

Delft University of Technology

Approaches for Dialog Management in Conversational Agents

Harms, Jan-Gerrit; Kucherbaev, Pavel; Bozzon, Alessandro; Houben, Geert-Jan

DOI
10.1109/MIC.2018.2881519
Publication date
2019
Document Version
Accepted author manuscript
Published in
IEEE Internet Computing

Citation (APA)
Harms, J.-G., Kucherbaev, P., Bozzon, A., & Houben, G.-J. (2019). Approaches for Dialog Management in
Conversational Agents. IEEE Internet Computing, 23(2), 13-22. Article 8536470.
https://doi.org/10.1109/MIC.2018.2881519

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MIC.2018.2881519
https://doi.org/10.1109/MIC.2018.2881519

Approaches	for	Dialogue	Management	in	Conversational	Agents
Jan-Gerrit	Harms,	Pavel	Kucherbaev,	Alessandro	Bozzon,	Geert-Jan	Houben
Delft	 University	 of	 Technology,	 EEMCS,	 Van	 Mourik	 Broekmanweg	 6,	 2628	 CD	 Delft,	 the	
Netherlands
	
j.harms@student.tudelft.nl,	p.kucherbaev@tudelft.nl,	a.bozzon@tudelft.nl,	g.j.p.m.houben@tudelft.nl

Keywords:	Conversational	Agent,	Chatbot,	Dialogue	Management

Abstract
Dialog	 agents	 like	 digital	 assistants	 and	 automated	 chat	 interfaces	 (e.g.chatbots)	 are	 becoming	
more	and	more	popular	as	users	adapt	to	conversing	with	their	devices	like	with	humans.	In	this	
article	we	present	approaches	and	available	tools	for	dialog	management,	a	component	of	dialog	
agents	that	handles	dialog	context	and	decides	the	next	action	for	the	agent	to	take.	We	establish	
an	overview	of	the	field	of	dialog	management,	compare	approaches	and	state-of-the-art	tools	in	
industry	and	research	on	a	set	of	dimensions,	and	identify	directions	for	further	research.		

Introduction

The	 dream	 of	 a	 human-like	 highly	 intelligent	 computer	 assistant	 has	 been	 presented	 in	 many	
science	fiction	movies	like	Hal	in	“2001:	A	space	odyssey”	(1968),	Samantha	in	"Her”	(2013),	and	
Jarvis	 in	 “Iron	 Man”	 (2013).	 Recent	 advances	 in	 automatic	 speech	 recognition	 systems	 (ASR),	
machine	learning,	and	artificial	intelligence	enabled	the	advent	of	personal	assistants	like	Google	
Assistant,	 Siri	 and	 Alexa,	 first	 on	 smartphones	 and	 lately	 on	 home	 speakers	 and	 other	 devices.	
These	might	make	 the	 reality	 seem	 very	 close	 to	 the	 fiction	 in	 the	movies.	 However,	while	 the	
assistants	 are	 capable	 of	 executing	 small	 tasks,	 the	 richness	 and	 quality	 of	 their	 dialogs	 is	 not	
comparable	 to	 the	 ones	 of	 humans:	 interactions	 are	 still	 simple,	 short,	 and	 constrained	 by	 a	
limited	vocabulary,	thus	forcing	users	to	adjust	to	the	system’s	capabilities.		

Digital	assistants	are	part	of	larger	group	of	dialog	agents	which	include:	voice	user	interfaces	(or	
spoken	 dialog	 systems),	 text-based	 agents	 and	 embodied	 conversational	 agents	 [McTear,	 2016,	
Chapter	4].	Historically,	dialog	agents	aimed	to	simulate	human	conversation.	The	first	examples	
of	 text-based	agents	are	ELIZA	[Weizenbaum,	1966]	which	acted	as	a	Rogerian	psychotherapist,	
and	PARRY	[Colby,	1972]	simulating	a	paranoid	schizophrenic.	This	was	possible	with	extensive	
rule-sets	 and	 structured	 question-answer	 sets.	 With	 advances	 in	 natural	 language	 processing	
(NLP)	it	became	possible	to	have	goal-oriented	conversations	by	extracting	pieces	of	information	
from	user	utterances	and	using	that	information	for	digital	requests	to	external	services.	This	type	
of	 dialog	 is	 still	 prevalent	 and	 is	 the	underlying	 concept	 of	most	 commercial	 systems	 [Jurafsky,	
2017,	Chapter	28].	But	dialogs	with	digital	assistants	are	short	and	simple,	mostly	not	more	than	2	
interactions,	while	many	tasks	like	travel	planning	can	contain	many	more	steps	[Jurafsky,	2017,	
Chapter	 29].	 Creating	 rule	 sets	 for	 such	 complex	 dialogs	 is	 cumbersome	 and	 results	 in	 brittle	
dialog	 systems	 which	 have	 problems	 handling	 unforeseen	 user	 input.	 That	 is	 why	 research	 is	
looking	into	using	probabilistic	techniques	to	learn	a	dialog	policy,	i.e.	the	strategy	of	what	to	say	
next	 in	 the	 conversation,	 from	 transcriptions	 of	 real	 conversations.	 Among	 these	 techniques,	
systems	 based	 on	 partially	 observable	 Markov	 decision	 process-es	 (POMDP)	 received	 great	
attention	[Young,	2013].	POMDPs	model	the	conversation	state	as	a	not	fully	observable	statistical	
variable.	 Lately,	 researchers	 shifted	 their	 focus	 to	 neural	 network-based	 approaches	 [Bordes,	
2016]	and	hybrid	approaches	emerged	which	use	a	combination	of	 rule-based	and	probabilistic	
dialog	 policies	 [Lison,	 2015].	 Still,	 despite	 many	 years	 of	 research,	 both	 the	 scientific	 and	
industrial	world	 struggle	 to	understand	which	approaches	and	 tools	are	optimal	 for	 the	 type	of	
dialog	agent	they	plan	to	create.		

As	for	now,	dialog	agents	are	still	a	convenience	tool	performing	mini-transactions	and	need	major	
innovations	in	order	to	become	as	useful	as	their	fictional	counterparts.	In	this	survey	we	discuss	
the	approaches	and	tools	for	implementing	the	dialog	management	component	of	a	conversational	
agent.	 The	 dialog	manager	 keeps	 track	 of	 the	 information	 exchanged	 in	 the	 dialog	 and	 decides	
upon	the	next	action	of	the	dialog	agent.		Specifically,	the	purpose	of	this	survey	is	three-fold:	

• to	explore	the	ways	in	which	dialog	management	has	been	approached,	

• to	provide	an	overview	of	the	state-of-the-art	of	commercial	as	well	as	research	tools,	and		

• to	define	opportunities	for	future	research	directions.	

First,	we	 introduce	 the	main	 concepts	 and	 terminology	pertaining	 to	 the	dialog	management	 in	
conversational	 agents.	 Then,	 we	 introduce	 seven	 evaluation	 dimensions	 used	 to	 assess	 and	
compare	 the	 properties	 of	 seven	 groups	 of	 tools.	 The	 comparison	 provides	 an	 overview	 of	 the	
state-of-the-art	and	enables	a	discussion	on	directions	for	future	research.	

Dialogue	Management

Figure 1 - Dialog management system architecture and information flow

Error!	Reference	 source	not	 found.	 shows	 the	 system	 architecture	 and	 information	 flow	of	 a	
dialog	 management	 (DM)	 system.	 Dialog	 agents	 receive	 requests	 from	 users	 either	 through	
spoken	 language	 or	 direct	 text	 input,	 and	 outputs	 either	 a	 textual	 or	 vocal	 (through	 speech	
synthesis)	response.	The	shown	architecture	is	applicable	to	both	speech	and	text,	although	in	the	
former	 case,	 spoken	 words	 need	 to	 be	 converted	 to	 text	 before	 the	 natural	 language	
understanding.	
The	figure	is	best	explained	by	giving	an	example.	Assume	our	dialog	system	is	a	travel	planning	
service	and	the	user	tries	to	book	a	flight	for	a	business	trip.	Once	a	message	is	received	(e.g.	“Book	
a	flight	to	Amsterdam”)	it	is	first	handled	by	the	natural	language	understanding	(NLU)	unit	which	
converts	the	message	to	a	user	action,	also	called	the	user	intent	(e.g.	intent:	“FlightBooking”).		
	
This	NLU’s	output	can	carry	data	 fields,	also	called	slots	 (e.g.	 location:	 “Amsterdam”),	which	 the	
user	tries	to	convey	to	the	dialog	agent.	The	dialog	manager	then	uses	this	output	to	update	the	
state	 of	 the	 conversation.	 The	 DM	 and	 NLU	 are	 separate	 components,	 but	 they	 influence	 each	
other’s	 performance.	 For	 instance,	 a	 powerful	 NLU	 can	 also	 make	 the	 DM	 more	 capable	 and	
shorten	the	conversation	(e.g.	no	need	for	extra	confirmation	messages,	if	the	system	is	confident	
in	understanding	the	user).	If	some	slot	(e.g.	destination	city)	is	not	extracted	the	dialog	manager	

might	need	to	request	destination	while	if	the	slot	is	filled	it	can	directly	ask	for	the	next	missing	
slot	 (e.g.	 departure	 city).	 On	 the	 other	 hand,	 inputs	 from	DM	 can	 help	 the	 NLU	 in	 adapting	 its	
internal	operations.	For	instance,	knowledge	about	the	next	required	input	type	(e.g.	a	destination	
city)	 could	 enable	 the	 NLU	 to	 employ	 domain-	 and	 entity-specific	 models	 (e.g.	 one	 trained	 to	
recognize	 city	 name).	 The	 dialog	 state	 keeps	 track	 of	 any	 information	 received	 throughout	 the	
conversation.	 It	 forms	 the	 foundation	 for	 deciding	 on	 the	 next	 action	 and	 for	 interpreting	 the	
conversation.	 The	 dialog	 state	 can	 also	 be	 influenced	 by	 the	 goal	 of	 the	 dialog	 agent	 itself,	 i.e.	
objectives	 pursued	 by	 the	 dialog	 agent	 that	 transcend	 the	 immediate	 intent	 of	 the	 user.	 For	
instance,	next	to	helping	the	user	achieve	some	goal,	the	agent	might	also	be	designed	to	steer	the	
user	behavior	into	a	certain	direction.	In	the	travel	planner	example,	the	goal	of	the	dialog	agent	
could	be	to	sell	a	business	class	flight,	so	it	could	propose	“There	are	cheap	business	class	flights	
available	for	1500	Euro”	or	it	could	be	more	subtle	hint	like	“Shall	I	book	it	right	away?”.	The	same	
happens	when	a	sales	person	tries	to	convince	the	customer	to	buy	a	product.	
	
Once	 the	 dialog	 state	 is	 updated,	 the	 dialog	 policy	 is	 triggered	 which	 takes	 the	 new	 state	 and	
decides	on	the	next	action	for	the	dialog	agent	to	take.	The	dialog	policy	is	the	central	piece	of	the	
dialog	manager,	 building	 the	bridge	between	 the	 conversation	 context,	 third-party	 services	 and	
the	 dialog	 agent’s	 response.	 In	 the	 context	 of	 the	 dialog	 policy	 some	 other	 concepts	 require	
introduction.	 Firstly,	grounding	 is	 the	 establishment	 of	 common	 ground	 between	 parties	 in	 the	
conversation.	 This	 happens	 through	 acknowledgement	 of	 the	 last	 heard	 user	 input,	 through	
implicit	or	explicit	confirmation.	Secondly,	the	 initiative	 is	an	important	concept;	a	dialog	system	
can	 have	 either	 user-directed	 initiative	 (user	 is	 leading	 the	 conversation	 for	 instance	 through	
asking	questions	to	the	system),	system-directed	initiative	(the	system	leads	the	conversation	by	
requesting	 information	 from	 the	 user)	 or	 mixed	 initiative	 (both	 user	 and	 system	 can	 take	 the	
lead).	Finally,	domains	are	the	fields	in	which	certain	actions,	states	and	intents	are	defined,	in	this	
example	the	travel	or	flight	domain.	Domains	can	be	organized	into	hierarchies	or	even	graphs	of	
subdomains	with	each	domain	having	its	own	policy.	[Jurafsky,	2017,	Chapter	28]	
	
The	dialog	policies	choose	from	dialog,	internal	and	external	actions.	A	dialog	action	corresponds	
to	a	message	output	 that	 is	 sent	 to	 the	user	which	can	either	be	a	 template	 “There	 is	a	 flight	at	
{departure_time}”	 or,	 in	 more	 complex	 systems,	 a	 dialog	 act,	 for	 instance	 to	 inform	 the	 user	
(inform(flight=”AE23”,	departure_time=”1pm”)).	This	output	will	then	be	converted	by	the	natural	
language	generation	(NLG)	component	to	a	textual	response	to	the	user.	An	internal	action	is	one	
that	the	dialog	agent	orchestrates	in	order	to	modify	its	behaviour	or	improve	its	performance:	for	
example,	 improving	 the	 policy	 through	 retraining,	 or	 seeking	 external	 input	 for	 performance	
improvement	(e.g.	in	hybrid	conversational	agents	[Kucherbaev,	2018],	or	in	systems	with	online	
learning	 capabilities).	 An	 external	 action	 interacts	 with	 a	 service	 provider	 to	 satisfy	 a	 user’s	
request,	by	 requesting	data	or	by	 triggering	 some	application	event.	 In	our	example	 that	would	
correspond	 to	 getting	 a	 list	 of	 flights	 and	 submitting	 a	 booking	 request	 once	 all	 information	 is	
available.		Also,	multiple	actions	can	be	possible:	when	the	request	to	the	flight	booking	service	is	
taking	some	time	the	dialog	agent	might	 inform	the	user	“I	am	looking	for	available	 flights	right	
now”.	

Dimensions	of	Analysis

In	 this	paper	we	assess	dialog	management	 approaches	 and	 tools	with	 respect	 to	 the	 following	
aspects:	

• capability	of	creating	natural,	robust	and	complex	dialogs	

• convenience	for	developers	

• applicability	in	commercial	environment	

• scalability/reusability	in	multiple	applications	

Towards	this	goal	we	derive	the	following	dimensions	of	analysis.	

Dialog	structure.	Dialogs	can	often	be	simplified	by	modeling	it	as	a	structure	of	possible	states	
and	 state-transitions.	 A	 dialog	 structure	 could	 be	 a	 linear	 sequence	 of	 messages	 or	 a	 tree	 like	
structure.		

Learning.	With	growing	complexity	of	dialog	agents,	it	will	be	important	that	the	dialog	strategies	
improve	automatically	when	more	data	becomes	available	through	new	interactions.	This	setting	
tells	whether	improvement	of	the	dialog	manager	is	possible	at	runtime.		

Error	 handling.	 Interactions	 that	 perfectly	 fit	 the	 conversation	 the	 developer	 had	 in	mind	 are	
often	easy	to	handle	for	any	system.	Difficulties	arise	when	handling	unexpected	input	and	speech	
recognition	or	typing	errors.	This	dimension	shows	how	the	system	can	react	in	such	situations.		

Dependencies.	The	dependencies	of	the	tool	tell	what	resources	are	required	to	create	a	working	
dialog	manager.	For	example,	in	order	to	train	a	model,	a	corpus	of	data	is	required.		

Control.	 For	 some	 tasks	 we	 require	 the	 dialog	 agent	 to	 be	 very	 precise,	 for	 example	 when	
handling	the	passport	 identifier	 in	the	flight-booking	example.	 In	those	situations,	 the	developer	
needs	a	lot	of	control	about	how	the	dialog	agent	shall	interpret	input	and	react	to	it.		

Domain	independence.	In	order	to	be	reusable	in	multiple	situations	a	dialog	manager	can	have	
some	domain	independent	components,	which	are	unrelated	to	the	topic	of	the	dialog.		

Tool	availability.	For	non-expert	developers	 to	use	 the	 tool	 it	needs	 to	be	convenient	 to	create	
dialog	agents.	The	availability	of	the	tool	tells	how	developers	can	access	the	functionality	of	the	
dialog	management	software.	

Approaches	and	Tools

Error! Reference source not found. shows a taxonomy of the approaches for managing dialogs and a
classification of a selection of tools. With our selection we do not aim to be exhaustive, taking into
consideration the format of this paper. We do aim to provide representative examples of each
approach from the taxonomy. For the comparison we select one tool per approach which helps

determine the common features that different implementations based on that approach have.
Our taxonomy is based on the one sketched in [McTear,2016], where approaches are divided into
handcrafted (rule-based) and probabilistic (statistical). However, some of the tools that were found did
fit both categories, which we separated into a third category, hybrid systems.		

Figure 2 - Taxonomy of dialog management approaches. On the top-level three different approaches can be identified,
namely handcrafted systems, statistical systems and hybrid systems. Below the subcategories, available commercial tools
(white boxes), research tools (grey boxes) and research prototypes (blue boxes) are present.

	
Handcrafted	approach.	Handcrafted	dialog	managers	define	the	state	of	the	system	as	well	as	the	
policy	by	a	set	of	rules	which	are	defined	by	developers	and	domain	experts.	The	simplest	subset	
of	dialog	systems	 is	modeled	by	a	 finite-state	automata,	 in	which	 the	con-versation	always	 is	 in	
one	definite	state	of	the	conversation	at	a	time,	each	state	having	a	fixed	number	of	transitions	to	
other	states.		
Such	dialogs	have	system-directed	 initiative,	so	the	system	asks	 information	from	the	user	step-
by-step	 [McTear,	 2016].	 Many	 equivalent	 tools	 exist;	 for	 the	 comparison	 we	 chose	 Flow	 XO,	 a	
software	for	business-customer	relations	such	as	customer	support.	It	is	a	host-ed	solution	with	a	
visual	interface	and	many	third-party	tool	integrations	[Flow	XO,	2017].	
To	 offer	more	 flexibility,	 a	 data	model	 can	 be	 added	 to	 the	 finite-state	 automaton	which	 keeps	
track	of	slots.	This	type	of	approach	is	called	frame-based	dialog	management.		Slots	are	allowed	
to	 be	 filled	 in	 any	 sequence	 and	multiple	 slots	 can	 be	 filled	 per	 turn,	 thus	 ena-bling	 some	user	
initiative	for	semi-mixed	initiative	system.	[Jurafsky,	2017,	Chapter	28].	This	is	the	basis	for	most	
commercial	 task-fulfilling	 dialog	 agents.	 We	 use	 Google’s	 Di-alogFlow	 (previously	 api.ai)	
[DialogFlow,	2017]	as	an	example	which	is	in	line	with	many	other	similar	systems	like	Amazon	
Lex	and	IBM	Watson	Conversation.	Finally,	slightly	more	sophisticated	handcrafted	dialog	systems	
can	 have	 a	 user	model,	 conversation	model	 or	 some	 other	model	 next	 to	 the	 data-model.	 One	

example	 is	 the	 information	 state	model,	which	maintains	 user	 goal	 and	 beliefs	 in	 the	 state	 and	
requires	the	developer	to	write	rules	and	strategies	for	updating	that	information	based	on	dialog	
acts.	 As	 far	 as	we	 are	 aware	 such	 an	 approach	 has	 not	 been	 used	 in	 any	 commercial	 tools	 but	
TrindiKit	[Traum,	2003]	–	a	research	tool	which	explored	this	concept.	
	
Probabilistic	approach.	 Instead	of	defining	rules	 for	 the	dialog	strategy	by	hand,	probabil-istic	
DM	 takes	 a	different	 approach	by	 learning	 the	 rules	 from	actual	 conversations.	Exam-ple-based	
systems	 learn	 appropriate	 answers	 from	 a	 large	 corpus	 by	 matching	 the	 last	 query	 with	 an	
example	 in	 the	 training	 dataset	 and	 uses	 the	 response	 from	 the	 training	 set.	 For	 ex-ample,	 a	
training	 corpus	 might	 contain	 the	 conversation	 set	 [user:	 “Hello”;	 system:	 “Hi,	 how	 are	 you	
doing?”].	If	the	user	then	starts	a	conversation	with	“Hello”	a	word	similar	to	this,	the	system	will	
reply	with	the	other	message.	This	was	the	earliest	approach	at	a	statis-tical	dialog	manager.	It	is	
often	used	 for	 chatbots	 that	 aim	 to	 carry	 open-ended	 conversa-tions	—	Chatterbot	 [Chatterbot,	
2017]	is	an	example	for	an	open-source	system	which	uses	such	an	approach	—	but	it	suffers	from	
several	 limitations,	 especially	 in	 terms	 of	 error	 han-dling.	 Approaches	which	 have	 seen	 a	 lot	 of	
research	over	 the	past	 10	 years	 are	Markov	Deci-sion	Processes	 (MDP)	 and	 especially	 Partially	
Observable	Markov	Decision	Processes	(POMDP).	They	model	 the	dialog	state	as	an	unobserved	
variable,	the	belief	state,	which	is	a	distribution	over	all	possible	states,	including	error	ones	(e.g.	
incorrect	input	from	the	us-ers).	Observations	(e.g.	user	input	to	the	system)	provide	evidence	for	
the	 most	 probable	 state	 of	 the	 system.	 Finally,	 a	 dialog	 policy	 is	 learned	 with	 reinforcement	
learning	 to	 map	 the	 belief	 state	 to	 a	 dialog	 agent	 action	 [Young,	 2013].	 In	 the	 flight	 booking	
example,	a	mes-sage	“A	flight	to	Amsterdam”,	will	lead	to	a	high	probability	that	the	destination	is	
filled	with	Amsterdam,	while	the	state	with	all	fields	empty	is	given	low	probability.	PyDial	[Ultes,	
2017]	 is	 a	 statistical	 spoken	 dialogue	 system	 toolkit	 that	 has	 been	 published	 recent-ly.	 PyDial	
features	 a	modular	 architecture	 that	 allows,	 among	 others,	 the	 adoption	 of	 deep	 reinforcement	
learning	 techniques.	 Even	more	 recently,	memory	neural	 networks	have	been	 applied	 to	 dialog	
management.	Such	neural	networks	are	extended	with	the	ability	to	read	and	write	to	a	memory	
component	in	order	to	store	information	from	previous	input	to	the	network.	They	take	pure	text	
as	input	and	return	text	as	well.	The	goal	of	this	is	to	use	end-to-end	learning	on	a	set	of	dialogs	to	
train	 dialog	 management	 without	 any	 handcrafting	 of	 state	 and	 action	 spaces.	 At	 the	 time	 of	
writing	we	were	not	aware	of	any	tools,	so	instead	we	use	a	proposed	architecture	from	[Bordes,	
2016].	
	
Hybrid	approach.	Next	to	the	purely	rule	or	data-based	approaches,	some	work	has	been	done	on	
combining	 the	 advantages	 of	 both	 approaches.	 Such	 hybrid	 approaches	 are	 an	 im-portant	 step	
towards	introducing	data-driven	elements	into	available	dialog	agents.	At	the	time	of	writing	two	
such	tools	have	been	published.	Rasa	Core	[Bocklisch,	2017]	is	a	commercial	open-source	tool	that	
combines	 frame-based	 state	 updates	 with	 a	 learning	 by	 example	 dialog	 policy.	 The	 software	
implementation	 is	 close	 to	 the	concept	of	Hybrid	Code	Networks	 [Williams,	2017].	As	 the	name	
suggests	this	approach	utilizes	neural	networks	combined	with	coded	constraints	and	rules.	The	
intuition	 is	 that	 some	 parts	 of	 goal-oriented	 dialogs,	 like	 sorting	 the	 data	 returned	 by	 external	
service	providers,	is	very	hard	to	learn	by	example	dialogs,	while	it	is	much	simpler	to	implement	
in	 a	 few	 lines	 of	 code.	 By	 implementing	 software	 components	 into	 the	 framework,	 the	 training	

data	 can	 significantly	 be	 reduced.	 OpenDial	 [Lison,	 2015]	 uses	 an	 approach	 called	 probabilistic	
rules,	a	way	to	express	domain	knowledge	with	if-then-else	type	rules	to	reduce	the	overall	state-
space	of	the	underlying	POMDP	model.	For	example,	if	the	user	is	booking	a	flight	to	New	York	and	
the	dialog	agent	asks	the	user	about	the	city	of	departure	we	can	assume	with	high	probabil-ity	
that	the	user	will	answer	with	a	city	name	which	is	the	departure.	If	we	can	encode	this	in	rules,	
this	specific	part	does	not	need	to	be	learned	during	the	training	phase.	

Comparison
In	Table	1	we	applied	the	dimensions	to	each	of	the	approaches	defined	in	the	previous	section,	
taking	one	representative	example	tool	per	dialog	management	approach.	
	

Figure 3 - Comparison of dialog management approaches

The dialog structure influences the complexity of the possible dialogs and the naturalness because rigid
dialogs are also repetitive. The finite-state approach offers the stiffest struc-ture by modelling dialogs
like a tree, so branches in the conversation exist based on the previous answer but the conversation
follows a strict flow without returning to previous states. This offers easy engineering of conversations,
but at a cost of a limited diversity and richness in dialogs. The tools that use a frame-based dialog state
model the dialog structure as directed acyclic graphs because the sequence in which information is
given and requested is not predefined. Cycles are usually not possible; once a field is filled, it stays
filled. However, correction intent could be manually added, thus making cycles possible. Undi-rected
graphs which are possible with the information state architecture, the neural network and the
approaches that use a belief state. In this model, states are activated based on the evidence collected
through the whole history or a combination of rules. The flow through the conversation is not defined
which makes the conversation less predictable, but arguably more natural. Finally, we have the

example driven Chatterbot which has a semi-random state activation through matching the best
example in the corpus. This can result in unex-pected answers from the bot making the flow unnatural,
but at the same time if the examples are a good match, agent responses can be surprisingly human-
like. For instance, the devel-oper usually thinks about greeting messages which come very naturally
however if we ask, “what is the color of tree leaves?”, but the only corpus example with the word
“color” is “what is your favorite color?”, the bot might answer “I like red.” which is not an expected
answer to the question.

As for availability the finite-state tool Flow XO and frame-based DialogFlow, are hosted solutions with
visual interfaces for defining messages and frames. This makes them conven-ient for developers and
visual interfaces help non-expert and even non-developers to design interaction with the chatbots. The
hosted solutions also offer easy integration with exter-nal tools which further increases the usefulness
for application designers. For instance, in a customer survey application, data requested from the users
can directly be fed into a spread-sheet for further processing and analytics. All other tools require
writing code to create a dialog agent. TrindiKit was originally written in Prolog, a very specific logic
programming language making it very much focused at research. Later a Python implementation
became available but developing a working dialog agent still is a daunting endeavor due to the
complexity of the underlying rule structure. PyDial, Chatterbot and Rasa Core all offer Py-thon
implementations. Python is a popular language in research and industry alike, making Python tools
targeted at a large group of developers, but non-developers are mostly exclud-ed from these tools.
Integrations then need to be programmed customized to the application. OpenDial is written in Java,
which is a little less common among developers of dialog agents.

It is hard to predict all the different ways in which users will interact with the dialog agent once it is
deployed, therefore designing one is often a long process in which different ver-sions need to be
tested and improved. This learning process can be long and costly and is therefore an important aspect
of the dialog management approach. Rule-based systems have handwritten rules which the program
cannot update itself, therefore the learning needs to happen iteratively with manual updates of the
interaction rules which can be a hard process and limit the scalability and dialog complexity of such
approaches. Rasa Core learns through interactions in which the developer confirms the correctness of
the dialog agents’ actions, as such it can be seen as a manual process but on an online system.
OpenDial has two learning processes, firstly the probabilistic rules need to be updated which can be
done iteratively with supervised learning when new data becomes available. Secondly, the under-lying
policy is trained like the POMDP approach with reinforcement learning. This can happen online as well.
Reinforcement learning further allows for planning the conversation ahead as future rewards are
considered which makes this approach better for complex tasks. Finally, memory networks can be
trained end-to-end, which can allow for a simplified learning process without any preprocessing and
data labelling. However online learning has not yet been shown for memory networks.

Error handling helps the dialog agent to handle unexpected inputs, making the conversa-tions robust
and natural. In most cases the finite-state and frame-based approach use a sim-ple escalation message
such as “I didn’t understand” to give feedback to the user, however users either have to rephrase or

start a new interaction. In TrindiKit the developer can define rules for recovering from bad input, while
the data-driven and hybrid approaches keep track of the state probability and lower that on
unexpected input, returning to previous states in order to build up new evidence for the current belief
state. This makes them quite robust as they usually reach their goal. However unexpected input
increases the length of the conver-sation because turns will be repeated. Handcrafted systems are less
elegant in handling such situations. In example-based tools, errors are usually not detected or handled
at all, the sys-tem just selects the next message to send, which can be hit-or-miss. Finally, error
handling in memory networks have not yet been studied in depth.

Regarding dependencies, finite-state and frame-based systems are ready to use without any prior data
or model, also the underlying state and policy are easy to understand, thus mak-ing these tools very
approachable. The research focused TrindiKit requires the implementa-tion of different rules which is
not trivial and will require an underlying model in order to create a working system. For the other data-
driven approaches it is obvious that some train-ing data (and meta-data) is required. Example-based
approaches require a lot of examples in order to perform human-like chit-chat conversations. Also,
PyDial requires a lot of dialogs, in the range of 1000 for a simple task, which can be lowered with the
OpenDial architecture, and Rasa Core lowers this figure to about 10 for basic interactions. Memory
Networks have been shown to work acceptably well with around 500 conversations. The large number
of dialogs for the purely data-driven tools means some way of data-collection is required to create a
workable solution making them less approachable. The hybrid approaches lower the data requirement
far enough to make manual data creation a viable option.

Domain independence is one of the influencing factors for scalability of the overall dialog system.
Finite-state approaches have fixed sequences of messages which make them mostly not reusable,
whereas frame-based approaches can have sub-modules (e.g. a payment infor-mation module that can
be shared between multiple applications), although issues of over-fitting to training data could limit
their applicability. DialogFlow, just like other similar software, have some available pre-defined
modules that can be implemented into a new dialog agent. Rasa Core does not provide this, but a
similar thing would theoretically be possible. TrindiKit can offer domain independence by reusing part
of a model. PyDial pro-vides domain-independent policy and state-tracker and requires domain
dependent data only for NLU and NLG. Again, memory network research is not mature enough yet to
ex-plore domain independence.
The last dimension is control so how much influence the developer has on the flow of the conversation
at design time. Handcrafted systems offer the most control, in finite-state flow the whole conversation
is fully designed, so complete control of the flow is possible, while the other tools offer conceptual
control on a slightly more abstract level. Example-based and neural networks on the other hand offer
no control at all other than selecting the dialogs of the training database. The other tools offer partial
control through defining rewards dur-ing reinforcement training or manual interactive training.

Discussion	and	Outlook
The	 comparison	 of	 dialog	management	 approaches	 has	 shown	 that	many	 convenient	 tools	 are	
available	to	create	simple	but	useful	dialog	agents	and	a	few	research	focused	solutions	that	help	

exploring	new	data-driven	ways	of	handling	dialogs.	Below	we	summarize	 the	evaluation	of	 the	
current	 approaches	 and	 solutions	 against	 the	original	 principles	men-tioned	 in	Dimensions	 and	
Analysis	section.		
	
Capability	 of	 creating	 natural,	 robust	 and	 complex	 dialogs.	 Nowadays	 creators	 of	 dialog	
systems	 are	 balancing	 between	 robustness,	 naturalness,	 and	 complexity,	 seeking	 for	 suita-ble	
tradeoffs.	 	 Systems	 based	 on	 handcrafted	 rules	 are	 very	 robust,	 but	 lack	 naturalness	 and	
complexity.	In	contrast,	probabilistic	models	give	a	more	natural	fee,	at	a	cost	of	robustness.	So	far,	
the	 ambition	 to	 create	 a	 system	 supporting	 complex	 dialogs	 performing	 well	 across	 multiple	
domains	remains	to	be	hardly	reachable.	
	
Convenience	 for	developers.	Tools	 for	creating	dialog	systems	based	on	handcrafted	rules	are	
not	new,	and	ample	support	exists.	Recently	developers	got	in	their	toolkit	tools	allow-ing	to	build	
probabilistic	 and	 hybrid	 solutions.	 Some	 of	 these	 tools	 do	 not	 require	 a	 deep	 understanding	 of	
underlying	 principles,	 while	 some	 do	 require	 giving	 developers	 fairly	 wide	 freedom	 for	
experimentation.	 Developers	 can	 build	 robust	 dialog	 systems	 in	 a	 rela-tively	 easy	 fashion;	
however,	 such	 systems	 are	 working	 in	 a	 limited	 domain,	 where	 the	 nat-uralness	 is	 primarily	
defined	by	the	amount	and	diversity	of	training	data	the	developers	can	afford.	
	
Applicability	 in	 commercial	 environment.	 The	 “robustness”	 is	 the	 first	 commercial	 priori-ty	
(beyond	entertainment	domain),	and	current	approaches	and	tools	allow	to	build	robust	solutions	
working	well	 in	 limited	domains.	 It	 suggests	 that	 the	 current	 state	of	 the	 technol-ogy	 is	mature	
enough	 to	 be	 commercially	 viable,	 primarily	 providing	 another	medium	 for	 customers	 to	 get	 a	
service	they	god	before	via	websites,	mobile	applications,	or	emails.	
	
Scalability/reusability	 in	 multiple	 applications.	 Solutions	 based	 on	 hand-crafted	 rules	 lack	
scalability	to	wider	and	bigger	domains.	Some	tools	provide	dialog	policies	for	some	domains	(e.g.	
weather,	 chit	 chat)	which	 could	 be	 reused	 by	 other	 developers	 to	 shorten	 time	 to	 deployment.	
However,	transfer	learning	techniques	for	dialog	policies	are	not	currently	common,	and	practices	
similar	to	the	ones	used	in	computer	vision	(e.g.	reuse	of	neural	net-works	without	the	last	layer)	
are	indeed	in	demand.		
	
Human-like	highly	intelligent	computer	assistant	are	still	not	available,	but	several	con-crete	work	
directions	 should	 be	 pursued	 for	 next-generation	 dialog	 managers	 to	 increase	 their	 impact	 on	
digital	assistants	and	dialog	agents	in	general.	We	identify	4	areas	of	inter-est.			
	
Training	Data	Availability.	Current	efforts	are	severely	limited	by	the	lack	of	large	amount,	high-
quality	training	data	across	different	domains.	While	this	might	not	be	an	issue	for	big	commercial	
players,	there	is	a	clear	challenge	for	academic	research:	training	data	generation	is	a	tedious	and	
expensive	process.	At	 the	same	time,	 issues	of	diversity	(also	 in	terms	of	 the	socio-demographic	
characteristics	of	the	people	involved	in	the	crea-tion	of	training	samples)	should	be	considered,	
to	seek	fair	and	inclusive	conversations.			

Integration.	 In	 current	 dialog	management	 systems	 external	 data	 sources	 are	 accessed	 through	
handwritten	external	actions.	However	future	digital	assistants	shall	be	able	dis-cover	and	select	
such	 actions	 in	 a	 dynamic	 and	 adaptive	 fashion,	 while	 influencing	 at	 the	 same	 time	 their	
surrounding	 devices.	 Understanding	 how	 to	 design	 dialog	managers	 able	 to	 learn	 and	 organize	
new	external	sources	at	run-time	could	dramatically	 improve	their	utili-ty.	The	 learning	process	
could	 be	 carried	 through	 conversations	 (with	 chatbot	 users	 or	 do-main	 experts	 [Kucherbaev,	
2018]),	or	even	automatically.		
	
Context	awareness.	Dialog	systems	are	still	only	able	to	perform	quite	simple	tasks	which	often	
can	be	performed	almost	as	quickly	through	using	a	mobile	or	web	interface.	One	of	the	aspects	
which	 might	 make	 the	 future	 assistants	 really	 useful	 is	 understanding	 more	 of	 the	 context	 in	
which	they	exist	(beyond	location	information).	Using	sensors	in	mobile	devices,	digital	assistants	
could	 make	 suggestions	 for	 a	 restaurant	 around	 the	 user	 or	 suggest	 a	 movie	 on	 TV.	 Sensing	
devices	might	then	act	as	another	input	for	the	dialog	manager.	
	
Policy	 generation.	 	 In	 the	movies,	 characters	 can	 talk	 to	 the	assistant	about	any	 topic	and	even	
learn	from	them.	Creating	or	even	learning	dialog	policies	for	any	type	of	conversation	or	domain	
will	not	be	a	viable	option.	In	order	to	create	a	dialog	agent	that	can	answer	natu-rally	to	questions	
on	any	topic,	there	needs	to	be	some	automatic	policy	generation	for	un-known	domains.	Transfer	
learning	approaches	[Gašić,	2017]	provide	a	way	to	bootstrap	dialog	policies	across	domains,	but	
their	applicability	and	performance	are	still	limited.

Acknowledgments	
The research is supported by the Amsterdam Institute for Advanced Metropolitan Solutions with the
AMS Social Bot grant

References
1. McTear,	 M.,	 Callejas,	 Z.,	 &	 Griol,	 D.	 (2016).	 “Introducing	 the	 Conversational	 Interface.	 The	

Conversational	Interface”.	https://doi.org/10.1007/978-3-319-32967-3_1	
2. Joseph	Weizenbaum.	 (1966).	 “ELIZA	 –	 A	 Computer	 Program	 for	 the	 Study	 of	 Natural	 Language	

Communication	 Between	 Man	 and	 Machine”.	 Commun.	 ACM	 9,	 1	 (January1966),	 36-45.	
http://dx.doi.org/10.1145/365153.365168	

3. K.	M.	Colby,	F.	D.	Hilf,	S.	Weber,	H.	C.	Kraemer	(1972).	 “Turing-like	Indistinguishability	Tests	 for	
the	 Validation	 of	 a	 Computer	 Simulation	 of	 Paranoid	 Processes”.	 Artif.	 Intell.	 199-221.	
https://doi.org/10.1016/0004-3702(72)90049-5	

4. Jurafsky,	D.,	&	Martin,	J.	H.	(2017).	“Speech	and	Language	Processing	-	An	Introduction	to	Natural	
Language	 Processing,	 Computational	 Linguistics,	 and	 Speech	 Recognition”.	 Retrieved	 from	
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf	

5. Young,	 S.,	 Gašić,	 M.,	 Thomson,	 B.,	 &	 Williams,	 J.	 D.	 (2013).	 “POMDP-based	 Statistical	 Spoken	
Dialogue	 Systems:	 a	 Review”.	 Proc	 Ieee,	 101(5),	 1160-1179.	
https://ieeexplore.ieee.org/abstract/document/6407655/	

6. Bordes,	A.,	Boureau,	Y.-L.,	&	Weston,	J.	(2016).	“Learning	End-to-End	Goal-Oriented	Dialog”,	1-15.	
https://openreview.net/pdf?id=S1Bb3D5gg	

7. Lison,	 P.	 (2015).	 “A	 Hybrid	 Approach	 to	 Dialogue	 Management	 Based	 on	 Probabilistic	 Rules”.	
Computer	Speech	and	Language.	https://doi.org/10.1016/j.csl.2015.01.001	

8. Kucherbaev	 P.,	 Bozzon	 A.,	 Houben	 G.-J.	 (2018).	 “Human	 Aided	 Bots”.	 IEEE	 Internet	 Computing	
(inprint).	https://doi.org/10.1109/MIC.2018.252095348	

9. Introduction	 to	 Flow	 XO,	 URL:	 https://support.flowxo.com/article/132-introduction,	 Retrieved:	
December	9,	2017	

10. Basics	 of	 DialogFlow,	 URL:	 https://dialogflow.com/docs/getting-started/basics,	 Retrieved:	
December	9,	2017	

11. Traum,	 D.,	 &	 Larsson,	 S.	 (2003).	 “The	 Information	 State	 Approach	 to	 Dialogue	 Management”.	
Current	 and	New	Directions	 in	Discourse	 and	Dialogue,	 325-353.	 https://doi.org/10.1007/978-
94-010-0019-2_15	

12. About	 Chatterbot,	 URL:	 http://chatterbot.readthedocs.io/en/stable/,	 Retrieved:	 December	 9,	
2017	

13. Ultes,	 S.,	 Rojas-barahona,	 L.,	 Su,	 P.,	 Vandyke,	 D.,	 Kim,	 D.,	 Budzianowski,	 P.,	 &	MrkÀá,	 N.	 (2017).	
“PyDial‚A	 Multi-domain	 Statistical	 Dialogue	 System	 Toolkit”.	 ACL	 Demo,	 73-78.	
https://doi.org/10.18653/v1/P17-4013	

14. Bocklisch,	 T.,	 Faulkner,	 J.,	 Pawlowski,	 N.,	 &	 Nichol,	 A.	 (2017).	 “Rasa:	 Open	 Source	 Language	
Understanding	and	Dialogue	Management”.	Nips,	1-9.	https://arxiv.org/pdf/1712.05181.pdf	

15. Williams,	J.	D.,	Asadi,	K.,	&	Zweig,	G.	(2017).	“Hybrid	Code	Networks:	Practical	and	Efficient	End-to-
end	 Dialog	 Control	 With	 Supervised	 and	 Reinforcement	 Learning”.	
https://doi.org/10.18653/v1/P17-1062

16. M.	 Gašić,	 N.	Mrkšić,	 L.	M.	 Rojas-Barahona,	 P.	 Su,	 S.	 Ultes,	 D.	 Vandyke,	 T.	Wen,	 S.	 Young	 (2017).	
“Dialogue	manager	domain	adaptation	using	Gaussian	process	reinforcement	learning”.	Computer	
Speech	&	Language,	Volume	45,	2017,	Pages	552-569.	https://doi.org/10.1016/j.csl.2016.09.003.

About	the	Authors	
Jan-Gerrit Harms contributed to this work as a MsC student in the Web Information Systems group of
Delft University of Technology (the Netherlands). His research interests include ontology learning,
conversational agents, and blockchain technology. Contact him at jan.gerrit.harms@gmail.com.

Pavel Kucherbaev contributed to this work as a post-doctoral researcher at Web Information Systems
group of Delft University of Technology (the Netherlands). His research focuses on human computation
and conversational agents. Pavel got his PhD at University of Trento (Italy). Contact him at
pavel.kucherbaev@gmail.com.

Alessandro Bozzon is an Associate Professor with the Web Information Systems group, at Delft
University of Technology, research fellow at the AMS Amsterdam Institute for Advanced Metropolitan
Solutions, and a faculty fellow with the IBM Benelux Center of Advanced Studies. His research lies at the
intersection of crowdsourcing, user modeling, and web information retrieval. Contact him at
a.bozzon@tudelft.nl.

Geert-Jan Houben is a full professor and the leader of the Web Information Systems (WIS) research
group of TU Delft, a scientific director of Delft Data Science (DDS), a research program leader on Open &

Online Education in TU Delft Extension School, and a principal investigator in AMS, Amsterdam Institute
for Advanced Metropolitan Solutions. His research group covers subjects in the wider field of web
engineering and web science, and his research focuses on user modeling for web-based systems.
Contact him at g.j.p.m.houben@tudelft.nl.

