the significant influence of the chosen method and parameter settings to calculate the 
entropy. In this study, the kind of filter was not of influence on the outcome of the SampEn value. 
However, there is a difference between the MSE, which is the calculation of the unfiltered signal.  
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Therefore, we detected the influence of filtering on the entropy outcome. Unfortunately, based on 
our results, we cannot define if the filter removes fluctuations of biological or if it removes noise, 
which influences the entropy outcome. Further research should investigate the contribution of filters 
on the entropy outcome.  

 

Interpretation in terms of mechanisms  
The main findings show a higher SampEn (i.e., less regularity) for healthy physical functioning than 
physical deterioration. There is still an ongoing discussion about what causes a higher entropy in 
acceleration signals. Higher entropy in healthy individuals, compared to low entropy in physically 
limited patients, may be explained by the performed activities. Generally, physical deterioration is 
associated with sedentary behavior, and healthy individuals are more likely to have more variation 
in daily life activity. The SampEn measures the regularity of the acceleration. A logical explanation 
for less regularity is a considerable variation of activities. Performing activities in the woods, for 
example, leads to higher SampEn values because the ground is less stiff [60], and there are more 
external disturbances. Increased task demands are also known to be associated with higher 
entropy values [17].  Sedentary behavior can lead to fewer dual tasks during the day, which may 
lead to more regularity.  
 
Besides, physically healthy individuals are more likely to perform daily activities at higher speeds 
than less healthy individuals. Slow movement causes more samples per performed activity, 
meaning more redundant data is included in the SampEn calculation. The redundant data points 
cause low entropy values. Thus, speed difference may be one of the elements explaining the 
difference between physically healthy and limited individuals. We tried to remove redundant data 
points using different filters. However, the same settings are used for healthy and limited 
individuals. Thus, the used filter settings did probably not remove redundant data points caused by 
speeds differences. The same theorems might explain the association between cognitive 
impairment and more regularity. Individuals who are cognitively impaired have less movement 
speed [80] and are likely to perform fewer high-intensity activities and fewer dual tasks.  
 
Contrary results were noticed for the SampEn values of the gait signals. There was an association 
between higher SampEn values and physical limitations. These findings defy the arguments we 
just described. The control of the neuromuscular system could explain the decrease of regularity 
[81]. Neurophysiological deterioration leads to less control of the neuromuscular system and 
possibly leads to less control in muscle selection during gait. We think that less control could be an 
explanator of an increase in SampEn. Variation in daily life movement and highly complex activities 
or more dual tasks are likely to result in less regularity in healthy individuals. However, less stability 
(i.e., limited functioning) could lead to less regularity during gait. Nevertheless, it may be too early 
to make these conclusions. Further research should investigate the pathophysiological mechanism 
behind SampEn changes.  
 

Strengths and weaknesses  
One of the strengths of our research is the chosen study population. The research question is 
focused on community-dwelling older individuals and functional decline. Patients after hip fracture 
are at high risk for (further) functional decline. The included population consists of healthy physical 
individuals, persons at risk for decline, and already limited patients. Therefore, it was possible to 
investigate the possibility of using the SampEn as a biomarker for at-risk patients. We noticed 
differences between the healthy individuals and the individuals at risk for decline and not between 
healthy and limited individuals. So based on our study population, the SampEn is a possible 
indicator for the at-risk population.  
 
Contrary to most studies, our study's measurement is based on daily life trunk acceleration signals. 
So, the results are representing the everyday life of the individual. This assessment offers the 
opportunity to measure the functional status of a person ambulatory in a non-time-consuming 
manner. Therefore, this assessment is accessible to implement in daily practice. Additionally, the 
algorithm used to analyze the daily life activities separately is already validated in different research 
settings [14].  
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Some limitations should be considered. First, the patient population was less representative for 
cognitive impairment. The moderate cognitive impaired group only consisted of 4 patients and the 
significant impairment group of 8. Therefore, the two subgroups were merged, leading to a group 
of 12 patients that showed cognitive impairment. Due to this merge, it was not possible to 
associated patients at risk (i.e., moderate cognitive decline) for a decline in mental functioning.  
Secondly, there were lower than specified sample sizes of 45 per group, leading to potentially 
underpowered conclusions'. Therefore, there is a possibility that larger group sizes lead to more 
entropy differences between groups.  
 
Lastly, the calculation of SampEn excluded all the activity periods less than 10 seconds. This 
method led to the exclusion of most activity periods during (stair)walking, shuffling, and standing. 
The periods of these activities generally took less than 10 seconds. The accuracy of the 
classification algorithm could be a part of this. The sensitivity of the Mc Roberts classification 
algorithm is 93.5 %, and the specificity is 71.8 % [14]. A sensitivity of 93.5% may have led to wrongly 
classified signals. For example, very short periods (< 1 second) of standing and shuffling interrupt 
the walking episodes. Whether this should have been considered as walking is debatable [82]. We 
decided to exclude these data to avoid misleading results. Despite the limitations, we believe the 
potential errors are not the explanation of our findings.  
 

Clinical relevance  
Signals obtained from daily-life acceleration may help to improve the identification and treatment 
of functional decline. The SampEn difference between healthy and limited physical patients 
indicates the possibility to detect individuals at risk for physical functioning. Therefore, acceleration 
entropy is a possible biomarker for the early detection of functional decline. If the measurement is 
successful, implementation could lead to early personalized care to minimize the individual's 
functional status deterioration. Less deterioration of the functional status will lead to less accidents 
and less hospitalization, leading to decreased demand on the healthcare system and less 
healthcare costs. Additionally, SampEn is a high-performance algorithm that analyses raw 
acceleration signals without being time-consuming for both patient and caregiver. Additionally, the 
SampEn is a user-friendly method that enables caregivers to follow their patients' functional status 
or rehabilitation progress.  
 
Further research is necessary before the acceleration entropy is eligible for implementation into the 
healthcare system. First, our study only included patients after hip surgery. The patient 
characteristics (i.e., hip fracture and the mean age of the population) imply the population is already 
(at risk) for limited functioning. Comparison with healthy and younger individuals is desirable to 
validate the possibility of detecting at-risk patients. The inclusion of healthy individuals is also 
necessary to investigate normative entropy values. However, it is unknown if there is a possibility 
of setting these limits due to the limited possibilities to compare different studies and the unknown 
mechanism behind the changes in regularity. It may not be possible to set normative entropy 
values. Nevertheless, we aim to use entropy to detect changes in the functional status of an 
individual. Longitudinal data are needed to measure the sensitivity and possibility of detecting intra-
individual decline of functioning.  
It is recommended to describe the used parameter and filter settings carefully to make sure further 
research can be compared with each other. We compared only two different filter settings, and 
there was no difference between them. However, we saw the difference between the SampEn 
outcome of the filtered signals compared to the unfiltered signal. Further research is needed to 
investigate the contribution of filters on the entropy outcome. It should be defined if the removement 
of biologically significant fluctuation or the movement of noise causes these differences in SampEn 
outcome,  
 

Conclusion  
More regular accelerations indicate the development of limited physical performance and 
deterioration of cognitive functions. The findings advocate that acceleration entropy in daily life 
activities is a promising proxy for physical and mental (biopsychological) functions. A large-scale 
longitudinal study is needed to examine the potential added value of daily acceleration for the early 
detection of biopsychosocial functioning.  
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Appendices   

Appendix A: Example Calculation of the Sample Entropy    
In figure 17, a time series with N = 21 is shown. The following steps describe how to calculate the 
SampEn.   

1. For the calculation of the SampEn value, some must select a window size for the vectors. 
In this case, the window will be 2 (m = 2). The same applies to the selection of the radius 
tolerance. In this case we select 0.15 (r = 0.15) 

2. The signal is "divided" into vectors with length m. Each vector will be compared with all the 
other vectors within the time series, except for itself. Thus x(1) with x(2), x(3),...,x(N). and 
so forth.  
Two vectors are considered possible (i.e., similar) if the comparison between elements is 
within the tolerance window r. This step is repeated for length m+1 to check for a match.  

a. Comparison from vector x(1) with x(2) 
The first vector is x(1) = [u(1) u(2)] = [-0.5, -0.4] 
The second vector is x(2) = [u(2) u(3)] = [-0.4, -0.3] 
Are these vectors a possible? => 𝑑[|𝑥𝑚(𝑗) − 𝑥𝑚(𝑖)|] < 𝑟 ]  

      => |[u(1) – u(2)]| = |[-0.5 – 0.4 ]| = |0.1| < 0.15   => Thus it is possible  
      => |[u(2) – u(3)]| = |[-0.4 – 0.3 ]| = |0.1| < 0.15   => Thus it is possible 

 Are these vectors a match => 𝑑[|𝑥𝑚+1(𝑗) − 𝑥𝑚+1(𝑖)|] < 𝑟 ] 
          => |[u(1) – u(2)]| = |[-0.5 – - 0.4 ]| = |0.1| < 0.15   => Thus it is possible  
          => |[u(2) – u(3)]| = |[-0.4 – -0.3 ]| = |0.1| < 0.15   => Thus it is possible 
          => |[u(3) – u(4)]| = |[-0.3 – -0.2 ]| = |0.1| < 0.15   => Thus it is Match 
 
b. Comparison from vector x(9) with x(12) 

The first vector is x(9) = [u(9) u(10)] = [0.3, 0.4] 
The second vector is x(12) = [u(12) u(13)] = [0.4, 0.3] 
Are these vectors a possible? => 𝑑[|𝑥𝑚(𝑗) − 𝑥𝑚(𝑖)|] < 𝑟 ]  

 => |[u(9) – u(12)]| = |[0.3 – 0.4 ]| = |-0.1| < 0.15   => Thus it is possible  
=> |[u(10) – u(13)]| = |[0.4 – 0.3 ]| = |0.1| < 0.15   => Thus it is possible 
Are these vectors a match => 𝑑[|𝑥𝑚+1(𝑗) − 𝑥𝑚+1(𝑖)|] < 𝑟 ] 
=> |[u(9) – u(12)]| = |[0.3 – 0.4 ]| = |-0.1| < 0.15   => Thus it is possible  
=> |[u(10) – u(13)]| = |[0.4 – 0.3 ]| = |0.1| < 0.15   => Thus it is possible  

  => |[u(11) – u(14)]| = |[0.5 – 0.2 ]| = |0.3| > 0.15   => Thus it is no Match 
3. The total amount of matches and possibles are filled into the equation from paragraph 3.2.1 

and the entropy is calculated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 Example of a time series [46]. Abbreviations: u = the timeseries, x = vector  
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Appendix B: Sampling rate time series  
Figure 18 presents a signal (black line) with some data points (dots). These data points are 
measured using a fixed sampling rate. These data points are eligible to recreate a matching line 
when the signal is unknown. A higher sample frequency (figure B) will add more unnecessary data 
points to represent the signal. A lower sample frequency will lead to fewer data points (figure C). 
With these few data points, it is almost impossible to recreate the original signal [bron afbeelding].  
Thus, when oversampling occurs, there will be redundant data points. The redundant data points 
will lower the entropy value (i.e., less new information) [17]. Therefore, there is a recommendation 
to rescale (downsampling) the data to an appropriate rate in case of oversampling. If the data is 
under-sampled, the time series will not represent the signal of interest and would therefore be 
inappropriate to calculate the SampEn. When there is an appropriate sample rate, the N could be 
selected based on the research question.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18 Signal with corresponding data points, measured by: 
A) Fixed and appropriate sampling rate, B) Higher sample frequency, causing oversampling, C) To low sample frequency, causing 
under sampling [Spatiotemporal correlation–based adaptive sampling algorithm for clustered wireless sensor networks]  
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Appendix C: Preparation of the data  
As mentioned in the methods, the MoveMonitor has a pattern recognition algorithm that classifies 
several types of activity based on linear acceleration. It can differentiate the activities: walking, 
stair-walking, standing, sitting, shuffling, cycling, and lying. It also calculates movement parameters 
such as duration, intensity, and frequency.  

Patterns of transitions between activities are used to differentiate between upward and 
downward actions. Upward transitions are detected at the beginning of a standing phase and 
downward transitions at the beginning of a sitting or lying phase (figure 19).  
The algorithm uses angle calculation based on sensor tilt to determine whether the activity is lying 
(angle <30) or sitting.  
Gait period detection is based on an intensity threshold. The periods are scanned using frequency 
and already validated step detection methods [ ]. The number of steps, intensity, and direction of 
the motion defines if the patient is walking or shuffling 
 
 

 
Figure 19 Pattern recognition of transitions  

 
With the use of this classification, the raw signal is divided into different activities. The classification 
of activities is available in a separate file for each patient. For this analysis, the entropy is calculated 
from periods of 10 seconds. First, the activities < 10 seconds are removed from the file. Next, all 
the episodes are sorted per activity. The activity episodes were divided into bouts of 10 seconds. 
For each of these bouts, the entropy was calculated (figure 20). This distribution was done so that 
the input for the entropy calculations is the same size.  
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4x 10 seconds  
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Figure 20 Distribution of the activity classification. First, activities less than 10 seconds are 
filtered out. Secondly, the activity periods are divided into separate files for each activity. 
Finally, the activity periods are divided into bouts of 10 seconds.   
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Appendix D: distribution of episodes duration per activity   
The classification files list all the activities performed by the patient during the week, resulting in 

short periods representing one activity, from 0-60 seconds. The length of all these periods for all the 

included patients is shown in figure 21. Most sitting and lying, and cycling episodes lasted 60 

seconds. The majority of the (stair)walking, standing, and shuffling episodes took less than 15 

seconds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 Histograms of all the episodes duration per activity 



39 
 

 

Appendix E: Visualization of the raw acceleration signal   
The content of the raw signal is decisive for the selection of the parameter settings of the SampEn 

calculation and the selection of the most appropriate filter. An example of the week measurement of 

one patient is given in figure 22. The corresponding periodograms is shown in figure 23. The 

periodogram showed that most signals were in the low-frequency spectrum, and there is a 

downwards trend towards higher frequencies. For the V direction, the last frequency peak is at 

approximately 6 Hz. Beyond 6 Hz, there is a downwards trend in the occurrence of the frequencies. 

The highest observed frequency is 50 Hz, because of a low-pass filter of 50 hertz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 Example of the whole measurement. The raw acceleration signals are shown for the three different directions. The x-axis 
represents the time (days), and the y-axis gives the amount of acceleration (g). G: gravity (9.8 meter/seconds2) 
 
 

Figure 23 Example of the periodogram. The figure represents the distribution of the measured frequencies during the whole 
week.  dB: decibels, Hz: Hertz 
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Figure 24 Scatterplot of sample entropy of the highpass signals during walking against clinimetrics, with the corresponding 
regression line fitted through the data points. A) Sample entropy of acceleration in vertical direction against the SPPB score, B) 
Sample entropy of acceleration in mediolateral direction against the SPPB score, C) Sample entropy of acceleration in anterior 
posterior direction against the SPPB score, D) Sample entropy of acceleration in vertical direction against the CIT score, E) Sample 
entropy of acceleration in mediolateral direction against the CIT score, F) Sample entropy of acceleration in anterior posterior 
direction against the CIT score 
Abbreviations: samp_v = sample entropy in vertical direction, samp_ml = sample entropy in mediolateral direction,  
samp_ap = sample entropy in anterior posterior direction, CIT = cognitive impairment scale, SPPB = short physical performance 
battery  

Appendix F: Scatterplots sample entropy vs. clinimetrics, High-pass filter   
This appendix shows the relation between the sample entropy values and the SPPB or CIT score, 

using scatterplots. The scatterplots were made for all the different activities and the unclassified 

signal. The y-axis describes the SampEn (from the signal in V, ML, and AP direction) derived from the 

high-pass filtered signals, and the x-axis represents the SPPB or CIT score.  

Scatterplot signals during walking: SampEn vs SPPB / CIT  
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Scatterplot signals during cycling: SampEn vs SPPB / CIT  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 Scatterplot of sample entropy of the highpass signals during cycling against clinimetrics, with the corresponding regression line 
fitted through the data points. 
A) Sample entropy of acceleration in vertical direction against the SPPB score, B) Sample entropy of acceleration in mediolateral direction 
against the SPPB score, C) Sample entropy of acceleration in anterior posterior direction against the SPPB score, D) Sample entropy of 
acceleration in vertical direction against the CIT score, E) Sample entropy of acceleration in mediolateral direction against the CIT score, F) 
Sample entropy of acceleration in anterior posterior direction against the CIT score 
Abbreviations: samp_v = sample entropy in vertical direction, samp_ml = sample entropy in mediolateral direction,  
samp_ap = sample entropy in anterior posterior direction, CIT = cognitive impairment scale, SPPB = short physical performance battery  
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Scatterplot signals during stair walking: SampEn vs SPPB / CIT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 Scatterplot of sample entropy of the highpass signals during stair walking against clinimetrics, with the corresponding regression 
line fitted through the data points. 
A) Sample entropy of acceleration in vertical direction against the SPPB score, B) Sample entropy of acceleration in mediolateral direction 
against the SPPB score, C) Sample entropy of acceleration in anterior posterior direction against the SPPB score, D) Sample entropy of 
acceleration in vertical direction against the CIT score, E) Sample entropy of acceleration in mediolateral direction against the CIT score, F) 
Sample entropy of acceleration in anterior posterior direction against the CIT score 
Abbreviations: samp_v = sample entropy in vertical direction, samp_ml = sample entropy in mediolateral direction,  
samp_ap = sample entropy in anterior posterior direction, CIT = cognitive impairment scale, SPPB = short physical performance battery  
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Scatterplot signals during shuffling: SampEn vs SPPB / CIT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 Scatterplot of sample entropy of the highpass signals during shuffling against clinimetrics, with the corresponding regression line 
fitted through the data points. 
A) Sample entropy of acceleration in vertical direction against the SPPB score, B) Sample entropy of acceleration in mediolateral direction 
against the SPPB score, C) Sample entropy of acceleration in anterior posterior direction against the SPPB score, D) Sample entropy of 
acceleration in vertical direction against the CIT score, E) Sample entropy of acceleration in mediolateral direction against the CIT score,  
F) Sample entropy of acceleration in anterior posterior direction against the CIT score 
Abbreviations: samp_v = sample entropy in vertical direction, samp_ml = sample entropy in mediolateral direction,  
samp_ap = sample entropy in anterior posterior direction, CIT = cognitive impairment scale, SPPB = short physical performance battery  
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Scatterplot signals during standing: SampEn vs SPPB / CIT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 Scatterplot of sample entropy of the highpass signals during standing against clinimetrics, with the corresponding regression 
line fitted through the data points. 
A) Sample entropy of acceleration in vertical direction against the SPPB score, B) Sample entropy of acceleration in mediolateral direction 
against the SPPB score, C) Sample entropy of acceleration in anterior posterior direction against the SPPB score, D) Sample entropy of 
acceleration in vertical direction against the CIT score, E) Sample entropy of acceleration in mediolateral direction against the CIT score, F) 
Sample entropy of acceleration in anterior posterior direction against the CIT score 
Abbreviations: samp_v = sample entropy in vertical direction, samp_ml = sample entropy in mediolateral direction,  
samp_ap = sample entropy in anterior posterior direction, CIT = cognitive impairment scale, SPPB = short physical performance battery  
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Scatterplot signals during sitting: SampEn vs SPPB / CIT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 Scatterplot of sample entropy of the highpass signals during sitting against clinimetrics, with the corresponding regression line 
fitted through the data points. 
A) Sample entropy of acceleration in vertical direction against the SPPB score, B) Sample entropy of acceleration in mediolateral direction 
against the SPPB score, C) Sample entropy of acceleration in anterior posterior direction against the SPPB score, D) Sample entropy of 
acceleration in vertical direction against the CIT score, E) Sample entropy of acceleration in mediolateral direction against the CIT score, F) 
Sample entropy of acceleration in anterior posterior direction against the CIT score 
Abbreviations: samp_v = sample entropy in vertical direction, samp_ml = sample entropy in mediolateral direction,  
samp_ap = sample entropy in anterior posterior direction, CIT = cognitive impairment scale, SPPB = short physical performance battery  
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Scatterplot signals during lying: SampEn vs SPPB / CIT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 Scatterplot of sample entropy of the highpass signals during lying against clinimetrics, with the corresponding regression line fitted 
through the data points. 
A) Sample entropy of acceleration in vertical direction against the SPPB score, B) Sample entropy of acceleration in mediolateral direction 
against the SPPB score, C) Sample entropy of acceleration in anterior posterior direction against the SPPB score, D) Sample entropy of 
acceleration in vertical direction against the CIT score, E) Sample entropy of acceleration in mediolateral direction against the CIT score, F) 
Sample entropy of acceleration in anterior posterior direction against the CIT score 
Abbreviations: samp_v = sample entropy in vertical direction, samp_ml = sample entropy in mediolateral direction,  
samp_ap = sample entropy in anterior posterior direction, CIT = cognitive impairment scale, SPPB = short physical performance battery  
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Scatterplot signals unclassified signal: SampEn vs SPPB / CIT  

 

 

 

Figure 30 Scatterplot of sample entropy of the highpass signals from the unclassified signal against clinimetrics, with the corresponding 
regression line fitted through the data points. 
A) Sample entropy of acceleration in vertical direction against the SPPB score, B) Sample entropy of acceleration in mediolateral direction 
against the SPPB score, C) Sample entropy of acceleration in anterior posterior direction against the SPPB score, D) Sample entropy of 
acceleration in vertical direction against the CIT score, E) Sample entropy of acceleration in mediolateral direction against the CIT score, F) 
Sample entropy of acceleration in anterior posterior direction against the CIT score 
Abbreviations: samp_v = sample entropy in vertical direction, samp_ml = sample entropy in mediolateral direction,  
samp_ap = sample entropy in anterior posterior direction, CIT = cognitive impairment scale, SPPB = short physical performance battery  
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Appendix G: Visualization of the Multi-Scale Entropy, stratified by SPPB score  
MSE plots: Mean SampEn, SPPB groups, cycling  
 
For each activity, the SampEn value is calculated on different 

timescales. The calculations are done using the Multi-Scale Entropy 

approach, resulting in SampEn group means for each scale. The 

groups were stratified by the SPPB score, as described in the method. 

The appendix visualizes the MSE profiles for each activity in the 

directions: V, ML, and AP.  

 

 

 

 

Figure 31 SampEn outcomes (μ +/- σ) represents the groups means for the SPPB 
score, in the directions: vertical, mediolateral and anterior posterior.  
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 
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MSE plots: Mean SampEn, SPPB groups, Stair walking  
 

 

 

 

 

 

 

 

 

Figure 32 SampEn outcomes (μ +/- σ) represents the groups means for the SPPB 
score, in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 
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MSE plots: Mean SampEn, SPPB groups, Walking 
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Figure 33 SampEn outcomes (μ +/- σ) represents the groups means for the SPPB 
score, in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 

* 

* 
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* * 
* * 
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MSE plots: Mean SampEn, SPPB groups, Shuffling  
 

 

 

 

 

 

 

Figure 34 SampEn outcomes (μ +/- σ) represents the groups means for the SPPB 
score, in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 
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MSE plots: Mean SampEn, SPPB groups, standing  
 

 

 

 

 

 

 

 

 

Figure 35 SampEn outcomes (μ +/- σ) represents the groups means for the SPPB 
score, in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 



53 
 

 

MSE plots: Mean SampEn, SPPB groups, sitting  
 

 

 

 

 

 

 

 

 

 

Figure 36 SampEn outcomes (μ +/- σ) represents the groups means for the SPPB 
score, in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 
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MSE plots: Mean SampEn, SPPB groups, Lying  
 

 

Figure 37 SampEn outcomes (μ +/- σ) represents the groups means for the SPPB 
score, in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 
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Appendix H: Visualization of the Multi-Scale Entropy, stratified by CIT score 
MSE plots: Mean SampEn, CIT groups, cycling  
 
For each activity, the SampEn value is calculated on different 

timescales. The calculations are done using the Multi-Scale Entropy 

approach, resulting in SampEn group means for each scale. The 

groups were stratified by the CIT score, as described in the method. 

The appendix visualizes the MSE profiles for each activity in the 

directions: V, ML, and AP.  

 

 

 

 

 

Figure 38 SampEn outcomes (μ +/- σ) represents the groups means for the CIT score, 
in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 

* 
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MSE plots: Mean SampEn, CIT groups, Stair walking   

Figure 39 SampEn outcomes (μ +/- σ) represents the groups means for the CIT score, 
in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 
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MSE plots: Mean SampEn, CIT groups, Walking   
 

 

 

 

 

 

Figure 40 SampEn outcomes (μ +/- σ) represents the groups means for the CIT score, 
in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 
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MSE plots: Mean SampEn, CIT groups, Shuffling  
 

 

 

 

 

 

 

 

Figure 41 SampEn outcomes (μ +/- σ) represents the groups means for the CIT score, 
in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 
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MSE plots: Mean SampEn, CIT groups, standing   
 

 

 

 

 

 

 

 

 

Figure 42 SampEn outcomes (μ +/- σ) represents the groups means for the CIT score, 
in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 
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MSE plots: Mean SampEn, CIT groups, sitting   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43 SampEn outcomes (μ +/- σ) represents the groups means for the CIT score, 
in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 

* 
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MSE plots: Mean SampEn, CIT groups, Lying  
 

Figure 44 SampEn outcomes (μ +/- σ) represents the groups means for the CIT score, 
in the directions: vertical, mediolateral and anterior posterior. 
Abbreviations: SampEn = sample entropy, μ = mean, σ = standard deviation.           
SD = standard deviation, samp_ml = sample entropy in mediolateral direction,        
samp_v = sample entropy in vertical direction 


