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ABSTRACT 
The ability to make appropriate delegation decisions is an impor-
tant prerequisite of efective human-AI collaboration. Recent work, 
however, has shown that people struggle to evaluate AI systems in 
the presence of forecasting errors, falling well short of relying on 
AI systems appropriately. We use a pre-registered crowdsourcing 
study (� = 611) to extend this literature by two underexplored cru-
cial features of human AI decision-making: choice independence and 
error type. Subjects in our study repeatedly complete two prediction 
tasks and choose which predictions they want to delegate to an 
AI system. For one task, subjects receive a decision heuristic that 
allows them to make informed and relatively accurate predictions. 
The second task is substantially harder to solve, and subjects must 
come up with their own decision rule. We systematically vary the 
AI system’s performance such that it either provides the best possi-
ble prediction for both tasks or only for one of the two. Our results 
demonstrate that people systematically violate choice independence 
by taking the AI’s performance in an unrelated second task into 
account. Humans who delegate predictions to a superior AI in their 
own expertise domain signifcantly reduce appropriate reliance 
when the model makes systematic errors in a complementary ex-
pertise domain. In contrast, humans who delegate predictions to 
a superior AI in a complementary expertise domain signifcantly 
increase appropriate reliance when the model systematically errs in 
the human expertise domain. Furthermore, we show that humans 
diferentiate between error types and that this efect is conditional 
on the considered expertise domain. This is the frst empirical ex-
ploration of choice independence and error types in the context 
of human-AI collaboration. Our results have broad and important 
implications for the future design, deployment, and appropriate 
application of AI systems. 
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1 INTRODUCTION 
Humans collaborate with AI in many important decision domains, 
ranging from everyday product recommendations to critical work-
place predictions in felds like medicine, law or fnancial services 
[1–4, 15, 33, 34]. Researchers and policy makers regularly stress the 
importance of human agency in these situations, e.g., for ethical, 
legal and safety reasons [9, 17, 20, 64, 65, 71, 96, 107, 108]. Follow-
ing that principle, this article focuses on appropriate delegation 
as a crucial instantiation of human-AI collaboration. A decision 
maker faces multiple tasks, and decides for which ones to rely on 
an AI system. Ideally, this process involves carefully considering 
the predictive or diagnostic accuracy of each choice alternative. For
example, a consumer could rely on recommender systems in so far 
as they have produced better outcomes for specifc product types 
in the past or demonstrate capabilities that suggest desirable out-
comes. Similarly, many judges would beneft from delegating bail 
decisions to predictive algorithms [7], and a physician may want to 
outsource certain parts of the diagnostic process when AI models 
can leverage vast and representative amounts of historical data 
[8, 80, 106]. If implemented appropriately, delegation to superior 
AI systems can create more efective workfows and produce better 
consumer outcomes (i.e, optimal human-AI team performance [10]).

However, there are at least three factors that impede such a 
scenario. One, humans struggle to consistently enforce good dele-
gation rules in the presence of AI [67]. For example, recent work 
on algorithm aversion shows that humans over-weigh errors by au-
tomated decision systems, leading to substantial under-utilization 
[16, 30, 84]. Two, humans may not identify when a problem should 
be delegated to an AI system because of inadequate self or task 
assessments [39, 47, 94]. Three, efective delegation requires task-
based choice independence from the human decision maker. Crudely, 
the independence axiom states that if a decision maker prefers to 
delegate task A to an AI system when the AI system makes good 
predictions for tasks A and B, they should also prefer to delegate 
task A to an AI system when the system makes good predictions 
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for task A but bad predictions for the unrelated task B. This ax-
iom underlies the assumption that human-AI collaboration benefts 
particularly from AI systems optimized to assist humans in their 
weaker domains, i.e., complementary AI. For example, a physician 
using an AI system to augment their own diagnosis may recognize 
that the model provides useful information for common illnesses 
such as allergies or the fu but is less reliable for rare conditions 
like epilepsy. In that case, the physician should be able to judge the 
model’s usefulness for common diseases independently of its other 
shortcomings. Despite the importance and relevance of this assump-
tion, choice independence has not been empirically investigated 
within the broad context of human-AI collaboration. 

This paper examines the efcacy of human-AI delegation when 
humans face multiple tasks. We use an online experiment in which 
subjects make a series of predictions based on three input numbers 
for two diferent outcomes of interest. For one task, subjects receive 
a simple decision heuristic and are thereby enabled to make very 
accurate predictions. We call this the human expertise domain. The 
second task is more complex, and subjects only learn through lim-
ited observation and experience, resulting in lower accuracy. This 
is the complementary expertise domain. Our setup refects that most 
human decision makers have heterogeneous capabilities that map 
diferently onto their various problem sets. Instead of relying on 
their own predictions, subjects can also choose to delegate each task 
to an AI system. We systematically vary the performance of the AI 
system for each outcome of interest. Depending on the treatment,1 

the AI system either (1) makes the best possible prediction for both 
outcomes, (2) makes systematic errors for the complex task, or (3) 
makes systematic errors for the easy task. This allows us to analyze 
two crucial elements of human-AI collaboration: 

RQ1: Does the independence axiom of choice hold for dele-
gation decisions in human-AI collaboration? 

RQ2: How do humans condition their delegation choices on 
objective performance diferences of an AI system be-
tween diferent prediction tasks? 

Second, we vary both the error type caused by randomness in an 
uncertain forecasting environment and the error type caused by a 
systematic bias in the AI system’s predictions. Our setup diferenti-
ates between continuous but relatively small inaccuracies, and rare 
but large prediction errors that may fall beyond the bounds of being 
reasonable. For example, in many fnancial decision domains or 
pricing predictions, AI models will almost never ofer the "perfect" 
solution, instead exhibiting good and stable performances without 
any catastrophic deviations. On the other hand, even objectively 
"small" deviations in models used for self-driving cars or everyday 
medical diagnoses may result in large costs for the human delegator 
[5]. More generally, diferentiating between diferent error types 
allows us to gauge which errors designers and developers should 
prioritize when training their models in order to maximize uptake. 

1Note that we use the word ‘treatment’ interchangeably with ‘experimental condition’ 
in this paper. 

RQ3: How do diferent prediction error types infuence hu-
man reliance on a relatively more accurate AI system? 

Our results show that humans consistently violate the choice in-
dependence assumption when delegating predictions to a superior 
AI system. Furthermore, the efect appears strongly conditional on 
the expertise domain. When an AI system makes the best-possible 
prediction for the easy task where humans receive a decision heuris-
tic and are therefore relatively accurate, systematic AI errors in the 
complementary expertise domain reduce delegation shares for the 
easy task. In contrast, when the AI system functions as a comple-
ment and makes the best-possible prediction only for the complex 
task, systematic AI errors in the human expertise domain can in-
crease delegation shares for the complex task. 

Regarding error type, there is moderate evidence that partici-
pants are more likely to delegate their complex predictions to the 
best-possible AI system under continuous, rather than rare high-
variance randomness. This pattern seems to be driven by lower 
subject self-confdence in prediction environments where perfect 
predictions are extremely rare. 

Beyond that, we show that humans strongly condition their dele-
gation behavior on objective AI system performance diferences. In 
the human expertise domain, this leads to less delegation by humans 
who outperform a systematically erring AI system. In the comple-
mentary expertise domain, all participants signifcantly adjust their 
delegation shares downwards, irrespective of the performance level. 
This highlights the importance of expertise in building up the nec-
essary meta-knowledge to utilize efective delegation rules. Lay 
populations may be less likely to tolerate more accurate but erring 
AI systems. 

These results have strong implications for the design and applica-
tion of AI systems. It is important to note that almost all documented 
efects depend on the considered expertise domain, despite the AI 
system outperforming almost every single human forecaster irre-
spective of treatment or problem. Humans appear to make very dif-
ferent choices depending on their self-confdence and the existence 
of helpful decision rules. This may be particularly important when 
thinking about designing systems for either experts or laypeople. 
Regarding our specifc research questions, we provide strong evi-
dence that humans do not evaluate AI systems task-independently. 
Whenever a system performs more than one function and exhibits 
performance diferences between them, there could be implications 
for human utilization. For instance, a radiologist who observes the 
AI system’s inaccuracies for complicated long-tail low-probability 
illnesses may reduce benefcial AI reliance in mainstream diagnoses 
[99]. On the other hand, truly complementary systems that strongly 
outperform humans in specifc tasks may even beneft dispropor-
tionately from more fne-tuning that trades of their performance in 
the human expertise domain (see e.g. [53]). Further, our results sug-
gest that error type can mediate the relationship between human 
delegation and AI performance. Areas that select for low-frequency 
but high-impact randomness, like the medical domain, may be 
particularly vulnerable to harmful algorithm aversion. 
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Figure 1: Illustration of the basic IA in our human-AI collaboration framework. 

2 BACKGROUND AND RELATED WORK 

2.1 Choice Independence 
The independence axiom (IA) is an integral part of decision theory 
across various social sciences. Rational choice theory, for instance, 
builds on expected utility theory [101], which postulates choice 
independence as one of four central axioms. The IA is therefore 
foundational to neoclassical microeconomics and modern math-
ematical theories of decisions under uncertainty. Following von 
Neumann and Morgenstern, it states that human preferences be-
tween uncertain gambles should not change with the introduction 
of an additional, common gamble. Thus, if a decision maker prefers 
gamble A over gamble B, the introduction of a third gamble C should 
not change the decision maker’s preference order over gambles A 
and B. Since its inception, the assumption has been subject to con-
tinuous debate. For decades, experiments have shown that in certain 
situations, humans fail to comply with the axiom [6, 57, 70, 79]. 
They often do not evaluate options in isolation, but in reference 
to, sometimes one, sometimes several other options [70, 72, 95]. 
One prominent example is the attraction or decoy efect, where the 
strategic addition of an asymmetrically dominated inferior alterna-
tive increases the attractiveness of the dominating option [52, 88]. 
Recent studies, however, have found it difcult to replicate these 
violations across a large number of choice environments [38, 105]. 
Indeed, there is evidence that a signifcant proportion of people do 
adhere to choice independence [44, 50, 68, 76] and that previously 
documented violations of IA can be empirically fragile [13, 26]. Still, 
several behavioral regularities that contradict the IA, such as the 
certainty efect or subjective probability weighting, largely remain 
empirically robust [91]. 

Overall, it is difcult to ascertain the "true" validity of the IA. 
There are undoubtedly many everyday decisions where many hu-
mans act in accordance with the axiom. Beyond very specifc exper-
imental gambling environments, we have little consistent evidence 
that would allow researchers to make generalizable predictions 
about which factors determine behavioral violations of IA. There 
is no one model that can simultaneously account for all choice 
patterns documented in the literature [58, 81]. Furthermore, to the 
best of our knowledge, choice independence has not yet been ana-
lyzed in forecasting, delegation, or advice-taking contexts. Instead, 
most of the literature on choice independence focuses on a decision 
maker’s choices between uncertain, risky, or ambiguous alterna-
tives, and how adjustments of existing options, or the introduction 

of novel options, change the decision maker’s revealed preference 
ordering. 

In this paper, we argue that the decision of a human forecaster 
between their own and an AI system’s prediction is comparable to a 
decision between two uncertain gambles.2 While the forecaster may 
have some information about the average performance level of ei-
ther alternative, the accuracy of each individual prediction is always 
uncertain. This may be due to imperfect information and limited 
computational capabilities, or simply environmental randomness. 
A rational forecaster should evaluate the two options (themselves 
vs. AI system) for a given task, and, all else equal, choose the one 
with the highest subjectively expected accuracy. Furthermore, their 
preference order should not change in the presence of a distinct 
second task. A rational agent will evaluate both delegation deci-
sions in isolation, implying that across diferent variations of any 
Task B (e.g., diferent levels of human and AI-system prediction 
accuracy, variance, or error type), preference ratios for any Task 
A remain constant (see Figure 1). This relationship holds as long 
as the variations in Task B have no informative value for Task A, 
meaning the two tasks are independent of one another. 

2.2 Delegation in Human-AI-Collaboration 
This article relates to the growing literature on reliance and delega-
tion within human-AI collaboration [45, 46]. In their seminal paper, 
Dietvorst et al. [30] show that human forecasters strongly over-
weigh errors by superior algorithmic decision systems and therefore 
tend to rely on inferior human alternatives, resulting in substan-
tial efciency losses. This remarkably resilient pattern has been 
replicated in many contexts [16, 21, 22, 29, 31, 51, 59, 83, 85, 89, 90], 
although humans have also exhibited preferences for algorithms in 
task domains that are perceived as "objective" [21, 59, 69]. Research 
on perceptions of and information about algorithms suggests only 
small to ambiguous efects of AI knowledge on delegation [59, 84]. 
Similarly, there is mixed evidence on algorithms that demonstrate 
an ability to learn, although most research points towards increases 
in utilization [12, 25, 89]. Endowing human decision makers with 
agency over an algorithm’s output substantially improves model 

2Of course, there are also important diferences. The forecaster has agency over their 
own performance, which can signifcantly determine choice outcomes. Depending on 
the human’s knowledge about their own and the AI system’s performance, there can be 
asymmetric information, which translates into asymmetric uncertainty. Furthermore, 
literature on forecasting and advice-taking heavily suggests a broad prevalence of 
overconfdence and egocentric discounting among human forecasters [14, 24, 98]. 
These diferences underline the importance of our research because previous results 
on choice independence cannot be readily applied to human-AI collaboration. 
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Figure 2: Training round prediction screen (left) and feedback screen (right). 

evaluations and delegation choices [16, 22, 31, 55, 56, 60]. Finally, 
some studies propose that human delegation to superior algorith-
mic and AI systems is mediated by biased self-assessments, which 
may manifest in a lack of "metacognition" [39], overconfdence [27], 
or self-protection [78]. People fail to adequately judge their own 
performance level in relation to the task’s difculty, complexity [92], 
or uncertainty [93], and therefore do not implement efective del-
egation rules. Allowing AI systems to delegate tasks to human 
decision makers may alleviate these inefciencies [39, 49]. 

2.3 Complementary Expertise in 
Human-AI-Collaboration 

AI systems that provide humans with complementary expertise 
and thereby improve joint outcomes are one of the most promis-
ing felds of HCI research [40, 42, 74, 87, 102–104]. Several papers 
show that human-AI combinations can in principle exceed singular 
decision makers within the same task, e.g. by avoiding bad predic-
tions or choices [11, 23, 28, 37, 48, 64, 73, 109]. Often, AI systems 
improve joint performance by giving human decision makers addi-
tional information or providing a useful baseline reference [48, 109]. 
Furthermore, fne-tuning an AI to compensate for specifc human 
weaknesses like identifying false-negatives can also support user 
performance [53]. 

Most research analyzes complementary human-AI expertise 
strictly within the same task. Yet, often and similar to traditional 
teamwork, human-AI collaboration must be organized across tasks. 
In such a case, human decision makers decide which kind of task 
to delegate and which kind of task to complete themselves. Our 
main contribution to the expertise literature lies in highlighting 
previously under-explored interdependencies between diferent 
human-AI error profles across diferent prediction tasks. If choice 
independence holds, these interdependencies do not exist. It would 
be, for instance, efcient to optimize a model’s performance for 
tasks where humans have comparative disadvantages, even if it 
comes at the expense of tasks where humans perform well. How-
ever, if people fail to judge an AI system’s performance in isolation, 
optimizing for specifc tasks may have unintended consequences. 

2.4 Human-AI-Collaboration and Error Types 
Research on the infuence of error type on human-AI delegation is 
scarce. Dietvorst and Bharti [29] fnd that higher uncertainty leads 
to stronger algorithm aversion because people have a diminishing 
sensitivity to forecasting errors and exhibit preferences for near-
perfect predictions. Recent studies also point to the importance of 
frst impressions in human-AI collaboration, showing that people 
react signifcantly stronger to relatively early errors [60, 82, 100]. 
Furthermore, humans may diferentiate between algorithmic false-
negatives and false-positives, although evidence for that is mixed 
and ambiguous [43, 62]. This article extends the exploration of 
diferent error types in human-AI collaboration by diferentiat-
ing between continuous but moderate and large but rare errors. 
In addition, we look at errors that originate from environmental 
randomness and those that are systemic to the AI’s predictions. 

3 EXPERIMENTAL DESIGN 
We employ six treatments of a pre-registered online prediction 
experiment in which participants take on the role of a farmer who 
predicts the irrigation need of two fctional crops, Meemmaseed 
(human expertise domain) and Vussanut (complementary expertise 
domain), each consuming one hectare of land. Participants learn 
that under ideal conditions, both crops require at least 40 thousand 
gallons of water. Their task is to predict the additional irrigation 
need, as determined by three observable environmental variables: 
Sunshine in hours/day (�� ), Average Day Temperature in Fahrenheit 
(�� ), and Wind Speed in km/h (�� ). Irrigation for Meemmaseed 
follows: �� = 40 + 0.1 ∗ �� + 0 ∗ �� + 0.9 ∗ �� + �, and irrigation for 
Vussanut follows: �� = 40+0.15∗�� +0.55∗�� −0.3∗�� +�, where � is a 
treatment-sensitive random error. The environmental input factors 
are randomly drawn from the following uniform distributions: �� ∈ 

3[1, 18], �� ∈ [32, 108] and �� ∈ [5, 61]. 
3We use farming as an example from real-world contexts where AI systems are in-
creasingly being used, and as a scenario that participants can loosely comprehend. The 
task design is based on a rich body of literature in psychology, economics, and more 
recently, Human-AI interaction, where similar forecasting environments have been 
used to study a broad range of decision phenomena, including e.g., the interaction 
of humans and algorithms [29], rationality [41, 66], advice-taking and forecasting 
[24, 75], or overconfdence [47, 86]. Our setup mimics many real-life scenarios in 
which people use a set of attributes to generate forecasts, e.g., investments, evaluating 
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Table 1: The diferent experimental conditions in our study. 

AI System Easy Problem AI System Complex Problem Treatment Random Error N 
best-possible systematic error best-possible systematic error 

BP_Cont Continuous ✓ None ✓ None 102 

Subst_Cont Continuous ✓ None x Rare & Large 103 

Compl_Cont Continuous x Rare & Large ✓ None 100 

BP_Rare Rare, Large ✓ None ✓ None 101 

Subst_Rare Rare, Large ✓ None x Continuous & Moderate 100 

Compl_Rare Rare, Large x Continuous & Moderate ✓ None 105 

Thus, in order to make the best possible predictions, subjects 
need to learn the relationship between the three environmental 
inputs and the respective crop’s irrigation needs. To achieve that, 
they complete two training periods, which are described below. 

Instead of relying on their own prediction, subjects learn that 
they can also delegate their irrigation predictions to an AI system. 
At the beginning, subjects do not know anything about the system’s 
performance. They only know that it does not receive additional 
information beyond the three environmental inputs. 

During the frst of the two training periods, subjects then see de-
scriptive information from 20 simulated prediction rounds. Specif-
ically, they frst observe a table that shows each input factor in 
columns 1 – 3, and the actual irrigation requirement for Meem-
maseed in column 4. Furthermore, subjects receive the information 
that Meemmaseed is "known to be unafected by diferent temper-
atures, but very sensitive to wind speed." Therefore, subjects are 
instructed to focus mainly on the third input variable and ignore 
the second one. Finally, columns 5 and 6 show the AI system’s 
irrigation prediction, as well as the respective prediction error. For 
Vussanut, subjects observe the same table with the same environ-
mental inputs, but diferent actual irrigation requirements, and 
diferent AI system predictions. They also receive no additional 
information about how the inputs relate to irrigation needs. Using 
all this information, subjects can learn (1) about the relationship 
between the environment and each crop’s irrigation needs, as well 
as (2) the performance of the AI system. To help subjects evaluate 
the AI system’s accuracy, we also show them a fgure that illustrates 
the system’s error curve for both Meemmaseed and Vussanut. We 
keep the axes constant across all treatments. 

In the second training period, subjects complete 10 non-
incentivized training predictions (see Figure 2). In each round, 
subjects observe three environmental input numbers and make 
two predictions, one for each crop. At the bottom of the page, sub-
jects can always access the descriptive information from the 20 
simulated prediction rounds as well as the AI system’s error curves 
by clicking on one of three buttons. This opens a pop-up with the 
respective information. After submitting their predictions, subjects 

job applicants, diagnosing illnesses, or assessing consumer products. We rely on a 
linear relationship between input and output factors because (1) it has already been 
used to analyze human-algorithm interactions [29], (2) is relatively intuitive to human 
subjects, and (3) provided good results (high accuracy for the "easy" task, low accuracy 
for the "complex" task) in our pilot. The intervals for the input factors refect realistic 
real-life boundaries. 

see a feedback screen that shows for both crops (1) the subject’s ir-
rigation prediction, (2) the AI system’s irrigation prediction, and (3) 
the optimal amount of irrigation. The feedback screen also shows 
the environmental inputs to allow further learning. 

After the 10 training predictions, subjects complete 10 incen-
tivized ofcial predictions. They earn 35 Coins for a perfect predic-
tion, and each point that their implemented prediction is of reduces 
that income by 1 Coin. Coins are converted into pounds at the end 
of the task where 14 Coins = £1. To determine the fnal bonus payof, 
we randomly select one of the 10 ofcial predictions. Thus, subjects 
learn that every single ofcial prediction could be the one deciding 
their income. In contrast to the training predictions, participants 
do not receive feedback after submitting their predictions. Instead, 
they decide whether to delegate the predictions for the current 
round to the AI system. Here, subjects must rely on their previously 
acquired knowledge, because the AI system’s predictions are not 
observable. Subjects make two delegation decisions, one for each 
crop. They can for example decide to delegate the irrigation predic-
tion for Vussanut to the AI system but use their own prediction for 
Meemmaseed. 

Finally, upon completing the ofcial predictions, subjects fll 
out a post-experimental questionnaire. They answer a battery of 
questions about their confdence in themselves and the AI system, 
state their risk attitudes [32], complete the subjective numeracy 
scale [36] as well as the trust in automation questionnaire [63], and 
share some demographic data. 

We share all the data, the original instructions, the pre-
registration, and this project’s code via an online repository (https:// 
osf.io/kh9x6/?view_only=bcc35724db794cc698a6306d9dc6a237) for 
the beneft of the community and in the spirit of open science. 

3.1 Experimental Conditions 
We use a 2 (continuous environmental random error vs. rare en-
vironmental random error) x 3 (best-possible AI system vs. com-
plementary AI system vs. substitute AI system) between-subject 
design (see Table 1). 

Our frst intervention concerns the random error in the envi-
ronment. Remember that the irrigation need for each crop is deter-
mined by the three environmental input factors and a random error 
�. Randomness is ubiquitous in real-life environments and is one 
reason why consistent perfect predictions are almost never possi-
ble. We use two diferent environmental random errors: a relatively 

https://osf.io/kh9x6/?view_only=bcc35724db794cc698a6306d9dc6a237
https://osf.io/kh9x6/?view_only=bcc35724db794cc698a6306d9dc6a237
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Table 2: A comparison of the main experimental conditions. 

Comparison Outcome of Interest Research Question Hypothesis Under IA Real-Life Example 

BP_Cont vs. Subst_Cont Share of subjects 
BP_Rare vs. Subst_Rare delegating their Meem-

maseed prediction to 
the AI system 

BP_Cont vs. Compl_Cont Share of subjects dele-
BP_Rare vs. Compl_Rare gating their Vussanut 

prediction to the AI sys-
tem 

BP_Cont vs. BP_Rare Share of subjects 
delegating their Meem-
maseed prediction to 
the AI system 

BP_Cont vs. BP_Rare Share of subjects dele-
gating their Vussanut 
prediction to the AI sys-
tem 

Do AI errors in the comple-
mentary expertise domain af-
fect human-AI delegation in the 
human expertise domain? 

Do AI errors in the human ex-
pertise domain afect human-AI 
delegation in the complemen-
tary expertise domain? 

Does human delegation to the 
best-possible AI system in their 
own expertise domain depend 
on the distribution of random-
ness in the prediction environ-
ment? 

Does human delegation to the 
best-possible AI system in a 
complementary expertise do-
main depend on the distribution 
of randomness in the prediction 
environment? 

There are no diferences in del- Experienced Investor 
egation behavior between BP_ using a stock forecast-
and Subt_ ing model; consumer 

recommender systems 
for experience goods; 
physicians diagnosing 
mainstream illnesses 

There are no diferences in del- Inexperienced investor 
egation behavior between BP_ using a stock forecast-
and Compl_ ing model; consumer 

recommender systems 
for unknown products 
or credence goods; lay 
people using e.g. GPT-
4 to self-diagnose or re-
view professional litera-
ture 

N/A, exploratory analysis Firm using a commer-
cial pricing algorithm 
vs. physician using a 
medical expert system 

N/A, exploratory analysis Layperson using a LLM 
to forecast stock prices 
vs. layperson using a 
LLM to medically self-
diagnose 

small continuous error,4 and a larger, rare error. The continuous 
error is randomly drawn from the uniform distribution � ∈ [−5, 5]. 
The rare error becomes 0 with a probability of 80% and is otherwise 
randomly drawn from the uniform distribution � ∈ [−27, 27]. In 
both cases, the expected value is 0, and the mean error is virtually 
the same. 

Our second intervention concerns the AI system’s performance. 
The best-possible model makes the best possible prediction by 
using the correct formula and weights for the three input factors. 
The only prediction error that remains is caused by the random 
environmental error �, which always has an expected value of 0 and 
is not predictable. It is never possible to beat the best-possible AI 
system in the long run. Therefore, subjects should always delegate 
their prediction. 

In addition to the best-possible AI system, we introduce two 
models that exhibit systematic errors. The systematic error depends 
on the random error in the environment. If there is continuous but 
small randomness, i.e. � ∈ [−5, 5], the AI system with the systematic 
error makes the best-possible prediction with a probability of 50%, 
but has an additional prediction error � = 24 for the relatively easy 
problem Meemmaseed and � = 30 for Vussanut with a probability 

4Note that by a continuous error, we mean a steady and recurring error. 

of 50%. Thus, in some cases, the model makes large mistakes. On 
the other hand, if environmental randomness is rare but large, i.e. 
� ∈ [−27, 27], the imperfect AI system has a continuous additional 
prediction error � ∈ {10, 11, 12, 13, 14} for Meemmaseed and � ∈ 
{13, 14, 15, 16, 17} for Vussanut. Again, both systematic errors have 
the same mean error.5 

Combining the two interventions, there are six treatments: BP_ 
always refers to an AI system that makes the best-possible predic-
tion for both crops. In Subst_, the AI system makes the best-possible 
prediction for the easy task (Meemmaseed), where humans receive 
more information and make good predictions, but makes systemat-
ically biased predictions for the complex task (Vussanut). Hence, 
the model is a substitute for the human. The AI system in Compl_ 
makes good predictions for complex tasks but systematically biased 
predictions for easy tasks and is, therefore, a complementary pre-
diction tool. Here, human forecasters can on average optimize their 

5The diference between the systematic errors for both crops is based on a pilot. 
Because subject predictions for Vussanut are, on average, 2.5 to 4.5 points worse than 
for Meemmaseed, we choose a systematic AI error for Vussanut that is 3 points larger. 
Furthermore, we set the size of the systematic error such that human forecasters 
should, on average, make better predictions than the erring model. The frequency 
of the rare systematic error is 50% because it allows us to stay within the incentive 
structure of a pilot. Generally, the diference in error size between continuous and rare 
inaccuracies is designed to allow for salient disparities in human perception. 
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Figure 3: An illustration of our experimental procedure. 

accuracy by relying on themselves for Meemmaseed and delegating 
the prediction for Vussanut to the AI system. Finally, _Cont refers 
to the environment with continuous randomness �, and _Rare to 
the environment with large but rare random outliers. 

3.1.1 Treatment Comparisons. Table 2 provides an overview of our 
four main treatment comparisons. The Results section comprises 
the full statistical analysis, as well as additional auxiliary results. 
Our treatment composition generates four tests of the choice inde-
pendence hypothesis, conditional on environmental randomness 
and the respective expertise domain. If the IA holds, then human 
forecasters evaluate the AI’s performance in both tasks indepen-
dently. Therefore, there can be no diferences in delegation between 
BP_ and Subst_ for Meemmaseed (human expertise domain), be-
cause the model provides the best-possible Meemmaseed prediction 
in both treatments. Similarly, there can be no diferences in dele-
gation between BP_ and Compl_ for Vussanut (complementary 
expertise domain), because the model provides the best-possible 
Vussanut prediction in both treatments. If, for example, the share 
of subjects delegating their irrigation prediction to Vussanut difers 
between BP_ and Compl_, then this diference is solely driven by 
the AI system’s Meemmaseed prediction errors in Compl_. 

In addition, we ofer a pre-registered exploration of error types 
on human-AI delegation. The order of the documented treatment 
comparisons replicates the order in the Results section. 

3.2 Procedure 
Figure 3 illustrates the experimental procedure. All subjects read 
the same basic instructions and then proceeded to answer four 
comprehension questions. Those who correctly answered all four 
within three trials were allowed to participate in the study. 

Participants were then randomly assigned to one of six treat-
ments. The treatments only difer in the AI system’s performance 
across the two problems, and the random environmental error. Oth-
erwise, everything is identical. For each treatment, we selected 
5 diferent 20-round simulations before the experiment and ran-
domly chose between them. This increases the robustness of our 
results and allows for some exploratory analysis regarding sub-
jects’ reactions toward diferent kinds of large errors (e.g., negative 

additional irrigation predictions by the AI system). Similarly, we 
randomly draw the 10 training predictions from a pool of 50 priorly 
selected rounds to balance variance and between-subject consis-
tency. Participants complete all ofcial predictions in randomized 
order. 

3.3 Participants 
We collected data until 100 independent observations per treatment 
using Prolifc. All participants are native English-speakers who 
reside either in the USA or the UK, have an approval rating of at 
least 90%, and completed at least 50 prior tasks on the platform. 
Those who failed to answer four comprehension questions correctly 
within three trials were not allowed to participate in our experiment. 
We do not exclude any subject post-data collection. This results 
in a total of 611 subjects (41% female). Participants earned a base 
payment of £1.5 and an average bonus of £2.03, resulting in an 
hourly wage of roughly £10.5. 

4 RESULTS 
We frst analyze choice independence and subjects’ general dele-
gation behavior conditional on their and the model’s prediction 
performance. Then, we consider the efects of error type on human-
AI collaboration. Throughout, we mainly rely on a panel logistic 
regression with individual-level random efects and clustered stan-
dard errors for delegation hypothesis testing (see Tables 4, 5, 6). 
P-values are adjusted for multiple hypothesis testing using the 
Westfall and Young free step-down resampling method [54]. The 
signifcance stars in the fgures correspond to the following cut-
ofs: * indicates � < 0.05, ** indicates � < 0.01, and *** indicates 
� < 0.001. For attitudes and perceptions, we use two-sided t-tests 
with the same cut-ofs. 

4.1 Prediction Performance and Manipulation 
Check 

Table 3 shows average human and AI prediction errors across treat-
ments and problems. In all BP_ conditions, the model clearly outper-
forms human forecasters. The diference is larger for the complex 
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Table 3: Average Human and AI Prediction Errors Across Treatments and Problems (SD in parentheses). Bold cells signify 
instances where humans outperformed the model on average. 

BP_Cont 

Training Rounds Humans 

Meemmaseed Vussanut 
9.58 12.35 
(6.5) (4.89) 

Training Rounds Model 

Meemmaseed Vussanut 
2.51 2.62 
(0.49) (0.46) 

Ofcial Rounds Humans 

Meemmaseed Vussanut 
7.8 12.03 
(6.1) (5.12) 

Ofcial Rounds Model 

Meemmaseed Vussanut 
2.51 2.46 
(0.48) (0.43) 

Subst_Cont 9.02 
(6.06) 

12.89 
(5.32) 

2.49 
(0.6) 

17.03 
(4.66) 

8.25 
(6.49) 

12.79 
(5.7) 

2.51 
(0.46) 

16.58 
(1.61) 

Compl_Cont 10.51 
(6.8) 

13.71 
(5.16) 

13.68 
(3.8) 

2.58 
(0.47) 

8.88 
(6.27) 

12.68 
(5.02) 

13.86 
(1.25) 

2.54 
(0.51) 

BP_Rare 
10.77 
(6.8) 

13.66 
(5.52) 

3.68 
(1.14) 

3.56 
(1.13) 

9.11 
(6.25) 

13.79 
(6.26) 

2.49 
(1.14) 

2.63 
(1.19) 

Subst_Rare 
10.71 
(7.5) 

14.54 
(5.69) 

3.59 
(1.08) 

17.7 
(1.66) 

9.34 
(7.98) 

13.93 
(5.92) 

3.06 
(1.26) 

17.77 
(1.23) 

Compl_Rare 
9.73 
(6.2) 

14.18 
(4.4) 

15.28 
(1.12) 

3.6 
(1.18) 

8.8 
(6.74) 

13.59 
(5.36) 

14.49 
(1.25) 

2.48 
(1.08) 

Figure 4: Average subject confdence levels in their own (blue) and the AI system’s (green) predictions per treatment and task. 
Left: human expertise domain. Right: complementary expertise domain. Subjects state their confdence in their own and 
the model’s predictions for each crop on a 5-point Likert scale with the prompt "How much confdence do you have in the AI 
system’s (your) predictions for optimal [crop name] irrigation?". 

task, whereas for the easy task, many humans achieve at least com- highly complementary in Compl_, and most humans should only 
parable accuracy. As expected. humans make better predictions for use it for the complex task. 
the complex task in all Subst_ conditions and better predictions for In line with prediction performance, subjects state much higher 
the easy task in all Compl_ conditions. This confrms the success confdence in their Meemmaseed than their Vussanut predictions 
of our intervention. The model has little complementary expertise (Figure 4). To illustrate, whereas only 5 % have "no" confdence 
in Subst_ but is still useful in the easy task domain. The model is in the human expertise domain, 25% have no confdence in the 

complementary expertise domain. Similarly, 40% have either "a 
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Figure 5: Top: Subject delegation shares for the easy problem with continuous environmental randomness and rare environ-
mental randomness. Bottom: Corresponding treatment diferences in relative subject confdence, estimated prediction accuracy, 
perceived model reliability, predictability, and trust. Subjects (1) state their confdence in their own and the model’s predictions 
for each crop on a 5-point Likert scale with the prompt "How much confdence do you have in the AI system’s (your) predictions 
for optimal [crop name] irrigation?" and (2) judge the accuracy of themselves and the AI system by answering the prompt "How 
many units do you think the AI system’s (your) predictions are of by for [crop name] on average? [Please enter a number 0 – 
100)]". Diferences are calculated by subtracting self-confdence (self-assessment) from model confdence (model assessment). 
Reliability, Predictability, and Trust are measured using the trust in automation questionnaire. 

fair amount" or "a lot of" confdence in their own Meemmaseed 
predictions, as compared to 13% for Vussanut. Overall, subjects 
make much better predictions in the human expertise domain and 
have a lot more confdence in themselves. 

4.2 Choice Independence 
If choice independence holds, there are no diferences in subject 
delegation for the easy task (Meemmaseed, human expertise do-
main) between BP_Cont vs. Subst_Cont as well as BP_Rare vs. 
Subst_Rare. For the complex task (Vussanut, complementary ex-
pertise domain), there should be no diferences between BP_Cont 
vs. Compl_Cont and BP_Rare vs. Compl_Rare. 

4.2.1 Meemmaseed Easy Task. Figure 5 depicts delegation shares 
over the 10 ofcial predictions for the easy task. The data show a 

signifcant violation of choice independence (see Tables 4 and 5). 
Irrespective of the environmental error type, subjects delegate the 
easy prediction more often to the best-possible model when the 
AI system also makes the best-possible prediction for the complex 
prediction. On average, subjects delegate 46% (52) in BP_Cont 
(BP_Rare) and 35% (41) in Subst_Cont (Subst_Rare). The dif-
ferences are signifcant both in the panel regressions and using 
a t-test on average delegation shares (Cont: t = 2.13, p = 0.034; 
Rare: t = 2.09, p = 0.038). In line with these results, Figure 5 (bot-
tom panel) shows that the bad performance of the AI system in 
the complex task domain signifcantly alters subject perceptions. 
Note that the answers to the trust in automation questionnaire [63] 
refer to the AI system in general and not to one specifc predic-
tion problem. The questions regarding subjects’ confdence in the 
model and themselves, as well as their estimation of their and the 
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Figure 6: Top: Subject delegation shares for the complex problem with continuous environmental randomness and rare 
environmental randomness. Bottom: Corresponding treatment diferences in subject confdence, estimated prediction accuracy, 
perceived model reliability, predictability, and trust. Subjects (1) state their confdence in their own and the model’s predictions 
for each crop on a 5-point Likert scale with the prompt "How much confdence do you have in the AI system’s (your) predictions 
for optimal [crop name] irrigation?" and (2) judge the accuracy of themselves and the AI system by answering the prompt "How 
many units do you think the AI system’s (your) predictions are of by for [crop name] on average? [Please enter a number 0 – 
100)]". Diferences are calculated by subtracting self-confdence (self-assessment) from model confdence (model assessment). 
Reliability, Predictability, and Trust are measured using the trust in automation questionnaire. 

model’s accuracy, diferentiate between Meemaseed and Vussanut. 
In the continuous random error environment, subjects have more 
confdence in the AI system’s Meemmaseed predictions when it 
also makes the best-possible prediction for Vussanut, estimate a 
stronger accuracy advantage compared to themselves, and fnd it 
overall more reliable, predictable, and trustworthy. Interestingly, 
when environmental randomness is more erratic, bad performances 
for the second task do not signifcantly alter confdence and ac-
curacy estimates. Therefore, rare but high variance randomness 
may improve peoples’ ability to infer accurate performance esti-
mates. Subjects again fnd the AI system in the BP_ condition more 
reliable and trustworthy, replicating the general efect on model 
perceptions. Thus, subjects in the _Rare condition can relatively 
accurately infer the performance advantage of the AI system for 
Meemmaseed irrespective of the model’s performance in the second 

task, i.e., choice independent, but still violate choice independence 
when it comes to actual delegation behavior. 

Result 1: Humans violate choice independence in human-AI 
collaboration when delegating to a substitute-model. System-
atic AI errors in the complementary expertise domain reduce 
delegation to the best-possible model in the human expertise 
domain. 

4.2.2 Vussanut Complex Task. Figure 6 depicts delegation shares 
over the 10 ofcial predictions for the complex task (Vussanut). 
We compare treatments BP_, in which the AI system makes the 
best-possible prediction for both tasks, and Cont_, in which the AI 
system makes the best-possible prediction only for the complex task 
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Figure 7: Subject delegation shares to the best-possible AI system for Meemmaseed (easy) and Vussanut (complex). 

and is therefore highly complementary. The results are noticeably 
diferent from those above. For the environment with continuous 
randomness, there is no signifcant diference in delegation (Table 
4). Subjects delegate 78% in BP_Cont and 73% in Compl_Cont (t 
= 1.23, p = 0.22). The direction is qualitatively the same as before, 
in that subjects delegate less when the model has systematic errors 
for the easy task. Still, the overall diference is smaller and less 
consistent. Under rare but more impactful randomness, we again 
document a signifcant violation of choice independence (Table 5). 
However, the efect is reversed compared to the Subst_ conditions 
where the AI system functions as a substitute rather than a comple-
ment. Now, subjects delegate the complex task more when the AI 
system makes systematic errors for the easy task (Compl_Rare: 
82% vs. BP_Rare: 71%, t = -2.45, p = 0.015). This surprising and, 
to us, unexpected result also refects itself in subject perceptions. 
In the _Rare conditions, subjects state more confdence in the AI 
system’s predictions for Vussanut when it makes systematic errors 
in the Meemmaseed predictions. Yet, generalized attitudes towards 
the AI system align with the other scenarios, and the best-possible 
model garners higher scores for trust and reliability. Thus, partici-
pants override their general feelings about the AI system in favor 
of a task-based approach. 

Result 2: Humans violate choice independence in human-AI 
collaboration when delegating to a complementary model. 
Systematic AI errors in the human expertise domain increase 
delegation to the best-possible model in the AI expertise do-
main. This efect only holds for moderate and continuous, but 
not large and rare, systematic AI errors. 

4.3 Error Type and Algorithm Aversion 
The section on choice independence illustrates that human dele-
gation can vary across diferent environmental and AI error types. 
This section analyzes the efect of error type on algorithm aversion 
toward the best-possible AI system. 

We compare subject behavior in BP_Cont and BP_Rare. Here, 
the AI system makes the best-possible prediction for both tasks, 
and almost every human should always delegate the prediction to 
the model. Figure 7 shows delegation shares for the easy and the 
complex task. 

Delegation shares do not difer signifcantly between treatments 
in the baseline regressions (Table 6). The same is true for all model 
perceptions, except the subject’s relative confdence levels in the 
AI’s predictions for Vussanut. Compared to themselves, BP_Cont 
subjects have signifcantly more confdence in the model’s Vus-
sanut predictions than those in BP_Rare. This efect is driven 
by lower self-confdence under continuous randomness than rare 
high-variance randomness (_Cont: 2.08 vs. _Rare: 2.42, t = 2.43, p 
= 0.016), despite larger human prediction errors in BP_Rare (13.8) 
than BP_Cont (12). Intuitively, continuous randomness impairs the 
human ability to form useful heuristics (or the perception of) due to 
high levels of noise, whereas rare randomness allows for a relatively 
large number (80% in our case) of noise-free observations. This is 
not consequential for the easy problem because subjects already 
have a heuristic, i.e., always focus on the third input number and 
ignore the second. In line with that, we again see a reversal in dele-
gation shares between the two problem types. For Meemmaseed, 
subjects tend to delegate more with rare environmental errors. For 
Vussanut, subjects tend to delegate more with continuous errors. 
While the simple regression model does not show a treatment efect 
for either problem, incorporating risk attitudes and numeracy re-
veals a signifcant efect for Vussanut but not Meemmaseed (Table 
6). Hence, there is moderate evidence that error type does play a 
role in algorithm aversion, but only for complex problems where 
subjects need to learn and build up their own decision rules. 

Result 3: Algorithm aversion does not generally depend on 
whether the model makes small and continuous or large but 
rare mistakes. However, there is evidence that continuous 
randomness can reduce algorithm aversion outside the human 
expertise domain through lower self-confdence. 
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4.3.1 Systematic AI Errors. We provide some auxiliary results to 
parse out two particular efects of systematic AI errors on human 
behavior. One, how does human delegation change with the in-
troduction of relatively large systematic errors that lead to model 
predictions that are, on average, worse than human predictions? 
Two, do humans diferentiate between continuous but moderate 
and rarer but larger systematic errors? The full analysis is detailed 
in the Appendix (see section 7). Here, we only present the main 
conclusions. 

Our data shows that participants react to the introduction of 
a systematic error by correcting their delegation behavior down-
wards. In the human expertise domain, this efect is confned to 
forecasters who exceed the AI system’s performance. Only 10% – 
20% rely on the AI system. Those who perform worse still delegate 
around 55% of tasks to the model. In contrast, when humans are 
not endowed with a useful decision rule, systematic AI errors lead 
to substantially less delegation across all participants, irrespective 
of their own performance level. Hence, a lack of expertise inhibits 
peoples’ ability to judge their own performance level against the AI 
system properly and therefore limits meta-knowledge [39]. Finally, 
there is moderate evidence that participants punish continuous but 
moderate systematic AI errors stronger than rare and large errors 
in their own expertise domain. 

5 DISCUSSION 
This paper is the frst to systematically analyze how diferences in 
AI performance across distinct prediction tasks infuence human 
utilization of superior AI models. As AI systems are increasingly 
capable of complementing or supporting human expertise, it is 
essential to understand which factors may drive or inhibit their 
adoption. This process is complicated by the fact that many systems 
do not simply occupy one very specifc role but instead provide 
predictions for a variety of diferent questions or problems. One 
relevant example is recommender and expert systems. Spotify, for 
instance, recommends its diverse and heterogeneous set of users 
music from diferent genres and time periods, as well as podcasts 
and shows. Some customers may be very good at fnding new music 
from their favorite genres on their own but struggle with unfamiliar 
genres or novel podcasts. Others may know exactly which kind of 
podcast they like but have not yet developed a good sense of their 
musical taste. Experts like fnancial advisors, lawyers, or physicians 
are often highly specialized and may, therefore, in theory, beneft 
in particular from systems that complement their expertise. How-
ever, in almost all cases, expert systems have a large overlap with 
the experts they advise. This allows for comparisons, and inter-
dependencies between diferent kinds of AI predictions may arise. 
If, for instance, fnancial advisors refuse trading advice because 
their algorithm performs relatively worse in capital investing, or 
cardiologists forego AI heart attack diagnoses because the system 
may err when identifying myocarditis, there could be a number of 
inefciencies that all relevant actors, including not only the experts 
but regulators and developers, should be aware of. 
RQ1: Does the independence axiom of choice hold for delegation deci-
sions in human-AI collaboration? 

The independence axiom of choice does not hold for delegation 
decisions in human-AI collaboration. Systematic AI prediction er-
rors in the complementary domain signifcantly reduce delegation 
to the superior best-possible model in the human expertise domain. 
Systematic AI prediction errors in the human expertise domain sig-
nifcantly increase delegation to the superior best-possible model 
in the complementary domain, but only as long as environmental 
randomness allows for a large number of perfect complementary 
AI predictions. Humans, therefore, do not judge AI predictions 
task-independently. 
RQ2: Do humans condition their delegation choices on objective per-
formance diferences between prediction problems? 

Beyond a violation of choice independence, we are able to make 
some more general inferences about human delegation to superior 
AI systems. When humans have some expertise in a prediction 
domain, their behavior is sensitive to the model’s relative perfor-
mance advantage. Systematic errors strongly decrease delegation, 
but only for those who beneft from their own predictions. This 
illustrates a general ability to properly assess their own accuracy in 
relation to the AI system. Still, many subjects fail to delegate when 
appropriate, and the level of algorithm aversion is high. 

In the complementary domain without any real human expertise, 
delegation adjustments are less optimal. Instead of assessing their 
own accuracy in relation to the AI system’s performance, subjects 
respond to the introduction of systematic errors with a general 
decline in delegation, irrespective of their ability. This speaks to a 
lack of meta knowledge as discussed, e.g., in Fügener et al. [39]. 
RQ 3: How do diferent prediction error types infuence human reliance 
on a more accurate AI system? 

The second important part of this paper investigates whether 
humans react diferently towards two kinds of errors: continuous 
but moderate and rare but large prediction inaccuracies. Our re-
sults show that humans are less likely to delegate their complex 
predictions to the best-possible AI system when it makes rare but 
relatively large errors due to randomness. This, however, does not 
seem to be driven by lower confdence in the model but higher 
human self-confdence. Thus, while e.g., Dietvorst and Bharti [29] 
show that people forego algorithms because they prefer (the possi-
bility of) perfect predictions, in our case, more perfect AI predictions 
leads to less delegation because less frequent environmental noise 
increases human forecasters’ confdence in their own performance. 
Here, one signifcant takeaway is the importance of diferentiating 
between systematic prediction errors and random prediction er-
rors that always befall all forecasting agents. Because randomness 
afects both the model and the human, the two prediction agents 
may have conficting behavioral efects. Furthermore, our results 
also suggest that human forecasters do not diferentiate between 
the two environmental error types in their own expertise domain, 
possibly due to – as mentioned above – better meta-knowledge. 

5.1 Practical Implications 
Understanding how human decision makers react to imperfect mod-
els is essential for applying and deploying current AI systems. One 
straightforward implication of our results is that optimizing or fne-
tuning models for better performances in domains where human 
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decision makers are relatively inaccurate is not a neutral process. In 
a world where choice independence holds, developers can largely 
ignore AI errors for tasks performed by a human, thereby maximiz-
ing joint human-AI performance through specialization. Instead, 
our fndings suggest that humans cognitively bracket the AI sys-
tem’s performance across diferent tasks, translating into changes 
in attitudes and delegation behavior. 

These changes appear to be conditional on the AI’s application 
domain. If the human decision maker should delegate a task in 
their own expertise domain to a superior system, then observing 
objectively unrelated AI errors for another task reduces appropriate 
reliance. However, if humans delegate a task for which they have 
close to zero expertise, then unrelated AI errors can increase ap-
propriate reliance. This observation implies that diferent kinds of 
human decision makers, e.g., experts and laypeople, may react dif-
ferently to the same AI error and that the design, optimization, and 
deployment of AI systems should be explicitly stakeholder-driven. 

The latter conclusion is also apparent in the context of AI error 
types. Reactions thoroughly depend on the considered expertise do-
main and are often reversed. First, our results suggest that baseline 
randomness matters and appropriate delegation can be lower for 
tasks where "correct" predictions are likely and possible. This may, 
for instance, include medical self-diagnoses by laypeople. Random-
ness often plays little to no role in mainstream diagnoses, which 
allows for (1) perfect learning observations and (2) perfect predic-
tions. Such a pattern may be relevant for regulators, but also, e.g., 
in the design of user apps for health services. Second, people who 
share expertise with the AI system — e.g., almost every expert, such 
as physicians, fnancial advisors, or lawyers — react more strongly 
to moderate and continuous model mistakes. Developers optimiz-
ing or fne-tuning applied AI systems may want to consider that to 
maximize appropriate uptake. 

Finally, our results point to a potential beneft of further edu-
cation for users who regularly confront heterogeneous AI out-
put. For instance, there is good evidence that market experi-
ence and domain knowledge can correlate with higher rationality 
[18, 19, 35, 61, 77, 97], including specifcally reductions in violation 
of choice independence [68]. This suggests that people learn to 
adjust their behavior autonomously through feedback, which may 
be provided via additional training. 

5.2 Caveats and Limitations 
Experimental abstraction. One goal of this paper is to empir-
ically test the assumption of choice independence in human-AI 
collaboration. We use an abstract forecasting task that gives us 
control over each model’s output and what specifcally human fore-
casters observe. In reality, many contextual factors determine how 
performance diferences across tasks determine human behavior. 
We abstract from almost all of those, and a valuable direction for 
future research would be to apply the logic of choice independence 
to problems that consider commonly used AI systems and models. 
This includes not only the problem domain but many procedural 
and environmental factors. For example, human decision makers 
in our experiment make simultaneous predictions and then simul-
taneously choose between themselves and the AI system for both 
problems. A more realistic scenario may include sequential decision 

tasks or time delays. Moreover, our results are restricted to predic-
tion domains under uncertainty. While these are highly relevant, 
they are not the only feld of application for modern AI systems, 
and specifcally, the degree of uncertainty and risk involved could 
have large consequences for human behavior. 

Artifcial expertise. In our experiments, we diferentiate be-
tween a human expertise domain and a complementary expertise 
domain. However, expertise is induced artifcially through the provi-
sion of a decision heuristic. It would be interesting to compare such 
a scenario with real experts with more entrenched, far-reaching ex-
pertise and, thus, presumably, a higher awareness of their strengths 
and weaknesses. We also do not test the validity of choice indepen-
dence within an expertise domain. Our setup assumes that humans 
face problems outside their feld of expertise and, therefore, always 
judge the AI system on two diferent levels with two diferent ref-
erence points. In many situations, this may not be valid. However, 
we argue that most professionals will experience these situations, 
even if only because of a novel problem or case for which they have 
not yet accrued the relevant experience or information. 

Error type specifcities. We measure choice independence by 
introducing a systematic AI system error to the second, objectively 
unrelated problem. This systematic error always difers in type from 
the baseline error induced by environmental randomness. In that 
sense, we introduce a second type of error. Therefore, we cannot 
guarantee that any error induces a violation of choice independence. 
Here, we see a lot of room for future research to experiment with 
diferent types of AI system errors and to gauge how these error 
types infuence human behavior. 

Due to experimental restrictions, we rely on a "rare" systematic 
error that happens 50% of the time. A more pronounced diference 
to the continuous error in frequency and intensity may produce 
stronger diferences in human behavior. Similarly, having a human 
expertise domain where a sizeable share of humans actually out-
performs the AI system or choosing a more ambiguous systematic 
error could afect our results. For instance, one may argue that AI 
systems with large systematic errors will always be judged as not 
market-worthy and, therefore, never be deployed until a certain 
performance benchmark has been reached. This results in smaller 
inaccuracies, which may not induce violations of choice indepen-
dence. One counter-argument would be the recent deployment of 
ChatGPT – an AI system accessible to almost anyone and simulta-
neously very inaccurate in certain domains. Still, the question of 
how substantial or salient AI errors have to be so that they reduce 
human utilization in an unrelated problem is a very relevant one. 

Task similarity. Finally, reactions to objectively unrelated pre-
diction errors could be mediated by the perceived similarities of 
the diferent tasks. In this experiment, subjects observe an AI sys-
tem’s performance across two tasks with a very similar dependent 
variable: the irrigation need of a crop. Our data shows that sub-
jects diferentiate between the two tasks and can over-write their 
general attitudes towards the AI system in favor of a task-based 
evaluation approach. This means that even when subjects trust 
the AI system less overall, they may have more confdence in its 
predictions for a particular task. Still, such an approach may make 
it easier for humans to cognitively confate the AI system’s per-
formance across tasks. For example, some participants may have 
constructed a simple evaluation heuristic that estimates the model’s 
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ability to accurately predict irrigation needs – independent of the 
target outcome. While this is still in violation of the IA and thus 
does not contradict our interpretation, it is a potential limitation. 
Some real-life instances, like Spotify’s recommendation algorithm 
for songs, artists, and podcasts, or certain diagnostic models may 
allow for similar heuristics.6 Others, however, will be less compa-
rable, such as self-driving cars, weather apps, or physicians that 
utilize models across more dissimilar domains, e.g., image classi-
fcation and mental health diagnoses. We, therefore, highlight the 
potential mediating role of task similarity for choice independence 
as an important avenue for future research. 

6 CONCLUSIONS 
This article analyzes appropriate reliance in human-AI collabora-
tion when decision-makers face multiple tasks. Using two diferent 
error types, our experimental design systematically varies the AI 
system’s performance across a human and a complementary ex-
pertise domain. We are the frst to show that human forecasters 
consistently violate choice independence by taking the AI’s perfor-
mance in an unrelated second task into account. As a consequence, 
subjects reduce delegation to the superior best-possible system in 
their own expertise domain. Interestingly, subjects react to sys-
tematic AI errors in the human expertise domain by increasing 
appropriate reliance on the complementary AI expertise domain. 
Furthermore, our results suggest that human rejection of superior 
algorithms is sensitive to the forecasting environment’s error type 
and that humans tend to punish continuous AI errors stronger 
than large but rare ones. These results enhance our theoretical un-
derstanding of human-AI collaboration by considering previously 
unexplored interdependencies. They also highlight the importance 
of stakeholders and user expertise for algorithmic design and AI 
adoption. In particular, human experts with domain-specifc knowl-
edge might be especially likely to forego useful systems due to 
biased evaluations. 
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7 APPENDIX – AUXILIARY RESULTS AND 
REGRESSION TABLES 

Beyond prediction inaccuracies induced by randomness, AI sys-
tems may have systematic errors. That is, many AI systems do not 
deliver the best-possible prediction but are confounded in some 
way, e.g., due to data constraints. We now look at (1) how human 
delegation changes by introducing relatively large systematic er-
rors that lead to, on average, model predictions that are worse than 
human predictions and (2) whether humans diferentiate between 
continuous but moderate and rarer but larger systematic errors. 
Figure 8 compares delegation shares for the two problems with 
and without a systematic error, where the AI system always makes 
the best-possible prediction for the second unrelated problem. This 
avoids confounding through violations of choice independence. 

Subjects react to the introduction of a systematic error by signif-
icantly decreasing delegation (Tables 4 and 5. The efect is smaller 
in the human expertise domain, primarily due to lower baseline 
delegation. Here, the vast majority of participants perform worse 
in the BP_ conditions (95% and 100% respectively), and 48 – 52% 
of (easy) problems are delegated to the AI system. With the in-
troduction of a systematic error, only 22% in Compl_Cont and 
Compl_Rare have a larger average prediction error than the model. 
That sub-population delegates 55% of their ofcial predictions to 
the AI system. In contrast, those with higher accuracy on average 
delegate only 20% (10%) in Compl_Cont (Compl_Rare). Behav-
ioral patterns in the AI-expertise domain for the complex problem 
are similar, but not the same. In the BP_ conditions, no human on 
average beats the best-possible model, and the vast majority of prob-
lems (78% and 71%) are delegated. Introducing a systematic error 
in Subst_Cont and Subst_Rare enables 74% and 77% of humans 
respectively to make more accurate predictions. Those have, again, 
relatively low delegation rates of 30% in Subst_Cont and 25% in 
Subst_Rare. However, in contrast to the human expertise domain, 
subjects who perform the complex predictions worse than the sys-
tematically erring AI system are signifcantly less likely to delegate 
a prediction to the fawed model (BP_Cont: 78% vs. Subst_Cont: 
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Figure 8: Left: Subject delegation shares to the AI system in the human expertise domain for Meemmaseed (easy). Right: Subject 
delegation shares to the AI system in the AI expertise domain for Vussanut (complex). We compare delegation shares to the 
best-possible AI system with delegation to the AI system that has a systematic error for the problem of interest but is still the 
best-possible for the second problem. 

56%, t = 3.32, p = 0.001; BP_Rare: 71% vs. Subst_Rare: 55%, t = 
2.05, p = 0.04). expertise domain. For complex problems in the complemen-

tary expertise domain, there is no efect of systematic error 
type on delegation. Result 4: Subjects react to the introduction of a systematic 

error by correcting their delegation behavior downwards. In 
the human expertise domain, this efect is confned to those 
human forecasters who exceed the AI system’s performance. 
In the complementary expertise domain where humans have 
no default decision rule, systematic errors exert negative ex-
ternalities by also reducing the likelihood that bad human 
forecasters delegate predictions to the system. 

Second, we look at the efect of diferent systematic errors on sub-
ject delegation. In Subst_Cont and Compl_Cont, humans observe 
a systematic error that is relatively rare (50%), but large (24 and 30 
for Meemmaseed and Vussanut respectively). In Subst_Rare and 
Compl_Rare, the systematic error is continuously drawn from [10, 
11, 12, 13, 14] and [13, 14, 15, 16, 17]. Therefore, the expected average 
systematic error is always either 12 or 15. To test for a diferential 
impact of systematic error type on human delegation, we run logis-
tic random efects panel regressions interacting a binary systematic 
error treatment variable with a binary systematic error type vari-
able (see Table 6). This analysis reveals a signifcant and negative 
interaction efect of continuous systematic error type on delegation 
for easy predictions in the human expertise domain (Meemmaseed) 
but not for complex predictions (Vussanut). Hence, in our sample, 
subjects react more strongly to continuous and moderate than rare 
and large systematic errors in their own expertise domain but do 
not diferentiate between them in the complementary expertise 
domain. 

Result 5: Subjects punish continuous but moderate system-
atic AI errors stronger than rare and large errors in their own 
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Table 4: This table reports marginal efects of panel logistic regressions using individual-level random efects and a cluster–robust 
VCE estimator. The dependent variable is a binary variable that equals 1 if the participant delegates to the AI system and 0 
otherwise. P-values are adjusted by controlling for the family-wise error rate using Westfall and Young [54]. – * � < 0.05, ** 
� < 0.01, *** � < 0.001. 

Continuous Environmental Randomness 

Choice Independence (1) Choice Independence (2) Reaction Systematic Error (1) Reaction Systematic Error (2) 

Easy Problem Complex Problem Easy Problem Complex Problem Easy Problem Complex Problem Easy Problem Complex Problem 

BP_Cont Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline 

Subst_Cont -0.076** -0.069* -0.191*** -0.189*** 
(0.021) (0.023) (0.015) (0.015) 

Compl_Cont -0.056 -0.072 -0.200*** -0.184*** 
(0.039) (0.040) (0.04) (0.041) 

SNS Ability -0.005 0.032 -0.001 -0.008 
(0.026) (0.018) (0.02) (0.019) 

SNS Preferences -0.035 0.012 -0.043 -0.026 
(0.031) (0.022) (0.028) (0.023) 

Risk 0.019* -0.018* 0.030** -0.004 
(0.009) (0.009) (0.009) (0.008) 

N 2050 2020 2050 2020 2020 2050 2020 2050 

Table 5: Table reports marginal efects of panel logistic regressions using individual-level random efects and a cluster–robust 
VCE estimator. The dependent variable is a binary variable that equals 1 if the participant delegates to the AI system and 0 
otherwise. P-values are adjusted by controlling for the family-wise error rate using Westfall and Young [54]. – * � < 0.05, ** 
� < 0.01, *** � < 0.001. 

Rare Environmental Randomness 

Choice Independence (1) Choice Independence (2) Reaction Systematic Error (1) Reaction Systematic Error (2) 

Easy Problem Complex Problem Easy Problem Complex Problem Easy Problem Complex Problem Easy Problem Complex Problem 

BP_Rare Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline 

Subst_Rare -0.056 -0.058* -0.188*** -0.184*** 
(0.026) (0.024) (0.014) (0.015) 

Compl_Rare 0.118* 0.125** -0.268*** -0.281*** 
(0.037) (0.036) (0.04) (0.037) 

SNS Ability -0.011 0.017 -0.018 -0.000 
(0.024) (0.018) (0.022) (0.021) 

SNS Preferences 0.032 0.033 -0.009 -0.005 
(0.026) (0.020) (0.023) (0.024) 

Risk -0.031** -0.026*** 0.010 -0.024* 
(0.010) (0.008) (0.007) (0.009) 

N 2010 2060 2010 2060 2060 2010 2060 2010 
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Table 6: Table reports marginal efects of panel logistic regressions using individual-level random efects and a cluster–robust 
VCE estimator. The dependent variable is a binary variable that equals 1 if the participant delegates to the AI system and 0 
otherwise. "Systematic Error" is a dummy variable that equals 1 for each treatment where the AI system makes systematic 
errors. "_Rare" is a dummy variable that equals 1 for all treatments with a random environmental error and consequently a 
continuous systematic AI error. In the interaction model for the easy problem with the substitute model, we use treatments 
BP_Cont, Compl_Cont, BP_Rare and Compl_Rare. For the complex problem with the complementary model, we use BP_Cont, 
Subst_Cont, BP_Rare and Subst_Rare. – * � < 0.05, ** � < 0.01, *** � < 0.001. 

Continuous vs. Rare Environmental Randomness 

Algorithm Aversion BP (1) Algorithm Aversion BP (2) Δ Reaction Systematic Error (1) Δ Reaction Systematic Error (2) 

Easy Problem Complex Problem Easy Problem Complex Problem Easy Problem Complex Problem Easy Problem Complex Problem 

BP_Cont Baseline Baseline Baseline Baseline 

BP_Rare 0.016 -0.024 0.015 -0.026* 
(0.016) (0.013) (0.016) (0.013) 

Systematic Error -0.276*** -0.413*** -0.272*** -0.410*** 
(0.027) (0.031) (0.028) (0.031) 

_Rare -0.011 -0.062* -0.008 -0.059* 
(0.027) (0.031) (0.028) (0.030) 

Systematic Error × _Rare -0.066* -0.052 -0.071* -0.049 
(0.032) (0.049) (0.033) (0.048) 

SNS Ability 0.008 0.006 -0.016 -0.006 
(0.025) (0.020) (0.015) (0.015) 

SNS Preferences 0.013 0.019 -0.020 -0.017 
(0.028) (0.020) (0.018) (0.015) 

Risk -0.009 -0.032*** 0.008 -0.013* 
(0.011) (0.009) (0.006) (0.006) 

N 2030 2030 2030 2030 4080 4060 4080 4060 
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