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Preface

To obtain the degree of Master of Science in the field of aerospace engineering, an aspiring engineer has to
prove that their own abilities are those that are expected and required of an engineer. As proof, the student
performs a research regarding a certain topic. The student should preferably chose a topic they are suffi-
ciently interested in, as doing so means dedicating close to a year of their lives to researching it. Lastly, the
student writes a thesis in which they discuss their research and present their findings. This document is pro-
duced as the result of such a research. In this document the entirety of the conducted research is discussed,
from the early stages of researching the general topic, to the final stages of drawing conclusions from the
produced data, and the conclusion of the thesis.

This report will be made publicly available on the TU Delft repository1 on the March 15, 2019. The key
demographic of this report are those interested in aerocapture, or aeromanoeuvring in general, with at least
a basic knowledge of spaceflight. The contents of this reports can be used as a source of information to learn
about aerocapture, to set up research, to support (or refute) claims, or, simply, as an example of a thesis
report.

I wish to thank my supervisor, Dr. Erwin Mooij, for his patience, encouragement, and unyielding and
infectious enthusiasm for this research. Having never conducted a research at this level before, and one with
such stakes attached to it, I found myself often filled with doubt regarding my own capacity as an aerospace
engineer, my work-ethic, or my ability to finish the research in time and still be satisfied with the results. How-
ever, after every meeting we have had, I always left with new-found confidence and enthusiasm, regardless
of how I felt regarding the progress of the research before the meeting.

Additionally, I would like to thank my parents, Geert and Mariska, for always fully supporting me in my
endeavours and providing me with the opportunities in life that have led me to conduct this research in the
first place. My girlfriend, Amber, for her emotional support during the stress and doubt-filled periods of my
research and her willingness to be my proof-reader. Lastly, my friends for providing me with well-needed
distractions from the research whenever I needed it.

J. Engelsma
Faculty of Aerospace Engineering, Delft University of Technology

March 14, 2019

1TD Delft repository http://repository.tudelft.nl/
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Nomenclature

Hopefully this fixes the shitty thing that it does now

Abbreviation SPACE Expansion

ABAM Adams-Bashforth Adams-Moulton
CEV Crew Exploration Vehicle
CNES Centre National d’Études Spatiales (National Centre of Space Studies)
CNSR Comet Nucleus Sample Return
CRM Crew Return Mission
DOF Degree Of Freedom
EA Evolutionary Algorithms
EMCD ESA Mars Climate Database
ESA European Space Agency
EVA Extra-Vehicular Activity
FPA Flight-Path Angle
GRAM Global Reference Atmosphere Model
ISAS Institute of Space and Astronautical Science
ISS International Space Station
JAXA Japan Aerospace Exploration Agency
LST Local Solar Time
MAV Mars Ascent Vehicle
MCO Mars Climate Orbiter
MGS Mars Global Surveyor
MO Mars Odyssey
MPCV Multi-Purpose Crew Vehicle
MRO Mars Reconnaissance Orbiter
MSR Mars Sample Return
NASA National Aeronautics and Space Administration
NEO Near-Earth Object
NSGA-II Non-Dominant Sorting Genetic Algorithm II
ODE Ordinary Differential Equation
PaGMO Parallel Global Multi-Objective Optimisation
RKF Runge-Kutta-Fehlberg
RMS Root-Mean-Square
SBX Simulated Binary Crossover
SRM Sample Return Missions
SZA Solar Zenith Angle
TDB Temps Dynamique Barycentrique (Barycentric Dynamical Time)
TPS Thermal Protection System
Tudat Technical University of Delft Astrodynamical Toolbox
USM Unified State Model
USSR Union of Soviet Socialist Republics
VIRA Venus International Reference Area
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vi 0. Nomenclature

SymbolSPACI SPACE Meaning [unit]

a Acceleration [ms−2]
a Semi-major axis [m]
a Speed of sound [ms−1]
a Acceleration vector [ms−2]
B , E∗, k Non-dimensional parameters [-]
CD Drag coefficient [-]
CL Lift coefficient [-]
CS Side force coefficient [-]
cp Constant pressure specific heat [-]
C R Crossover probability [-]
D Drag force [N]
e Eccentricity [-]
E Eccentric Anomaly [rad]
f flattening [-]
F Force vector [N]
FA Aerodynamic force vector [N]
FG Gravitational acceleration vector [ms−2]
g gravitational acceleration [ms−2]
h Altitude [m]
h Non-dimensionalised altitude [-]
hp Penetration depth [m]
H Angular momentum [m2s−1]
Hs Scale-height [m]
i Inclination [rad]
Kn Knudsen number [-]
L Lift force [N]
L Characteristic length [m]
Ls Solar longitude [rad]
m mass [kg]
m Mutation probability [-]
M Mach number [-]
p Linear momentum vector [kgms−1]
q Heat flux [Wm−2]
q∞ Dynamic pressure [Pa]
r Radial position [m]
r Position vector [m]
R Gas constant [Jkg−1K]
R Surface radius [m]
R̄e Mean equatorial radius [m]
R̄p Mean polar radius [m]
Re Reynolds Number [-]
Rn Nose radius [m]
S Side force [N]
S Surface area [m2]
Sref Reference surface area [m2]
t time [s]
T Thrust force [N]
T Temperature [K]
ts Switch time [s]
u Relative velocity [ms−1]
u Non-dimensionalised velocity [-]
V Velocity Magnitude [ms−1]
V Velocity vector [ms−1]
r Radial position [m]
x x-position [m]
x Non-dimensional altitude [-]
y y-position [m]
y Non-dimensionalised altitude [-]
z z-position [m]
x State vector
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SymbolSPACI SPACE Meaning [unit]
α, λ, ν Non-dimensional parameter [-]
α Angle of attack [rad]
αi i th Euler angle [rad]
β Angle of sideslip [rad]
γ Flight-Path angle [rad]
γ Ratio of specific heats [-]
δ Latitude [rad]
εT Thrust elevation [rad]
ηc Distribution index for crossover [-]
ηm Distribution index for mutation [-]
θ Range angle [rad]
θ True anomaly [rad]
µ Standard Gravitational Parameter [m3s−2]
ν Kinematic viscosity [m2s−1]
ρ Density [kgm−3]
σ Bank angle [rad], or Stephan-Boltzman Constant [Wm−2K−4]
τ Longitude [rad]
τ Re-written range angle [rad]
φ Re-written flight-path angle [rad]
χ Heading [rad]
ψT Thrust azimuth [rad]
ω Argument of periapsis [rad]
ω Rotational Rate [rads−1]
Ω Right-ascension (or longitude) of ascending node [rad]
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1
Introduction

Humanity has a inherent and continuous desire to explore. According to Olson et al. (2012), it is human
nature to "push beyond boundaries and see what lies beyond the horizon" and that "our drive to explore is
fueled [sic] by curiosity that compels us to seek and understand the unknown". Throughout history humanity
has expanded its boundaries, discovered new continent, and facilitated both short and long distance travel
by developing manually operated wheeled vehicles, sea and ocean faring ships, automobiles, and aeroplanes.
In more contemporary history, humanities focus has turned to exploring space: "the final frontier", to help us
gain insight into the history of Earth, our Solar System, the universe, and humanity itself. With the so-called
"Space Race", humanity injected itself into the trajectory of becoming a space faring civilisation.

According to Siddiqi (2000), the "Space Race" brought with it many firsts in space, such as the first artificial
satellite to orbit Earth (Sputnik 1, USSR, 1957), the first vehicle in heliocentric orbit (on accident) (Luna 1,
USSR, 1959), the first probe on an extra-terrestrial body (Luna 2, USSR, 1959), the first animals to successfully
orbit Earth (Belka and Strelka aboard Korabl-Sputnik 2, USSR, 1960), the first man in space (Yuri Gagarin
aboard Vostok 1, USSR, 1961), the first Extra-Vehicular Activity (EVA) (Alexei Leonov aboard Voskhod 2, USSR,
1965), and the first humans on an extra-terrestrial body (Neil Armstrong and Edwin Aldrin Jr aboard Apollo
11, NASA, 1969).

Humanity’s activity in space has not ceased since. Missions have continued to venture to extra-terrestrial
bodies such as planets, Near-Earth Objects (NEOs), and into deep space. Recently the exploration, and po-
tential colonisation, of Mars has attracted the interest of national agencies, professional industry, and the
general public. Such is evidenced by national agency programs such as the European Space Agency’s (ESA)
Aurora programme (Gardini et al., 2003) and the National Aeronautical and Space Administration’s (NASA)
Constellation programmes1, private company SpaceX’s plan to facilitate the colonisation of Mars2, and en-
tertainment media such as books and video games concerning Mars colonisation and research such as "The
Martian" (Weir, 2011) or "Surviving Mars" (Haemimont Games, 2018), respectively.

According to Olson et al. (2012) there are four main reasons for studying and exploring space, and in par-
ticular Mars. These reasons are the attempted gain in knowledge about the history and future of the Earth by
studying the evolution of Mars, the advancement of the cutting edge of technology by developing technology
to survive on Mars, to show the success of international cooperation in space exploration, and to advance
humanity further along becoming a space faring civilisation. The first of these reasons is exclusive to Mars
due to the similarity between the "Red Planet" and our own. The other three reasons however are applicable
to exploration and colonisation missions on any extra-terrestrial body.

One of the main obstacles for prolific space exploration missions is the high cost of space missions. The
cost of launching a vehicle is roughly proportional with the mass of the vehicle and the orbital energy of the
desired orbit, a low Earth orbit being cheaper than a geosynchronous transfer orbit, and an interplanetary
transfer trajectory being more expensive than both. This makes the mass of the spacecraft a driving concern
in the aerospace industry.

1Connolly, J.F. "Constellation Program Overview", October 2006. Retrieved on March 25, 2018 from https://www.nasa.gov/pdf/

163092main_constellation_program_overview.pdf
2Musk, E. "Making Humans a Multiplanetary Species", September 2016. Retrieved on March 25, 2018 from https://youtu.be/

H7Uyfqi_TE8
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To reduce the cost of missions without losing any of the payload mass, sophisticated manoeuvres have
been proposed to reduce the amount of fuel required for post-launch manoeuvres. Once such manoeuvre is
the aerocapture. According to Hall et al. (2005), the application of aerocapture enables large propellant mass
savings. This is illustrated in Fig. 1.1, depicting the result of a first-order analysis performed by Hall et al.
(2005) regarding the mass savings made possible by aerocapture.

Figure 1.1: Comparison of the total to fuel mass ratios for propulsive capture and aerocapture.Hall et al. (2005)

Aerocapture is a type of aero-assist manoeuvre (hereinafter aeromanoeuvre). Aeromanoeuvres are ma-
noeuvres that use the aerodynamic force resulting from the interaction between the vehicle and the atmo-
sphere instead of thrust to accomplish a manoeuvre. Three types of aeromanoeuvres can be discerned:
aerogravity-assist, aerobraking, and aerocapture. During aerogravity-assists the aerodynamic forces are used
to further increase the energy gain or trajectory modification compared to a regular gravity-assist. During
aerobraking the aerodynamic forces are used to reduce the orbital energy, lowering the apoapsis of a closed
orbit. During aerocapture the aerodynamic forces are used to reduce the orbital energy of the vehicle, reduc-
ing the open hyperbolic trajectory to a closed elliptical orbit. Aerobraking and aerocapture manoeuvres are
depicted schematically in Fig. 1.2.

Figure 1.2: Schematic illustration of aerobraking (left) and aerocapture (right). Munk and Spilker (2008)

According to Munk and Spilker (2008) there are several additional benefits to aerocapture. These include
the lowered post-launch fuel consumption and the possibility to establish an orbit after a single pass through
the atmosphere, compared to the many passes required for aerobraking. However, three downsides of aero-
capture are also mentioned. The first downside is the necessity to have a protective aeroshell, also known as
a Thermal Protection System (TPS) against the aerothermal heating that occur during the hypersonic pass
through the atmosphere. The second is the fact that it is a one-shot manoeuvre, failure most likely resulting
in the loss of a vehicle, and its contents. The final downside is that due to the ionisation of the atmosphere
around the vehicle, ground-based communications are not possible, making the vehicle fully dependent on
on-board flight software for, for instance, guidance.

Aerocapture has never been implemented for an interplanetary mission since it was first proposed by
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Cruz (1979). However, it is an often analysed and proposed manoeuvre for interplanetary missions. The
studies of aerocapture are not limited to Earth centred aerocapture, but have also been performed for extra-
terrestrial bodies such as Mars, Venus, Titan, and Neptune. Nevertheless, according to Munk and Spilker
(2008) it is likely that the first every aerocapture mission will be an Earth-based demonstrator, stating the
increase in technology readiness level as the primary reason. With large programmes such as ESA’s Aurora
programme and the possible scientific return from a Mars sample return mission it is also likely that the first
interplanetary mission to feature aerocapture will be a Mars sample return mission, where aerocapture will
be used to both capture the orbiter at Mars and to return the samples to Earth.

1.1. Research Question
The research questions were established based on the topic selected. These questions drive the direction of
the research. Almost all the work performed during the research was done with the idea of answering either
the primary research question, or the sub-questions. The primary research questions refer to the ultimate
goal of the research, where the sub-questions provide additional insight and understanding of the problem,
as well as potentially reinforcing the conclusion of the primary research question. Two primary research
questions were formulated for this research:

1. "What is the optimal aerocapture trajectory to reach the target apoapsis for the reference vehicle about
the central body, arriving with arbitrary entry interface conditions."

2. "What are the limit entry interface conditions with which the reference vehicle can arrive at the central
body, and still reach the target apoapsis after aerocapture."

These research questions are formulated by using the general terms "central body" and "reference vehi-
cle" in lieu of a specific celestial body or vehicle. This is done such that only two research questions had to
be formed, instead of numerous that would all be slight variations of each other. Each of the specific forms of
the two research questions are discussed next.

1.1.1. Research Question Variations
The first variation is the type of mission flown, and thus the type of vehicle used. In this research two dif-
ference types of missions are considered. The first type is a manned mission, and thus uses a vehicle that is
representative of vehicle that are meant to be crewed and pass through atmospheres. This type of missions
is hereinafter referred to a Crew Return Mission (CRM). The second type of mission is, logically, one that
is unmanned, and uses a vehicle that is representative of a vehicle used for unmanned missions that pass
through the atmosphere. Unmanned re-entry missions are often used for Sample Return Missions (SRM).
This designation will be used hereinafter for this type of mission.

The second variation is the planet the mission is executed about. As the subtitle of this report might
have already have given away, the three planets considered are Earth, Mars, and Venus. These planets were
chosen as they provided an interesting spread of atmospheres in which the atmospheric portion of the flight
is conducted. Mars features a very tenuous atmosphere, whereas Venus has a very dense atmosphere. Earth
features an atmosphere somewhere between these two.

These two variations bring the total number of research questions up to sex variations of the same basic
research question. Two different vehicles flying aerocapture trajectories about three difference planets. As a
last remark, the nomenclature used for the types of missions, crew return and sample return, do not make
a sense when used in the context of performing aerocapture about Mars or Venus, as this would indicate
that a crew or sample collected would return to Mars or Venus. However, using this nomenclature, the major
difference between the two missions can be readily understood.

1.1.2. Research Sub-questions
In addition to the two primary research questions, three additional sub-questions were formulated to further
guide the research. These sub-questions deal with improving the applicability of the aerocapture manoeuvre,
and demonstrating the benefit of aerocapture over regular propulsive capture.

3. "If the reference vehicle arrives with an entry interface condition outside of the previously defined limits,
what is the optimal way to salvage the aerocapture?"

4. "How much mass does each of the trajectories save over traditional chemical circularisation?"
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5. "What is the limit entry interface condition for which traditional chemical circularisation becomes prefer-
able over an aerocapture trajectory?"

The answers to the two primary research questions and these sub-questions were obtained throughout
this research. At the end of this report, while discussing the conclusions, a summary will be given of the
research questions, the sub-questions, and their found answers.

1.2. Report Layout
This report is split into four parts, each part grouping together several chapters that deal with a distinct part
of the research. Part I consists of Chapters 2 and 3 and provides the required background for the research.
Chapter 2 provides required background information regarding aerocapture manoeuvres, and a brief his-
tory of aeromanoeuvres in general. The two reference vehicles and the requirements imposed on them are
described, and the trajectory targets are established. Chapter 3 discusses the flight dynamics. The equa-
tions governing the motion and the forces that effect this motion are discussed. The reference frames in
which these forces are defined are described and transformations between the various frames are deter-
mined. Lastly, the environment that is the source of these forces and the models used to approximate this
environments is discussed.

Part II deals with the numerical methods and software used in this research. In Chapter 4 a description of
the various used numerical methods is given. In Chapter 5, the software libraries from where these numerical
methods were obtained are described, and the general architecture of the developed software is presented.

Part III deals with the results from the research. In Chapter 7 the results from evaluating the accuracy of a
first-order and second-order analytical method is presented. In Chapter 8 a proposal for optimal aerocapture
trajectories is investigated. In Chapter 9 the effect of varying the initial conditions and the control variables
on the trajectory is investigated. In this investigation it is also determined what the best course of action
is when the initial conditions violate a constraint. Lastly, in Chapter 10 the conclusions drawn throughout
this part are brought together to develop entry corridors and flight envelopes that specify the boundaries for
which aerocapture can be performed. The last chapter of this part, Chapter 11, discusses the methodology
formulated to obtain optimal aerocapture trajectories, and the benefit of flying these trajectories compared
to propulsive capture.

The last part, Part IV, concludes the research with only a single chapter, Chapter 12. In this chapter the
conclusions made based on the results presented in this report are gathered, and the recommendations for
future research are given.
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2
Mission Overview

As already stated in Chapter 1, an aerocapture manoeuvre has never been implemented in an interplane-
tary mission. However, the manoeuvre has been proposed and investigated numerous times and missions
using similar mechanics, such as aerobraking and skipping, have been successfully executed in the past. Fur-
thermore, missions that perform direct entry from an hyperbolic trajectory have also been performed. By
investigating what has been previously prosed for aerocapture missions, as well as aerobraking, skipping,
and hyperbolic direct entry missions, additional insight can be gained into the aerocapture manoeuvre. This
insight comes in the form of possible range of initial conditions, vehicle configurations, and requirements
imposed on the trajectory. In this chapter an overview is provided of missions tat fall in any of these cate-
gories.

In Section 2.1 missions that featured direct entry from an hyperbolic trajectory are discussed. This type
of mission and the aerocapture shares the characteristic of entry into the atmosphere from an open orbit. In
Section 2.2, missions that performed, or were able to perform, skipping flight are discussed. These missions
and the aerocapture share the characteristic of skipping out of the atmosphere. The aerobraking mission also
shares this characteristic, and these missions are discussed in Section 2.3. The last type of missions discussed
are two mission proposals that featured aerocapture. These mission proposals are discussed in Section 2.4.
Using the information obtained from these four types of missions, the possible range of initial conditions,
as well as the nominal initial conditions and target apoapsis altitude and desired accuracy are established in
Section 2.5. The final section, Section 2.6, the reference vehicles used throughout this report are discussed.
For the reference vehicle the physical properties, such as the size, shape, and mass will be provided, as well
as, the requirements imposed on the trajectory by the vehicle.

2.1. Past Hyperbolic Direct Entry Missions
A hyperbolic direct entry mission and an aerocapture manoeuvre have in common that in both cases the
vehicle enters the atmosphere while on a hyperbolic (open) trajectory. In the case of the direct entry mission,
during the single pass through the atmosphere, the vehicle looses all is orbital energy and results in a touch-
or splash-down on the central body. In most cases, the hyperbolic direct entry is supplemented by additional
force inducing elements, such as parachutes or retrorockets.

On Earth, hyperbolic direct entry has been applied by several sample return missions returning from
comets and asteroids. These include Stardust and Hayabusa.

Stardust was a NASA sample return mission launched in 1999. According to Atkins et al. (1997), the ob-
jective of the mission was to approach comet Wild-2 and collect cometary and interstellar particle. These
samples would then be returned to Earth. At Earth, the sample return capsule performed ballistic entry. Ac-
cording to Revelle and Edwards (2007) the inertial velocity of the entry was 12.9 kms−1 with a flight-path angle
of -8.2°. During entry the vehicle encountered a peak heat flux of 12.0 MWm−1 and a peak mechanical load
of 34g.

Hayabusa was a JAXA sample return mission launched in 2003. According to Kawaguchi et al. (2006),
the objective of the mission was to rendezvous with the asteroid Itokawa, and collect samples from the as-
teroid surface, and return them to Earth. At Earth, the sample return capsule performed ballistic entry and
according to Cassel et al. (2011), it re-entered the Earth atmosphere with an inertial velocity of 12.035 kms−1

7
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Figure 2.1: Atmospheric entry trajectory illustrating the basic phases of flight in a skip entry. Clem Tiller (2006)

and a flight-path angle of -12.35°. During entry it encountered a peak heat flux of 11.12 MWm−1 and a peak
mechanical load of 49g. According to Watanabe et al. (2017), a follow-up to this mission, Hayabusa2 was
launched in 2014, rendezvoused with asteroid Ryugy in 2018, and is expected to return to Earth in 2020. The
capsule for Hayabusa2 is expected to re-enter with 12 kms−1.

On Mars, missions have been performed using direct entry in more recent history. Some examples of
these missions are NASA’s Pathfinder (1996) landing the Sojourner rover, NASAs’ Mars Exploration Rover
(2003) landing the Spirit and Opportunity rovers, NASA’s Mars Science Laboratory (2011) landing the Cu-
riosity rover, and ESA’s ExoMars, in particular the Schiaparelli EDM Lander (2016).

For Venus the only missions to perform hyperbolic direct entry in to the atmosphere occurred during the
aforementioned space race. According to Colin (1980) these were the Soviet Verena 3 through 12 from 1966
through 1978, and NASA’s Pioneer-Venus 2 in 1978. Pioneer-Venus 2 consisted of 4 probes and the spacecraft
bus. The relative velocity and relative flight-path angle at entry for these four probes were 11.5377 kms−1 at
-32.37°, 11.5372 kms−1 at -68.74°, 11.5371 kms−1 at -25.44°, and 11.5375 kms−1 at -41.50°. The bus entered
with 11.5289 kms−1 at -9.38°.

The flight-path angles of these trajectories were found to be a lot steeper than those found characteristic
for aerocapture, as will be discussed later. This is due to aerocapture requiring a shallower entry to man-
age to skip out of the atmosphere. For this reason, only the velocities at which these entries occurred were
considered while formulating the nominal reference mission later in this chapter.

2.2. Past Skipping Entry Missions
A skipping entry and an altitude-targeting aerocapture manoeuvre share the similarity that during the atmo-
spheric pass the orbital energy is lowered, and at the end of the atmospheric pass the vehicle skips back out
of the atmosphere. For the aerocapture manoeuvre at this point the periapsis of the orbit would be raised to
fall outside of the sensible atmosphere. For skipping entry it is more common leave the orbit intersecting the
atmosphere such that the vehicle passes through the atmosphere again and the remaining orbital energy can
be lost. A general skip entry manoeuvre featuring a single skip is illustrated in Fig. 2.1

Skipping entry has only been successfully performed by three of the Soviet Zond missions, namely Zond-
6, -7, and -8 in 1968, 1969, and 1970, respectively (Siddiqi, 2000). According to the same source, the Apollo
missions were also planned to feature a single skip during the entry during the early stages of development,
and the guidance algorithm featured in Apollo was capable of executing the manoeuvre. However, because
Apollo was a manned mission and that the risks associated with a skip entry were deemed too high, it never
performed the manoeuvre. Regardless of the fact that Apollo never performed a skip itself, it has had a big
impact on future developments in both skip and aerocapture manoeuvres. For instance the first ever aero-
capture guidance algorithm by Gamble et al. (1988) is based on the Apollo guidance.

Another example of Apollo’s impact is the Orion Multi-Purpose Crew Vehicle (MPCV), known as the Crew
Exploration Vehicle (CEV) before cancellation of the Constellation programme. The Orion MPCV can be seen
as a continuation of the technology developed for the Apollo program. This continuation is evident from both
the vehicle shape and the guidance algorithm used. The vehicle shape of Orion very closely represents that of
an enlarged Apollo capsule, as is illustrated in Fig. 2.2. According to Bairstow and Barton (2007), the guidance
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Figure 2.2: Relative size of the larger Orion Crew Exploration Vehicle (Back) to the Apollo Command Module (Front). Moss et al. (2006).

algorithm used in Orion, PredGuid, is based on the guidance algorithm from Apollo. Additionally, according
to NASA (2013), another adaptation of this guidance algorithm has been developed with the capability for
performing an aerocapture manoeuvre, called PredGuid+A. The Orion CEV was proposed to be used to ferry
both crew and cargo to the ISS, as a crew vehicle for a lunar mission, and, since its redesign into the MPCV, a
manned mission to Mars.

2.3. Past Aerobraking Missions
The similarities between aerobraking and aerocapture stem from the fact that in both missions the atmo-
sphere is used to decrease the energy of the vehicle passing through the atmosphere. The main difference
between the two manoeuvres are the types of orbit for which the manoeuvre is performed, and the depth
with which the atmosphere is penetrated. Aerobraking is performed to lower the apoapsis of a closed orbit,
when the vehicle has already been captured about a celestial body, whereas an aerocapture manoeuvres is
performed on an open (hyperbolic) orbit with the target to obtain a closed orbit. Aerobraking would be a log-
ical follow-up to aerocapture to lower the apoapsis further if the current apoapsis is greater than the desired
apoapsis. Additionally, aerobraking commonly happens in the upper parts of the atmosphere to limit the
aerodynamic forces and aerothermal load, whereas aerocapture penetrates the atmosphere deeper to make
use of the increased density at lower altitudes to increase the aerodynamic forces, and decrease the orbital
energy faster. Fig. 1.2 provides a schematic view of both aerocapture and aerobraking manoeuvres.

The first aerobraking manoeuvre was performed by the Japanese Institute of Space and Astronautical
Science (ISAS), now a division of Japan Aerospace Exploration Agency (JAXA), mission Hiten (Uesugi, 1996)
in 1991. The vehicle performed a total of two aerobraking manoeuvres about Earth, both consisting of a single
pass. The details of both aerobraking manoeuvres were obtained from Uesugi (1996), and are presented in
Table 2.1.

The first extra-terrestrial aerobraking manoeuvre was performed by the Magellan spacecraft on Venus.
The Magellan spacecraft was tasked to map the surface and to measure the planetary gravitational field. In
this mission aerobraking was used to reduce the orbital eccentricity by lowering the apoapsis altitude and
thereby improving the resolution of the gravity mapping. The details of the manoeuvre were obtained from
Tolson et al. (2013), Lyons (2000), and Spencer and Tolson (2007), and are presented in Table 2.1. Tolson
et al. (2013) states that, based on the successful application of aerobraking for the Venus Magellan mission,
aerobraking became a technology that enabled Mars orbiting missions.

The Mars Global Surveyor (MGS) was intended to map the entire Martian surface. It was the first mission
that was designed with aerobraking in mind during the design. Due to the low density atmosphere surround-



10 2. Mission Overview

Figure 2.3: Mars Global Surveyor Spacecraft in Aerobraking
Configuration. Spencer and Tolson (2007).

content...

Figure 2.4: Mars Odyssey Spacecraft in Aerobraking Configu-
ration. Smith and Bell (2005).

Table 2.1: Details from the various investigated performed aerobraking manoeuvres. The fuel saved is presented both as the actual mass
of the fuel saved, as well as an approximate percentage of dry mass.

Mission Body rp [km] Passes [#] ∆V [ms−1] ∆ra [km] Fuel saved [kg (%Dry)]
Hiten #1 Earth 125.5 1 1.712 8 665 -
Hiten #2 Earth 120 1 2.8 14 000 -
Magellan Venus 170 700 1 200 8 000 490 (~50%)
MGS Mars 120 446 1 200 54 000 330 (~50%)
MO Mars 110 332 1 080 26 000 320 (~85%)
MRO Mars 110 420 1 200 43 500 580 (~60%)
MCO Mars 57 1

2 - - -

ing Mars the MGS (and every subsequent aerobraking mission on Mars) used its solar panels to increase its
surface area perpendicular to the velocity to increase the amount of drag effected. This is shown schemat-
ically for the MGS and Mars Odyssey in Figs. 2.3 and 2.4, respectively. According to Lyons (2000) the solar
panels of MGS were swept back to reduce the mechanical loading during the aerobraking manoeuvre. The
details of the manoeuvre were obtained from Lyons (2000) and Spencer and Tolson (2007), and are presented
in Table 2.1

After MGS came 2001 Mars Odyssey (MO). MO investigated the planet’s geology and radiation environ-
ment, as well as search for evidence of past or present water or ice. The details of the manoeuvre were ob-
tained from Tolson et al. (2013) and Spencer and Tolson (2007), and are presented in Table 2.1

The Mars Reconnaissance Orbiter (MRO), launched in 2005, was designed to map the surface of Mars in a
higher resolution than was done by MGS so that a landing site for future surface missions could be designated.
As stated, MRO’s attitude was such that its solar panels were aligned roughly perpendicular to the flow. The
details of the manoeuvre were obtained from Tolson et al. (2013) and Spencer and Tolson (2007), and are
presented in Table 2.1.

The first failure in an aerobraking manoeuvre occurred during the Mars Climate Orbiter (MCO) mission.
This mission was launched in 1998 and was intended to investigate the Martian atmosphere. An aerobraking
manoeuvre had been proposed to be used after orbit insertion about Mars to circularise the orbit. This orbit
insertion is where the mission failed. The failure occurred due to a mix-up of imperial and metric units when
supplying commands1. The insertion manoeuvre placed the vehicle in an orbit with a periapsis of 57 km, 170
km below the planned 226 km, and 23 km below the minimum altitude considered survivable by MCO of 80
km. At this altitude the atmospheric density was too high, and most likely resulted in the disintegration of the
spacecraft in the Martian atmosphere.

2.4. Proposed Aerocapture Missions
As stated in Chapter 1, aerocapture was first proposed by Cruz (1979), but has never been put into practice
since, not even for a demonstrator mission. Nevertheless, many studies have been performed into the use
of aerocapture as a means of saving propellant and making certain far away destinations, such as Neptune,

1Mars Climate Orbiter Mishap Investigation Board, "Phase I Report", November 1999. Available at https://llis.nasa.gov/llis_
lib/pdf/1009464main1_0641-mr.pdf

https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf
https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf
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Figure 2.5: Artist’s impression of the Rosetta/CNSR mission
from the original proposal by Schwehm (1989)

content...

Figure 2.6: Rosetta/CNSR Earth Approach and Re-Entry Sce-
nario. Serrano-Martinez and Hechler (1989).

feasible. In this section two types of missions that were proposed featuring aerocapture at some point as a
primary method for capturing the vehicle are discussed. The two proposals are for a Mars Sample Return
(MSR) mission, and the original Rosetta Comet Nucleus Sample Return (CNSR) mission.

2.4.1. Rosetta Comet Nucleus Sample Return

The original proposal for the Rosetta mission made by Schwehm (1989) was to bring back a 10 kg comet core
sample, a 10 g to 100 g volatile sample, and a 1 kg to 5 kg surface sample. According to Serrano-Martinez and
Hechler (1989), this mission would have a tremendous scientific return as it allowed for the analysis of the
most primitive material in the solar system, which was hoped to provide insight in the chemical and physical
processes that marked the beginning of our Solar System. The original proposal featured aerocapture of
the sample return capsule followed by rendezvous with the International Space Station (ISS), from which
the samples would have been returned to Earth via "standard" entry. This part of the mission was scrapped
however, with Serrano-Martinez and Hechler (1989) citing problems with keeping the samples at the required
temperature for prolonged period of time in the near Earth environment as the root of the problem. The
mission was changed to feature aerocapture followed by direct entry using an low L/D, capsule-like, vehicle
and guidance algorithm similar to that used for Apollo. An artist’s impression of the original mission plan as
presented in Schwehm (1989) is presented in Fig. 2.5, and the updated mission plan featuring direct reentry
from Serrano-Martinez and Hechler (1989) is shown in Fig. 2.6.

The eight phases of the mission as proposed by Schwehm (1989) were: launch and injection into Earth-
escape trajectory, heliocentric trans-comet cruise, comet approach, sample acquisition and storage, comet
departure, heliocentric trans-Earth cruise, aerobraking ([sic], this manoeuvre is actually an aerocapture ma-
noeuvre as there is no other manoeuvre between the trans-Earth cruise and entry/orbiting) directly to ground
or into Earth orbit, and lastly sample retrieval. Serrano-Martinez and Hechler (1989) provides more details
regarding a number of the phases. The first phase of the mission was the launch using the Titan/Centaur
rocket. This was followed by an Earth gravity-assist, transfer to the comet, approach of the comet, and ren-
dezvous at its apoapsis at roughly 5 au. At the comet the samples would be gathered via drilling, after which
the vehicle would depart the comet and transfer back to Earth. The final stages are the approach of Earth with
an hyperbolic excess velocity (V∞) exceeding 10 kms−1, separation from the transfer vehicle, separation from
the entry vehicle, and start of aerocapture in the upper atmosphere. The aerocapture was planned to start
with an initial entry velocity of 15 kms−1 at an flight-path angle of -10.5°. The developed guidance algorithm
of the the mission was reported to have a landing precision of less than 10 km, and a peak acceleration below
20g. 20g being the proposed mechanical load factor sustainable by the vehicle.

In the work by Serrano-Martinez and Hechler (1989) two vehicle shapes were analysed. The first being a
low L/D vehicle modelled after Apollo, and one with ah higher ratio (Bent nose biconic type vehicle model).
The result of the analysis was that the biconic vehicle showed heating problems at its small radius nose,
whereas the Apollo capsule performed within acceptable limits. For this reason an Apollo shaped capsule
was proposed for this mission.
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Figure 2.7: Schematic representation of the Earth entry vehicle from the NASA/CNES MSR mission proposal. O’Neil and Cazaux (2000).

2.4.2. Mars Sample Return
According to Mitcheltree et al. (1998), MSR missions had, at the time, been studied periodically for 30 years.
Adding 20 years since that report, means that MSR missions have been of interest for roughly half a century.
This continuous interest is because a sample return from Mars is considered the mission with the highest
scientific return regarding insight into Earth’s history. Bringing the sample back to Earth allows the analysis
of the sample not only with the instruments on board of the lander, but with all the instruments available
on Earth. This will drastically increasing the potential scientific data gathered. With Mars commonly being
considered to most Earth-like planet in our Solar System, this analysis would not only provide insight into
Mars, but also our own planet. In this section a MSR missions will be discussed. This mission was proposed
by a team formed by NASA and the Centre National d’Études Spatiales (CNES) in France.

According to O’Neil and Cazaux (2000), the original proposal for a Mars Sample Return mission involved
two separate launches. The first launch, planned for 2003, was the responsibility of NASA. This launch would
launch a Mars Lander, Rover, and Mars Ascent Vehicle (MAV). The second launch was planned for 2005 and
was the responsibility of CNES. This launch would carry another lander, rover, and MAV, an orbiter, and an
Earth entry Vehicle. This Earth entry vehicle had an empty weight of 23 kg, and would weigh 3.6 kg heavier
upon entry due to the stowed samples. The maximum diameter of the vehicle is 0.75 m, but no figure was
provided regarding the deflection angle or nose radius. An illustration of this vehicle is provided in Fig. 2.7.

When arriving at Mars, the orbiter would have performed aerocapture to be captured at Mars without the
use of a propulsive system. It would penetrate the Martian atmosphere with an altitude of 40 km, resulting
in an elliptical orbit with an apoapsis of roughly 1500 km. After the aerocapture, rockets would be used to
raise the periapsis outside of the sensible atmosphere. After this, the orbiter would attempt to locate the 2003
sample capsules put in orbit by the MAVs. After locating the capsules, the orbit of the orbiter is altered to
match the orbital plane of the sample and its orbit is circularised. This procedure would be repeated with the
2005 sample canisters. By 2007 it was expected that all samples are captured and stowed in their respective
Earth Entry Vehicles. The orbiter would depart from Mars and start along its trans-Earth orbit. Approaching
Earth, a gravity-assist would be performed to allow for landing sites on the northern hemisphere. At Earth,
the Earth entry vehicles would re-enter the Earth’s atmosphere on a ballistic trajectory with a velocity of 11.5
kms−1.

2.5. Reference Mission
In this section the nominal initial conditions for each of the three planets are discussed. The nominal initial
condition was selected based on proposed and executed missions that had the same planet as their target.
After the nominal state is established, the accuracies required from the interplanetary guidance, navigation,
and control subsystems are stated.

Following this, the target of the trajectory, the the requirements that the trajectory has to adhere to, and
the guidance and control accuracies are formulated. In the next section, Section 2.6, the two vehicles, and
the requirements imposed on the trajectory flown by the vehicle to ascertain the safety of the vehicle and its
contents, are discussed. Additionally, in the final subsection of the next section, the requirements are formally
formulated and grouped together.
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Table 2.2: Nominal Entry Interface Vehicle State for all three planets.

Central Body Altitude [km] Velocity [kms−1] Flight-Path Angle [°]
Earth 125 11.5 -7.4
Mars 125 8.2 -11.5
Venus 250 11.25 -6.1

2.5.1. Nominal Initial State
For the first two missions, the transfer from Earth to Mars and back from Mars to Earth, the MSR mission was
selected as a reference mission. For this mission an entry velocity on Earth of 11.5 kms−1 was proposed, at an
altitude of 125 km. According to Lyne (1992), this value is representative for a conjunction class transfer from
Mars to Earth. Lyne (1992) states that conjunction class transfers result in entry velocities of 11 kms−1 to 12
kms−1, and that opposition class transfers result in a higher velocity of 13 kms−1 to 15 kms−1. Wooster et al.
(2006) reports a broader range for conjunctions class missions from 11.5 ms−1 to 14.7 ms−1. The difference
between conjunction and opposition class transfers is not of import to this research and will not be touch
upon. Mitcheltree et al. (1998) and Robinson et al. (2009) further corroborate these statements.

Mitcheltree et al. (1998) reports a lower bound on the entry velocity of 11 kms−1 at an altitude of 125 km,
and uses a value of 11.46 kms−1 at an altitude of 125 km with a flight-path angle (FPA) of -12° in its research.
Robinson et al. (2009) presents a range of different initial velocities and FPAs for both Earth aerocapture and
Earth direct entry at Mars return conditions at an altitude of 122 km. For aerocapture the velocities and flight-
path angles range from 12 kms−1 to 16 kms−1, and -5° to -10°, respectively. For the direct entry the velocities
and flight-path angles range from 12 kms−1 to 16 kms−1, and -5° to -7.4°, respectively.

Based on this information the nominal initial state of the vehicle are as follows. The inertial velocity of the
vehicle will be taken as 11.5 kms−1 as to mimic the discussed MSR mission and the research by Mitcheltree
et al. (1998), and to have an average value for a conjunction type transfer as presented by Lyne (1992), while
still falling within the range reported by Wooster et al. (2006). For the flight-path angle an inertial angle of -
7.4° will be used. While this angle is on the high end of the spectrum for direct entry as proposed by Robinson
et al. (2009), it is average for the proposed aerocapture values. The nominal initial altitude of the vehicle is
set to 125 km, again following the design of Mitcheltree et al. (1998), and being similar to the initial altitude
altitude used by Robinson et al. (2009). The nominal initial states for Earth is tabulated in Table 2.2.

For the Mars entry velocity from Earth, there were no entry values presented in the MSR mission proposal.
However, according to Lyne (1992), the probable range of entry speeds ranges from 6 kms−1 to 10 kms−1. This
was again corroborated by Wooster et al. (2006), who reports a possible range between 5.5 kms−1 and 9.5
kms−1. They also report a possible range of flight-path angles ranging from -8° to -13°. Based on these ranges,
nominal values for the velocity and flight-path angle that were used in this research were selected. For both
variables, nominal values above the average (at roughly the two-thirds mark of the ranges) were selected. This
was to obtain high energy nominal trajectories, that would make the research more interesting to perform.
The nominal initial velocity was set to 8.2 kms−1, and the flight-path angle to -11.5°. The nominal initial states
for Mars is tabulated in Table 2.2.

For the Venus entry from Earth, the work by Munk and Spilker (2008) uses an inertial entry velocity range
from 10.5 kms−1 to 14.0 kms−1, with a nominal entry velocity and flight path angle of 11.25 kms−1 and -6.12°,
respectively. Craig and Lyne (2002) presents a range for the entry velocity between 11.0 and 14.0 kms−1, and
for entry angles between -6.5° and -11°. Due to the late inclusion of this mission, and the infrequency the
nominal initial conditions were used throughout this research, it was decided to not expend more time into
finding other references for Venus entries, and to use the values as proposed by Munk and Spilker (2008)
as the nominal entry state, as they are similar to the lower bound presented by Craig and Lyne (2002). The
nominal initial states for Venus is tabulated in Table 2.2.

In this research the interest lays on investigating the feasibility and applicability of the aerocapture ma-
noeuvre. The interplanetary trajectory leading up the the aerocapture is not of interest outside of potential
discrepancies with the nominal initial conditions. However, when the impact of varying the initial conditions
on the feasibility and applicability of the aerocapture manoeuvre is evaluated, this will be done by setting
different initial conditions, instead of applying a random error. Doing so allows for greater control over the
evaluated range of initial conditions. For this reason it is assumed that the interplanetary guidance, naviga-
tion, and control subsystems are perfect, resulting in initial conditions that exactly match the specified initial
conditions.
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Figure 2.8: Illustration of an aerocapture manoeuvre resulting in a parking orbit about the central body. ∆V11 is used to circularise the
orbit, and ∆V1 is attempted to be minimised during the optimisation. ACRI/LAN (1992).

2.5.2. Target Orbit
The aerocapture manoeuvre attempts to use a single pass through the atmosphere to transition from a hy-
perbolic orbit to a closed orbit with its apoapsis at the desired altitude. After the apoapsis is reached, the
periapsis can be circularised, or raised to any other desired altitude. This type of mission is schematically
depicted in Fig. 2.8. In the optimal solution, the ∆V1 manoeuvre is zero.

The original Rosetta CNSR, as proposed by Schwehm (1989), is an example of a mission where the final
target was an orbit at a particular altitude. In this particular example the target orbit was placed at the altitude
of the ISS, at an altitude of 400 km. In the study of Robinson et al. (2009) the target of the aerocapture analysis
was an orbit with an apoapsis of 500 km. Based on these two missions, it was opted to follow the study by
Robinson et al. (2009) and make the target orbit an orbit with an altitude of 500 km. The target altitude of
the trajectory was not changed for Mars or Venus, and thus the 500 km apoapsis altitude is also the target for
these two missions. Using the mean volumetric radii for Earth2, Mars3, and Venus4, of 6371.0 km, 3389.5 km,
and 6051.8 km, respectively, the target apoapsis radii and semi-major axes (after circularisation), are 6871.0
km, 3889.5 km, and 6551.8 km, respectively.

In this research, planar changes are not considered. Therefore the inclination of the target orbit will be
the same as that of the initial orbit. Neglecting the inclination of the orbital planes with respect to the ecliptic,
and assuming that the transfer orbits happen fully within the ecliptic, the initial and target inclinations are
equal to the tilt of the central body’s rotational axis with respect to the ecliptic. For Earth, Mars, and Venus,
this tilt is equal to 23.44°, 25.19°, and 2.64°, respectively.

After the target apoapsis is reached, the orbit is circularised, thus an eccentricity of zero is desired. The
longitude of the ascending node, the argument of periapsis, and the true anomaly of the target orbit are not
important for this research as no actual rendezvous is planned. A summary of the orbital elements considered
is provided in Table 2.3.

As it is impossible to obtain the exact target values in reality, for each of the target variables an allowable
error margin is defined, and these error margins are subsequently formulated into requirements to which
the trajectory has to adhere. However, the error margin does not have to apply directly to the variable. For

2NASA Earth Fact Sheet, available at https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
3NASA Mars Fact Sheet, available at https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
4NASA Venus Fact Sheet, available at https://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html

https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html
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Table 2.3: Overview of the orbital elements of the target orbit for the orbit targeting mission.

Central body Apoapsis radius [km] Eccentricity [-] Inclination [°]
Earth 6871 km 0 23.44
Mars 3889.5 km 0 25.19
Venus 6551.8 km 0 2.64

instance, instead of defining an error margin on the apoapsis radius, it is possible to define an allowed cor-
rective ∆V that adjusts the apoapsis radius post aerocapture.

In addition to the required target accuracy, the accuracy of the atmospheric flight guidance, navigation,
and control system need to be defined. Similar to its interplanetary counterpart, this subsystem is assumed
to be perfect. This means that the navigation provides the exact current state to the guidance system, and
that the control perfectly executes the manoeuvre dictated by the guidance system. As in this research only
the bank angle is considered a control variable, the control subsystem only controls the bank angle.

As stated, in the optimal situation, the ∆V1 required to reach the target apoapsis is zero. However, a error
margin is provided in which the burn required to reach the apoapsis is sufficiently small. As in this situation a
circularisation burn is also performed, it was decided to consider the apoapsis altering burn sufficiently small
if ∆V1 was negligible compared to the ∆V required for the circularisation. A ratio of 1:20, or 5%, was chosen
to be considered negligible.

The eccentricity of the orbit is the result of the two∆V manoeuvres post aerocapture. In this research, the
∆V manoeuvres are assumed to be executed instantaneously and with perfect accuracy. As the ∆V magni-
tudes are determined analytically, the resultant eccentricity can be set to match zero exactly.

Lastly, a requirements detailing maximum allowed angle between the initial and final orbit, which is be
referred to as the wedge angle. The maximal value for the wedge angle used in ACRI/LAN (1992) was 0.1°.
However, as in this research perfect guidance and control is assumed, it was decided to take a more driving
constraint by halving this value. This resulted in a maximal wedge angle of 0.05°.

2.6. Reference Vehicle
In this section the two reference vehicles used in the research are described. One vehicle is used as a template
for a Crew Return Mission vehicle, and one is used as a template for a Sample Return Mission vehicle. After
describing the dimensions and physical properties of the vehicles that are used in the research, the require-
ments imposed on the vehicles to ensure safe passaged through the atmosphere are stated.

2.6.1. Nominal Vehicle Configuration
Two different vehicles are required, one for the manned flight and one for the unmanned flight. It was noticed
while consulting literature that the Apollo Command Module, or vehicle similar to it, was used often as a
baseline vehicle for both studies. This was the case in studies such as Serrano-Martinez and Hechler (1989),
Lyne (1992), Robinson et al. (2009), and Zucchelli (2016). The often quoted reason for this is the fact that for
the Apollo CM a plethora of other studies and extensive databases are available, facilitating finding required
information regarding, for instance, the aerodynamics of the the vehicle, very quickly. Additionally, the Apollo
capsule was capable of performing skip entry, as reported by Siddiqi (2000), and was found to be capable of
aerocapture based on the work of Gamble et al. (1988). Furthermore the Apollo CM was used as a reference
vehicle for the design of the Orion MPCV, indicating that its design is still relevant for the design of new
vehicles today. The combination of available information and relevance drove the selection of the Apollo CM
as a reference vehicle for the CRM.

In Fig. 2.9 a schematic cross-section of the nominal Apollo CM is provided. The nominal mass of the
command module is 5500 km, and, based on the diameter of 3.9116 m, the aerodynamic reference area is
12.017 m2. The nose radius of the Apollo CM is 4.694 m, and the ratio between the diameter and the nose
radius is 1.2 m. The trim attitude and aerodynamic coefficients of the Apollo CM as a function of Mach
number were found quickly in the work by Graves and Harpold (1970), the effects of the Mach and Reynolds
number on the attitude and aerodynamic coefficients were found in the work by DeRose (1969), and the effect
of the Knudsen number on the aerodynamics was investigated by Moss and Bird (1984). These relations will
be further discussed in Section 3.6.1.

For the SRM vehicle two vehicles that were used for interplanetary SRM missions were investigated,
namely NASA’s Stardust and JAXA’s Hayabusa. According to Willcockson (1999), the Stardust sample return
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Figure 2.9: Geometry of the Apollo CM. Robinson et al. (2009).

Figure 2.10: Geometry of the Stardust return capsule. Boyd
et al. (2010).

content...

Figure 2.11: Geometry of the Hayabusa return capsule. All
measurements are given in meters. Davies and Arcadi (2006).

capsule is a 81.1 cm diameter capsule with a blunt 60° half angle sphere-cone nose for the forebody heat-
shield and a 30° truncated afterbody cone. The capsule weighed a total of 45.6 kg and is 49.9 cm deep. A
schematic cross-section of the Stardust capsule is shown in Fig. 2.10. As reported by Grindstead et al. (2011),
the Hayabusa sample return capsule is a 40 cm diameter capsule with a blunt 45° half angle sphere-cone
noes for the forebody heatshield, and a 45° truncated cone afterbody. The entire capsule was 20 cm deep and
weighed 16.3 kg. A schematic cross-section of the Hayabusa capsule is shown in Fig. 2.10. From the descrip-
tion and the illustrations it can be seen that both of these vehicles differ significantly from the Apollo CM in
both shape and size. Regardless of this, a scaled version of the Apollo CM was used for the analysis of the
SRM. The main reason for this is that the search for aerodynamic models for these vehicles proved unfruitful.
Since excellent resources for the Apollo CM were already obtained, it was decided to scale down the Apollo
CM to the size of the capsule proposed in the above discussed MSR mission. The diameter of this capsule
was 0.75 m. This falls between the diameter of Stardust of 0.81 m and Hayabusa of 0.40 m. This is roughly
19% of the size of the Apollo capsule. Using the diameter of 0.75 m, an aerodynamic reference area of 1.76
m2 is found. Preserving the ratio between the nose radius and the diameter results in a nose radius of 0.9 m.
If a linear relation between the volume and the mass of the capsule is assumed (assuming the density of the
capsule to be homogeneous), and the volume of the capsule is approximated by a cone with a base equal to
the diameter and height equal to the nose radius, a nominal mass for the SRM vehicle of 38.77 kg is found.
This is slightly heavier than both the discussed MSR and Hayabusa vehicle, but less than the Stardust capsule.
A table containing the diameter, nose radius, and mass values for both the SRM and CRM vehicles is provided
in Table 2.4.
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Table 2.4: Nominal values for the physical properties of the CRM and SRM entry vehicles. Both vehicle designs are shaped like the Apollo
CM depicted in Fig. 2.9.

Mission Diameter [m] Aerodynamic Reference Area [m2] Nose Radius [m] Mass [kg]
CRM 3.9116 12.017 4.694 5500
SRM 0.75 0.441 0.90 38.77

2.6.2. Crew Return Vehicle Requirements
While performing any entry, requirements are put on the trajectory to ensure the safe passage of the vehicle
and its contents. Since the vehicle for the manned mission is based on the Apollo CM, it is logical to also
take the requirements imposed on this vehicle. The two requirements that were considered throughout this
research are the peak mechanical load factor and the peak heat flux. From Pavlosky and Leger (1974), it was
found that the design requirements for the maximum heat flux on the Apollo CM was 700 Btu.ft−2s−1, or 7.95
MWm−2. For the maximum mechanical load factor, the work by Graves and harpold (1972) was consulted.
In this work a maximum aerodynamic load factor of 12g is stated for the Apollo Entry. Whether this value
was driven by mechanical failure or the human-rating of the spacecraft was not mentioned. However, after
finding the values for the mechanical load imposed on the SRM vehicles, and consulting NASA (2010), it was
concluded that the 12g mechanical load limit was driven by the fact that the vehicle was intended to ferry
humans on board.

2.6.3. Sample Return Vehicle Requirements
While the design and the aerodynamic model for the SRM vehicle is based on the Apollo CM, it was decided
to compromise the requirements for the peak heat load and the peak acceleration more in line with those
of other sample return missions. According to Willcockson (1999), the peak load factor allowable for the
Stardust capsule was 40g, and the peak heat flux was 11 MWm−2. Cassel et al. (2011) states similar values for
Hayabusa, namely a peak deceleration of 49g, and a peak heat flux of 11.12 MWm−2. In the proposal for the
Rosetta mission, Serrano-Martinez and Hechler (1989) states a peak mechanical load factor of 20g. Since the
vehicle itself is still based on the Apollo CM, and theoretically would use the same TPS, the value for the peak
heat flux was taken to be the same as that for the CRM. For the value of the peak load factor, the most driving
value, namely 20g from Rosetta, was chosen.

2.7. Requirements Overview
In the previous two sections the requirements imposed on the trajectory due to either a desired accuracy or
vehicle limitations were discussed. Based on these discussions, a set of formal requirements were formulated.
Each of these requirements is given a unique designation that will be used to refer back to it where needed
later in this report.

The first two set of requirements is obtained from Section 2.5. The first set deals with the requirements for
the interplanetary guidance, navigation, and control subsystem, regarding the nominal entry interface state,
and the required accuracy of this state:

• [GNC-Earth-01] For an Earth-based mission, the interplanetary flight guidance, navigation, and con-
trol subsystem shall ensure a relative velocity of 11.5 kms−1 at 125 km altitude with perfect accuracy

• [GNC-Earth-02] For an Earth-based mission, the interplanetary flight guidance, navigation, and con-
trol subsystem shall ensure a relative flight-path angle of -7.4° at 125 km altitude with perfect accuracy

• [GNC-Mars-01] For a Mars-based mission, the interplanetary flight guidance, navigation, and control
subsystem shall ensure a relative velocity of 8.2 kms−1 at 125 km altitude with perfect accuracy

• [GNC-Mars-02] For a Mars-based mission, the interplanetary flight guidance, navigation, and control
subsystem shall ensure a relative flight-path angle of -11.5° at 125 km altitude with perfect accuracy

• [GNC-Venus-01] For a Venus-based mission, the interplanetary flight guidance, navigation, and control
subsystem shall ensure a relative velocity of 11.25 kms−1 at 125 km altitude with perfect accuracy

• [GNC-Venus-02] For a Venus-based mission, the interplanetary flight guidance, navigation, and control
subsystem shall ensure a relative flight-path angle of -6.1° at 125 km altitude with perfect accuracy
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The second set of requirements deals with the guidance, navigation, and control subsystem during at-
mospheric flight. These requirements regard the accuracy of the state provided to the guidance system, the
accuracy with which the target is reached, and the accuracy and speed with which the commanded bank
angle is set:

• [NAV-01] The atmospheric flight navigation subsystem shall provide the current vehicle position to the
guidance subsystem with perfect accuracy.

• [NAV-02] The atmospheric flight navigation subsystem shall provide the current vehicle attitude to the
guidance subsystem with perfect accuracy

• [GUID-01] The ∆V manoeuvre needed to reach the desired apoapsis after the aerocapture manoeuvre
shall not exceed 5% of the ∆V required for circularisation.

• [GUID-02] The wedge angle between the final and target orbit shall be less than 0.05°.

• [CTRL-01] The atmospheric flight control subsystem shall set the bank angle as commanded by the
guidance system with perfect accuracy.

• [CTRL-02] The atmospheric flight control subsystem shall change the bank angle instantaneously.

The final two sets were obtained from Section 2.6. The first of these sets deals with the requirements
imposed on the physical vehicle itself, on the weight, and the loads it and its subsystems have to be able to
withstand:

• [CRM-MASS-01] The crew return vehicle shall have a mass of 5500 kg at an altitude of 125 km.

• [CRM-MECH-01] The crew return vehicle shall be able to withstand a load factor of 12g.

• [CRM-TPS-01] The thermal protection system of the crew return vehicle shall be able to withstand a
heat flux of 7.95 MWm−2.

• [SRM-MASS-01] The sample return vehicle shall have a mass of 38.77 kg at an altitude of 125 km.

• [SRM-MECH-01] The sample return vehicle shall be able to withstand a load factor of 20g.

• [SRM-TPS-01] The thermal protection system of the sample return vehicle shall be able to withstand a
heat flux of 7.95 MWm−2.

The last set deals with requirements on the trajectory due to vehicle constraints, such as the mechanical
load factor and the heat flux. These requirements are similar to those in the previous set, expect in the context
of the trajectory instead of the vehicle.

• [TRJ-01] The trajectory shall induce have a peak heat flux smaller than 7.95 MWm−2.

• [TRJ-CRM-01] For the crew return vehicle, the trajectory shall induce have a maximum load factor
smaller than 12g.

• [TRJ-SRM-01] For the sample return vehicle, the trajectory shall induce have a maximum load factor
smaller than 20g.
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Flight Dynamics

A stated in Section 1.1, the goal of this research is to study aerocapture trajectories about various planets and
the potential benefits they can offer. To study these trajectories, the equations governing the motion of the
vehicle and the dynamics involved during the flight need to be understood. This chapter serves the purpose
of provided the needed background into the flight dynamics, and provides the exact models and equations
used in the simulation of the motion of the vehicle and study of the trajectories.

As the goal of the research is only to study the trajectories, only the translational motion of the centre-of-
mass of the vehicle is of interest. As such, the change in attitude of the vehicle during the flight can be ignored.
This results in a three-degree-of-freedom (3dof) simulation. Only the motion in three directions needs to be
considered, and thus only the equations governing the motion in these directions are needed. The equations
governing the motion are aptly named the equations of motion, and can be defined in any coordinate system.

To evaluate the equations of motion, the forces that act on the body need to be known. The effected
motion depends on both the attitude and the magnitude of the force. Therefore both need to be defined. The
attitude of the force can be defined as acting along an axis in a particular reference frame. By subsequently
defining the attitude of this reference frame with the reference frame of the motion, the attitude of the force is
known. To express the attitude of one frame with respect to another, a set of angles is required. The magnitude
of the forces depend on the current state of the vehicle, such as the altitude and velocity, and the environment
in which the vehicle is located.

In this chapter all the above stated items will be considered. First, in Section 3.1, the various reference
frames that are used in this research to define the motion and the forces are discussed. Following this, in
Section 3.2 the definition of the angles used the express the attitude between two frames, and the static trans-
formation to go from one frame to another is presented. Then the state variables, the set of variables that
fully define the current state of the vehicle are established in Section 3.3, and the equations of motion that
define the motion of the vehicle according the the current state are presented in Section 3.4. In Section 3.5 the
spherical equations of motion are approximated using first- and second-order analytical expressions. Lastly,
in Section 3.6, the environment that effects the forces based on the current state is described. Both the nu-
merical or mathematical models that are used to model the environment and the equations that need to be
applied to determine the force resulting from the interaction between the vehicle and the environment are
discussed.

3.1. Reference Frames
Reference frames are used to define the origin and direction of vectors. Vectors are used to represent amongst
others, forces, positions, velocities, and rotational axes. The reference frames required to be defined depends
on the vectors required to be expressed. For this research the vectors required to be expressed are the position
and velocity of the vehicle, and the gravitational and aerodynamic forces acting on the vehicle. All reference
frames described here are right-handed reference frames, and often only two of the three axes will be de-
scribed in detail with the third complementing these two. The system descriptions discussed here were taken
from Mooij (1994) unless state otherwise.

19
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Figure 3.1: Illustration of the J2000 Inertial Planetocentric reference frame.

Inertial Planetocentric Reference Frame (Index I , OXI YI ZI ) The origin of this reference frame is located in
the centre of mass of the central body. The OXI YI -plane coincides with the equatorial plane, and the ZI -axis
is aligned with the rotational axis of the central body. The XI -direction is determined by a reference meridian
at zero time. This reference frame therefore does not rotate together with the central body. Throughout this
research the J2000 frame definition will be used to define the direction of the XI -axis for Earth. In the J2000
frame, the XI -axis is determine by the intersection of the equatorial and ecliptic plane, and the zero time is
January 01, 2000 12:00:00 Barycentric Dynamical Time (TDB from the French Temps Dynamique Barycen-
trique)1. An illustration of the J2000 reference frame is provided in Fig. 3.1. For the planets Mars and Venus
analogous definitions were used to define the XI -axis and the ZI -axis is defined the same.

Contrary to the name of this reference frame, it is actually a pseudo-inertial reference frame. Wakker
(2015) defines and inertial reference frame as follows: "An inertial reference frame is a reference frame with
respect to which a particle remains at rest or in uniform rectilinear motion if no resultant force acts upon that
praticle". In other words, inertial reference frames are all frames that perform constant rectilinear motion
and experience no rotational motion. In reality, the selected origin of this reference frame, the centre of the
central body, does not experience constant rectilinear motion as it is in orbit about the centre of mass of the
Solar System, which is in turn in orbit around the centre of mass of the Milky Way galaxy, etcetera. Therefore a
particle also does not experiences uniform rectilinear motion with respect to this reference frame if no other
force was acting upon it.

However, due to the close proximity of the vehicle to the central body and the relatively short duration
of the manoeuvres considered (relative to the orbital period of the central bodies), the centre of the central
body is assumed to be stationary, and therefore a pseudo-inertial reference frame can be attached to it. For
the purpose of this research, there exists no difference between a true inertial and pseudo-inertial reference
frame. Therefore, hereinafter, the pseudo-prefix will be omitted. Another illustration of this reference frame
is provided in Fig. 3.2 together with the rotating and vertical reference frames.

Rotating Planetocentric Reference Frame (Index R, OXR YR ZR ) This reference frame is fixed to the centre
of mass of the central body and is chosen to coincide with the inertial planetocentric reference frame at
zero time. This reference frames co-rotates with the central body about the ZR -axis, keeping the XR -axis
aligned with its initial longitude. The importance of this frame stems from the fact that the atmosphere of
the central body is assumed to co-rotate with it, and the motion of the vehicle is expressed relative to this
rotating atmosphere. This reference frame is illustrated in Fig. 3.2 together with the inertial reference frame
and vertical reference frame.

1NAIF, "An Overview of Reference Frames and Coordinate Systems in the SPICE Context", January 2018. Available from https://naif.

jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
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Figure 3.2: Illustration of the inertial, rotating, and vertical reference frames, together with the angles used in the transformations. Mooij
(1994).

Figure 3.3: Illustration of the body fixed and aerodynamic reference frames. Mooij (1994).

Vertical Reference Frame, (Index V , OXV YV ZV ) This reference frame is fixed to the centre of mass of the
vehicle. The ZV -axis pointed towards the centre of mass of the central body. The XV -axis is parallel to the
meridian and due north. Together with the the YV -axis, the OXV YV -plane forms the local horizontal plane.
This frame is important as it serve as a link between the rotating reference frame and the body fixed reference
frames. This reference frame is illustrated in Fig. 3.2 together with the inertial reference frame and rotating
reference frame and in Fig. 3.4 together with the trajectory reference frame.

Body Fixed Reference Frame (Index B , OXB YB ZB ) This reference frame is fixed to the centre of mass of the
vehicle. The XB -axis falls in the plane of symmetry of the vehicle and is defined positive forwards (towards
the nose of the vehicle, similar to an aircraft). The ZB axis is also located in the symmetry plane and is defined
positive "downward". For capsule-like vehicles performing aerodynamic entry the attitude of the vehicle is
usually reversed, entering with its rear first, where the thermal protection system (TPS) is located. In this case,
the XB -axis is still towards the nose of the vehicle (now aimed away from the central body). As a consequence
of this the ZB -axis is now pointing "upward". This reference frame is important as it allows for the definition
of the three aerodynamic attitude angles. This reference frame is illustrated in Fig. 3.3 together with both the
aerodynamic reference frame and in Fig. 3.5 together with the trajectory and aerodynamic reference frames.
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Figure 3.4: Illustration of the trajectory and vertical reference frames. Mooij (1994).

Figure 3.5: Illustration of the trajectory, aerodynamic, and body fixed reference frames. Mooij (1994).

Trajectory Reference Frame (Index T , OXT YT ZT ) This reference frame is fixed to the centre of mass of the
vehicle. The XT - axis is defined positive along the velocity vector of the vehicle relative to the atmosphere.
Therefore the velocity expressed in this reference frame is the relative velocity, not the inertial velocity. The
ZT -axis is located in the vertical plane, pointing "downwards". The main use for this reference frame is the
definition of the flight-path angle (FPA), and the heading, relative to the rotating atmosphere. Additionally,
it provides a frame with respect to which the bank angle can be defined. This reference frame is illustrated
in Fig. 3.4 together with the vertical reference frame and in Fig. 3.5 together with the body and aerodynamic
reference frame. The definition of the flight-path, heading, and bank angles is also present in these figures,
and will be further discussed in Section 3.2.

Aerodynamic Reference Frame (Index A, OXAYAZA) This reference frame is fixed to the centre of mass of
the vehicle. The XA-axis is defined along the velocity vector of the vehicle relative to the atmosphere. There-
fore the velocity expressed in this reference frame is again the relative velocity, not the inertial velocity. The
ZA-axis is collinear with the aerodynamic lift force, but in opposite direction. This reference frame defines
each of the three main aerodynamic forces and has an axis is opposite direction of the force, as drag is always
opposite direction of velocity. The T -frame and A-frame coincide when the vehicle is not banking. This ref-
erence frame is illustrated in Fig. 3.3 together with the body fixed reference frame and in Fig. 3.5 together with
the body and trajectory reference frames.
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3.2. Frame Transformations
Frame transformations are used to transform a vector expression from one frame to an expression in another
frame. The main purpose of establishing frame transformations is to obtain the force vectors in the reference
frame with respect to which the vehicle’s motion is simulated. For the purpose of expressing the attitude of
one frame with respect to another the Euler angles were used. The information presented next regarding the
Euler angles was obtained from Diebel (2006), unless stated otherwise.

3.2.1. Euler Angles
The orientation of any frame with respect to another can be described by at most three angles. By describing
these angles in a particular way, one can describe the transformation from any frame to another by first ro-
tating about one of the three axes of the original frame, followed by a second and, if necessary, third rotation
about one of the axes of the intermediate frames. The angles which are used for each of these rotations are
the so-called Euler angles. Since each of the rotations is performed about one of the three axes of a Cartesian
reference frames, one can define unit rotation matrices that describe the effect of a single rotation about a
single axis. The three unit rotation matrices for rotations about the X-, Y-, and Z-axes, respectively, are defined
as followed:

RX (α1) =
1 0 0

0 cosα1 sinα1

0 −sinα1 cosα1

 (3.1)

RY (α2) =
cosα2 0 −sinα2

0 1 0
sinα2 0 cosα2

 (3.2)

RZ (α3) =
 cosα3 sinα3 0
−sinα3 cosα3 0

0 0 1

 (3.3)

Here the angles α1, α2, and α3 are the Euler angles. By multiplying the matrices required for a particular
transformation, one obtains the corresponding transformation matrix. According the Wertz (1978), there are
a total of 12 unique matrix multiplication sequences to represent the three rotations . Six sequences, where
each rotation is about a different axis, are the so called type-1, or asymmetrical, rotations. The remaining six,
where the first and last rotation are about the same axis, are the so called type-2 or symmetrical, rotations.

Singla et al. (2005) states that, according to Euler’s Rotation Theorem (Euler, 1775), Euler angles, and all
other parametrisations that use three values to describe the attitude, suffer from singularities. Singularities
occur when it is attempted to determine the attitude of the vehicle with respect to the some reference frame,
and there are an infinite number of rotations possible to express the rotation. This can cause an error between
the actual and commanded values for the rotation. For Euler angles these singularities occur when the second
rotation aligns the first and third rotational axis. For the asymmetrical type-1 rotations this occurs when the
second rotation is ±90°, and for the symmetrical type-2 rotation this occurs when the second rotation is 0° or
180°.

Singularities primarily pose a problem for spacecraft attitude determination and control. In this research
however, they do not pose a problem, as the attitude of the vehicle will not be determined and changed
through rotations, but is set based on a model in the case of the angle of attack and angle of side-slip, or
commanded to achieve lift modulation in the case of the bank angle.

If one desires to reverse the rotation, the order of the rotations and the sign of each of the Euler angles must
be flipped. Alternatively, one can take the transpose of the resulting transformation matrix. The notation for
a rotation from the A frame to the B frame requiring rotations about the Z-, Y-, and X-axes, in that order, with
the Euler angles α3, α2, and α1, respectively, can be written as:

B = RX (α1)RY (α2)RZ (α3)A = CB ,AA (3.4)

Where CB ,A represents the transformation matrix for the rotation going from the A frame to the B frame.
Using this transformation matrix, it is now possible to transform a vector defined in the A frame, rA , into the
vector rB , defined in the B frame using rB = CB ,ArA .
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3.2.2. Static Transformations
Using the Euler angles to express the orientation of one reference frame with another, the required trans-
formations between the frames discussed in Section 3.1 can be formulated. Unless specified otherwise, the
transformation matrices obtained here based on the work of Mooij (1994) and Mooij (2017).

Rotating Planetocentric to Inertial Planetocentric, CI ,R As stated in the description of the R frame, the R-
and I -frame are chosen to coincide at time zero. The rotating frame rotates with the central body about the
ZR -axis, which was the defined to coincide with the rotational axis of the central body, with the same angular
motion of the central body. Therefore the only rotation required to go from the R- to the I -frame is a rotation
about the ZR -axis with an angle equal to the negative angle rotated since the start of the simulation. This
angle is equal to −ωcb t . The transformation matrix therefore becomes:

CI ,R = |I RZ (−ωcb t )|R (3.5)

Here t represents the arbitrary time since the start of the simulation at which the two frames coincided,
ωcb is the angular velocity of the central body, and R is the same unit rotation matrix as was presented in
the discussion of the Euler angles in Section 3.2.1. The frames and angles used for this transformation are
illustrated in Fig. 3.2 together with the angles used to express the attitude of the vertical frame with respect to
the rotating reference frame, which is discussed next.

Vertical to Rotating Planetocentric, CR,V As stated in the description of the V -frame, the ZV -axis is pointed
towards the CoM of the central body, and the XV -axis is parallel to the local meridian due North. By first
rotating about the YV -axis with an angle equal to the planetocentric latitude δ, the OYV ZV -plane is parallel
to the OXR YR -plane, and the XV axis is parallel to the ZR -axis. Rotating an additional 90° or π

2 radians about
the YV -axis, the OXV YV -plane is parallel to the OXR YR -plane, and the ZV axis is parallel to the ZR -axis All that
remains to be done now is to rotate about the ZV ′-axis with an angle equal to the negative planetocentric
longitude −τ. In unit rotation matrix form this equation can be represented by:

CR,V = |R RZ (−τ)|V ′RY (
π

2
+δ)|V (3.6)

Trajectory to Vertical, CV ,T To go from the trajectory to that vertical frame the Flight-Path Angle (FPA, γ)
and heading angle (χ) are used. Since the definition of these angles is the same for both the airspeed- and
groundspeed-based reference frames, they will both be treated simultaneously. In this they will both be rep-
resented by a single shared index T . The FPA is the angle between the velocity vector and the local horizontal
plane. This angle is defined positive when the velocity has a component along the radial position vector away
from the central body (In other words, when the velocity is pointed away from the central body). The heading
is the angle between the projection of the velocity on the local horizontal plane and the XV -axis, which indi-
cates the "northward" direction. An illustration of this is provided in Fig. 3.4. One can go from the T -frame
to the V frame by first rotating about the YT -axis with the negative FPA, and subsequently about the ZT ′ with
the negative heading angle.

CV ,T = |V RZ (−χ)|T ′RY (−γ)|T (3.7)

Aerodynamic to Trajectory, CT,A Similar to the previous case, again both groundspeed and airspeed will be
treated simultaneously under a single index A. As explained in the definition of the aerodynamic frames, they
only differ from the trajectory frames when the vehicle is banking. The bank angle, σ, is defined as the angle
between the ZT - and ZA-axis. As a reminded, the ZT -axis is located in the local vertical plane, and the ZA-axis
is in direction opposite of the lift vector. The bank angle can therefore be defined as the angle between the lift
vector and the local vertical. To go from the aerodynamic to the trajectory frame only a single rotation about
the XA-axis equal to the bank angle. An illustration of this is provided in Fig. 3.5. In matrix form rotation
matrix form:

CT,A = |T RX (σ)|A (3.8)



3.3. State Variables 25

Body to Aerodynamic, CA,B With the transformation from the body the the aerodynamic frame the last two
aerodynamic angles are introduced. The first of these is the angle of attack, α. The second is the angle of
side-slip, β. Again, both of these angle are different for the airspeed and groundspeed, but will be treated
here as one as their definition remains the same. These two angles are illustrated in both Fig. 3.5 and Fig. 3.3.
Note that in the configuration depicted in these figures the angle of attack is closer to 0° than to 180°. During
entry this angle would be closer to 180° to have the TPS forward.

CA,B = |ARZ (β)|B ′RY (α)|B (3.9)

However, due to the 3dof simulation the angle of side-slip is 0°, which reduces the above equation to:

CA,B = |ARY (−α)|B (3.10)

3.3. State Variables
With the reference frames and frame transformations defined, the state variables that are used to describe the
position and velocity of the vehicle during the simulation are discussed. As stated at the start of this chapter,
only a 3dof simulation will be performed, so the entire vehicle state can be described by its position and
velocity.

3.3.1. Available State Variable Sets
Three well-established methods for describing the vehicle state, that can be found in almost any literature
regarding astrodynamics such as Wakker (2015), are the Cartesian, Keplerian, and spherical components. A
fourth, more novel, parameter set is the unified state model (USM) originally proposed by Altman (1972),
reinvigorated by Vittaldev (2010), and recently investigated by Facchinelli (2019).

The claimed benefit of the USM is that it has better accuracy compared to Cartesian integration. This
was, however, drawn into question based on the work by Facchinelli (2019). Facchinelli (2019) compared
the accuracy and computation time of integrating Cartesian coordinates using an RKF5(6) method and the
USM for various cases, including aerocapture. In this particular case the conclusion could be drawn that
for sufficiently high tolerances, resulting in small step-sizes, the accuracy of the Cartesian coordinate inte-
gration surpasses that of the USM. Facchinelli (2019) draws the same conclusion stating that for a step-size
smaller than 1s, the accuracy benefit of USM becomes negligible, and the additional complexity (resulting in
additional computational time) make the USM less desireable.

Furthermore the error of the USM plateaus, whereas that of the Cartesian integration kept reducing,
meaning that certain level of accuracy were not attainable by the USM. Additionally, instead of a single-step
method such as the Runge-Kutta family of numerical integrators, a multi-step method could be used to de-
crease the computational time. However, the comparison between a multi-step method and the USM was
not made. As will be discussed in Section 4.3, using a linear multi-step method with fixed step size was found
to increase the computational time by a factor 3 compared to RKF4(5), and a factor 6 for RKF7(8).

The decisive argument against the use of the USM is that it requires the use of more complex parame-
ters than Euler angles to describe the attitude of the vehicle. In the works by Vittaldev (2010) and Facchinelli
(2019), three versions are proposed, using quaternions, modified Rodrigues parameters, or exponential mod-
eling. Combining the increased complexity with the fact that a certain level of accuracy is unobtainable if
desired lead to the decision to not use the USM model for the integration.

Another possibility for the simulation parameter set are the spherical components. In the work by ?,
it is shown that using Taylor series integration is faster at simulating reentry problems than integrating the
Cartesian state variables using RKF5(6). In this work, for a tolerance of 1·10−8, a computational time decrease
of a factor 3.28 was found. However, the same comment can be made as before. A multi-step method can
significantly decrease the computational time of the Cartesian integration. The decisive reason against using
Taylor series integration is again the required complexity of the method compared to Cartesian integration,
as for every desired modification made to the environment, new equations of motion have to be established.

The three parameter sets that are used, together with their purpose and reason for selection are:

• Cartesian components: used to simulate the trajectory. This parameter set is chosen as the equations
of motion using these variables are very modular by allowing the fast removal or addition of terms
without affecting other parts of the equations. This modularity makes the software very flexible.
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• Spherical components: used for post-processing of the simulated trajectories. This parameter set is
very intuitive which makes them idea for analysis and visualisation of the orbit.

• Keplerian components: used for the definition of the target orbit, and for determining the∆V after the
aerocapture manoeuvre.

In the next three subsections each of these three parameter sets is discussed in more detail, providing the
definition and the method to convert between the various sets.

3.3.2. Cartesian Components
The Cartesian components define the position and velocity vector in three-dimensional space using three
components for each vector, each component aligned with one axis in the Cartesian coordinate system. The
position of the vehicle is defined by the x, y , and z, components. The velocity is expressed as the time rates
of change of the positional component along each axis, or the derivative of position. Similarly, in the state
derivative, the acceleration is not written as components of acceleration, nor as time rates of change of the
velocity components, but as time rates of change of time rates of change of the positional component along
each axis, or, simply, the second-derivative of position. The state and state derivative are thus define as:

x = (
x, y, z, ẋ, ẏ , ż

)T
(3.11)

ẋ = (
ẋ, ẏ , ż, ẍ, ÿ , z̈

)T
(3.12)

3.3.3. Spherical Components
In the spherical state variables the position and velocity are defined in the form of two vectors. The positional
vector has a magnitude r and is defined as the distance between the centres of mass of the vehicle and the
central body. The direction of the position vector is defined by the two angles, the latitude, δ, and longitude,
τ. The latitude angle is defined with along a great-arc with respect to the equatorial plane of the central body,
positive on the Northern hemisphere. The longitude is defined with respect to a reference meridian, positive
Eastward. The velocity is similarly defined by a magnitude (V) and two angles (FPA, γ, and the heading χ,
both of which have been defined in Section 3.2). The state derivative in spherical components is simply the
derivative of each of the six components. The vehicle state and state derivative in spherical components are:

x = (
r,τ,δ,V ,χ,γ

)T
(3.13)

ẋ = (
ṙ , τ̇, δ̇,V̇ , χ̇, γ̇

)T
(3.14)

The transformation between the Cartesian and spherical positional parameters can be done using the
following equations:

r =
√

x2 + y2 + z2 (3.15)

τ= atan2(y, x) (3.16)

δ= atan2(z,
√

x2 + y2) (3.17)

The transformation between the Cartesian and spherical velocity parameters can be done is almost the exact
same way:

V =
√

ẋ2 + ẏ2 + ż2 (3.18)

χ= atan2(ẏ , ẋ) (3.19)

γ=−atan2(ż,
√

ẋ2 + ẏ2) (3.20)
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3.3.4. Keplerian Elements
The Keplerian components use five components to describe the size, shape, and orientation of the orbit,
and a sixth component to define the position of the vehicle within the orbit. The five Keplerian elements
describing the size, shape, and orientation are the semi-major axis (a), the eccentricity (e), the inclination (i),
the right-ascension (or longitude) of the ascending node (Ω), and the argument of periapsis (ω). The element
describing the position of the vehicle is the true anomaly (θ).

The semi-major axis defines the size of the orbit and is defined as the mean value of the periapsis and
apoapsis distance. The eccentricity defines the shape of the orbit. The inclination defines the tilt of the
orbital plane with respect to a reference plane (generally the rotational plane of the central body). The right-
ascension defines the rotation of the orbital plane with respect to a reference direction. The argument of
periapsis defines the rotation of the orbit within the orbital plane, defined as the angle between the ascending
node and the periapsis. The true anomaly is the position of the orbiting body in the orbit, defined as the angle
from the argument of periapsis.

The Keplerian elements are used to determine if requirements GUID-01 and GUID-02 are met at the
atmospheric exit. Using the semi-major axis and the eccentricity, the apoapsis and periapsis radii after atmo-
spheric exit can be determined. From here the required ∆V to correct and circularise the orbit is determined.
The difference between the target and final inclination can also be determined. The remaining three elements
that specify the orientation and vehicle position were not used in this research.

The semi-major axis can be computed by using

a = r

2− r V 2

µ

(3.21)

where the spherical radial position r and velocity V can be computed using Eq. (3.15) and Eq. (3.18) respec-
tively. The flight-path angle can either be computed using Eq. (3.20) or

γ= arcsin
xẋ + y ẏ + zż

r V
(3.22)

Since -90°≤ γ≤90°, this last equation defines the flight-path angle unambiguously.
With the semi-major axis, radial position, and flight-path angle known, the eccentricity can be deter-

mined using either

e2 = 1− r V 2

µ

(
2− r V 2

µ

)
cos2γ (3.23)

or by solving the following two equations simultaneously for the eccentricity and eccentric anomaly (E).

e cosE = 1− r

a
(3.24)

e sinE =
√

1

µa
(xẋ + y ẏ + zż) (3.25)

To determine the inclination, first the angular momentum is required. The angular momentum can either
be determined straight from the spherical components using

H =
√
µa(1−e2) (3.26)

or by determining the three individual components using the Cartesian components using

Hx =x ẏ − y ẋ

Hy =xż − zẋ

Hz =y ż − z ẏ

H =
√

H 2
x +H 2

y +H 2
z

(3.27)

Using the angular momentum, finally the inclination can be determined using

i = arccos

(
x ẏ − y ẋ

H

)
(3.28)

from which the inclination can be determined unambiguously as per definition 0°≤ i ≤180°.
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3.4. Equations of Motion
In this section the equations of motion that are integrated to simulate the motion of the vehicle will be de-
fined. In the simulation environment these equations are integrated in the inertial planetocentric reference
frame using Cartesian coordinates. Since motion of a physical (massive) body is dealt with, both kinematics
and dynamics are of importance to the derivation of the equations of motion. Dynamics treats the motion of
a vehicle due to forces acting on it and the connection between these forces and the velocity of the vehicle.
Kinematics provides information regarding the position and attitude of a vehicle based on these velocities. In
addition to the formation used in the numerical simulation, a simpler formulation of the equations of motion
is also desired to be approximated in the analytical approach. For this, simplified equations of motion will be
described in a rotating planetocentric reference frame using spherical coordinates.

3.4.1. Fundamentals
The first to describe (or, at least popularise) the relation between forces acting on a body, and the resultant
motion of the body, was Newton. Therefore the study of the interaction between forces, massive bodies, and
their motion is referred to as classical, or Newtonian mechanics. Newton’s Laws of Motion are well known and
often repeated, and will thus not all be reproduced here. Newton’s second law of motion relates the change
in momentum of a vehicle to the forces acting on the vehicle according to:

F = dp

d t
= d(mv)

d t
= mdv

d t
+ vdm

d t
(3.29)

where p represent the momentum, the product of mass and velocity.
In this research the vehicle was assumed to not use any propulsion, and thus no propellant, during atmo-

spheric flight. Therefore the vehicle is considered a constant-mass vehicle, allowing for the second term in the
right-hand side of the above equation to be omitted. In reality, the vehicle considered might not have a con-
stant mass due to the potential usage of an ablative TPS that losses mass as material is ablated ("burned-up")
throughout the entry. However, the effect on the motion of the vehicle due to the loss of mass of an ablative
TPS is insignificant compared to the aerodynamic forces acting on the vehicle. By removing the variable mass
term, and rewriting the change in velocity as the acceleration acting on the body, a more recognisable version
of Newton’s second law is obtained. However, by writing the velocity as the rate of change of position, a more
suitable form of the equation that will be used throughout the rest of this report is obtained.

FI = maI = m
d 2r

d t 2

∣∣∣∣
I

(3.30)

Here the sum of all forces acting on the vehicle is represented by F, and r is the positional vector. The potential
forces which are known to act upon an entry vehicle are the gravitational, aerodynamic, and propulsive forces.
In this research however, the propulsive forces will not be taken into account.

For the equations of motion in an inertial, Cartesian reference frame, the above equations for the motion
can be directly applied. By additionally formulating the kinematics law which relates the change in position
to the velocity, the following two relations are obtained, of which the first is a reordered version of Eq. (3.30),
and the second is the kinematic equation:

d 2r

d t 2

∣∣∣∣
I
= FI

m

dr

d t
= VI

(3.31)

Both of these equations have a total of three components, resulting in a total of six differential equations as is
required to describe the motion of a body in three-dimensional space.

3.4.2. Relative Spherical Equations
The equations of motion used for the analytical approach are be defined in a rotating planetocentric refer-
ence frame using spherical coordinates. The definition of the spherical coordinates has already been given in
Section 3.3.3. However, instead of the full equations of motion, simplified versions are used. The applied as-
sumptions simplify the equations of motion sufficiently for them to be used analytically, instead of requiring
numerical integration.
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In total five assumptions are made. The first assumption is that no propulsion will be used during atmo-
spheric flight, T = 0. The non-propulsive nature of the flight was already state before. In the analytical ap-
proach the gravity field is approximated by a central gravitational field model, meaning only the radial com-
ponent of gravity is considered, gδ = 0. Furthermore, the central body is considered non-rotating, ωcb = 0,
ignoring the effect of the apparent forces. The flight is assumed to be symmetrical, resulting in the omission
of side force, S = 0. The final simplification is that only full-lift up flight is considered, resulting in σ = 0°.
Using these four simplifications, the equations of motion become:

dV

d t
=− D

m
− g sinγ (3.32)

V
dγ

d t
= L

m
− g cosγ+ V 2

r
cosγ (3.33)

V
dχ

d t
= V 2

r
cos2γ tanδsinχ (3.34)

Similar to the Cartesian case, in addition to three equations expressing the dynamics of the vehicle, three
kinematic relations are also required to fully define the motion in three-dimensional space. The three kine-
matic relations are:

dr

d t
=V sinγ (3.35)

dτ

d t
= V sinχcosγ

r cosδ
(3.36)

dδ

d t
= V cosχcosγ

r
(3.37)

The major benefit of these representations over the Cartesian version is that their results are intuitive and
easily understood. They directly provided the a value for the change in velocity, flight-path angle, altitude,
etcetera, where these parameters need to be determined using additional computations when using Carte-
sian coordinates.

With the establishment of the equations of motion both in the inertial Cartesian and the rotating spherical
system, all that remains to be done before both sets of equations can be evaluated is the definition of the
forces. The forces are effected by the interaction of the vehicle with the environment. Therefore, to obtain
expressions for the magnitude of the forces, the environment needs to be modelled. The models used for the
environment in both the numerical simulation and the analytical approximation is discussed next.

3.5. Analytical Approximation Spherical Equations of Motion
In this section the first- and second-order approximation of the spherical equations of motion are discussed.
The goal of analytical approximations is to obtain analytical expressions that can provide insight into the
trajectory, such as approximations of the peak loads and terminal conditions. This information can subse-
quently be used as the basis for a guidance application. The guidance application can make a prediction of
the peak loads and terminal conditions based om the current vehicle state, command appropriate corrections
to ensure the target is reached and the requirements are not violated.

3.5.1. First-Order Approximation
For the first-order approximation the equations of motion presented in the previous section are further sim-
plified by assuming the effects of drag and lift to be far greater than the effect of gravity. This results in
Eqs. (3.32) and (3.33) to be further reduced to:

dV

d t
=− D

m
(3.38)

and

V
dγ

d t
= L

m
(3.39)
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By dividing one equation by the other, reordering the terms, and integration from entry to an arbitrary point
in trajectory, the following expression can be obtained relating the velocity at an arbitrary point in the trajec-
tory to the flight-path angle:

V

VE
= e−

γ−γE
L/D (3.40)

The actual derivation from Eqs. (3.38) and (3.39) to this final equation will not be repeated here as it does
not add any relevant insight, and can be found in numerous places, such as Mooij (2017), or worked out
by oneself. The four points in the trajectory that are of interest are the lowest point in the trajectory, where
γ= γE = 0°, the point in the trajectory where the peak heat flux and peak acceleration occur, γ= γq,max and
γ= γa,max , respectively, and the point in the trajectory where the vehicle exits the atmosphere γ= γF .

By using Eq. (3.39), the hydrostatic equation, and the exponential atmosphere model to approximate the
relation between altitude and density, the following expression can be obtained relating the flight-path angle
at an arbitrary point in the trajectory to the density (and thus the altitude):

cosγ−cosγE =
1
2ρSCL

m
Hs (3.41)

By solving this equation using γ= 0°, indicative of the lowest point in the trajectory, and rewriting it as a
function of altitude using the exponential atmosphere model, the following relation can be obtained for the
atmospheric penetration depth:

hp =−Hs ln

(
2

Hs

m
1
2ρ0SCL

sin2 γE

2

)
(3.42)

Alternatively, by solving Eq. (3.41) for γ by setting the local density to zero, indicative of the vehicle reach-
ing the end of the atmosphere, two solutions can be obtained, namely γ = γE , or γ = −γE . Since γE is the
flight path of the vehicle entering the atmosphere, in the first solution the vehicle is moving downwards, en-
tering the atmosphere, and in the second solution, the vehicle is moving upwards, leaving the atmosphere.
Therefore γF =−γE , according to this approximation.

The equations to obtain the normalised aerodynamic acceleration component that is collinear with the
velocity as a function based on the entry conditions and the local flight conditions is:

av

g0
= V 2

E

g0Hs

D

L
(cosγ−cosγE )e−

2(γ−γE )
L/D (3.43)

where, av is the aerodynamic acceleration component collinear with the velocity, g0 is the mean surface
gravity of Earth, V is the velocity relative to the atmosphere, Hs is the scale-height of an exponential atmo-
sphere model, D and L are the drag and lift forces, respectively, and their ratio is the lift-over-drag ratio, γ
is the flight-path angle, and the subscribe E denotes values that are taken at the entry interface. Regardless
of which body is the actual central body, the acceleration always gets non-dimensionalised by dividing it by
the mean surface gravity of Earth. This ensures that the values obtained from different central bodies can be
compared easily.

By evaluating this equation with the flight-path angle at which the maximum acceleration occurs, the
maximal acceleration component collinear with the velocity can be found. By using

ares

g0
= av

g0

√
(1+ L

D

2

) (3.44)

the maximal total (resultant) aerodynamic acceleration can be found. This equations uses the fact that the
aerodynamic acceleration collinear and perpendicular to the velocity are proportional to the drag and lift
forces, respectively, and the basic Pythagorean theorem, to determine the resultant aerodynamic accelera-
tion. The flight-path angle at which the peak acceleration occurs can be found using:

γa,max = 2arctan

[ L
D

2(1+cosγE )

(
1−

√√√√1+ 4sin2γE

L
D

2

)]
(3.45)
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3.5.2. Second-Order Approximation
After analysing the first-order approximations for aerocapture trajectories, the assumption that the gravita-
tional effect was negligible was found to be invalid. This evaluation is discussed in Chapter 7. In an attempt to
find analytical expressions for the equations of motion that took into account the effect of gravity, the works
by Chapman (1958), Loh (1968), and Vinh et al. (1993) were found.

A common threat through these works is that new dependent and independent variables and constants
are introduced to non-dimensionalise the equations. Due to this non-dimensionalsiation process, the equa-
tions lose their intuative nature and become increasingly complex. Nevertheless, the non-dimensionalisation
and rewriting process is solely a mathematical operation, and the obtained equations of motion still produce
the exact results also obtained from standard equations of motion. For a more detailed description of this
process the reader is encouraged to attempt the rewriting process themselves, and is directed to the work by
Vinh et al. (1993) where it is performed in full.

The first step is to introduce a new dependent variable, the range angle. The range angle is a measure for
the ground distance travelled by the vehicle. The expression for the range angle is

dθ

d t
= V cosγ

r
(3.46)

By dividing Eqs. (3.32), (3.33) and (3.35) by Eq. (3.46) the independent variable is switched from time to the
range angle.

Following this, non-dimensional variants for the radial position and velocity are introduced. The radial
position is non-dimensionalised by first subtracting the entry radius to obtain the penetration depth, and
subsequently dividing by the entry radius, resulting in

h = r − rE

rE
(3.47)

Note that the subscript E denotes entry interface. At the entry interface, the values of h, and later y and ν,
are zero, one, and zero, respectively. At the start of entry h = 0, it decreases until it reaches a minimum at
the lowest point in the trajectory, after which it increases again until it reaches the atmospheric exit, where,
again, h = 0.

The velocity is non-dimensionalised by first considering the squared velocity, and dividing it by the square
of the circular velocity at the entry altitude. For convenience in the further derivation, the square of the circu-
lar velocity is expressed as the product of the entry radius and the gravitational acceleration at this position,
such that

u = V 2

V 2
c,0

= V 2

gE rE
(3.48)

Furthermore, three constants are introduced to further "simplify" the equations of motion. While these
equations do indeed make writing the equations easier by removing terms, they in fact make understanding
the equations harder and obfuscate the physics. The first constant expresses the maximum lift-to-drag ratio
and is defined as

E∗ = 1

2
√

KCD0

(3.49)

where K and CD0 are related to the parabolic drag polar according to

CD =CD0 +KC 2
L (3.50)

A warning before continuing, the K in this equation is explicitly a capital K . This is important as later in the
derivation a lower-case k, and a lower-case k1 will be introduced, leading to potential confusion. The second
constant specifies the entry altitude and physical characteristics of the vehicle. This constant is B , and is
defined as

B = ρE SrE

2m

√
CD0

K
(3.51)

The third and last new constant is the lift-control, and allows for lift-modulation. The lift-control is defined
as

λ= CL√
CD0 /K

(3.52)
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and is equal to one when the vehicle is flying at maximum lift-to-drag ratio, zero for ballistic entry, and any-
thing in between for modulated lift. While not stated in any of the sources, one can even use negative values
for the lift-control to model lift-down flight, with negative one for flight with full lift-down, or a bank angle of
180°. Using varying this parameter, lift modulation due to continuous or discrete bank angle control can ap-
proximated. Note however that te induced side force and the motion because of this force are not modelled,
as these equations are only for planar flight.

The next step is to again change the dependent and independent variable. The new independent variable
is still a measure for the range angle, but this time with information regarding the atmosphere ingrained into
it. The new independent variable is

τ=
√

rE

Hs
θ (3.53)

where part under the square provides the information regarding the atmosphere. At the start of entry, τ= θ =
0°. The new dependent variable for altitude is

y = e−
RE h
Hs = ρ

ρE
(3.54)

At atmospheric entry y = 1, after entry, y increases until it reaches ymax at the point of deepest penetration,
from which it decreases back down to to y = 1 at atmospheric exit. Note that for this to be true, the density at
the atmospheric entry and exit cannot be considered zero. The new dependent variable for velocity is

ν= 1

η
ln

V 2
E

V 2 (3.55)

As already stated, at atmospheric entry ν = 0, and as the velocity decreases it becomes negative. If for some
reason the velocity would increase beyond atmospheric entry, the value would become positive. In this equa-
tion VE is the entry speed, and the constant η is defined as

η= B

E∗
√

rE
Hs

= ρE SCD0

m

√
Hs rE (3.56)

Lastly, the new dependent variable for the flight-path angle is

φ=−
√

rE

Hs
sinγ (3.57)

In addition to the introduction of η, two other new constants are introduced, again to "simplify" the equa-
tions. The two constants are

k = 2E∗√
rE
Hs

B
(3.58)

α= gE rE

V 2
E

(3.59)

Doing all these steps eventually leads to a new system of three non-dimensional equations of motion that
still produce the exact results, matching those of the regular equations of motion when evaluated. However,
due to the large amount of mathematical operations and introduction of new variables and constants, they
are much less intuitive than the original equations. Written out, the new equation for the non-dimensional
altitude is

d y

dτ
= 1+h

cosγ
yφ (3.60)

The equation for the non-dimensional velocity is

dν

dτ
= 1+h

cosγ

(
1+λ2)y − kαφeνη

(1+h)cosγ
(3.61)

Lastly, the equation for the non-dimensional flight-path angle is

dφ

dτ
=−(1+h)Bλy + cosγ

1+h
αeην−cosγ (3.62)



3.5. Analytical Approximation Spherical Equations of Motion 33

As stated, these equations are still the same equations as the original equations of motion, only rewritten.
No simplifications or assumptions have been made in obtaining these expressions, and they will therefore
result in the exact solutions.

Before analytical equations can be obtained from these rewritten equations of motion however, two sim-
plifications are introduced. The first of these simplifications is the small-angle assumption. By assuming the
flight-path angle to be small, the geometric relations involving the cosine of the flight-path angle can be sim-
plified to cos(γ) ≈ 1. The second simplification is to with the non-dimensional variable h. As entry into the
atmosphere if a planet is considered, the altitude of the vehicle above the surface is negligible compared to
the radius of the planet. Mathematically: r −rE ≈ 0, therefore h ≈ 0, and thus 1+h ≈ 1. Additionally, k1, a new
constant, is introduced, defined as

k1 = Bλ (3.63)

Using the two simplifications, and introducing the newly defined constant, the above exact equations of
motion can be simplified down to

d y

dτ
= yφ (3.64)

dν

dτ
= (

1+λ2)y −kαφeην (3.65)

dφ

dτ
=−k1 y − (

1−αeην
)

(3.66)

These simplified versions of the non-dimensionalised equations of motion are the starting equations for
the development of the analytical expressions.

The first step in the development in the second-order analytical approximations is to develop first-order
approximations from Eqs. (3.64) to (3.66). This is done by ignoring the variation in speed in the eην term. By

keeping the velocity equal to the entry velocity we obtain eην = exp
(
η/η ln

(
V 2

E /V 2
E

)) = 1. This is the same as

taking the first term of the Taylor series expansion, resulting in the following first-order approximations:

d y

dτ
= yφ (3.67)

dν

dτ
= (

1+λ2)y −kαφ (3.68)

dφ

dτ
=−k1 y − (1−α) (3.69)

By dividing the third equation by the first, using the product rule to obtain an explicit equation, integrating
the equation from y(0) = 1,φ(0) = c to an arbitrary point in the trajectory, and introducing a new independent
variable x, an expression forφ2 against x can be obtained. This process is shown in mathematical steps below
First, the division of the third equation by the first:

dφ

dτ

dτ

d y
= dφ

d y
=

−k1 − (1−α) 1
y

φ
(3.70)

The application of the product rule to obtain an explicit relation:

dφ2

d y
= d(φ ·φ)

d y
= φdφ+φdφ

d y
= 2φdφ

d y
= 2φ

dφ

d y
=−2k1 −2(1−α)

1

y
(3.71)

The result of integration from atmospheric entry to arbitrary point in trajectory, and introduction of the new
independent variable x, together with the definition of x:

φ2 = c2 −2k1
(
ex −1

)−2(1−α)x (3.72)

x = log(y) =− (rE h)

Hs
= rE − r

rE
(3.73)
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The new independent variable x is yet another measure for the altitude of the vehicle throughout the entry.
At the start of the entry, x = 0, after entry x increases to xmax , but remains relatively small. After reaching the
deepest point in the atmosphere, x decreases again back down to 0. The constant c =φE .

By replacing y in Eq. (3.67) by the newly defined independent variable x, and using the definition for φ
from Eq. (3.72), the following relation can be obtained

dτ= d x

φ
= d x

±
√

c2 −2k1
(
ex −1

)−2(1−α)x
(3.74)

which can be used to obtain an expression relating x to τ. However, to facilitate obtaining this expression,
Vinh et al. (1993) approximates φ2 as a second-order polynomial with x as the independent variable. The
general form of this approximating trinomial is

φ2
a = a1x2 +a2x +a3 (3.75)

which results in the relation between x and τ taking the form

x =−a2

a1
−

√
a2

2 −4a1a3

2a2
sin

(p−a1τ−β
)

(3.76)

where β is defined as

sinβ= a2√
a2

2 −4a1a3

(3.77)

At this point Vinh et al. (1993) states that the three coefficients are to be determined though any approxi-
mation scheme. Later in the paper however, Vinh et al. (1993) gives an analytical solution for the three coef-
ficients of the approximate trinomial, namely

a1 = 3

x1

(
2(1−α)− c2 +4k1

x1
+ 4k1

(
ex1 −1

)
x2

1

)
(3.78)

a1 =−6(1−α)+ 2
(
c2 +6k1

)
x1

− 12k1
(
ex1 −1

)
x2

1

(3.79)

a3 = c2 (3.80)

In these three equations, x1 is the value for x at the lowest point in the trajectory. At the point in the
paper where these analytical formulations of the coefficients are given, Vinh et al. (1993) states that x1 can
be computed by solving Eq. (3.72) for φ2 = 0, which occurs at the lowest point in the trajectory, when x =
x1. Due to the nature of this equation, an exact solution was not found. Therefore, the solution had to be
otherwise obtained. One method of doing this was to use a numerical root-finding scheme. The other method
was to use an approximation. Since an first-order approximation for the altitude of the deepest point in the
trajectory was already obtained in Eq. (3.42), this approximation was used to approximate x1. Using this
approximate, the coefficients of the approximate trinomial can be obtained.

Thus far, a first-order approximation for the flight-path angle as a function of the altitude (Eq. (3.72)) and
for the altitude as a function of the range angle (Eq. (3.76)), which can easily be inverted to obtain the range
angle as a function of altitude, has been obtained. The only thing missing now is a first-order approximation
of the velocity. This can now be readily obtained by first inverting Eq. (3.69) to obtain an expression for
y , and inserting this into Eq. (3.68), followed by inserting the expression for φ as shown in Eq. (3.74), and
lastly integrating the resulting equation from atmospheric entry to an arbitrary point in the trajectory. This
ultimately results in the following first-order approximation for the velocity as a function of altitude and range
angle

ν=
(
1+λ2

)
k1

(c −φ)−kαx − (1−α)
(
1+λ2

)
k)1

τ (3.81)

It should be noted that this is the first equation where the flight-path angleφ is required, and notφ2. Since
Eq. (3.72) provides us with φ2, the solution to this is ±φ. Since φ is the negative sin of the flight-path angle,
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and the sin operation retains the same sign as its argument for the range of angles considered valid for the
flight-path angle (±90°), the sign of φ is positive for the descending leg of the trajectory, and negative for the
ascending leg.

With the first-order approximations developed, Vinh et al. (1993) continues by improving the accuracy
of the system by taking into account the eην term. However, to still allow the development of the second-
order analytical equations, the eην term is approximated by the first two terms if its Taylor series, resulting
in eην ≈ 1+ην. This results in the second-order approximations of the non-dimensionalised equations of
motion:

d y

dτ
= yφ (3.82)

dν

dτ
= (

1+λ2)y −kαφ−ηkαφν (3.83)

dφ

dτ
=−k1 y − (1−α)+ηαν (3.84)

Following the same procedure as before, the third equation is divided by the first, and the independent
variable y is replaced by x. Due to the inclusion of the second term of the Taylor series expansion, now ν

appears. Fortunately, Eq. (3.89) can be used to obtain a relation that only depends on x and φ. By again
integrating this solution from atmospheric entry to an arbitrary point in the trajectory, an improved approx-
imation for φ2 can be obtained. The majority of this integration is the same as was performed previous,
only Eq. (3.89) has to be integrated. Unfortunately, this integration leads to the most terms. This improved
approximation for the flight-path angle as a function of altitude and range angle is

φ2 = c2 −2k1
(
ex −1)−2(1−α)x +2ηαI (x) (3.85)

where I = ∫ x
0 νd x, which, when worked out, results in

I =
(
1+λ2

)
k1

cx − 1

2
kαx2 − (1−α)

(
1+λ2

)
k1

τx −
(
1+λ2

)
k1

I1(x)+ (1−α)
(
1+λ2

)
k1

I2(x) (3.86)

where I1 =
∫ x

0 φd x ≈ ∫ x
0 φad x, and I2 =

∫ x
0

xd x
φ ≈ ∫ x

0
xd x
φa

, which, when worked out, result in

I1 = 1

2
φa x − a2

4a1
(c −φa)+

(
4a1a3 −a2

2

)
8a1

τ (3.87)

I2 =− 1

a1
(c −φa)− a2

2a1
τ (3.88)

In these equations the trinomial coefficients determined previously return. To obtain the second-order
approximation for the non-dimensionalised velocity, the same procedure as as used to obtain the first-order
approximation is applied. As was the case for the flight-path angle, the resulting equation is the same as the
first-order equivalent with the addition of a term involving ν. The first-order approximation for this variable
is used to obtain an evaluable expression. After integration, the final second-order analytical expression for
the velocity as a function of altitude and range angle is

ν=
(
1+λ2

)
k1

(c −φ)−kαx − (1−α)
(
1+λ2

)
k1

τ−ηkαI (x)+ ηα
(
1+λ2

)
k1

J (x) (3.89)

where I is the same as before, and J (x) = ∫ x
0 νdτ, which, when worked out, results in

J =
(
1+λ2

)
k1

cτ−
(
1+λ2

)
k1

x − (1−α)
(
1+λ2

)
2k1

τ2 −kαI2(x) (3.90)

where I2 is the same as before.
An improved expression for the altitude as a function of the range angle is obtained by using the same

three equations for the trinomial coefficients as used before, but this time by calculating the values using a
better approximation of x1. Since now a second-order approximation of the flight-path angle is available, this
approximation should be used instead of a first-order approximation. At this point, a root-finding scheme is
required to for which value of x: φ2(x) = 0. Vinh et al. (1993) notes that for low L/D vehicles a problem
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arises with the new approximation. They state that the first-order approximation for the lowest point in the
trajectory will be smaller than the more accurate second-order value, and therefore during the root-finding
scheme, values for x will be tested that are above x1. As a reminder, a larger value of x indicates deeper
penetration. Therefore, stating that the value obtain for x1 from the first-order estimate is smaller than the
more accurate second-order value infers that in reality the vehicle dives deeper into the atmosphere than
expected from the first-order estimate. This is not the case for the vehicle considered in this research, as has
been shown in Fig. 7.1, where it can be seen that the first-order estimate puts the vehicle deeper into the
atmosphere.

Regardless, the problem Vinh et al. (1993) mentions is that, because x values are tested that are in excess
of x1, the normally positive φ2

a(x) becomes 0 at x1, become negative for values in excess of x1, leading to
erroneous results. As a remedy for this it is proposed that, whenever a value of x above x1 is tested, the value
for x used in the 2ηαI (x) term should be held constant at x1. As a precaution, this remedy was added when
implementing the algorithm to obtain the analytical expressions, even though it was expected to never be
needed.

Using this updated value of x1, the trinomial coefficients can be re-calculated, and the updated versions
of these trinomials can be used in place of the old versions, to obtain improved versions of the second-order
approximations. In theory this cycle of computing an updated x1, recalculating the trinomial coefficients,
and updating the second-order approximations could be continued ad infinitum. However, no significant
increase in accuracy was obtained by repeating this cycle any additional amounts.

The last tasks undertaken when implementing these equations was to make τ the only independent vari-
able, and to obtain expressions for the aerodynamic forces and heat load that use the same independent
variables and constants as the rest of the second-order analytical equations such that all the equations could
be evaluated at once. Obtaining the above equations with τ as the independent variable was a simple mat-
ter of rewriting and defining the expressions. The analytical forms of the aerodynamic equations and the
heat flux were obtained by staring from the basic form of the equation for the aerodynamic force as given in
Section 3.6.1, and the general form for heat flux as obtained in Section 3.6.4, and rewriting them using the
constants that were introduced in this derivation. The final set of second-order analytical equations as im-
plemented for this research, and the rewritten equations for the aerodynamic forces and a general expression
for the heat loading are:

x(τ) =− a2

2a1
−

√
a2

2 −4a1a3

2a1
sin

(p−a1τ−arcsin
a2√

a2
2 −4a1a3

)
(3.91)

φ2
a(τ) = a1x(τ)2 +b2x(τ)+a3 (3.92)

φa(τ,δ) = δ
√
φ2

a(τ) (3.93)

I1(τ,δ) = 1

2
φa(τ,δ)x(τ)− a2

4a1
(c −φa(τ,δ))+

(
4a1a3 −a2

2

)
8a1

τ (3.94)

I2(τ,δ) =− 1

a1
(c −φa(τ,δ))− a2

2a1
τ (3.95)

I (τ,δ) =
(
1+λ2

)
k1

cx(τ)− 1

2
kαx(τ)2 − (1−α)

(
1+λ2

)
k1

τx(τ)−
(
1+λ2

)
k1

I1(τ,δ)+ (1−α)
(
1+λ2

)
k1

I2(τ,δ) (3.96)

J (τ,δ) =
(
1+λ2

)
k1

cτ−
(
1+λ2

)
k1

x(τ)− (1−α)
(
1+λ2

)
2k1

τ2 −kαI2(τ,δ) (3.97)

φ2(τ,δ) = c2 −2k1
(
ex(τ) −1)−2(1−α)x(τ)+2ηαI (τ,δ) (3.98)

φ(τ,δ) = δ
√
φ2(τ,δ) (3.99)
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ν(τ,δ) =
(
1+λ2

)
k1

(c −φ(τ,δ))−kαx(τ)− (1−α)
(
1+λ2

)
k1

τ−ηkαI (τ,δ)+ ηα
(
1+λ2

)
k1

J (τ,δ) (3.100)

D

gE
(τ,δ) =

(
1+λ2

)
Bex(τ)−ην(τ,δ)

2αE∗ (3.101)

L

gE
(τ,δ) = λBex(τ)−ην(η,δ)

α
(3.102)

q(τ,δ,C , a,b, M) =C Ra
nρ

b
E V M

E ebx(τ)− Mην(τ,δ)
2 (3.103)

where all the equations are only dependent on the fixed entry conditions, range-angle τ, and δ, which has a
value of 1 or -1, and specifies whether the flight is in the downwards or upwards leg, respectively. As stated,
the value of x starts at zero at atmospheric entry, then increases up to a maximum at the deepest point in
the atmosphere, and decreases back down to zero at atmospheric exit. With this known, the range of τ for
which these equations can be evaluated can be determined by determining values of τ for which x(τ) = 0.
The first root is known from previously given definitions. At

p−a1τ = 0, at atmospheric entry, x(τ) = 0. By
considering the cyclic behaviour of the sin function, one set of roots can be expressed as

p−a1τ= 2πk, where
k is any integer, or, k ∈Z. The first root is part of this set. Similarly, a second set of roots can be expressed asp−a1τ= (1+2k)π+2β, where β= arcsin a2√

a2
2−4a1a3

, and again k ∈Z. As only the first and second roots are of

interest (atmospheric entry and exit), the smallest two roots described by these two sets are of interest. These
roots are, for atmospheric entry and exit, respectively, τ= 0 and τ=π+2arcsin a2√

a2
2−4a1a3

1p−a1
.

When the above equations are evaluated from atmospheric entry to exit, values are obtained that are not
easily understood. These values are still in the non-dimensionalised and rewritten form. Therefore, the last
part of the implementation process are the equations needed to transform back to the relative spherical com-
ponent. These equations are listed below for the radial distance, velocity, flight-path angle, and aerodynamic
loads.

r (τ) =−Hs x(τ)+ rE (3.104)

V (τ,δ) =
√

V 2
E

eην(τ,δ)
(3.105)

γ(τ,δ) = arcsin

(
φ(τ,δ)

−
√

rE
Hs

)
(3.106)

D

gE
(τ,δ) = D

gE
(τ,δ)

gE

gE

L

gE
(τ,δ) = L

gE
(τ,δ)

gE

gE

(3.107)

3.6. Forces and Environment
Two forces are considered to act on the vehicle, effecting the motion. These forces are gravitational and
aerodynamic forces. Gravitational and aerodynamic forces are so called external forces, as they are effected
due to the environment in which the vehicle is present. To obtain a value for these forces the environment
has to be modelled in addition to having to obtain expressions for the forces. In this section each both the
definition of the aerodynamics and the gravitational forces, and the corresponding models are treated.

To determine the aerodynamic force, a model of the atmosphere is required to approximate the density
at the current altitude. To obtain the current altitude, a central body shape model is needed to determine
the surface radial based on the current latitude. For the gravitational force a model for the gravity field of the
central body is required. In both cases, a version of the model to be used in the numerical simulation and
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Figure 3.6: Definition of the aerodynamic forces in the airspeed-based aerodnamic reference frame. Also depicted are the body fixed
axis, the groundspeed-based velocity, windspeed, and the airspeed-based velocity. Mooij (1994).

a version to be used for the analytical approximations is desired. First the aerodynamics are discussed, fol-
lowed by the atmosphere and the central body shape. After this, a side effect of atmospheric flight, aerother-
mal heating, and the methods used to model this are presented. Lastly, the gravitational model used will be
discussed.

3.6.1. Aerodynamics
As stated by Anderson (2006), any object surrounded by a medium that has a relative velocity with respect
to the object experiences a force due to the interaction between the medium and the object. In this research
the interaction between the atmosphere and the vehicle results in an aerodynamic force. The magnitude
and orientation of this force is dependent on the size, shape, and attitude of the body, the dynamic pressure
and density of the surrounding medium, and three non-dimensional parameters, the Mach, Knudsen, and
Reynolds numbers.

First, some brief information regarding the aerodynamic force, and how it is determined from the aero-
dynamic properties of the vehicle are discussed. Following this, the model used to obtain the aerodynamic
properties of the vehicle and its dependencies are discussed. Lastly, the three non-dimensional parameters
are discussed, together with their impact on the aerodynamic properties of the considered vehicle.

Aerodynamic forces are, as stated, the forces that result from the interaction between the vehicle and the
surrounding atmosphere. This force is the result of the surface pressure and surface shear stress distribution
over the surface of the vehicle, and can be determined by integrating this pressure and stress over the entire
surface. In common practice, instead of considering a single resultant force acting with a specific attitude
on the vehicle, the total aerodynamic force is usually split into components along specific axis. When the
aerodynamic force acting on a specific point on the surface of a vehicle is considered, the force is usually
split into a tangential and a normal force, with the tangential force acting collinear with velocity. When the
aerodynamic forces acting on a vehicle as a whole are considered, the force is usually split up into the more
familiar drag, side-slip, and lift force. Considering that the interest of this research lays with the motion of a
vehicle, and not a study of the aerodynamics about this vehicle, the latter three components are used. The
drag acts collinear with, but in the opposite direction, of the velocity, the lift acts in the plane of symmetry of
the vehicle, if it has any, perpendicular to the velocity, and the side-slip falls perpendicular to both the lift and
drag. This is illustrated in Fig. 3.6.

Instead of having to determine the aerodynamic forces by integrating over the entire surface of the vehicle,
it is customary to describe the aerodynamic forces as the produce of the dynamic pressure of the medium,
which is a parameter related to the density and the relative velocity between the surface and the medium, the
surface over which the medium travels, and a dimensionless force coefficient. The following relations were
obtained from Anderson (2006), and are repeated here.

D = q∞Sr e f CD (3.108)
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S = q∞Sr e f CS (3.109)

L = q∞Sr e f CL (3.110)

In the above equations D , S, and L, and CD , CS , and CL represent the drag, side, and lift force and dimension-
less force coefficients, respectively, Sr e f is the vehicles reference surface, and q∞ the dynamic pressure which
his defined according to q∞ = 1

2ρ∞V 2∞. Since the value of q∞ depends on the local density and free-stream
velocity, an model of the atmosphere is needed to obtain the aerodynamic forces acting on the vehicle. The
expanded version of these expressions for the drag and lift force were already used in the simplified rela-
tive spherical equations of motion. Previously, and going forward, the subscript from Sr e f was, and will be,
omitted. The subscript ∞ indicates that the values are taken for the undisturbed upstream flow. As will be
discussed more next, in this research a symmetrical vehicle is considered, that flies with zero angle of sideslip
throughout the flight. This results in no side-force acting upon the vehicle. Therefore both S and CS are
considered zero hereinafter. The rationale for this is explained in the next section.

To facilitate the translation of these aerodynamic forces to the inertial reference frame, they are provided
in vector format:

A|A = (−D,0,−L
)T =−q∞Sr e f

(
CD ,0,CL

)T
(3.111)

In this format all the forces are preceded by a minus sign. This is due to the definition of the axes in the
aerodynamic reference frame in which these forces are defined and the orientation of these forces. The XA-
axis is defined positive in direction of the velocity vector, whereas the drag always acts opposite of the velocity,
resulting in the drag force acting along the negative XA-axis. The ZA-axis is defined collinear with the lift-
force, but in opposite direction, thus naturally the lift force acts along he negative ZA-axis. This is illustrated
in Fig. 3.6.

By using the frame transformations as discussed in Section 3.2.2, the aerodynamic force vector can be
transformed from the aerodynamic reference frame to th inertial reference frame such that they can be used
in the equations of motion. This full transformation is:

A|I = |I RZ (−ωcb t )|R RZ (−τ)|V ′RY (
π

2
+δ)|V RZ (−χ)|T ′RY (−γ)|T RX (σ)A|A (3.112)

Vehicle shape, size, and attitude determine the value for the non-dimensional force coefficients. The shape
and size of the vehicle has already been discussed in Section 2.6, and is considered to be constant throughout
the flight. If an ablative TPS were used, this could potentially have an impact on the shape, size, and mass of
the vehicle over the duration of the flight, but this is not considered in this research.

As discussed in Section 3.2, the attitude of the vehicle with respect to the velocity is determine by three
angles, namely the angle of attack, the angle of sideslip, and the bank angle. The bank angle rotates the
orientation of the aerodynamic force with respect to the local horizon, but apart from that it has no impact
on the magnitude of the force. Additionally, the bank angle will be fully controlled in the simulation by an
ideal controller. The angle of attack and the angle of sideslip have a larger impact on the aerodynamics as it
impacts the orientation of the shape of the vehicle with respect to the flow velocity. As in this research the
attitude of the vehicle is not of interest, it was decided to set the angle of attack and angle of side-slip within
the simulation based on a model for the equilibrium trim condition.

The equilibrium trim attitude is the attitude at which the resultant aerodynamic moment about the centre
of mass of the vehicle is zero. For a symmetrical vehicle, as is considered in this research, the equilibrium trim
angle for the angle of sideslip is zero, justifying the assumption to set the angle of side slip, and the side force
to zero, and ignoring them for the rest of the research.

As in this research a vehicle very similar to the Apollo CM in terms of shape and mass is considered, the
aerodynamics were also modelled after this vehicle. The aerodynamic model for the Apollo CM was obtained
from Robinson et al. (2009), and is reproduce in Table 3.1. This data was obtained by interpolating the results
found in NASA BUT REALLY IMPROVE THIS ONE (1965). This model provides, for a wide range of Mach
numbers, the corresponding equilibrium trim angle of attack, lift coefficient, and drag coefficient.

With this model, the assumptions made regarding symmetric flight with a symmetric vehicle, and the
perfect control of the bank angle, the entire attitude of the vehicle, and all the aerodynamic force coefficients
can be determined based solely of the Mach number.
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Table 3.1: Apollo Command Module Aerodynamic Model. Graves and Harpold (1970)

Mach no. [-] Angle of Attack [°] CL [-] CD [-]
0.4 167.14 0.24465 0.85300
0.7 164.38 0.26325 0.98542
0.9 161.70 0.32074 1.10652
1.1 154.87 0.49373 1.16970
1.2 155.13 0.47853 1.15600
1.35 154.01 0.56282 1.27880
1.65 153.22 0.55002 1.26570
2.0 153.14 0.53247 1.27210
2.4 153.62 0.0740 1.24120
3.0 154.14 0.47883 1.21670
4.0 156.12 0.44147 1.21480
10.0 156.79 0.42856 1.2246
≥ 29.5 160.06 0.38773 1.28910

Mach number is a dimensionless parameter that expresses the ratio between the velocity of the body rel-
ative to a medium, and the speed of sound in a medium. The Mach number can be calculated according
to:

M∞ = V∞
a∞

= V∞√
γRT

(3.113)

In this equation V∞ is the free-stream velocity, and a is the speed of sound. γ represents the ration of specific
heats of the medium, R is the gas constant, and T is the temperature.

Knudsen number is a measure for how rarefied a medium is. It represents the ratio between the mean free
path length (the mean distance travelled by a particle before colliding with another) and a reference length
based on the vehicle moving through the medium. A larger Knudsen number is the result of a long mean
free path length, which occurs when the medium is of low density. Because the density of an atmosphere
decreases as the altitude increases, the Knudsen number of the medium increases as the altitude increases.

Moss and Bird (1984) analysed the effect of the Knudsen number on the Apollo CM for a large range of free-
stream Knudsen numbers. In Fig. 3.7 the impact of the Knudsen number on the aerodynamic coefficients and
the resulting L/D-ratio is graphed. From this graph it can be determined that for very high and low Knudsen
numbers, there seems to be little to no impact on the aerodynamic coefficients. Moss and Bird (1984) states
that in the regime 0.03 < Kn < 1.0 the impact of the Knudsen number on the aerodynamic forces is the most
significant.

In Fig. 3.8 the results of a lift-up CRM entry staring from the nominal entry conditions on Earth are shown.
From this figure it can be seen that it spends roughly half of the orbit below 75 km. Additionally, only during
this flight through the "lower" part of the atmosphere are the aerodynamic forces significant. At 75 km, on the
downwards leg, the G-load is approximately 0.75g, and on the upwards leg, the G-load is approximate 0.5g.
The peak g-load is reached at roughly 60 km.

From Fig. 3.7 it can be determined that an altitude of 75 km corresponds to a Knudsen number of O (10−3).
At this value of the aerodynamic coefficients are already almost constant. The peak g-load occurs at an al-
titude where Kn ≤ 10−4. Above the value of 90 km, where the aerodynamic coefficients start to be affected
significantly, the aerodynamic force is sufficiently small that the impact on the coefficients has a negligible
effect. Because of this, it was decided to neglect the effect on the Knudsen number on the aerodynamics to
allow for a simpler analysis.

The Martian atmosphere is more tenuous and colder compared to the Earth atmosphere, resulting in a
larger mean free path length (less amount of particles, and less energetic particles), and thus a larger Knudsen
number. It is therefore expected that the impact of the Knudsen number on the aerodynamics is larger on
Mars than it is on Earth. However, the aerodynamic forces on Mars are also much smaller due to the tenuous
atmosphere. The opposite is true for Venus however, where, due to its very dense and hot atmosphere, the
the Knudsen number is much smaller compared to Earth and the aerodynamic forces are much greater.
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Figure 3.7: Lift-over-drag ratio and the aerodynamic coefficients for the Apollo Command Module as a function of Knudsen number.
Also indicated are the altitudes corresponding to the Knudsen number based on Earth’s atmosphere. Moss et al. (2006).
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Figure 3.8: Lift-up trajectory and corresponding aerodynamic load factor for an entry performed on Earth with the nominal entry con-
ditons by the CRM vehicle.



42 3. Flight Dynamics

However, due to te Mars and Venus cases being added late into the research, no further analysis was
performed regarding the Knudsen number on these planets or their effect on the aerodynamics, no concrete
conclusion can be drawn. For now , the effect of the Knudsen number on Mars and Venus was ignore entirely,
like it was for Earth. It is expected that this will have a negligible impact on the Venus case. If future research
is done regarding aerocapture on these planets, especially Mars, this effect should be further investigated to
determine the error induced by this assumption.

Reynolds number is a dimensionless parameter which expresses the ratio between the inertial and viscous
forces. In less scientific words, the Reynolds number expresses the ratio between the mediums resistance to
change due ot the passing of the body (inertia) and its desire to stick (viscosity) to the body and travel with
it. The Reynolds number expresses how much the medium is effected by the passing of the body, and can be
used as a measure for the size of the layer "sticking" to the body, also called the boundary layer. A very high
Reynolds number means that flow is largely unaffected by the body, and a very thin boundary layer, whereas
a low Reynolds number means the flow is highly disturbed by the presence of the body, and results in a thick
boundary layer. The Reynolds number can be calculated according to:

Re = uL

ν
(3.114)

In this equation u is the relative velocity between the body and the medium in ms−1, L is a characteristic
length in m, and ν is the kinematic viscosity of the medium in m2s−1. The characteristic length of both the
SRM and CRM vehicle were taken as their diameter and are O (100), as stated in Table 2.4. Based on the
reference missions discussed in Section 2.5, the relative velocity is approximately O (103) to O (104). The order
of the kinematic viscosity for the Earth atmosphere was found to be O (10−3) at 175K, with it decreasing as
the temperature increased. According to Petrosyan et al. (2011), the kinematic viscosity for Mars is O (10−3).
Additionally, Petrosyan et al. (2011) states a value for Earth of O (10−5). It should be noted that, due to the late
inclusion of the Venus case, no kinematic viscosity value was found for the Venusian atmosphere. Whatever
conclusion was drawn based on the Earth and Mars atmosphere was also applied to the Venus atmosphere.
Using these orders of magnitude, the order of the Reynolds number can be estimated to exceed O (106).

From this it can be concluded that the inertial forces are dominant in the considered case. According to
Anderson (2006), the viscous interaction effects between the medium and the body can be neglected at such
high Reynolds numbers. The effect of the flow viscosity was therefore ignored during this research for all
trajectories, regardless of vehicle and planet.

3.6.2. Atmosphere Model
In the previous section it was made apparent that the aerodynamic forces depend on the local atmospheric
conditions, and that thus an model of the atmosphere is needed to estimate these conditions. As atmo-
spheres are unique to each planet, an individual model is needed for each of the three planets considered.
Additionally, as in this research the analytical evaluation of the equations of motion is also considered, sim-
ple, analytical versions of the atmosphere models are required. In this research, the primary and single use
of the atmosphere models is to determine the local atmospheric density such that the aerodynamic forces
can be determined. While most atmosphere models provided additional information, such as atmospheric
pressure, temperature, speed of sound, and molecular composition, our only interest is the density profile.

As stated, in addition to the three accurate atmosphere models for the three planets, three analytical ap-
proximations of the the density profiles are desired. In the next three sections, additional information regard-
ing each of the atmosphere models, and the approximate analytical density profile will be presented.

Earth Atmsphere models For Earth the NRLMSISE-00 atmosphere model as selected. NLMSISE-00 is a
empirical latitude, longitude, time (solar zenith angle, or local solar time, and solar-longitude), and altitude
dependent atmosphere model. This model was selected as it is a highly accurate model and based on em-
pirical density measurement data from a variety of satellites orbiting the Earth, that comes pre-installed with
Tudat, the toolkit used during this research to facilitate the development of the numerical trajectory simu-
lator. NRLMSISE-00 is a tabulated atmosphere model, meaning that the values are given at discrete states,
and that values at intermediate states have to be obtained via interpolation. It is based on two older models,
namely the MSIS-86 and MSISE-90 models. The model and appropriate unit-tests to ascertain the proper
implementation are included in Tudat. As it comes pre-installed with Tudat, the interface between the model
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Figure 3.9: Schematic illustration of the Solar-Zenith-
Angle

content...

Figure 3.10: Schematic illustration of the Solar Longitude using Mars
as an examplea

. However, the definition is analogous to all planets.

aRetrieved from http://www-mars.lmd.jussieu.fr/mars/

time/solar_longitude.html, accessed on 2019-01-31

and the simulation environment was already present and did not have to be produced. Additionally, as the
interface was present, this model was kept as a latitude, longitude, time, and altitude dependent model.

Before continuing, some additional information regarding the dependent variables of the atmosphere
model. The definition of the latitude and longitude have been given in Section 3.1, and the altitude will be
further discussed in Section 3.6.3. The solar zenith angle (SZA) is a measure for the angle between a vector
normal to the surface of the planet at a particular position, and the incoming solar rays. This is illustrated
in Fig. 3.9. The SZA is measured positive westward to match the motion of the Sun through the sky. As
the SZA depends on the normal vector of the planet’s surface, it depends on the position of measurement.
Hereinafter, unless otherwise specified, the SZA is always measured at zero-latitude-longitude. The Local
Solar Time (LST) is a related concept that expresses the same angle, but expressed in time. For example, a
LST of 00:00 (midnight), 06:00 (dawn), 12:00 (midday/noon), and 18:00 (dusk) correspond roughly to SZAs of
270° (or -90°), 0°, 90°, and 180°. it should be noted that, for the definition of LST, the hour on a planet (just like
their Earth counterparts) is defined as lasting 1/24th of a solar day. Therefore, on any planet a LST of 12:00
corresponds to the Sun being directly overhead.

The last parameter to discuss is the solar-longitude. The solar longitude is the angle between the central
body’s northern hemisphere spring equinox and the current body-Sun position vector. This is illustrated in
Fig. 3.10 for the planet Mars, but is analogous for all celestial bodies. This angle is a measure for the cur-
rent season on the planet on the Northern Hemisphere. A solar longitude Ls = 0° corresponds to the spring
equinox (start of spring), Ls = 90° corresponds to summer solstice (start of summer), Ls = 180° corresponds
to the autumn equinox (start of autumn), and Ls = 270° corresponds to the winter solstice (start of winter).

With the definitions of the independent variables given, we return to discussing NRLMSISE-00. This
model will be kept as it is available in Tudat. However, it is desired to have an idea of the variation to be
expected from the model, as well as to investigate how well the exponential atmosphere, to be used for the
analytical analysis, matches with this model.

In Fig. 3.11 the average is taken over latitude and longitude, leaving only the temporal variations. This
time is varied over four different local solar times (00:00, 06:00, 12:00, and 18:00 GMT), and four different
solar longitudes (0°, 90°, 180°, and 270°), resulting in a total of 16 atmosphere profiles from NRLMSISE-00. In
addition to these averaged profiles, one profile is shown that is only altitude dependent, obtained by averag-
ing over latitude, longitude, and time, two extreme profiles are shown, obtained by taking the minimal and
maximal density value at each altitude, and an exponential atmosphere profile is shown.

In Fig. 3.12, the average is taken over the latitude and the times, leaving the longitudinal variation. In total
the profile at 61 equally spaced longitude values between -180° and 180° are depicted in this figure. However,
because of the minimal impact the longitude has on the density, this variation is imperceptible in this figure.
Lastly, in Fig. 3.13, the average it taken over the longitude and time, leaving only the latitudinal variation. The

http://www-mars.lmd.jussieu.fr/mars/time/solar_longitude.html
http://www-mars.lmd.jussieu.fr/mars/time/solar_longitude.html
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Figure 3.11: Time variation, extreme, and averaged density profiles of the NRLMSISE-00 atmosphere model.

10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 100

Density (kgm -3)

0

20

40

60

80

100

120

A
lti

tu
de

 (
km

)

Exponential Atmosphere Profile

NRLMSISE-00 Atmosphere Profiles

Averaged Atmosphere Profile

Extreme Atmosphere Profiles

Longitude
Variation

(Imperceptible)

Figure 3.12: Longitude variation, extreme, and averaged density profiles of the NRLMSISE-00 atmosphere model.

profile at 31 equally spaced latitudes between -90° and 90° are shown.
By inspecting these figures the following conclusions can be drawn. The first conclusion is the remark-

ably good agreement between this exponential atmosphere model and the averaged NLRMSISE-00 profile,
especially for the low and middle altitudes. The parameters of this exponential atmosphere model are pro-
vided in Table 3.2. Note that this is only one particular implementation of exponential atmosphere. Other
exponential atmospheres can be developed when desired, as will be demonstrated later. However, form the
remarkably good agreement between the average profile and the exponential atmosphere, especially at the
lower altitudes where the aerodynamic forces effected by the density are dominant, this was deemed unnec-
essary.

The second observation is regarding the effect of the longitude, latitude, and time on the density profile.
The fact that the longitude variations are so small that they are imperceptible in the above figure leads to
the conclusion that for Earth’s atmosphere any longitudinal dependency can be ignored with negligible error.
Next, it was observed that the latitude dominates the variations in density for the lower altitude, whereas the
time dominates the density variation at higher altitudes.

The single scale height exponential atmosphere was obtained by setting the mean density as 1.225 kgm−3,
and the scale height to 7.2 km2.

2NASA Earth Fact Sheet, available at https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

Table 3.2: Earth exponential atmosphere model parameters

Model scale-height (Hs ) [m] ρ0 [kg m−3]
Exponential Atmosphere 7200 1.245

https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
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Figure 3.13: Latitude variation, extreme, and averaged density profiles of the NRLMSISE-00 atmosphere model.
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Figure 3.14: Solar zenith angle variation, extreme, and density averaged profiles of the ESA Mars Climate Database model.

Mars Atmosphere model For Mars a simplified version of the ESA Mars Climate Database (EMCD) was
used. EMCD is also an latitude, longitude, time (solar zenith angle, or local solar time, and solar-longitude),
and altitude dependent atmosphere model. According to Millour et al. (2018), the database is derived from
numerical simulations using general circulation models, and subsequently validated using empirical data.
This database did not come included in Tudat, and therefore had to implemented prior to use.

This was done primarily by Facchinelli (2019). A script was developed that would access the EMCD web
interface and download a file that included the global atmospheric properties for the specified altitude and
solar-longitude. Additionally, a new general interface in Tudat was created for loading multi-dependent vari-
able tabulated atmosphere models from multiple data files, such as the script produced. By modifying the
script, the ability to additionally specify the local solar time was added, the zero-altitude was changed from
mean "sea"-level to surface level, and the altitudes for which the data was obtained was changed into some-
thing more appropriate for this research. Unfortunately, the interface was developed for an updated version
of Tudat, and was not supported by the version of Tudat that was used during this research. Therefore, the
EMCD had to be simplified down from a altitude, latitude, longitude, and time dependent model to just an
altitude-dependent atmosphere model.

This was done by taking the average of the database over the longitude, latitude, and time. The results of
this process can be seen in Figs. 3.14 to 3.16. In Fig. 3.14 the average is taken over the latitude and longitude,
leaving only the time variations. In Fig. 3.15 the average of the time and latitude is taken, leaving the longitude
variation. Lastly, in Fig. 3.16, the average of the time and longitude is taken leaving only the latitude varia-
tion. Additionally, in each graph the average profile obtained by averaging the the, latitude, and longitude, is
shown, together with the two extreme profiles, and two exponential atmosphere profiles.

Three things can be noted from these figures. The first is that latitude, as expected, has the most signifi-
cant impact on the density. The second is that the margins presented by the extremes are much wider than
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Figure 3.15: Longitude variation, extreme, and averaged density profiles of the ESA Mars Climate Database model.
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Figure 3.16: Latitude variation, extreme, and averaged density profiles of the ESA Mars Climate Database model.
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Table 3.3: Mars exponential atmosphere model parameters

Model scale-height (Hs ) [m] ρ0 [kg m−3]
Standard Exp. Atmosphere 11100 0.020
Custom Exp. Atmosphere 9000 0.01753

any of the individual contributions, and even all contributors summed together. These extreme profiles are
the direct result of various surface feateurs on Mars, such as the tall volcanoes (Olympus Mons) and the deep
Mare (Mare Erythraeum). Whiles these features are protruding or recessed compared to the mean surface,
the surface value for the density is still taken with respect to them. This means that, for instance, for Olympus
Mons, the surface density is taken nearly 25 km above the mean surface altitude, leading to a much lower
density value at zero-altitude. A similar reasoning can be found for the maximum density profile. As in each
of the graphs presented either the latitude, longitude, or both are averaged, the effect of these local features
are largely removed from the density profile.

The third observation is that there is a reasonably well agreement between the steeper exponential atmo-
sphere profile for the low to middle altitudes, whiles the higher exponential atmosphere starts deviating after
the first approximately 20 km. As the majority of the trajectory, or at least the portion of the trajectory were
the aerodynamic forces are dominant, will occur at these low to middle altitudes, the inaccuracy at the higher
altitudes is not important. Additionally, at these higher altitudes, the absolute density is already sufficiently
small that there the aerodynamic forces at these altitudes become negligible. The surface density and scale
heights for the higher-density profile are those commonly reported for the Martian atmosphere3. However, it
was found that the custom fitted atmosphere profile fits better for the purposes of this research, as it closer re-
sembles the EMCD data. Therefore this custom exponential atmosphere model will be used for the analytical
evaluation. The surface density and the scale height for both exponential atmosphere models are presented
in Table 3.3

According to González-Galindo et al. (2009), the main limitation from the EMCD is the fact that no mea-
surements are available above an altitude of 250 km. This however poses no issues for this research as the
altitude range considered is far below this altitude. To improve the robustness of the simulator, above an al-
titude of 250 km, density value will be obtained by using the exponential atmosphere model. At an altitude
of 250 km and above, the density values are already negligibly small, such that any aerodynamic force pro-
duced by them will also be negligible. Therefore, whilst the accuracy of the atmosphere model above 250 km
is debatable, the introduce error will be insignificant.

Venus Atmosphere Model For Venus, a simplified version of Venus Global Reference Atmosphere Model,
or VenusGRAM was used. VenusGRAM is an amalgamation of three other atmosphere profiles for different
altitude ranges, based on the Venus International Reference Atmosphere (VIRA) profiles for those ranges.
The profile for low altitudes, between the surface and 100 km altitude is altitude and latitude dependent. The
profiles for the mid altitudes, between 100 km and 150 km, is altitude and local solar time dependent. Lastly,
the profile for the high altitudes, between 150 km and 250 km, is altitude and solar zenith angle dependent. As
the only shared dependency between the three profiles is their altitude dependence, it was opted to remove
all dependencies but the altitude dependence, and create a single altitude dependent tabulated atmosphere
model, similar to what had been done for the EMCD.

The atmosphere model was simplified down to an altitude-dependent profile by averaging the low profile
over all latitudes, the middle profile over all solar-times, and the high profile over the zenith-angles. The
latitude, local-solar-time, or solar-zenith-angle dependent profiles, together with the average profile, and
two exponential atmosphere profiles are presented in Fig. 3.17.

In this image it two exponential atmosphere profiles are given. The first of these exponential atmosphere
profiles uses only a single value for the surface density and scale-height. These values are reproduced in
Table 3.4. However, it can immediately be noticed that, above approximately 50 km, this exponential atmo-
sphere profile and the data obtained from VenusGRAM start to diverge significantly by multiple orders of
magnitude. This is particularly bad as the expected altitudes flown by the trajectory are 50 km to 150 km.
For this reason, a custom exponential atmosphere profile was fitted to closer match the data from Venus-
GRAM. This custom fit was made by approximating the averaged profile by three segments with constant
scale height. As can be seen from the figure, this gives a much closer agreement with the averaged profile.

3NASA Mars Fact Sheet, available at https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html

https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
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Figure 3.17: Original and averaged profiles of the Venus Global Reference Atmosphere Model.

Table 3.4: Venus exponential atmosphere model parameters

Model scale-height (Hs ) [m] ρ0 [kg m−3] h0 [m] ρ∗
0 [kg m−3]

Standard Exp. Atmosphere 15900 64.79 0 64.79
Low Altitude Exp. Atmosphere 15900 64.79 0 64.79
Mid Altitude Exp. Atmosphere 4500 2.7913 50000 186765.3
High Altitude Exp. Atmosphere 15000 6.7594·10−11 160000 2.8986·10−6

Initially the segments were fitted using he standard formulation for a part of the standard atmosphere with
consistent scale-height, starting at a particular altitude, for which the equation is:

ρ = ρ0e−
h−h0

Hs = ρ0e
h0
Hs e−

h
Hs = ρ∗

0 e−
h

Hs (3.115)

where ρ0 is the starting density for that layer of the atmosphere, h0 the starting altitude of that layer of the
atmosphere, h the altitude with respect to the surface, and Hs the scale height. ρ∗

0 is the density at the sur-
face if one would use the profile described by the scale-height for all altitudes. By describing the exponential
atmosphere this way, and considering that it is expected that only altitudes in the range of 50 km to 150 km
will be encountered, this single exponential atmosphere model can be used during the analytical approxima-
tion, without having to switch exponent or constant based on altitude. The parameters of the custom fitted
exponential atmosphere model are also tabulated in Table 3.4. Note that using an exponential atmosphere
model that features these discontinuities can lead to problems when designing guidance and control sys-
tems. The sudden change in slope of the density profile can, for instance, cause a spike in a given control.
One way to circumvent this is to ensure a continuous derivative, and maybe even second derivative. This can
be achieved by either fitting a second-order polynomial, or by using cubic splines to splice two sections with
constant slopes. However, as in this research we are not dealing with control (perfect control assumed), this
is not a problem.

From Fig. 3.17 it can also be seen that for the lower part of the atmosphere, there seems to be little latitude
variation. Only halfway through the middle altitude profile and above can a "significant" dependency of den-
sity be observed. Whilst the deviation seems large, it should be noted that at this point, the density is already
approximately a hundred-millionth of the surface density of Venus, or a millionth of the Earth’s surface den-
sity. While the proportional error might be large, the absolute error is sufficiently small that the actual impact
on the, potentially negligibly, small aerodynamic forces at these altitude will be negligible themselves. This
is furthermore illustrated in Fig. 3.18. In addition to the error between the average profile and the dependent
profiles is the error between the average profile and the custom fitted exponential atmosphere profile.

One last consideration for this atmosphere model is the limitation in its altitude. As was already stated the
highest altitude supported bu the VIRA model is 250 km. Above this no data is available, similar to the case
for EMCD. Above this altitude, values for the density will be obtained by using the exponential atmosphere
model discussed. This causes the accuracy for the atmospheric model to drop considerably after 250 km.
However, as can be seen from Fig. 3.17, at this altitude the density is already negligibly small. Therefore at
these altitudes the resulting aerodynamic forces will also be negligibly small, and thus the introduced error
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Figure 3.18: Absolute density error between the averaged Venus atmosphere profile and the custom fit exponential atmosphere model
and the average error between the averaged Venus atmosphere profile and the original model.

in the simulation can be considered insignificant.

3.6.3. Central Body Shape
As mentioned in the discussion of the atmosphere model, the height at which the atmospheric conditions are
estimated is based off of a reference surface. As planets are in reality not perfect spheres but rather oblique
spheroids, the error in the estimation of the surface height can impact the estimation of the atmospheric
conditions. For Earth the difference difference between the polar and equatorial radius is roughly 20 km4. If
a spherical model for the Earth was used with a radius equal to the mean equatorial radius, the altitude of a
vehicle above a pole would in reality be roughly 20 km higher. The vehicle would than be surrounded by less
dense air. The relation for determining the central body’s radius as a function of latitude provided by Mooij
(2017) is

R(δ) ≈ R̄e (1− f sin2δ) (3.116)

In this equation R is the body’s radius at latitude δ, R̄e is the mean equatorial radius, and f is the flattening
parameter defined by

f = R̄e − R̄p

R̄e
(3.117)

here R̄p is the mean polar radius. The altitude of the vehicle above the surface of the central body can be
determined using the following equation

h(r,δ) ≈ r −Re (1− f sin2δ) (3.118)

where h represent the altitude of the vehicle above the surface of the body and r the magnitude of the posi-
tional vector of the vehicle with respect to the centre-of-mass of the body. By consulting the ?, it was found
that a built-in method for specifying the body shape as an oblate spheroid exists within the standard Tudat
libraries.

The mean polar and equatorial radii for Earth5 are 6356.752 km and 6378.137 km, respectively, resulting
in a flattening parameter of 0.003353. For Mars6, these values are 3376.2 km, 3396.2 km, and 0.005889, and
for Venus7, they are 6051.8 km, 6051.8 km, and 0.0. From these values it can be seen that for Mars the usage
of a oblique spheroid model is even more important then it is for Earth. As for Venus, the mean polar and
equatorial radius are the same, at least to the precision given in the source. Therefore an oblique spheroid
model is not needed, as a circular body assumption would be accurate. However, as the shape model will be
used for Earth and Mars, it will also be used for Venus.

4NASA Earth Fact Sheet, available at https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
5NASA Earth Fact Sheet, available at https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
6NASA Mars Fact Sheet, available at https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
7NASA Venus Fact Sheet, available at https://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html

https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html
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Table 3.5: Mean equatorial and polar radii, the volumetric radius, and the resulting flattening parameter for Earth, Mars, and Venus.

Central Body Mean equatorial [km] Mean polar [km] Volumetric [km] flattening [-]
Earth 6378.137 6356.752 6371.000 0.003353
Mars 3396.2 3376.2 3389.5 0.005889
Venus 6051.8 6051.8 6051.8 0.0

Table 3.6: Constant and exponent vaues for three different convective heating models

Model Constant C Exponent M
Detra and Hidalgo (1961) 5.16·10−5 3.15
Sutton and Graves (1971) 1.73·10−4 3
Tauber and Meneses (1986) 1.83·10−4 3

In addition to having the more accurate oblique spheroid model to be used in the simulation, values for
the surface radius of the central bodies are also required to determine that altitude of the vehicle above the
surface in the analytical approximation. In these cases, the volumetric radius will be used to represent the
mean surface radius of the central body. The volumetric radius is defined as the radius of a perfect sphere
that has the same volume as the body it is supposed to model. The value of the volumetric radius will be
somewhere in between the equatorial radius and the polar radius. The values of the volumetric radii were
obtained from the same sources as the equatorial and polar radii. The mean equatorial and polar radii, the
volumetric radius, and the resulting flattening parameter for each of the bodies are summarised in Table 3.5.

3.6.4. Aerodynamic Heating
Aerodynamic heating or aeroheating is a important factor in atmospheric hypersonic flight. Due to the high
velocity, amount of heat can be generated during entry. An excessive amount of heat being generated can
cause failure of the vehicle. It therefore forms a strong constraint. Unfortunately, most relations used to
obtain an estimate that do not rely on full computational fluid dynamics are empirical, and thus not exact.
Because of this, it is desired to find a conservative relation that most likely overestimates the heat flux, but
ensures that the constraint is never violated.

According to Anderson (2006), aeroheating takes two forms. Heat is either transferred from the hot bound-
ary layer surrounding the vehicle to the cooler vehicle surface via convective heating, or heat is transferred
from the hot shock-layer that has a high enough temperature to emit thermal radiation, causing radiative
heating. As these two modes of heat transfer differ, a model is required for both to obtain the total heat flux.

Convective heat flux can be approximate analytically by the following relation proposed by Sutton and
Graves (1971)

qw =C

√
ρ∞
Rn

V M
∞ (3.119)

to estimated the heat flux due to convective heat transfer for an axisymmetric blunt body. Carandente et al.
(2013) compares three popular sets of coefficients, namely those reported by Sutton and Graves (1971), Tauber
and Meneses (1986), and Detra and Hidalgo (1961). The coefficients proposed by each of them is tabulated
in Table 3.6. The results obtained by Carandente et al. (2013) are presented in Fig. 3.19.

From this it can be seen that the model proposed by Detra and Hidalgo (1961) is the most conservativ.
Additionally, Carandente et al. (2013) states that the model proposed by Detra and Hidalgo (1961) has an
accuracy of 10% for velocities between 1.8 kms−1 and 8 kms−1 and for altitudes up to 70 km when compared
to an accuracy CFD analysis. For these reasons this model will be used for the estimation of the convective
heat loading.

However, one modification must be applied before the equation can be used. The relation provided by
Sutton and Graves (1971) is for analysis of heat transfer to a cold war. During reentry, the surface of the
vehicle will heat up relatively fast. Therefore a conversion should be added to taken into account the wall
temperature. By using the relation proposed by Anderson (2006) and the coefficients from Detra and Hidalgo
(1961), the relation as initially proposed by Sutton and Graves (1971) for a cold wall becomes
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Figure 3.19: Results of the comparison between the Detra and Hidalgo (1961), Sutton and Graves (1971), and Tauber and Meneses (1986)
models, and two CFD models. From this graph it can clearly be seen that of the three models tested, the model proposed by Detra and
Hidalgo (1961) is the most conservative. Carandente et al. (2013).

qconv = 5.16 ·10−5
√
ρ∞
Rn

V 3.15
∞

(
1− hw

h0

)
(3.120)

In this relation q represents the heat transferred, Rn the nose radius of the capsule, and hw and h0 the en-
thalpy at the wall and total enthalpy, respectively. By using the linear relation between the enthalpy and the
temperature, the fractions of enthalpies can be rewritten to a fraction of temperatures. Subsequently assum-
ing that the total temperature is the same as the adiabatic wall temperature, the equation can be rewritten
into

qconv = 5.16 ·10−5
√
ρ∞
Rn

V 3.15
∞

(
1− Tw

Twad

)
(3.121)

where the wall temperature Tw is determined by satisfying thermal equilibrium. This will be discussed last,
after radiative heat transfer has been discussed. The adiabatic wall temperature Twad can be approximated
by by

TWad ≈ V 2∞
2cp

(3.122)

Radiative heat flux is heat transferred from the hot shockwave through the means of radiation. This type
of heat transfer only occurs for entries at very high velocities, such as the hypersonic entry considered in this
research. According to Tauber and Sutton (1991), an approximation for radiative heating in the stagnation-
point of a vehicle in the Mars or Earth atmospheres is given by:

qr adst ag =C Ra
nρ

b f (V ) (3.123)

In this equation f (V ) is a function of velocity for which the values can be obtained by interpolating a table
with velocities ranging between 9 kms−1 and 16 kms−1 for Earth, and between 6 kms−1 and 9 kms−1 for Mars.
Above these values the value of f (V ) is taken as constant, and below these values it is assumed there is no
radiative heat transfer. These values are presented in Table 3.7 and Table 3.8 for Earth and Mars, respectively.
Below a velocity of 9 kms−1 for Earth, and 6 kms−1 for Mars, radiative heat transfer is assumed to be negli-
gibly small. Tauber and Sutton (1991) also reports values for the coefficients in his formula. For Earth these
coefficients are
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Table 3.7: Radiative heating functions for Earth entry. Tauber and Sutton (1991)

V [kms−1] 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 11.5
fE (V) 1.5 4.3 9.4 19.5 35 55 81 115 151 238

V [kms−1] 12 12.5 13 13.5 14 14.5 15 15.5 16
fE (V) 359 495 660 850 1065 1313 1550 1780 2040

Table 3.8: Radiative heating functions for Mars entry. Tauber and Sutton (1991)

V [kms−1] 6 6.15 6.3 6.5 6.7 6.9 7 7.2 7.4
fM (V) 0.2 1.1 1.95 3.45 5.1 7.1 8.1 10.2 12.5

V [kms−1] 7.6 7.8 8 8.2 8.4 8.6 8.8 9
fM (V) 14.8 17.1 19.2 21.4 24.1 26.0 28.9 32.8

C = 4.736 ·104

a = 0.6

b = 1.22

(3.124)

and for Mars these coefficient are

C = 2.35 ·104

a = 0.526

b = 1.19

(3.125)

For the radiative heat flux for Venusian entry, a method used by Craig and Lyne (2002) was used. This
method provides a single base equation that is to be evaluated using different coefficients. The value of the
coefficients depend on the velocity. The base equation proposed is

qr adst ag =C R0.49
n ρ1.2V M (3.126)

where the constant C and the exponent M are to be determined based on the current relative velocity ac-
cording to the velocity ranges tabulated in Table 3.9. For velocities above 12 kms−1, the radiative heat flux is
approximated by evaluating the form of the equation at 12 kms−1. Similarly, for velocities above 16 kms−1 for
Earth, and 9 kms−1 for Mars, their respective radiative heat flux is approximated by using fE (16) and fM (9),
respectively.

By comparing this equation to the one used for the Earth and Mars based radiative heat flux, and even
the cold-wall convective heat flux, it was noticed that a single general expression can be developed that fits
all these models, only with different constants and coefficients. The general equation for heat load is:

qgeneral =C Ra
nρ

bV M f (V ) (3.127)

By setting the constant C , the exponents a, b, and M , and the function f to their respective values as
reported throughout this section, each of the four different models for convective and radiative heat flux can
be obtained from this one expression, with the caveat that the convective heat loading is for a cold-wall and
not a hot wall. This, however, might be beneficial as the cold wall assumption makes the approximation more
conservative. The adiabatic wall temperature is larger than the equilibrium wall temperature. Therefore the
ratio between the two is smaller than one, and one minus this ratio is positive but less than one, resulting in
a lower convective heat flux estimate.

Table 3.9: Radiative heating functions for Venus entry, as reported by Craig and Lyne (2002)

Velocity range [kms−1] Constant C Exponent M
≤8 3.33·10−34 10.0
8 - 10 1.22·10−16 5.5
10 - 12 3.07 ·10−34 1.2
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Table 3.10: Spherical harmonics coefficients for the EGM96 Earth gravitational potential model, truncated at (4, 0).

n m Jn,m [-] Λn,m [°]
2 0 -0.48417·10−3 0
2 1 -0.18699·10−9 0.11953·10−8

2 2 0.24391·10−5 -0.14001·10−5

3 0 0.95725·10−6 0
3 1 0.20300·10−5 0.24851·10−6

3 2 0.90463·10−6 -0.61902·10−6

3 3 0.72107·10−6 0.14143·10−5

4 0 0.53987·10−6 0

Table 3.11: Spherical harmonics coefficients for the JGMRO120d Mars gravitational potential model, truncated at (4, 0).

n m Jn,m [-] Λn,m [°]
2 0 -0.87502·10−3 0
2 1 0.40223·10−9 0.23032·10−10

2 2 -0.84633·10−4 0.48939·10−4

3 0 -0.11897·10−4 0
3 1 0.38050·10−5 0.25177·10−4

3 2 -0.15947·10−4 0.83624·10−5

3 3 0.35056·10−4 0.25571·10−4

4 0 0.51290·10−5 0

Thermal equilibrium is that state in which all the heat transferred to the wall is radiated back out of the
wall to the environment. By assuming thermal equilibrium one can equate the outbound radiation to the
inbound convection and radiation. The equation for the thermal equilibrium is

qconv +qr ad =C

√
ρ∞
Rn

V 3
∞

(
1− Tw,eq

Twad

)
+qr ad =σεT 4

w,eq (3.128)

where σ is the Stefan-Boltzmann constant and ε is the emissivity of the surface. The current estimate for the
Stefan-Boltzmann constant is 5.670367·10−8 Wm−2K−4, and the emissivity of the Apollo CM was roughly 0.8
according to Robinson et al. (2009). The purpose of assuming a thermal equilibrium is that it allows for the
calculation of the equilibrium wall temperature, which was needed in a previous equation.

3.6.5. Gravitational Model
The last environmental model to be considered is that for the gravitational field. The gravitational field model
is used to determine the strength and direction of the gravitational acceleration dependent on the position of
the vehicle. For Earth and Mars, gravitational field models that come pre-defined with Tudat were used. For
Venus no standard gravitational field model was available within Tudat. Because of the later inclusion of the
Venus case in the research, a simpler central gravity field model was selected for Venus. The models in Tudat
for Earth and Mars are spherical harmonic models.

The first several coefficients for the spherical harmonics models available in Tudat for Earth and Mars are
tabulated in Table 3.10 and Table 3.11, respectively. From these tables it can be concluded that the J2,0, or
simply J2 term is the most significant by almost two orders of magnitude for both the Earth and Mars case.
For this reason only the effect of the J2 term on of the spherical harmonics will be included in the simulation
by specifying the model to be truncated there.

Expressions for the gravitational acceleration along each axis in Cartesian coordinates perturbed by the
J2 term of the spherical harmonics model were obtained from Wakker (2015):

gx =−3

2
µJ2

R2

r 5 x(1− z2

r 2 )

g y =−3

2
µJ2

R2

r 5 y(1− z2

r 2 )

gz =−3

2
µJ2

R2

r 5 z(1− z2

r 2 )

(3.129)
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Table 3.12: Tabulation of the standard gravitational parameters for the three considered central bodies. These values were obtained from
Wakker (2015)

Central body Standard gravitational parameter [m3s−2]
Earth 3.9860044188·1014

Mars 4.2828372·1013

Venus 3.248599·1014

The benefit of expressing the gravitation acceleration in an inertial reference frame is that it can be directly
added to the equations of motion without needing to first be transformed to the inertial reference frame.
Writing these three in the vector notation as was used in the description of the Cartesian dynamic equation,
the following form is obtained:

G|I =
(
gx , g y , gz

)T
(3.130)

As was stated, for Venus no spherical harmonic model was used, but a central gravity field model was
applied. In the case for Venus, and the analytical approximations where the central gravity field model is also
used, the following equation can be evaluated to obtain the radial component of the gravitational accelera-
tion:

g = µ

r
= g0

R2
0

r 2 (3.131)

In this equation, µ is the standard gravitational parameter, for which the values are tabulated in Table 3.12.
Using the central gravity field model only a radial component of acceleration is considered, so the above
equation is the only equation for this model.
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4
Numerical Methods

In this chapter the diirfferent numerical methods that are used throughout the research are discussed. For
each numerical method an overview of the purpose and functionality (often in mathematical terms) of the
algorithm is provided. The methods discussed in this chapter, in the order that they are discussed are root-
finding in Section 4.1, interpolation in Section 4.2, integration in Section 4.3, and optimisation in Section 4.4.

4.1. Root-Finding Routine
A root-finding algorithm can be used to determine the value(s) of the arguments of a function f , for which
f = 0. The primary purpose of root-finding in this research was to determine the value for the switch-time
for the lift-up lift-down bang-bang trajectory for which ∆V2 = 0. In this research only the very rudimentary
bisection method for root-finding was used. The reason for this will be discussed in Section 9.2.

4.1.1. Bisection Method
The bisection method is one of the simplest root finding schemes available. While it is possible to use a
bisection method for two- or multidimensional functions, this significantly increases the complexity of the
method. Those interested are referred to the works by Martin and Rayskin (2016) and Bachrathy and Stepan
(2012), respectively. In this section only the application of the bisection method for one-dimensional func-
tions is considered.

This scheme can be used for any function for which two values with the opposite sign are known. This
method uses the fact that a function must cross the zero-axis for the function to transition from positive to
negative, or from negative to positive. The intersection with the zero-axis is estimated to fall on the centre of
the interval between the two nodes. If the value of the function at the centre is positive, than the node that
previously corresponded to the positive values is replaced by the value of the central node. Likewise, if the
function was evaluated to be negative at the central node, the negative node is replaced. In mathematical
terms, the algorithm can be expressed as follows:

x0 < x1

f (x0) < 0

f (x1) > 0

x2 = x1 −x0

2

x3

{
x2−x0

2 if: f (x2) > 0
x1−x2

2 if: f (x2) < 0

These steps are repeated until the size of the interval is sufficiently small such that a sufficiently accurate
estimate is obtained. The accuracy of this method doubles with every iteration. The absolute error in the
estimate of the root, as a function of the initial interval and the number of iterations is:

ε= (x1 −x0)

2n (4.1)
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where x0 and x1 are the two original nodes, n is the number of iterations performed, and ε is the absolute
error.

There are two benefits to using this method. The first is that it is very simple to implement, requiring only
one equation to obtain the centre of the interval, and an if-statement to replace the upper or lower bound of
the interval.

The second benefit is that it does not rely on the derivative of the function of which the root is desired.
This is beneficial for this research, as the derivative of the apoapsis altitude with respect to the switch-time is
unknown, but the value can be obtained by simply simulating the trajectory using a particular switch time.

Technically the local derivative could be approximated by slightly varying the switch time and determin-
ing the derivative by assuming a constant slope during the interval. However, this method runs into problems
when no value for the apoapsis altitude is available, such as when the trajectory results in the vehicle never
leaving the atmosphere. In these cases, the value set for the apoapsis altitude is that for the lower termi-
nation altitude. Varying the switch-time slightly will most likely result in the same value, resulting in a zero
derivative.

For the bisection method, the apoapsis altitude at the lower termination altitude simply counts as an
undershoot, a negative value. This causes the particular switch time value to replace the previous switch-
time, delaying the switch for the next iteration, resulting in the vehicle potentially leaving the atmosphere.

4.2. Interpolation Routine
Interpolation is needed when data is only available at discrete nodes, and values are desired that are not avail-
able on these nodes. Interpolation is the process of approximating the value of the dataset for these intern-
odal values. In this research interpolation is used primarily with the environmental models, the aerodynamic
model, and the aeroheating function for the radiative heat flux proposed by Sutton and Graves (1971). Unless
otherwise specified, the information regarding and description of the interpolation methods is obtained from
Kress (1991), and Klees and Dwight (2018).

Two types of interpolation are used in this research. For instance, the interface in Tudat that interpo-
lates the aerodynamic model to obtained the value of the aerodynamic coefficients at unspecified values of
the Mach number is a linear interpolator. For the aeroheating models a cubic Hermite spline interpolation
method is used.

A final consideration is what happens at the boundary of the data set. While normally the approximation
of data outside of the given set is a matter of extrapolation, it will be treated here as it does not warrant its own
section. When a value is desired that exceed the dataset, the value is set to equal the closest node. Consider,
for instance, the aerothermal model discussed in Section 3.6.4. For Earth, if the velocity exceeds 16 kms−1,
the value of fE will be set equal to 2040.

4.2.1. Linear Interpolation
Linear interpolation is one of the simplest for of interpolation. This method connects adjacent nodes using
linear relations. The value for a point between two nodes is determined by evaluating the linear relation
connecting the two nearest nodes. The one-dimensional linear interpolation estimate φ(x) of the function
f (x) between the two known data points xi and xi−1 is

φ(x) = f (xi )+ (
f (xi−1)− f (xi )

) x −xi

xi+1 −xi
(4.2)

4.2.2. Cubic Spline Interpoplation
Similar to the linear interpolation, the spline interpolation connects adjacent nodes and uses the connection
to approximate the value between the nodes. As the name implies, a cubic spline interpolation uses cubic
(third-order/degree) polynomials. By using third-order polynomials the first and second-order derivatives of
two adjacent splines can be made to match at the node at which they meet, in addition to having matching
values.

For a data set consisting of p + 1 nodes, a total of p polynomials Pi can be fitted between the nodes.
Defining that the polynomial fitted between the first two points (x0 and x1) is P0, results in the definition that
i = 0,1, . . . , p −1 for p +1 nodes. The equations of a polynomial Pi that is fitted between the i th and i +1th

node, and its first two derivatives are

Pi (x) = ai (x −xi )3 +bi (x −xi )2 + ci (x −xi )+di (4.3)
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P ′
i (x) = 3ai (x −xi )2 +2bi (x −xi )+ ci (4.4)

P ′′
i (x) = 6ai (x −xi )+2bi (4.5)

When Pi (x) is evaluated at the node xi , x − xi = 0. This means that Pi (xi ) = di = fi , where fi is the value
of the function at node i . A relation between the coefficient ai and bi can be obtained using the fact that
P ′′

i (x) = P ′′
i+1(x) where i 6= p, or P ′′

i (x) = P ′′
i−1(x) where i 6= 0. The resultant relation is

ai = bi+1 −bi

3(xi+1 −xi )
= bi+1 −bi

3hi
(4.6)

where hi = xi+1 − xi . By inserting this result into the equation for Pi together with di = fi , the following
relation for the coefficient ci and bi can be obtained:

ci = fi+1 − fi

xi+1 −xi
− xi+1 −xi

3

(
2bi +bi+1

)
= δi − 1

3
hi

(
2bi +bi+1

)
(4.7)

where hi has the same definition as before and δi is given by:

δi = fi+1 − fi

hi
(4.8)

Using the above relations for the coefficient together with the condition that P ′
i (x) = P ′′

i+1(x) where i 6= p,
or P ′

i (x) = P ′
i−1(x) where i 6= 0, the following system of equations in terms of bi can be obtained:

hi−1bi−1 +2(hi−1 +hi )bi +hi bi+1 = 3(δi −δi−1) (4.9)

For a data set with p+1 nodes, and thus p+1 unknowns, a system of p−1 equations is obtained. To obtain suf-
ficient number equations, the values for a0 and ap−1 are assumed to equal those of the adjacent polynomial,
thus a0 = a1 and ap−1 = ap−2, which results into two additional equations:

h1b0 − (h0 +h1)b1 +h0b2 = 0 (4.10)

hp−1bp−2 − (hp−2 +hp−1)bp−1 +hp−2bp = 0 (4.11)

With these two additional equations, a set of p +1 linear equations for p +1 unknowns is obtained. This
set of equations can be expressed in matrix form as HB = 3δ, where H is a matrix containing linear combi-
nations of the values for h, δ contains the difference between δ of two sequential nodes, and B contains the
coefficients bi . This linear system can easily be solved to obtain the coefficients bi , which can in turn be used
to calculate ai , and ci .

Hermite Splines
One issue with spline interpolation is the apparition of overshoots in the interpolating splines. These over-
shoots are often caused by rapid changes of the derivative of the original data. According to Fritsche and
Carlson (1980), a modification on the general cubic splines with the purpose of tackling these overshoots are
the Hermite splines. The Hermite splines ensure that on any particular interval (not just the interval between
two points, but an interval across multiple points), the fitted spline respects any monotonicity the data ex-
hibits. If the data on a particular interval is ever decreasing, all polynomials Pi (x) on that interval show the
same behaviour. If the node i represents a local extreme so does the end Pi (x) and the start of Pi+1(x).

Hermite splines are polynomials that match the value, and the value of the first k j − 1 derivatives of a
function f at the adjacent nodes, according to:

P (k)(xi ) = f (k)(xi ) (4.12)

where k = 0,1, . . . ,k j . If only the value needs to be matched, two conditions are imposed on the spline. If
also the first derivative needs to be matched, four conditions, and so forth. To satisfy these p +1 conditions,
a p th-order polynomial is needed. By that logic, a cubic (3r d -order) Hermite polynomial can satisfy 3+ 1
conditions; a matching value, and matching first-order derivative at each node.

The expression for the cubic Hermite polynomial Pi that is fitted between the i th and i +1th node is:



60 4. Numerical Methods

Pi (x) = fi

(
1+2

x −xi

xi+1 −xi

)(
x −xi+1

xi −xi+1

)2

+ f ′
i

(
x −xi

)(
x −xi+1

xi −xi+1

)2

+ fi+1

(
1+2

x −xi+1

xi −xi+1

)(
x −xi

xi+1 −xi

)2

+ f ′
i

(
x −xi+1

)(
x −xi

xi+1 −xi

)2
(4.13)

This equation can be written in the same polynomial form as was used previous, in terms of coefficient a
through d , through the following definitions:

ai = 2
fi − fi+1

h3
i

+ f ′
i + f ′

i+1

h2
i

(4.14)

bi = 3
fi+1 − fi

h2
i

−2
f ′

i + f ′
i+1

hi
(4.15)

ci = f ′
i (4.16)

di = fi (4.17)

where hi is again defined as hi = xi+1 − xi . The downside of this method is that it requires the values of the
derivative of the function insead of just the value itself. Kahaner et al. (1988) propose a method to obtain
estimates for the derivative.

As stated, if the node represents a local extremum, so will the two polynomials attached to this node.
This means that at this node, the derivative is zero, or f ′

i = 0. Recalling the definition of δi = ( fi+1 − fi )/hi ,
if f ′

i represents a local maxima, then δi−1 and δi will have opposite signs. Additionally, it was stated that
monotonicity is attempted to be preserved. If two sequential nodes have the same value, either δi−1 or δi will
be zero. In this case too, f ′

i = 0.
In the other cases, where δi−1 and δi are non-zero and have the same sign, a value for f ′

i is computed
using a linear combination of δi−1 and δi :

f ′
i =

3(hi−1 +hi )
2hi−1+hi

δi
+ hi−1+2hi

δi−1

(4.18)

At the first and last points, i = 0 and i = p +1, the values for δi−1 and δi cannot be calculated due to missing
data. If δ0 = 0, f ′

0 = 0, else:

f ′
0 =

(2h0 +h1)δ0 −h0δ1

h0 +h1
(4.19)

except for the situation where the sign of the calculated f ′
0 is opposite to the sign of δi , in which case f ′

0 = 0,
or when f ′

0 > 3δ0, in which case f ′
0 = 3δ0. Similarly, for f ′

p+1:

f ′
p+1 =

(2hp +pp−1)δp −hpδp−1

hp +hp−1
(4.20)

unless the sign of f ′
p+1 is opposite to δp or δp = 0 , in which case f ′

p+1 = 0, and f ′
p+1 <= 3δp .

4.3. Numerical Integration Routine
Numerical integration is the process of solving ordinary differential equations (ODEs) that are subject to ei-
ther initial or boundary values. According to Kress (1991), in general no explicit solutions exist to solve dif-
ferential equations, and numerical methods are required to do so. The equations of motion that govern the
trajectories that are desired to be simulated are ODEs. Therefore, to simulate the trajectories, a numerical
integration method is needed.

For this research two numerical integration methods were needed. One relatively simple integration
method was desired for the first- and second-order analytical approach and was selected primarily for its
simplicity. The second integration method was used in the numerical simulation to obtain accuracy trajec-
tory simulations. For this method both accuracy and speed were desired.

In this section first the trade-off between single-step or multi-step numerical integrators is made. Follow-
ing this, a trade-off is made to evaluate if the use of an adaptive order and step-size is advantageous in terms
of computational time, while not detracting from the accuracy of the method.
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Table 4.1: Computational times and RMS differences for three single-step and a multi-step numerical integration method.

Method C.Time [ms] RMS Position Difference [m] RMS Velocity Difference [ms−1]
RKF4(5) 3325 0.0002 0.0000
RKF5(6) 4429 0.0004 0.0000
RKF7(8) 6776 - -
ABAM(4) 1270 0.7122 0.0008
ABAM(6) 1246 0.7122 0.0008
ABAM(8) 1275 0.7124 0.0008

4.3.1. Integrator Type Trade-Off
In general, two types for numerical integration can be distinguished, single-step and multi-step. The distinc-
tion is made depending on how the method advances to the next state. The single-step methods only uses the
current node, determines a number of intermediate nodes, and uses a linear combination of these interme-
diate nodes to advance to the next state. The multi-step method on the other hand uses a linear combination
of a number previous states to advance to the next.

According to Kress (1991), the primary advantage of multi-step methods over single-step methods, such
as the Runge-Kutta family of methods, is that for an arbitrary convergence order, each new step only requires
a single evaluation of the function (two evaluations if a predictor-corrector is used), whereas for the single-
step method a number of evaluations is required. This results in multi-step methods generally being faster
than single-step methods for the same convergence order.

Two things have to be taken into consideration when regarding the history required for the linear multi-
step method. The first is the availability of the state history. At the start of the integration, only the initial value
is available. At this point, one can either lower the order (and thus the required history) of the multi-step
method to the available history size or use a single-step method until sufficient history has been generated.
When sufficient history has been generated, the desired order multi-step method can be used from that point
onward.

The second consideration is that the history is required to be consistently space. This means that if a
variable step-size method is used and the step-size is changed, the history has to be regenerated. However,
by carefully changing the step-size, a portion of the existing history can be used for the new step-size. For
instance, if the step-size is multiplied by an integer value, for instance three, every third node in the previous
history can be reused. If the stored history is of sufficient size, the step-size could increase without having to
generate any additional nodes.

When lowering the step-size, a portion of the history can be reused similarly. If, for instance, the step-size
is halved, every other node is still part of the new required history. In this case however, in between each
available node a new node is required. These new nodes could be obtained from single step integration from
the node ahead of it, or by interpolating between the two adjacent nodes. The effect of using an adaptive
step-size will be discussed in the next subsection.

To evaluate the computational speed and comparative accuracy of the single-step and multi-step method,
both methods were used to simulate the nominal Earth-CRM trajectory up to a specific time, in this case 150s
after entry, using a fixed step size of 0.01s. The final Cartesian state was recorded, and the root-mean-square
(RMS) difference in terminal position and velocity was determined. For the single-step methods, the Runge-
Kutta-Fehlber (RKF)45, RKF56, and RKF78 methods were used. These three methods were used to evaluate
the effect of increasing order on the accuracy and computational time. For the multi-step method a fourth,
sixth, and eighth-order Adams-Bashforth Adams-Moulton was used. The results from this effort are tabulated
in Table 4.1.

From this table it can be seen that indeed the multi-step method is much faster than the single-step meth-
ods, almost outperforming the fastest single-step method by a factor three. Additionally, it can be seen that
the computational speed of the multi-step method does not depend on the order of the method used. Re-
garding accuracy, it is clear that differences exists between the two methods. However, from this evaluation it
cannot be determined which of the two is more accurate. The only reason why the RKF methods have smaller
RMS differences than the ABAM methods in this table, is because the RKF7(8) method was used as the ref-
erence to determine the difference. If the ABAM(8) method was chosen as the reference, the values for the
differences would be flipped. It can therefore not be determine which of these two methods is more accurate.
Based on this, it was decided to use the multi-step method to take advantage of the increase in speed.
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Figure 4.1: Position RMS difference and computation time forthree fixed order, variable step-size, and one variable order, variable step-
size Adams-Bashforth Adams-Moulton method.

4.3.2. Adaptive Order and Step Size Trade-off
The next trade-off was regarding the use of an adaptive order and/or step-size. This trade-off was performed
by simulating the same nominal Earth-CRM trajectory as for the previous trade-off using ABAM methods
with various orders and relative tolerances.

From these simulations the RMS position error with respect to the fixed step-size ABAM8 method was
used as an indication for the achieved accuracy. In Fig. 4.1 the result from three fixed-order and a single
variable-order method are shown. The left graph shows the RMS position differences as a function of the
relative tolerance, and the right graph shows the corresponding computational time. Additionally, in the
right graph the computational time required by the fixed step-size ABAM method from the previous trade-off
is indicated as a references.

Regarding the position accuracy, it can be observed that for relatively large allowed relative tolerances the
variable order method performs best. However, as the relative tolerance decreases, the accuracy of the three
fixed order methods surpasses the variable order method. The tolerance for which the accuracies of all four
shown methods are approximately equal at approximately 10−8, providing an RMS position differences of
0.3-0.4m. This shows that the best way to control the accuracy of the ABAM method is to control the allowed
relative tolerance, as changing the order has a much weaker impact on the resultant RMS position difference.

An intersting observation is made for the relative tolerances smaller than 10−12. Beyond this, the position
accuracy of all method suddenly changes. This change is accuracy comes together with a significant increase
in computational time. After further investigation it was found that this was due to a step-size used during
the simulation smaller than the step-size used in the previous trade-off.

Regarding the computational time, it was found that for the fixed order methods, for a particular RMS
position differences, the ABAM6 method was generally the fastest, followed by ABAM8 and ABAM10. The
variable order ABAM6-11 method varied between being roughly as fast as the ABAM6 method, to falling be-
tween the ABAM8 and ABAM10 method. A similar conclusion can be drawn as for controlling the accuracy
of the method, namely that changing the allowed relative tolerances is the best option of affect the computa-
tional time of the method.

It can also be observed that for an RMS position differences between approximately 0.3-0.4m and approx-
imately 0.02m, the computational time for all four methods is approximately constant. Considering that the
accuracy of the three constant order methods at small relative tolerances is approximately the same, and bet-
ter than that of the adaptive order method, and considering that between a relative order of 10−8 and 10−11

the computational time remains approximately constant while decreasing the RMS position differences by
an order of magnitude, it was decided to use a constant order, variable step-size ABAM method with an order
of 6 and a relative tolerances of 10−11.

To conclude this trade-off, it should be noted that this analysis was only performed considering a single
aerocapture case. Before generalising these results, a more thorough investigation should be performing
taking into account different initial conditions, perturbations to the atmosphere model during the trajectory,
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Table 4.2: Coefficients for the Adams-Bashforth method up to six steps, corresponding to an order of six.

s b0 b−1 b−2 b−3 b−4 b−5

1 1
2 3/2 -1/2
3 23/12 -4/3 5/12
4 55/24 -59/24 37/24 -3/8
5 1901/720 -1387/360 109/30 -637/360 251/720
6 4277/1440 -2641/480 4991/720 -3649/720 959/480 -95/288

different atmosphere models altogether, and different vehicles. However, to perform such an analysis there
is not sufficient interest nor time in this research.

4.3.3. Forward Euler
The Euler methods is the simplest form of numerical integration. This method is an explicit method, as it
only relies on data that is already known at the time of evaluation. The Euler method simply takes the in-
stantaneous derivative of the considered function y , and multiplies this instantaneous derivative by a (small)
time-step h to obtain an approximation for the change to the function value. Then, the change is added to
the previous value to obtain an approximation of the next value. In mathematical terms, the Euler method is:

yn+1 = yn + y ′
nh (4.21)

where yn and y ′
n are the value and derivative of the function at point n, and h is the time-step.

The Euler method is a first-order method, meaning that the local error (error made in a single step) is
proportional to h2, and the global error (error at a fixed time, regardless of steps) is proportional to h. This
means that a small step-size is required for the Euler method to run accurate. In this research, the Euler
method was used only for the first-order analytical approach because of it ease of implementation.

4.3.4. Adams-Bashforth-Adams-Moulton
The Adams-Bashforth Adams-Moulton method is an implicit linear multi-step method. This method is formed
by the combination of the explicit Adams-Bashforth method, and the implicit Adams-Moulton method. The
method first uses the explicit Adams-Bashforth method to obtain an approximation of the next state, and
then corrects this estimate using the implicit Adams-Moulton method. The mathematical description of the
explicit Adams-Bashforth methods is as follow:

xn+1 = xn +hΣi=s−1
i=0 bi−s+1ẋi−s+1 (4.22)

In this equation x and ẋ represent the state and state derivative, h the step-size, s the number of steps involved
in the method, and bi the weighting coefficient which uniquely defines the AB method. Those coefficients
are defined by solving:

bs− j−1 = (−1) j

j !(s − j −1)!

∫ 1

0
Πs−1

i=0,i 6= j (u + i )du, for j = 0, ..., s −1 (4.23)

Two similar expressions can be obtained for the Adams-Moulton method. First, the expression for the
function evaluation:

xn+1 = xn +hΣi=s
i=0bi−s+1ẋi−s+1 (4.24)

And the equation to determine the coefficients:

bs− j = (−1) j

j !(s − j )!

∫ 1

0
Πs

i=0,i 6= j (u + i −1)du, for j = 0, ..., s (4.25)

The coefficients required to perform a single integration step using the sixth-order Adams-Bashforth
Adams-Moulton integrator were calculated using the above equations and are presented in Table 4.2 and
Table 4.3, respectively.
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Table 4.3: Coefficients for the Adams-Moulton method up to six steps, corresponding to an order of seven.

s b1 b0 b−1 b−2 b−3 b−4 b−5

0 1
1 1/2 1/2
2 5/12 2/3 -1/12
3 3/8 19/24 -5/24 1/24
4 251/720 323/360 -11/30 53/360 -19/720
5 95/288 1427/1440 -133/240 241/720 -173/1440 3/160
6 19087/60480 2713/2520 -15487/20160 586/945 -6736/20160 263/2520 -863/60480

Table 4.4: Adams-Bashforth Adams-Moulton Variable Step Size Parameters.

∆t0 ∆tmin ∆tmax Tolerance Ofixed

0.1s 0.1· 1
2
−20

s 0.1·210s 1·10−10 6

The exact version of the Adams-Bashforth Adams-Moulton method used in this research is a variable
step-size fixed order version of the method. Every step it is evaluated if the step-size should be changed. If
the errors (after the potential order change) are too large, and the step-size can be halved without exceeding
the minimal step-size, it is determined how often the history and the minimal allowed step-size allow for the
step-size to be halved. The history required for halving the step-size is than recalculated. For any even node,
the value already exists from the previous step-size. For the odd nodes the history is padded by interpolation.
As a last step, halving is turned off momentary to ensure that in the next integration step the step-size is not
halved again. Similarly, the if the errors are found to be too large, and the step-size can be doubled without
exceeding the maximal step-size, the step-size is doubled. The new history is filled with ever other entry from
the old history.

4.3.5. Runge-Kutta
Before the Adams-Bashforth Adams-Moulton of desired order can be used, a sufficiently history has to be
built up, and for this purpose an Runge-Kutta method is used. Additionally, while using a variable step-size is
easier with a Runge-Kutta method, the goal is to obtain a history with consistently spaced nodes. Therefore,
a fixed time step is used when generating the history.

The generalised equation for any Runge-Kutta method is

yn+1 = yn +hΣs
i=1bi ki (4.26)

where the values for ki are:

k1 = f (tn , yn)

k2 = f (tn + c2h, yn +h(a21k1))

k3 = f (tn + c3h, yn +h(a31k1 +a32k2))

...

ks = f (tn + cs h, yn +h(as1k1 +as2k2 +·· ·+as,s−2ks−2 +as,s−1ks−1))

(4.27)

The values of the coefficients a, b, and c, for Runge-Kutta methods are often listed in what is called a Butcher
Tableau. A general Butcher table is shown in Table 4.5. The Runge-Kutta method used in Tudat to populate
the initial history used by the variable step-size Adams-Bashforth Adams-Moulton method is the Dormand-
Prince87 method, for which the coefficients were taken from Montenbruck and Gill (2005). The butcher
tableau for this method is presented in Table 4.6.

4.4. Optimisation Routine
An optimisation routine is needed to numerically optimise a process. The goal of optimisation is the find the
values of a set of control variables for which a certain objective function J (x(t ),u(t ), t ) is minimised. In this
form x denotes the state variables and u the control variables. For this research J is a function of the total ∆V
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Table 4.5: Butcher tableau for a general Runge-Kutta method.

0
c2 a21

c3 a31 a31

00
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

required after atmospheric exit and the peak heat load and load factor experienced by the vehicle during the
trajectory. For this research the Non-Dominant Sorting Genetic Algorithm II (NSGA-II) is used.

Some additional nomenclature, each element in the control vector u is called a chromosome, and the
vector itself is called an individual. A group of individuals is called a population, and every population forms
one generation. The generation is evolved by determining the fitness of the individuals within it, and using
certain evolutionary operations to create new individuals for the next generation.

4.4.1. Non-Dominant Sorting Genetic Algorithm II
This Non-Dominant Sorting Genetic Algorithm II (NSGA-II) was first proposed by Deb et al. (2000). This
proposal mainly deals with specifying how the algorithm ranks the individuals. This proposal does not deal
with the evolution of the population, outside of stating that crossover and mutation are used, as is common in
all Evolutionary Algorithms (EA). In the NSGA-II algorithm in PaGMO the Simulated Binary Crossover (SBX)
method is used for crossover, proposed by the same authors of the original NSGA-II algorithm. For mutation
polynomial mutation is used. The descriptions of both these methods was obtained from Deb and Goyal
(1996) and by inspecting the PaGMO NSGA-II source code.

Before cross-over and mutation can be discussed, first the method for encoding the values of the chro-
mosomes into a single individual is discussed. Each individual within the population is comprised of j chro-
mosomes. Every chromosomes represents the value of a single control variable. The initial value of a chro-
mosome is determined according to:

pi ,R = Bl ,R + rand(0,1)(bu,R −bl ,R ) (4.28)

where ui ,R represents the Rth chromosome of the ith individual, bl ,R and bu,R represent the upper and lower
bound of the variable, and rand(0,1) is a random number generator that provides a random number between
0 and 1, including both 0 and 1.

The new generation is developed by preserving the top individuals of the previous generation, adding
a number of entirely new individuals, and performing cross-over and mutation to fill up the generation.
Crossover uses the values of the chromosomes in individuals of the current population to determine values
of the same chromosomes in a new individual for the next generation. The SBX method works by randomly
selecting two parents p1 and p2, and their children c1 and c2. For each chromosome in the individual, there
is a chance CR (default 0.95 in PaGMO) that the chromosome is given a random value according to SBX. If
crossover does not happen, the corresponding chromosome of child c1 inherits the value of parent p1, and c2

of parent p2. If crossover does happen, two values α and β are defined according to:

β=1+ (2
p1,R −bl ,R

p2,R −p1,R
)

α=2−β−(ηc+1)
(4.29)

where pi ,R is the R th chromosome in the i th parent, bl ,R is the lower bound of the R th chromosome, and ηc

is the distribution index for crossover, 10 per default in PaGMO. The value of the children are than calculated
according to

ci ,R = 1

2

[
(p1,R −p2,R )−βq (p2,R −p1,R )

]
(4.30)

where:

βq =
if: rand(0,1) <=α−1 rand(0,1)α

1
ηc+1

if: rand(0,1) >α−1 1
2−rand(0,1)α

1
ηc+1

(4.31)
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Figure 4.2: Crowding distance calculation. The filled circles are solutions on a single Pareto-front. Deb et al. (2000).

x3

{
x2−x0

2 if: f (x2) > 0
x1−x2

2 if: f (x2) < 0

The last operation performed for crossover is to check if the newly set random chromosome exceeds the
boundaries imposed on it. If it does, the value of the chromosome is set equal to the boundary it violated.

Mutation applies to the new individual created by cross-over. The purpose of mutation within the evolu-
tion is to create more diversity within the new population. This decreases the chance of the optimiser getting
stuck at a local optima, and allows it to explore the full solution space. Each chromosome within the new
individual has a chance m to get assigned a value other than what was determined during cross-over. In
PaGMO, a mutation probability of 0.01 is default, and will be maintained for this research. The polynomial
mutation method used in NSGA-II uses two parameters to perform the mutation. These two parameters are
determined by:

δ= unew, j −Bl , j

Bu, j −Bl , j

r = rand(0,1)

(4.32)

if r ≤ 0.5:

δq = [2r + (1−2r )(1−δ)ηm]
1
ηm −1 (4.33)

else:

δq = 1− [2(1− r )(2r −1)ηm]
1
ηm (4.34)

where η is a distribution index for mutation. This parameter determines how far the mutated value can devi-
ate from the original value, with a larger η keeping the mutation closer to the original. Per default, η = 50 in
PaGMO. The new value of the mutated variable is determined according to:

pnew,R = pnew,R +δq (bu,R −bl ,R ) (4.35)

After the evolution of the first population is allowed to happen, the current and next generation are com-
bined into a single population. The entire extended population is than divided into Pareto fronts. The algo-
rithm than sorts the individuals based on crowding. The crowding level is determined by the dimensions of
an n-dimensional rectangle of which the vertices are determined by the closest neighbours on the same front.
Crowding is shown schematically in Fig. 4.2. The individuals in the less densely populated parts of the fronts
are more desirable than those in the crowded parts. Based on the Pareto front and the crowding level, the N
best individuals are moved on to the new population, where N is based on the size of each population.
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Table 4.6: Butcher tableau of the Dormand-Prince method.
1

18
1

18

1
12

1
48

1
16

1
8

1
32

3
32

5
16

5
16 - 75

64
75
64

3
8

3
80

3
16

3
20

59
400

29443841
614563906

77736538
692538347 - 28693883

1125000000
23124283

1800000000

93
200

16016141
946692911

61564180
158732637

22789713
633445777

545815736
2771057229 - 180193667

1043307555

5490023248
9719169821

39632708
573591083 - 433636366

683701615 - 421739975
2616292301

100302831
723423059

790204164
839813087

800635310
3783071287

13
20

246121993
1340847787 - 37695042795

15268766246 - 309121744
1061227803 - 12992083

490766935
6005943493
2108947869

393006217
1396673457

123872331
1001029789

1201146811
1299019798 - 1028468189

846180014
8478235783
508512852

1311729495
1432422823 - 10304129995

1701304382 - 48777925059
3047939560

15336726248
1032824649 - 45442868181

3398467696
3065993473
597172653

1 185892177
718116043 - 3185094517

667107341 - 477755414
1098053517 - 703635378

230739211
5731566787
1027545527

5232866602
850066563 - 4093664535

808688257
3962137247
1805957418

65686358
487910083

1 403863854
491063109 - 5068492393

434740067 - 411421997
543043805

652783627
914296604

11173962825
925320556 - 13158990841

6184727034
3936647629
1978049680 - 160528059

685178525
248638103

1413531060

14005451
335480064 0 0 0 0 −59238493

1068277825
181606767
758867731

561292985
797845732

−1041891430
1371343529

760417239
1151165299

118820643
751138087

−528747749
2220607170

1
4

13451932
455176623 0 0 0 0 −808719846

976000145
1757004468
5645159321

656045339
265891186

−3867574721
1518517206

465885868
322736535

53011238
667516719

2
45 0
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5
Software

In this chapter an overview of all the software used, their purpose, and their function is provided. In Sec-
tion 5.1 the software that was obtained from external sources, and thus did not have to be developed from
scratch specifically for this research is discussed. The external software discussed in this chapter is the source
of the various numerical methods that were discussed in Chapter 4. In Section 5.2 the general architecture of
the software is discussed.

5.1. External Software
Most of the software used during this research, especially the software used for the numerical simulation.
was obtained pre-packaged and only had to be connected together using an overarching program. The two
libraries that were used exclusively throughout this research for simulation and optimisation purposes, their
content, and features are discussed in the following two sections.

5.1.1. Technical University of Delft Astrodynamics Toolbox
The Technical University of Delft Astrodynamics Toolbox, or Tudat, is a collection of C++ libraries, numerical
methods, and custom interfaces that are useful for astrodynamical simulations. The toolbox is being actively
developed and maintained by members of the Technical University of Delft, specifically the Astrodynamics
& Space Mission group of the faculty of Aerospace Engineering. For more information regarding Tudat, the
included libraries, interfaces, their functionality, how to use them, and tutorials, the reader is referred to
the Tudat website featuring tutorials and documentation1. In addition to the various libraries and numerical
methods, Tudat also comes with example applications that can be used to familiarise oneself with the various
libraries and features of Tudat and to ascertain the correct installation of Tudat

For all the features that are included in Tudat, unit tests are available that can be, should be, and were used
to verify the correct implementation of the features. These features are the various numerical methods, but
they are also provided for the environmental models. Thanks to the inclusion of these unit tests, the correct
installation, and therefore correct implementation of the various features, of Tudat can be verified directly
after installation. Only acceptance testing needs to be performed on the elements that are pulled straight
from Tudat without modification. For this research, almost everything required was available stock in Tudat
as is discussed next.

All numerical methods discussed in the previous section, with the exception of the NSGA2 optimisation
algorithm, are available in the Tudat libraries. Due to the inclusion and successful completion of all the
unit tests, all these numerical methods can be considered verified in their implementation, and no separate
verification effort will be spend on them. The NSGA2 algorithm comes with PaGMO, which will be discussed
shortly.

The Tudat libraries include an interface to read data from a file and use it to determine the value of the
aerodynamic coefficients based on any number of independent variables. This interface was used to specify
the values of the aerodynamic coefficients as a function of Mach number based on the aerodynamic model
that will be discussed in Section 3.6.1. This interfaces uses a multi-variable linear interpolator to interpolate
values between the discrete values of the independent variables.

1TU Delft Astrodynamic Toolbox website available at http://tudat.tudelft.nl/
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Similarly, the Tudat library includes an interface to specify atmospheric profiles based on data in a file.
This is relevant for the inclusion of the Martian and Venusian atmosphere models that are both given as
altitude-density profiles read from a file. The details of these models will be discussed in Section 3.6.2, where
it will also be shown that the resultant, averaged, altitude-density profile as it was obtained from Tudat after
specifying it, is indeed the result of averageing the atmosphere models over both position and time. The
atmosphere model for Earth, NRLMSISE-00 is included in Tudat by default.

Furthermore, the coefficients for the spherical harmonics gravity models for Earth and Mars, and the
ability to truncate them to obtain the desired accuracy, are included in Tudat, as is a central gravity model in-
terface that is used for Venus, and for Earth and Mars for the simplified environment simulations. the central
gravity model requires the specification of a standard gravitational parameter. The values of this parameter
were given in Table 3.12.

5.1.2. Parallel Global Multi-Objective Optimiser
The Parallel Global Multi-Objective Optimiser, or PaGMO, library is one of the libraries included in Tudat.
According to Biscani et al. (2018), this library is a collection of unified interface optimisation algorithms with
the purpose of facilitating multi-objective parallel optimisation. Parallel computing uses multiple process-
ing cores simultaneously so that it can perform multiple tasks such as evaluating a function simultaneously,
instead of having to perform every operation sequentially. In PaGMO this parallel computing is used to de-
termine the fitness of multiple individuals in a population simultaneously, significantly decreasing the run
time on systems with multiple cores.

The unified interface allows for the user to quickly and easily swap between various optimisation methods
by simply specifying the other algorithm and leaving all other code the same, as the interface for the newly
swapped to algorithm is the same as the first. A version of PaGMO is also available for Python as PyGMO. This
version includes all of the same functionality as the C++ version of the library does.

The PaGMO library comes with its own set of unit tests and optimisation problems that can be, should be,
and were used to verify the correct implementation of the library. Additionally, the PaGMO implementation
in Tudat comes with a set of example applications where the optimisation algorithms from PaGMO are used
in an astrodynamical optimisation problem. Because of these unit tests, the correct implementation of all
the optimisation algorithms and problems included in PaGMO can be verified at once by running them. All
the unit tests for PaGMO completed successfully, verifying the installation.

In this research, only the NSGA-II algorithm was used from PaGMO. For this algorithm (and all other
PaGMO algorithms due to the unified interface ideal), the user needs to specify the population size of a single
generation, the maximal number of generations, the boundaries of the input variables, and the number of
objectives desired to be minimised.

Similar to all other numerical methods in Tudat, for NSGA-II, unit tests and example applications are
available, that were successfully completed, leading to the conclusion that

5.2. Software Architecture
The general architecture of the software is graphically shown in Fig. 5.1. This flowchart depicts the interaction
and flow of information between the various elements of the simulator. This general architecture is valid for
all types of simulations performed throughout this research. The only differences for specific cases is in how
the user defined information, such as the initial state, targets and tolerances, or terminal conditions are set.

When simulating a specific trajectory, all the user defined elements can be set by hand. When using
the NSGA-II algorithm, the Targets and tolerances block in the Aerodynamic guidance block is set by the
switch-time and initial bank angle dictated by the evaluated individual of the population. The fitness of
the individual depends on the values of ∆V and the peak load factor and heat load. These are returned in
the Save peak load factor, heat flux and ∆V values block. When performing a grid search over various initial
conditions, the Initial state is set according the the evaluated grid. When performing root finding, the switch-
time is set in the Targets and tolerances block in the Aerodynamic guidance block.

Additionally, various guidance laws can be defined that all have the same interface and output, making
them interchangeable. Two examples of use guidance laws are lift-up lift-down bang-bang, and equilibrium
glide guidance.
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Figure 5.1: Software architecture of the general simulation environment.
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6
Verification

& Validation

Before any numerical methods or models can be confidently used, it first has to be verified that it has been
properly implemented. The verification process determines whether the numerical element has been imple-
mented properly by comparing the output to a known-to-be-correct results.

The numerical methods that are used in this research, and thus have to be verified are the root-finding,
interpolation, integration, and optimisation methods. The numerical models that have to be verified are the
aerodynamic vehicle model, the atmosphere models, the central body shape model, and the aerodynamic
heating model.

Conveniently, a majority of these numerical tools were available pre-packaged in either the Tudat or
PaGMO libraries, which come with unit-tests. These unit-tests are pre-defined checks that can be performed
to verify that the considered numerical element has been properly installed. All the unit-tests included in
Tudat and PaGMO have been successfully completed. However, in this section only those that are directly
relevant to the verification process are discussed.

In Section 6.1 the verification process of the numerical methods used throughout this research is treated.
Following this, in Section 6.2, the same is done for the numerical models. In the last section

6.1. Verification Numerical Methods
The numerical methods to be verified are the bisection root-finding method, the linear and cubic Hermite
spline interpolation methods, the RK87 and ABAM integration methods, and the NSGA-II optimisation method.
Since for all of these methods, with the exception of the bisection method, the Tudat or PaGMO version of the
numerical method was used, the verification process primarily consisted of running the provided unit-tests.
All the tests discussed in this section were completed successfully.

6.1.1. Bisection Root-Finding
The custom implementation of the bisection method was verified by running it against the same unit-tests
that are used to verify the Tudat version of the bisection method.

These unit-tests are finding the root of f (x) = x2 −3 between -1 and 4, finding the root of f (x) = si n(x)
between 2 and 4, and f (x) = cos(x)−x between -1 and 2 with a desired accuracy of 10−15. Lastly, it was tested
if the implemented method was able to determine if no root was present on the provided interval. This was
done by evaluating the first function on the interval [-1,0], where both values for f are negative.

6.1.2. Linear & Cubic Hermite Spline Interpolation
The implementation of the linear and cubic Hermite splite interpolation methods was obtained from Tudat.
For each of these methods a unit-test was provided. For the linear interpolation this is unitTestLinearInterpo-
lator, and for the cubic Hermite spline interpolation this is unitTestHermiteCubicSplineInterpolator.

The linear interpolation unit-test first interpolates the data set [(0,-20), (1,20), (3,21)] to obtain the values
at x = 0.5 and 2.0, resulting in the expected values of y = 0 and y = 20.5, respectively.
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Next, the interpolation of multiple values simultaneously is tested, by interpolating [0=(10,-10,70),1=(20,-
5,80),2=(30,60,90)] to obtain the value at x = 1.5, resulting in 1.5=(25,27.5,85).

The last test is to interpolate a data-set loaded from a file consisting of 33 nodes between -3 and 3 to
obtain a dataset over the range of a thousand nodes, and to compare the obtained interpolated results to a
known-to-be-correct file.

For the cubic Hermite spline interpolation the first test consists of interpolating between nodes given for
the function f (x) = 2+3x +5x2 and verifying that the interpolated value is sufficiently close to the analytical
value, using a tolerance of 5 ·10−3.

The next test determines if the implemented method can handle exceptions, such as empty input vectors.
The final two unit-tests interpolate the same data loaded from a file as the linear interpolation unit-test.

Again the number of nodes is interpolated to a thousand nodes and compared to a known-to-be-correct file.
This test is run twice, one imposing zero first derivatives at the endpoints, and one imposing zero second
derivatives at the endpoints.

6.1.3. RK87 & ABAM Numerical Integration
Similar to the interpolator case, both numerical integration methods used were obtained from Tudat. The
two unit-test files provided are "unitTestRungeKutta87DormandPrinceIntegrator" and "unitTestAdamsBash-
forthMoultinIntegrator", for the RK87 and ABAM methods, respectively.

The Runge-Kutta method was verified by comparing it to a known-to-be-correct result. In total five differ-
ent cases are evaluated. First, the initial state is integrated one step ahead in time. Next, the initial state was
integrated until a final time using multiple steps. Third, the integration direction was reversed, and the final
state is integrated backwards to the initial time. The next test integrates from the initial time to a specified
time in a single step. This case differs from the first as in this case the desired time was specified, not the
step-size. The final test integrates to a specified time in multiple steps.

For each of these cases, the result obtained from the integration was compared to known-to-be-correct
results.

The ABAM numerical integrator was subsequently verified by comparing the results from this method to
those obtained from the RKF78 method for various minimal, maximal, and initial step sizes, and relative and
absolute tolerance settings.

For completeness, it should be mentioned that the RKF78 method itself was verified in the same manner
as the RK87 method described above.

6.1.4. NSGA-II Optimisation
The unit-test for the NSGA-II optimisation method is available in the PaGMO library in the file nsga2.

The first test performed is the check if the method properly detects errors in the input variables. Next, it
is verified that the method obtains the same results if the seed is set to a particular value.

Additionally, the Tudat library includes several example problems that use the PaGMO library. One of
these problems is the Himmelblau function, defined by f (x, y) = (x2+y−11)2+(x+y2−7)2. On the range −5 ≤
x ≤ 5,−5 ≤ y ≤ 5, this function has four local minima at f (3.0,2.0), f (−2.805118,3.131312), f (−3.779310,−3.283186),
and f (3.584428,−1.848126).

Using the NSGA-II algorithm, 100 generations, each generation containing 1000 individuals, each of these
four local minima was found up to the precious of the roots given above.

6.2. Verification Numerical Models
In addition to the numerical methods, the numerical models used must also be verified. The verification of
these models focusses on verifying the correctness of the input parameters of the model. The model interface
and the model itself is part of Tudat, and thus always include unit-tests. While these unit-tests have been
performed and successfully passed after installing Tudat, their will not be further discussed here.

The numerical models verified in this section are the aerodynamic model, the NRLMSISE-00 model, the
Mars and Venus tabulated atmosphere models, the central body shape mode, the central and spherical har-
monics gravity field models, and the aerothermal model.

6.2.1. Aerodynamic Model
The aerodynamic model based on the Apollo CM was manually verified. This was done by first verifying
that the developed file tabulating the aerodynamic model had the same structure as those already present in
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Tudat. subsequently, it was verified that the data in the file was the same as that of the source. This was done
by manually checking the Mach numuber and the corresponding angle-of-attack, lift coefficient, and drag
coefficient.

6.2.2. NRLMSISE-00 and Tabulated Atmosphere Models
For the verification of the NRLMSISE-00 atmosphere model, the Tudat included unitTestNRLMSISE00Atmopshere
unit-test was performed. In this test values are requested from the NRLMSISE-00 model and compared to
known-to-be correct values.

For the tabulated atmosphere models used for Mars and Venus, the input parameters were manually ver-
ified by comparing them to the values obtained from the averaging process of the original models. After this,
the density values over a large range of altitudes were requested using the Tudat interface. The obtained val-
ues where then again compared to those from the original models. The averaged atmosphere profiles seen in
Section 3.6.2 exactly matched the values obtained from Tudat.

6.2.3. Central Body Shape Model
For the central body shape model, the Tudat included unit-test unitTestBodyShapeModels was used. This test
verifies that the altitude of an object at an arbitrary position in space obtained from the oblate spheroid model
is the same as a known-to-be-correct result. Additionally, it was manually verified if the input parameters for
the central body shape model were the same as those in the found sources.

6.2.4. Aeroheating model
The equations for the radiative and convective heat flux have been manually verified by comparing the im-
plemented equations to those in the source material. Additionally, the Hayabusa entry was reconstructed
based on the work by Fujita et al. (2011).The peak radiative and convective heat loads found from the recon-
struction were 2.04 MWm−2 and 12.67 MW m−2. The work by Fujita et al. (2011) reports a radiative heat flux
and convective heat flux of approximately 2.25 MWm−2 and 12.25 MWm−2.
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7
Analytical Approach

In this chapter the first- and second-order analytical approximations that were developed in Section 3.5 are
evaluated to determine how accurately they approximate the full equations of motion used in the simulation.
In addition to evaluating the accuracy, the impact of each assumption made during the derivation of the
analytical approximation on the accuracy is evaluated. This was done in an effort to determine the validity of
each of the assumptions.

In Section 7.1 the result of evaluating the first-order approximation and the errors induced by the various
assumptions is discussed. Following this, in Section 7.2, the same is done for the second-order approxima-
tions. In both cases, first the nominal Earth-CRM case is treated, after which the results are attempted to be
generalised by evaluating the two other planets and the other vehicle for various initial conditions.

7.1. First-Order Approach
In this section the first-order analytical approximations that were presented in Section 3.5.1 are used to ap-
proximate the nominal Earth-CRM trajectory. First the accuracy of this approximation is evaluated by com-
paring the first-order approximation to the results from the numerical simulation. After this, the potential
source of errors is investigated. After this the result of the same investigation performed for the SRM vehicle
and the two other planets is discussed.

7.1.1. First Order Evaluation
The entry interface state of the vehicle can be found in Table 2.2, and the properties of the vehicle can be
found in Table 2.4. In addition to the information provided in these tables, all trajectories were flown starting
from zero latitude and longitude, flying straight east (heading χ = 90°). In Fig. 7.1 the results of both the
simulation and the first-order approximation are shown. For now only the full simulation and first-order
approximation will be discussed. From the three profiles it can be seen that first-order approximation leaves
a lot to be desired in terms of accuracy, specially in the cases of the velocity and flight-path angle. This is
to be expected as the two equations governing the change in these two parameters, Eqs. (3.32) and (3.33),
respectively, were the equations that got simplified by neglecting the contribution of mass.

Thus far, the equations to obtain first-order approximations for the velocity and altitude at arbitrary point
in the trajectory based on entry conditions and local flight-path angle, the flight-path angle at the lowest point
in the trajectory, the atmospheric exit, and the point in the trajectory where the peak acceleration occurs, and
the magnitude of the peak acceleration have been described.

By using these analytical approximations and the equations of motion an approximation of a trajectory
and the values at key points of this trajectory were made. This approximation of the trajectory and the key val-
ues was then compared to the simulation results. In contrast to the sophisticated Adams-Bashforth Adams-
Moulton numerical integration scheme used in the simulation, the first-order approximations of the equa-
tions of motion were integration using a simple Euler scheme.

In Table 7.1, some of the values of interest of the orbit are listed. By combining the overall comparison be-
tween the simulated and first-order approximated trajectory shown in Fig. 7.1, and the comparison between
the specific parameter values tabulated in Table 7.1, it can be concluded that the first-order approximation is
not suitable for the Earth-CRM case.
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Figure 7.1: Altitude, velocity, and flight-path angle profiles for various numerical simulations and the first-order analytical approxima-
tion.

Table 7.1: Tabulation of various variables at three points of interest, taken both from the first-order analytical equations and the numer-
ical simulation.

Point of Interest Parameter First Order Approx. Simulation Ratio [-]
Lowest Altitude Altitude [km] 46.6 57.9 0.8
Peak Flight-path angle [°] -2.0 -0.6 3.3
Acceleration Load factor [g] 21.4 7.5 2.9
Atmospheric Flight-path angle [°] 7.5 5.7 1.3
Exit Velocity [kms−1] 6.4 9.0 0.7
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7.1.2. Error Investigation
From the comparison between the first-order approximations and the simulation output in the previous sec-
tion it can be concluded that the approximations are not sufficiently accurate to approximate aerocapture for
this research. To garnish further insight into the problem, it was investigated how much each of the made
assumptions contributed to the inaccuracy of the first-order method. As a start to this investigation, a list of
all the assumptions made to obtain the first-order approximations was developed. These assumptions were:

1. The flight is assumed planar, flown with a bank angle of zero degrees (full lift-up, θ = 0°).

2. No apparent forces resulting from a rotating central body are taken into account.

3. The effect of weight in the equations of motion is assumed negligible compared to the effect of the
aerodynamic forces (drag and lift)

4. The atmosphere is approximated by an exponential atmosphere model, and the hydrostatic equation
is assumed valid.

5. The gravitational acceleration is approximated by a central gravity model.

In this section the results of the effort to isolate and/or eliminate the effects of each of the made assump-
tions and test their impact on the trajectory is discussed. The first assumption was already eliminated in the
previously show results as the flight was simulated using zero bank angle. This does not mean however that
the flight is entirely planar as the trajectory was allowed to drift due to the gravity field. However, the effect of
this was found to be negligible due to the short duration of the flight. The second assumption could be elimi-
nated by setting the rotational rate of the central body to zero. The fourth assumption could be eliminated by
setting the atmosphere model used to the exponential atmosphere model discussed in Section 3.6.2. Lastly,
the fifth assumption could be eliminated by setting the gravity model to a central gravity field.

Referring back to Fig. 7.1, the additional four trajectories plotted will now be discussed. It should be
noted that it seems that one trajectory is missing from the graph. However, the trajectories simulated using
the full environment, and the trajectory using the central gravity field, match almost exactly. This causes
their trajectories to be nigh indistinguishable in the graphs. It is therefore concluded that the assumption of
a simplified gravity field model has a negligible effect on the accuracy of the trajectory, at least for a flight of
this short duration.

Both the use of the exponential atmosphere model and a non-rotating Earth have more significant im-
pacts on the trajectories flown. By comparing the error between the full environment simulation and the
non-rotating, exponential atmosphere, and simple environment simulations, and the first-order approxi-
mations, it can be concluded that, while the use of a simplified environment has a definite impact on the
trajectory, it is by far not the most significant contribution to the inaccuracy. On a side-note, after closer in-
spection of the error between the full environment simulation and the three other simplified simulations, the
error made due to the use of simplified environment seemed additive, as the error made by the simple envi-
ronment simulation is consistently roughly equal to sum of the error made by the three individual simplified
environment simulations.

The only assumption left to investigate is the assumption of negligible mass effect compared the the aero-
dynamic effect. Unfortunately, no method was found to eliminate this assumption, as an attempt to simulate
the trajectory using a non-massive vehicle failed. However, by switching off all other assumptions, it was
managed to isolate the effect of the mass-neglect, resulting in the simple environment trajectory. In addi-
tion to this, the validity of this assumption for this simulation was tested by determining if the gravity effect
(hereinafter also referred to as the mass-effect) is sufficiently small compared to the aerodynamic effect in
Eqs. (3.32) and (3.33) to allow for the omission of the gravity terms. To accomplish this, the full environment
simulation was taken, and for each data point the mass and aerodynamic contribution were determined.
Subsequently the ration of these contributions was determined. This ratio was taken "aerodynamic-over-
mass". This means that if the ratio is larger than unity, the aerodynamics are more dominant than the mass.

From this graph it can be concluded that for the CRM vehicle flying through the lower parts of the atmo-
sphere, where the aerodynamic forces are the largest, the mass-effect on the rate of change of the velocity can
indeed be neglected. However, for the rate of change of the flight-path angle, both effects contribute roughly
the same, and thus cannot be neglected. For the CRM vehicle on Earth the it is therefore concluded that the
assumption made at the beginning of this chapter is invalid.
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Figure 7.2: Ratio between the aerodynamic and gravitational contributions in the Equations of Motion governing the rate of change of
the velocity and flight-path angle.

For the Earth-SRM case a similar conclusion can be drawn. Since the aerodynamic reference area of the
SRM vehicle only 14% of the CRM reference area, and the aerodynamic forces are proportional to this area,
in the SRM case, only 14% of the aerodynamic force is generated. Additionally, the mass of the SRM vehicle is
0.7% of that of the CRM vehicle. Because of this, the ratio between the mass-effect and aerodynamic effect is
decreased by roughly an order of magnitude. Nevertheless, for a majority of the flight, the rates of change of
the velocity and the flight-path angle are dominated by the mass-effect. It is therefore again concluded that
the made assumption is invalid for this case.

7.1.3. SRM, Mars, and Venus
The above evaluation was all performed for the Earth based case. However, in this research, two other planets
are considered. Similar investigations to what has been shown previous have been performed for the other
planets. First, the Mars-CRM and -SRM cases were investigated. After this, the Venus-CRM and -SRM case.

On Mars, it was again found that the use of the central gravity field had negligible impact on the trajectory,
similar to the Earth case. The error induced by the use of the exponential atmosphere model was smaller
compared to Earth. The effect of assuming a stationary planet was comparable, but slightly smaller compared
to Earth case due to the slower rotational rate. Lastly, it was found that the aerodynamic-over-mass effect ratio
was smaller than when compared to Earth. This is due to the tenuous atmosphere of Mars producing very
limited aerodynamic forces, even at the high velocity of aerocapture. This indicates that the assumption of
ignoring the mass effect is even more inappropriate for Mars

After this, Venus was examined. As stated in Section 3.6.5, for Venus the central gravity field is already used
in the simulation, therefore only the rotation of Venus and the atmosphere model could be examined. It was
noted that the error induced by considering a stationary Venus was negligible. This is due to the rotational
rate of Venus, which is roughly 240 times slower than Earth’s rotational rate, rotating once every roughly 5800
hours. It was also found that the error due to the exponential atmosphere model were significantly smaller
than those for Earth when using the custom fit for the middle altitudes developed in Section 3.6.2, namely
ρ0 = 186765.35 kgm−3 and Hs = 4.5 km. However, even in this case, the error due to the neglect of the mass-
effect was the most significant. On Venus, due to the increase density, the aerodynamic forces are higher
for the same velocity. However, also due to the increase aerodynamic forces, the velocity is lowered quicker.
This causes the vehicle to reach the denser parts of the atmosphere with lower velocity. This combined effect
cause the ratio between the aerodynamic and mass components to be slightly larger on Venus compared to
Earth, but not yet large enough to justify neglecting the mass-effect for the CRM vehicle. For the SRM vehicle
on the other hand, where the ratio is already larger compared to CRM, the assumption to neglect the mass
compared to the aerodynamics would be applicable. From this analysis it was thus concluded that only in
the Venus-SRM case the assumption of ignoring the mass effect can be validly made.

7.2. Second-Order Approach
In this section the second-order analytical approximations that were presented in Section 3.5.2 are used to
approximate the nominal Earth-CRM trajectory. First the accuracy of this approximation is evaluated by com-
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Figure 7.3: Comparison between numerical and second-order analytical results for the trajectory, considering a rotating Earth, an east-
ward flight, and the CRM vehicle.

paring the second-order approximation to the results from the numerical simulation. After this, the potential
source of errors is investigated. After this the result of the same investigation performed for the SRM vehicle
and the two other planets is discussed.

7.2.1. Second Order Evaluation
Similar to the previous evaluation section, the results obtained from the second-order approximation will be
compared to a simulation of the same trajectory. However, in addition to the simulation where the full envi-
ronment is taken into account and the equations of motion are integrated using the variable step-size ABAM
integration scheme, the analytical results are also compared to the output of a simplified situation. This
simplified situation integrates the equations of motion for a flight about a stationary planet, as presented in
Eqs. (3.32), (3.33) and (3.35), integrated using simple Euler integration, and considering exponential atmo-
sphere and central gravity. The parameters for the exponential atmospheres and central gravity field models
can be found in Section 3.6.2 and Section 3.6.5, respectively.

In Fig. 7.3 the trajectory of the vehicle is plotted both as flight-path-angle-altitude and velocity-altitude.
The next figure, Fig. 7.4, shows the lift and drag components of the aerodynamic load. The final figure pro-
duced for this case, Fig. 7.5 shows the heat load on the vehicle, split into the convective and radiative heat
loading.

Starting with the first figure, Fig. 7.3, it is immediately noted that the analytical expressions match the
simplified numerical results almost exactly throughout the downwards leg of the flight. Only when the ve-
hicle starts to climb again do the two start to converge. it is thus concluded that the developed analytical
expressions indeed approximate the equations of motion reasonably accurate, especially for the downward
slope, and that the use of the second-order analytical equations has improved the accuracy of the model sig-
nificantly compared to the first-order analytical expressions. The analytical equations still overestimate the
penetration depth into the atmosphere, and underestimate the velocity at the atmospheric exit. However,
the estimate for the flight-path angle at the atmospheric exit is quite good. In Table 7.2 the values for the
penetration depth and the values at atmospheric exit are tabulated for both numerical simulations and the
analytical approximation.

In the next figure, Fig. 7.4, the aerodynamic load on the vehicle as a function of altitude is shown. Again
the close agreement between the approximate analytical and simplified numerical methods can be observed.
Furthermore, it was noticed that that peak aerodynamic g-load was overestimated by the approximate ana-
lytical method. While the method lacks accuracy in this situation, as it overestimates the aerodynamic load
by approximately 33%, at least it provides an overestimate, and therefore a conservative upper-bound of the
peak acceleration experienced by the vehicle during the trajectory. In Table 7.2 the values for the peak aero-
dynamic load and the flight-path angles at which they occur tabulated for all three trajectories.

In the last figure, Fig. 7.5, the aeroheating is treated. Similar conclusions as for the aerodynamic loading
can be drawn. The figure exhibits close agreement between the analytical approximation and simple simu-
lation, while overestimating the Tudat simulation. In this case the overestimate is approximately 28%. Again,
since the approximate analytical equations produce an overestimate, they could be used as a conservative
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Figure 7.4: Comparison between numerical and second-order analytical results for the aerodynamic load, considering a rotating Earth,
an eastward flight, and the CRM vehicle.
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Figure 7.5: Comparison between numerical and second-order analytical results for the heat load, considering a rotating Earth, an east-
ward flight, and the CRM vehicle.
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Table 7.2: Tabulation of various variables at three points of interest, taken from the second-order analytical equations and both numerical
simulations.

Point of Interest Parameter 2nd Order Approx. Sim. (Simple) Sim. (Tudat)
Lowest Altitude Altitude [km] 54.9296 54.9176 57.8588
Peak Flight-path angle [°] -0.6429 -0.6710 -0.5762
Acceleration Lift load factor [g] 3.8502 3.8018 2.8927
Load Drag load factor [g] 8.7492 8.6391 6.5733
Peak Conv. Flight-path angle [°] -1.6859 -1.8145 -1.5435
heat load Conv. heat load [MWm−2] 2.6119 2.5503 2.3034
Peak Rad. Flight-path angle [°] -2.2850 -2.4755 -2.1499
heat load Rad. heat load [MWm−2] 12.4453 11.5201 9.4055
Peak Total Flight-path angle [°] -2.2562 -2.4454 -2.0025
heat load Total heat load [MWm−2] 15.0208 14.0254 11.6886
Atmospheric Flight-path angle [°] 6.3201 5.1146 5.6912
Exit Velocity [kms−1] 8.7211 8.5055 8.9889

upper-bound of the peak-heat load experienced by the vehicle during the flight. In Table 7.2 the values for
the peak heat load and the flight-path angles at which they occur tabulated for all three trajectories.

7.2.2. Error Investigation
From the comparison between the second-order approximations and the simulation output in the previ-
ous section, it can be concluded that, while this approximation matches closer with the simulation outputs,
there are still errors present. Similar to the methodology that was followed for the first-order approxima-
tions, each of the assumptions made in the development of the second-order analytical approximations will
be attempted to be eliminated or isolated, to determine their impact. The assumptions that apply to the
second-order analytical approximations are the following.

1. The flight is assumed planar, flown with a bank angle of zero degrees

2. No apparent forces resulting from a rotating central body are taken into account

3. The atmosphere is approximated by an exponential atmosphere model, and the hydrostatic equation
is assumed valid.

4. The gravitational acceleration is approximated by a central gravity field model.

5. The flight-path angle is assumed to be sufficiently small such that cosγ≈ 1.

However, the first assumption can be disregarded, as the flight simulated using Tudat is also planar, just
as it was in the first-order case. Additionally, it has been shown in Fig. 7.1 that the effect of the central gravity
field model on the simulated trajectory is negligible. This leaves three assumptions that could be the cause of
the error between the second-order approximations and the simulation. The assumption regarding the use
of exponential atmosphere can be eliminated by performing the simulation also using the exponential atmo-
sphere. The effect from apparent forces resulting from a rotating central body can be eliminated by specifying
a rotational rate of zero in the simulator. Combining both these simplifications results in the isolation of the
last assumption.

First, the effect of rotational rate was investigated. This was done in two ways. The first was to disable the
rotational rate from the simulation entirely. The resulting trajectories are presented in Figs. 7.6 to 7.8. The
important parameters for the various points of interest are produced in Table 7.3. As nothing changed for the
second-order approximation or the simplified simulation, the first two columns of results are the same as in
Table 7.2.

By inspecting the figures and consulting the values tabulated in Table 7.3, it can be seen that the analytical
approximation, as well as the simplified numerical simulation, has excellent agreement with the non-rotating
central body simulation. Additionally, as the error between the simulation and the approximation in the case
of the non-rotating central body is incredibly small, it can be concluded that the errors introduced by the
small-angle approximation and the approximation of the atmosphere by the exponential model are negligible
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Figure 7.6: Comparison between numerical and second-order analytical results for the trajectory, considering a fixed Earth, an eastward
flight, and the CRM vehicle.
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Figure 7.7: Comparison between numerical and second-order analytical results for the aerodynamic load, considering a fixed Earth, an
eastward flight, and the CRM vehicle.
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Figure 7.8: Comparison between numerical and second-order analytical results for the heat load, considering a fixed Earth, an eastward
flight, and the CRM vehicle.
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Table 7.3: Tabulation of various variables at three points of interest, taken from the second-order analytical equations and both numerical
simulations.

Point of Interest Parameter 2nd Order Approx. Sim. (Simple) Sim. (Tudat)
Lowest Altitude Altitude [km] 54.9296 54.9176 55.5604
Peak Flight-path angle [°] -0.6429 -0.6710 -0.8370
Acceleration Lift load factor [g] 3.8502 3.8018 3.6272
Load Drag load factor [g] 8.7492 8.6391 8.2422
Peak Conv. Flight-path angle [°] -1.6859 -1.8145 -1.9439
heat load Conv. heat load [MWm−2] 2.6119 2.5503 2.5031
Peak Rad. Flight-path angle [°] -2.2850 -2.4755 -2.6195
heat load Rad. heat load [MWm−2] 12.4453 11.5201 11.1983
Peak Total Flight-path angle [°] -2.2562 -2.4454 -2.6195
heat load Total heat load [MWm−2] 15.0208 14.0254 13.6618
Atmospheric Flight-path angle [°] 6.3201 5.1146 5.1861
Exit Velocity [kms−1] 8.7211 8.5055 8.4693
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Figure 7.9: Comparison between numerical and second-order analytical results for the trajectory, considering a rotating Earth, Westward
flight, and the CRM vehicle.

compared to the error due to the ignored rotation of the Earth, and the neglect of the resultant apparent
forces.

Before moving on the other planets, one more element was investigated. It is now know that the analytical
approximations approximate the non-rotating central body case accurately, and that they provide a good
conservative upper-bound value in the case that the central body is rotating, and the flight is in the direction
of the rotation, e.g. eastward flight. However, how well the analytical approximations work when westward
flight is performed is not yet know. In the next three figures, Figs. 7.9 to 7.11, as well as in the Table 7.4, the
data is presented for the case of westward flight about a rotating Earth.

From these figures it can be seen that the conservative nature of the analytical approximation is no longer
present. In the case of westward flight in the atmosphere attached to a rotating Earth, the analytical approxi-
mations become slightly optimistic, underestimating the aerodynamic forces and heat load by approximately
12% and 3%, respectively. However, it should be noted that the two cases for rotating Earth tested here are the
absolute worst case scenario. The flight is over directly the equator and entirely against or with the rotational
velocity of the planet. Considering this, and the ranges of accuracy obtained for the estimation of the peak
aerodynamic load and the peak heat load of 30% overestimate or 12% underestimate, and 28% overestimate
or 3$ underestimate, respectively, it is concluded these second-order approximations can be quite useful for,
for instance, preliminary design. Either one obtains a overestimate, leading to a more conservative design, or
one obtains a slight underestimate that should easily be fixed during more detailed design. Another potential
application of these equations is the design of a guidance-and-control system, where the results obtained
from these analytical equations can be used as first estimates in a predictor-corrector loop.
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Figure 7.10: Comparison between numerical and second-order analytical results for the aerodynamic load, considering a rotating Earth,
Westward flight, and the CRM vehicle.
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Figure 7.11: Comparison between numerical and second-order analytical results for the heat load, considering a rotating Earth, West-
ward flight, and the CRM vehicle.

Table 7.4: Tabulation of various variables at three points of interest, taken from the second-order analytical equations and both numerical
simulations.

Point of Interest Parameter 2nd Order Approx. Sim. (Simple) Sim. (Tudat)
Lowest Altitude Altitude [km] 54.9296 54.9176 53.9296
Peak Flight-path angle [°] -0.6429 -0.6710 -0.9676
Acceleration Lift load factor [g] 3.8502 3.8018 4.3714
Load Drag load factor [g] 8.7492 8.6391 9.9334
Peak Conv. Flight-path angle [°] -1.6859 -1.8145 -2.3280
heat load Conv. heat load [MWm−2] 2.6119 2.5503 2.6753
Peak Rad. Flight-path angle [°] -2.2850 -2.4755 -3.0706
heat load Rad. heat load [MWm−2] 12.4453 11.5201 12.8149
Peak Total Flight-path angle [°] -2.2562 -2.4454 -3.0706
heat load Total heat load [MWm−2] 15.0208 14.0254 15.4413
Atmospheric Flight-path angle [°] 6.3201 5.1146 4.4990
Exit Velocity [kms−1] 8.7211 8.5055 8.0018
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Figure 7.12: Percentual error between the peak values obtained from the second-order analytical approximation and the numerical
simulation for the Earth-CRM case for various initial relative velocities and flight-path angles.
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Figure 7.13: Percentual error between the peak values obtained from the second-order analytical approximation and the numerical
simulation for the Earth-SRM case for various initial relative velocities and flight-path angles.

7.2.3. SRM, Mars, Venus, and Initial Condition Variation
Thus far the second-order analytical approach has been used to approximate the nominal Earth-CRM case.
In this section an overview is given of the results obtained from investigating all planets, using both vehicles,
for the full range of potential initial conditions as listed in Section 2.5, for eastward and westward flight about
a rotating planet, and eastward flight about a stationary (fixed) planet.

Figs. 7.12 and 7.13 depict the error in the peak aerodynamic load factor and peak heat flux for the Earth-
CRM and SRM cases, respectively. A positive error means the analytical approximations overestimates the
peak value, a negative error indicates an underestimate. Similarly, Figs. 7.14 and 7.15, and Figs. 7.16 and 7.17
depict the error in the peak aerodynamic load factor and peak heat flux for the Mars-CRM and SRM, and
Venus-CRM and SRM cases, respectively.

From these figures several observations can be made. The first observation is that, as the entry becomes
steeper, the second-order analytical approximations seems to become more accurate. This is most apparent
in the two Earth cases. This is contrary to what was expected however, as the second-order analytical ap-
proximations were developed using the small-angle assumption, which should induce a larger error as the
flight-path angle increased. The reason for this phenomenon was found to be due to the errors in the expo-
nential atmosphere model used, and not related to the small-angle approximation.

Each of the exponential atmosphere models discussed in Section 3.6.2 was selected for their accuracy
around the expected point of deepest penetration. How the values for penetration depth were obtained will
be discussed in Section 9.1. In this section it is also shown that for shallow entry, the vehicle penetrates the
atmosphere less deep. This means that for a shallow initial flight-path angle, the vehicle does not reach the
part of the atmosphere where the exponential model is the most accurate. Otherwise phrased, the entire
flight is estimated using the less-accurate portion of the exponential atmosphere model, resulting in larger
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Figure 7.14: Percentual error between the peak values obtained from the second-order analytical approximation and the numerical
simulation for the Mars-CRM case for various initial relative velocities and flight-path angles.
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Figure 7.15: Percentual error between the peak values obtained from the second-order analytical approximation and the numerical
simulation for the Mars-SRM case for various initial relative velocities and flight-path angles.

-11-10-9-8-7

Flight-path angle [°]

-30

-25

-20

-15

-10

-5

A
er

od
yn

am
ic

 L
oa

d 
F

ac
to

r 
E

rr
or

 (
%

)

Eastward

Westward

Fixed

-11-10-9-8-7

Flight-path angle [°]

-20

0

20

40

60

80

H
ea

t F
lu

x 
E

rr
or

 (
%

)

Eastward

Westward

Fixed

Figure 7.16: Percentual error between the peak values obtained from the second-order analytical approximation and the numerical
simulation for the Venus-SRM case for various initial relative velocities and flight-path angles.
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Figure 7.17: Percentual error between the peak values obtained from the second-order analytical approximation and the numerical
simulation for the Venus-SRM case for various initial relative velocities and flight-path angles.

errors.
This also explains why the phenomenon is the most pronounced for the Earth cases. Referring back to

Section 3.6.2, it can be see that in the upper atmosphere (90 km - 125 km), the error made by the exponential
atmosphere for Earth is greater than the error for either Venus or Mars.

One possible method for alleviating this problem would be to fit an exponential atmosphere for the ex-
pected part of the atmosphere traversed, the altitudes between the entry interface altitude and the point of
deepest penetration, potentially obtained from a first-order approximation. This custom fit would have to
be made for each unique velocity and flight-path combination, as the penetration depth depends on both of
these parameters, as will be shown in Section 9.1. Additionally, if the atmosphere model exhibits a significant
change in slope, such as the Martian and Venusian atmospheres, this fit might be hard to make accurately
over the entire range. This process of fitting a new exponential atmosphere for each entry was however not
done during this research.

A second observation is that for the Venus case, the difference between westward or eastward flight or
flight about a non-rotating planet is negligibly small. This is due to the aforementioned fact that the rotational
rate of Venus is much slower than that of either Mars or Earth.

The final observation is that for the eastward flight on both Earth and Mars, the analytical approximation
always overestimates the error. For flight about a non-rotating planet, the error fluctuates between over- and
underestimate, and the westward flight is underestimated for all but the most steep entries. For Venus these
statements are not true. For Venus the aerodynamic load factor is always underestimated, and the status of
the heat flux error depends on the velocity with which the entry occurred.
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8
Optimal Trajectories

This chapter deals with answering the first research question, by describing, in general, the optimal trajectory
for an aerocapture mission. The optimality of the trajectory depends on what is hoped to be achieved with
the trajectory. The optimal trajectory discussed here is optimal for an apoapsis-targeting aerocapture. Thus
far in the research three aspects have been considered, the ∆Vtot al , which is the culmination of the periapsis
and apoapsis alerting ∆V manoeuvres, the value of the peak g-load, and the peak heat load.

In Section 8.1 the theoretically optimal trajectory for ∆V minimisation for a planar aerocapture is pre-
sented, based on the work by Lu et al. (2015). Following this, in Section 8.2, the optimal trajectory for load
factor and heat flux minimisation, based on the work by Zucchelli (2016) is discussed. The hypothesis by Zuc-
chelli (2016) was numerically evaluated, and the results of this analysis are discussed in Section 8.3. Lastly, in
Section 8.4 the relatively simple bank angle guidance laws that were formulated based on the drawn conclu-
sions from the previous three sections are discussed.

8.1. Minimum∆V Trajectory
The proof for a minimum ∆V trajectory for aerocapture was developed by Lu et al. (2015). In this proof the
central body was considered non-rotating, the flight planar, and the gravity modelled by a central gravity field
model. These assumptions lead to equations of motion nearly identical to those provided in Eqs. (3.32), (3.33)
and (3.35). The only difference is in the expression for the flight-path angle, in which the bank angleσ is taken
into account as a variable. The equation for the rate-of-change of the flight-path angle as used by Lu et al.
(2015) then becomes

V
dγ

d t
= L cosσ

m
− g cosγ

(
1− V 2

V 2
c

)
(8.1)

where σ is the bank angle. The bank angle is bound according to 0 ≤σmin ≤σ≤σmax ≤π.
Two further assumptions are made before the derivation starts. The first assumption is that the perfor-

mance index and the constraints on the terminal conditions depend solely on a subset of the terminal vehicle
state variables, specifically the longitudinal motion variables r , V , and γ. This subset is referred to by Lu et al.
(2015) as xlon = (r,V ,γ)T . Comparing this to the vehicle state given in spherical components in Eq. (3.13),
one can see that this is indeed a subset of the full vehicle state, ignoring the variables latitude, longitude, and
heading that describe position and lateral motion.

The second assumption is that the bank angle is the only trajectory control variable. The angle of attack
is a function of velocity and radial position, and the angle of sideslip is ignored as part of the planar flight
assumption. This conveniently matches the assumptions made regarding the angle of attack and sideslip in
this research.

It is worth noting that this problem describes a class of aerocapture problems with only in-plane targeting
conditions. Any problem with out-of-plane manoeuvres, such as plane changes or landing footprints in entry
flight, are not optimised using this method. In these cases the performance index also depends on the lateral
motion of the vehicle and its position for position targeting. As these cases are not considered in this research,
thThese out-of-plane cases are ignored for this section.
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With de definition of xlon, the performance index of the optimal trajectory is described as J = xlon(t f ),
and the terminal constraints must satisfy s[xlon(t f )] = 0, where the dimension of s is k, where k ≤ 3. The
Hamiltonian for this optimisation problem can be written as

H =λT ẋlon =λr V sinγ+λV

(
− D

m
− µ

r 2 sinγ

)
+λγ 1

V

[
L cosσ

m
− µ

r 2 cosγ

(
1− V 2

V 2
c

)]
(8.2)

Lu et al. (2015) continue by using Pontryagin’s Maximum Principle to obtain an expression for the optimal
bank angle σ∗, for which the Hamiltonian H is maximised. According to Pontryagin’s Maximum Principle the
derivatives of the costate variables λv , λr , and λγ are

λ̇r =−δH

δr
=λV

(
1

m

δD

δr
− 2µsinγ

r 3

)
−λγ δγ̇

δr
(8.3)

λ̇V =−δH

δV
=−λr sinγ+ λV

m

δD

δr
−λγ δγ̇

δV
(8.4)

λ̇γ =−δH

δγ
=−λr V cosγ+λV

µcosγ

r 2 −λγ δγ̇
δγ

(8.5)

respectively. The expression for the optimal bank angle for which the Hamiltonian is maximised at any
point in time is

σ∗ = argmax
σmin≤σ≤σmax

(
H(σ)

)
(8.6)

Because cosσ is monotonic (meaning it either never decreases, or never increases) for σ ∈ [σmin,σmax] ⊂
[0,π] and L/V > 0, the value of the optimal bank angle will be


σ∗ =σmin ifλγ > 0;

σ∗ =σmax ifλγ < 0;

σ∗ ∈ [σmin,σmax] ifλγ ≡ 0;

(8.7)

These three cases show that the optimal bank angle differs from its extreme values only if λγ ≡ 0.
Lu et al. (2015) uses a proof by contradiction to show that this case is not possible in any of the aeroassist

problems defined by the assumptions made in this section. For λγ to be constant and zero, both it, and its
derivative need to be zero, or λγ = λ̇γ = 0. By substituting these two equalities in Eq. (8.5) we obtain

λV
µcosγ

r 2 −λr V cosγ=λV
µ

r 2 −λr V = 0 (8.8)

Note that this only holds in the case cosγ 6= 0, which is true for all points in a skipping trajectory between
entry and exit, except for the deepest point of the atmospheric flight.

As this problem is a free time problem (no terminal time is imposed, thus t f is free), the transversality
condition H ≡ 0 must hold along the entire trajectory, according to Pontryagin’s Maximum Principe. With
λγ = 0, the expression for the Hamiltonian (rewritten slightly for convenience) becomes

H =λr V sinγ−λV
D

m
−λV

µ

r 2 sinγ≡ 0 (8.9)

For both Eq. (8.8) and Eq. (8.9) to be valid, it is required that λV = 0, as D > 0. However, this results in λr = 0,
and that thus all costate variables are zero. This contradicts Pontyagin’s Maximum Principe, which states that
the costate vector λ 6= 0. It is thus concluded that this third case for the value of the optimal bank angle is
invalid for any point on the trajectory where cosγ 6= 0. Therefore, the optimal trajectory for any flight with a
free final time and only imposed constrains and objectives at the terminal state is a bang-bang style.

It is reiterated that this proof is for the simplified case of a non-rotating central body considering only
planar flight and assuming a central gravity field. However, as already discussed in Chapter 7, the assumption
of a central gravity field has a negligible impact on the trajectory. Additionally, the assumption of planar flight
can be adhered to by stating σmin = 0 and σmax =π.
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8.2. Minimum Peak Load Factor and Heat Flux Trajectory
Normally, the constraints imposed on a trajectory are not minimised. As long as the constraints are respected,
their actual value is not of importance. However, by finding the optimal trajectories for which the constraints
are minimised, the limit values for the initial conditions can be found. No trajectory that starts with initial
conditions beyond this boundary can be flown without violating the requirements. For these trajectories
either a pre-entry ∆V manoeuvre needs to be executed to change the initial conditions, or the constrains will
be violated.

Zucchelli (2016) presents a derivation for aerocapture trajectories that minimises both the peak load fac-
tor and the peak convective heat rate. For the minimisation of the peak load factor, a control history u(t ) is
attempted to be found such that

min
u(t )

[
max

t
(q∞)

]
(8.10)

In this equation, instead of finding a control history that minimises the peak load factor, it is attempted to
minimise the dynamic pressure. For a vehicle with approximately constant L/D, the load factor is propor-
tional to the dynamic pressure according to

n = L2 +D2

mg0
= C 2

L +C 2
D

mg0
q∞Sref (8.11)

Similarly, for the minimisation of the peak heat flux, instead of taking the full equation, the proportionality to
the density and velocity is used to obtain

min
u(t )

[
max

t

(
ρb
∞V M )

f (V )
]

(8.12)

Zucchelli (2016) goes on by stating that parts of his proof is supported by numerical methods, and can
therefore not be generalised. The derivation of this proof consists of the following four steps:

1. Prove that the ascending leg can be neglected when regarding peak values of the constraints.

2. Show that the lift-up lift-down bang-bang trajectory, or saturated lift-up trajectory leads to the least
negative flight-path angles during the entire descending leg.

3. Prove that having the least negative flight-path angles leads to smaller future dynamic pressure (load
factor) and heat flux.

4. Prove that having the least negative flight-path angles minimises the the peak dynamic pressure (load
factor) and heat flux.

Only in the proof of the second step does Zucchelli (2016) make use of numerical methods.
The first step can be proved easily by considering the altitude-density profile of at atmosphere, such as

presented in Section 3.6.2, and the relation between total, kinematic, and potential energy. During the as-
cending leg the altitude increases, resulting in decreasing density. Furthermore, both due to aerodynamic
drag and energy exchange between kinematic and potential energy, the velocity of the vehicle decreases. As
a result, both the dynamic pressure and the proportionality of the heat flux decreases. Additionally, consult-
ing the tables for the heating function f in Section 3.6.4, it can be seen that the value of f also decreases as
velocity decreases. Therefore, the peak value for the load factor and heat flux must occur somewhere during
the downwards leg.

The second step is proven numerically by Zucchelli (2016) by simulating saturated (Full lift-up, or full lift-
down), lift-up lift-down bang-bang, and lift-down lift-up bang-bang trajectories for a wide variety of initial
conditions and showing the dynamic pressure as a function of the flight conditions. From this it is concluded
that for any flight starting from a particular initial condition the lift-up lift-down bang bang trajectory (or,
where possible, the saturated lift-up trajectory) has a least negative flight-path angle over the entire flight.

One additional note that is not made by Zucchelli (2016), but is an important factor for this proof is the
notion that, because the flight-path angle is always the least negative for lift-up lift-down bang bang or sat-
urated lift-up trajectories, they reach the deepest point in the trajectory where γ = 0 at least as quick, but
generally quicker, than their lift-down lift-up bang bang or saturated lift-down trajectory equivalent. This
means that the downward leg for lift-up trajectories has the shorted flight-time possible.
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Figure 8.1: Evolution of the optimal ∆Vtotal and the corresponding initial bank angle and switch time.

The third point is proven by Lu (2014), where it is shown that a shallower (less negative) flight-path angles
imply smaller derivatives of both dynamic pressure and heat flux. By flying lift-up lift-down bang bang or
saturated lift-up trajectories, the flight-path is always the least negative, and the derivatives of the dynamic
pressure and the heat flux are kept minimal. This, combined with the fact that the flight-time for the down-
wards leg, where the peak value must occur, is shorter for lift-up trajectories, results in conclusion that indeed
the peak value for the dynamic pressure, and thus the heat flux is lower for lift-up trajectories than it is for
lift-down trajectories.

Zucchelli (2016) compared lift-up lift-down bang bang and lift-down lift-up bang bang trajectories for
initial conditions where both types of trajectories could be used to reach the target apoapsis. One additional
conclusion that can be drawn from his analysis is that, for any initial condition, the trajectory where the load
factor and the heat flux are the lowest is a trajectory where the lift is kept full-lift up until the deepest point in

the trajectory, γ= 0°. From this point onwards the bank angle can be set to any value that respects δγ
δt ≥ 0 with-

out the requirements being violated (Even lift-down, which is required to keep γ = 0° if the velocity is larger

than the local circular velocity). The situation where the bank angle is set such that δγ
δt = 0 is also referred to

as equilibrium glide. If horizontal equilibrium glide is sustained, the velocity will eventually be low enough

such that δγ
δt < 0, even with lift-up. When this occurs, it is expected that sufficient energy has been dissipated

such that the peak values of the new descending leg never surpass those of the initial descending leg, as long
as the lift is kept lift-up. This however should be investigated case-by-case and is not a generalisation.

8.3. Numerical Verification
In the previous sections proofs have been provided that for simplified cases the optimal trajectory to min-
imise ∆V and the peak values is lift-up, lift-down bang-bang. However, as this was for simplified cases, it
was verified how well these proofs matched with the result of the optimisation of trajectories simulated using
more accurate environmental models, and, most significantly, rotating planets. As the results obtained for
the various planets and vehicle all featured comparable behaviour, only the Earth-CRM case will be shown
and discussed in this section.

The optimisation was done by using the PaGMO library included in Tudat. Specifically, the NSGA2 multi-
objective optimisation method was used.. The initial velocities and flight-path angles were spaced out in a
grid, with the velocities ranging from 4.0 kms−1 to 17.0 kms−1 with steps of 3.25 kms−1, and the flight-paths
ranging from -3.0° to -16.0° with steps of -3.25°. Additionally, the optimisation was also performed for the
nominal initial conditions as described previous, as these were not included on this grid.

For each of the initial conditions the optimisation was performed 5 times, with a population size of 258
for 128 generations. Only the results for the nominal initial condition will be shown here, as the conclusions
drawn from these figures are the same for all the initial conditions tested. In Fig. 8.1 and Fig. 8.2 the evolution
of the optimal trajectories in terms of δVtot al , and ∆V2, respectively, are depicted.

It can be seen that the optimal trajectories converge to a full lift-up, full lift-down bang bang trajectory. In
Fig. 8.2 one of the five iterations resulted in a slight outlier that has a non-zero initial bank angle, a delayed
switch time, and a ∆V2 that is an order of magnitude larger than the rest. However, the order of magnitude
of ∆V2 in this case is O (10−3) instead of O (10−4), resulting in a negligible absolute difference. In Table 8.1
the values for ∆Vtot al , ∆V1, ∆V2, and their corresponding initial bank angle and switch time are tabulated.
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Figure 8.2: Evolution of the optimal ∆V2 and the corresponding initial bank angle and switch time.

Table 8.1: Values for ∆Vtot al , ∆V1, ∆V2, (ares/g0)peak, and qpeak and their corresponding initial bank angle and switch time as obtained
from the PaGMO optimisation, trajectory optimisation, and full lift-up flight.

PaGMO Optimised Full lift-up
Value σ∗ [°] t∗s [s] Value σ∗ [°] t∗s [s] Value σ∗ [°] t∗s [s]

∆Vtotal [ms−1] 123.1463 0.0232 92.7351 123.1456 0 92.5871 - 0 ∞
∆V2 [ms−1] -0.0001 0.0232 92.7351 -0.00001 0 92.5871 - 0 ∞
(ares/g0)peak [-] 8.2830 179.8720 0.7194 8.2829 0 92.5871 8.2829 0 ∞
qpeak [MWm−2] 12.5155 179.9927 4.3191 12.5153 0 92.5871 12.5153 0 ∞

Additionally, the values obtained from a different method of trajectory optimisation, as will be discussed
later, are also shown for comparison. From the data in this table it can be concluded that optimal trajectories
to minimise ∆Vtotal and ∆V2 are the same. This result will be used later for the general optimisation.

Fig. 8.3 and Fig. 8.4 show the evolution of the peak load factor and peak heat flux, respectively. In these
figures three types of resultant optimal trajectories can be seen developing. The first style is a trajectory that
starts with a bank angle of 0° and and switches sometime after 100s. At this time, the vehicle is already in on
the ascending leg in the upper atmosphere about the leave the atmosphere. Effectively, the vehicle performs
full lift-up flight. The second and third type of trajectory are physically the same. These types of trajectories
start with bank angles of ±180° (lift-down), and switch almost immediately into the flight to lift-up, before
the vehicle has significantly penetrated the atmosphere. Again, this type of trajectory is effectively a full lift-
up flight. These results match what was expected from the previous analysis. In Table 8.1 the values for
the optimal (ares/g0)peak, qpeak, and their corresponding σ0 and switch time are tabulated, together with the
results from a full full-lift up trajectory for comparison.

From the data in this table two observations can be made. The first observation is that, even in optimal
flight, the trajectory for the nominal initial conditions depicted here violate the requirements, specifically the
peak heat flux of 7.95 MWm−2. Therefore, it is not possible to design an optimal trajectory for the nominal
case without a pre-entry ∆V . The second observation is that the values for the peak load factor and peak
heat load are the same for both the full lift-up and the optimised trajectory. This is because the switch from
lift-up to lift-down occurs on the ascending leg, after the peak values have been reached. The time after entry
when the peak values occurred, together with the switch time and time of deepest penetration are tabulated
in Table 8.2.

In this table it can be seen that indeed the values for the peak loads occur on the descending leg. This is
a trait shared by all the skip trajectories, and confirms the statement made by Zucchelli (2016). Additionally,
it was noted that the peak heat flux always either preceded or coincided with the peak load factor. For high
velocity, shallow entries that failed to capture the two points would coincide, otherwise peak heat precedes.

Table 8.2: Values for the various interesting times during the trajectory obtained from the optimised trajectory.

Switch time Deepest point Peak Heat Flux Peak Load Factor
Time after entry [s] 92.5871 92.0750 62.4750 72.8750



98 8. Optimal Trajectories

0 50 100 150

Generation

8.279

8.28

8.281

8.282

8.283

8.284

8.285

8.286

P
ea

k 
Lo

ad
 F

ac
to

r 
[-

]

0 50 100 150

Generation

-200

0

200

In
iti

al
 b

an
k 

an
gl

e 
[°

]

0 50 100 150

Generation

0

100

200

S
w

itc
h 

tim
e 

[s
]

Figure 8.3: Evolution of the optimal peak load factor and the corresponding initial bank angle and switch time.
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Figure 8.4: Evolution of the optimal peak heat flux and the corresponding initial bank angle and switch time.

8.4. Intermezzo: Bank Angle Laws
As in the previous section and the upcoming chapters trajectories simulated using bank angle control are
presented, briefly the laws used to control the bank angle and their implementation will be discussed. Only
two relatively simple laws are used throughout this research. The first law is a switch-bank law, and the second
law is an equilibrium glide law. For both these laws perfect navigation, guidance, and control are assumed.

8.4.1. Switch-Bank Law
The switch bank law is the simpler of the two laws. This law simply keeps track of the time since atmospheric
entry, and switches the bank angle from lift-up (0°) to lift-down (180°) when the time exceeds the specified
switch time.

To properly implement this guidance law, and to ensure that the switch occurs exactly on the specified
time, the switch time initial acts as a terminal condition for the numerical simulator. If this time is exceeded,
the simulation stops and returns the state history. From this state history the epoch from the second to last
state (the state that did not yet exceed the switch time) is considered. It is determined what the initial step
size required to go exactly from the epoch of this state to the switch epoch is. If this step size falls within the
boundaries of the minimal and maximal allowed step sizes, the simulation is restarted using the second to
last state as the initial conditions, and the determined step size as the initial step size, resulting in the next
epoch coinciding exactly with the switch epoch.

If the time-step required is smaller than the minimal allowed step size, the third to last state is considered.
As the step size between the second to last and third to last states will always larger than the minimal allowed
step size, the third to last state can be used as the new initial conditions without any further check. In this
case the third to last state is used as the initial conditions, and the simulation is restarted.

8.4.2. Equilibrium Glide Law
Equilibrium glide is a flight condition where the flight-path angle does not change. This means that there
is a balance between the effects on the flight-path angle due to the aerodynamic lift, gravitational forces,
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Figure 8.5: Altitude and bank angle profiles for the two versions of the equilibrium glide law.

centrifugal, Coriolis forces, and central body shape. Equilibrium glide can be used to keep the vehicle on a
horizontal trajectory for a prolonged period of time.

An expression for the bank angle required to maintain a specific rate-of-change can be obtained by rewrit-
ing Eq. (3.33). By including the rate-of-change of the flight-path angle, any errors between the current and
desired flight-path angle can be removed. For equilibrium glide, the rate-of-change of the flight-path angle
would be set to zero. The approximate expression for the bank angle as a function of the flight-path angle
rate-of-change where the apparent forces are omitted is:

cosσcmd = 2m

ρV 2SCL

g −V 2

r
cosγ+V

δγ

δt
(8.13)

There are three possibilities when this equation is evaluated. cosσ can exceed 1, be below -1, or have a
value somewhere in between. In the case that cosσ > 1, more lift than is available is required to maintain
the desired rate-of-change. In this case the commanded bank angle would be 0°, full lift-up. Similarly, if
cosσ<−1, more lift, but now pointed downward, is required to maintain the desired rate-of-change. in this
case the commanded bank angle is 180°. The last case, where−1 <= cosσ<= 1, the bank angle is commanded
a value between 0 <=σcmd <=π.

One consideration with this law is that it sets out-of-plane bank angles, resulting in out-of-plane motion.
To control the wedge angle an additional law is added. At every call to the guidance interface, the current
inclination is determined from the vehicle state. If the wedge angle between this inclination and the desired
inclination exceeds the constraint, a bank reversal is performed.

A bank reversal is the action of mirroring the bank angle about the vertical axis, implemented by control-
ling the sign of the bank angle. However, after a bank reversal, the wedge angle will likely not fall immediately
within the tolerance on the next call. Therefore a grace-period is implemented in which the bank angle can-
not be reverse again, even if the wedge angle continues to exceed the tolerance.

A modification made to the general equilibrium guidance law is to only being flying equilibrium glide
after horizontal flight has been achieved by full lift-up flight. This modification ensures that the peak heat
flux and load factor values experienced during the descending trajectory are minimised. Additionally, instead

of maintaining equilibrium glide until δγ
δt < 0 with full lift-up, the lift can be switched to lift-up prematurely,

resulting in the vehicle being able to skip out of the atmosphere. In Fig. 8.5 the bank angle and altitude
profiles for both versions of the equilibrium glide law is shown for a nominal Earth-CRM entry. For the lift-up
equilibrium glide lift-up profile the time to switch back to lift up was chosen such that the target apoapsis
was reached after atmospheric exit.

An example of the application for the first type of guidance law would be for a direct entry that results in
touch- or splashdown. In the current formulation however, there is no control over the landing site. Adding
control of the landing site and optimising the direct-entry trajectory is left for future research. While the
optimisation is left for future research, in Chapter 10, the entry corridors for this type of trajectory (full-lift up
until horizontal flight, followed by endured horizontal flight until touch-/splashdown) are developed. While
in this chapter these corridors are given the name direct-entry entry corridor, they also provide insight into
the entry corridor for altitude-targeting aerocapture, as will be discussed when relevant. Additionally, the
flight-envelopes that ensure save entry into the atmosphere for direct entry are also provided in this chapter.

An example for the application of the second guidance law would be when attempting aerocapture with
the desired to perform a plane-change. During the gilding phase instead of using bank-reversals, one could
use the out-of-plane bank angle to to control, for instance, the inclination. As can be seen from the example,
the duration of the glide phase before switching back to full lift-up is brief, allowing only limited out-of-
plane adjustments. Whether this or another method of out-of-plane manoeuvring is optimal is left for future
research.
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9
Grid Search

With the knowledge established that for planar motion the full lift-up trajectory results in the lowest possible
value for the peak load factor and the peak heat flux, and that a lift-up lift-down bang bang trajectory is
optimal for obtaining the minimal ∆V trajectory, these two types of trajectories were further investigated.
With this investigation it was attempted to determine how the peak loads and the characteristics altitudes
responded to changes in the initial conditions and changes in the switch time.

In Section 9.1 the initial conditions are varied over a wide range of values to gather insight into the effect
the initial conditions have on the apoapsis, penetration depth, and loads induced on the vehicle. In this
section only the impact of varying the initial conditions is regarded. In the next chapter the data obtained
from this section and the conclusions drawn are used to develop the entry corridors, and the effect of varying
the vehicle configuration on the entry corridor is considered. In Section 9.2 the switch time is varied to gather
insight in the effect of the switch time on the required ∆V and peak loads.

9.1. Initial Condition Variations
By determining the impact on varying the initial condition has on the trajectory, a suggestion for the opti-
mal ∆V manoeuvre required to salvage an otherwise impossible trajectory can be made. For instance, the
nominal entry condition optimised in the previous section resulted in violated constraints. For this entry a
pre-entry ∆V is required modify the initial conditions to lower the peak heat flux to an acceptable values.

From the results presented in this section, it can be concluded that a combination of both velocity and
flight-path change would have the best effect. This analysis is restricted to a purely qualitative evaluation,
as for a quantitative solution a optimisation problem would need to be solved for every case individually. By
formulating the quantitative optimal manoeuvre, the number of control variables for the subsequent optimi-
sation problem can be reduced.

Additionally, the insight gained by this process can be applied when establishing the extreme initial con-
ditions for which optimal flight is possible.

As the simulations performed on Earth, Mars, and Venus, with both the CRM and SRM vehicles all showed
the same behaviour, the discussion in this chapter will primarily focus on the Earth-CRM case. For the other
5 cases no figures are presented as they provided no additional insight.

The figures, for example Fig. 9.1 have the following layout. In the top left a 3-dimensional surface is shown
providing a complete overview of the behaviour of the considered metric to changes in the initial condi-
tions. In the top right and bottom right, two projections are shown that isolate the behaviour of the metric to
changes in velocity and flight-path angle, respectively. The last graph, in the bottom left shows the top-down
contour of the surface plot to complete the set of projections.

9.1.1. Apoapsis
In Fig. 9.1 the values for the apoapsis altitude (the altitude of the apoapsis above the surface of the central
body) is shown. Note that the apoapsis altitude is given as a fraction of the volumetric radius of the central
body, in this case Earth. This is a much larger skip than is desired for this research. However evaluating
such a large range of apoapses reveals more information regarding the impact of the initial conditions on the
apoapsis altitude.
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Figure 9.1: Apoapsis altitude from lift-up flight based on varying initial conditions for Earth-CRM. The red arrows indicate the direction
of the third variable.

It can be seen that for a wide range of initial conditions no value for the apoapsis altitude is provided.
In these cases the vehicle either never skips out of the atmosphere, even with a full lift-up flight, or skips out
further than one Earth radius. Only a thin region is available where the apoapsis falls between barely skipping
out of the atmosphere, and skipping out further than the radius of the Earth. From this it can be concluded
that the apoapsis altitude is highly sensitive to the initial conditions.

From the projections for velocity and flight-path angle dependency, this conclusion is corroborated. Fur-
thermore, the sensitivity to velocity seems to be coupled to the flight-path angle, as the slope of the curves in
the top right projection decrease as the flight-path angle decreases (becomes steeper). Conversely, the sensi-
tivity to the flight-path angle seems to be decoupled from the velocity, as no significant change to their shape
can be discerned due to increased velocity.

In both cases it can be observed that the apoapsis starts increasing gradually, but suddenly increases its
slope significantly. Because of this behaviour, a trajectory that overshoots the target is more likely to sig-
nificantly overshoot, resulting in a large required ∆V manoeuvre to salvage the trajectory using a post-exit
∆V. However, due the high sensitivity, a much smaller pre-entry ∆V could be used to significantly reduce the
apoapsis altitude.

For example consider the third line in the top-right corner ranging from approximately 10 kms−1 to 11
kms−1. The pre-entry ∆V manoeuvre to decrease the velocity (disregarding the change in flight-path angle)
will be approximately 1 kms−1, while the post-exit ∆V to bring down the apoapsis from 2 Earth volumetric
radii (2×6371.0 km) to 500 km above the surface (6871.0 km) will be significantly larger. While this will be
discussed further in Chapter 11, it can thus already be concluded that for trajectories that overshoot the
target, a pre-entry ∆V manoeuvre will be most effective. Additionally, as the apoapsis altitude is comparably
sensitive to both the flight-path angle and velocity, this ∆V manoeuvre is likely a simultaneous change to the
initial flight-path and the velocity.

9.1.2. Altitude of Transition Descending to Ascending Leg
In Fig. 9.2 the values for the altitude at which the flight transitions from descending to ascending are shown.
This is different from the deepest point in the atmosphere as, technically, the deepest point in the atmosphere
for a vehicle that does not exit the atmosphere is 0 m. Sticking to this definition would result in a similarly
thin graph as for the apoapsis altitude. To obtain more usable data, it was decided to record the altitude at
which the flight-path angle transitioned from negative to positive instead, even if it would transition back
to negative later in the flight. For trajectories that skip out of the atmosphere this metric is the same as the
penetration depth.

It is interesting to note that a pseudo-minimum altitude exists where the transition from descending to
ascending occurs, if it occurs at all, that is relatively constant for the range of initial conditions tested. As can
be seen most clearly in the altitude-velocity projection, the data for an initial velocity of 3 kms−1 is missing,
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Figure 9.2: Transition altitude from lift-up flight based on varying initial conditions for Earth-CRM. The red arrows indicate the direction
of the third variable.

this is because at this velocity the altitude never made the desired transition. The transition altitude primarily
depends on the initial flight-path angle, but, especially for the shallower entries, also on the initial velocity.

Lastly, it can be seen that for a combinations of shallow and high velocity entry the vehicle barely enters
the atmosphere. This means that barely any aerodynamic forces are generated, and that the trajectory is
mostly unperturbed. If the velocity prior to entry was in excess of the escape velocity, this would result in a
hyperbolic skip out. If prior to entry the vehicle was already on a closed orbit, the effect would be similar to
that of aerobraking, where over time, through repeated passes through the atmosphere, the orbit would decay.
The effect this has on the peak load factor and peak heat flux will be discussed in their relevant sections.

9.1.3. Load Factor
In Fig. 9.3 the values for the peak load factor are shown. In this graph the values of the constraint imposed
on the load factor is shown as a red plane for the 3-dimensional graph, and as red lines in the three pro-
jections. It can immediately be seen that a portion of the initial conditions result in trajectories where this
constraint is violated. As the full lift-up trajectory was proven to lead to the lowest value for the load factor, it
can be concluded that these initial conditions result in trajectories that cannot be flown without violating the
constraints, unless a pre-entry ∆V manoeuvre is conducted.

The fact that the lowest values for the load factor are encountered for shallow high velocity entries is
not surprising. These types of entry only pass through the upper layers of the atmosphere, as discussed
previously, where there is insufficient density to produce significant aerodynamic forces.

The load factor is sensitive to both velocity and flight-path angle, and the sensitivities are coupled. The
faster the entry, the more sensitive the load factor is to the steepness of the entry, and the stepper the entry,
the more sensitive the load factor is to the initial velocity.

The red curve in the bottom right graph, indicating the constraint value, appears to approach an asymp-
tote at exceedingly high velocities. In reality the line continues to climb, requiring shallower initial flight-
paths for faster entries.

Contrary to the overshoot case, trajectories that violate this constraint cannot be salvaged using a post-
exit ∆V manoeuvre, as this will not change the fact that the constraint has been violated. A pre-entry ∆V
manoeuvre is required! Considering the shape of the boundary as depicted in the lower-left graph, whether a
change in initial velocity, flight-path angle, or both is optimal depends on the initial conditions. However, as
the load factor in the Earth-CRM case spans almost the entire tested velocity range at near constant critical
flight-path angle, in this case a change in the initial flight-path angle would be suggested.

9.1.4. Heat Load
In Fig. 9.4 the values for the peak heat flux are shown. Again the values for the constraints are shown in the
figure. Comparing the boundaries in the bottom left graph of this figure and Fig. 9.3, it can be determined
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Figure 9.3: Values for the peak load factor from lift-up flight based on varying initial conditions for Earth-CRM. The red arrows indicate
the direction of the third variable.
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Figure 9.4: Values for the peak heat flux from lift-up flight based on varying initial conditions for Earth-CRM. The red arrows indicate the
direction of the third variable.

that for the lower velocities the steepest allowable entry is driven by the peak load factor, whereas for the
higher velocities the peak heat load becomes driving.

Similar to the previous case, the lowest values of the peak heat flux are encountered for high velocity
shallow entries. While hard to see, this effect can be spotted both on the 3-dimensional surface graph and the
heat flux-velocity projection.

The behaviour of the peak heat load is quite strange, as it initially increases slowly, and than suddenly in-
creases exponentially. In the case of the velocity this can be explained by considering the aerothermal heating
model for the radiative heat flux discussed in Section 3.6.4. The radiative heat flux is only considered for at-
mospheric flight with a velocity above 9 kms−1. Viewing the top right graph, showing the velocity projection,
it can be seen that indeed the sudden increase in peak heat flux occurs for velocities in excess of this 9 kms−1.

The sudden, nearly exponential increase due to variations in the flight-path angle at these higher veloc-
ities can be explained by considering the atmosphere model discussed in Section 3.6.2, and the impact of
the flight-path angle on the penetration depth as can be seen in Fig. 9.2. The density in the atmosphere
decreases exponentially as the altitude increases. Therefore, the density increases exponentially too as the
altitude decreases. As an increase flight-path angle causes deeper penetration, deeper penetration meaning
exponentially higher values for the density, and the heat flux being proportional to the density to some power,
explains the exponential behaviour of the heat flux to the increasing flight-path angle at higher velocities.

Similar to the case of the apoapsis altitude, the load factor initial increases gradually, but significantly in-
creases its slope as either the initial velocity or flight-path angle increase. Similar to the load factor case, a
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Figure 9.5: Result of the switch time grid search performed for the nominal Earth-CRM case using a wide range of switch times and
moderately large step size.

pre-entry ∆V manoeuvre is required when this constraint is violated. Again, dependent on the initial condi-
tions, a change in initial velocity, flight-path angle, or a combination of both can be optimal.

9.2. Switch Time
By investigating the effect of varying the switch time, it is attempted to gain more insight in how the peak
values and the terminal conditions react to variations in the time at which the bang-bang manoeuvre is ex-
ecuted. With this insight a more efficient method for optimising the trajectory can be devised. This insight
was used to develop the optimisation algorithm that is discussed in Chapter 11. Fig. 9.5 depicts the results
for the grid search performed for the nominal Earth-CRM case. This figure graphs the values for ∆Vtotal, ∆V1,
∆V2, peak heat flux, and peak load factor as functions of the switch time. A switch time of 0s means that the
flight is entirely lift-down, and as the switch time increases, the switch from lift-up to lift-down is delayed.
For the first grid search, the switch time was varied over a large range (0s-150s), with moderately large step
sizes (1s). The most useful observation that can be made from these graphs is that ∆V2 is monotonic. It only
decreases or stays the same, never increasing. For a short time till switch, the vehicle flies lift-down too long,
resulting in either an undershoot or failure to skip. An undershoot results in a positive ∆V2, and for a failure
to skip a positive ∆V2 is set artificially. This is required as for trajectories that do not skip out of the atmo-
sphere, but instead reach the surface, ∆V2 cannot be calculated, and a value for it has to be assumed. This is
the reason for the lack of data for ∆V before roughly 90s. If the switch occurs too late, the trajectory results in
an overshoot, requiring a negative ∆V2. This monotonic behaviour of ∆V2 is the key aspect considered when
optimising trajectories.

Another observation is that discontinuities are present in the graphs. These discontinuities are due to
transitions from one type of trajectory to another. The first type of trajectory is ever decreasing. This trajectory
is obtained by switching to lift-down early in the atmospheric flight. The second type of trajectory features
an increase in altitude but it does not skip out of the atmosphere. This trajectory is obtained by flying lift-up
for a longer time. The third type of trajectory is a skipping flight, which is obtained by delaying the switch to
lift-down even further. The transition from one type of trajectory to the next is marked by a discontinuity.

In the figures two discontinuities are present. The first discontinuity is caused by the transition from the
monotonic altitude decreasing trajectory to the in-atmosphere altitude increasing trajectory. This disconti-
nuity can be observed easiest in the graph showing the heat flux near the 60s mark. This discontinuity is not
marked by a sudden jump in heat flux values, but by an abrupt change in sensitivity to the switch time.

The second discontinuity is due to the transition from fully in-atmosphere flight to skipping flight. This
transition can most easily be observed for the load factor graph near the 90s mark. As the vehicle now achieves
atmospheric exit, it also marks the start for the graphs showing the ∆V values. The sudden decrease in the
load factor is the result of the vehicle no longer reaching the lower atmosphere, and eventually the surface,
where the aerodynamic forces are much greater than they are at approximately 40 km, which was found to
be the deepest point in the atmosphere for a skipping entry on Earth. As the vehicle no longer reaches these
low altitudes, and evidently the peak load factor was measured on this second descending leg, a sudden jump
occurs in the load factor.
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Figure 9.6: Result of the switch time grid search performed for the nominal Earth-CRM case using a narrow range of switch times and
small step size.

To get a better look at these discontinuities, and the point where ∆V2 = 0 and ∆Vtotal is minimised, the
range of considered switch times was narrowed to the range of 92.4s-92.7s, and the step size was decreased
to 0.0004s. The results of the narrowed grid search is presented in Fig. 9.6. In these graphs the discontinuity
effected by the transition to skipping flight can be seen more clearly in both the load factor and the heat
flux graphs, where it was not noticeable in the wide version of the latter. Additionally, this narrower view
reinforces the statement that this transition coincides with the start of calculateable values for ∆V. It can also
be observed that the switch time for which ∆V2 = 0 is the same as the time for which ∆Vtotal is minimised,
and that there indeed is a range of times for which∆V2 is positive, as this was not apparent form the wide grid
search.

By approximating the curve for∆V2 shown in Fig. 9.6 by a linear polynomial, the local sensitivity of∆V2 to
an error in the switch time can be estimated. Doing this results in a sensitivity of 581 ms−1s−1. Approximating
the optimal ∆Vtotal by 120 ms−1 and applying requirement GUID-01, the allowed ∆V2 is approximately 6
ms−1, resulting a tolerance in switch time of 10.4 ms. To meet requirement GUID-01 in this case, the guidance
algorithm has to be able to command the switch time within this tolerance. An approximation for tolerance
can be obtained for the other cases in a similar manner.

The general behaviour shown in Fig. 9.5 and Fig. 9.6 and the discussion of these figures is applicable to
both vehicles, and for flight about any of the three planets. Only the exact values change. Therefore, the other
cases will not be further discussed here as they provide no additional insight for the research.



10
Entry Corridor & Flight Envelope

This chapter deals with answering the second research questions by determining the limit initial conditions
for which aerocapture can be achieved. Based on the results from the two grid-search efforts presented in
the previous chapter, the boundaries encompassing the entry corridor for both altitude-targeting and direct
entry were defined. For altitude targeting, six boundaries were formulated, for direct entry, five.

In this chapter the entry corridors for both altitude-targeting and direct entry are presented. Altitude-
targeting is discussed in Section 10.1, and direct entry in Section 10.2. After this, in Section 10.3, the effect
of varying the vehicle configuration on the entry-corridor is discussed. As this effect is similar for both the
altitude-targeting and direct entry entry corridors, for both vehicles, on all planets, only the effect on the
Earth-CRM case is discussed in detail. In Section 10.4 a method is presented that allows for the definition of
the entry corridor at any altitude, based on the developed entry corridor at a particular altitude. In the last
section of this chapter, Section 10.5, the flight envelopes that designates the altitude-velocity space usable by
the vehicle to ensure safe entry into the atmosphere are presented. The application of these flight envelopes
is primarily for direct entry. After discussing the general flight envelope, the effect of varying the vehicle
configuration on the flight envelope is discussed.

10.1. Entry Corridor - Altitude Targeting
The entry corridor was in part already discussed in the previous section when the initial condition bound-
aries for the cases of peak load factor and peak heat flux were established. In this section several additional
boundaries are added, creating an fully encompassed entry corridor. In total four new boundaries are added,
all related to the terminal conditions of the trajectory.

The first new boundary is formed by the initial conditions for which the vehicle no longer leaves the atmo-
sphere when flying full lift-up, called the no skip-out boundary. Initial conditions exceeding this boundary
result in trajectories that never skip out of the atmosphere and require pre-entry ∆V manoeuvres to salvage
the trajectory.

The second new boundary is closely related to the first. This boundary is formed by the initial conditions
for which the vehicle undershoots the target, but still leaves the atmosphere when flying full lift-up. The
vehicle skips out of the atmosphere and is captured, but is not able to reach the desired target. This trajectory
requires either a pre-entry ∆V, or a post-exit ∆V to be salvaged.

The third new boundary is the opposite of the previous. This boundary is formed by the initial condi-
tions for which the vehicle overshoots the target when flying full lift-down, but is still captured after leaving
the atmosphere. Either a pre-entry ∆V, or a post-exit ∆V is required to salvage this trajectory. Alternatively,
aerobraking could be used as a low-propellant cost alternative.

The fourth and last new boundary is formed by the initial conditions for which the vehicle leaves the
atmosphere when flying full lift-down without being captured. Trajectories that exceed this boundary skip out
of the atmosphere with hyperbolic excess velocity and continue on a perturbed version of their heliocentric
trajectory. As the definition of aerocapture is to close the orbit by an atmospheric pass, initial conditions that
exceed this boundary fail to aerocapture. Therefore a pre-entry ∆V is required. While technically a post-exit
∆V could be used, this would result in a large propellant requirement, as will be discussed in Section 11.3

It should be noted that these four boundaries only regard the terminal conditions, and not the constraints
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Figure 10.1: Altitude-targeting entry corridor for the Earth-CRM case, flown with nominal vehicle configuration.

throughout the flight. If a set of initial conditions fall within the space dictated by these boundaries. it is not
automatically guaranteed that an optimal trajectory is possible. However, being outside of the space dictated
by the boundaries does guarantee that an optimal trajectory is impossible without a ∆V manoeuvre either
prior to entry, or post-exit.

To illustrate this, consider the point where a boundary flown full lift-up, such as "overshoot target", and a
boundary flown full lift-down, such as "heat flux constraint", intersect. At this point the trajectory has to be
flown full lift-up to not violate the requirements, but to avoid overshooting or skipping out with hyperbolic
excess velocity, the trajectory has to be flown lift-down. These two statements contradict each other, and
result in an impossible trajectory requirement.

10.1.1. CRM Entry Corridor
In Fig. 10.1 the entry corridor the Earth-CRM case is shown. In this figure the green area indicates the upper
bound for the entry corridor width. Just to reiterate, having initial conditions within this area does not guar-
antee an optimal trajectory is possible, however, initial conditions outside this area guarantee that an optimal
trajectory is impossible. This fact will be used later in the trajectory optimisation algorithm.

As already discovered previous, the nominal initial conditions for the Earth mission fall outside of the
entry corridor. The entry corridor indicates that the heat flux constraint will be violated, but no others. This
matches the conclusion drawn previously where it was possible to design a trajectory that reached the target,
therefore the target is not undershot or overshot, and the load factor was not violated, but the heat flux was.
From the sensitivity analysis it can be determined that the optimal strategy for salvaging this trajectory is
a pre-entry ∆V that primarily alters the flight-path angle. The exact ∆V required would be the subject of
separate optimisation scheme. This is an example how this upper bound can be used to evaluate the ability
to design an optimal trajectory.

Entry corridors were also produced for the Mars-CRM and Venus-CRM cases. These can be seen in
Fig. 10.2. In addition to the entry corridors, the bottom right graph shows the width of the individual en-
try corridors as a function of the initial velocity. This facilitates comparing the size of the entry corridors. By
showing all the graphs side by side with the same axis limits, one can easily compare the position and size of
the entry corridor within the initial condition space. The corridors for Earth and Venus are comparable both
in position and size. The Mars corridor is clearly larger, but required steeper entry to prevent overshooting
the target or skipping out without capturing.

For entry with low velocity, the flight-path angle boundaries are driven by the full lift-up undershoot and
the full lift-down overshoot boundaries. Only when the velocity increases, and thus the peak load factor and
heat flux increase, do the constraints imposed on the trajectory become driving. For the Earth-CRM case,
the load factor is never a driving constraint. As the velocity increases, the heat flux becomes the driving
constraint.

For Mars the opposite conclusion can be drawn. Here the peak heat flux never becomes a driving con-
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Figure 10.2: Comparison between the altitude-targeting entry corridors for all three planets, flown with nominal CRM vehicle configu-
ration.
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Figure 10.3: Nominal entry corridor for Earth-SRM case with nominal vehicle configuration.

straint, with the peak load factor dictating the maximum steepness of the entry. Venus shows a combination
of both. For the low velocities, the undershoot boundary is driving, which gets surpassed by the load factor
boundary as the velocity increase, which gets surpassed by the heat load as the velocity continues to increase.

This might be difficult to see in the bottom left graph in Fig. 10.2 depicting the entry corridor for Venus,
but it can also be concluded by noticing the discontinuity (kink) in entry corridor width shown in the bottom
right graph for Venus near 11 kms−1. This discontinuity indicates that a different curve is driving the entry
corridor width. As the upper bound is always dictated by the lift-down overshoot, this must mean that the
lower bound changed driving factors, thus that peak load factor is replaced by peak heat flux.

10.1.2. SRM Entry Corridor
In Fig. 10.3 the entry corridor the Earth-SRM case is shown. By comparing this figure to Fig. 10.1, it can imme-
diately be observed that the entry corridor for the SRM vehicle is larger than the corridor for the CRM vehicle.
This is primarily due to the smaller nose radius, resulting in lower heat flux, and more relaxed constraints
regarding the load factor compared to the CRM vehicle. This trait is not just observed when comparing the
CRM and SRM cases for Earth, but also for both Mars and Venus.

Unlike the Earth-CRM case, the initial conditions actually fall well within the entry corridor. Therefore it
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Figure 10.4: Comparison between the altitude-targeting entry corridors for all three planets, flown with nominal SRM vehicle configura-
tion.

is possible that it is possible to develop an optimal trajectory for this case. Another difference is that for the
SRM vehicle the peak load factor is driving a small number of initial velocities, before the heat flux becomes
the dominant lower boundary.

Similar the the CRM case, the entry corridors were also developed for Mars-SRM and Venus-SRM. These
are presented in Fig. 10.4. It can again be seen that the entry corridors for Earth and Venus are comparable in
position and size, and that the Mars entry corridor is significantly larger but requires steeper entry. From the
corridor width it can easily be concluded that the entry corridors for the SRM vehicle are much larger than
for the CRM vehicle.

Unlike the Mars-CRM case, for the Mars-SRM case, at the highest simulated velocities, the peak heat flux
becomes a driving constraint. This might be difficult to see in the top right graph in Fig. 10.4 depicting the
Mars entry corridor, but can be seen from the discontinuity on the Mars entry corridor width in the bottom
right graph.

The Venus-SRM case is similar to the Venus-CRM case in that first the undershoot boundary is dominant,
followed by the load factor boundary, followed by the heat flux boundary. The only difference is that the load
factor boundary is dominant for a larger range of velocities in the SRM case.

10.2. Entry Corridor - Direct Entry
The entry corridor for direct-entry is defined sightly different than the one used for altitude targeting. Namely,
the maximal skip-out altitude and parabolic skip boundaries are defined differently. Both of these boundaries
are determined by flying the vehicle lift-up until horizontal flight, and then switching to lift-down, compared
to the full lift-down trajectory used for altitude targeting. The entry corridors for the Earth-CRM and Earth-
SRM cases are shown in Figs. 10.5 and 10.6, respectively. Note that the no-skip out boundary is not considered
driving. This is because whether or not the vehicle skips out of the atmosphere is not important for direct-
entry.

By defining the upper limit trajectories as described, the space encompassed by the entry corridor guar-
antees that direct-entry is possible without skipping out excessively, and, more importantly, that optimal
altitude-targeting aerocapture is possible. A trajectory with initial conditions within these boundaries is guar-
anteed to be able to perform optimal aerocapture. However, in this case a region where aerocapture is poten-
tially possible, but not guaranteed possible, is excluded. Therefore the direct entry entry corridor presented
here can be considered a conservative, or guaranteed-safety, entry corridor, where the altitude-targeting en-
try corridor showed the entire possible region, with no guarantees. The direct entry entry corridors for the
other two planets are shown in Figs. 10.7 and 10.8 for the CRM and SRM vehicle, respectively.

The fact that initial conditions within this region are guaranteed to be able to perform aerocapture is at-
tempted to be illustrated with the following example. At the maximal skip-out and parabolic skip-out bound-
ary, the vehicle has both a descending and ascending leg, otherwise the vehicle would not leave the atmo-
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Figure 10.5: Range-targeting and guaranteed-safety altitude-targeting entry corridor for the Earth-CRM case, flown with nominal vehicle
configuration.

8 9 10 11 12 13 14 15 16

Velocity (kms -1)

-11

-9

-7

-5

-3

F
lig

ht
-P

at
h 

A
ng

le
 (

°)

Overshoot
Max Altitude Parabolic

Skip-out

No Skip-out

Load Factor
Constraint

Heat Flux
Constraint

Figure 10.6: Range-targeting and guaranteed-safety altitude-targeting entry corridor for the Earth-SRM case, flown with nominal vehicle
configuration.
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Figure 10.7: Range-targeting and guaranteed-safety altitude-targeting entry corridor for the CRM vehicle for al planets, flown with nom-
inal vehicle configuration
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Figure 10.8: Range-targeting and guaranteed-safety altitude-targeting entry corridor for the SRM vehicle for al planets, flown with nom-
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Figure 10.9: Combined entry corridor showing the region that guarantees that optimal aerocapture is possible, and the region for which
areocapture is potentially possible.

sphere. It was proven in Chapter 8 that the peak values occur on the descending leg. The entire descending
leg is flown lift-up, resulting in the optimal values for the peak load factor and the peak heat load. This means
that there no longer is a contradiction at the intersection between the upper parabolic and overshoot bound-
aries, and the lower peak load factor and heat flux boundaries.

The maximal skip-out altitude to be used for the direct entry was put at 500 km. This is roughly the
altitude where the Van Allen radiation belts start for Earth. The added benefit of defining the maximal skip-
out altitude like this, is that the entry corridors produced in this section are also valid for altitude-targeting.
Therefore the name direct entry entry corridor is not entirely correct, but it was used to distinguish between
the two types of corridor.

By combining the information from the altitude-targeting entry corridors presented in the previous sec-
tion and the direct entry entry corridors presented in this section, it can be determined for any initial state
whether aerocapture is impossible (outside altitude-targeting corridor), potentially possible, to be deter-
mined from optimisation scheme (inside altitude-targeting corridor but not inside direct entry entry cor-
ridor), or guaranteed possible (inside direct entry entry corridor). This is visually shown in Fig. 10.9, where
the altitude-targeting and direct entry entry corridors are overlain, and the regions for guaranteed and poten-
tially possible aerocapture are shaded green and yellow, respectively. Similar complete entry corridors were
obtained for the remaining five cases too, but these are not reproduced here.

10.3. Entry Corridor Variations
In the previous section the entry corridors for the nominal vehicle configurations were shown. In this section
the effect of varying the vehicle configuration on the entry corridor is investigated. The two aspects of the
vehicle configuration that are altered are the aerodynamic model and the vehicle mass. As the variation in
the vehicle configuration has the same effect for all six cases and for both altitude-targeting and direct entry,
at least in a qualitative manner, only the altitude-targeting Earth-CRM case will be shown in detail. For the
other cases, only the impact on the area bounded by the entry corridor is shown, as an indication of the effect
of the vehicle configuration change. The area bounded by the entry corridor is obtained by integrating the
area between the upper and lower bound. By comparing the rates of change of the areas, conclusions can be
drawn regarding the sensitivity of the entry corridor to the vehicle configuration.

10.3.1. Impact of Aerodynamic Variation
The first aspect of the vehicle model that was varied was the aerodynamic model. This model was altered
in two different manners. The first manner was to scale the lift coefficient up and down by 20%. As the
vehicle model discussed in Section 3.6.1 is a variable L/D model, this method retains the variable L/D nature
of this model. The effect of increasing and decreasing the lift coefficient on the entry corridor is illustrated in
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Figure 10.10: Altitude-targeting entry corridor for the Earth-CRM case, flown with lift variations of vehicle configuration. The red arrows
indicate the direction of increasing lift.

Fig. 10.10.
The result of increasing the lift-coefficient is an overall wider entry corridor. Because of the increased

lift coefficient, the vehicle during lift-up flight remains higher in the atmosphere, lowering the load factor
and heat flux, compared to a nominal flight with the same entry angle, thus allowing for steeper entry. As it
flies higher in the atmosphere, less aerodynamic forces, mainly drag, are produced compared to the nominal
situation, and thus less velocity is lost. The vehicle can therefore enter steeper and still manage to skip out and
reach the target. For lift-down flight, as the vehicle generates more lift "pulling" the vehicle down, a shallower
entry can be performed that still results in capture. Naturally, the effect of lowering the lift-coefficient is the
opposite.

The effect on this lift variation on the size of the entry corridor is shown in Fig. 10.12 for the CRM vehi-
cle, and on Fig. 10.14 for the SRM vehicle. The value for the entry corridor area in these figures have been
normalised with respect to the nominal area.

In addition to the effect scaling the lift-coefficient, the effect of varying the L/D ratio was also investi-
gated. By keeping the drag-coefficient dependency on the velocity as prescribed by the aerodynamic model
in Section 3.6.1, and making the corresponding lift-coefficient a multiplication of these values, a fixed L/D
profile is obtained. The L/D of the vehicle was varied from L/D = 0, ballistic entry, to L/D = 3. In addition,
the L/D ratios of 0.26 and 0.44 were also used. These values were chosen as they represent the minimum and
maximum L/D ratio of the variable L/D profile. The effect on the entry corridor area for the CRM and SRM
vehicles can be seen in Fig. 10.11 and Fig. 10.13, respectively

From these figures it can be observation that, as the L/D ratio increases, the entry corridor seems to be-
comes less sensitive to the increase in L/D. This is especially pronounced for the Mars cases. However, for
Mars, this is a misleading observation, as the sudden decrease in sensitivity is not due to an actual decrease
in sensitivity, but due to the range of initial conditions for which the entry corridor is produced. This range
imposes artificial boundaries on the entry corridor size that limit the maximal entry corridor area. As the
entry corridor for Mars is much closer to two of these boundaries (steepest flight-path angle and slowest ve-
locity), the entry corridor is not able to increase as much as the Venus and Earth case. For the Venus and
Earth cases, these limits are not reached even at L/D = 3, and it can thus be concluded that the sensitivity
to L/D decreases as L/D increases. It can thus be concluded that, increasing the L/D of a low L/D vehicle
has an overall positive effect on the size of the entry corridor, but that the effectiveness of increasing the L/D
decreases for vehicles with high L/D ratios.

10.3.2. Impact of Mass Variations
The second investigation was into the effect of the mass on the vehicle on the entry corridor. Similar to the
lift variation, the mass was varied by ±15%. The effect of the mass variation on the entry corridor for the
Earth-CRM case is shown in Fig. 10.15.
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Figure 10.11: Effect on the altitude-targeting entry corridor area due to variation of L/D
for the CRM vehicle.
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Figure 10.12: Effect on the
altitude-targeting entry corridor
area due to variations in the lift
for the CRM vehicle.
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Figure 10.13: Effect on the altitude-targeting entry corridor area due to variation of L/D
for the SRM vehicle.
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Figure 10.14: Effect on the
altitude-targeting entry corridor
area due to variations in the lift
for the SRM vehicle.
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Figure 10.16: Effect on the altitude-targeting entry corridor
area due to variations in the mass of the CRM vehicle.
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Figure 10.17: Effect on the altitude-targeting entry corridor
area due to variations in the mass of the SRM vehicle.

The mass variation affects the entry corridor much different than the lift variation did. The mass variation
causes more of a shift of the entry corridor instead of a widening. The no skip, undershoot, overshoot, and
parabolic skip boundaries all shift in the same direction, namely steeper entry possible (in case of the former
two) or required (in case of the latter two) as the mass increases.

The change in the peak heat flux has the largest impact on the size of the entry corridor area. For the
velocities relevant to the entry corridor, the peak heat flux increases compared to the nominal configuration.
After investigation this was found to be due to the lowered aerodynamic accelerations, resulting in the vehicle
reaching a lower point in the atmosphere with a higher velocity, relative to the nominal situation. As the
velocity increases, the effect of mass on the heat flux boundary disappears. At these high velocities, and the
flight-path angle indicated by the heat flux boundary, the trajectory does not penetrate deep enough due
to the high rate of change of the flight-path angle (see Eq. (3.33)), that the aerodynamic acceleration are
negligible, and this the effect of mass on these accelerations disappears.

The effect on this mass variation on the size of the entry corridor is shown in Fig. 10.16 for the CRM
vehicle, and on Fig. 10.17 for the SRM vehicle. The value for the entry corridor area in these figures have been
normalised with respect to the nominal area. Comparing the entry corridor ratios in these figures to those in
Fig. 10.12 and Fig. 10.14, it can be determined that the entry corridor is less sensitive to changes in mass than
to changes in lift. Additionally, the sensitivities for the individual planets seems to differ significantly more
than they did for lift. It can therefore be concluded that, to increase the entry corridor area, it is more efficient
to increase the lift while keeping the mass the same. Even if the mass of the vehicle had to increase, the total
effect on the entry corridor might still be positive, although the increase in mass is counter-productive to the
purpose of the aeromanoeuvre.

10.4. Intermezzo: Unperturbed Hyperbolic Trajectory
A downside of the entry corridors as discussed in the previous section is that they are only valid at a partic-
ular altitude, in this case at 125 km above the volumetric radius of the central body. This means that this
representation of the entry corridor, and the entry corridor width established by it, is only useful to a vehi-
cle at this particular altitude. While this representation is good for gaining insight into the entry corridor,
the differences between the corridors of various vehicles and planets, and the impact of vehicle configura-
tion variations, its dependency on altitude limits the applicability for, for instance, determining the accuracy
required of a guidance applications.

Another method for specifying the entry corridor width is by determining the hypothetical unperturbed
hyperbolic trajectories on which the upper and lower bound of the entry corridor particular velocity fall.
Based on the periapsis altitudes of these two trajectories, the corridor width can be specified as the distance
between them. This is illustrated in Fig. 10.18.

According to Chapman (1960) the value for the periapsis altitude rp can be determined from Newton’s
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Figure 10.18: Definition of the corridor width ∆yp . This illustration was obtained from Chapman (1960).

equation for a two-body drag-free trajectories:

rp

r
=

1−
√(

V̄ 2 −1
)2 + V̄ 2

(
2− V̄ 2

)
sin2γ

2− V̄ 2
(10.1)

where V is the velocity made non-dimensional by dividing by the local circular velocity according to

V̄ ≡ V

Vc
= Vp

g r
(10.2)

With the value for the periapsis radius, the periapsis velocity can be determined using the equation for orbital
energy:

ε= v2

r
− µ

r
(10.3)

and equating the energy at the initial state to the energy at the periapsis, and solving for the velocity.
From this point, the boundary of the velocity and flight-path angle can be found at any radial position

away from the central body by applying the same equations. First determine the radial position at which the
limit values are desired, and using the orbital energy equation to determine the local velocity. With the local
velocity and radial position, Eq. (10.1) can be solved for the limit flight-path angle.

10.5. Flight Envelope
While the entry corridor designates the initial conditions for which optimal trajectory can be achieved, the
flight envelope designates the altitude-velocity space usable for re-entry. This type of graph is more impor-
tant when the goal of the trajectory is to land on the central body, but the lower bound is also relevant for a
trajectory with the goal to reach a target apoapsis.

The flight envelope consists of three boundaries. The lower boundaries is determined by the most driving
of the load factor and heat flux constraint. Going beyond this boundary will violate one or both of these con-
straints. The upper bound is the horizontal, lift-up equilibrium glide. If the vehicle state remains underneath
this boundary, no skipping flight will occur. This definition shows the reason why these graphs are more use-
ful for entry with the intent to land, as skipping out is desired for apoapsis targeting. Contrary to the previous
set of entry corridors, where starting inside the indicated area did not guarantee success, but starting outside
of it did guarantee failure, staying within the area indicated in these graphs guarantees safe-passage without
skipping, but going beyond the equilibrium glide boundary does not guarantee that a skip will occur.

At and above the local circular velocity, the equilibrium glide boundary is no longer defined as the cen-
trifugal acceleration due to the curvature of the Earth has a positive, or no, effect on the rate of change of the
flight-path angle at these velocities. Unless the bank angle is switched to lift-down, equilibrium flight cannot
be achieved for supercircular flight
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Figure 10.19: Flight envelope for the Earth-CRM case in the nominal configuration.
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Figure 10.20: Flight envelope for the all planets for the CRM vehicle in the nominal configuration.

Following the methodology used for the entry corridors, first examples of the nominal flight envelope are
discussed. Following this the vehicle configuration is altered and the impact of this alteration on the flight
envelope is discussed.

10.5.1. Nominal Configuration
The first three figures, Figs. 10.19 to 10.21, show the nominal flight envelope for the Earth-CRM case, all
planets flying the CRM vehicle, and all planets flying the SRM vehicle, respectively. Note the kinks in the line
for the peak heat flux at 16 kms−1, 9 kms−1, and 12 kms−1 for Earth, Venus, and Mars respectively. These
discontinuities are due to the limited amount of available data for the radiative heat flux as discussed in
Section 3.6.4.

Similar to what was observed for the entry corridors, the flight envelopes of Earth and Venus appear to
be quite similar in shape. However, this is deceiving as the altitudes shown for Venus are much higher than
those for Earth and Mars. In reality the flight envelope for Venus is positioned significantly higher in the
atmosphere and is thinner, in most places below the circular velocity approximately half the width of the
envelope for Earth. The Mars envelope is again the widest of the bunch, but requires a much lower velocity
and altitude to ensure that the vehicle does not skip out.
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Figure 10.21: Flight envelope for the all planets for the SRM vehicle in the nominal configuration.
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Figure 10.22: Flight Envelope for the Earth-CRM case with lift variations. The red arrows indicate the direction of increasing lift.

10.5.2. Impact of Aerodynamic Variation

Similar to the entry corridor, the aerodynamic model was varied by both multiplying the lift by a factor, and
by fixing the L/D and multiplying the drag coefficient by the chosen L/D ratio to obtain the lift coefficient.
The effect of the ±20% lift variation is shown in Fig. 10.22, and the effect of using a fixed L/D ratio of 1, 2, and
3, is shown in Fig. 10.23.

Contrary to the effect the increase in lift had on the entry corridor, where the entire corridor is widened,
here, the flight envelope is shifted upwards, with the exception of the heat flux boundary, which is not af-
fected. However, as the equilibrium glide boundary is more affected than the load factor constraint, the over-
all width of the flight envelope does increase. This can be observed easier in Fig. 10.23, where the increase in
lift is much more drastic, and thus the effect on the boundaries is more pronounced.

The increase in lift results in equilibrium glide being achieveable in less dense air, allowing for higher alti-
tudes to be reached for the same velocity. Similarly, as the lift is increased, so is the aerodynamic acceleration
experienced. For the same velocity the vehicle has to fly higher in the atmosphere where the density is lower
to ensure the load factor is not violated.
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Figure 10.23: Flight Envelope for the Earth-CRM case with variations in the L/D ratio. The red arrows indicate the direction of increasing
L/D.
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Figure 10.24: Flight envelope for the Earth-CRM case with variations to the vehicle mass. The red arrows indicate the direction of
increasing mass.

10.5.3. Impact of Mass Variations
In Fig. 10.24 the impact on the flight envelope due to changing mass is shown. Similar to what was observed
in the entry corridor, the mass change shifts the entire envelope. Similar to the aerodynamic variation, the
heat flux is unaffected by the change in mass. By comparing Fig. 10.24 to Fig. 10.22, it can be observed that
the load factor constraint is more sensitive to changes in mass than it was to the change in lift. This is contrary
to the observation made for the entry corridor, which was much more sensitive to lift variation than to mass
variations.

The effect that the mass has on the equilibrium glide boundary can be rationalised by considering that
for an equal generated aerodynamic force, the effect it has on the flight-path angle, according to Eq. (3.33), is
lowered for an increased mas, requiring more density, and this a lower altitude, to achieve equilibrium glide.
Similarly, an equally generated aerodynamic force results in a lower acceleration due to the increased mass,
allowing deeper flight for the same velocity resulting in larger aerodynamic forces.



11
Optimal Aerocapture Trajectories

In the previous chapter the boundaries for which aerocapture is potentially and guaranteed possible were
determined. Using these boundaries, or rather, the type of flight that forms this boundary, a methodology
was developed to determine if aerocapture is possible for any set of initial conditions. If it is determined that
aerocapture is indeed possible, the final step of the method determines the optimal lift-up lift-down bang
bang trajectory to reach the desired target.

This chapter begins with Section 11.1, in which the methodology to ascertain if aerocapture is possible,
and if so, to optimise the trajectory, is presented. With the methodology formulated, it was used to analyse a
wide range of initial conditions to determine if aerocapture was possible. The results from this analysis are
presented in Section 11.2. This analysis was performed for each case considered throughout this report. By
comparing the ∆V for the aerocapture trajectories to the ∆V required for propulsive capture, an estimation
can be made for the amount of potential propellant, and thus mass, saved by incorporating aerocapture
trajectories into the trajectory. This is done in Section 11.3. In this section the fourth and fifth research
questions will be answered.

11.1. Optimisation Methodology
Based on the results from the previous part, primarily the results from Chapters 8 and 10, a methodology
for determining if an optimal trajectory is possible, determining the required course of action if an optimal
trajectory is not possible, and the optimal trajectory itself was developed. The methodology works by first
simulating a full-lift up trajectory and checking several characteristics of the flight. If these characteristics
satisfy the desired conditions, a full lift-down trajectory is simulated. Again, some conditions are checked. If
these too are satisfied, an optimal trajectory is attempted to be made. The details of each of the steps and the
conditions that are checked and the implications of each of the conditions are discussed in this section.

11.1.1. Full Lift-up
As a first step in the methodology, a full lift-up trajectory is simulated. The primary reasoning for starting
with this trajectory is the fact that the peak load factor and heat flux of this trajectory are the minimal that can
be achieved by any trajectory with these specific initial conditions. An added benefit is that it can be verified
that the vehicle will leave the atmosphere, and if it does, that the target altitude is reached. These conditions
can be though of as representing the lower four lines in the entry corridor figures: Load Factor Constraint,
Heat Flux Constraint, No Skip-out, and Undershoot target, respectively.

Depending on whether or not the requirements are violated, whether or not the vehicle skips out of the at-
mosphere, and whether or not the vehicle overshoots the target, a course of action is determined. As there are
three conditions that are checked, all having either a true or falls state, a total of eight scenarios are possible,
and the course of action for that scenario can be rationalised.

The course of action for a number of the scenarios is the same. A total of four different courses of action
can be distinguished, referred to hereinafter as cases. An overview of the four difference cases, followed by
an overview of all eight possible scenarios and the cases resulting from them is presented next. Additionally,
a flow-chart using the same logic as presented here for the full lift-up flight is presented in Fig. 11.1.

• Case 1.1.0 - Continue to full lift-down.
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Figure 11.1: Flow chart for the logic behind the full lift-up stage of the optimisation method

• Case 1.1.1 - Pre-entry and/or post-exit ∆V required, or a combination of both.

• Case 1.2 - Pre-entry ∆V required, with the possibility of a post-entry ∆V.

• Case 1.3 - Should not occur (This case can be combined with other cases)

Full-lift up respects requirements, skips out, and overshoots. The vehicle passes through the atmosphere
without violating the requirements and reaches the atmospheric exit. Here it skips out of the atmosphere and
matches or overshoots the desired target altitude. This is the start of developing the optimal trajectory, and
results in Case 1.1.0

Full-lift up respects requirements, skips out, and undershoots. The vehicle passes through the atmo-
sphere without violating the requirements and reaches the atmospheric exit. Here it skips out of the atmo-
sphere but does not reach the desired target altitude. If this case is triggered, there are two courses of action
that can be taken. Either the initial conditions are modified by using a pre-entry ∆V such that the full lift-up
trajectory matches or overshoots the target altitude, resulting in Case 1.1.0. Alternatively, a post-exit two-
burn ∆V manoeuvre is used to correct the apoapsis altitude and circularise the orbit. Which one of these two
options, or a combination of the two options, is optimal has to be determined using additional optimisation
scheme. This result is referred to as Case 1.1.1

Full lift-up respects requirements, no skip-out, and undershoots. The vehicle passes through the atmo-
sphere without violating the requirements but does not reach the atmospheric exit. If this case is triggered
there is only one course of action, and that is to modify the initial conditions using a pre-entry ∆V such that
Case 1.1.0 or Case 1.1.1 is triggered. Again, to determine which of these options is more optimal has to be
determined using an optimisation scheme. This case is Case 1.2

Full lift-up violates requirements. The vehicle passes through the atmosphere, violating the constraints.
Regardless of the vehicle skipping out, and if over- or undershooting the target, in the four cases containing
this condition a pre-entry ∆V manoeuvre is required, and thus Case 1.2 is triggered.

Full-lift up, no skip-out, and overshoots. The vehicle passes through the atmosphere, but does not reach
the atmospheric exit. However, it still manages to match or overshoot the desired target altitude. These last
two conditions contradict each other. This is a special case as the two scenario that match this result, should
never be encountered. If this situation is encountered, there is a problem in the simulator or post-processing.
This case is Case 1.3. After debugging, this case was never triggered for the final developed code.
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Figure 11.2: Flow chart for the logic behind the full lift-down stage of the optimisation method.

11.1.2. Full Lift-down
The second stage simulates a full lift-down trajectory. With this trajectory it is verified if sufficient energy
can be dissipated such that the resultant trajectory undershoots, or if the trajectory always overshoots. It is
additionally checked if the vehicle skips out hyperbolically. These conditions represent the two remaining
lines in the entry corridor: Overshoot target and hyperbolic skip-out. The full-lift down trajectories that skip
out hyperbolically fail to capture regardless of the trajectory used.

At this stage, the conditions considered are whether or not the requirements are violated, whether or not
the vehicle undershoots the target, and whether or not the vehicle skips out hyperbolically. As the trajectory
is simulateds lift-down, the values obtained for the peak heat flux and peak load factor are the worst that can
be obtained. Therefore, whether or not the requirements are violated is not driving, as it was in the full lift-up
stage. Similar to before, three conditions, all with two states, results in a total of eight scenarios. Again, the
course of action for a number of the scenarios is the same. An overview of the formulated cases, followed by
a discussion of the eight scenarios follows, and an diagram following the same logic as discussed is available
in Fig. 11.2.

• Case 2.1.0 - Continue to ∆V Optimisation

• Case 2.1.1 - Full-lift down followed by aerobraking

• Case 2.1.2 - Lift-up lift-down bang bang followed by aerobraking.

• Case 2.2 - Pre-entry ∆V required, with the possibility of a post-entry ∆V.

• Case 2.3 - Should not occur (This case can be combined with other cases)

Full lift-down, no hyperbolic skip-out, and undershoots. The vehicle passes through the atmosphere. Re-
gardless of the vehicle reaching the atmospheric exit, the vehicle does not reach the desired target altitude.
This scenario, combined with the fact that the tested initial conditions passed through the first stage, lead
to the conclusion that the initial conditions fall within the boundaries specified by the entry corridor. It can
therefore be attempted to develop an optimal trajectory, and thus the two scenarios described by this result
fall in Case 2.1.0.

Full lift-down respects requirements, no hyperbolic skip-out, and overshoots. The vehicle passes through
the atmosphere, respects the requirements, reaches the atmospheric exit, but overshoots the target. In this
scenario the trajectory can be kept full-lift down as the requirements are not violated, and full-lift down results
in the smallest possible overshoot. After the apoapsis has been reached, aerobraking can be used to decrease
the apoapsis of the orbit. This is Case 2.1.1. For more information regarding aerobraking manoeuvres the
reader is encouraged to read the work by Facchinelli (2019).
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Full lift-down violates requirements, no hyperbolic skip-out, and overshoots The vehicle passes through
the atmosphere, violating the requirements, reaches the atmospheric exit, overshoots the target but does not
skip out hyperbolically. In this case a switch-time can potentially be found that optimises∆V, while respecting
the requirements (as the full lift-up trajectory respects the requirements). The resultant apoapsis will still be
above the target apoapsis, but the periapsis will be within the atmosphere, allowing aerobraking to be used
to lower the apoapsis down. This is Case 2.1.2.

Full lift-down, hyperbolic skip-out The vehicle passes through the atmosphere, and skips out with an hy-
perbolic trajectory. Full lift-down generates the largest aerodynamic forces. A failure to capture while flying
full lift-down means that the vehicle cannot perform aerocapture using the current initial conditions. There-
fore a pre-entry ∆V is required to allow for aerocapture, with the possibility of a post-entry ∆V. While techni-
cally a post-entry ∆V could be used after the hyperbolic skip out to capture the vehicle, this would resemble
a standard capture too much to be of interest to this research. Therefore, post-exit ∆V manoeuvres are not
considered for full lift-down hyperbolic skip-out trajectories. This scenario results in Case 2.2.

Full lift-down, hyperbolic skip-out, undershoot The vehicle supposedly skips out of the atmosphere hy-
perbolically but still undershoots the target. These two conditions contradict each other, and should thus
never be encountered. If this situation is encountered, there is a problem in the simulator or post-processing.
The case for this is Case 2.3

11.1.3. Determining Optimal Switch-Time
If the initial entry conditions manage to make it through the first two stages, in this stage the optimal switch-
time for the bang-bang trajectory is determined. Since a lift-up lift-down bang-bang style trajectory is deter-
mined to be the most optimal, only the switch-time is considered variable. It was shown in Figs. 9.5 and 9.6
that ∆V2 decrease monotonically as the switch time increased. For a trajectory where the full lift-up tra-
jectory overshoots the target, resulting in a negative ∆V2, and the full-lift down trajectory undershoots the
target, resulting in a positive ∆V2, two nodes with opposite sign for ∆V2 are known, satisfying the required
data available to use the bisection root-finding method as discussed in Section 4.1.

When the full lift-up trajectory was simulated, five epochs from the resulting orbit were recorder, the ini-
tial epoch, the epoch when peak heat flux and peak load factor occurred, the epoch for deepest penetration,
and the atmospheric exit epoch. By subtracting the initial epoch from the rest, the time since atmospheric
entry can be determined. If the switch time is set equal to the time it takes for the vehicle to reach the atmo-
spheric exit, the entire flight will be flown with full-lift up. If the switch-time is set equal to the initial time,
the entire flight is flown lift-down.

Using this, the two boundaries for the bisection method are established. The negative node is located at
ts = 0, and the positive node is located at ts = t f . Using the bisection method, the optimal switch time t∗s
at which ∆V2, and by association ∆Vtotal, are zero, is approximated. The desired accuracy of the bisection
method can be set as accurate as desired. During this research, the desired accuracy of the bisection method
was set equal to the minimal simulation time step: 1·10−6. The accuracy of the bisection method doubles
every iteration. For a trajectory that lasts approximately 150s, this accuracy is achieved after 28 iterations.
Adding the two saturated trajectories to this results in approximately 30 simulated trajectories to obtain the
optimal to a sufficient accuracy.

11.2. Optimisation Results
The above methodology was used to analyse if aerocapture was possible for a wide range of initial conditions
for every planet and vehicle considered in this research. If it was found that aerocapture was possible, the
trajectory was optimised and the required∆V2 to obtain the target apoapsis was determined. In case optimal
aerocapture was not possible, such as Case 1.1.1, Case 2.1.1, or Case 2.1.2, a post-exit two-burn ∆V ma-
noeuvre was used to obtain a measure for the required ∆V. In the optimal situation ∆V2 = 0, for an overshoot
∆V2 < 0, and for an undershoot ∆V2 > 0. In case optimal aerocapture

In Figs. 11.3 to 11.5, the ∆V2 is shown for the flight with the CRM vehicle, and in Figs. 11.6 and 11.7
it is shown for the SRM vehicle. Each of these figures contains two graphs. The left graph shows a three-
dimensional surface plot of the ∆V2 required to correct the orbit after aerocapture has been performed. The
right graph shows the top-down projection of this surface. Additionally, the altitude-targeting entry corridor
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Figure 11.3: ∆V2 required to reach the target apoapsis for the Earth-CRM altitude targeting case for a wide variety of initial conditions.
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Figure 11.4: ∆V2 required to reach the target apoapsis for the Mars-CRM altitude targeting case for a wide variety of initial conditions.

boundaries are present in the top-down view. This facilitates comparing the potential area where optimal
aerocapture was found possible, and the entry conditions for which optimal aerocapture was obtained.

In these figures the red-shaded area indicates an undershoot, corresponding to a positive∆V2, the yellow/orange-
shaded area correspond to an optimal aerocapture, with∆V2 ≈ 0, and lastly the blue shaded-areas indicate an
overshoot, corresponding to a negative∆V2. As only post-exit∆V manoeuvers were considered, no values are
present for initial conditions that either violate the requirements, fail to skip out, or skip out hyperbolically.

By comparing the entry corridor boundaries and the transitions from undershoot (positive ∆V2) to opti-
mal (∆V2 ≈ 0) to overshoot (negative∆V2), it can be concluded that the altitude-targeting boundaries approx-
imate the limit initial conditions very well, even though they do not guarantee that entry is possible within
their bounds. Additionally, it can be concluded that the methodology described above does indeed result in
the development of optimal trajectories, granted that the initial conditions allow for such a trajectory.

These figures corroborate a conclusion that was already drawn in Section 9.1, namely that the post-exit
apoapsis is highly sensitive to changes in both initial velocity and flight-path angle, visualised by the steep
slope. The ∆V2 required for a post-exit orbit correction increases significantly faster for the overshoot cases,
requiring significantly more ∆V compared to the undershoot corrections.

11.3. Comparison Required Propellent Mass
As was stated in Chapter 1, the ultimate purpose of an aerocapture manoeuvre is to reduce the total mass re-
quired to be launched. The aerocapture manoeuvre accomplishes this by lowering the amount of propellent
mass required for capture, and thus lowering the launch-mass. In the previous section it has been shown that
using the developed methodology, the theoretically optimal aerocapture trajectory can be developed that re-
sults in ∆V2 ≈ 0, which corresponds to a minimal ∆Vtotal. In this section, the ∆Vtotal is compared to the ∆V
required for propulsive capture in order to evaluate how much fuel can be saved by aerocapture. In order to
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Figure 11.5: ∆V2 required to reach the target apoapsis for the Venus-CRM altitude targeting case for a wide variety of initial conditions.
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Figure 11.6: ∆V2 required to reach the target apoapsis for the Earth-SRM altitude targeting case for a wide variety of initial conditions.
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Figure 11.7: ∆V2 required to reach the target apoapsis for the Mars-SRM altitude targeting case for a wide variety of initial conditions.
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determine the propellent mass save however, an estimate has to be made of the propellent mass required to
execute the ∆V manoeuvre.

This estimate is obtained by using Tsiolkovsky’s rocket equation. This equation provides a relation be-
tween the ∆V of a manoeuvre, the mass before and after the manoeuvre, and some characteristics of the
propulsive system according to:

∆V = Isp g0 ln
M0

M0 −Mp
(11.1)

where M0 is the mass before the manoeuvre, Mp is the propellent mass, and Isp is the specific impulse, a
characteristic of the propulsive system. As an estimate for the specific impulse, the specific impulse of a
cold gas thruster is used. According to Anis (2012) the specific impulse of a cold nitrogen gas thruster is
approximately 70-75s with a theoretical maximum of 76s. The average of 73s will be used as specific impulse
for this estimation. By rewriting, the following expression for the propellant mass needed for a∆V manoeuvre
can be obtained:

Mp = M0

(
1−e

−∆V
Isp g0

)
(11.2)

11.3.1.∆V for Propulsive Capture
Before it can be determine how much propellent mass is saved by performing aerocapture compared to or-
dinary propulsive capture, the ∆V required for propulsive capture has to be determined.

For open orbits (parabolic or hyperbolic) the propulsive capture is assumed to occur using a single burn
when the vehicle is at the desired altitude. As the initial conditions of the entry throughout this research have
been taken at an altitude below the target altitude, the vehicle state at the target altitude was determined
using the method described in Section 10.4.

First, the velocity at the target altitude is determined by equating the orbital energy at the entry interface,
as per Eq. (10.3), to the energy at the target altitude, and solving for the velocity at the target altitude. Subse-
quently, Eq. (10.1) is used together with the entry interface state to determine the periapsis radius. Then the
same equations is used to with the target altitude radius and velocity to solve for the flight-path angle at the
target altitude. Lastly, the∆V required to obtain the target orbit form a single burn is determined by using the
equation for a combined velocity and flight-path altering manoeuvre. From Wakker (2015), this is:

∆V =
√

V 2
0 +V 2

1 −2V0V1 cosδγ (11.3)

For closed orbits a different approach is taken. Using the vehicle state at the entry interface, the Kepler
elements of the corresponding orbit are determined. Using the semi-major axis and eccentricity, the periapsis
and apoapsis are determined. Then it is checked if the periapsis is outside of the atmosphere of the central
body. If so, a two-burn manoeuvre is executed where the first burn is performed at the periapsis, and the
second at the apoapsis. According to Wakker (2015), the ∆V for both burns can be calculated according to:

∆V1 =
√

µ

rp

(√
2rt

rp + rt
−p

1+e

)

∆V2 =
√
µ

rt

(
1−

√
2rp

rp + rt

)
∆Vtotal =|∆V1|+ |∆V2|

(11.4)

While this case is not expected to occur at all, as an periapsis outside of the atmosphere would result in the
vehicle orbiting instead of entering, it is still considered for robustness. In case that the periapsis falls within
the atmosphere, the propulsive manoeuvre must be performed before the vehicle enters the atmosphere, at
the apoapsis. In this case, the ∆V values can be calculated using:
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Figure 11.8: 3D, side, and top view of the propulsive ∆V required to reach the target altitude for Earth-CRM for various initial conditions.

∆V1 =
√

µ

ra

(√
2rt

ra + rt
−p

1+e

)

∆V2 =
√
µ

rt

(
1−

√
2ra

ra + rt

)
∆Vtotal =|∆V1|+ |∆V2|

(11.5)

Using these equations, estimations for the ∆V required for propulsive captures are made for a wide range
of velocities and flight-path angles. The propulsive ∆V distribution for the Earth case is graphed in Fig. 11.8.
This figure consists of a 3D graph showing the entire considered initial condition space, the isolated velocity
and flight-path angle graphs, and the contours of the 3D graph.

In the top-right graph the effect of altering the velocity is shown. Unsurprisingly, the required ∆V for
propulsive capture comes to a minimum if the initial velocity is approximately the same as the circular ve-
locity of the desired apoapsis altitude. The required ∆V increases approximately linearly with the absolute
difference in velocity. Near 11 kms−1 a small discontinuity in the required ∆V can be observed, this disconti-
nuity is expected to be due to the change from a closed-orbit to an open orbit. From the bottom-right graph,
showing the isolated effects of the flight-path angle, it can be concluded that the flight-path angle has a neg-
ligible effect on the propulsive ∆V compared to the velocity.

11.3.2. Comparison Required∆V and Propellent Mass
In the previous section the∆V2 obtained from the optimal trajectories was shown. However, to determine the
mass saved, the ∆Vtotal is desired. In Fig. 11.9 the total ∆V required for the aerocapture manoeuvre is shown
for the Earth-CRM case. By taking the propulsive ∆V values as shown in Fig. 11.8 and subtracting the ∆V
values shown in Fig. 11.9, the amount of additional ∆V required from propulsive capture can be determined.
The result of this subtraction is shown in Fig. 11.10. Due to the order of the subtraction, a positive difference
in ∆V means that more ∆V is required by the propulsive capture.

From Fig. 11.10 it can be concluded that for the entire considered range of entry conditions, the ∆V re-
quired for propulsive capture is always in excess of the ∆V required by aerocapture. This same phenomenon
was observed for the other cases, and it can therefore be concluded that aerocapture always has a positive
effect on the vehicle mass1. The most ∆V is saved for the higher energy trajectories (trajectories exceeding
the local escape velocity). This brings the report full circle, as in Chapter 1 it was stated that the aerocap-
ture manoeuvre had the most applicability for interplanetary trajectories where the vehicle arrives at a planet
from a heliocentric transfer orbit.

1This changes if one considers the requirement for a TPS as will be discussed later.
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Figure 11.9: Total ∆V required for the aerocapture manoeuvre for the Earth-CRM case.
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Figure 11.10: Difference in∆V required between propulsive capture and aerocapture. A positive value indicates that more∆V is required
by propulsive capture.

Using Isp = 73s, the mass difference between propulsive capture and aerocapture can be estimated. The
result from this is shown in Fig. 11.11 through Fig. 11.15 for all cases. These figures have the same layout as
the figures depicting the ∆V2 surfaces in the previous chapters. The left graph shows the 3D surface plot of
the propellent mass difference between aerocapture and propulsive capture. The right graph shows the top-
down view of the surface. Again, in the top down view the altitude-targeting entry corridor is superimposed
to shown the close agreement between the boundaries established by this entry corridor, and the regions of
most propellent mass saved.

From these figures it can be seen that in the region where optimal aerocapture is possible, ∆V2 ≈ 0, the
mass difference is significant. For the region bounded by the altitude-targeting entry corridor an average
mass differences of approximately 75% the vehicle mass was found for all cases. Note however that this value
of mass is dependent on the selected value for the Isp . A different value will result in a different amount of
propellent mass saved. A higher value for the specific impulse would result in a lower amount of propellent
mass saved, whereas a lower value would result in a larger amount of propellent saved. The value presented
here is just one example, and in reality depends on the type of propulsive system available on the vehicle.

From these figures it can again be concluded that the effectiveness of the aerocapture manoeuvre quickly
decreases if the trajectory is overshot. In these cases the propellent mass required to correct the orbit was
found to be roughly equal to that of the propulsive capture. However, if the vehicle overshoots but is cap-
tured, one could use aerobraking to obtain the target apoapsis without requiring the full amount of propellent
mass. The analysis and optimisation of a consecutive aerocapture-aerobraking manoeuvre is left for future
research.

For the trajectories that undershoot the target, the effectiveness of the aerocapture decreases slower, re-
sulting in a region where aerocapture is a better alternative to propulsive capture even if a post-exit ∆V ma-
noeuvre is required to reach the target apoapsis. As the initial conditions approach the no skip-out boundary,
the amount of ∆V increases to roughly equal that of the propulsive capture.
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Figure 11.11: Difference in propellent mass required for the Earth-CRM case between propulsive capture and aerocapture. A positive
value indicates that more mass is required for the propulsive capture.
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Figure 11.12: Difference in propellent mass required for the Earth-SRM case between propulsive capture and aerocapture. A positive
value indicates that more mass is requried for propulsive capture.
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Figure 11.13: Difference in propellent mass required for the Mars-CRM case between propulsive capture and aerocapture. A positive
value indicates that more mass is required for the propulsive capture.
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Figure 11.14: Difference in propellent mass required for the Mars-SRM case between propulsive capture and aerocapture. A positive
value indicates that more mass is required for the propulsive capture.
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Figure 11.15: Difference in propellent mass required for the Venus-CRM case between propulsive capture and aerocapture. A positive
value indicates that more mass is required for the propulsive capture.

Comment on Thermal Protection System Requirement One of the two primary constraints on the vehicle
for aerocapture is the heat flux experienced during entry. Not all vehicles for which the aerocapture manoeu-
vre is of interest natively feature a TPS such as observation or communication satellites.

The amount of launch mass saved by incorporating an aerocapture manoeuvre into the planned trajec-
tory is thus offset by the required TPS. This becomes important for the lighter vehicles, where a 75% mass
reduction does not compensate for the TPS. Whether or not the inclusion of aerocapture into the trajectory
is beneficial to a vehicle that does not already feature a TPS has to thus be further investigated. This is left
however for future research.
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Conclusions &

Recommendations

With the optimal trajectories made and the mass saved by aerocapture determined, this research has come to
an end. In this final chapter all the conclusions drawn and their implications for the research questions posed
in the beginning of this report are discussed. For convenience, the research questions and the sub-questions
are repeated here:

1. "What is the optimal aerocapture trajectory to reach the target apoapsis for the reference vehicle about
the central body, arriving with arbitrary entry interface conditions."

2. "What are the limit entry interface conditions with which the reference vehicle can arrive at the central
body, and still reach the target apoapsis after aerocapture."

3. "If the reference vehicle arrives with an entry interface condition outside of the previously defined limits,
what is the optimal way to salvage the aerocapture?"

4. "How much mass does each of the trajectories save over traditional chemical circularisation?"

5. "What is the limit entry interface condition for which traditional chemical circularisation becomes prefer-
able over an aerocapture trajectory?"

These questions were posed for altitude-targeting trajectories for Earth, Mars, and Venus, using both a vehicle
characteristic for Sample Return Missions, and a vehicle for Crew Return Vehicles.

12.1. Conclusions
In this research it has been proven that the assumptions made for the development of the first-order analytical
approximations of the equations of motion are invalid. As a follow-up to this, it has been shown that a set of
second-order analytical approximations of the equations of motion are more accurate at estimating the peak
loads of the trajectory compared to the first order approximations, while taking into account the effect of
gravity on the flight-path angle. It is believed that this set of second-order analytical equations of motion
make a good basis for the development of a guidance algorithm.

It has been demonstrated that the relatively simple lift-up lift-down bang bang trajectory is the most opti-
mal type of trajectory for altitude-targeting. It has also been shown that the optimal switch-time at which this
bang-bang manoeuvre should be executed can be determined by using a relatively simple bisection method
of root finding, using ∆V2 as the parameter to be made zero. With this optimal aerocapture trajectory for
altitude-targeting established, the first research question is answered for the case of altitude targeting.

For all vehicles and planets combinations two types of entry corridors have been developed. The first
of these corridors marks the limit initial conditions for which aerocapture could potentially be performed.
Due to the nature of this first corridor, being inside the boundaries did not guarantee that aerocapture was
possible, but being outside of it did guarantee that aerocapture was not possible. A second, more conservative
version of the entry corridor was also developed. This entry corridor has the opposite effect of the first. Being

135



136 12. Conclusions & Recommendations

inside the boundaries specified by this corridor guarantees that optimal aerocapture was possible, however
being outside of the boundaries does not mean aerocapture is impossible.

A variation on the optimal bang-bang trajectory was developed that still targets altitude. This variation
was the lift-up equilibrium glide lift-up trajectory. In this trajectory the vehicle flies lift-up until it reaches the
deepest point in the atmosphere, switches to equilibrium glide, and after a certain duration switches back
to lift-up to skip back out of the atmosphere. This type of trajectory was optimised using the same bisection
root finding method as for the bang-bang trajectory. The downside of using this type of trajectory compared
to bang-bang is that it cannot be used for the fastest and shallowest entries, where the bang-bang trajectory
switches to full-lift down before the deepest point in the trajectory was reached. A benefit of this method is
that it features a non-planar portion of flight through the densest part of the atmosphere, potentially allowing
for plane changes.

By investigating the impact of the initial conditions on the peak values and terminal conditions of the
trajectories, the optimal salvage strategies were devised. In case the vehicle skips out of the atmosphere
hyperbolically, a pre-entry ∆V is required. Technically, this ∆V manoeuvre could also be performed after the
atmosphere had been exited. However, as the vehicle skips out with an open orbit, by definition aerocapture
has failed. Therefore in this situation a pre-entry ∆V is required, if only to satisfy semantics.

Similarly, in case the vehicle fails to skip out of the atmosphere, or violates a constraint in the full lift-
up condition a pre-entry ∆V trajectory must be executed to salvage the trajectory. The ∆V can either alter
the initial conditions such that optimal trajectory resulting in ∆V2 = 0, or in a trajectory where a two-burn
manoeuvre is required to obtain the desired circular orbit. Which of these two methods is optimal, together
with the magnitudes and directions of the ∆V manoeuvres would be subject to a future research.

In case the vehicle skips out of the atmosphere without skipping out hyperbolically, and either under-
shoots or overshoots, it was shown that the trajectory can be salvaged by either a pre-entry ∆V, or a post-
exit ∆V. Alternatively, for the overshoot case, an aerobraking manoeuvre could be used as an alternative to
post-exit ∆V. For trajectories that skip out hyperbolically, do not skip out at all, or undershoot the target, an
pre-entry ∆V is required.

With the establishment of methods for salvaging the trajectories, albeit qualitative and not quantitative,
the first sub-question is considered answered. Finding the optimal combination between pre-entry∆V, post-
exit ∆V, velocity change, and flight-path change to salvage the trajectory optimally would be a logical contin-
uation of this research.

The last two sub-questions deal with the mass saved by performing aerocapture compared to ordinary
propulsive capture. An estimate for the ∆V required for propulsive capture was made using a one- or two-
burn ∆V manoeuvre,and Tsiolkovsky’s rocket equation.

It was shown by comparing the mass required for propulsive capture and aerocapture, that the amount
of mass saved could be as much as the entire mass of the vehicle considered. The most mass was saved
for the high energy entries, such as the hyperbolic trajectories. With this the second-to-last sub-question is
considered concluded.

Finally, it was determined that for any initial conditions that did not lead to violated constraints, no-skip
out, or hyperbolic skip out, aerocapture required less total ∆V than propulsive capture. With this the final
sub-question is answered.

12.2. Recommendations
Throughout this report claims have been made for investigations that were left for future research. These
included aspects that would be interesting to furthere investigate, or aspects of which the effect was not
thoroughly investigated due to time restrictions. Following is a list of the various recommendations for future
research made throughout this report.

• In this research the effect of the Knudsen number on the aerodynamics in the Earth atmosphere was
investigated. However, a similar analysis was not performed for Mars or Venus. For future work it is
therefore recommended to analyse how the tenuous atmosphere of Mars or the dense atmosphere of
Venus affect the aerodynamics.

• This work only focussed on the optimisation of altitude-targeting aerocapture. An obvious recommen-
dation for future work is the optimisation of direct entry aerocapture or skipping aerocapture. In this
research the flight envelopes for these types of entries have been developed, but an optimal trajectory
that would fall within this envelope has not.
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• Similarly, a brief comment was made on of out-of-plane manoeuvres, but this was not further consid-
ered. A logical continuation of this work is the investigation into the control of non-planar elements,
such as the inclination. It has been stated, albeit not shown, that the usage of a lift-up equilibrium
glide lift-up trajectory can be used to reach the desired apoapsis. One could used the non-planar bank
angle and the prolonged flight time in the lower atmosphere to change, and by extend, control, the
non-planar orbital elements.

• For trajectories that did not fall within the entry corridor, in this work qualitative statements have been
given regarding the expected optimal method of salvaging the trajectory. This was not fully investigated
and optimised. A recommendation for future research would be to further investigate the optimal ma-
noeuvre to salvage a trajectory that does not fall within the entry corridor.

• A brief comment has been made regarding the effect on the total launch mass reduction due to the
requirement of a thermal protection system. A quantitative relation between the reference area of the
vehicle and the desired peak heat loads should be made. If such a relation is established, the weight
added to the vehicle due to the necessity of a thermal protective system which offsets the weight lost by
the lowered mass of fuel required can be determined. From this a more complete conclusion regarding
the mass saved by aerocapture can be drawn.

• Another recommendation is regarding the second-order analytical approximations. The approxima-
tions reproduced in this report work well for single pass through the atmosphere, but fail on anything
besides that. An interesting research would be to take these equations, other second-order analytical
approximations for ballistic entry and gliding entry, and the analytical expressions for ballistic orbits,
and attempt to splice them together to create a framework for the analytical approximation for a gen-
eral atmospheric flight that smoothly transitions from one type of trajectory to the next.
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