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Time invariant is relative. Time-varying is absolute.

The goal of the standard H,, control problem is to find the class of suboptimal
controllers which attenuate the influence of disturbances to the controlled system

to a (worst case) acceptable level. (Chapter 1, this thesis)

The H,, problem is equivalent to an interpolation problem in the sense that both
need to define a set of functions (operators) to fit the data set (system) and the set
of functions (operators) are analytic (upper) and strictly contractive. (Chapter 7,
this thesis)

A state space model is becoming popular in industry because its advantage over other
models is seen: its compact form, its convenience in representing MIMO systems,
the guarantee of the minimality of its reduced model and the easier methodology of
its controller design.

Infinite horizon time-varying control can be realized only under the condition that
the controlled system is known completely from time minus infinity to infinity. This
happens, for example, when the system is time invariant before a certain time instant
and becomes time invariant again after a certain time instant, or when the system
is periodically time-varying.

To identify systems is for the purpose of control. To identify people is for the purpose
of making friends.

Not every parent knows that to understand his child is even more important than
to take good care of him.

For a civilized society, rules are the first demand, democracy is the second. But a
right rule itself should be democratic. For example, if a law does not benefit most

of the people of the country, it is not ‘democratic’ and then it should be abolished.

The most ingenious translation from English to Chinese I have ever seen is WWW
(“World Wide Web” in English; “Wan Wei Wang ( 7 4 )” in Chinese).

Expecting a human being to be perfect is just like expecting gold to be absolutely
pure (A translation of the Chinese proverb: £ % %%, AXLTA. ).
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Chapter 1

Introduction

1.1 Time-varying systems and control

Many dynamical systems exhibit time-varying behavior. For example, in electrical circuits
or other kinds of networks, switching on or off a part of the network results in a time-
varying process. It is also common practice in system and control engineering to treat
non-linear systems as linear time-varying systems [1]. The studies by Kearnay et al.
[2] 3] [4] on the performance of a human’s arm joint for the purpose of obtaining a
biomedical model are a good example of this kind of practice. Furthermore, periodically
time-varying systems form an important class of linear systems in many mechanical and
chemical applications [5]. Like in the time invariant context, the usual identification and
control problems for linear time-varying systems naturally arise, and some of these are

considered in this thesis.

There are many descriptions by which linear discrete time-varying systems can be repre-
sented, for example, operator descriptions, difference equations with time-varying para-
meters, FIR models and time-varying state equation descriptions. For multi-input multi-
output systems, state equations and operator descriptions have significant advantages
over others. Hence, in this thesis, we will describe all systems by operators and state
equations. In particular, the input/output behavior of a linear discrete-time system can
" be described by a operator T' which maps input sequences u,

u:[... U1, ’ Uy ...]
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to output sequences y as y = 7. In a Hilbert space context, T has a matrix representation

T Tap Toag

T=[ﬂ,j]3=_w= - T To,
Tva Tye Ty

T is a Toeplitz operator if T; ; = T;_y ;_, for all 7,7, i.e. T is constant along the diagonals.
Such operators correspond to time invariant systems. For time varying systems, T does
not have Toeplitz structure. If Tj; = 0 for 7 > j, T is a causal system and is upper
triangular. Then its output y; is determined only by the input u; with ¢ < j. f T} ; = 0
for ¢ < §, T' is an enticausal system and is lower triangular.

A compact description of a system can be provided by its state equations in terms of its
realization. For a causal system, the equations are

Tiyr = xpAr+wp B .
Ye = oxCk + urDs (1.1)

In this description, z is called the state and performs a memory function of the past
input. {Ak, By, Ck, Dt} is called a realization of the system. For a system, its realization
{Ag, B, Ck, D;} has a direct connection to its operator description. Taking a stable causal
system as an example, with (1.1), it is not difficult to derive that the corresponding input-
output operator T is

Dy B.1Cy B_1AcCi B_140A:C,
- BoCi BoAiG

. Dl 3102
0 Dy

The realization problem is to identify { Ak, Bx, Cx, D} from the knowledge of T. Obvi-
ously, the Dy’s correspond to the diagonal entries of the operator T as Dy, = Ty ;. Matrices
Ak, Bi and Cj can be identified from factorizations of the generalized (or time-varying)
Hankel operator which is a part of the operator T'. For example, the generalized Hankel
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operator corresponding to k = 0 is defined as

Toao Toan Toap -+ B_Co B_1ACy B_1A40AiC
T 20 T_21 B_3,A_1Co  B_3A_1ACy

T a0 " | BL3sA, AL Gy

Conversely, if a realization of a system is known, the input-output operator of the system
can be computed.

The state space realization problem for linear time invariant systems was discussed by
many researchers, going back to the days of Kronecker. Modern insights are largely based
on the pioneering work of Kalman et al [6]. It is easy to see that in time invariant case,
all the Hankel operators are equal and have the familiar Hankel structure (constant along
the antidiagonal). For linear time-varying systems, the realization problem was discussed
by Shokoohi and Silverman [7] who called it the identification problem. In [11] and [8],
an algorithm for the calculation of the realization of a linear discrete time-varying system

from the input-output operator is given.

System identification

System identification is concerned with the mathematical modeling of systems from ex-
perimental input/output data. Based on the input/output data, the task of identification
is twofold: (1) determine a suitable class of mathematical models such as Finite Impulse
Response (FIR) models or state space models by which the system can be described, and
(2) identify the best-fitting values for the parameters of the model. Often, the structural
parameters of the model (eg. system orders) have to be estimated first.

For time invariant systems, there are many identification methods, both in frequency
domain and time domain. Identification methods for time-varying systems are limited to

the time domain because good frequency domain models are lacking.

The identification of time-varying systems can be on-line or off-line, depending on the
purpose and available data. In many cases in process control, on-line identification such
as adaptive identification is used. With this kind of identification method, adequate a
priori information.about the identified system and the variation of the system is required,
and the change of the dynamics of the system has to be sufficiently small. In this thesis, we
only consider off-line identification, which can be used in the identification of arbitrarily

time-varying systems.
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Methods for time-varying system identification were investigated by Kearney and Hunter
[2] [3], both theoretically and in applications. There are two classes of approaches in time-
varying system identification: {1) methods working with a single pair of input and output
sequence measurements, and (2) methods working with an ensemble of input/output
sequence pairs, each obtained from the same system or from systems with the same
underlying time-varying behavior. Unlike the situation for the time invariant case, the
identification of a general time-varying system from a single input/output pair is not”
possible without making further assumptions such as short-term stationarity. Less a priori
knowledge about the system is required and a more accurate model can be obtained with
ensemble methods but multiple copies of the same system have to be available, which is
not always realistic. In [2] [3], an ensemble identification approach was used to identify
the parameters of a FIR model for a biomedical application. But, a FIR model often
needs many parameters. As a result, the estimated model is not expected to be accurate

for finite data lengths.

The advantage of modeling systems by state space models is well known in industry and -
engineering. In [7], a linear time-varying system is modeled by a state equation description
and the realization {Ay, Bg, Ck, Dy} of the description is identified from the generalized
Hankel matrix which is formed from the time-varying impulse response. Hence, we first
have to estimate the time-varying impulse response of the system. Besides the fact that
this is a two step procedure, the accurate determination of the impulse response is a
difficult task.

In recent years, subspace model identification (SMI) methods for linear time invariant
systems were developed by Moonen, de Moor, Vandenberghe and Vandewalle [10], and
subsequently by Verhaegen and Dewilde [12]. The subspace-based methods have advan-
tages in accuracy, convergence and initial conditions as compared to the FIR method and
the two-step method. The state space model is estimated directly from the input/output
measurements. In this thesis, we develop an ensemble method which extends the sub-
space model identification method to time-varying systems and periodically time-varying

systems.

H,, control

The Hy, control was first introduced by Zames [13] in 1981 and is widely regarded as a
new impetus in control theory. The objective in H,, control is to minimize the H., norm
of some operator (usually an input/output operator). The H,, norm is the maximum
amplification of any admissible (bounded) input sequence by the system. In [13], Zames
considered the H, control problem of minimizing the sensitivity of a system to the worst
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case disturbances by the design of an optimal feedback controller [13]. It was soon recog-
nized that this H,, criterion could also be used in solving some robust control problems,
specifically those dealing with model uncertainty. Roughly speaking, the objective of
robust control is to design controllers which guarantee the closed loop stability and/or
performance robustness for all systems within a given uncertainty range. For some robust
control problems, the model uncertainty can be translated into a certain disturbance on
the inputs of the system. This kind of robust control problems can be formulated as an

H_, control problem.

Most research on the solution of H, control problems is restricted to only a suboptimal
version of the problem. Suboptimal versions aim at finding controllers which make the
H,, norm less than some prescribed bound but not necessarily minimal. The reason for

this is the mathematical difficulties that come up when trying to solve for the optimum.

Most attempts to solve H,, control problems focus on the so called standard H, problem
introduced by Doyle [14] in 1984, and treated in detail by Francis [15] in 1987. Problems
such as the model-matching problem, the tracking problem and robust stabilization can
all be reformulated as the standard H,, problem [15]. This standard set-up is shown in
Figure 1.1. In this figure, P is a known plant, w is an exogenous disturbance sequence,

K

Figure 1.1: The standard H, problem configuration

u is the control input sequence which is generated by a feedback controller K, y is the
observed output sequence and z is the controlled error output sequence. The H,, control
problem is to find a characterization of all admissible controllers K that stabilize the
closed loop system in Figure 1.1 and that are such that the H,, norm of the closed loop
transfer function (or operator) ®, which is the mapping from the disturbance w to output
2z, is smaller than a prescribed bound 4. Hence the goal of the standard H control
problem is to find suboptimal controllers which attenuate the influence of the disturbance

to a certain level.

The theory and methods of H,, control developed in the past decade considered mostly
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the continuous time invariant case [15] [16] [17] [18] [19] [20] [21], and created systematic
ways of controller design. Time-varying Hy control theory and approaches, also mostly
on continuous time systems, are now gradually becoming a research topic in literature
(22] [23] [24] [25]. They are largely based on the H., control theory and methods for
time invariant systems. Some theoretical results on the discrete time-varying system H,,
control problem was derived by A. Halanay and V. Ionescu [26).

A recently developed approach to linear time invariant H,, control by Tsai and Postleth-
waite [18], and Kimura [19] has been considered as a new trend in control engineering [27].
Their approach is based on two fundamental notions: the chain scattering representation
and the J-lossless factorization. The chain scattering representation is an alternative way
to represent a plant, and expresses the cascade structure of feedback systems. J-lossless
factorization, or more precisely outor-(J,, J;)-lossless factorization, is a signed general-
ization of the outer-inner factorization to multiport systems, where J; and J, are called
input and output signature operators we will discuss in Chapter 4. We have adopted this
approach and put it in our framework and notation in order to develop the factorization
theory and a systematic way of controller design for solving the H,, control problem for

linear discrete time-varying systems.

1.2 Contributions

In this thesis, we consider (1) the identification problem, and (2) the H., control prob-
lem for time-varying systems. We make extensive use of recently developed theory and
methodology in systems and control engineering, which enable us to find solutions (to a
certain extent) to these problems.

Our work is based on the following ideas:

1. Discrete time-varying system realization theory based on an efficient notation origi-
nally introduced and developed by Alpay, Dewilde and Dym [28] [29], and subsequently
developed by Van der Veen [9].

2. The linear time invariant subspace model identification method, first introduced by
Moonen, de Moor, Vandenberghe and Vandewalle [10] and further developed by Verhaegen
and Dewilde [12].

3. Ensemble identification approach such as used by Kearney, Hunter [2] and MacNeil [3].

4. The solutions to the H,, problem based on chain scattering representations and J- -
lossless factorizations, as introduced by Tsai and Postlethwaite [18], and Kimura [19].
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In the first part of the thesis, we consider the identification problem. The subspace model
identification approach works directly with the input/output measurements. The main
characteristic of this approach is the approximation of a subspace defined by a basis of the
column or row space of a certain matrix derived from the measurements. The realization
of the system is calculated from this basis and its complement. For time invariant systems,
it suffices to consider only one input/output pair. By shifting the input/output sequences
over several positions, each shift can be looked at as a repetition of the same experiment
on different data. Hence, a single sequence of input/output data can be rearranged into
an ‘ensemble’ for the estimation of the relevant subspaces of the system. For arbitrarily
time-varying systems, however, an ensemble of input/output data can be obtained only by
physically repeating the same experiment, assuming that each test exhibits the same time-
varying behavior. In this thesis, we extend this ensemble subspace model identification
method, and develop an algorithm to identify the state space models for arbitrarily time-
varying systems, in particular periodically time-varying systems for which the repetition
of the experiment is intrinsic. This algorithm belongs to the class of the MOESP (MIMO
Qutput — Error State Space Model Identification) approaches which was first introduced
by Verhaegen and Dewilde in [12]. This part of the work was presented at the ECC93
conference [30] and was published in [31].

The algorithm starts with an input/output ensemble and consists of several steps: 1.
Determine a basis for the row space of an observability matrix from a QR factorization
of an ensemble input/output observation by a singular value decomposition of part of the
R factor. 2. Determine from the row space suitable values for the system matrices A
and C up to similarity. 3. Determine the system matrices B and D up to similarity from
the row space and the space perpendicular to the row space. 4. Determine the identified
time interval. It is proved that with the algorithm, the estimated model is unbiased and

consistent when the output noise is zero mean white.

The second part of the thesis deals with the H,, control problem for linear discrete time-
varying systems. The two fundamental notions on which the method in [18] and [19]
based are the chain scattering representation and the J-lossless factorization. For solving
the discrete time-varying H,, control problem, we adopt this approach and put it in
our framework and notation. Hence, lossless and J-lossless operator theory and chain
scattering operator descriptions for time-varying systems forms the basis for the solution
of the H,, control problem for time-varying systems. We first extend the factorization
theory for upper operators in [9] to the general operator case, and subsequently develop

a time-varying J-lossless factorization theory and algorithm.

For a general operator T, we consider the J-lossless factorization in two steps: (1) an-
ticausal J-lossless factorization and (2) causal J-lossless factorization. In the first step,

T is factorized into a bounded upper (causal) operator Ty and an lower J-lossless (anti-
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causal) operator ©, as T = T30,. In the second step, T is further factorized into an
invertible and outer operator T,, and an upper J-lossless operator ©, as Ty = T,0,. Then
T =T1,0.0, = T,0 with T, invertible and outer, and @ = 0.0, J-lossless. A time-
varying Lyapunov equation is needed to solve the first step and a set of Lyapunov-like
equations are needed to solve the second step. We show that the second step is equivalent
to solving a time-varying Riccati equation (or a Riccati recursion). The existence of the
factorization is formulated in terms of the positive definiteness of the solutions to these

Lyapunov and Riccati equations.

With the approach in [18] and [19], if the chain scattering representation exists and ad-
mits a J-lossless factorization, the H,, problem has solutions. The class of suboptimal
controllers is defined in terms of a homographic transformation of the inverse of the outer
operator which is obtained from this factorization and an arbitrary strictly contractive
upper operator. The connection of such a controller to the system is equivalent to the
homographic transformation of the J-lossless operator and the arbitrary strictly contrac-
tive upper operator. Using the strict contractiveness property of such a transformation,
it follows that for any such solution the closed loop system is stable and the H,, norm is

smaller than the prescribed bound.

1.3 Outline of the thesis

The organization of this thesis is as follows.

In Chapter 2, the relevant notation, definitions and theorems based on [9] for time-varying

systems are introduced and extended.

We discuss a subspace model identification algorithm for time-varying systems in Chapter
3. We pay particular attention to periodically time-varying systems because the repetition
of the experiment, which is a disadvantage of the ensemble method, is intrinsic in this case.
An application of the developed algorithm to the identification of a multivariable multirate
sampled data system demonstrates the usefulness of this scheme. The unbiasedness and
consistency of the algorithm to zero-mean white noise on the output measurements are

shown from this example.

The definition of lossless and J-lossless operators, their properties, and related theorems
are considered in Chapter 4. These two kinds of operators are important in system and
control engineering because of their useful and elegant properties. In this chapter, we
discuss the necessary and sufficient conditions for operators to be lossless or J-lossless
in terms of properties of their realizations. In our appliéation, we are mostly interested

in J-lossless operators. An important property, namely the strict contractiveness of the

s
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homographic transformation of a J-lossless operator and a strictly contractive upper op-
erator, is proved in an operator setting. This property is the basis of our solution to the

H_, control problem in Chapter 6.

In Chapter 5. we consider linear discrete time-varying outer—J-lossless (conjugated J-
lossless—outer) factorizations in two different descriptions: an operator setting and a causal
state equation setting. In the first case, we assume that a dichotomy of the time-varying
system is known and given by the sum of a bounded lower operator and a bounded upper
operator. The factorization is subsequently formulated in two steps: an anticausal J-
lossless factorization and a causal J-lossless factorization. The second setting is a special
case for which the causal form of the time-varying system exists. We extend the operator.
conjugation approach of [19] to the time-varying context and consider J-lossless factoriza-
tions by this method. This leads to a time-varying Riccati equation which is shown to be
the same as the Riccati equation obtained with the first setting for a stable system. The
explicit form of the solution of the Riccati equation and the convergence of the Riccati

recursion is discussed.

The solution to the linear discrete time-varying H,, control problem is considered in
Chapter 6. This solution is based on the chain scattering representation and outer—J-
lossless factorization of Chapter 5. For a system, if its chain scattering representation
exists and admits an outer—J-lossless factorization, the H, control problem has solutions.
The set of admissible controllers is formulated in terms of a homographic transformation
of the inverse of the outer factor which is obtained from the factorization and an arbitrary
strictly contractive causal system. The J-lossless factorization theory and algorithm of
Chapter 5 are the main tools for this approach. In the case that the causal state equation
description of a system exists, it is shown that two time-varying Riccati equations, one
forward and one backward, describe the solution of the factorization of a general system.
The existence of the factorization is determined by the definiteness of the solutions of
these Riccati equations. The approximation of the H,, norm of a transfer operator is
discussed for a special case. With the controllers that are thus designed, the closed loop
system is stable and strictly contractive up to a known bound.

In the research of H,, control, there are two classes of approaches. One is the approx-
imation method and another is the interpolation method. The method in [18] and [19]
belongs to the second class. If the chain scattering representation is‘invertible, the H,
control problem is equivalent to the interpolation problem. The solvability of the problem
is determined by the definiteness of a Pick operator which is related to the interpolation
data. We discuss this topic in Chapter 7.
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Chapter 2
Time-Varying System Theory

Time-varying system and realization theory developed in [1] by Van der Veen plays an
important role in this thesis. This theory was based on a notation which was originally
introduced by Alpay, Dewilde in [2] and subsequently in {3] by Alpay, Dewilde and Dym.
Although [1] is mainly concerned with causal stable time-varying systems, we can extend

the theory to anticausal systems and, more generally, mixed causal and anticausal systems.

2.1 Non-uniform vectors, transfer operators and shift

operators

Let us define an infinite vector (written as row vector) sequence u as

u=[w]*E = [ug,[uolu...] (2.1)

with dimensions defined by the indez sequence M = [MiJI = [...M_l,, M;...] with
M; a finite integer. If the M; are not all the same, we say that u is a non-uniform
vector sequence. A non-uniform vector sequence space M is defined by the set of vector
sequences u with the index sequence M as the Cartesian product of the M;:

M=--»><M_1><><M1><~~CCN

where M; C €. (The box indicates the entry at time point 0).

The norm of a non-uniform sequence is the standard 2-norm (vector norm) defined in

terms of the usual inner product:

u—[ +2: Hu”z— '”' yuy = 2””1”2

13
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The space of non-uniform sequences in M with finite 2-norm is denoted by M-
' ={ue M: ||z < oo}

Let M and N be spaces of sequences corresponding to index sequences M, N. Let us
consider a system which maps the input signal vector sequence u € M into an output
signal vector sequence y € V. This mapping can be described in terms of an operator, ”
called transfer operator, of the system. The mapping is described by the notation:

T:-M—=N, y=uT
The block entry T ; is an M; X N; matrix with 7 and 7 the position indices as same as in
a normal matrix. If an operator maps signals from £} to £, the operator is a bounded
operator. The set of bounded operators defines an operator space X, that is: )

X :={T: " — t¥|T is bounded)

& is a Hilbert space. A Hilbert space is an inner product space which is complete, relative
to the metric induced by the inner product. In X, we define the space of the bounded

upper operators
UMN):={Te X(M,N): T;=0 (:>j)}
the spé,ce of the bounded lower operators
LMAN)={T€e X(M,N): T;=0 (z <)}
and the space of bounded diagonal operators
D:=UNL
Let '€ X. The infinite norm of T, denoted by ||T|| is defined as:
T oo := Sup{l|zT ||z, ||z]]2 = 1}

For an operator ' € &', if TT* = I, then ||T||oo = 1 and if T7* < I, then ||T||o < 1,
where T™ means the adjoint of 7' and TT* < I means that I — T'T* is positive definite.
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T € X and ||T||eo < 1, We say T is strictly contractive. If T is strictly contractive and

also in U, we say T is an H, operator.
Hyo:={T: ||ITllo<1 and T ecU}

Based on the definition of bounded operator space X(M,N), we define the Hilbert-
Schmidt space Xa(M,N) which is a subspace of X and also bounded in Hilbert-Schmidt
norm. The Hilbert-Schmidt norm is defined as

AllEs =2 ll46llz - (A€ X(MN))

The space X; is then defined by:
Xo(M,N):={A € X:||A|l}s < oo}

Related spaces in X, are upper, lower and diagonal Hilbert-Schmidt spaces given by:

U, := xonU
[:2 = Xz N £
Dy, = XND

Let X be a bounded operator. The spectral radius of X is defined as
/(X) = Jim || X" [V

It is well known that if r(X) < 1, then an inverse of the operator (I — X) exists and is

given by the Neumann expansion
I-X)'=I+X+X*+--

We define the shift operator Z as

(2.2)

where I,,, is the ng X ng identity matrix. Note that Z~! = Z*. Then, multiplying Z~* on

the right-hand side of a vector sequence as in (2.1)produces a one step forward shift:

uZ = [..u_1,uo, [u1]-] (2.3)
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2.2 State space model for time-varying systems

Let us consider a time-varying causal system described by:

Tip = TRAL + w By (2.4)
i = 25C; + us g (25)

and an anticausal system by:

Th_y = TRAL +w By (2.6)
v = 7xCF + wi Dy (2.7)

where the superscripts ‘c’ and ‘a’ stand for causal and anticausal. At time k, 2§ € R ™
is the state of the causal system, 2% € R ™ the state of the anticausal system, u; € R ™
the input and yf,yf € R'* the outputs. All these are row vectors with time-varying
dimensions in general. If we consider a general time-varying system which is the sum of
the systems (2.4)-(2.5) and (2.6)-(2.7), then this system has states z; = [ z{ 22 ] and
output yx = y; + ¥;.

Definition 2.1 For a time-varying causal system as (2.4)-(2.5), a system state space
representation (A, BiS,Ci¢, DY) is said to be similarly equivalent to (A, B;, C;, D),
denoted as (A, Bf,C§, D§) ELY (A2, BE,Ci, DY), if there exist a transformation Tj, €
Rk such that Ty, and Ty are bounded for all k € Z and (Af, BE,C)5, D) satisfies

A CF | T oo §CE| T O (28)
Be Dy 0 I., || B D 0 I '

The definition of similarity transformation of a realization of a time-varying anticausal
system is similar to time-varying causal systems.

Let us put each of the system matrices, Af, B, Cf, D§, for k = --+,—1,0,1,2,---, into
infinite diagonal operators, A, for example,

Ac, 0
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B, C., D, A,, B,, C, and D, are defined in a similar way.

For the A-operator of a causal system, A, for example, we define £4_ := 7(A.Z); For the

A-operator of an anticausal system, A, for example, we define £4, := r(A,Z71).

For a causal system, it is causally stable if £4, < 1 and causally unstable if £4, > 1. For an
anticausal system, it is anticausally stable if {4, < 1 and anticausally unstable if £4, > 1.
From now on in this chapter, we consider the case £4, < 1 and £4, < 1 except that other

cases are specified.

With the shift operation as in (2.3), the system realization (2.4)-(2.5) can be reformulated,
in a global sense, into
XZ'=X.A +UB, (2.9)
Y.=X.C.+UD, (2.10)
by considering the generalized inputs U € XM for which the :th row, denoted by Uj, is
in £ and outputs Y, € A for which the ith row denoted by Y;, is in Z’Qf . U then can be
explained as a stack of independent sequence {U;} in £21. Y, can be explained similarly.
The subscript ‘c’ stands for causal. With £,, < 1, X, = UB,Z(I — A.Z)™ € XP with B
the state vector sequence space. System realization (2.6)—(2.7) can be reformulated into
X.Z=X,A,+UB, {(2.11)
Y, =X,C,+UD, (2.12)

The subscript ‘a’ stand for anticausal.

If £4, < 1, the input-output mapping of system (2.9)-(2.10) can be expressed by an upper
operator as,

T, = D. + B.Z(I — A.Z)™'C. (2.13)

_ and we say that T, € Y. The identity operator has the same size as A.Z. Later on, if we
do not mention the size of an identity operator or an identity matrix, the indexes of them
are determined by the correspondent operator or matrix.

In a similar way, if £4, < 1, the input-output mapping of the system (2.11) and (2.12)
can be expressed by a lower operator as,

Ty = D, + B.Z*(I — A,Z*)'C, (2.14)

and we say that T; € L.
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If an upper (or lower) operator has a state realization with state-space sequence B where

By has finite dimension, then we say that it is a locally finite operator.

With £4, < 1 and €4, < 1, the sum of system (2.9)-(2.10) and (2.11)-(2.12) can be
expressed as a bounded operator as

T =D+ B.Z(I — A,2)"'C, + B,Z*(I — A, Z*)"'C, (2.15)

where D=D,+ D, and T € X.

Note that T can be causally unstable (or causally unbounded) if A, is invertible and the

causal form of the system exists.

If an operator T € X can be split into T = T, + T} with T, € U, T} € £ and both locally
finite, then we say that T is a locally finite operator.

Multiplying with Z on the left hand side and with Z* on the right hand side of a diagonal
operator, A, for example, the resulted diagonal matrix is a one step north-west shift of

the original matrix. We then have:

Ail AS
ZAZ* =17 As z*
Af A3

I
=

Z A Z* is denoted as Ag‘l). In general, we write
A((:k) = ZtkAczk

where £ =0,+1,£2, ...

With the global expression, equation (2.8) can be reformulated into

A, C.| [T O||A C ||[TtD 0
B.D.| |0 1]|]|B. D 0 I

with T an invertible diagonal operator.

Next, we consider the cascade connection of two bounded operators, 73 € & and T, € L.
What is a state description of the resulting operator T' = Ty T5?
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Lemma 2.1 Let Ty € U and T, € L be two locally finite bounded operators, where Ty has
a stable realization {Ay, B1,Cy1, D1} such that Ty = Dy + B1Z{I — A/Z)7'C) and T3 has
a stable realization {Az, By,Cs, Dy} such that Ty = Dy + ByZ*(I — A2Z*)™'Cy. Then,

T = TyT; = (D1Dy + BiY"VC,) + BiZ(I — AZ) 7 (CiDy + AYTVC,)
+(D1By + BiYVA)Z (I — A,Z*)'C,  (2.16)

where Y is the unique solution of the Lyapunov equation:
Y = AYV4, 4+ C1 B, (2.17)

Proof:

T =TT, = [D; + BiZ(I — A\Z)*C1|[D; + B:Z.(I — A;Z.)"'Cy)
=DyDy+ 31Z(I - A1Z)_101D2 + DlBQZ*(I - A2Z*)_102
+BZ(I — AiZ) 7 C1By(I — Z*A)) 27 Cy (2.18)

Suppose that (I — A1Z)" C1By(I — Z*A3)"'Z* can be separated into:
(I - A1Z)_101.Bz(1 - Z*Az)_lz* = (I - A1Z)_1X + Y(I it Z*A2)_1Z*

Multiplying both sides of the above equation by (I — A;Z) on the left and by Z(I —Z*A;)
on the right, we obtain:

CiBy = XZ(I — ZAz) + (I = A, Z)Y = (X — A, YUDNZ 4 (Y — X A4,)
Because (1 B; is diagonal, we have:

X =AY
CiB; =Y — XA,

Substituting the first relation above into the second we get: C1 B, =Y — A YDA, This
is the relation given by equation (2.17). It has a unique solution in the case both A; and
A, are stable and the solution is given by:

Y = 0132 + Z AlAg—l) . Ag-—H—l)C{—i)Bg—i)Ag—i+l)Ag—i+2) . Az

=1
Then, T can be written as:

T=DD, + 31Z(I - AzZ)_l(ClD2 + A]_Y(_l)02) + D1B2Z*(I - Agz*)-102
+BY V(] — 4,29)1C, »
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Since

BY"O(I = 4,2°)7'C, = BiYIC, + BiYCVAZ(1 — A,2°)71C,

Substituting this relation into equation (2.18) we get equation (2.16). m]

Conversely, if there is a locally finite operator T' € X’ which has a realization

{A1, B1,Ch, Ay, B,,Cs, D}, we can always find a factorization T' = Ty T, with Ty € U (or
Ty € L) with a realization {A;, B1,C., D} (or {A3, Bs,C,, D,} respectively) for some
diagonal operators C. and D, (or C, and D,), and an operator T, € £ (or Tz € U) with
a realization {As, B,,C3,D,} (or {Ay, B, C1,D.}) for some diagonal operator B, and
D, (or B, and D,) such that T1T, = T. There choice of C,, D., B,, D, and Y is with

constraints:

Y = A4, YDA, + C.B,
Cy=C.D, + A YEDC,
B, = D.B, + BiyY-1)(C,
D = D.D, + BiY-I¢,

Because there are more unknowns than constraints, the choice of the realization is with

certain freedom.

2.3 Reachability and observability of time-varying sys-
tems A |
A Hermitian operator A in X is semipositive, notation A > 0, if for all u € £}1,
(ud,u) >0
A is positive, notation A > 0, if for all u € £V,
(ud,u) >0

A is uniformly strictly positive, notation A >> 0, if there is an ¢ > 0 such that, for all
u €,

(uA,u) 2 e(u,u)

If A > 0, A is invertible but not necessarily bounded. In the case A > 0, A is boundedly

invertible.
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Definition 2.2 Let a realization of a time-varying causal system as (2.9)-(2.10) be
{A,B,C,; D} with £4 < 1. Define:

B
B@ A1)

C=| gE4@ 40

(2.19)

C is called the reachability (or controllability) operator and P = C*C is called the reach-
ability Gramian. The realization is reachable if P > 0; the realization is uniformly
reachable if P> 0. If P =0, the realization is called unreachable. o

It is easy to conclude that if B = 0, then realization is unreachable.

Definition 2.3 Let a realization of a time-varying causal system as (2.9)-(2.10) be
{A,B,C,D} with £4 < 1. Define:

O=[C ACHD AACYNCED .. (2.20)

O is called the observability operator and Q@ = QO is called the observability Gramian.
The realization is observable if Q > 0; the realization is uniformly observable if Q > 0.
If Q =0, the realization is called unobservable. O

If C = 0, then the realization is unobservable.

If the realization is both reachable and observable, it is called a minimal realization; if
the realization is both uniformly reachable and uniformly observable, it is a uniformly

minimal realization [1].

Proposition 2.1 [1] Let {A, B,C, D} be a realization of a time-varying causal system
with £4 < 1. The reachability Gramian P satisfies the Lyapunov equation

A*PA+ B*B =Pt , (2:21)
(m}

Proposition 2.2 [1] Let {A, B,C, D} be a realization of a time-varying causal system
with £4 < 1. The observability Gramian Q) satisfies the Lyapunov equation

AQV A L CCr =Q ’ _ (2.22)

0
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In [1] and [5], the definition of reachability and observability for a time varying causal
system are slightly different from Definition 2.2 and Definition 2.3. Let us consider the
causal form of a discrete time-varying system described by the state equation:

XZ'=XA+UB (2.23)
Y=XC+UD _ - (2.24)

In general, the spectral radius of the diagonal operator A is not necessarily smaller than
one. Then Definition 2.2 and Definition 2.3 do not make sense any more. In this case, a
finite reachability operator Cs is defined as,

B
B® AW
Cs = . (2.25)
BOAE-D ... 40
The smallest integer value of é for which the condition P; = C3Cs > 0 holds is called 6,
and is indicated as the reachability indez (similar to the linear time invariant case [6]).

The finite reachability Gramian is defined as Ps, = C;.Cs,. The system is finitely reachable
if P5, > 0; the system is uniformly finitely reachable if Ps, > 0.

The finite observability operator (s, is defined similarly. Note that P;, and Q;s, do not
satisfy the Lyapunov equations (2.21) and (2.22).

With the description of (2.23) and (2.24), the definitions of stabilizability and detectability -

can be defined as follows:

Definition 2.4 Let a discrete time-varying system be described by equations (2.28) and
(2.24). The system is stabilizable if there exists an operator F € D such that £arpp < 1.

O
The pair [A, B] is called a stabilizable pair.

Definition 2.5 Let a discrete time-varying system be described by equations (2.23) and
(2.24). The system is detectable if [A*,C*] is a stabilizable pair. o
The pair [A, C] is called a detectable pair.

The definitions of reachability and observability etc. of a realization of a time-varying

anticausal stable system are similar to that of a time-varying causal stable system but
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with the shift south-east instead of north-west for the reachability operator and north-west
instead of south-east for the observability operator. Next, we can define the reachability
and observability of a general system as Eq. (2.15) as follows. A similar definition for a
general system in the time invariant case can be found in [7].

Definition 2.6 Let a realization of a time-varying system be {Ac, B, Ce, Ag, Bs, Cs, D}
with £4, < 1, £4, < 1 such that the transfer operator T € X of the system is:

T =D+ B.Z(I — AZ)™'C, + B.Z*(I — A,Z")"'C, (2.26)
Define:
BO
BOAW
Cc = ng)Agz)Agl) (2.27)
and
BV
B2 Ag—l)
Co = 5 (2.28)

B‘(1—3)Ag~2)Ag—1)

C. is called the reachability operator of the causal part of the system and C, is called
the reachability operator of the anticausal part of the system. Similerly, P, = C:C. is
called the reachability Gramian of the causal part and P, = C;C, is called the reachability
Gramian of the anticausal part. The realization is reachable if both P, > 0 and P, > 0;
the realization is uniformly reachable if both P, > 0 and P, > 0. ]

~ Definition 2.7 Let a realization of a time-varying system be {A., B, Ce, A4, Bo, Ca, D}
- with £4, <1, La, <1 such that the transfer operator T € X of the system is:

T =D+ B2Z(I - AZY'C. + B,(I - A, Z*)'C, : (2.29)
Define:

O.=[C. ACEY AACNCED ] . (2.30)
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and
0. =[C, ACY AADCR ...] (2.31)

O, is called the observability operator of the causal part of the system and O, is called the
observability operator of the anticausal part of the system. Similarly, Q. = OO is called
the observability Gramian of the causal part and Q, = 0,07 is called the observability'
Gramian of the anticausal part. The realization is observable if both Q. > 0 and Q, > 0;
the realization is uniformly observable if both Q. > 0 and Q, > 0. a

Until now, we have only defined reachability and observability operator of a discrete
time-varying system in a global sense. The system matrices of a discrete time-varying
system in a global sense are in the form of infinite diagonal operators. Reachability and
observability operators are then in a block infinite diagonal form. Taking the causal

observability operator in (2.30) as an example, the form is as,

O=[C ACHD AANCED ... ]

For some time instant ¢, the observability matrix can also be defined locally in the form:
O=[C ACu1 AAwCuz -]  t=-,=1,0,1,-- (2.32)
and for the same reason, the reachability matrix at time instant ¢ can be defined as

B,
Bi24Ai

C = f=-wey—1,0,1,--- 2.33
= | B oA aAis (2:33)

Local reachability and observability matrices can be constructed by picking up the cor-
responding ?-th element from every diagonal block of the reachability and observabil-
ity operators and putting them in the same position corresponding to the global form.
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Then, reachability and observability Gramians for time instant ¢ are defined in a similar
way as in the global form and satisfy recursions as, reachability Gramian for example,
P,y = A;P, A+ BfB;. P, is the T-th entry along the diagonal of P. If the system is uni-
formly reachable, then every local reachability Gramian is positive definite. If the system

is uniformly observable, then every local observability Gramian is positive definite[5].

2.4 State spaces of operators

In [1], the input and output state space of an upper operator are defined. Extensions
to a lower operators are given in [8]. We can further extend the definitions to a general
bounded operator which belongs to X'. Let us begin with some useful definitions before
.we look at these spaces.

Subspace: A closed linear subset in a Hilbert space H is called a subspace.

A sequence {¢;}5° of vectors of a Hilbert spaces H is called a basis of this space if every

vector f € H can be expanded in a unique way in a series
o0 n
f= Zl:ai¢i = 7111}{.1(’;%%

which converges in the norm of H.

Left D-invariant subspace: A subspace H in A, is said to be left D invariant if F €
'H = DF € H for any diagonal D € D, i.e. DH C H.

Left shift invariant subspace: A subspéce ‘H in X, is said to be left Z~!-shift invariant
if F € H= Z'F € H, Z is the shift operator. A subspace H in X, is said to be left
Z-shift invariant if F € H = ZF € H.

Strong basis: Let H be a locally finite left D-invariant subspace in X; and F be a basis
of H such that H = D,F. If the Gramian operator Ap = Po(FF*) >> 0, where Py denotes
the projection onto D, then the basis is said to be a strong basis of H.

The concept of spaces, subspaces and a basis of a subspace can be found in standard
textbooks. For the original definition of strong basis, see [1].

Let T € U be a bounded causal operator. Define:

K(T) = {Ue€L,Z,P(UT)=0} ‘ (2.34)
H(T) = Pryz-1 (T (2.35)
Ho(T) = P(LZ7'T) . ' (2.36)

KZO(T) {Y (S UQ, P/;2z—1 (YT*) = 0} ’ (237)
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where P denotes the projection onto U and P,z-: denotes the projection onto £;Z!.
K is called the input null space. It is a subspace which is left D-invariantin £,Z7*[1].

‘H is called the input state space. It is a subspace which is left D-invariant in £,Z~1. The
closure of H [1] is the complement of K in £2Z7*, denoted as: '

H(T)® K(T) = L,Z71 (2.38)

where ‘@’ denotes the direct sum of orthogonal spaces. Conversely, H(T'), the closure of
‘H and the orthogonal complement of K(T') in £,271, is likewise written as:

H(T) = L,Z27' 6 K(T)

H, is the output state space. K, is the output null space. H, and K, are subspaces which

are left D-invariant in Uz, K, is the complement of F, in i,:
H(T)®K,(T) = Uy (2.39)

The null and state spaces satisfy the following relations:

P(KT) = 0 (2.40)
Pz (K.T*) = 0 (2.41)
H, = P(HT) (2.42)

H = Prga(H,TY) (2.43)

Let T € ¢ have a minimal realization {A, B,C, D} which is locally finite with £4 < 1
such that T'= D + BZ(I — AZ)™'C. Define:

F* = BZ(I- AZ)" (2.44)
F, = (I-AZ)'C (2.45)

In [1], the following relations for the reachability and observability Gramians are derived:

Po(FF*) = C'C2ApeD (2.46)
Po(F.F%) = 00" Ap eD (2.47)

il

F and F, are the strong basis representations of the input and output state spaces, re-
spectively. Because of the equivalent relation between F and C, F in (2.44) is said to be
the associated reachability operator. For the same reason, F, in (2.45) is said to be the
associated observability operator. We have the following proposition.



2.4 State spaces of operators 27

Proposition 2.3 [1] Let T € U and {A, B,C, D} be a bounded locally finite realization
of T such that T = D+ BZ(I — AZ)™'C. LetF and F, defined in Egs. (2.44) and (2.45)
be strong basis representations of the input and output state spaces. Then H, C D;F, and
H C D;F.

If the realization is uniformly reachable, then H, = D,F,.

If the realization is uniformly observable, then H = D,F. O

In a similar way, we define the null space and state space etc. for lower operators.

Let T € £ be a bounded anticausal operator. Define:

KYT) = {U=UZ,Ps,({UT) =0} (2.48)
HYT) = Puz(LT) (2.49)
HYT) = Pp,(hZT) (2.50)
KT) = {Y € Ls,Puz(YT") =0} - (2.51)

K? and H® are input null space and input state space of T'. The superscript ‘a’ stands for
anticausal. They are left D-invariant spaces in U, Z. K* is the complement of H* in U, Z:

W@’Ca =Z/{2Z

K2 and H? are output null space and output state space of T'. They are left D-invariant
space in £3. K¢ is the complement of H2 in L,:

Ha® Ko =Ls

Sometimes we title these spaces for a lower operator ‘anticausal’ to distinguish them from

those defined for an upper operator.

The null and state spaces of a lower operator satisfy the following relations:

P, (K°T) = 0 (2.52)
Puz(KiT*) = 0 (2.53)
H = P (H'T) (2.54)
H = Puz(H,'T") (2.55)

where P, denotes the projection onto £, and Pygz onto UZ.
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Let T € £ have a minimal realization {A,B,C, D} with £4 < 1 such that T = D +
BZ*(I — AZ*)7C, Define:

F* = BZ*(I - AZ*)" (2.56)
F: = (I-AZ")'C ‘ (2.57)

4

We can derive that:

Po(F°F™) = C.C:
Po(FeF™) = 00,

where C, and O, are defined as same as (2.28) and (2.31) respectively, and Py denotes
the projection onto the diagonal. F® and F? are strong basis representations of the input
and output state spaces of T, respectively. A dual of Proposition 2.3 is as follows.

Proposition 2.4 LetT € £ and {A, B, C, D} be a bounded locally finite realization of T.
Define F* and F% as in equations (2.56) and (2.57). Then HZ C D,F? and H* C D, F°.
If the realization is uniformly reachable, then H2 = D,F2.

If the realization is uniformly observable, then H* = D,F°. o
Let T be a locally finite bounded operator which can be separated into causal and an

anticausal part. With the definition of state spaces and null spaces for causal operators

and anticausal operators, we have the next corollary.

Corollary 2.1 Let T € X be an operator of the form:
T=D+ Bl(Z* - Al)'l()’l + Bg(Z - AQ)_ICZ

where {A1, B1, Ch, Az, By, Cs, D} is a minimal realization of T. Define T, = D + By(Z* -
A)ICL €U and T, = By(Z — A)7'Cy € LZ7. Then, we have

HT) = HI) KT) = KT
HJT) = H(T)  KoT) = Ko(T.)
HY(T) = HYT.)  KT) = KT,

(7o)

HAT) = Hy(To)  Ky(T) = Ki

Proof: The proof is straightforward. a
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Chapter 3

A class of Subspace Model
Identification Algorithms to Identify
Discrete Time-Varying Systems

3.1 Introduction

Linear time-varying system identification techniques have received much attention re-
cently [1], [2]. Although a lot of effort has been devoted to the development of identifica-
tion schemes to identify linear time-invariant dynamical systems, most systems demon-
strate time-varying and/or nonlinear behavior in reality. Since it is common practice
in system engineering to treat non-linear systems as linear time-varying systems [3], the
identification of linear time-varying systems should be an important topic in system iden-

tification.

Asoutlined in [2] and [4], there are two classes of approaches to identify linear time-varying
systems: (1) methods working with a single time sequence of input and output quantities
such as quasi-time-invariant approach, recursive identification schemes equipped with a
mechanism to ‘forget’ the past and recursive functional series modeling estimation [5]; (2)
methods working with an ensemble of input and output time sequences. The first class of
time-varying system identification methods requires a priori knowledge about a system’s
structure and the form of its time-variation and/or the change in the dynamics of the
underlying system occurs at a rate comparable to the sampling rate. If these conditions are
not available, these methods are inappropriate to estimate accurate models [5] [6]. When
accurate models are required in these circumstances, a possible solution can be found via
the second class of methods, ensemble methods. Ensemble methods enable us to identify

linear time-varying systems with changing dynamics over a time scale shorter than that

30
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of the dynamics themselves, and/or with no priori knowledge about the system’s behavior
or the form of its time-variation. The key consideration of ensemble methods is that an
ensemble of input and output time sequences, each exhibiting the same underlying time-
varying behavior, can provide enough information about an unknown time-varying system.
This point was also supported by the research of B. Widrow [7] and M. Neidzwieki [5], in
whose work it is recommended that multiple observations must be employed to identify
a time-varying system accurately when a priori knowledge about the time-variation of
the system dose not exist. A similar need was established in the analysis of identification
problems for biomedical systems exhibiting fast changes in their dynamics [2] [8] [6]. In [6],
it was experimentally verified that identification schemes of recursive type equipped with
exponential forgetting were not able to handle such fast changing dynamics. Ensemble
methods have not been used frequently for the possible reasons of the lack of algorithms
and the practical difficulties associated with acquiring, storing and analyzing the large
data sets.

Nevertheless, some applications of ensemble identification were reported by Kearney et al.
[4] [8], MacNeil et al [2] and Yu and Verhaegen [6] in biomedical engineering where they
tried to obtain more accurate models. Other possible applications of ensemble methods
include the identification of non-linear systems operating along a particular trajectory,
such as a robot arm executing repetitive manoeuvres, and periodically time-varying sys-
tems. With the latter class of systems, the collection of an ensemble of i/o sequences each

exhibiting the same time-varying behavior is intrinsic.

In [4], [8] and [2], a numerical scheme was proposed to identify a time-varying Finite
Impulse Response (FIR) model from an ensemble I/O data. A FIR model often needs
many parameters especially in time-varying cases. As a result, the estimated model is not
accurate for finite number of data. As in the time-invariant cases, the estimation of the

impulse responses should be avoided when the underlying system is marginally stable [9)]
[10]. '

Subspace model identification (SMI) methods are viewed as a better alternative to the
method mentioned above. First of all, a state space model has a more compact form than
the FIR model. More important, state space models are widely used in system theory
and control. In [1], a linear time-varying state space model has been identified from the
so called generalized Hanke] matrix in time-varying context. Despite of the fact that this
is a two step procedure, the determination of the accurate impulse responses, which form
the Hankel matrices, is still a difficult task. Secondly, SMI methods have the advantage
that the estimated model is more accurate than the FIR model given a finite set of data.
Thirdly, SMI methods do not experience the problems of convergence and sensitivity to
initial estimates as iterative methods, and also do not experience problems when the data

is measured on a plant with non-zero initial condition [9]. In this chapter, we formulate
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a class of SMI algorithms to identify arbitrary MIMO linear time-varying systems with
ensemble methods. With the algorithms, the state space model can be obtained directly
from the available input and output data sets. The algorithms are an extension of the
recently developed subspace model identification approach MOESP (MIMO Qutput —
Error State Space Model Identification) in [10] [11] [12]. The algorithms retain all the
properties from the MOESP. For example, the ordinary MOESP algorithm for ensemble
identification problems can provide an unbiased consistent estimate when the noise on
the output is zero-mean white; the PI scheme for ensemble identification problems can
give an unbiased consistent model when the noise is zero-mean coloured. We propose that
they are useful in the state space model identification of a MIMO time-varying system
when there is not a priori knowledge of the system’s behavior and time variation, and/or
the system has fast changing factors. More generally, the dimensions of the state, input
and output of the system considered in the algorithms are allowed to vary. The variation
of the state dimension has been observed in an application of the algorithms derived in
this paper to the identification of a biomedical system [6]. The variation of the dimension
of the input and output quantities occurs in the treatment of a particular class of periodic
systems, multirate sampling systems. In our work, special attention is given to this class

of systems.

The choice of extending the particular subspace model identification approach is twofold.
First, the MOESP approach allows to address the same classes of time-invariant identi-
fication problems compared to the related SMI approaches, such as approaches in [13]
and [14]. Therefore, extending the MOESP approach does in no way restrict the range of
problems that can be tackled. Second, the ultimate close relationship between the MOESP
approach and the related approaches in [13] and [14] would enable the interested reader
to extend these other approaches without much difficulty when following the strategy
outlined in this paper for the MOESP approach.

This chapter elaborates on the work presented in [15]. There it was shown that ensemble
identification problems are a natural way of formulating identification problems in the
non-stationary (operator-theoretic) system theory pioneered by different researchers such
as Alpay, Dewilde and van der Veen [16] [17]. The theory is currently receiving a high
degree of maturity, see e.g. [18].

The organization of this chapter is as follows. Section 2 summarizes some general notation
used throughout the whole chapter and quickly reviews some properties of random vari-
ables in a time-varying context. Section 3 presents the ensemble identification problem
when there are no errors on the input/output data and contains definitions, such as per-
sistency of excitation of the input, relevant to solving the ensemble identification problem.
In section 4, the solution to the ensemble identification problem described in section 3 is
presented and followed by the solution to the ensemble identification problem when the
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output is disturbed by zero mean errors of white or arbitrary coloring. In Section 5 we
specialize this solution to the identification of periodically time-varying systems. In this
section some of the performances of the derived algorithms are presented in an illustra-
tive example considering the identification of a multirate sampled data system. Finally,
section 6 contains some concluding remarks. Finally, section 6 contains some concluding
remarks. Since the identification algorithm is obtained by considering the local properties
rather than the global properties of the identified systems, we discuss problems by using
local notations rather than global notations in this chapter.

3.2 Notations and statistical framework of analysis

In this section, we list some frequently used notations and briefly review the statical

concepts used throughout the chapter.

1. p(A) denotes the rank of matrix A and AT denotes the tra;rlspose of matrix A.

2. I, denotes the identity matrix of order n. |

3. The matrix inequality A > (>)B means that A — B is positive (semi positive) definite.

4. R ™ denotes the n-dimensional vector space over the field of real numbers and R **™
denotes the space of n x m matrices with entries in R . Z denotes the set of integers and

Z* denotes the set of positive integers.

5. The @R factorization: The QR factorization of a matrix A € R ®*™ is a factorization
of A into an orthonormal column matrix @ € R ™" (i.e. QTQ = I,) and an upper
trapezoidal matrix R € R "*™ such that:

A=QR

Sometimes, when n > m, we consider a partial QR factorization in which only the first m
columns of the orthonormal matrix @ and the first m rows of the matrix R are retained.
6. The vectors considered in this paper are all row vectors.

7. Matrix partitioning: We use standard Matlab [19] notation, an example is:

Example 1: Let A € R ™*" and let £ < n, then a partitioning of A is represented by:

A=[A(G1:k) AGLk+1:n)]
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where A(:,1:k) denotes the first k columns of A and A(:,k+1:n) denotes the last (n - k)

columns, while the initial ’;> indicates that all rows are chosen.
8. The statistical framework of analysis [22] [20]:

For a discrete stochastic process, for example v;, v; presents the observation in the j*
experiment at time instant £. The ensemble of v, is a family histories v;y for j € [1,n],
t € [to,to + T — 1]. For a special time ¢, v; is a random variable (RV) [22] [20] and it
is assumed that the ensemble sample average and the ensemble sample covariance are
asymptotically unbiased estimates of the true mean and covariance of these RVs. For

example, for the mean this gives the following equality:
1 n
Elvy] = hm Zv], or E[vy= ;Zvj', + O,(¢)
J=1

where O, (¢) is a matrix quantity of norm € which vanishes as n — oo.

3.3 Preliminaries, problem statement and definitions

3.3.1 Model description and the ensemble identification prob-

lem

For the time being, we consider the deterministic part of the dynamic relationship between
input and output quantities of the system to be identified to be represented by the class of
maulti-input, multi-output (MIMO) discrete linear time-varying state space model. Let the
dimensions of the input vector u; and output vector y; be m; and £, i.e. u, € R ™y, €
R %, and the dimension of the state be Ny, i.e. z; € R ™. Then , the state model is given
by:
T = A+ wB; (3.1)
yo = 70+ wDy (3.2)

The system matrices are of the following sizes:

Nigy1 £
Mol A G (3.3)
me B, D,

The solution to equation (3.1) is given by:

-1
Ty = x0¢(t,t0) + Z U,B,Q(t,l - 1) (34)

i=ty
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where ®(%,1,) is defined as:

ApApgr- Al t> 1
@(t, to) = I t= to (35)
0 t<tiy

Let us repeat the Definition 2.1 of Chapter 2.

Definition 3.1 The system state space representation (o, Bi, Vi, 6:) is said to be similarly
equivalent to (A By, Cy, D) denoted as (A:, By, Cy, Dy) LY (o, Biy e, 61), if there exist
a transformation Ty € RM*Ne such that Ty and T, are bounded for all t € Z and
(cty By 11, 61) satisfies:

ar VYt _ n 0 At Ct Tt:_ll 0
sl el 2] 2

Let a system state space representation (A:, By, Ct, D;) be given. Consider a similarity
transformation Ty € R M*M to the system such that T} and 7! are bounded for all t € Z
and (As, B, Cy, Dy) 5 (1, By 11, 8:). If the representation (Ay, By, C:, Dy) is bounded
(Ai(.), B(.), Ce(.) is bounded) and stable (®(¢,1) — 0 as ¢ — o), then the transformation
T; preserves the boundedness of the transformed system by equation (3.6), and stability
by the equation[1]:

Br(t,to) = Ty, ®(2, t0) T, (3.7)

where @T(t, to) = Qg QOgp41 * * - Qg1+

The deterministic ensemble identification problem:

Let the index j in u;; indicate the input sample at time t of the j* experiment conducted
with the system (3.1) and (3.2). If j € [jo,jo+ n — 1] and ¢ € [to,to + T — 1] (where jo
indicates the first experiment, ¢, indicates the first instant, n indicates the total number

of experiments and T indicates the total measuring time a single experiment lasts), the
problem is to determine a state space description:

Citrr = oo + By (3.8)
it = Eieve+ ujeby ' (3.9)
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such that (e, B, 7, ;) is similarly equivalent to the state space representation ( A;, B;, C:, D;)
which is consistent with the input and output sequences contained in the chosen ensem-
bles:

Yioto Yiosto+1 Tt Yjo,to+T-1
Yio+1,t0 Yio+l,t0+1 " Yjotito+T-1
. . . (3.10)
Yio+n—-1t0 Yjotn—-tto+l *°° Yjodn—-1,t0+T-1

The ensemble of input sequences u;, is for the same series of experiments and over the

same time interval.

From the state space representation (2) and (3), it is easy to find the following relationship:

Yjost Yiost+1 v Yiost+s—1
Yio+1,t Yio+14+1  *° Yhio+1,t4s-1
Yio+n-1t Yio+n-1,t41 *°° Yjo+n—1,24s-1

Z ot

Tjo+1,t

[C ACus -+ Adua AvpaaCrpon |

Tjo+n—1,t
Ujo,t Ujo,t+1 i Uso t+s—1
Ujo+1,t Ujo+1,841 "0 Ujgdl,z4s—1
Ujo+n—1,t Ujo4n—1,t41 °*° Ujo4n—1,t4s-1

Dy BiCy1 o+ BiAgpa+ Apgs—2Ciis1

D
o (3.11)

Dt+s-1
This equation can be denoted more compactly as:

Yio = XiOrs + Us sy (3.12)
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Following the work of [1], the matrices ¥; s and U, s are referred to as generalized Hankel
matrices. The index set of these generalized Hankel matrices should be (jo, 1), s,n. This
set would allow a precise definition of that which part of the recorded output sequences
in equation (3.10) and the corresponding input sequences are stored in the respective
matrices. However, since the experiment index will not be relevant and we assume the
number of experiments n to be fixed by the experimental circumstances, we restrict the
index set of both matrices to ¢,s. Here ¢ indicates the time index of the their top left

entry and s determines their column width in the following way. Let

t4s—1 t4+s—1
L= 1 ad M= m, | (3.13)
T=t 7=t

then Y;, € R™% and U;, € R™M. Since X; € R ™M, thus O,, € RM*Li and
A” € R M"xL’

Based on the data representation, the solution to the deterministic ensemble identification
problem will be given by subsequently treating the following subproblems:

1. Given the data matrices Y; ; and U, 4, to determine conditions on the input sequences

to retrieve the row space of the observability matriz O;; and to determine this row

space.
2. To determine the matrices [ay, ;] from the row space of O,.
3. To determine the matrices [, &]-

4. To determine the minimum p and x such that [ay, B:, ¥z, 6] can be calculated in the
time interval ¢ € [to + p,to + T — 1 — x]-

3.3.2 Relevant lemmas and important deﬁnitidns.
In this chapter, we will use the following lemma.
Lemma 3.1 (Sylvester’s inequality [23] p. 655) Let My € R ™*™ and M, € R ™*?, then:
p(My) + p(Ma) — n < p(MiMz) < min{p(My), p(M;)} (3.14)
[m]

Let us repeat the following series of definitions which will demonstrate to be relevant in
solving the ensemble identification problem.
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Definition 3.2 (Jazwinski 1970)/24] Let, 6 € Z t,
Or5:= [ Ci AlCipr -+ AiArpr---Cus ]

and observability Gramian Go(t,t + &) 1= 0y,0F;, then the pair [A;,Cy] is uniformly
observable if 36 € Z*, and positive constants by, by such that :

0 < b < Golt, t+6) < byI, ¥t (3.15)

a

The least integer value §, for which the condition in (3.15) holds is denoted by §,. For
linear time-invariant systems, §, refers to the observability indez (Kailath, 1980], p.356)
[23]. With the § defined in Definition 3.2, it follows immediately via Lemma 3.1, that
p(O;5) = N, and this can only be true if L > N,.

The dual of Definition 3.2 is Definition 3.3 below.

Definition 3.3 (Jazwinski 1970)/24] Let Cy5 be

B,
B;_2A;
Cus = e (3.16)
By §As_s41° - Ar2As

and controllability Gramian G.(t — 6,t) := CsCys, then the pair [Ay, By] is uniformly

controllable if 36 € Z*, and positive constant a;, a; such that:
0< alI S Gc(t - 6,t) S agl,Vt (317)
O

The least integer value of § for which the condition (3.17) holds is denoted by é; and is
indicated as the controllability indez when the system is time-invariant [23]. When the
conditions in Definition 3.3 hold, Lemma 3.1 shows that p(C;s) = N; and M} > N,.

Definition 3.4 A bounded realization (A, By, Cy, D;) is said to be uniform if it is uni-
formly controllable and observable [1].
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Based on the definitions of controllability and observability, we have the following lemma.

Lemma 3.2 Let (A4, B;,Cy, Dy) be a ﬁniform realization, then its similarly equivalent

realization (ay, Be, 1, 6:) is also a uniform realization.

Proof: If (A:, B, Ct, Dy) I (at, Bt ¥, 61), it is easy to see that the controllability and
observability Gramian of the transformed system have the following forms:

Gep(8) = Ty TGN » (3.18)
Gop(t) = TG, ()T (3.19)

These two equations imply that G.,.(t) and G, (t) are congruent [21] to G.(t) and G,(t)
respectively. Therefore, when G.(t) and G,(t) are positive definite and bounded, so are

Gep(t) and Gop(2). O

Definition 3.5 A system representation (At,Bt, Cy, D;) is said to be uniformly balanced
if the following twe conditions hold:
(i) (A, B:, Ct) is uniform,
o1(t)
. 7a(t)
(it) Go(t,t + 5) = Go(t — s,t) i = E(t) =

O‘Nt(t)

where 01(t) > 03(t) 2 --- 2 on,(t) 2 0, VL. ]

In [1], an algorithm is presented to compute a uniformly balanced realization for any given
bounded uniform realization. The algorithm essentially proceeds in two steps. In the first
step, a similarity transformation is performed such that the observability Gramian of the
similarly equivalent realization is the identity matrix. In the second step a similarity

transformation is performed such that the controllability Gramian becomes diagonal.

Our final definition, which is illustrated by an example in the appendix of this chapter,
is stated next.

Definition 3.6 The input sequences in the data matriz U, , are locally persistent excita-
tion for the system which has a realization {A;, By, Ct, D;} at the time instant t if Is€ Z+
such that:

p([Urs| Xe]) = M + N , (3.20)

a
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3.4 A Subspace model identification solution to the
ensemble identification problem

3.4.1 The deterministic ensemble identification problem

When there is no noise in the input-output data, the matrices ¥; ; and U}, are related as

in equation (3.12). Based on this relationship, we address the subproblems described at
the end of Subsection 3.3.1 subsequently in the following subsections.

The determination of the row space of O,

First, perform a QR factorization of the compound matrix [Uy, | ¥z}, as:

M Ly
Mg
Uns | Yarl = (@1 Qo ™ | Prnal Baze (3.21)
n—M; 0 | Razye

where Q{,Ql,t = Ipp; and Q{ng,t = 0. Then we have the following theorem.

Theorem 3.1 Let the system be uniformly controllable and observable. In addition let
the following conditions be satisfied:

(1) the input sequences in the data matriz Uy, are locally persistent at time instant t,
(2) s >4,

(3) n> (M + Ny,

(4) the QR factorization of matriz [U,s|Y:s] are given and partitioned as in equation

(3.21),

then p(Rge:) = p(Os) = Ny, and the row space of Ray; equals the row space of the

observability matriz Oy ;.

Proof: Denote the QR factorization of the matrix pair [U,, | X;] as:

M; Ni

M

(U | X:) = [Q1t | Qurd] B | Bore (3.22)
Ne O I Rx2,t
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where QlT,tQm = 0. Since n > (M} + N;) and the columns of the matrix [Q1,¢ | Qs are
orthogonal, with the help of Lemma 3.1, condition (1) shows that,

Ry, | B
p 11, l 1,¢ — P([Ut,SIXt]) — Mts + Nt (323)
0 | RzZ,t
and
p(Roze) = N, (3.24)

With the QR factorization in equations (3.21) and (3.22), we ;an express Y; s as:
Yis = QueRuzs + Q2R

and equation (3.12) as:
Yie = XiO: s + Q1. R11,0 s

Using the expression for X; as given in equation (3.22), the latter equation can also be
denoted as:

Yio = Q14Re1401s + QutRe2:O0s s + Q1,0 R11 1A 5
Hence we have:
QB2 + Q2 Ra2t = Q10801404 s + Qi Ro2 104 s + Q10 Bu1 1A s (3.25)

Multiplying on the left of (3.25) with @Y, and using the properties that Q] Q1. = I,
QTQ2+ = Q1 ,Qq¢ = 0 we obtain:

Rizs = Re1tO4s + R114 A, (3.26)
Substituting this relationship back into the right-hand side of equation (3.25) yields:

Q222 = QotRo21O01s (3.27)
Hence by equation (3.24) and the fact p(O;s) = Ny, Lemma 3.1 shows that:

p(Razz) = p(Ors) = N,
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Furthermore, since Q{,Q,,,Rxg,t € RL*Ne and Oy, € RNXLi and since L¢ > N; by

condition (2), the row space of Ry, equals that of Oy ;. 0

It should be remarked that when condition (3) has to hold for V¢, the minimal number of
experiments, denoted by npyin, required is:

Nomin = te[tor,rtloﬁ-l](Mt + Nt) (328)
Therefore, we see that nm:, depends on an upper-bound of the order of the system provided
that s has been chosen such that condition (1) and (2) of Theorem 3.1 are satisfied. When
s is of the same order of magnitude as the order of the system as in the time invariant
case, then nyn turns out to be of the same order in magnitude as s. However, as we will
see later on in Subsection 3.4.2, the presence of errors on the output measurements would
require the number n to be very large (co) when estimates of high accuracy (consistent)

are required.

As a result of Theorem 3.1, we can find the row space of O, , through a SVD (singular
value decomposition) of Rz,;. Denote a SVD of Ry, as

S |0 V&,
= t 3.29
w0 (215 [ (420

with U, € R (=MOX(=M) Gy ¢ R NexNe Yy € R LN and Vit € R LiXTI-N) | Leg
T; € R Me*N: be a square invertible matrix, then because of Theorem 3.1 and the fact that

the row space of O, determines [A;, C;] pairs up to state equivalence, we can write:

Vi =T720,, (3.30)

The determination of the matrices [y, ]
From equations (3.30) and (3.6), we get:

Vie =17 emu o e opecaVeren | (3.31)
Hence, it is easy to see that

v=VE(1:4) ! (3.32)
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Lemma 3.3 Let the conditions in Theorem 3.1 hold, with condition (2) strengthened to
s > 68, and condition (8) replaced by that in equation (3. 28), then oy can be solved from

the overdetermined set of equations:
st;(% £ +1: L:) = at[ Y41 QeprVe42 0 Qpgyct OQtgs—2Vits—1 ]

= aVq,, (1 L) (3.33)

Proof: By Theorem 3.1, we can determine the row space of Ouy1, via a SVD of the
matrix Rj;41. Denote this row space by Vi +1, then there exists a non-singular matrix
Ti+1 such that:

VN,+I T304,
Since s > &,, p(Os41,6-1) = Npy1, the matrix Vi alnle Li71) has full row rank and we
can solve equation (3.33) for o;. O

From the above relations we can get <y for time [tp,¢p + T — s] and oy for time [to, %o +
T-1-3].

The determination of the matrices [B:, 64

Theorem 3.2 Let the system be uniformly controllable and observable. In addition the
following conditions be satisfied:

(1) the input sequences in the data matriz U, , ave locally persistent ezciting at all time
instants t, witht € (t,t+s—1),

(2) s> 6,
(3) n 2> maxiefso to+n-11(M¢ + Ni),

(4) the QR factorization of matriz sequence [Uppy—is|Yir1-is] for i = 0: 1 : s be given
and partitioned similar as in equation (3.21),

(5) p(VNg._ (Lts-:z +1: Lt—-n )) = ei’i+8—l fOT'i =0:1:5~— 1;

and by Lemma 3.8, the matriz ( bl 0

— has full rank, then, B; and &,
0| Nm(' s Ly

can be solved from the equation

Ilt' 0
(6t|ﬂt)( 0 |V1\J;t+1( . tH))x
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Vf\Jf:—:+1(L:::+1 + 1: Lf—s-f-l)
-0
ViE (L, +1:L:,,:
L VI\JI;’ Ng..;(tlo 1—1 ) II —
0 -l

[ Se(L:my,) | dema(MEL+1: ML+ me,) |- | Gmagn(MITH + 1 M) +myy ) ](3-34)
where ¢, = Ry} Ruz2:Vii -

Proof: Under condition (2), Vi, _, fori =0,1,2,---,s — 1 exists.

Using Vi Vi = 0 and equation (3.30), multipling equation (3.26) by Vi on the right
yields:

R12:V, = R Vi (3.35)
Under condition (1), Ry is non-singular, then we have:
Ry RuziViy, = Do, Vi, (3.36)

Denote the matrix product RI_II,,RIQ,,V,#, as ¢, then equation (3.36) is expressed explicitly

as

Il:l 0 -
6
( ,m)( 0 | VA1 Lid )))
$e(1:my,:) 0|10, | 0
lme+1: M) | (6t+1|ﬂt+1)(0| 0 |V2 (:1'L:;§) Vi, (3.37)
: t42 V1 ¢ )

Se(MIP+1: M)

ol--- It o
( 5t+s—1 | ,Bt+s—1 ) (H)

The matrices é; and B thus satisfy equation (3.34).

Under condition (5), the underbraced matrix in equation (3.34) has full rank, hence
applying Lemma 3.1, we can solve §; and §; from equation (3.34). m}

The above analysis shows that when the conditions stipulated in Lemma 3.3 and Theorem
3.2 are satisfied over the time interval [tg,20 + T — 1], we can get & and B; for ¢ €
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[to+ s — 1,0 + T — s]. Hence, under these conditions, the calculation of the quadruple
Y

t O
with minimal values for x and y respectively s — 1 and s.

of system matrices is possible in the time interval t € [tg + g, 00+ T — 1 — x],

We then summarize the above results into a generalization of the ordinery MOESP algo-
rithm [10] applicable to ensemble identification problems.

The ordinary MOESP algorithm for ensemble identification problems:

Given:

1. a uniformly controllable and uniformly observable time-varying system,

2. an ensemble of input and output sequences such that the input sequences in the
series of data matrices U, , are locally persistent excitations for [to,t0 + 1 — s — 1],

3. s> 6,, with §, defined in paragraph following Definition 3.2.
4. n > maXeg(y to4n-1)(M;7 + N;), with n the number of experiments, M; defined in
equation (3.13) and N; the order of the system at time instant ¢.
Fort=ty+s—1:4+T —s—1, do the following:
step 1. construct the sequence of generalized Hankel matrices U;41-;5, Yiq1-is for ¢ =
0:1:s.

Step 2: Perform a QR factorization of the sequence of compound matrices [Upy1-is|Yer1-i 6]
for i =0:1: s, without storing @ and partition the R factor as in equation (3.21).

Step 3: perform a SVD of the sequence of matrices Rz ¢41—; for ¢ =0 :1: s as given in

equation (3.29) and store the matrix sequences V,y,_i» , Vi7,,,_, fori=0:1:s.

Step 4: Solve equations (3.32), (3.33) to get v, o: and when condition (5) of Theorem
3.2 is satisfied solve equation (3.34) to determine f; and §;.

For the special case the input and output dimensions are constants and denoted by m
and £ respectively, equations (3.32), (3.33) and (3.34) specialize to:

ye= V(10 (3.38)

VA],:(:,I+ 1:sl)= atVI\T,;“(:,l (s—=1)) (3.39)
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I | 0
(&'ﬂt ) ( OIVI%;H(:,l:(s—l)I) ) "

[ Vi ((s=DI+1:sl,:) ]
0
Vi | .V,\J,;_l(l-glzsl,:) ] _
- 0 4
[ ¢:(1:m,) | $oalm +1:2m,) |+ | $rossa((s = Dm+ 1 5m,) | (3.40)

respectively. Where L] = sl and M; = sm.

A property of the realization calculated by the ordinary algorithm for ensemble
identification problem

If the system realization [Ay, By, Ct, Dy] is a uniform realization, then [ay, s, 81, 6] is also
a uniform realization (Lemma 3.2) Moreover, the resulted observability Gramian equals
the identity matrix, hence the first step of the algorithm in {1] to calculate a uniformly
balanced realization of a time-varying system can be skipped when such a realization is

needed.

3.4.2 System with additive errors on the output

In reality, the input-output data sequences are collected by measurement. As for the
time-invariant case [10], we will consider only noise on the output measurement. In this

case, the system model (2-3) changes into:
i = TijsAr+uj By (3.41)
zig = ;40 +ujp Dy + vy (3.42)
where z;; is the measured output and v;, represents the noise. Let V,, denote the gener-
alized Hankel matrix constructed from the samples v;; as Y;, has been constructed from

Yj.t, then the relevant relationship between input and output sequences, as given by (3.12)

for the noise free case, changes into:

Zt,s = Xtot,s + Ut,sAt.a + V;.s . (343)
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For these types of errors, we can state a generalization of Theorem 3.1 of [12] to the

present ensemble identification context.

Theorem 3.3 Let a system be uniformly controllable and observable. In addition let the

following conditions be satisfied:

(1) the input sequences in the series of data matriz U, are locally persistent excitations
fort € [to,to+T —s—1],

(2) s>,

(8) the QR factorizations of [Uy4|Z: 5] and [U,s|X:] are given by:

Mg L
M; ‘
WUislZts) = (@t | Q2] , e | Buze (3.44)
n-M; 0 | Ragy
and
Mo My N
Ues | Xi) = [@ue | Qua) ™ | Frre [ Bors (3.45)
Ne 0 ’ Ra:2,t
respectively,

4) the noise v;; is independent of the input and zero mean, such that the following limits
Jy

hold:
Jim %thsUtz, = 0,Vtl,#2, and VYr>0,Vs>0. (3.46)
1
lim SViiVee = R. (3.47)
1
lim =VIX, = 0 . (3.48)
n—oon .
lim % T Ry = Prn (3.49)
then
1
nlLI'gQ ;Rgz,tRn,t = O;":stgot's + Ru (350)

Proof: Taking into account the treatment of the statistical quantities as outlined in

Section 3.2, the proof of this theorem can be given along the lines set up when proving
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Theorem 1 of [12]. From the data equation (3.43) and the QR factorization defined in

item 3 of the theorem, we obtain the following relationships:

Us = Gifng (3.51)
Zys = @Rzt + Q2R = XiOus + U sArs + Vis (3.52)
X = Ql,tRzl,t + Qx,tR:cZ,t (353)

Substituting equations (3.51) and (3.53) into equation (3.52) yields:

1 1

2 vn

equation (3.46) can be denoted as,

(Q14R12: + Q2,1 R20) = (@1.4Rs1,404 s + Q21 Re2:0: s + QreR11 1A s + Vi s) (3.54)

1 1
;‘/t?;Utr’ = ;Z'Vt:,z.;Ql,tRll,t = On(e)

From condition (1) of the theorem, it follows that there exists an 7 such that for n > 7,
the matrix 71;}211,, is invertible. Therefore, it follows from the prior equation that:

1
un

Inserting this result into equation (3.48), we obtain, since by condition (1) the matrix

Vis@1,t = On(e) (3.55)

VI;R,,M in also invertible for n > 7, that:

1
Vi@ = Oule) (3.56)

Now multiply equation (3.54) on the left by @7, and using the orthogonality between the
matrices Qy 4, @2 and Q,; and equation (3.55) yields:

1 1

v vn

and hence equation (3.54) reduces to:

Rigy = (Ro1,604,5 + Ri14As) + Onle)

1 1
—ﬁQZtRn,t = %—(Qz,tR:ﬂ,tOt,s + Vis) + On(e)

Multiplying both sides of this relationship on the left by their transpose and using equation
(3.56) yields:

1 1 1
;Rgz,:Rzz,t = ;OE,RL,,R,MQ,S + ;V},Tth,s + On(e)

Taking the limit n — oo yields equation (3.50) 0O
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Case 1: The additive errors are discrete zero-mean white noise.
For this case, we can state the following Corollafy to Theorem 3.3.

Corollary 3.1 Let the conditions of Theorem 3.3 hold, and let the noise vy be zero-mean
white noise, then the ordinary MOESP algorithm to solve ensemble identification problems
will determine the row space of the matriz Oy s in an asymptotically unbiased way.

Proof: In the white noise case, we know that:
. Llor 2
Jim ;L-V,,_,Vt,, =ao,lL: (3.57)
Hence, equation (3.50) in Theorem 3.3 becomes:
.1
ﬂILI{.IO ;R;rz,tRzz,t = OZstzot,s + 0’31[,: (358)

When n — oo, the invariant subspace of 1RJ, ,Rs,, corresponding to the eigenvalues
greater than o? will determine the row space of O, [11]. Hence the the ordinary MOESP
algorithm for ensemble identification problems will determine the row space of O, in an
asymptotically unbiased way. O

Based on this corollary, we can show as in the time-invariant case (see [12]), that the

quadruple of system matrices ;t Zt can be computed asymptotically unbiasedly by
t O

the ordinary MOESP algorithm for ensemble identification problems. In Section 3.5, we

illustrate this property by means of numerical simulation.

Case 2: The additive errors are discrete zero-mean noise of arbitrary coloring.

According to ‘the description above, when the noise is not zero-mean white, then the
calculation of the row space of O, in the ordinary MOESP algorithm for ensemble iden-
tification problems will be biased. A possible and well-known rescue in time-invariant
system identification is to introduce instrumental variables. Also for ensemble identi-
fication problems, the instrumental variable idea can be used. This is demonstrated by
extending the PI-MOESP scheme of [12], in which past input data was used as instrumental
variables, to the ensemble identification problem.

The key step in this generalization is presented in the next theorem, which is due to the

similarity with its time-invariant counterpart in [12] stated without proof.
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Theorem 3.4 Let the conditions (1) to (4) in Theorem 3.3 hold: and let the following
QR factorization be defined:

M L} M;
M" Rll,t | Rl?,i I Rl3,t
[ U Zes | Uimos | = [ @ue | Qa1 @3] 2t |70 | Rane | B (3.59)

Mf. 0 ‘ 0 I R33'f
we then have:
.1z . 1o
Jl{g ;R%'1R22't = n]-l—orgo ;Ut_,,,Qz,tRzz,tOt,a (360)
m]

When the input sequences u;; are chosen such that for n — oo, the row spaces of the
matrices Rg;',Rn,, and O, coincide, we can again determine this row space via a SVD
of the matrix R, ,Rs;,. Based on this result, we are able to generalize the PI scheme
of [12] to ensemble identification problems. This extension, which will be summarized in
the next paragraph, is then able to determine the quadruple of system matrices over the
time-interval ¢ € [to + p,%0+ T —1 — x] for p equal to 2s — 1 and x equal to s.

The PI-MOESP scheme for ensemble identification problems:

Gliven: the same information and conditions needed for the ordinary MOESP scheme for

the ensemble identification problem.

Do the following:

Step 1: construct the sequence of compound generalized Hankel matrices
[ Uyizis | Ziy1-is | Utri-i-ss ] fore=0:1:s.

Step 2: perform a QR factorization of the sequence of compound matrices
[ Uiyi—is | Zew1-iss | Urp1-izs ] fori =0:1: s, without storing @ and partition the
R factor as in equation (3.59).

Step 3: Perform a SVD of the sequence of matrices R§3,t+1__,~R22,t+1_¢ fore=0:1:s

given as,

SNeyri | 0 Viessos
Rl pin—iRangsrci = Usproy | et 5
23,t+1-i4122,t+1 1 ( 0 |0 ) ( (VI‘%&:--')TY

and store the matrix sequences Vy, i ,V,\J,‘m_’_ fori=0:1:s.

Step 4: similar as Step 4 of the ordinary MOESP scheme for the ensemble identification

problem.
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3.5 Periodic discrete time system state space model

identification

Linear periodic systems constitute an important class of linear systems and many mechan-
ical and chemical plants exhibit periodic behavior[26]. Except for the intrinsic periodic
systems, periodic discrete time systems also naturally arise when performing multirate
(MR) (refer 5.2) or multi order (MO)[27] sampling to a linear time-invariant continuous
system.

In most researches, a periodic discrete time system with m; inputs, £; outputs and period
P is first embedded into a time-invariant system with MY inputs and LY outputs (L} and
MY defined as in Eq. (3.13), Lf = P¢ and M} = Pm for the constant dimension case).
Then all the techniques for the analysis and design of time invariant systems are applicable
to periodic systems [28]. However, real time operations require that periodic systems be
implemented as periodic systems. In this point of view, periodic system models become
important[29)].

As stated in [28], [29], [30], state space models are extremely well suited to analyze
multirate sampled system. This in combination with the fact that many analysis and
control design procedures are available for this class of systems makes it highly desirable
of proper identification schemes which allow to identify the state space models of this class
of systems. With the techniques in the previous section, we present a numerical scheme
which allows us to address this task. First, we specialize the notations of the state space
model (3.1)—(3.2) into present context.

Let z; € R™, u; € R™ and y; € R % are state, input and output vectors in the state
space description (3.1)-(3.2) and let this system be periodically time-varying with the
period P. Then the system matrices A;, By, Cy and Dy in (3.1)-(3.2) satisfy the following
additional constraint,

Aipyt = Ax, Bipir = B, Cipik = Cr, Dipyr = Di. (3.61)

where l <k < P,1e€Z.
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3.5.1 Ordinary MOESP scheme for periodically time-varying

systems

Let us consider ¢, = 1 and let the following input and output sequences of a periodic
system to be identified be given:

[ul’uz’ v ut .. 'tuuP-i-l .o ‘uMzot]
(V1,920 Ye - YP YP+1 *** YMioe)

Then, we can rearrange the data into an ensemble of input (and output) sequences as in

the ensemble identification problem, i.e.

Uy Uz Tt UMi—(n-1)P
Up+1 Upy2 te UM;ot—nP
(3.62)
U(n-1)P+1 Y(n-1)P4+2 **° UM:or

Then, it becomes possible to use the developed algorithm to identify the periodically
time-varying system. However, because of the periodicity, two additional remarks need
to be made.

First, we need to define the minimal length of the sequences for the identification. The

minimal number of sequences given by Eq. (3.28) now is,

Poin = B+ )

To obtain the last required row space Op,, the generalized Hankel matrices Up, (and
Yp,) is needed. The Up; is equal to,

up Upyr ot UPys-1
Uzp Ugp4r v U2P4s-1

(3.63)
UnP UnPi1 **° UpPis—2

As a consequence, the minimum M,

(Miot)min = max (M} + NP+ — 1.
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Second, we should guarantee that the calculated state space realization is also periodic.
This can be done by using the appropriate row space of the extended observability matrix
0, s at various time instances. We illustrate this only for calculation of system matrix oy,

since the periodicity of §; and 7; are guaranteed by the same strategy.

The sequence of transformation matrices {ay,---,aps1} are similarly equivalent with

{Ah A’la e aAP’ AP+1} as,
on =T ATe, -+, apyr = Tpp ApiTris = Ty AiTpye -+ (3.64)

The periodicity of the similarly equivalent state representation gives the constraint o;pyr =
o, ect. for 1 <k < P and i € Z, then T;pyx must be equal to T;. In the identification,
this can be done by setting the row space of the extended observability matrices O;p
to be equal to that of O and the correspondent complement space V]?,: 4 b0 be equal to
VI:",; for ¢ € Z.

This analysis results in the following algorithm to identify periodically time-varying sys-
tems. We now summarize the steps of the ordinary MOESP algorithm for periodical

time-varying system state space model identification:

Given:

1. a uniformly controllable and observable periodic system,

2. input and output sequences which can be rearranged into the ensemble input and

output sequences as shown in Eq. (3.62) such that the seties of matrices Uy 5, -+, Up;

»

are locally persistent excitation. This requirement rules out the use of periodic in-

puts with period equal to P,
3. s> 6,

4. My > (maxsep pi(M; + Ni))P + s — 1.
For ¢t € [1, P], do the following:

Step 1: construct the input and output matrix U; ; and Y; ,.

Step 2: implement step 2 to step 3 in ordinary MOESP algorithm for ensemble identifica-
tion problems to obtain the row spaces of O; ; denoted by VA{ and their complement
spaces V. and store these matrices.

Step 3: compute o by solving Eq. (3.32), and +; by Eq. (3.33). Note that Vy,,, = Vy,.



3.5 Periodic discrete time system state space model identification 54

Step 4: compute §; and é; by solving Eq. (3.34). Note again that Vg = Vi, Vi, =

V]\J,-p_1 e
We should mention here that when the system is disturbed by a zero-mean white noise
on the output, the experiment time running to infinity results in a consistent model in
periodic system identification, which differs from time-varying system identification where
the number of experiments running to infinity results in a consistent model.

3.5.2 A multirate sampling system example
Multirate sampling system

Multivariable multirate (MR) sampling systems occur in various areas of system imple-
mentation such as multirate controller design [30][31]. Different sampling periods for
different variables are chosen in this kind of systems depending upon the characteristic
of variables, frequency of measurements and other factors. Systems including multirate
sampled data mechanisms with different sampling periods are called multirate sampling

systems.

To demonstrate the operation of the algorithm for the identification of periodic systems,
we analyze in this section a particular class of MR sampling systems where all sampling
rate ratios must be rational numbers or where all sampling period must be integer mul-
tiples of a Smallest Time Period (STP). In [31], it is shown that such sampling policy
applied to a linear, time-invariant system results in a periodic system description.

Let the STP be denoted by T. The period of repetition of the sampling schedule is called
the Basic Time Period (BTP) which is the smallest common multiple of all sampling

periods.

Model for the simulation experiment

In the present example, the linear continuous time-invariant system model is described

by the following second order differential equation:

d?z dz

] + C’(i)ﬁ + K(t)z(t) = f(t)
where f(t) is the input, 2(f) and % are the outputs, and C(t) and K(t) are periodically
time-varying scalars specified later. ‘
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Experiment data:

Smallest sampling time: T = 0.01 s,

Sampling period of input f: T,

. . dz.
Sampling period of output 2%: 2T,

Sampling period of output z: 3T,

BTP = 6T.

C(t) and K(t) are periodic time function with period BTP, and specified over one period

as,

C(t)=1+ 0.3sin(%t) 0<t<6T

K(t) = 0.5 +0.02¢ 0<t<6T.

The sampling schedule is described in Figure 3.1.

BTP
£ I | I | | |
T 2T 3T 4T ST 6T 7T
2 | I I
T 3T ST T
o | I
T 4T 7T

Figure 3.1: Sampling periods for input and output

This MR sampling system can be easily described and simulated as a SIMO system

in a state space model with the changing dimensions of input and output at different

sampling instant. Hence, the identification for such system is naturally addressed within

this framework. Simulation and realization of such a system in a parametric framework

appear difficult.
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Let 2y =2, 2, = ‘;—f, then z = 7y z, ]. The continuous time state space model is

dz [01{

o)t 5] wolon]

The simulation experiment is carried out on the MATLAB. By using zero-order hold

method, we transform the continuous time model to the discrete time model as:
Tr1 = Tk Ak + fi Bi

where Ay and B; change periodically. Because of the multirate sampling, the C-matrices

of the system are:

cl=[1°] C=1. 03={°}
01 1

1 0
C4=I:0:| Ca=[1] 06=H

Experiment

We set up two Monte Carlo simulation tests with both SNR equal to 30 dB. Input f
is a white noise with variance equal to 1. Let s equal to 10. In this example, P = 6,
maxee(1,p)(M{° + Ni) = 12, then the min(M;,) = 81. We used two different M,y to
test the properties of unbiasedness and consistency of the algorithm: M., = 150 and
Miot, = 600. 100 runs were performed for each test.

The quantities z; and z; denote the noiseless output, v; and v, denote the added output

noise and they are zero-mean white. The output measurements are:

Tim = T3+ 0

Tom = T2+ V2

The identified models were compared in two aspects as discussed below.

First, we consider the transition matrix of the given discretized system over one period,
that is A;A; -+ Ag and the same for the identified model, that is ;- - - @6. Using the
relationship between o; and A; as in Eq. (3.64) and the relation T} = T'p,1, we have:

A1A2 e As = Tl_lalaz s aeTl
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Therefore, in the noise-free case, the eigenvalues of these two matrices coincide. In the
noisy data case, we can only expect the eigenvalues of the matrix aya; - - - ag to be asymp-
totically unbiased estimate of those of the matrix A;As--- Ag. Thus, as a first measure
of the performance of the developed algorithm, we depict in Figure Eig, the eigenvalues
of these two matrices. In Figure 3.2, the center of the cross in the figure denotes the
true eigenvalue location (for the sake of clarity, only one eigenvalue is shown, another
eigenvalue is conjugate to this one). The eigenvalues of the resulted models are marked
by the sign ’o’. From the figure we can see that under the condition that s remains the
same, when M, increases, the eigenvalues of the obtained model unbiasedly approach the
true eigenvalues when the noise on the output is zero-mean white. Thus this experiment
conforms Corollary 3.1.

Second, we compare the output error between the outputs z; ,, 2,m and the reconstructed
outputs 1 m, Z2.m by using the estimated periodic model over a time interval of 600 input
samples. The results of this comparison are presented in Figure 3.3. Here, the solid
line represents the noise level on the output as indicated by std(v;) and std(v;), where
’std’ denotes the standard deviation. The other types of lines show the quantities of
std(#; — ®1,m) and std(fy ~ Z2,m). When the reconstruction would be done with the
original system, the latter quantities are then equal to the noise level. From this figure
we can see that when M;,; becomes larger, these quantities approaches the noise level.
When M;,; = 600, the difference between these quantities and the noise level is very small.
These results also conform the consistency of the identified models.

2] 01
0.09) 0.09
o
008 ° 0.08
L300
0.7} 900, 0.07]
0,8 88 o,
0.08| o 0.08
$hag 75
Eo0s] LAY @ Eo.08) )
00 o
004 ° 0.04
o
003 0.03
002 002
0.01 i 0.01
1) 0.94 [ 0.98 1 . a9z 083 094 095 0% 097 0% 0w

Figure 3.2: Eigenvalue distribution of the Monte Carlo tests. Left figure: My, = 150.
Right figure: M;, = 600.
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sZlzam--

ol

s

Figure 3.3: Error level comparason. Left figure: std(vq), std(£; — z1 ). Right figure:
Std(vg), Std(.’fz - wg,m).

3.6 Conclusions

In this chapter, algorithms for identifying a discrete, linear time-varying state space model
were introduced. The algorithms require a multiple series of experiments, each time
recorded the input and output sequences when the underlying system undergoes the same
time-varying behavior. The algorithm were extended for periodic discrete systems. Here
the repetition of the experiment is intrinsic. An application of the developed schemes
to the identification of a multivariable multirate sampled data system demonstrates the
usefulness of these schemes. The results of the simulation experiment showed that the
algorithm allows to consistently estimate a state space model for such systems when the

noise on the output is zero-mean white.

The additional usefulness of the schemes developed in this chapter was demonstrated in
[6]. In this paper, a realistic identification problem, namely the identification of the human
joint dynamics, was considered. For this practical application, the schemes, especially the
PI scheme for the ensemble identification problem, allowed to identify low order state
space models and lead to accurate reconstruction of the output. In the same paper, the
results were compared with recursive output error identification schemes using exponential
forgetting factors between 0.9 and 0.95 and this comparison study clearly showed that the
latter approach was completely inadequate in identifying the underlying foot dynamics.

Further research on the use of the numerical schemes developed is proposed.
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3.7 Appendix: An illustration of Definition 3.6.

Assume there is a uniformly controllable, linear and time-varying system, the input di-

mension is 1 and the input sequences are:

1 5=t
Ujs = .
0 otherwise

With j € [1,n] and ¢ € [1,T], then the input sequence matrix Uy r for T > n is of the
type:

0 - 00 0
01 0 00 0

Ur=|:0 " R (3.65)
00 0 10 0

For simplicity, suppose that the initial state is zero, the order of the system is 2 in the
interval [1,T], §. = 2 and the window length is chosen so that n—s > é.. In this example,
we look at s = 4. The matrix [Uy,4|X(1,1),n) reads:

1 00
1 00

1 00

(U141 X:] = 100
000000
Llooooo o]

for the zero initial condition. The rank of the matrix is 4 and the matrix is not a locally
persistent excitation at time instant t=1.
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Next, for the same experiment, consider the matrix [Us 4| X3]:

000 0]|BA,
000 0] B

1 | 00

1 | 00

[Us 4] Xs) = 1 |00
1] 00

000000
SRS IS
(000000 |

A
Since 8, = 2, Lemma 3.3 shows that the submatrix [ B; 2 } has full rank. Therefore
2

the matrix [{Us 4| X3] has full column rank.

Since n — s > 6., Lemma 3.3 shows that the last matrix in the sequence {[U;4|X;]} for

t > 1 which has full column rank is the matrix

I BIA2 e An—s

[Un—s+l,4 lX —s+1] =

In summary, when using dirac impulse as input and zero initial state condition, the
matrices [Uy 5| X;] for ¢ € [8, + 1,n — s + 1] are full rank matrices for n — s > §.. a
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Chapter 4

Lossless Operators, J-lossless

Operators and Their Properties

4.1 Introduction

Lossless and J-lossless operators (functions) play an important role in system and control
engineering [1] [2] [5] because of their many useful and elegant properties. For example,
the energy conservation property of lossless operators (functions) is used in the orthogonal
embedding problem for filter design and lossless cascade factorization [2]; the homographic
transformation property of J-lossless functions is used in H,, control for time invariant
systems [1] and for the solution of the interpolation problem [3] [4]. Lossless and J-
lossless operators (functions or systems) and their properties are well known in the time
invariant context [6]. In this chapter, we consider lossless and J-lossless operators and
their properties in linear discrete time-varying context for the purpose of H, control in
this context. The properties of lossless and J-lossless operators in a time-varying context
are very similar to that of their time invariant counterparts. The content of this chapter
is based on [2] but contrary to the result in [2], it is not restricted to upper operators.
Also we are more interested in J-lossless operators in our application. J-lossless operators
are known as the chain scattering operators of the corresponding lossless operators which
are known as the scattering operators. They are representations of the same physical
systems. The properties of lossless operators are easier to be understood and well known.
Because of the close relationship between J-lossless operators and lossless operators, a
brief discussion of the latter helps us for a better understanding of the former.

64
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4.2 Lossless operators

Definition 4.1 An operator & € X is an isometry if X* = I, a co-isometry if 2*X = I
and unitary if both £X* =1 and Z*X = 1. o

A special case for an isometric operator or a co-isometric operator occurs when the oper-

ator is upper. We have the following definition for this kind of operators.

Definition 4.2 An isometric operator ¥ is called lossless if ¥ € U. A co-isometric
operator ¥ is called co-lossless if & € U. A unitary operator ¥ is called inner if & € U.
In this case, ¥ is both lossless and co-lossless. O

From these two definitions, we can readily deduce that the conjugator of a lower co-
isometric operator is lossless and the conjugator of a lower isometric operator is co-lossless.

Theorem 4.1 Let ¥ € U be a locally finite operator with a realization {As, By, Cx, Ds}
andl4, <1. ¥ = Dg +BsZ(I— AsZ)"1Cx. T is an isometry iff there exists a Hermitian
operator @ € D such that » ’

Az Cz || QY 4z Gz | |1 @ . (4.1)

Bs Dy I||Bs Dg| I '
¥ is a co-isometry iff there exists a Hermitian operator P € D such that:

Az Cz : P Az Cz: _ P(_l) » (4 2)

By Dy Il|Bs Ds | I '

¥ is unitary iff both ({.1) and (4.2) are satisfied.

If {As, Bz, Cs, Ds} is a uniform realization, then @ > 0 and P >> 0; if X is also unitary,
then P = Q1. '

Proof: Sufficiency: Let £ € U be a locally finite operator with a realization { As, Bs,Cs, Ds}
and £a, < 1. Assume that the conditions given by (4.1) are satisfied. Then ¥EL* =1.

Rewrite the conditions as

AsQUVAL + CeCi =@
AEQ(_I)BE + CgDi =0
BzQUVBy + DgDy = I
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Then:

IT* = [Dg + Bg(2” - Az)~'Cs|[Dy + CH(Z - A3) !B
= DgDy + DpC3(Z — A3) ' By + By(Z* — Ax)™'Ce D}
+B5(Z* - Ag)"'CsCL(Z - AL) B}
= Dy D} — BrQ("VA%(Z — AL)"'Bg — Bs(Z* - As) 1 AzQ(-1 B
+Bx(Z* - A):)_IICgC’f:(Z - A%)_IBE
= DDy + Bg(2* - Ag)7'[~(2* - A5)Q\" 4} - AxQ(I(Z - 4}) + CxCHl(Z - A;)'B;
= DD} + Bx(2* — Ax) ' [-Z* Q"D A} + A5QUVA; — AsQVZ + QY(Z - 43) ' By
= DgDg + BeQUVBL =1

£*¥ = I can be proved in a similar way. Then ¥ is an isometry, a co-isometry or a unitary
operator respectively, if condition (4.1), (4.2) or both are satisfied from Definition 4.1.

Next, we prove that the conditions given by (4.1) and (4.2) are also necessary for an
isometric and a co-isometric operator, respectively. Again, we only give the proof for an
isometric operator, the proof for a co-isometric operator is in a similar way.

Necessity: Let ¥ € U be a locally finite operator with a realization {Asx, By, Cs, Ds} and
Loy < 1. Assume that XX* = 1. Then, conditions defined by (4.1) are satisfied.

In particular we have Po(XX*) = XE* = I. Define F, = (I — AsZ)"'Cs, so that
Y. = Dg + Bz ZF,. Hence,

Po(D5D}) + Po(DsF:Z* By) + Po( By ZF, D) + Po( By ZF,F 2" BL)
= DsDi+0+0+ BsPo(ZF,F2Z")B; (4.3)

Po(XX")

Let Q@ = Po(F,F2), then XX* = I indicates
DsDy + BsQU VB =1

and @) satisfies the recursion

Q =Po(F,F?) = Po[(I — AsZ)"'CsCy(I — Z*A3)™]
Po(C5C3) + Po(AsZ(I — AsZ)'CsCh(I — Z*A%) 1 Z* AL)
CsCh + AsQUV AL

Next, we show that CzD§ + AsQYBg = 0. Let us look at

Py(Z XX
= Po(Z™(Dx + BzZF,)(D; + F,Z"B;))
= Po(Z "D D%) + Po(Z " DsF*Z*BL) + Po(Z~" By ZF, D3
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+Po(Z " BsZF,F:Z"B) (44)

If » > 0, the first and second terms in the expansion are equal to zero. The third term

Po(Z~"BsZF,D})

= Po(B{Z--VF, D)

= BOP(Z- V(I — AzZ))Cs D}
= BPAPYos Dy

and the fourth term

Po(Z"BsZF,F*Z*By)
= BMPy(Z-(-VF,F*Z*)B;
= B AL 45QV By

Substituting the results of the third and fourth terms into (4.4) we obtain:
Po(Z2538%) = BY AL (CeD; + A:QV By)
Because £X* is diagonal, its off-diagonal elements are zero, thus Po(Z7"XX*) = 0 for

n # 0. Then CxDf + AsQ-YBg = 0.

For n < 0, we obtain another necessary condition which is equivalent to
Cs Dz + AsQYB; = 0. Thus we have proved that ¥ is isometric iff the conditions given
by (4.1) are satisfied.

@ > 0 and P > 0 follow immediately after the definitions of uniform reachability and
uniform observability. If ¥ is also unitary, both conditions of (4.1) and (4.2) should be

satisfied and since @ is an invertible Hermitian operator, Q ] can be factorized into

IRl

Define,
Aac] _[r
B DI I

As Cs R_(_l)
By Ds I
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Aclfact Aclfac]
then we have B D Bpl| = I and B D } B g ] = I. In comparison
with equation (4.2), it is not difficult to obtain: P = Q1. o

A realization matrix ¥ € D

A C

3=
B D

is said to be unitary if
=1 and *E=]

This kind of realization can be obtained by a similarity transformation which is based
By Ds

a known realization of a unitary operator X, and let () and P be the observability and
reachability Gramians of £. Let @ = (R*R)™! or P = R*R (This is possible since by
Theorem 4.1, Q@ > 0 and P = Q~'). Then R defines a state transformation which leads to
a unitary realization {A, B,C, D}, where A = RAs R~ B = Bg R~-1), C = RCs and
D = Ds. We say that the pair [A,C] is in output normal form because AA* + CC* =1
and [A, B is in input normal form because A*A + B*B = I. For an isometric operator

on the observability Gramian @ or reachability Gramié.n P. Let ¥ =

or a co-isometric operator, we can consider a similar transformation. The difference is
that for an isometric operator, we define Q = (R’“R)"»l and only obtain an output normal
pair [A,C]. For a co-isometric operator, we define P = R*R and only obtain an input
normal pair [A, B]. The transformed realizations are called isometric and co-isometric,

respectively.

4.3 (Jy, J1)-lossless operators

Referring to Figure 4.1 (a), let ¥ be a known operator, mapping the input [ a; b; ] to
the output [ a; & |, i.e.

(4.5)

[az bi]=[a1 B Z=[a bz][iii g::]

In the Figure, the variable with a dot stands for an input of the mapping and without a
dot stands for an output. If ¥,; is invertible, we can derive the mapping from | a; b; ]
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to [ @z b, ], denoted by © in Figure 4.1(b) from ¥ as

0= [ 01 052 ] — [ i —Zilnla —Eity (4.6)

O O T3 En 5

a az a, a,
l—-—-—  ———
z (]

-] e — —
by - by b1 b,
(a) ®)

a;__ | . a,
2]

bre— | e by
©

Figure 4.1: Scattering operator X, chain scattering operator ® and the dual chain scat-
tering operator ©.
If ¥ is a scattering operator, then © is known as the chain scattering operator of ¥.

H £, is invertible, we can derive a mapping from [ a; b, ] to [ a; b, ], denoted by ©,
from ¥ as,

6 [én @12}=[ i i B @)

02 O —ZaZ e - TaZy T

O is called the dual chain scattering operator of .

If we introduce a feedback relation b, = ;5 between b, and a;, then the closed loop
mapping from b, to a,, denoted by ®, is given by

® =Yg + Tpa(1 — 5212)_15211 (4.8)
1t is not difficult to obtain the equation

® = HM(0; 5) = (5012 + 022) 7 (SO11 + O21) ' (4.9)
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where HM stands for HoMographic transformation and
® = DHM(("),S) = ((:)21 - (:)225)((:)125 - @11)_1 (4.10)

where DHM stands for the Dual of the HoMographic transformation. Before the dis-
cussion of J-lossless operator, let us look at port signature operators which describe the
input/output relation of the variables of the system in different descriptions: the chain

scattering description or the dual of the chain scattering description.

In Figure 4.1, we use a dot to indicate the variables of the input port, or these variables are
called input port variables. We use arrows to indicate the flow direction of the variables,
or the variables with arrows into the block are input variables and with arrows out of the
block are output variables.

Let J; € D be the input port signature and J; € D the output port signature matrices
Ji1
which are defined as J; = Jio for 1 = 1,2, where the entry
Jit

L

. I

Jik = ks
—I(P—)k

input and output of the ports at time instant k. For a chain scattering operator, the

] (k = —o00,-++,+00) is determined by the dimensions of the

dimension of input variables on the input port is p+ and the dimension of output variables
on the input port is p—. It is reversed on the output port. For a dual chain scattering
operator, the dimension of output variables on the input port is p+ and the dimension of

input variables on the input port is p—. It is reversed on the output port.

Definition 4.3 Let J, and J; be the input and output signature operators respectively of
a known operator © € X. O is a (J,, Jy)-isometry if 01,0* = Jy, a (J1, J3)-co-isometry
if ©*J10 = Jy and J-unitary if both ©J,0* = J; and 0*J,0 = J,. . 0

Theorem 4.2 Let an operator & € X be isomeiric, co-isometric or unitary, respec-
tively. If the corresponding chain scatiering operator ©, with J; and Jp the input and
output signature operators, exists, then © is (Ja,J1)-isometric, (Jy, Jz)-co-isometric or
J-unitary, respectively. If the corresponding dual chain scattering operator ©, with J, and
Jo the input and output signature operators, evists, then © is (Jz, Jy)-isometric, (Jy, J2)-
co-isometric or J-unitary, respectively.
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Proof: For the proof of the first statement, we refer to [2]. The second statement is

proved in a similar way. ]

If H is a locally finite D-invariant subspace, then it has some strong basis representation F
such that H = D,F . In analogy with the definition of Gramian operator Ar = Po(FF*)
in Section 2.4 of Chapter 2, we define the J-Gramian operator of this basis as the diagonal
operators:

AL =Po(FJF*) € D(8B,B)

F is J-orthonormal if Aj = Jg, where Jg is some signature operator on B. We call H
regular if the J-Gramian operator of any strong basis is bounded invertible. Note that
A} bounded invertible implies Ay 3> 0 but the converse is not true. From the definition
of J-orthonormal basis we know that a J-orthonormal basis is a strong basis.

Let T € U have a uniformly minimal realization {A, B,C,D} with £4 < 1 and J;
and J, be the input and output signature operators. Then F* = BZ(I — AZ)™! and
F, = (I — AZ)1C are the strong basis of H(T) and Ho(T) respectively. If Po(FJ,F*)
and Po(F,J>F?) are invertible, we say the realization {A, B,C, D} is regular. A regular
realization of a bounded lower operator or a mixed operator are defined in a similar way.

The next theorem is an analogue of Theorem 4.1.

Theorem 4.3 Let © € U be a locally finite operator with a realization {Ae, Bo,Ce, Do}
and £a, < 1. Then O is a (Jy, J1)-isometry iff there exists a Hermitian operator Q € D

such that:
4o C -1 Ao Co |
o Co Q o Co | _ Q (4.11)
Bs De J2 Be Deg A
a (J1,J2)-co-isometry iff there exists ¢ Hermitian operator P € D such that:
4o Co | [P As C p-
o Co o Co | _ (4.12)
Be D@ J1 ‘ B@ D@ J2

J-unitary iff both (4.11) and (4.12) are satisfied. If {Ae,Bo,Ces, Do} is a regular realiza-
tion of O, then Q and P are invertible; if © is also J-unitary and J; = J;, then P = Q1.
m]
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Theorem 4.4 Let © € L be a locally finite operator with a realization {Ae, Bo,Ce, Do}
and £4y <1 so that © = Dg + BeZ*(I — AeZ")'Co. © is a (Jy, J1)-isometry iff there
exists a Hermitian operator QQ € D such that

Ao Co -Q Ae Ceo *_ —-Qv
| S R w

a (J1, J2)-co-isometry iff there exists a Hermitian operator P € D such that

Ao Co | | -P
B De}_[ JJ (4.14)

and © is J-unitary if both (4.13) and ({.14) are satisfied. If © is (J3, J;)-isometric or
(N1, J2)-co-isometric, and {Ae, Bo,Co,Deo} is a regular realization of ©, then Q or P
are invertible; if O is also J-unitary and J, = J;, then P = Q1. (]

As Co : —p=1)
Bs De Ji

In the case that {Ae, Be,Ce, Do} is a regular realization of 8, @ in equation (4.11) can
be factorized as @ = (R*JsR)™!, P in equation (4.12) as P = $*JzS, where

Js = Jb0
Jba

Joi = [ L I ], for ¢ = —oo0, ..., 00.

Js is the state signature matrix (see [2] for the detailed description) and Jg has the same
definition. Because @ and P are invertible diagonal operators, R and S are invertible
diagonal operators. Define Ag = RAg R~("V), By = BoR~(-Y and Co = RCe in equation
(4.11) (or Ag = SAeS~Y, By = BgS~"V) and Cg = SCe). Then equation (4.11)

changes into:

A ER I E A e s
B, De B || Bs De J '

and equation (4.12) into:

4o Co |'[ i Ao Co| |77 (£16)
Bé) De J1 Bé.) D@ » Jg )
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We say that [Ag,Cg] in Eq. (4.15) is in J-output normal form because A’QJ,(;”A}:; +
CoJ2Cg = Js and [Ag, B) in Eq. (4.16) in J-input normal form because AgJgzAg +
BgJ1Bg = J,;("l). Similar to what we have stated in the previous section about unitary
operators, the realization in (4.15) is called J-isometric and the realization in (4.16) is
called J-co-isometric. If both (4.15) and (4.16) are satisfied, the realization is called

J-unitary.

Definition 4.4 If an operator X is lossless, the corresponding chain scattering operator
0, with Jy and J, the input and output signature operator, respectively, is (Ja, J1)-lossless.
If an operator ¥ is co-lossless, the corresponding dual chain scattering operator 0, with J,

and J; the input and output signature operator, respectively, is conjugated (J1,J2)-lossless.

a

Note that a (J;, J1)-lossless operator © and conjugated (Ji, J)-lossless operator © are
not necessarily upper but a lossless operator or a co-lossless operator ¥ is upper.

Proposition 4.1 Let © € U have @ uniform realization {Ae, Be,Co, Do} and €4, < 1
such that ©@ = Dg + BoZ(I — AeZ) 'Co, and be a (J2,J1)-isometric operator with ¥ as
the corresponding isometric operator. If there exists a @ > 0 such that equation (4.11) is
satisfied, then T is lossless and © is (Jy, J1)-lossless.

Proof: We adopt the proof of [2] (P. 166), where it is proved that © is J-lossless iff
Jg = I in (4.15). This implies that all the states of the corresponding ¥ are causal with
the spectral radius of the corresponding A-operator of ¥ is smaller than 1 and then ¥ is
lossless. The condition for Jg = I in the factorization @ = (R*JpR)™! is equal to the
condition @ > 0. Then Proposition 4.1 is proved. o

The dual of Proposition 4.1 is stated as follows:

Proposition 4.2 Let an operator ©® € L have a uniformly minimal realization

{Ae,B@,C@,D@} with EA@ <1 and © = Dg + B@(Z - A@)_IC@. If© is a (Jz,Jl)-
isometric operator and there exists a @ > 0 such that equation (4{.13) is satisfied, then
the corresponding isometric operator 3 is lossless and © is (J2, J1)-lossless. , o

Remark 4.1 : Similar propositions as Proposttion 4.1 and 4.2 can be stated for a J-co-

isometric operator.
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Theorem 4.5 Let © € X be a locally finite operator and {A,, By, C1, A2, By, Ca, Do} be
a regular realization with {4, <1 and £4, < 1 such that © = Dg + BiZ(I — A,Z)1C, +
ByZ*(I — A2Z*)™'Cy. O is (Jy, J1)-isometric if there exists a Hermitian operator Q =

Qu Qu € D such that:
QZI Q22

A 178" @GV 4 |a)

1]C Y QLY | 1|C,
B1 ] D@ | JZ Bl | DG
I Qu Qul I
= A | Qn Q| As | (4.17)
By |1 A By |1

Proof: (4.17) specifies the following conditions:

1. AQNYAI+ CRC = Qn

2. A] g;l) + C]ch; = Q]gA;

3. Y = AsQnA; — CoIC

4. BiQ{YAr = B,Qu + DeJsCp = 0;

5. Bl (— ) + D9J202 B2Q22A2 =0

6. Bngll)Bl + Do J2Dg — ByQa2B; = 1
then,

0J,0*

= [De + B1(Z* — A1)7'C1 + Ba(Z — A2)7'C3)Ja[Dg + CH(Z — A})™'Bf + C3(Z* - 43)7' B3]
= DoJ: D + DoJ2C(Z — A3) 1B + DeJ2C3(Z* — A3)™1 By + Bi(Z" — A1)~1C1 12D}
+By(Z* — A1) 1C102CH(Z - A})71B + By(Z* — A1)"1C1J,CH(2* - AL)™' B}
+Bz(z - Ag)_1C2J2D*e + B2(Z - Az)_quJgC;(z - A;)_IB;

+B5(Z — A2)"1C2 02 Cy (2" — A3)"1B}
= DoJ2 Dy + (—-B1QV A + B2Qn)(Z - A1)7'Bf + (-B1Q;"Y + B2QuA3)(Z" — A3)71B;
+B(Z" - A1) (- AzQ "B1 +Q12B5) + Bi(Z" — A1) (Qu - AIQ,I”A*XZ A;)71B;
+B1(Z* — A)" Y (-A1QGY + Qu243)(2* — A3)"1B} + Ba(Z — A))"N(—-QTV BY + A2Q22B3)
BT — ) (@A + AsQan) (- AN

+By(Z — A2) M (AQm A3 - Q5 V)2 - A3)71B;

The terms with By on the left and B} on the right are:

Bi(-Q{7VA45(Z - A1) — (2 - A QY + (27 - A1) (Qu - 40TV A)(Z — A7)~ B;
= By(Z* - Al) (2" - 4)Q VAL — 410472 - A1) + Qu — A1QTVANZ - A1) 1By
- BlQ( 1)
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The terms with B; on the left and B; on the right are:

-BQN(2* - 435)7'B; + Bi(Z" - A)'Qu2B;
+B1(Z* — A1) (-A41Q0" + Qu243)(Z* — 43)71B;
=0

In a similar way, we can derive that the terms with B; on the left and B on the right
are equal to zero, and the terms with B; on the left and B on the right are equal to
—BnggB;. It shows that

04,0 = BiQ{V B} — ByQuB; + DoJy Dy = J

and thus that © is (Jz, J;)-isometric. O

Conversely, if © € X is J-isometric with a regular realization {A;, By, C}, A2, Bs, Ca, D},
then there exists a Hermitian operator @ € D such that the conditions given by (4.17)
are satisfied. The proof of this part is given in Proposition 4.3.

It is well known that the cascade connection of J-lossless operators results in a J-lossless
operator and conversely, a J-lossless operator can be expressed as a cascade connection
of several J-lossless operators, if the factorization is possible. In particular, the cascade
connection of an upper J-lossless operator and a lower J-lossless operator results in a

J-lossless operator which is general not upper or lower any more.

Lemma 4.1 Let O, € X and O, € X be two known operators where O, is Jp-unitary.
Then © = 0,0, is (Jo, J1)-isometric iff ©, is (Ja, J1)-isometric.

Proof: The proof is straightforward. |

Let T € X have a uniformly minimal realization {A;, Bi,C1, A3, By, C3, D}. Suppose
that T has a factorization T' = T1T; with 77 and T3 such that one is upper and another
is lower, and one’s A matrix is A; and another one’s is A;. Then the realizations of T}
and T; are also uniformly minimal. The consequence of this is that with the calculation
of factorization, we do not increase the order of the upper part and the lower part of the
system.

The next proposition shows that the conditions in Theorem 4.5 are also necessary for a
(J2, J1)-isometric operator in X.

Proposition 4.3 Let © € & have a regular realization {A, By, Cy, Az, By, Cs, D} with
24, <1, L4, <1 and port signature matrices (J1,J2). IfO is (Jo, J1)-tsometric, then there
exists a Hermitian operator Q) € D such that conditions given by (4.17) are satisfied.
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- Proof: As we have discussed in  Section 2.2, © can be factorized as ©® = 0,0, with
©1 = D.+B1(Z*— A;)™'C, for some D, € D and C, € D, and O3 = D, + B,(Z— A2)"1C,
for some D, € D and B, € D. Since the realization is regular, there exists a Hermitian
operator (22 € D which is invertible such that Condition 3 in Theorem 4.5 is satisfied.
Then we can find some D, and B, such that @, is Jy-unitary such that

42 G | [ Qu 4 G| _[ e (418)
B. D, —Ja ~J '

B, D,
is satisfied. Assume that with such a ©,, the factorization © = ©,0; with ©, having the
assumed realization exists. With Lemma 2.1 in Chapter 2, we have:

0:0; = (D.Dy+ BiYICY) + By(Z* — A1) HCoDy + AYVC)
+(D.B, + BiY "V A;)(Z — Ay)71Ce

where Y € D is the solution of the Lyapunov equation:
C.B, =Y — A,Y("VA4, (4.19)

This yields for the realization of ©

C, = C.D, + A, YN, (4.20)
B, = DB, + BY-V4, (4.21)
D = D.D, + BY"1¢, (4.22)

With these identities in addition to (4.18) which gives the constraints of O, to be J-unitary
and (4.19) which comes from the assumed factorization © = ©,0,, we can then conclude

condition 2 and 5 in Theorem 4.5 as follows.

Multiplying (4.19) by Q22A} on the right results in:
CcBaQ22A; = YszA; - AIY(_I)AnggA; (423)

and multiplying (4.20) by J2C; on the right and substituting the relation in (4.18) results
in:
C1J:C; = C.D.J2C; + A YTV, I,C)
= C.B.QuA; + MYV AQnA; — 4YVQEY (4.24)

The sum of (4.23) and (4.24) gives:

C12C = Y Qau A — A YIQLGY
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Define Y Q93 = Q12 € D, then
C10:C = Qua A} — A1QGY (4.25)
Multiplying (4.21) by Q2243 on the right we obtain,
ByQ33A3 = DeBuQ22 A3 + BiY ™V 4,01, 45
By substituting (4.18) into the above expression and using Y Q22 = @12, we obtain
ByQuAL = DJ,C) + B1QFY (4.26)

Then we know that if © = ©,0; with ©; and ©; having the assumed realization and ©,
Jp-unitary, there is a Q12 € D such that Condition 2 and 5 in Theorem 4.5 are satisfied.

From Corollary 4.1 we know that with ©@ = ©,0, and O, J-unitary, © is (J,, J1)-isometric
iff ©, is (Jy, J1)-isometric. From Theorem 4.3, ©, is (J3, J1)-isometric iff there is a Her-

mitian operator M € D such that:

F | G [P A B
31 Dé J2 Bl Dc J1

is satisfied. The (1,1) block identity of (4.27) is
AMEVAT 4+ C.JCr =M (4.28)

Next we show that if this condition is satisfied, then there is a Hermitian operator ¢}y, =
M + Q12Q3, @3, which satisfies condition 1 in Theorem 4.5:

AQGV AL + C1ACr = Qu (4.29)
With (4.18), equation (4.19) and (4.20), the following identity holds
Cc = ClJzD:JQ o YngB:Jz

Note that Y Q22 = Q12. Substituting C. in the above expression into relation (4.28) results

mn

AMTIAL + (C12 D) — Qe B;) o(Cr oD} — QueBy) = M (4.30)
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Since O, is J-unitary, the following conditions are satisfied:

Ay G _ 2
B, D, —J,

By using this relation we can derive the following equation from (4.30)

4 G | [ Q™
B, D, —J

MMV AL + CLACY + (CLIC; — QuAs)Qa V(CaaCh — AxQT,) = M + QuaQ31 Q3

With equation (4.25) and Q11 = M + Q12Q3; @7, which is a Hermitian in D, we obtain
(4.29) which is condition 1 in Theorem 5.1.

Next we show that Condition 4 and 6 in Theorem 4.5 are also satisfied.

With the expression in (4.20) and (4.22) we have:
DJ,C} = (D.Dy + BiYTNC)Jo(DLCr + C3Y D AT

Substituting the relation in (4.18) into the above equation results in

(BiYD A4, 4 D.B,)Qua(A3Y “D* A% + B:C2) ~ ByY-VQGVY (0 A% 4 D J,C
B3QuY* - BiYIQEVY D Ar 4 D JCx

DICt

Substituting the relation D.J,C* = —B; M(~1) A? into the above equation and with the
definition of @12 and Q;; we obtain Condition 4 in Theorem 5.1

DJ,C; = B:Q3, — BiQiTV A (4.31)
Condition 6

DJD* = Jy + ByQuB; — BiQ\TVB; (4.32)
is obtained in a similar way. Then the proposition is proved. ]

Corollary 4.1 Let an operator © € X be (J,, Jy)-isometric and { Ay, B1,Ch, Az, B3, C, Do}
be a uniformly minimal realization of © with €4, < 1, £4, < 1 such that © = Do+ B;(Z* -

A1)7IC + BoZ (1 — A2Z*)71C,. O is (Jy, Jy)-lossless iff Q in (4.17) is uniformly positive

definite.
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Proof: The proof follows the proof of Proposition 4.3. Assume that © can be factorized
as © = 0,0, with O, J-unitary and ©; (J2,J;)-isometric, and ©; and O, have the
realizations as in Proposition 4.3. © is (Jz, J1)-lossless iff ©; is (J2, J1)-lossless and ©, is
Jo-lossless. This requires that in (4.18), Q2 > 0 and in (4.27), M = Qu — Q12Q7, Q%, >
0. These two conditions result in:

Qu Qu
= 0
¢ [ Qi Q2 ] >
with Q21 = Q7. ' .

4.4 Homographic transformation property of J-lossless

operators

The next theorem reveals an important property of J-lossless operators. We call this
homographic property of J-lossless operators because it comes from the homographic

transformation of J-lossless operators and any upper strictly contractive operator.

Theorem 4.6 Let an operator © € X be (Jz,J1)-lossless and have a partitioning as

0= [ gu 212 ] and let an operator S € U be strictly contractive (1S]|lec < 1). Let
21 O

P = HM(@, S) = (5612 + @22)-1(5611 + 0y) (4.33)
Then @ is upper and ||®||o < 1 (or ® is an Hy, operator).

Proof: First, we show the invertibility of (502 + O2).

Since © is (J;,J;)-lossless, the corresponding ¥ € I is lossless and has a partitioning

%
5= [ gn 212 with Yy, invertible. Under these conditions, ||Z13]|c < 1 and (I—S5%;3)
21 Y22

is invertible. With the relation %;; = —©,,03,, we have (I + $0,,0;;) invertible and
then (O3, + 50;;) invertible.

Now we show that under the given conditions, ® is upper.

As we discussed in Section 4.3, ® can be expressed with ¥ and § as,

O =3y +E0(l- 5212)_15211
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The expansion.of (I — SE;5)7! is =
(I —S%12) 7' =T+ 8815+ (S812)* +-+-
so that
O =35 + 025811 + E20881288 + -+
Under the given conditions, the Neumann series converges to an upper matrix, i.e. ® is

upper. Next, we prove that ||®]|, < 1.

Rewrite equation (4.33) as,

(4.34)

911 912
e21 922

(50u+0m) |8 1]=]5 1][

Because O is J-lossless, we have that ©J0* = J. Denote ¢ = (5012 + O32). Multi-
plying both sides of equation (4.34) on the right side first with the J operator and then
multiplying each side with the conjugate transpose of themselves, we obtain,

P(BD* — I)p* = 88"~ 1

From the condition ||S}|e < 1, we then have that ||®]|. < 1. m]

A dual theorem of the above theorem is:

Theorem 4.7 Let © € X be a given operator such that @* is (Jy, Jo)-lossless and parti-
O O

and let an operator S € U be sirictly contractive (|| S]|oo < 1).
On O :

tioned as © = [
Let:

® = DHM(©;S) = (03 — 0225)(0125 — Oy;)™?

Then, @ is upper and ||®||c < 1. O
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4.5 State space properties of J-unitary operators

As stated in [2], a bounded, block upper J-unitary operators © has input and output state
spaces H(O) and H,(0) that are closed, regular subspaces [2]. It has properties discussed
below.

Proposition 4.4 [2] Let ©® € U be a J-unitary operator. Then,

The input null space is: K(©) = L,Z2710*J;

The input state space is: H(O) = L2271 © L,2710*J;

The output null space is: K,(©) = U,0J;

The output state space is: Ho(©) = Uy © U0 J. O

Proposition 4.5 [2] Let © € U be J-unitary. H(O) and H,(O) are closed subspaces,
then:

H,(0) = H(©)JO
H(O) = H,(0)JO*

See [2] for the proof of Proposition 4.4 and 4.5. The next proposition is an extension of

the above propositions.

Proposition 4.6 Let © € U and be a (J, J1)-isometry, i.e. ©J,0* = J;. Then:
Ko, =U0J; ® Ker(.0" |1,)
Ker(.0* |45) =0 = O is J-unitary.

Proof: Let ©J,0* = J;. Now we show that ¢,0J; is closed.

Denote § = U,0J; and then $SO*J; = U,. Since U, is closed, SO*J, is closed. This is
possible if S is closed so that U,©J; is closed.
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Since ngz—l((UQer)@*) = 0, then uzer C KO(O)

Ko(@) OU,BJ, = {X € uz,P[az-l(X@‘) =0A P(X@') = 0}
(X L Uzng A P((U2®J2)®*) = uz)
= {XEUQ,XO*=0}

S Ker(.@”lu,)
0O
This proposition together with (2.39) allows us to conclude that
Uy©J; @ ker(.0™|y,) B H,(O) = Uy (4.35)

With the definition of state space of a lower operator in Chapter 2, the state space
properties of a lower J-unitary operator are stated as the dual of Proposition 4.4 and 4.5:

Proposition 4.7 Let © € £ be a J-unitary operator. Then,

The input null space is: K*(©) = U2ZO*J;

The input state space is: H*(0) = UyZ O U ZO*J;

The output null space is: K2(©) = L,0J;

The output state space is: 71’_3.(@) =L, 6 L,0J. 0

Proposition 4.8 [2] Let © € L be J-unitary. H*(©) and H2(O) are closed subspaces,
and:

H2O) = H(0)JO
HO) = Hi(O)JOr

1l

The proof of Proposition 4.7 and 4.8 are just analogs of Proposition 4.4 and 4.5. ]
Definition 4.5 An operator T, € U is said to be outer if

leTo - U2

H an outer operator is invertible, its inverse is again upper.
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4.6 Conclusions

In this chapter, we have considered J-lossless operators in space X’ and have shown the
realization conditions of such an operator. One important property of J-lossless opera-
tors, the so-called homographic transformation property, has been proved in the operator
setting. This property can be used in solving the H, control problems in time-varying

systems, which we will deal with in Chapter 6.
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Chapter 5

J-lossless Factorization

5.1 Introduction
In this ché,pter, we consider the factorization
G=T0 € X

with 7, invertible and outer, and © (Jz, J1)-lossless in the discrete time-varying context.
This kind of factorization is called an outer-(Jz, J;)-lossless factorization [1]. Here, we
consider the case where the dimension sequence of the output of G is pointwise greater
than or equal to the dimension sequence of the input. 7, is invertible. © has the same

size as G. Under this dimension condition, © can be (J;, J;)-lossless.

The fact that this kind of factorization is closely related to J-spectral factorizations is
well known and can be observed from [2], [3]. Spectral factorization problems can be
solved by solving Riccati equations [2] [3]. Riccati equations usually have more than
one solution. The most interesting solution in control engineering, the one connected
to the stability of a closed loop function, is the maximal positive solution. In time
invariant case, this solution can be obtained by an analysis of the eigenvalues and invariant
spaces of the associated Hamiltonian matrix [4] [5]. The monotonicity of the maximal
solution of the Algebraic Riccati Equation (ARE) and the convergence properties of the
Difference Riccati Equation(DRE) have been discussed for linear time invariant case by
many researchers [6] [7] {8] [9].

In [10], inner-outer (outer-inner) and-spectral factorizations of discrete time-varying sys-
tems are studied. In this case, the Riccati equation is replaced by a recursion with

time-varying coefficients that can also have time-varying dimensions. The solution of the
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equation requires an initial point of the recursion. Exact initial points can be computed
in specific situations; in other cases, the recursion converges to the solution starting from
an incorrect initial point which is different from zero, an identity matrix for example. On
the other hand, the eigenvalue analysis to classify stable and unstable systems in the time
variant case is no longer applicable and less is known about the structure of the solution,
although some results are presented on the derivation of the equation, the convergence
of the solution starting from an approximate initial point and the explicit solution based
on the original system realization in [10]. We treat the extension to outer—J-lossless

factorizations in discrete time-varying systems.

We consider the factorization from two different descriptions; In the first setting, we
assume that a dichotomy form of a time-varying system is known and given by an operator
in X. We will need the help of a subspace concept discussed in [10] with an extension
of a J factor. Here we consider the factorization in two steps by solving a Lyapunov
equation and a set of Lyapunov-type equations. We also find that the second step of
the factorization is equivalent to solving a recursive Riccati equation. The conditions
for the existence of the factorization are discussed. The convergence of the recursion is
discussed. The second algorithm works on a state equation description. We assume that
the dichotomy exists for the system. We extend the conjugation concept in [1] to the time-
varying context and introduce the corresponding factorization algorithm. The solution
based on the J-conjugation method is also connected to solutions of Riccati equations.

5.2 Factorization based on operator description

Assume an operator G € X is specified by the representation,

G=D+BJZ(I-AZ)'C.+ B,Z (I - A.Z*)7'C, (5.1)
with €4, < 1, €4, < 1, the dimension of the output of G is pointwise greater than or equal
to the dimension of the input and with (Ji, J2) the port signature operators. Suppose
that G admits a factorization:

G =G0, (5.2)

where the operator ©®, € L is anticausal and J;-lossless (the subséript ‘a’ stands for
anticausal), and G, is causal. Furthermore, suppose that G, admits a factorization as,

G1 = T.0. (5.3)
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where O, € U (the subscript ‘c’ stands for causal) is (J2, J;)-lossless and T, € U is outer.
Define

0=0.0, (5.4)

then, G has an outer—(Jz, J;)-lossless factorization G = T,0.

With this strategy, we consider the outer—(Jz, J;)-lossless factorization of G in two steps,
first we take out the anticausal J,-lossless part and then the causal (J3, J;)-lossless part.

5.2.1 Anticausal Jz-ldssless factorization

Let G € X be a given chain scattering operator specified by (5.1) with £4, < 1 and
£4, < 1, with port signature matrices (Ji, J;), and with (A,, C,) uniformly observable.
Let us consider the factorization in equation (5.2).

Proposition 5.1 Let GeXbea given operator with port signature matrices (J1, Ja),
specified by (5.1) with £4, < 1, L4, < 1 and (A,,C,) uniformly observable. Let F* =
(I — AuZ*)"'C,. Define a Jp-unitary operator ©, € L with its anticausal output state
space H2(0O,) = DyF2. Assume that there is a Hermitian invertible operator Q € D such
that

AQA; — CoyCr = QD | (55)

is satisfied. Under this condition, we embed [A,, C,] with a pair [Be,, De,| such that:

A, C. | @ Ao G _[ew (5.6)
Be, De, ~J2 || Be. Do, | ~J '
and
A, ¢ '[P A, C,
X _|° (5.7)
Be, De, —Js Be, De, —-J2

are satisfied. Define a Jy-unitary operator ©, = Do, + Bo,Z*(I — A,Z*)'C, € L and
let Gy = GJy0%J,. Then, Gy is upper and has a realization

Gy =D, + B,Z(I - A,Z)'C, (5.8)
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where Ay, By, Cy and D, are equal to,

A. C.JCy
A= ¢ 5.9
. - ] (59)
BQ = [ B, DJZC: - BaQA: ] (5‘10)
C.J,D3, Js
Cy = ¢ 5.11
) [ . (511
D, = DJ, D} J, — B.QB3.Js (5.12)

If Q@ > 0, then O, is Jz-lossless and G has a factorization G = G,0, with G, upper and

©, lower and J;-lossless.

Proof: Rewrite equation (5.5) as

[l

For @ invertible, we embed [ A, C, ] with [ Be, De, ] such that (5.6) and (5.7) are
satisfied. In this case, P = Q™! and the realization {A,, Be,,C., De,} is regular. We
construct ©, = De, + B, Z*(I — A,Z*)7'C,. With Theorem 4.4 we know that O, is
Jo-unitary. Let Gy = GJ,0%J,, then,

[ 4 €] =@

Gi=G10%J
=[D + B.Z(I ~ AZ)™'C, + B.Z*(I — AZ*)'Co)Jo Dy, + C:(I — ZAZ)'ZBY |,
=DJsDe,Jz + [D + B.Z(I — AZ)ClhC(I — ZAY) LBy, J;
+B.Z(I — A.Z)"'C.J; D Jy + B.Z*(I — A,Z*)'C. 1, D J
+B,Z*(I — A,2°)'CoCx(I — ZAZ) 2By J,

The first three terms are obviously upper. What we need to show is that the last two
terms are upper as well. Let us rewrite this part as:

BoZ*(I — A,Z°) ' Coa Dy Jz + BoZ*(I — AgZ*) 1 CodnCi(I — ZAZ) ™ ZB, J;
= BoZ*(I — A,Z") 7 AuQ By, J2 + BoZ*(I — A Z*) " (A.QA% — QUVY(I — ZAZ)'ZBg_J,
= BoZ*(I — A Z°) M A.QZ (I - ZA3) + A.QA; — QUV|(I - ZA;)™Z By J
=-B.QU - A}Z)"'By_J

~B.QBe,J2 — B.QALZ(I — A3Z)"' By J,
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We see that this part is also upper. Then G is upper. By combining the first three terms
with the last two terms of (7, it is not difficult to derive that:

G1 = DJzD*gnJQ - BaQB@aJQ
C.J2Dg, J,

+[ B. DLC: — B.QA" |(Z* — [ A, C.hC: })_1
| B, J2

A

Then G; has the realization {A,, B,,Cy, Dy} of (5.9), (5.10), (5.11) and (5.12). Since
0:J:0, = J2, G admits a factorization G = G10,. If @ > 0, O, is anticausally J,-
lossless as factorization (5.2) requires. - o

After the anticausal J-lossless factorization, we obtain an anticausal J;-lossless factor and
an upper operator. In the next subsection, we consider the causal J-lossless factorization
of an upper operator in (5.3).

5.2.2 Causal (J;, J;)-lossless factorization
Theorem 5.1 Let T € U with port signature matrices (J1, J2). Suppose that there exists
a © € U which is (J2, J1)-isometric with its realization regular, such that UsT J, = U0 J;.
Then T has a factorization

T=T,0

with T, € U outer.

Proof: Define T, = TJ,0*J;. Then

UsT, = UsT J,0*J, = Uy T J,0%J; = U01,0%J1 = Uy

so that T, is outer. Next we show that T = 7,0.

If © is J-unitary, @' = J,0*Jy, then it is always true that if T, = TJ,0*J;, then
T = T,0. In the case that O is only (J,, J)-isometric but with its realization regular,
there always exists an §) € i which is the J-complement of © such that:

[g].h[n* e*]:[‘]c Jl] | (5.13)
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and

[9'@][LJJ[3}=5 v (5.14)

where J, is called the complement port signature matrix of J;. Then we have: Q*J 0 +
0* /10 = Jy or L*J.Q =1 — J,0%7;0 and 0,02* = 0. On the other hand, because
U,T I C Uy®J,0* = 0, T, = 0. Hence T = TJ,0*J,0 = T,0 iff there is an
such that equations (5.13) and (5.14) are satisfied. Since in the case that the realzation
of O is regular, there always exists such an . Then for a (Js, Ji)-isometric operator ©
such that ITJ; = Uy0J,, T has a factorization T = T,0 with T, outer. O

In Section 4.3, we have defined the input and output signature matrices J; and J; for
a chain scattering operator. In general, their entries are time-varying and the relation
between J; and J; can not be given by a simple expression. But in some special cases, J;
and Jp are explicitly related. Let us consider the relation of J; and J; in a special case

which is related to the problem we deal with.

Let a chain scattering operator T' € U. The factorization we are interested in is T' = T,0

with T, outer, © (J;, J1)-lossless and upper. Let © be partitioned as gn 812 ] with
21 Oz

O, invertible. Because O is upper, ©2; is upper. On the other hand, the corresponding
scattering operator, %, is lossless. Thus ©3; must be upper as well. Let { Ao, Be, Co, Do}
Dy Dsy
D31 Di
tioning of ©. Since both @y, and @ are upper, Dy, is invertible. Because D;; € D,

be a realization of ©®. Suppose Dg is partitioned as [ } following the parti-

the invertibility of D, implies that every entry of Dy, is invertible and then square. The
row and column dimensions of Ds;, which are corresponding to the dimensions of the
negative part of J; and J;, are thus equal to each other. This equality of in addition with

the condition that the dimension of the output is pointwise greater than or equal to the

I
dimension of the input implies that j; = ) for ¢ = —0... + co. In the global

J,i

. .. I
notation, we denote the relation j;; = . as
j 1,2

I . .
b=[ L] (5.15)

For the rest of the chapter we assume that the relation of equation (5.15) exists. In this

case, J. in the proof of Theorem 5.1 equals the identity operator.
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Let ® € U be a (Jy, J;)-isometric operator. Then K,(0) = K,(0) & K,(©), where
K.(0) = Up©J; and K|, = ker(.0*|,) = {x € Uz, xO" = 0}, and K,(0) ® Ho(0) = Uy
Let T € U be an operator with port signature matrices (Jy, J2). If we find a © such that
K.(©) = U, T Tz, then UsT J, = Up©J,. We then have the following proposition.

Proposition 5.2 Let T € U be an operator with port signature matrices (J1,Jz). Let ©
be a (Jo, J1)-isometric operator such that K,(©) = UpTJ;. Then, H,(©)J,T* C H(T).

Proof: Since K,(0) = U J, = U0 5,

”

Uy ST, = Uy 0 U0, = Ho(©) B K, (5.16)
where K. () = ker(.0*}y,) and hence, U,TJ; L Ho(©) @ K, .
For any x € [H,(0) @ K;]Js, Po(tsTx") = 0.
So that ¥T* € £,Z7!. From this result and (4.35) we have:

(Ho(®) @ ;)2 = {x € Us, XT" € L2Z7"} (5.17)
From the definition of H(T') we have:

XT e @)axt s, € H(T) CH(T) ‘ (5.18)
So that in particular, 7,(©)JT* C H(T) m]

Let T' € U be an operator with port signature matrices (J1, Jz). Define a (J;, J1)-isometric
operator © such that K (©) = UsTJ,. Let E, be a J-orthonormal basis representa-
tion of H,(0): H,(0©) = D;E, and let F be a basis representation of H(T). Because
H,(0)J,T* C H(T), we must have E,J,T* = XF for some bounded diagonal operator
X which plays an instrumental role in the derivation of a state realization of ©.

Suppose that E,J; has a component in IC:,/ so that DE,J, € Kl;’ for some D € D,. Since
K. = ker(.0%|,) = ker(.T*|w,) (T* = ©*T; and ker(.T;) = 0), we have
DEOJZT*lDE,,JzeICZ = DXFlDthe)c;’ = 0 sothat D € ker(.X). Hence H,(0) = D,E, can
be described as the largest subspace D,E, (and then H,(©)J; = D;E,J; is also the largest
subspace) for which: E,J;T™ = XF with ker(.X) = 0. The two conditions E,,T* = XF
and ker(.X) = 0 in addition with the property of J-lossless operators define a realization
of a J-lossless © such that Z T Js = UsOJ;. If such a © exists, then, according to Theorem
5.1, the factorization T = T,0, where T, is outer and © (J3, J;)-lossless, exists.
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Proposition 5.3 Let T € U be a locally finite transfer operator with port signature matri-

ces (J1, Jz) such that J, = d 7 and a uniformly reachable realization {A, B,C, D}
1

such that £4 < 1.and (TJoT*)™! exists. T has a factorization T = T,0, where T, is
invertible and outer, and © € U is (Jy, J1)-lossless iff there is a pair { Ae,Co} which cor-
responds to a J-orthonormal basis representation of H,(©), the output state space of ©,
with L4, < 1, and a diagonal operator X such that the following conditions are satisfied,

(i) Ao XTVA* + Co hC* = X
(ii) Ae XV B* 4+ CoJoD* =0
(iit) Ao Ag + CoJoCs =1

(iv) Ker(.X)=10

If such an X exists, it is unique up to a left diagonal unitary factor, i.e, X*X is unique.

Proof: The given is a locally finite transfer operator T' € U with a uniformly reachable
realization {A, B,C, D}, where {4 < 1. Let F = (I-Z*A*)"'Z*B* and F, = (I - AZ)~'C.
Suppose that a pair {Ae,Ce} and a diagonal operator X fulfilling (z) — (44%) exist and let
E,J; = (I — AeZ) 'CoJ;, we have the following equations: ’

E,J; = CoJs + AeZE,J, (5.19)
ZF = B* + A'F (5.20)
T* = D" + C*F (5.21)

As analyzed before, T has a factorization T = T,0 with T, outer and © (J2, J1)-lossless, iff
the conditions that E,J,T* = XF with Ker(.X) = 0 and © (J;, J;)-lossless are satisfied.
Now we show that conditions () — (iv) are equivalent to these conditions.

Uniform reachability implies that H(T') = D,;F. According to Proposition 5.2, we need to
find a (J, Ji)-lossless operator © such that H,(0©)J,T* C H(T). That is E,J,T* = XF
for some bounded X € D. Because F € £,27", P;,7-1(E,J;T*) = XF. Next, we show
that X is given by a solution of the equation in condition (i). With Pg,z-1(E,J,T*) = XF
and equation (5.20), Pr,z-1(ZXF) = XD P;,5-1(ZF) = XY A*F. On the other hand:

A@P[qz—l(ZEonT*) = PLz—l([A@ZEon]T')
Prz-1([EoJy — CoJo]T™)

Ppoz— (EngT*) — Prg (C@JgT*)
XF — CoJo.C*F

Il
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Because Py z-1(ZE,J;T*) = Pgz-1(ZXF), then:
AoXVA'F = XF ~ CoJ,C*F

Since the realization is uniformly reachable, we have:
Ao XCVA* 4 ConC* = X

Condition (:7) is derived with the condition E,J;T* = XF € £,Z7! as follows:

Po(E,;T*) = Po([Co + AeZE,|J,T*)
CoJyD* + APo(ZE,J,T*)
CoJaD* + AoPo(ZXF)

CoJyD* + Ag X"V B* = (

Il

Condition (74¢) is given by the fact that E,J; is a J-orthonormal basis representation of

the output state space of a J-lossless operator and condition (¢v) has been derived before.

Conversely, if conditions (i) — (iv) are satisfied, then conditions for the existence of the
outer—J-lossless factorization T = T,0 are satisfied. We show this by substituting con-
ditions (¢) — (é¢) into E,JoT™ to verify that the condition E,J;T* = XF is satisfied and

conditions (i¢¢) — (iv) are the same in both directions.
The uniqueness of X is seen from the following analysis.

With the same strategy given by Theorem 3.28 in [10] we can prove that
Hi = Pr,z-1(.T*), = P,(.F3)F. Hence Pg,z-1(E,JoT*) = P,(E,JoF;)F. Since T is
uniformly reachable, X = P,(E,J;F3). X*X is obtained as:

X*X = P,(F,LE})P(E,J,F;)
= P,(Py(F,JE})E,J,F})
= PO(P#(FO)J2F;) (P#() = P,(.LE})E,)
Then we see that X*X is unique. o

Then we have X*X = P,(P#(F,)J,F*). Since X*X > 0, then we need P, (P2 (F,)JLF%) >
0. This gives another explanation of the difference of this factorization from the outer—
inner factorization of T: when the latter exists while the former exists only under the
condition that PO(P;’.? (F,)J2F2) is semipositive definite. To obtain a unique X, we can
choose X, at every step to be in an upper triangular form with all its diagonal entries

positive.
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If we have found such a X that conditions (¢) ~ (¢v) are satisfied, then we have the pair
{Ae, Co} which corresponds to a realization of a (Jz, J1) lossless operator ©. Embedding
{Ae,Co} with {Be, D} such that,

I Ao Co|” 1
Jo || Be Do | — b
then, © = D¢ + BoZ(I — AoZ)™'Co and 0J,0* = J,. With T = T,0, the outer operator
T, is derived as follows,

T, = TJL0"J;
= DJ,D3Jy + BZ(I — AZ)"'C1, Dy + TLCH(I — T AL) ' Z* By J, (5.22)

Ao Co
Bs D¢

The third term of the above equation is

TLCs(I — Z*A5)"Z* By J,
= DJ,CH(I — Z*Ay)*Z*ByJy + B(Z* — A)"'CJ,C4(I — Z*A3)'Z* By Jy
= —~BXUD*AL(I — Z*AS)'Z*ByJy + B(Z* — A)"'CLCS(I — Z*AL) ' Z* By J,
= B(I — ZA)"'X-V*BgJ,
= BX"ByJ, + BZ(I — AZ) ' AXV)*B3 J,

By substituting the above result back into (5.22), we obtain the realization of T,

Ty~

A| CLDyJ + AXCV*Bs } (523)

B 1 DJz.DE)Jl + BX(—I)*BZ)Jl
The invertibility of T, follows from condition of the invertibility of TJ,T*.

The next lemma is dealing with the J-unitary embedding problem which is part of the

factorization procedure.

Lemma 5.1 Let o be an (m x n) matriz and v be an (m x [) matriz. Let j, and j, be

. . I
stgnature matrices such that j, = [ . J and
21
aa” + 957" = I,

. I, I, . .
Define j = [ . ] = [ . ] Then, there exists matrices 3 and § such that
J2 n

m n
0= 7 sa J-unitary matriz in the sense
n+l-m | g §

0j6" = j 0 =j
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Proof: With the given conditions, the first block row of ¢ is already (3, [)-isometric,

{a'y]I:In j2H‘;‘:]=Im (5.24)

We now show that this block row can be completed to a j-unitary matrix. From (5.24)
we know that the m rows of { a v ] are linearly independent. Choose a matrix [ b d ]

with (n + [ — m) independent rows such that
R | R TR e

We claim that the square matrix [ (Z Zl } is invertible. Suppose that for some [ z; 1z, ]

[ 21 xz][ 7]:[o 0]

a
b d

then .

a v I, L _
[$1 iBz]I:bd][ jz:!':')’*:l_[xl 0]“[0 0]

Hence z; = 0 and z,[ & d ] = 0. But the rows of [ b d ] are linearly independent, so
that zo = 0. Hence

el ] ]

where N is an (n +1—m) x (n + [ — m) invertible matrix. By the usual inertia argument
[10], the signature of N is equal to j; and then N has a factorization N = Rj; R*. Thus
putting

— p-1 . a9
[8 61=R"[b d], e-[ﬂ 6]

ensures that 6 is j-unitary as required. O

This lemma is a special case of the more general embedding problem of Lemma 5.16 in
[10].



5.2 Factorization based on operator description 96

To compute the outer—J-lossless factorization of an operator T' € U such that T = T,0
with T, invertible and outer, and © J-lossless, we need to compute the instrumental
operator X and the realization of © first and then the realization of the outer operator can
be computed with equation (5.23). Summarizing the above results, we obtain the following
algorithm, where the computation is carried out locally and backward recursively.

Quter—J-lossless factorization algorithm:

In: {T}} (a reachable realization of a upper operator T')
Xo {initial condition of X)
J1ks Jok (input and output signature operator)

Out: {0}, {(T,)x} (realization of J-lossless and outer factors)

Fork=-1,---
, L
(1), [ 4% | o | XonBi
Cgk jz,kD}:

(2) M = A;akAgk + Céka,kcgk-

Under the condition that Mj > 0, factorize My = ryr} and define Agk = r,'c'lA'@,; and
Cgk = r,ZICé,k.

4 ” " Xk+1A;
3. X, =[ A
( ) k [ (CT% C@,: }[ j2lkC;: ]
(4). Xe | _| Que X, (QR factorization of X})
0 @2,k

(5). [ Ao, Ceo, 1= Quxl Ao, Co, |
(6). [ Bo, Do, ]=[As, Cojox I

Ar Crg2 Dy, g1k + AcXjy1 B, 1k

(7) (To)x = T A
Cr  DijosD 1k + BeXiy1 BS, J1k

In the algorithm, we have used the condition T'.J,€* = 0.

With Lemma 5.1, we consider Step (6) in 4 steps as follows:

(i) Find [ By, Dg, |suchthat [ By, Dy ]1=[ A5 Ce jox I
(ii) Calculate N = By Bg, + Dékj“ng;

(iii) Factorize N = Rj, xR™;
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(iv) Calculate [ Be, De, ] =R™'[ By, D, |-

Remark: As stated before, © is J-lossless iff M; > 0. Then the second step in the above’
computation can be carried out. Otherwise condition (iii} in Proposition 5.3 will not be
satisfied.

In the algorithm, one problem remains is the initialization of X. For a finite operator,
Xo = [.] because the dimension of the states after time instant 0 is zero. For a system
which is time invariant after time instant 0, the initial condition is determined by the

solution of the time invariant system. X, now has to satisfy:

Xo = Agy XoAf + Co,j2.0Ch
AQOXQBS + C@an,oDa = 0
A(-)OA*(_)O + C@ojz,ocg)o =71

For a periodic system, the initial condition is determined by the solution of the equivalent
time invariant system within one period. The time invariant system solution can be
obtained from an analysis of the eigen space of a corresponding Riccati equation which
we will discuss later or be approximated with the recursive algorithm. The initial condition
for the recursion can be an identify matrix with the conrrespondent dimension.

With the outer—J-lossless algorithm, we implement the causal outer—(J3, J1)-lossless fac-
torization of Gy.

5.2.3 The realization of the outer factor of a stable system and

recursive Riccati equation

In the time invariant case, it is well know that the outer factor T, if it exists, of T
in the factorization T' = T,0 can be expressed in terms of the original system matrices
{A, B,C, D} of T and an intermediate quantity which is the solution of a Riccati equation
with {A, B, C, D} as parameters [2]. The Riccati equation can be obtained by performing
a J-spectral factorization T J,T* = T,J1T; [2] and an outer—J-lossless factorization similar
to the time invariant case with the J-lossless conjugation method [1]. The algorithm to
compute the realization T}, in equation (5.23) contains the intermediate quantities Co and
Dg besides X. Now we show that in the time-varying case, the realization 7, in equation
(5.23) can be written in terms of the solution of a Riccati recursion and the realization of
the system, also we show how the corresponding Riccati equation can be derived in terms

of the algorithm discussed previously.
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Theorem 5.2 . Let T € U be a locally finite transfer operator with a uniform realization
{A,B,C, D} and assume £4 < 1. If the outer-J-lossless factorization T = T,0, with T,
outer and © J-lossless, exists, then a realization of T, is given by:

A| CLD* + AY-) B
B| DJ,D* + BY-) B~

I

T, (5.25)

-

where Y = X*X > 0 with X defined in Proposition 5.3. R is diagonal with its entries

square and satisfies:
Ji = R(BY"YB* + DJ,D*)R* (5.26)

If BYC"YB*+ DJ,D* is invertible, then Y is the solution to the recursive Riccati equation:

Y = AYCUA* o0t
—(AYUVB* + CL,D*)(BY"YB* + DL D*) Y (AYVB* + CJ.D*)* (5.27)

Proof: We give the proof in terms of the computation steps for the outer-J-lossless
factorization given by Proposition 5.3. With step (*), we mean the computation step for
the computation of the factorization of the algorithm in the previous subsection with a

global view.

Assume that the factorization T' = T,0, with T, outer and © (J,, J;)-lossless, exists, M
in step (2) then is uniformly positive definite and r in step (2) is invertible. T, then is
given by equation (5.23) so that Bg and Dg are given, according to step (6), (2) and (1),
by,

I

[ Ao Colz 1*

[r14y riCod |

[ 45 Ccon ]

R[BX--Y D | (5.28)

[ 50 Do ]

with some diagonal operator R. Because BeoBg + Do J:Dg = Jy, from equation (5.28)
we have:

Jy = R(BY“YB" + DJ,D*)R" ‘ (5.29)
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Since J, = I J ] and the dimension of (BY (-1 B* + D.J, D*) equals the dimension of

1 :
J1, R is a diagonal operator with its entries square. If (BY (-1 B* 4 DJ,D*) is invertible,
R is invertible, then (R*J; R)™* = (BY (-1 B* + DJ,D*). Substitute the relation given by
equation {5.28) and Y = X*X into (5.23), we obtain the expression (5.25).

According to step (4), X*X = X"*X'. Then from step (3), equation (5.28) and step (6),
we obtain,

Y= X*X=X"X
Ag X(-Ngr
*(__1 (2] " "
[ Ax=Y cx, | [ con [ 45 co noe

[Ax(—l) C.fg ]( [I . ] _[X*(l—)i)B*]R*JlR[ BX*(-1) D] ) [Xt(];lc):l*]

]

]

Substituting R*J1 R into the above expression yields the Riccati equation as:

Y = AYCVA 4 CLCr
—(AY-DB* + CJ,D*)(BY -V B* + DJ,D*)"{(AYCDB* 4+ CJ,D*)*

D

This equation has many solutions for Y. Since X € D(Bg, B) has Bg of maximal possi-
ble dimensions such that ker(.X) = 0, the solution Y of the Riccati equation must be
semipositive and of maximal rank to yield an outer factor T,.

From the above discussion we know that a J-spectral factorization such that TJ,T* =
T,J1T> for a discrete time-varying stable system 7 can be computed by solving a Riccati
equation. The result is a resemblance to the problem in time invariant systems [2], the
only difference is that the Riccati equation becomes a recursion if we consider the solution
in time-varying systems locally. The recursion is obtained by taking the k-th entry of each
diagonal in equation (5.27), that is,

Yi = AYinA; + Ci2Cf
~(AYis1 B + CrjaDi)(BrsaYi By + Dija D) (ArYes1 B + Crj2 Di)”

Initial conditions for the recursion can be obtained in special cases. For this part, we refer

to [1].

Note that if DJ,D* is invertible (Dyj,xDi is invertible) and the initial condition for the
recursion is zero, then Y = 0 is always a solution. In general, this is of course not the
solution we are interested in (except for T is outer). The solution we are interested in is
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the maximal stablizing solution which is semipositive definite. From Proposition 5.3 we
know that this solution is unique, if it exists. If we do not know the exact initial condition,
we should put the initial condition different from zero, an identity for example, in order
to obtain the maximal stablizing solution. In section 5.5, we will see that if the initial
condition is different from zero, whether it is correct or not, the influence of the initial
condition is disappearing as the recursion goes back to minus infinite. The solution then

converges to the unique solution.

The Riccati equation can also be obtained in another way: by using J-lossless conjugation
method to solve the outer-J-lossless factorization problem for a stable system.

5.2.4 Conjugated J-lossless—outer factorization

In this subsection, we consider the conjugated J-lossless—outer factorization which is a

dual factorization of the outer—J-lossless factorization.

When we consider an outer—J-lossless factorization of an operator T € X, we have dis-
cussed the dimension condition for this factorization. The dimension of the output of
T should be greater than or equal to the dimension of the input. In the oon_]uga,ted
J-lossless—outer factorization, the dimension condition is reversed.

Let T € & with port signature matrices (J1, J2). Now we consider the factorization
T =0T,

with T, invertible and outer, and © conjugated (Jy, J2)-lossless. All the propositions and
corollaries used in this kind of factorization are duals of the propositions and corollaries in
the case of a J-lossless factorization. That is, the output state (or null) space is replaced
by the input state (or null) space in the propositions and corollaries, reachability changes
into observability etc. Here we give several important dual propositions, corollaries and

results without proof.

The dual proposition of Proposition 5.1 is:

Proposition 5.4 Let T € X be a given operator with port signature matrices (Jy,Js),
specified by (5.1) with £y, < 1, L4, < 1 and (A,, B,) uniformly observable. Let F** =

B,Z*(I — A,Z*)"'. Define a J-unitary ©, € L with its anticausal input state space
H*(O©,) = D,F°. If there is a Hermitian operator P € D which is invertible such that

APYA, - B: B, =




5.2 Factorization based on operator description 101

is satisfied. Under this condition, we embed [A,, B,] with [Ce,, De,] such that

T pt-1
A, Co, P A, Co, _ P (5.30)
B, De, —-J B, De, —-Jy
and
-1 i ~(-1)
A, Co, P A, Co, _ P (5.31)
Ba D@n _Jl Ba. D@,; _Jl

are satisfied. Define ©, = Do, + B,Z*(I — A,Z*)*Co, € L. Let Ty = 10,1 T. Then,
Ty is upper and has a realization

T1 = Dt + BtZ(I - AtZ)—ICt

where Ay, B;, C; and Dy are equal to,

A
A= ¢
‘" | BBLhB. A
- J1D3 J,B.
B, = [ ! e“,.l ]
LCs,

Co= [ C.BthD — AZPNC, |
Dy = 1Dy D — 1C5 PV,

If P > 0, ©, is conjugated Jy-lossless. Then T has a factorization T = ©,Ty with T

upper and O, lower and conjugated Jy-lossless.

Before we give the dual proposition of Proposition 5.3, let us discuss the dimension con-
dition between J; and J; in the special case where we consider the conjugated J-lossless—

outer factorization.

Let a dual chain scattering operator T € Y. The factorization we are interested in in this
case is T = OT, with T, invertible and outer, and © upper and conjugated J-lossless. Let

oy 0, O . . . C
© be partitioned as © = 011 @12 with ©,; invertible. The analysis is similar to the
21 Oz
case of the outer—J-lossless factorization of a chain scattering operator in subsection 5.2.2.
Ja

The relation we obtain is J; = I

The dual proposition of Proposition 5.3 is
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Proposition 5.5 Let T € U be a locally finite transfer operator with port signature matri-

L

ces (J1, J2), where J; = and a uniformly observable realization {A,B,C, D}

-1
such that £4 < 1 and (T*J1T)7! exists. Then, T has a factorization T = OT,, where T,
is invertible and outer, © € U is conjugated (Jy, J5)-lossless, iff there is a pair {Ae, Bo)
which corresponds to a J-orthonormal basis representation of H(©), the input state space
of ©, with {4, < 1 and a diagonal operator X such that the following conditions are
satisfied,

(i) As XA+ By 1B = XY
(it) AgXC + By h1D=0
() AgAe + BgJoBe =1
(tv) Ker(.X) =10

If such a X exists, it is unique up to a left diagonal unitary factor (X*X is unique).

Embedding {Ae, Be} with {Ce, De} such that,

Ao Co | [ 1 (1
B@ De J1 a J2
Then, O has a realization {Ag, Be,Ce, Do} and the realization of the outer T, is

TO~[ A [ c

Ae Ce
Be De

J,C5X A+ J,DeJiB | J,C5XC + JoDodi D

Define Y = X*X, under the condition that (C*Y C + D*J; D) is invertible, the realization

of T, can also be written as:

T, ~ I
Jo R

with J, = R*(C*YC 4+ D*J1D)R and Y is the solution of the Riccati equation:

A | C
C*YA+ D*ZB|C*YC + D*J,D

Y = A*YA+ B*J,B — (A"YC + B*J,D)R" ,R(A*YC + B*J, D)* (5.32)
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5.3 J-lossless conjugation and J-lossless factorization

5.3.1 The general form of discrete time-varying Riccati equation
Consider the discrete time-varying (forward) algebraic Riccati equation of the form [11]:
X = KXUVE* - KXCOWH (W, + Wa XEOWH ' W XCVK* + H (5.33)

where H,X € D(B,B), K € D(B,B""), W, € DIM,B"™), W, € DM, M) and
W, = Wy, H = H*. We assume:

(1) (K, W1) is a stabilizable pair {Definition 2.4);
(2) (C, K) is a detectable pair (Definition 2.5, where CC* = H);
(3) W, is invertible.

We define: W := W;W;'W;. Then equation (5.33) can be rewritten as:

X =KXVK* - KXW (I + XCOW) ' XK+ H (5.34)

Symplectic operator

Define an operator:

0 I .
T= [—I 0] (5.35)

If an operator F is invertible and satisfies:
A r=r"

then, F is called symplectic.

Assume that K in (5.34) is invertible. Let us define a symplectic operator F based on
the Riccati equation (5.34) as: :

]

We can use this to compute the desired solution of the Riccati equation (5.34).

K+HK™W —-HK™™

5.36
—K—*W K~ (5.36)
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The Equivalent relation between Riccati equation and the Symplectic matrix

Theorem 5.3 [11] Assume that there ezists a stabilizing (or antistabilizing) solution of
the Riccati equation (5.34) such that:

K*=K—- KXY +wxt'w (5.37)

fulfills Lgx < 1 (or £gxy-1 < 1). Then such a solution X can be written as X = X{'X,
for any nonsingular Xy, and X, and X, satisfy:

[ Xl XZ ]-7'-= S[ XI(_I) Xz(—l) ] (5-38)
where F is defined in (5.36) and § = X, K* X7V,

Proof: For the proof, see [11]. O

From this theorem we know that solving equation (5.38) is equivalent to solving equation
(5.34). Hence, symplectic operator (5.36) corresponds to the Riccati equation (5.34). The
solution X can also be denoted by X = Ric(F).

5.3.2 J-lossless conjugation

J-lossless conjugation is regarded as a special class of conjugation and gives a natural state
space interpretation of the classical interpolation theory [12]. This class of conjugation has
been introduced by Ball and Helton [13] [14] and used by Kimura for the outer—J-lossless
factorization and H,, control [1]. Although [1] only considers the problem for continuous
time invariant systems, it is possible to extend the technique to discrete time-varying

systems.

A very important factor in J-lossless conjugation is the J-lossless factor we have dis-
cussed in the previous chapter. In this section, we discuss such a factor in causal state
equation description rather than in input-output operator description. Although causal
state equation description has limitations in describing some discrete-time systems such
as anticausally delayed systems and descriptor systems, it can still be used to represent
a large set of systems. With this description, the spectral radius that is defined for the
A-operator of a system is not necessary smaller than 1, i.e., the system is not necessar-
ily causally stable. The operator description of these systems require a ‘dichotomy’ a
spiitting of spaces into a part that determines the upper part and a part that determines

the lower part, i.e., the causally stable part and the anticausally stable part, respectively.
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The anticausal stable part corresponds to the antistable part for the causal state equation

description. The computation of dichotomy is not a trivial task in the time-varying case.

We define the degree of a system T as the irreducible state dimension of T, denoted as
deg(T). As discussed in Chapter 2, it is defined by an index sequence. The degree of
the stable part of a system is corresponding to the causally stable part and the degree
of the antistable part is corresponding to the causally antistable part or lower part of its
dichotomy.

With the J-lossless conjugation method, we consider the outer-J-lossless factorization
of causal state equation description setting with some extra assumptions. The same
assumptions are used for the description of a J-lossless system.

Theorem 5.4 Let a discrete time-varying system © have a uniform realization

B,
{Ae, Bg,Ceo, Do} with port signature matrices (J1, Jo) and the partitions: Be = Bel ,
02
Do Denz - . ]
Co=[Co1 Co2 ], Do = where Dogy is invertible such that:
Deg1 Dez:

XZ™' = XAe + [ U Yz][Be‘]
Bes.

(i U,]=X[Cer Cex]l+[Uh Yz ]

De11 Dex2
Doy Dese

where [U; Y3 ], [ Y4 Us ] and X are inputs, outputs and states time sequences respec-
tively. © is (Jo, J1)-lossless iff there exists a Hermitian diagonal operator Q@ > 0 such

that:
Ae Co Q(—“l) Ae Co *___ Q
Bo De Jo || Be Do | Jy
or
Ao Co1 Cea QY Ao Coy Coy | Q
Bor Den Do I Boy Doy Derz | = I (5-39)

Bos Doz Des -1 Bgs Doy Des -1
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The dimensions of the identity matrices (and thus J; and J;) in equation (5.39) correspond
to the dimension of the input and output vectors [ U; ¥; Jand [ ¥; U, ], we do not
express the dimension explicitly for simplification.

Proof: Suppose. that the corresponding scattering system, say I, of © is lossless and
B,

assume that X has a uniform realization {A, B,C, D} with the partitions: B = B
2

3

Du Dy
Dy Do
state equation of ¥ then is:

C=[C, C;],D= ] Because Dgg, is invertible, Ds; is invertible. The

B,

XZ'=XA+[ U, U]
B,

(i 2]=X[C G+ U Uz][Du D12]

-D21 D22

According to Theorem 4.1 of Chapter 4, ¥ is lossless iff £4 < 1 and there is a Hermitian
diagonal operator @ > 0 such that,

*

A Cl 02 Q(_l) A Cl 02 Q
Bl Du D12 I Bl D11 D12 = I (540)
By Dy Dy I B, Dy Dy I

@ is the observability Gramian of X. (5.40) specifies,

AQUYA* 4 C1C + G, = Q (5.41)
AQUYB} + C\D;y + CaD:, =0 (5.42)
AQWYB; + C1D3 + Cy D%y =0 (5.43)

BiQUYB; + D,y D}y + Dy Dy, =1 (5.44)
BiQUYB; + Dy Dy + Dip D3y =0 (5.45)
B:QUVB; + D Dy + DDy, =1 (5.:46)

Because D;; is invertible, from equation (5.43), (5.45) and (5.46) we have,

Cz = ~AQVB; D37 — C1D;, Dy
Dy = —-B,QUYB;D;; — DD Dy
D33 ByQU VB3 D;y = —I — D3} Dy D3, D35 + Dy} D3y
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It is not difficult to derive the relation between the corresponding realizations of ¥ and

O as,

Ae Co1 Ce A—-CyD3' B, Ci—CyD3} Dy ~CoDyy}
Be1 Denn Deiz | = | By — D13D33 By Dy — Di3D33 Doy —DypD3;
Boz Dezi Des D3} B, Dz Dy Dz

without state transformation. With the above relations, now we show that if conditions
given by (5.40) are satisfied, then conditions given by (5.39) are satisfied. First we look
at

AeQUYAY + ConCl; — Co2Ch,
= (A—C2D3; B2)QU V(A" — By D3 C3) + (C1 — C2D3} Dn)(Ct — D3, D35°C3) — C2 D3, D37 Cs
= AQ(-1A* — AQ(-VB3D;; C; — C2 D3} B,QUV A* + Cy D3} BoQ VB3 D3 C
+C1Cf — C1D3 D3 C — C2D5} Dy Cf + C2 D3, Dg1 D3, D3 Cy — Ca D3 D3 C
= AQUDA* + AQU-V B D5 D3 BQV A* + AQ("V B3 D3, D3} Doi C
+AQUV B3 D3 D3l ByQ UV A* + €1 D3, D3y D3 BoQUV A* — C3C3
—C3 D3} Dy D3, D37 C + CaD33 D37 C3 + C1C} + C1D35, D35 D3} BoQ-1 A*
+CID§1D52*D2_21D2ICTAQ(_1)BED2_2*D;21DZICf + CID;1D2_2‘D2_21DZICT
+C3D3; Dy D3, D37’ C; — C2 D33 D35 Cs
= AQUVA* + C1CF + 2(AQUVB; D3 + C1 D3 D37 )(AQUYBs D3 + C1D3, D3 )* — CoC3
= AQUVA* + C1Cr + C2C3 = Q

In a similar way, we can show that

AeQUYBY, + Co1Dgyy — Cé3 D1y =0
A6QUY By, + Cor1 Dy — C53Dg5 = 0
Be1Q VB, + Do11 Dy — De12 Dy, = 1
BGIQ(_I)BE)Q + D@ll-D(sz] - D912D522 =0
Bo:Q"V By, + Doz Dy — Deza Dy = —1

are satisfied with conditions given by (5.40). With this analysis we know that for a time-
varying system %, it is lossless iff there is a Hermitian diagonal operator @ >> 0 such that
the realization of X satisfies condition (5.40), and then its corresponding chain scattering
system © which is J-lossless, the realization {Ag, Bo,Co, Do} of © satisfies condition
(5.39) with the same Q.

Conversely, it follows straightforwardly that if a chain scattering system realization
{Ae,Be,Co,De} satisfies condition (5.39), the realization {A, B,C, D} of the corre-
sponding scattering system satisfies condition (5.40). O
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We see that @ in equation (5.39) is the observability Gramian of ¥ and that it is positive
definite.

Now, let us look at the definition of J-lossless conjugation.

Definition 5.1 [1] A J-lossless system © is said to be a stabilizing (anti-stabilizing) J-
lossless conjugator of a system T, where T has a uniform realization {A, B,C, D}, iff:
(1) OT is stable (antistable);

(2) deg(©) is equal to the degree of the antistable (stable) part of T' (pointwise).

We call ©T the J-lossless conjugation of T.

With the above theorem and definition, we have the next theorem.

Theorem 5.5 Let a system T have a uniformly minimal realization {A,B,C,D}. As-
sume that A is invertible and that there exists a dichotomy of A. A stabilizing (or anti-
stabilizing) J-lossless conjugator © of T exists if the Riccati equation:

X =A(I+XVBJB) 1 X~V 4 (5.47)

has a solution X > 0 such that:
A=AI+XYB*JB)! (5.48)
is stable (or antistable). The corresponding symplectic matriz of (5.47) is:

A

F=
—-A™B*JB A™*

(5.49)

with K = A, H = 0 and W = B*JB corresponding to K, H and W in the Riccati
equation (5.34).

In addition, a realization of a J-lossless conjugator © is

A™ | —-A"*B*J (5.50)
DeBX-V|  Dg )
and a realization of the conjugated system is
A |C-XA—"B"JD
OT ~ | (5.51)
DgB | DeD
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Proof: We prove the stabilizing conjugation, the antistabilizing conjugation can be

proved in a similar way.

Assume that (A, B) is uniformly reachable [10] [15] and that there exists a stabilizing
J-lossless conjugator © with a uniformly minimal realization:

A
O~ Aol Co (5.52)
Be | De
and O is stable.
Then, a realization of the series connection of @ and T is:
Ae CoB | CeD
oT ~ A | C (5.53)
Be DeB|DeD
Assume that A has a dichotomy, then the A-matrix of the above equation can be decom-
. N . MU
posed, with a similarity transformation v i as:
M U||Ae CoB| | A MGED ey (5.54)
NV A ] Ay || NED oy ‘

with A; antistable (£ At < 1) and Aj stable (£4, < 1). Ap is stable. Since © is stable and
OT is stable, the J-lossless conjugation cancels the antistable part of T, the antistable
part of equation (5.54) must be unreachable. Therefore, there must be a matrix B; such
that:

[ B DeB )= B[ N-V y(-1) (5.55)
We can prove that V is invertible because (A, B) is reachable (éee Appendix 1 of this

chapter for the proof). Let S = V~IN, then from equation (5.54) and equation (5.55) we

have:
Be = DgBS-Y (5.56)
and

V14,VE) = A 4 SCoB (5.57)
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Since Aj is stable, A + SCoB is stable. From equation (5.54) we have:

NAg = A, NGV ' (5.58)
Then,

SAe =V 'A,NY = (A+ SCeB)STY (5.59)
From equation (5.39) we have:

AeQUVAY + CoJCs=Q (5.60)
and

AeQUVBg + CoJDg =0 (5.61)
multiplying by S on the left hand side and by S* on the right hand side of (5.60) and from
(5.61) and (5.56) we have Co = —AeQ"1S(-1*B*J, Denoting X = SQS*, we obtain
the following Riccati equation:

X =A(I+XVBJB)* x-D A (5.62)
On the other hand,

A+SCeB=A-SAeQ™SV'B*JB=A—(A+ SCeB)X-VB*JB  (5.63)

we have that (A+SCeB)(I+ X"V B*JB) = A. Under the assumption that A is invertible,
I+ X('I)B"‘JB) is invertible. Then,

A+ SCoB=A(I+XVBJB) = A (5.64)

Because A + SCg B is stable, A is stable. We have proved the first part of the theorem.

For the second part, we start with:
© = Do + Bo(Z* — Ae)™'Co = Do + Do BS™(Z* — Ag) ™ (—AeQ-1S(-1*B* )

A |-XA—BJ

= Do + DeB(Z™ — A)"Y (=X A™B*J) ~
o + Do B( )~ ) DoB|  Da

(5.65)
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Here we have used the relationships S(-1(Z* — Ag)~! = (Z* — A)~1S and XA~ =
AXW(I + B*JBX(1)~1. Furthermore,

XA—* = A(I + X(—I)B*JB)"'IX(_I) = AX(’I) (566)

From (5.66) we can derive that © has a realization (see Appendix 2):

A | —A—B*J |
0~ 5.67
[ D@BX(_I) | De ] ( )

OT can be derived straightforwardly as:

oT ~ D‘jB : c-X 1;:_;3 JD (5.68)
with
BoQUVBS + DeJDg = J (5.69)
and Bé = DgBS™-1), Dg should satisfies:
DeBXVB*Df + DoJDy = J |  (5.70)
[w]

Next, we use the J-lossless conjugation operation for obtaining the J-lossless factorization.

5.3.3 J-lossless factorization of a stable system

We only discuss the J-lossless factorization of a stable system in this subsection. The
theorem is as follows.

Theorem 5.6 Let T be a stable system with port signature matrices (Ji, Jo), where Jo =

I
, and with a uniformly minimal realization {A, B, C, D} with D right invertible.
1

T has a outer—{Jy, Jy)-lossless factorization T = T,© if the Riccati equation :

Y = AYOYA 4 Cscr
—(CJ,D* + AYCVB*)(DJ,D* + BY VB Y (CJ,D* + AYCVB)* (5.71)
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has a solution Y > 0 such that
A=A+FB ‘ (5.72)

is stable with F = —(CJ,D* + AYVB*)(DJ,D* + BY(-Vg")-1,

Let L be a factor of LI, L* = DJ,D* + BY"UB*. In that case,

o |A+FBIC+FD (573)
I7'B | I-'D
and
"~ Al-FL (5.74)
B| L

is invertible and outer.

Equation (5.71) corresponds to the symplectic matriz:

A —CJLC*A™™
F =
o)
CJy(D* — C*A~*B") . . oy 171 -
PR [ DI(D*~C=a~B") | [ B -DKhC*A™]
Proof: Because of the dimension condition J, = 5l the dimension of the outputs
1

is larger than the dimension of the inputs. Since D is right invertible, we can define an

augmentation of T as:

Al|C

r] AL r4c
B D

such that both D and A — CD~'B are invertible. Then:
-1 A A a
T A—CD'B|-Ch-?
) =7+ TL]~ — " .
{T } [ ] p'B | D (5.76)
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Note that TT+ = I, TT* = 0 and then OT* = 0 and T, = (©T*)~ . From Theorem 5.5
we know that if the Riccati equation:

(A= CD'BYI+Y VB D10 B 'YV A-CD'BY =Y (5.77)
has a solutioﬁ Y > 0 such that:
A=(A-CD'BYI+Y VB D*1,D 1 B)™! (5.78)

is stable, then:

A ~Y(A-CD1B)y™*B*D~J
O~ A |-¥(4 ) 2 (5.79)
D@D"IB | Dg
A |—(C+Y(A-CD'ByBDJ)D*
e| Tt T+~ — = 5.80
[ ] [ D@D—IB l D@D_] ( )
where Dg satisfies:
Do DY (DL D* + BYCVB*) D™Dy = Jy (5.81)

Equation (5.77) can be rewritten as:

Y =(A-CD'B)YC-Y(A-CD 1By
—(A=CDB)YVB*(DLD*) ' B(I + YCVB*D— 1D B)-'Y-)(A — CDB)*

Define:
Q = -FD=C+Y(A-CD'B)™B" D™/,
= C+(A-CD'B)YV(I + B*(DJ, D) *BYCN 18D,
Then:
A = A-QD'B
Qb1 = (ChD* + AYVB)(DJLD* + BY-V By

AYCVB = (Q—C)LD*
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Then, the Riccati equation can be written as:
AYCD)(A - CD-1By
= AYCVA* 4+ (Q - C)o(R - C)
= AYDA* — QDY DJ,D* + BY D B*)D—*Q* + CJ,C*
= AYVA* - (C Lo D* + AY VB DI, D* + BY CUB*)"Y(CLD* + AYCVBY + CJ,C

Because @ = —F D, we have:

QD =-FD[ D+ D~ ]=-F[I 0]

and;

(ChLD* + AYCVBYY = [ F 0](DJD* + BYyV 5" (5.82)
Then, we find:

F = —(CJ,D* + AYCYB*)(DJ,D* + BY -1 B+~ (5.83)

It is not difficult to obtain the relationship: Dg = L~1D from the definition: LJ,L* =
DJ,D* + BYDB* and ©T. Then, DoD~1B = L!B.

Furthermore, the Riccati equation becomes:

Y = AYCYA* — F(DJ,D* + BYCUBF* 4+ CJ,C* (5.84)
and

A= A4+ FB=A-(ChD" + AY"YB*(DJ,D* + BY-VB*)-1B (5.85)
is stable.

With the above analysis we prove equation (5.73). Equation (5.74) is proved next.

Equation (5.80) becomes:

A+ FB| FDD™!
L7'B | L-'DD™!

o[1+ 7] (5.86)

L7'B |[L 0]

Z[A+FB| [F 0]
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Then we obtain:

A+FB| F '
ort ~ | ——— —— .
) 5B I ] (5.87)
A realization of T, then is derived as:
A|-FL

T,=(0T") ! ~ | 5.88
(61%) [ o } (5:55)

(m]

This theorem gives also a Riccati equation for the J-lossless factorization of a stable
system. The equation is the same as we have derived from the operator description.
Then we see that these two methods are equivalent to each other.

If we consider the conjugated J-lossless factorization of T', i.e. T' = @Ty, the dual theorem
of the Theorem 5.6 is as follows.

Theorem 5.7 Let T be a given time-varying system which is stable with the port signature

J2

matrices (Jy, Ja), where J; = and has a uniform realization {A, B,C, D} with

D right invertible. Then T has a conjugated (Jy, J2)-lossless factorization T = OT, if the
Riccati equation:

YY) = A*YA*+ B*J;B
—(B*AhD + A*'YC)(D*JD + C*YC) ™ (B*J,D + A'YC)* (5.89)

has a solution Y > 0 such that:
A=A+CF (5.90)

is stable and where F = —(D*J;D + C,.YC) ' (B*J1D + A*YC)*. Then:

A+CF|CL!
B+DFIDL‘1} (5:91)
and
A |C
T, ~|— .
[ “IB|L } (5.92)

is outer and where L*JoL = D*J,D + C*YC.
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5.4 Explicit form of the solution of Riccati equation

The solution of Riccati equation (5.27) can be given in an explicit form from the original

parameters with the discrete time-varying system technique.

Let T € U which maps U € U, to Y € U such that Y = UT and let T have a state
realization {A, B,C, D} with £4 < 1. Define Tjy = Po(Z*T), the k-th diagonal above
the main diagonal of T'. U, Y and T can be expressed as

U = Ug + ZUy + Z*Up + - -
Y =Yg+ Z¥y + ZYn + -
T =T+ 2Ty + 2Ty + -+

Define the diagonal expansions of them as

U=(Ug Uy Uy -]
Y=[Yg Yy Y ---]
and
) 5 -
~ - ~2
T= T Ty

respectively. Then, ¥ = UT.

T can be further expressed as

T= (5.93)

D BOY
=1

where O(-Y is the observability matrix defined in chapter 2.

Theorem 5.8 Let T' € U be a locally finite transfer operator with state realization {A, B,C, D}
such that £4 < 1 and (TJ,T*)! exists. Let M € D:

M = Ol — JT(TJT") T J)o*
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Ja

(-1}
. . P Jz
where T is as (5.98), J = J§—2) = [ Jn ] and

O=[C ACHD AACYCED .. ]=[C AOMD]

Then DJyD* + BM(1B* is invertible and M satisfies the Riccati equation
M = AMUVA*+CLCT
—(AMYB* + CJ,D*)(BMUYB* + DJ,D*) {(AMUYB* 4+ CJ,D*)* (5.94)

Proof: The invertibility of 7J,T* implies the invertibility of TJ7*. Let M = O[J —
JT(TJT*)"1T J|O*. With the relation in equation (5.93), we have,

fimet _ | DID + BOCDIIOC B BOCD J-DFD- -
(TJT7)™" = FD) F-D -1 g 1) F1)=1)n

Because TJT* is invertible, with Schur’s inversion formula (10] we know that the term:

(I>2

DJ,D* + BOD j-0D(-1)« px
— BO JEVFED(FED JED 0 -17(-1) J=) ot-1)* g
~ DJ,D* + BM-VpB*

is invertible. Applying Schur’s inversion formula to (Tj T*)'lgives,

0 0

T Frpwy—=1 _ —H—20*
(TJT7)™ = [0 (TD JEDF-1x)-1 ] +E207°E

where = is a matrix defined by:

—
—

I
- [ —(TCD JENT )= J-D)O-1)« B= ]
With the definition of M, we can derive:
M = OJ — JT~(TJT*)"TJ|o"

;7 D+ 2o [ D BOED ] . C*
=[C 40V (J - J[ Ol-1sge F(-1)n ] (TJT*) [ F1) ] J) [ O 4 ]
=AMV A* + CL,C*

—(AMEYB* 4 C LD} BMEYB* + DJ,D*) (AM1B* + CJ,D*)*

This is the Ricatti equation (5.94). ' O
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5.5 Convergence of the Riccati recursion

As we know, the Riccati recursion can be obtained by taking the k-th entries from every
diagonal operator in the Riccati equation (5.27). The following question can be posed
now: the recursion starts with a wrong initial condition, does the recursion then converge
to the correct solution? The next proposition gives the answer.

Let:
Oi=[C; AiCip1 AiAinaCiyz -+ ]
D; BiCiyy BiAip1Civs
T = Diyn BiaCigs
Dy,
and
Joi
J2.i= J2,i+1 '
J2,i+2

then, M; = Oi[Jy; — Jo, TH (1,02, T7) T, ;) OF.

7 ’

Consider a system T’ which is related to T as: ij = 0forj >0 and T;; = Ti;
for 5 < 0. The sequence M; corresponds to T' and at each point ¢ in time given by
M; = Oi(Jo; — Jo T (Tia i T7) 1 TiJ2,4]O; for i < 0, we then can partition 7%, O; and J,;

as,

T H:
T, = [ N T;’ J (5.95)

where T is an (7 x ) block matrix,

1

O:=[0; A0, ] (5.96)
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1l

* where O] is equal to the first 7 block columns of O;, A1 = A;A;y;--- A_; and Hj

B_3A A,
B_3A_,
B_,

C3Oy related to the Hankel matrix Hp [10], where Cf = and Op =

[ Co AoCi ApAiCy --- ], and

Joi = [ T } | (5.97)

J20

i

With J2’,i =

J2,-1

In terms of these quantities, M, the solution of Riccati equation for T',is given at 1 < 0
by

? 7

M; = Oy = D T (T, TV T, )0

Proposition 5.6 Let {A,B,C, D} be a strictly stable realization ({4 < 1} of a locally
finite transfer operator T € U and M; = O;[Jo; — Jo ;T (Tido ;T 1 Tido ;| OF be the ezact
solution of the Riccati equation (5.94) corresponding to T. Let T' be a operator which
is related to T: T,; = 0 for j > 0 and T;; = T;; for j < 0 and M; = O}[J;; -
Ly T Ty T 7T J, O be the ezact solution of the Riccati equation for T'. Then
M; — M; fori — —co.

Proof: Under the given condition, we can partition T} as in (5.95). With this partition

and Schur’s inversion Lemma, we have:

0 0
T,J iTi* -1 =
(L:2iT5) [0 (T0J2,0T5)~1J

I
+ 21 I — H o oT*(ToJr0T3) !

[—(Ton,oTJ)"Ton.oHS* ] 472 [ 1 = BT (TodnoTs) ™ |
for 2 < 0. Where

¢ = T{J, T + HyJooHy* — HJooTg(TodooTy)  ToJao Hy
T 13 T0* + C5 00l Ja0 — Ja0Tg (TodaoTg)  To2,0] O5CH*
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Denote M,; = OO[JZ,D - Jz‘ng(Tng_ng)_lTon'o]Oa, then,
8 =T LT3 + CoMCE
My is the solution of M at ¢ = 0. Inserting the expression for O; in (5.96) yields:

M; = M; + AV10q[ o — Jo 0Ty (TodzoTg)  ToJz o) Op Al 4

A[i'_IIOO[JQ_[) — Jg'oTO‘(Ton,ng)_1T0J2,01H5*¢—2H2[J2,0 - Jz,ng(T(]J2'0T(;)—ITOJQ‘O]OSAB'-IJ*
—AEUOYJy 0 — J2 0T (TodooTy ) Todoo) Hy ¢~ 2T, J, ;O

—0.J, T ¢~ 2 H: [Ja0 — JTg(Tod0Tg) ~ Toda,o] O Al

+OU, T (T 03 T CElT + MiCy (T, Ty i) Co | MiCy (T4 0y T AT 0y O

Each of the four terms in the middle has a factor A"~1. An examination of the term
O J, . T;*(T, J, ;T7*)"*Cy in more details reveals that it consists of a summation of 7 terms,
each of them has a factor Al*~1 and A"~ for 0 > k > 7. The stability condition £, < 1
implies that the products of either A*~1 or Al*~# goes to zero as ¢ — —oo. Since other
factors are bounded, the last five terms go to zero as ¢ — —oo and then this equation

gives M,-' — M; as 1 = —o0. 0

From this proposition we see that the influence of the initial condition, whether it is
correct or not correct, under some additional conditions, is disappearing and the solution

. . . 4 .
of the Riccati recursion converges to M; as i — ~oo.

5.6 Solution of the Riccati equation via a J-RQ fac-

torization

Let T € U be a locally finite operator and have a realization {A, B,C, D} with £4 < 1.
As we discussed above, the J-lossless factorization of T, if it exists, such that T = 7,0
with T, outer and © J-lossless can be computed by solving Riccati equation (5.27). It is
well known that the J-lossless factorization of T exists if the stabilizing solution to the

algebraic Riccati equation is positive semidefinite.

However, the solutions of Riccati equations can be computed more efficiently by using a
square-root algorithm, which is a kind of “RQ” (“QR”) factorization, we call it a J-RQ
(J-QR) factorization. In such algorithms, the squared root of ¥, say X, is computed.

Let T' € U with a stable realization {A, B, C, D} and port signature matrices (Jy, Jz). Its
local realizations, denoted by {Ag, B, Ck, Di} ’s, are finite dimensional. The J-lossless
factorization, if it exists, T = 7,0 with ©J,0* = J; and T, outer can be computed by
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the following factorization. Suppose that at step k, we know the matrix Xy;1. Let us

consider this factorization:

AXipn Cr — Xi Co, Ae, Co, (5.98)
BkX;:_H Dy Dok BG)k DOk

R Q

where {Ae,, Be,,Co,, Do, } is a realization of a J-lossless operator and satisfies the con-

Ao, Co, I Ao, Co, _ I (5.99)
Bos, De, J2, Be, De, J1,
X} has full column rank. Then, a realization of the outer factor is T, = { Ak, Bk, Co,, Do, }

and a realization of the J-lossless factor is ©, = {Ae,, Be,,Co,, Do, }-

dition

We rewrite equation (5.98) and (5.99) into global forms as

AX D~ C X* C, Ag Co
= 5.100
[ BXxX-U~ p ] [ D, [ Bs Dg ( )
and
Ao Co | |1 Ao Co *= I (5.101)
Be Deg J2 Be Deg 5 -

Now we show that ¥ = X*X is the solution of equation (5.27).

Multiplying both side of equation {5.100) with [ I J } and the conjugation of them-
2

selves on the right and from the relation (5.101) we have

AXC) o[ AXC) ¢ ‘_ X C, || 1 X
BX(-D p J || BXCV p |~ D, LG Dy

‘This expression gives three equations:

AXCDX (DA% 4 CJ,C* = X*X + CoiC
AXCD*X(DB* 4 CJ,D* = C,J, D
BXC1+X1B* 4+ DJ,D* = D,J, D
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and from these equations and with Y- = X*X which is obvious semi-positive definite,
we obtain the time-varying Riccati equation (5.27). Thus ¥ = X*X is the solution of
equation (5.27).

Furthermore, it is nof difficult to verify the relation T'JoT* = T,J; Ty, then T = 7,0 and
T, is outer. That © is (Jy, J; )-lossless is a consequence of direct relation of (5.101).

Next, we will show that if we use the outer—J-lossless factorization algorithm in subsection
5.2.2 to do the factorization, the J-lossless factor satisfies the relation given by (5.98).
First, we can add the complement part of @ in (5.98), say | Bé_)k D'ek ] to form a J-
unitary matrix © as:

Bs, Do,
©=| Ao, Co,
Bg, D@k
I I d 1
© satisfies that © | | e = I and ©* I 0=
Ja, J2,

Jlk Jlk

I
with [ = Jy,. For the equality, the R factor in (5.98) becomes:
1k

g0 Xi C
0 0 D,

such that:

’

[AkXiH ¢\ _ro

BkXI:+1 Dy

Since @ is J-unitary, the above relation can be rewritten as:

AXp, G || T I 10 X; G,
BiXi. Di Jo, | |0 0 D,

With the relations in the outer—J-lossless factorization algorithm, the left hand side of the

% * *
BG);, Oy B(-)k
'* * *
D@k Cek O

above equation can be written as:

oy

[ AeXis Ci, ] [ 2J (@ Qi ]l Axi G, ] [ f;] 1
O Ok

", -
A(—)k Bek
% *
C@k Dek

[ BeXiy Dida, | [ h,

J [ @, @1 )] BiXiy Dida, |
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[0 xz10,
0 0 |D,

with AZ),‘, C('_;k, @1, and @9, the same as in the algorithm description. The results of (1,1)
and (2,1) block matrices are directly from the algorithm, we can also show that C,, and

D,, are the same as we defined in equation {5.98) and also as in equation (5.23). Then we
know if the outer—J-lossless factorization exists, the factorization given by (5.98) exists.
Now the problem left is the pos51b111ty to implement the factorization directly with (5.98)
and to realize it.

If we consider the J-RQ factorization with R upper triangular and @ J-orthonormal, we
cap compute the factorization with the following strategy.

Computational aspects: In the ordinary RQ factorization, an easy way to construct
the orthonormal space of @) is by using the elementary orthonormal operator EQ =

cosp —sin .
4 ¥ 1. To obtain J-orthonormal @, we need to use another elementary op-

cosp  Sing
erator, J-orthonormal operator, besides EO. An elementary J-orthonormal operator is

defined by

BJ = 1 [ 1 szncp}

cosp | sing 1

It is not difficult to check the J-orthonormal property of the operator.

In the computing process, which elementary operator should be used in a step is de-
termined by the column of the elements considered in the step and the corresponding

. |1 . .
column signs in matrix 7l If the elements considered in the step have the same

column sign, the elementary operator is FO; if the elements have different column sign,

the elementary operator is £J. For example, we consider the J-orthonormal RQ fac-
A A Az Au I

torization of matrix A = | Ay Ay Ay Ay | = RQ and assume that [ 7 } =
Az Asz Az Asg 2

100 0

010 O .

00 1 . When we zero element (3,3), we consider element Ass and Aas. The
000 -1

corresponding column signs are 1 and -1. Then E.J is used in the step. If we zero element
(2,2), Az, and Ags are considered, the corresponding column signs are 1 and 1, then £O

is used.
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What we should point out is that at this stage, we do not have a nice algorithm to
guarantee the existence of the factorization of this form even when we are sure that the
corresponding Riccati equation has a semipositive solution and that the outer~J-lossless
factorization exists. The reason may be that for the factorization of (5.98), we do not
really need the R factor to be upper triangular. With the strategy we consider above,
R is factorized to be upper triangular. During the computation, it happens that when
EJ operator should be used, the absolute value of the entries we try to zero is greater
than the absolute value of the corresponding diagonal element, this makes it impossible
to construct a FJ operator to zero the entries we want to zero. But in many cases, the
factorization exists. This gives us a possible easier way to consider the outer-J-lossless

factorization for these special cases.

To conclude this chapter, we give two numerical examples of outer—J-lossless factorizations
to the stable time invariant systems by using J- RQ} factorization algorithm. A realization

of this system is

083 4 04
T=| 2[4 3 2
1111 3

Assume that the initial R: Ry = 1. Then,

0.8 3 4 04
Al C}— 2 43 2
BR, D |~ ,
Fo 1 11 3
{1 0
Assume J; = [ ] and then
0 -1
1 00 0
1 {010 0
Ll loo1 o
40 0 0 =1

Compute J-orthonormal RQ) factorization recursively, the results is as follows:

R=-21333

0.8]7.7197 —6.0326
T,=| 2 ]89928 —6.4550
1] 0 15650
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~0.6028 | 0.0561 —0.8150 0.1757
0= —1.452910.9035 0.7923 1.5984
—1.3632 {0.6390 0.6390 1.9170

Then T, has a pole equal to 0.8 and a zero —0.6028.

Another example:

0.7 0 | 1 0.1
0 0.8 | 0 0.2

0.7271 —3.4225 | —0.6364 0

0.2747 —12.2919 | 0.3532 —1.9050

Initial Ry = l: (l) (1) ] The resulted R = [ 0 —14072 ] or R= [ —1.4072 }

0 —0.0420 —0.0420
0.7 0 |—-0.1721 0.2227
| o 0.8 | 0.0064 0.2017
°7 | 07211 —3.4225 | —1.1006 —0.1815
0.2747 —12.2919| 0  —1.8675

0.5899 | 0.8151 -0.1109
© =} —0.8105| 0.6095 —~0.1682
0.0695 | —0.1891 1.0201

T has two zeros: 1.6952 and -0.5071.

T, has two poles: 0.7 and 0.8; two zeros: 0.5899 and -0.5071.

5.7 Appendix

5.7.1 Appendix 1: The proof of the invertibility of matrix V in
Theorem 5.5

Repeat equations (5.54) and (5.55) as follows:

A -1 p-1)
! } [ M } (5.102)
Ay

NED p-y

M U Ae CoB
N V A
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[ Bo DoB ]= B[ NV y(-1 ]

(5.103)

We partition the transformation operator to ensure that V € D is square. Assume that

there is a column vector ¢ # 0 such that
VE=0
We can also derive that

viVzZe =0

Multiplying equation (5.103) on the right with Z¢ and then from the second column of

it, we can obtain that:
BZt =0

Multiplying the (2,1) entry of equation (5.102) on the right with Z¢, we get:
NCeBZt + VAZE = AV-VZE

Since V(-1Z¢ = 0 and BZ¢ = 0, we have
VAZE =0

We then know that ¢ is in a AZ invariant space. Define the space as:

then,
AZ=C =
With BZ¢ = 0 and AZ= C Z, we obtain:

BZ=Z=0 = ZBWME=0 = BWU=Z=0
BZAZ==0 = ZBYALZ =0 = B@Alz_—9

BZ(AZY'==0 = ZBOACN...A0Z=0 = BOAC-D... A0z
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with § defined in chapter 2. This means that
Cs==0

C;s is the observability matrix. Because {A, B} is a reachable pair, C;= = 0 iff == 0. This
is contradict the assumption that § # 0. Therefore V¢ = 0 iff £ = 0 and V is invertible.
[m]

5.7.2 Appendix 2: The proof of (5.67)

From (5.65), © has a realization:

0 =

A |=-XA—BJ
DoeB|  De

The state equation of the system can be:
xZ'= xA+UDe¢B
and the output equation is:
Y=—-xXAT7B'J+UDg
Multiplying X{=) on the right of the state equation, we have:
xZ71 XD = yAXCY 4 UDe BXD
With the relation of (5.66), the above equation can be rewritten into:
XXZ™' = xXA™ + UDe BX™)

Denote X' = x.X, we obtain the realization of © as (5.67). u}
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Chapter 6

A Solution to the H,, Control
Problem in Discrete Time-Varying

Systems

6.1 Introduction

The H,, control problem was introduced by Zames [1] in 1981 and H,, control becomes a
popular control method explored in the control engineering literature in the past decade
[2] [3]. Only a few researchers have worked on this topic in the context of time-varying
systems, e.g. [7] [8] [9] [10]. Most solutions aim at time invariant systems [2] [3] [4] [5] [6]
(1] [12]. .

In recent years, a unified framework of the H,, control theory based on two fundamental
notions, the chain scattering representation and outer-J-lossless (J-lossless—outer) factor-
ization, was developed by Tsai and Postlethwaite [13], and Kimura [14] with different
approaches. Both of their researches were on continuous time invariant systems. The
former works with coprime factorization approach and the latter works with conjugation
method. The key step of this framework, no matter what approach is based, is obtaining
the outer-J-lossless (J-lossless-outer) factorization of a chain scattering representation (a
dual chain scattering representation) of a known plant. The H,, control problem for a
general system is reduced to a Hy, control problem for a J-lossless system. Then the H,,
control problem is clarified in this way.

Lossless and J-lossless operator theory has been developed for discrete time-varying sys-
tems by Dewilde and Van der Veen et al.[15] [16] [17] [18]. We extended this theory to
more general systems in Chapter 4 and developed outer—J-lossless (J-lossless—outer) fac-

130
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torization algorithms in chapter 5. With all these results, we can extend the method in
[13] and [14] to the discrete time-varying context. This is the main topic of this chapter. -

Let us consider the standard set-up as in [14] shown in Figure 6.1. In the figure, P € X is
the input-output operator of a known plant, w = [wi]®,, where wi € R 7, is the exogenous
disturbance sequence, u = [ux]®,, where ux € R?, is the control input sequence, y =
[¥£]%, where yx € R 2, is the observed output sequence and z = []%,,, where zx € R ™,
is the controlled error output sequence. In the figure, the variables with a dot indicate
inputs of the mapping and the variables without a dot indicate outputs. The mapping

from the inputs [u w] to the output [z y] is given by the operator P as

Pll Pl'l
= P: 1
[z yl=lv wiP=[u w]| Pn] (6.1)
w z
P
u y
K.

Figure 6.1: The standard system configuration

Let us introduce a feedback control operator K to the system such that
u=yK (6.2)

Then, the H,, control problem is described as follows.

H,, control problem: For a known plant P and a given number 7, find a characterization
for all admissible controllers K such that

(i) The closed loop system in Figure 6.1 is causally stable (upper);

(i1) The Hy, norm of the closed loop operator @, which is the mapping from the disturbance

w to output z, is smaller than +.

Assume that (I — K P1;)~! exists, then the closed-loop transfer operator ® is given by

q) - P21 + P22(I - Kplg)_l.[{Pll (63)
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We assume that v = 1 from now on as this can always be obtained by scaling [4] the
system realization with 4. Then the H* control problem now is to find a class of K
which satisfies (i) in the H,, control problem and achieves

@l <1 . (6.4)

Operator P gives the mapping from [u w] to [z y]. This system can be described in

another way under certain conditions.

Assuming that Py, in equation (6.1) is invertible, then operator G which maps [u y] to [z

w] is as
Gn G
= G = 6.5
[ wl=lvy] [uy][Gn G”} (65)
It is not difficult to derive G from P as
G= Gu Gia _ Py — Piu P3Py — PPy (6.6)
Gu G Py P Py

We call G a chain scattering operator.
We redraw Figure 6.1 as Figure 6.2 by using G, the mapping from port {u y] to port [z
w]. With G, the transfer operator ® from w to z can be described as

® = HM(G; K) = (KGhz + G22) " (KGu + Ga1) (6.7)

where HM stands for the HoMographic transformation. The advantage of the chain
scattering representation is that the cascade connection of systems, say Gy, Gy, ..., is the
product of G4, Gy, ..., ie. G = G1Gs.... This is a very useful characteristic of the solution
given by the method in [13] and [14].

In the case that Py, is invertible, we can define the mapping from [z w] to [u y] as,

= Gu 612
v v lels wlfe 1 G 6.8
lu y]=[z w] [“"][GH Gﬂ} (63)
and
Gll qn — Pl_ll P1_11P12 (69)
Gn Gzz —PIZP1_11 P22_P21P1_11P12 .
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Figure 6.2: Chain scattering repesentation configuration

We call G the dual of the chain scattering representation. With G, the transfer operator
® can be described as,

d = DHM(G, I{) = (621 - GQQK)(G]_QI( - Gn)_l (610)

where DHM stands for the Dual of the HoMographic transformation.

The method in [13] and [14] is based on the chain scattering representation G and the dual
of the chain scattering representation G. It is standard to assume the following dimension
conditions of a plant [14],

r>gq m>p

in H,, control [14]. In this thesis, we only consider the cases that ¢ = 7, m > p or
r > g, m = p. In especially, we pay our attention to the first case, the second case can be

considered dually.

Suppose in the first case that G has a factorization
G=T1,0 (6.11)

with © J-lossless and T, invertible and outer. This is equivalent to the cascade connection
of two operators T, and O. as in Figure 6.3. If we connect an operator, the inverse of the
outer operator Ty, to the left hand side of G as in Figure 6.3, then the cascade system is
equivalent to ©. Let us repeat a very important theorem about the property of a J-lossless
operator in chapter 4 for this solution:

" ell 912
Theorem 6.1 Let an operator © € X be J-lossless and partitioned as © = 0. 6

21 O

and let operator S € U be strictly coniractive {||S||lco < 1). Let

® = AM(0;8) = (SO + 922)_1 (5011 + 94) (6.12)
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Figure 6.3: (a) and (b). Block diagrams of outer-J-lossless factorization of chain scattering
representation G. (c). The block diagram of a solution of Hy, controller and the equivalent

closed-loop transfer function ®.

Then @ is upper and ||®]e < 1. a

This theorem gives an easy way to solve the H*® control problem to a known plant P. If

the chain scattering representation G of P exists and has a factorization as in equation

(6.11), all K such that [|[HM(G; K)||w = ||[HM(O; S)||ec < 1 are given by
K = HM(T:%; S) (6.13)

for all S which is strictly contractive.

Thus, the H* control problem for a general system is reduced to H* control problem for

a J-lossless system.

In {14], Kimura discussed outer—J-lossless (J-lossless-outer) factorizations for continuous
time invariant systems and used J-lossless conjugation to compute the outer-J-lossless
(J-lossless—outer) factorization.

The method consists of finding a J-lossless transfer function © which contains all the
unstable poles and zeros of the chain scattering transfer function and a left term 7}, such
that G = 7,0, where T, is outer. Two Riccati equations have to be solved to do the
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factorization. In the time-varying case, the concept of poles and zeros does not exist any
more. If we consider the problem in operator description, a general operator consists
of causal part and anticausal part. We note that the unstable poles in time invariant
cases corresponds to the anticausal part (or antistable part in a causal state equation
description) of operators and the unstable zeros to the anticausal part (or antistable part)
of the ‘inverse’ of operators. What we need to find is a J-lossless operator which contains
these two parts. If the realization of the system is given by state space description and
. when the existence of the dichotomy of the system is assumed, that means the system
can be split into causal and anticausal parts {or stable and antistable parts), then what
we need to find is a J-lossless factor © which contains the anticausal part (or antistable
part) of G and the anticausal part (or antistable part) of the ‘inverse’ of G, and the left
factor T, such that G = T,0, where T, is outer.

6.2 Operator description based algorithm

Let a chain scattering operator G € X with the port signature matrix (J;, J2) such that

I .
Jo = J and a uniform realization {A., B.,C;, Aq, Bs, Ca, D}, where £4, < 1 and
1

€4, < 1, and specified by
G =D+ B.Z(I - AZ)'C.+ B, Z*(I - A,Z*)'C, (6.14)

In the previous chapter, we have discussed the J-lossless factorization of such a G. Assume
the outer—J-lossless factorization G = 7,0, with O J-lossless and 7}, outer, exists. A class
of controller K, which results in a class of closed-loop transfer operators in the H,, space,
are the homographic transformation of T, and any strictly contractive operator § as

K = HM(T; % S) : (6.15)
and the transfer operator @ then is:
¢ = HM(0;5) (6.16)

Because O is J-lossless, ® is strictly contractive or belongs to the H,, group.

If the dual operator, say G, of the chain scattering operator exists, we consider the
conjugated J-lossless-outer operator factorization as discussed in Subsection 5.2.4 as G =
©7, such that ©* is J-lossless and 7, is outer. Then the controller K = DHM(T; % S)
with § any contractive operator and ® = DHM(O; 5).
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6.3 Outer—(J, Ji)-lossless factorization — J-lossless

conjugation method

Let G be a chain scattering representation of a known plant P with port signature matrices
(J1, J2) such that J, = l: I J and have a uniform realization {4, B,C, D} such that:
1

 XZ'=XA+UB
Y =XC+UD

where U, Y and X are inputs, outputs and states time sequences respectively.
{A, B,C, D} are big diagonal system matrices.

A realization of the conjugated system of G, denoted by G*, is
{A™,~C*A™ A—*B*,D* - C*A~"B*}.

We consider the following factorization first:
G =G,04 (6.17)
where Q. is a antistable J-lossless operator and G is stable. Gy is further factorized into:
G =T0_ (6.18)

where O_ is a stable J-lossless operator and T, is outer. Then G has a outer—J-lossless

factorization:
G=1,06.6,=T,0 (6.19)
where © = ©6_0,.

In previous chapter, we have discussed J-lossless conjugation. We now use J-lossless

conjugation operation to consider the factorization.

Let the antistable J-lossless conjugation of J,G*, if it exists, be denoted by:

0, 5hG" = LG} (6.20)
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where Jo(7; is antistable. Then,
Gy = G070, = GOT! , (6.21)

is stable. According to Theorem 5 in chapter 5, when Riccati equation (5.71) correspond-
ing to G has a semi-positive solution, the stable operator G; can be further factorized
into:

G =T,0_ (6.22)
Then, we can find outer—(J; J;)-lossless factorization of G as:
G=T,0_0, (6.23)

with T, outer and ©_04 (J; Jp)-lossless.

Theorem 6.2 Let a chain scaitering representation G of a time-varying system have a
uniform state space realization {A, B,C, D} with the port signature matrices (J1, J2) such
that J, = 5l Assume that A is invertible and there exists a dichotomy of the

1
system. Then G has an outer—(J, Jy)-lossless factorization if both Riccati equations:

XY = 41 - XCLC*) ' XA (6.24)

and

Y = AYUVA* 4 CACt
— (CJ,D* + AYSVBY)(DJ, D" + BY TV B Y (CJ,D* + AYVB*)16.25)

have semi-positive definite solutions suéh that:
YX<I (6.26)

In this case,

A|-FL

T, ~ | 6.27
Bl L (6.27)

with:



6.3 Outer—(J; Jy )-lossless factorization — J-lossless conjugation method 138

A=A+ CLC A XD,

B=B+DJLCA* X1,

F = —(ChLD*+ A(I - YCV X))y (-1)) B*)
(DL,D* + B(I — YU X (D)~ 1y (1)) oy (6.28)

and C = CDZ', D= DDg3'.

Where Do and L are determined by:
D3 D5 = JBC*ATXEVATICT, + J;
aﬁd
LLL* = DLD* + B(I - YV X0ty 0y g

respectively and

0 = 0.0,
A+ FB —(C+ FD)DoJyC*A— XV | (C + FD)De
~ A | c (6.29)
L7'B  —L'DDeJ,C*A—*XY) | L 'DDe

Proof: Let us first consider the antistabilizing J-lossless conjugator ©, of JG* which has

a realization:

A—* | A—* B*

JG* ~ | 6.30
—JC*A™ | J(D* - C*A~"B") (6.30)

From Theorem 5.5, the Riccati equation can be written as:
X =A"I+XVAICIC* A™) X (-0 41 (6.31)

or

XU = A1 - XCJC*)'X A (6.32)
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When there is a unique solution X > 0 such that:
A=A+ CJC*ATXY (6.33)

is stable and then, the realization of the antistablizing J-lossless conjugator @, is:

0 A | C
7| —DeJC AT XV | Dg

(6.34)

O, is antistable and invertible. Then:

Al
B

* A—% Y (-1) . -1
G = GOzt n | AFCIC AKX | -0DG! ]
—(B+DJC*A—XV) | DD}

¢
. 6.35
AR
is stable. Dg' can be solved from the equation:

JC*AXVAYCJ + T = D51 JDG* (6.36)

From Theorem 5.6 we know that G; has an outer (Js,J1)-lossless factorization if the

Riccati equation:
Z = AZWVA 4 Ul
~(ChD" + AZSVBYDLD* + BZY By (C LD+ AZCYB*Y (6.37)

has a semipositive definite solution. Next we prove that Z = (I — YX)"'Y, where Y is
the semipositive definite solution of the Riccati equation (6.25).

Denote F,
A —ChLC*A™
f =
[ A_*
CJy(D* —~ C*A~*B) o 171 .
_[ s [ Da(D* —C*4~B*) | [ B —DJC A |

as the corresponding symplectic matrix of (6.25) and F,,

A —éJzé‘/—i-*
fo = A
Chy(D* — C*A—B%)
A‘*B*

[ Daa(Dr = C*a=+B7) | [ B —DrCrA— |
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as the corresponding symplectic matrix of Riccati equation (6.37). It is not difficult to
prove that:

fo%[; 1]7[-;(-1) 1} (6.38)

X is the semipositive definite solution of the Riccati equation (6.31). Because

[20 2 |Fo=8.[ 2" 20V (6.39)
then,
[ z %]{;'IJf[ﬁél>l] S|z 7] (6.40)

such that Z = Z;Z{. From this expression we know that:

I
[ z: %][X I]:{n Y, | (6.41)
Y = ¥,¥;! is the semipositive definite solution of Eq. (6.25). Then Z = (I ~ Y X)"'Y
can be easily derived from equation (6.41). Because we need that Z > 0, then we must
have that Y X < 1.

From Theorem 5.6 we know that:

A |FL

T, ~ ,
’ -B| L

and

B ..
G_N[A B: FDJ

with A, B,C and D defined in Eq. (6.35), and £:
~(ChHD* + AZVBYDRD* + BZ-V B

This is equation (6.28) with Z = (I — Y X)-Y.
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Then, finally the expression of © in equation (6.29) comes from the cascade connection
of O_ and ©,. a

When T, and © are determined, the controller K and the transfer operator @ are deter-

mined in the same way discussed in the previous section.

In the case the dual representation of the chain scattering representation exists, the con-
jugated J-lossless-outer factorization is considered. All the computations are the duals of

the computation in Theorem 6.2 as we considered in operator description case in Chapter
5.

6.4 About the Riccati recursion

In Chapter 5, we have shown the convergence of the Riccati recursion based on a stable
realization {A, B,C, D} (£4 < 1). In this chapter, the Riccati equations we need to solve
are not limited in the stable systems any more.

In the early 60’s, Kalman and Bucy investigated the algebraic Riccati equation in the
time invariant case under the assumption of controllability and observability to derive
the uniqueness of the symmetric positive semidefinite solution, the stability of the closed
loop systems and the asymptotic convergence properties [19]. They showed that their
main results also hold true in time-varying case. Later on and until now, many researches
have been working on the solutions of Riccati equations by weaking the assumptions
to stabilizability and detectability [20] [21] [23] [24], and even more in the study of the

nonstabilizable case [22). All of these work are on time invariant case.

One of the special classes of time-varying system we are interested in periodically time-
varying systems. In this case, the theory of the periodic Riccati equation appears almost
as complete as its time invariant comrade [25]. The Riccati recursion discussed in our
problem is different from the Riccati recursion discussed in the pioneering works such that
the former is with a J factor. This makes that there may not exist a positive semidefinite
solution of the algebraic Riccati equation. (For the factorization, we can multiplying part
of the system matrices C, D (or B, D) with a 7 factor to make sure that there exists a
positive semidefinite solution). But if the solution exists, with all the pioneering results
[20] [21], [24] we declare that for a periodically time-varying system, if it is detectable
(or stabilizable), the Riccati recursion will converge to the stabilizing solution, which is a

hermitain and semipositive definite.

Another special case is that one step time-varying system like switching networks. Then

the convergence of the stablizing solution of Riccati equation of these systems is as same



6.5 Numerical examples of time-varying control systems 142

as in time invariant case with the initial condition brings from the solution of the previous

system (or the following system in the backward recursion).

In a recent paper, De Nicolao studied Riccati difference equation (or Riccati recursion)
of the arbitrarily time-varying case [25). He discussed the conditions for the existence of
the maximal and stabilizing solutions under the assumption of uniform detectability (or
stabilizability).

In time-varying case, the Riccati recursion arise naturally from the time-varying behavior
of the system. Under the assumption of uniform detectability (or stabilizability), if the
initial condition of the recursion is correct, for example, the initial condition comes from
the stabilizing solution of the algebraic Riccati equation of a time invariant system which
works in a certain time period before or after the time-varying period, the recursion is the
only natural way to continue the computation of the sclution and then what we obtain is
what we want. If the initial condition is not correct, we should use the two dimensional
recursive algorithm in [25] to obtain the stabilizing and symmetric positive semidefinite

solution.

For the initial condition in some special cases, we refer to [18].

6.5 Numerical examples of time-varying control sys-

tems

It is well understood that the sensitivity minimization problem is in fact a kind of H.,
control problem. In this section, we show two numerical examples of the sensitivity min-
imization problem by using time-varying controller which is designed with the algorithm
we discussed before. An instantaneous controller, which is the solution designed by con-
sidering every time step individually, is used as comparison in both examples.

6.5.1 An RL circuit

The first example is an RL circuit as shown in Figure 6.4. We only consider the small-
signal model, ie. deviations from the working point of the circuit.

In the figure, i, is a voltage controlled current source driven by the controller K. Resis-
tance R; represents the influence of the internal resistance of the current source and a
constant load in the system. Resistance Rj is a large constant load. Current 1y, Which
is randomly changing, represents a random load. The Ry~L branch is an inductive load.
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Figure 6.4;: An example of a switch circuit

Because this is an inductive circuit, the output voltage v, is sensitive to the current dis-
turbance 7,,. Suppose that at time k£ = 0, the switch is opened and then the system can
be viewed as a time-varying system. We want to reduce the sensitivity of the voltage v,
and the controlled input 7, ! to the disturbance i,. In terms of the notation of Section
6.1, the disturbance w is 2,,; the output z is v, and 7,. Since v, is sensitive to i,,, we take

v, as the measurement y and ¢, as the controlled input u.

The state equation of the system is:

LE‘ZTL = —(R+ Ry)i + Ri, + Riy,

and the output equation is:

U, i R R .
z . . Ty
[ }: Ty | = 0 i+ 1 0 . ]
Ty
Y v ~R R R

where R = %ﬁ% when the switch is closed and R = R; when the switch is open. We
use Matlab to do the simulation. The parameters of the system are: R; = 50; Ry = 0.1;

R3=1.02 and L =0.1.

The system is discretized by zero order hold method with the sampling time 0.01. 2

The realization of the chain scattering representation is calculated from the discrete time

't is a common practice in Hy, control to consider the controlled input as an output [26] in the case

we want to reduce the sensitivity of the controlled input to the disturbance.
2The sampling time should be smaller than the smallest time constant in order to obtain a valid

discrete time model. In this example, the smallest time constant of this circuit is approximate to 0.1.
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system. The realizations of the chain scattering representation of System 1 (before k =
0) and System 2 (after k = 0) are denoted by {4, B1,C1,D:} and {A,, B;,Cy, Dy}

_respectively.

0 01 —1
Ay =09905 By = C, = D =
1 =090 Br=1 g g7 =100 Be=t 1]
0 01 —1
A-—_—.5 B= = D:
2 = 0.9980 271 0.0198 C2=[0 0 1] 110 0.02}

Both systems are stable so that we only need to consider the outer-J-lossless factorization
of a stable system. Since the dimensions of w, u, 2 and y are 1, 1, 2 and 1 respectively,

100
J2= 01 0 andJ1=[l OJ.
0 -1
00 -1

In this simple example, we use a recursive method to calculate the outer-J-lossless factor-
ization of the time invariant System 1 and 2. The algorithm is given in Subsection 5.2.2..
This algorithm is for time-varying systems. For time invariant systems, the recursion is
the same but the realization does not change. First, let us consider the central controller
which is designed by taking S = 0 in (6.13) for System 1 and 2. The scaling coefficient
4 =1 (the minimal 4 of this system). We call the corresponding controller for these two
time invariant systems Controller K(;) and Controller K(5). Similarly, the instrumental
matrices of System 1 and System 2 are called X(1) and X(3) respectively. The results of
the computation for the time invariant system 1 and 2 are given in the following table.

H,, norm of the sensitivity function

System X Open loop system | Closed loop system
1 2.25028 1.05 0.72418
2 50.00111° 99.2388 0.99995

At k = 0, system changes from System 1 to System 2. A time-varying controller is
designed by considering this change. With the algorithm given in Subsection 5.2.2, we
compute the factorization. The algorithm is a backward recursion. Then, the initial value
of X is Xo = X(g). For k= —1,-2,---, solution X is time-varying but is converging to
X(1)- The realization of System 1 is used in the recursion. The relative error between X
and X} is smaller than 1 percent. 47 recursions takes place to reach this level. The time
varying controller is connected to System 1 47 steps before the change takes place. Before
the time-varying control, Controller K(y) is connected to the system; when and after the
change takes place, Controller K(s) is connected to the system.

Figure 6.5 shows the realization of the time-varying controller.
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Figure 6.5: Realization of the time-varying controller

An instantaneous (IT) controller (K = Kpu),k < 0; K = Kg), K > 0), is used as a
comparison. The realizations are taken from the realization of time-varying controller at
k = —47 for K3y and k = 0 for K(y).

The H,, norm of the sensitivity operator is approximated with the method given in the
appendix of this chapter. The results are given in the following table.

H,, norm of the sensitivity function

Open loop system | Time-varying control | Instantaneous control
99.2388 0.999985 3.497388

Typical outputs of v, and ¢, of the closed loop system are given in Figure 6.6. The noise
input is zero mean white with covariance equal to 1. The change takes place at k£ = 0.

From the result in the table we can see that the sensitivity of the closed loop system is
largely reduced with the controller designed by the method in [13] and [14]. The time-
varying controller gives a better result than the instantaneous controller with the tested
data. This is because with the IT controller, v, is much larger before £ = 0 than it was
after k = 0 and then ip is relatively large before £ = 0 with a relatively smaller R. When
system is changed at k = 0, R becomes much larger than it is before &£ = 0. On the other
hand, at & = 0, v, keeps a relatively larger value, this causes a big current change in R
branch and also R,-L branch. The current change then causes an output voltage shot
at Tp. The TV controller is designed by considering the influence of the second system
before the change. The current in R branch is decreasing before the change takes place

(¢r changes in the same way as v,). This is the result that i, is increasing against i,
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Figure 6.6: Output comparison of a TV controller and IT controller

during the transient time period. Then there is no shot in output voltage at instant T

when a TV controller is used.

We change the scaling coefficient v from 1 to 2 with step length 0.1, and take S =
—0.9,0,0.9. The H,, norm of the the sensitivity function of the closed loop systems are

shown in Figure 6.7.

H infinity norm of TV controlled system Ninfinite norm of IN controlled system

:
T 3

1 1.3 12 13 14 15 1.6 17 1.8 19 2 °
Gamma

Figure 6.7: H infinity norm comparison of time-varying method and instantaneous method

The result shows that with the time-varying control method, we can always achieve the
Ho norm of the sensitivity function of the closed loop system smaller than v if § is
strictly contractive; with the instantaneous method, this kind of result can be achieved
only in some cases and in many cases, the H,, norm of the senmsitivity function of the
closed loop system is larger than 4. The minimal H,, norm is obtained with the time-

varying controller. An observation of the outputs shows that the voltage shot never
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happens when a time-varying controller is used but it happens in many cases with the

instantaneous method.

We can also see from Figure 6.7 that within the data we tested, the best S for time-varying
control is S = 0 (central controller) and the best S for the instantaneous controller is
S = —0.9. Figure 6.8 shows that with S = 0, the minimal H,, norm of the sensitivity
function of System 1 is obtained; with S = ~—0.9, this norm is much larger for any ~ than
it is with § = 0. The H,, norm of the closed loop system of System 2 does not change
much for different S and I', and is about 0.9999. A comprehensive review of the whole
system shows that with the time-varying control method, we can obtain a significantly
better controller than with the instantaneous control method.

H infinity norm of the closed loop system of System 1
v v T T T

1.15 . "
e P ettty
| sz
P
1.08 -
7 $-09
! e
&
g |~
20495(
2z
£
£ oo
I
0.85F
osf
075} .
orb—— —

1 1.1 1:2 113 14 1;5 1:6 1:7 1:8 1:9 2
Gamma

Figure 6.8: H infinity norm of the sensitivity function of the closed loop system of System

1 with different S

6.5.2 A robot arm along a given trajectory

A robot arm is a non-linear system. It can be described by a linear time-varying model
along a given trajectory if we consider the deviation of the output which is caused by a
certain kind of disturbance. Here is a simple example of such a system (Figure 6.9).

The system is a single beam to which a mass is applies. Let m be the mass, T' be the
applied torque, ¢ be the angle between the arm and the vertical axis, f = mg be the force
gravity and ! be the length of the arm. Assume that the mass of the rod can be ignored
compared to m. ¢ changes according to sin{wt) with time ¢ under a reference torque. The
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Figure 6.9: A simple robot

dynamic equation of the system is
ml%p = flsing + T — dip

where d is the damping coeflicient.

Because ¢ = sin(wt), the first and second differentiation of ¢ are
¢ = wcos(wt) and ¢ = —w?sin(wt)

respectively. From equation (6.42), we have

d

. I . )
Y= et ot T E?

ml

The variation Ag of ¢ under variation of T

. f 1 i
AP = oy cos pAp + WAT_ WASO

The position ¢ of m is determined by ¢ and [ as

q = ==
g2 lcos

(6.42)

(6.43)
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The first and second differentiation of ¢ are

i= I cos e and P —Isinp@? + L cos pp
—Isinpp —lcos pp? — Isin pp

The variation of § is

Ap

_ [ —lcospp? — lsingpy —2lsin pp
= A

Isinpp? — lcospp  —2lcos p@

+ [ feosp ] Ag  (6.44)
—Isingp

Consider a disturbance in the torque, denoted by T, which is caused by wind and other
external factors and a controlled input 7, which is also a torque. Then the variation of
the reference torque T is AT = T, + T,,. equation {6.43) becomes

g (6.45)

._ 1
Ap = —cospAp + W(T" +Tw) — —

ml

We find the state equation of equation (6.45)

L cos =
[a¢ a¢]=]2¢ A¢][(1) ml__d_“’]+[fru Tw]{0 ";'] (6.46)

mi2 0 mi2

with state z = [ Ap AP ] (For reason of consistency, we use row vectors). As we know
the trajectory, the nominal ¢ is given as a function of time. System (6.46) is linear.
Suppose that T is such that ¢ = sin(wt), then the system is a linear periodic system.

The output is the variation of the angle: Ay and T,,. The measurement variable is the
acceleration variation Ady = (—Icospp? — Isinp@ + lcos pL: cos p)Ap — (2sinpp +

ml

% cos p)Ap + =£(T, + T,). This expression is obtained by substituting ¢ into the first
row of equation (6.44).

The system variables are:
Disturbance: w =T,; -

Controlled input: u = Ty;
Measurement: y = Agy;

Controlled output: z=[ Ap T, ].

State: z =[ Ap Ap ]
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Then the continuous time state matrices of the plant: [ w ] > [z y ] are:

oml—p}

A= 0 ~cose B = 1
0 o7

d
|1 e

C =

[1 0 —lcos pp? — Isin pp + L cos? D- 0 1 Lcose
[0 0 —(2sinpg + 2 cos ) 0 0 Lcose

We use Matlab to do the simulation. The parameters used in the simulation are:

Period: P =2rx/w

We use the bilinear approximation in the discretization. Sampling time: T, = P/10 (10

samples in one period).

The plant is unstable and sensitive to any noise. The chain scattering representation G is
stable. Because the dimension of the output is larger than the dimension of the controlled
input (in this example, the controlled input is part of the output) and the chain scattering
representation is neither outer nor J-lossless, we need to compute the outer-J-lossless

factorization of G for the controller design. With the dimension of the port, the port

. . . . 1
signature matrices J; and J; have diagonal blocks entries equal to: j; = 0 01 and
10 0
Jj2=10 1 0 | respectively.
0 0 -1

We do the following steps:

1. Discretize the model of the plant at every sampling time in one period by the bilin-
ear approximation. Change this representation into the chain scattering representation
{Ay, B,, Cy, D, } of the corresponding discrete time model of the periodic system.

2. Scale the chain scattering representation by «. In this example, we choose 4 > 1. This

is done by multiplying C, and D, by J(v), where J(v) = I 2k It is well known

v
that the choice of the minimal v depends on the system.

3. Solve the Riccati equation:

Y = AYUVA 4+ ChhC
—(Cy oDy + AYIB) (D, Jo D} + B,Y DB (C, D} + AY VB
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The initial Yy is determined by the solution of the Riccati equation of the equivalent
time invariant system within one period (Write out the recursion of one period, then the

conclusion can be found).

4. With the solution, compute the realization of the outer factor T, and the (J2, J1)-lossless

operator O.
The central controller then is designed as HM(T;%; 0).

The H, norm of the sensitivity operator is estimated by considering one period as a time
invariant system. Instantaneous controller is designed as a comparison. The results are
given in the table.

H,, norm of the sensitivity function
5 Time-varying control | Instantaneous control
1.000001 1.00000091 1.000001068
1.01 1.009146 1.01061
1.1 1.0924 1.0986
4 1.7206 1.8182

From the results we can see that within the tested v, the Hy, norm of the sensitivity
function of the closed loop system is always smaller than v if the system is controlled by
a time-varying controller; if it is controlled by a instantaneous controller, the H,, norm
of the sensitivity function is larger than 4 when v < 1.1. Compared with instantaneous

control, time-varying control method always gives a better result in this example.

6.5.3 Remarks

From these two examples we have the following remarks:

1. In the first example, the recursive algorithm for outer-J-lossless factorization in Section
5.2.2 is used for time invariant system solutions. In the second example, Riccati recursion
is used for the solution of the algebraic Riccati equation. As we mentioned in previous
section that under the assumption of the detectability (or sta,bilizability), it is proved
in literature that the recursion leads to the maximal stabilizing solution, if the solution
exists. The convergent speed is depended on the realization of the system. In some
cases, the square-root recursion method is more efficient than directly working on Riccati
recursion. Take these two examples as example, the Riccati recursion converges very fast
and it is comparable to the square-root algorithm for the RL circuit example. On the

other hand, the square-root algorithm converges even faster than directly working on the
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Riccati recursion for the second example. Nevertheless, the most efficient and accurate
method to obtain the maximal stabilizing solution of the algebraic Riccati equation is
possibly analysis of the eigenvalues and invariant subspaces of an associated Hamitonian
matrix of the Riccati equation. A overview and many references about this method can

be found in [24].

2. The choice of the measurement is very important for the sensitivity minimalization
problem. In the RL circuit example, we chose the voltage v, as the measurement because
it is sensitive to the disturbance current in the inductive circuit. In a capacitive circuit, the
current of the capacitor branch is sensitive to a disturbance voltage, so that a current which
involves the capacitor current can be chosen as the measurement. If the measurement
is not sensitive to the noise, then feedback can not obtain useful information about the

disturbance and the control becomes impossible.

6.5.4 A digital network

A digital network is shown in figure 6.10. In this figure, the “Delay” indicates a one step

w 5 !—| 099 E
' Fany )
E Dela_y HH :
E o1 ot
z! !
N [ Detay] :
! € | it :

Figure 6.10: A digital network

delay, St is a time-varying system and K is a controller which we are going to design.
The output of K is u which is the controlled input, w is an external disturbance, y is the
measurement which is the input of the controller K, and z is the controlled output. Here,
y = z. The H,, control problem in this network is to attenuate the influence of w to z
through a feedback controller K.

Suppose that Sz, is a time-varying scalar:

SLk—’:l k<0
Sy, = 0.2 0<k<10
S, =1 k> 10
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where k is the time index. For ease of discussion, we refer “System 1” when Sz, =1 and
“System 2” when Sz, = 0.2.

The dynamic equation of the open loop system (without K) is:

1+0.15L,,, _ 01 v0.995L,,, ©
T4 $2k+1]|: 1 _[zlk mz"] 00 +[uk wk] \/@SLHI 0

and the output equation is:

Zr Yk | = | Ty, T2 |- \/m \/@ Uk Wk 0.1 0.1

The system is causally stable for any value of S. The chain scattering representation of
System 1 is denoted by G and of System 2 is denoted by GG;. Realizations of G; and G,

are:

[0 1 [ 0 o
G A= B, =
T -9 0} "7 | 9.0453 0}
0 0 0 -1
01= D1=
0 —9.9499 1 10 |
1
Gg! Az: 0 B2= 0 0
~1.9412 0 1.9510 0
~1
o]0 °© D= |?
0 —9.9499 | 110

It is not difficult to establish the minimality of the realizations. Note that both G; and G,
are antistable, so that the time-varying system is antistable. However the representations
can be transformed into anticausal stable forms. We denote such anticausal realizations
of System G and System G as {Aq,, Bay, Cayy Do, } and {Aq,, Ba,, Ca,, D, } respectively.

The relation between the realizations of the anticausal form and the causal form are:
Au=A7, By=-BA7, Co=A7Cy Dy =Di-BATG

for: =1,2.
With this system, the outer—J-lossless factorization can be carried out in two steps:

1. Anticausal J-lossless factorization of the chain scattering represetation, denoted by
G, of the time-varying system to obtain an upper operator and an anticausal J-lossless

operator.
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2. Causal J-lossless factorization of the upper operator to obtain an outer operator and

a causal J-lossless operator.

The suboptimal controller K then is determined by the homographic transformation of
the inverse of the outer operator and any strictly contractive upper operator.

Since the dimensions of z and u are equal, the port signature matrices J; and J; of this

system are equal and given by

1 0
Ji=J =
=a=0 0

For the first step (anticausal J-lossless factorization of G), we have to solve Lyapunov

equation (5.5)
AQA; - CaloCr = QY

where A, etc. are diagonal operators which are formed with the realization of System 1
and System 2 according to the time-varying schedule of the system. The initial condition
of @ is the solution of the time invariant Lyapunov equation of System 1. At k = 0, the
system switchs to System 2, and at & = 11, it changes to System 1 again, so that Q
converges to this linear time invariant solution again. The solution @ is seen to satisfy
Q > 0. Under this condition, embedding (A4, C.) with {Ce,, De,) such that (5.6) and
(5.7) is possible. With (5.9), (5.10), (5.11) and (5.12), the realization of the upper operator
is computed.

The second step is carried out with the algorithm in Subsection 5.2.2.

In this example, we use a different scaling coefficient « in each time period. ¥, = 0.9 for
System 1 (it is approximately equal to the minimal v of System 1). For comparison, for
72 of System 2 are used: v, = 0.2 (it is approximately the minimal vy of System 2) to
72 = 1. The free parameter S in the homographic transformation (6.13) is set to S = 0.
The H, norm of the open loop system is 1. The H,, norm of the closed loop system is
shown in figure 6.11. The H,, norm using an instantaneous control method is shown for
comparison. The H,, of the closed loop system with a time-varying controller is 0.8911
independent of v, within the tested range which is indeed smaller than the maximum of
v and 7. With the instantaneous controller, the H,, norm of the closed loop system
is larger than 0.9 when v, > 0.3. It is larger than 1 when 7, > 0.7 and in this case,
the closed loop system is worse than the open loop system. With the above results we
can conclude that the Hy, norm of the closed loop system with a TV controller is always
smaller than the maximum of the scaling coefficients in accordance to theory. With an IT

controller, the result can be worse. Testing with other S turns out to the same conclusion.
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Figure 6.11: H infinity norm of the closed loop system

6.6 Conclusions

The H,, control problem of discrete time-varying systems is considered in this chapter in

two cases:
1. when the chain scattering operator, say G, of the system exists;
2. when the dual operator of the chain scattering operator, say G exists.

With the method in [13] and [14}, the Hy, control problem is solvable if an outer-J-lossless
factorization G = 7,0 with T, invertible and outer, and © lossless (or a conjugated J-
lossless-outer factorization G = ©T, with T, invertible and outer, and ©* J-lossless)
exists. The existence of the factorization depends on the definiteness of the solutions of
a Lyapunov equation and a Riccati equation. If the factorization exists, the controller is
designed as the homographic transformation of the inverse of the outer factor 7, and any
strictly contractive operator S and the closed loop transfer operator is the homographic
transformation of the J-lossless operator © and S ( in the second case, the controller is
designed as the dual of the homographic transformation of the inverse of the outer factor
T, and any strictly contractive operator S and the closed loop transfer operator is the
dual of the homographic transformation of the conjugated J-lossless operator © and S).
The H,, norm of the closed transfer operator is smaller than 1.

In the case that the chain scattering representation of the system can be represented by
a causal state equation, J-conjugation method can be used in the factorization. Two

Riccati equations need be solved with this method. The existence of the solution for
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the H,, control problem is determined by the definiteness of solutions of the two Riccati

equations.

- 6.7 Appendix: Approximation of H, norm

With the definition of the H,, norm of an operator, we now show that the H,, norm of

an operator is the largest singular value of this operator.

Let T be a bounded operator. With the definition of ||T||c, we have:
ITIR, = Sup{llaTIF, lol] = 1} = SuppapeaTT 0"

/\2
2 * %

= Sup|g|j=12v A v*r

= Sup|jz||=llesli=17 A 2% = Sup|=1 TR M2? = A2,

In the time invariant case, the H,, norm of a system can be calculated in frequency domain
with its transfer faction: it is the maximum over all frequences of its largest singular value.

T € U has a strictly stable realization, then it has a band structure: the off diagonal
entries are becoming smaller and finally approach zero. In the time invariant case for
example, H,, norm of a system operator can also be approximated from a finite operator
which is a part of the infinite operator along the main diagonal. As the finite operator
becomes bigger, the maximal singular value approaches the maximum singular value of the
system operator. If the finite operator is big enough, we can obtain a good approximation
of the Hy, norm of the system operator.

If the system is only time-varying in a short time period, this approximation is also valid
if the finite matrix is big enough to include all the time-varying part and time invariant
part. We use this method to approximate the Hy, norm of an operator in some special

case.
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Chapter 7

Interpolation and Hy, Control

7.1 Introduction

In the previous chapter, we have discussed the method in [1] [2] of Ho control in discrete
time-varying systems. The essential part of this method is the J-lossless factorization of
a chain scattering operator of a system. This is equivalent to computing a J-spectral
factorization [3]. If we can find a J-lossless operator © for a known chain scattering
operator G € X of a system P, such that both GJ;0*J; and (GJ,0*J;)~! are upper,
then the H,, problem for the system is solvable [2]. The set of suboptimal controller
is given by the homographic transformation of the inverse of the outer factor which is
obtained from the factorization and any strictly contractive outer operators. The closed
loop transfer operator is given by the homographic transformation of © and the strictly
contractive operators. The H,, norm of the closed loop transfer operator then is smaller
than 1. This method can be interpreted by considering a given set of data (realization
of G) for which we must find a J-lossless operator © such that the function resulting
from the homographic transformation is analytic (upper) and strictly contractive. This
interpretation shows that the H,, problem is equivalent to an interpolation problem in the
sense that both need to define a set of functions (operators) to fit the data set (system)

and the set of functions (operators) are analytic (upper) and strictly contractive.

In this chapter, we will look at the equivalence of these two problems in the case the

system is invertible. We drop the subscripts to simplify the notation.

160
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7.2 The equivalence of H,, control problem (G invert-

ible) and interpolation problem

Before we discuss the equivalence, we recall the relation between a J-lossless operator, say

©, and its corresponding lossless opérator, say X.
Let a known J-lossless operator © € X be invertible and be partitioned as

On Oy '
0= 7.1
|: 02 Oy ] : (D

Then the corresponding lossless operator X, which is upper and lossless, can be expressed
as,
_ -1 _ @—1
$ = On ?112922 Oxn ('3’12_1 22 (7.2)
07, On 032

It is easy to obtain from the unitarity of © that ©;; — ©1,0;7 04 = 05 and 030, =
07,077 Then we have,

¥ = [ O 016y ] (7.3)

0.0 O
Because ¥ is upper, we have that O7, ©37, etc. are upper.

Let G € X be a known invertible operator. G and G~! have uniformly minimal realizations
which result in the following expressions of G and G™! as,

G=D+BZ"(I - AZ)7 [ Cu O |+ BiZ(I - AZ)7'Cy (7.4)
G'=D;+ [ 271 ] Z*(I — A,Z°)7'Cy + ByZ(I — A Z)7'C (7.5)
22

where £4, < 1, £ A < 1, £4, < 1 and /¢ A, < 1. Recall that all the system matrices are
diagonal. For convenience, we denote the upper part of G as D + BiZ(I — A,Z)71C, =
By

[ Ry Ry ] and of G~' as D; + ByZ(I — A\Z)"'C, = [ R
22

Now we look at necessary conditions for the J-lossless factorization of G.
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Assume that - there exists a J-lossless factorization of G such that G = T,0 with 7,
invertible and outer, and @ J-lossless. Because © is J-lossless and invertible, we have,

T,=GO™' =GJO*J

Define T, = [ r A J with the partition corresponding to the partition of © in (7.1). T'

can be written as,
T = ByZ*(I — AyZ*) ' (Cu©f, — C220%,) + R119}, — R1205,

Since Ty, is upper, I' is upper. Multiplying by ©1;" on the right of the above equation, we

obtain:
O = B.Z*(I — A2Z*) Y (Ca1 — C2203,077) + Ruy — R1,01,05 (7.6)

Because both T' and ©7" are upper, ['O7y" is upper. On the other hand, we know that
©1,01;" is upper and the last two terms on the right hand side of (7.6) are upper. We
conclude that BoZ*(I— AyZ*)™1(Ca1 — C220%,077) is upper. This gives the first necessary
condition for the existence of the factorization G = T,0. Because {Aj, B;} is a reachable
pair, we can redefine the condition as (Z — A;)~}(Cyy — C220},077") € U. Define S =

Ize-l-l*a then’
(Z — Az)_l(czl - 022@;291_1*) = (Z - A2)—1(021 - 0225) S U

Since X is lossless, ||S]|e < 1 according to Theorem 4.6 in Chapter 4.

The second necessary condition is from 7!, Because G is invertible, we have

T/ = QG

?

r ’
Define 7! = [ A ] with the corresponding partition of ©. Since T;! is upper, I' and

A" are upper. A’ can be written as,
A" = (021 By + 033B,)Z*(I — AyZ*) ™' Cy + ©g1Ra1 + O33Ry,
Multiplying on the left of the above expression by 635, we obtain:

052 Ar = (033209, By, + By)Z™(I1 — AyZ*)"'Cy + 05101 Roy + Rao (7.7)
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Because both A’ and ©3} are upper, 851 A’ is upper. We also know that 3]0y is
upper and the last two terms on the right hand side of (7.7) are upper. We conclude
that (03} 018, + By,)Z*(I — A,Z*)~1C, must be upper. This gives the second neces-
sary condition. Because {A,,C;} is an observable pair, we can redefine the condition as
(032641 By, + By,)Z*(I — A3Z*)~' € U. From (7.1) we know that 3,0, = 03,05 = S,
then,

(0770 By, + By)(Z — A))™ = (SByy + By)(Z— Ay~ €U

Now we can briefly formulate the necessary solvability conditions of the H,, problem in
the case that G is invertible.

Let be given an invertible chain scattering representation G of a system given by (7.4)
and its inverse given by (7.5). The H,, problem is solvable if there exists a J-lossless
factorization such that G = 7,0 with © J-lossless and 7, invertible and outer. The
J-lossless factorization exists only if there is a S € U, ||S]|ec < 1 and

1. (Z - Az)_l(Cn - CnS) e U,
2. (SBy + By)(Z — Ayt el

With the partitioning of © in (7.1), S is defined as § = ©3 02 = 07,057, Then the
problem becomes that we look for a J-lossless operator © such that with the partitioning
in (7.1) and the definition of S, condition 1 and 2 should be satisfied.

Let us look at the interpolation problem. The double sided interpolation problem is stated

as follows:

Let be given two sets of three diagonal operators {V,£,n} and {W,(,:} with £y < 1 and
Lw < 1. Does a set of strictly contractive operators S € U exist such that,

L(Z-V)'(¢S—n) el
2. (S¢C—-)(Z-W) el
If such solutions exist, give the solutions.

From the above discussion we can see that the H,, problem is similar to the double sided
interpolation problem. This gives a suggestion that if the interpolation problem based on
the data set given by the system matrices, i.e. {Ag, A,, Ca1,Caa, By, By, } (corresponding
to

{V, W, —€,—n,(,—}), is solvable, then the H,, control problem is solvable. The condi-
tions of solvability of the H,, control problem are similar to the conditions of the solvability
of the interpolation problem.
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Lemma 7.1 Let G € X be a known invertible chain scattering operator of a system, and
let the output state space of the anticausal part of G be H2(G) = Dy(I — A2Z*)71C, and
the input state space of the anticausal part of G~ be H*(G™') = D(I —Z A7) 'ZBy, and
both £4, <1 and EA; < 1. If G has a factorization such that G = T,0 with T, invertible
and outer, and © J-unitary, then,

H3(0) = H3(G) (7.8)
HYO™) = HYG™) (7.9)

A uniformly minimal realization of © which satisfies condition (7.8) and condition (7.9)

is
{A3, B1, B;*J, Ay, Bz, C2, Do} for some diagonal operator By, B, and De such that © =
Do + Bi(Z* — A7) 'ByJ + By(Z — A;)™'C,.

Proof: Assume that there exists a factorization G' = T,0 with T, invertible and outer.

Since G is invertible, we have,

0=T,'G and 0l =G"'T,
With G € X and H2(G) = Dy(I — A2Z*)7'C}, G can be described as G = Gy + B, Z*(I
A;Z*)71C; with Gy the part of G in U and B; the part of B matrix of G in Z*£. With

HY(G™Y) = Dy(I-ZA;) LBy, G~ can be described as G~ = Gy, + B, Z*(I- A,Z*)C,
with Gy, the part of G~! in & and C, the part of C matrix of G~1 in Z*L.

Because T, is invertible and outer, T, € & and T;! € U.

O=T'G=T,'Gyu + T, *B,Z*(I — A,Z2*)7'C,
The term T, 'Gy is in U and does not effect the space of H2(G). The term 77! B,Z*(1 —
AZ*)71C3, as the result as a cascade connection of a upper operator and a lower operator,
has the same anticausal output space as By Z*(I — A;Z*)~'C; which is equal to H%(G),
then we have

HO) = HAUG) = Do(1 — A2Z")™'C, (7.10)

and in a similar way we can show that

HYO™) = HYG™") = Dy(I — ZAY) ' ZBy (7.11)
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It is easy to check that such a © = Dg + Bi(Z* — A;) ' By J + By(Z — A3)"1C; satisfies
(7.10) and (7.11). 0

Note that for this ©, H,(0) = Dy(I — AFZ) ' ByJ = Z*H*(©1)J.

The next corollary is the converse of Lemma 7.1.

Corollary 7.1 Let Ty € X and T, € X be invertible operators. If Ty and Ty have the
same anticausal output state space, their inverses have the same anticausal input state

space and there is an operator T, such that
Ty =T,T, (7.12)

then T, is invertible and outer.

Proof: The proof of the invertibility of T, is straightforward. What we need to show is
that if H2(Ty) = H(To), H*(T7') = H*(T5") and Ty = T,T, then T, is invertible and
outer or both T, and 7! are upper. The proof is given in the appendix.

0

Lemma 7.1 and Corollary 7.1 are equivalent to the proposition 4.2 in [5] for time invariant
systems and gives us a suggestion that if we have an invertible operator G, J-lossless
factorization G = 7,0 exists iff we can find a J-lossless operator © such that © has the
same anticausal output state space of G and ©~! has the same anticausal input state
space of G™1.

Proposition 7.1 [4] Let © be an invertible J-lossless operator which has a uniformly
minimal realization {A;*,BI,B;"‘J, A, By, Cy, D} with KA; <1 and €4, <1 such that

© =D+ By(Z" — A7) 'B*J + By(Z — Ay)"1C, (7.13)
where By = ﬁ?l and Cy = [ Oy Cn |- Let S = HM(6;0) = 000y = 03,05
22

Then,
1. (Z - Ag)_l(Cm - 0225) ceU;

2. (SBy, + By)(Z — Ay e U.
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O11 @12
621 E‘)22
dimensions. Denote D + By(Z" ~ A7)™'B;'J = [ Ru Ry | in (7.13) and multiplying
on the right of it with @~ = JO*J we find,

such that ©;; and O, are square with appropriate

Proof: Partition © = [

=l e a 0 G S %

-1
912 e;2

Because O is invertible, ©;; is invertible. The first block column multiplied by O on

the right gives

(_)—*
I: (;1 } = Bz(z bl Az)_l(Cn - 0225) + R]] - RuS
O is J-lossless, O7" is upper, hence By(Z — A;)7(Co1 — C225) € U. Because {A;, By} is

a reachable pair, we have,
(Z - Az)_1(021 - 0225) € U

01 =JO*J = JD*J+ By(Z — A)"' By J + JC3(Z* — A3)" B} J. A similar result follows
from the premultiplying of ©~! with @, taking the second block row and premultiplying
with ©3;. o

According to this proposition we know that a J-lossless operator © which has the form
(7.13) satisfies all the necessary conditions for the J-lossless factorization. Conversely, if
we know that there is a strictly contractive operator S € U such that Condition 1 and 2
in Proposition 7.1 are satisfied, we can construct a © which is J-lossless and has the same
anticausal output state space as that of G and the inverse of © has the same anticausal
input state space as that of the inverse of G. Then with Corollary 7.1 we know that with
such a O, the factorization G = T,0 exists such that T, is invertible and outer. Hence
the four necessary conditions are also sufficient conditions for the J-lossless factorizations.
Then we see that in the case that G is invertible, H,, control problem and the double

sided interpolation problem are equivalent.

In Chapter 5, we have considered the algorithm for an outer-J-lossless factorization for
a given chain scattering operator G which is described by (5.1). The existence of such a
factorization is determined by the condition defined in Proposition 5.1 concerning with
anticausal J-lossless factorization and the conditions defined in Proposition 5.3 concerning

with the causal J-lossless factorization. The condition in Proposition 5.1 is that the
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anticausal J-lossless operator exists iff there is a uniformly positive definite solution for

the Lyapunov equation:
AQuA; - C.JC; = QY

The conditions in Proposition 5.3 for the causal J-lossless factorization are defined by the
intermediate results from the step of the anticausal J-lossless factorization. Later on we
have shown that the conditions given by Proposition 5.3 are equivalent to the condition
given by the solution of the Riccati equation (5.27). The causal J-lossless factorization
exists iff the solution of the Riccati equation is semi-positive definite. In this chapter,
we have discussed that in the case the inverse of G exists, the solvability of the H,
problem is equivalent to the solvability of a double sided interpolation problem. Then the
conditions for the solvability of these two problems are the same. Next we will show that
the solvability of the interpolation problem is determined by the definiteness of a Pick
operator which is specified by the interpolation data (or the realization of G in the H,

control case).

7.3 Solution of double sided interpolation problem

We repeat the double sided interpolation problem as: let be given interpolation data
(A1, Ch, Ag, Cy), where (Aq, Cy) is uniformly observable, (Az,C2) is uniformly reachable
and £4, < 1, £4, < 1. Construct (if possible) a upper and strictly contractive operator S
such that:

(1) (Z —"Az)_lCz [ —IS ] € H;

@[5 -1)Ci(z-4ap7 eu.

From Proposition 7.1 we know that if we can construct a J-lossless operator © which has
a uniformly minimal realization {Ay, By, C1, Az, Ba, C2, D} for some diagonal operators
B;, B, and D and

© = D+ Bi(Z* — A1)"'Cy + By(Z — A))"'Cy (7.14)
G')‘11 @12

©21 O
©520,; which is upper and strictly contractive satisfies condition (1) and (2). We say

and partition © = [ ] with ©1; and Oy, invertible, then S = HM(0;0) =

that such a .S is an interpolant for the double sided interpolation problem.
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Then when can we construct such a ©?

Assume that © = ©.0, with ©, € U, ©, € £ and both J-lossless. With the cascade
connection role given by Lemma 2.1 in Chapter 2 we know that ©, has a uniformly
minimal realization {A;, B,,C3, D,} for some B, and D, and

0,=D,+ BE(Z - Az)_loz (715)

©, is J-lossless iff there exists a uniformly positive definite Hermitian operator (Jo2 such

that the Lyapunov equation is satisfied:

A G Qun 4 G| _[ Q&Y
B, D, —J B, D, -J

Next problem is that what is the uniformly minimal realization of ®, such that © = 6.0,

and under what condition ©, is J-lossless?

Suppose that O is as (7.14) and 0, is as (7.15) and the realizations of both are uniform,
then,

0, = 0J0%J

and O, has a realization:

Ay CLICS

s | b lA*2} B.=[B, DJC;—BiQuA; |
2
CiJD3J

C.= ] D.=DJD;J — By@nB.J

B:J

Is {A., B;,C., D} a uniformly minimal realization of ©,? Since we need that © is J-
lossless, from Theorem 4.5 and Proposition 4.3 we know that this is possible if there is a
@12 € D such that:

C12C5 — QuuAy + A1Q7Y =0
BiQ$3Y + DJC; — ByQyp Ay =0

are satisfied. Defining a similarity transformation T = [ d _?12 ] and with the above

conditions we have:

A

TAT Y = BT V=[B 0]

A3
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_— [ CLID:T — QB }
BJ

We then derive a uniformly minimal realization of O, as {Ay, By, C1J D J — Q12 B:J, D, }.
O, is J-lossless iff there exists a Hermintian operator M > 0 such that:

(¥, o

Cascade such a O, with @,, we have a ©® = 0,0, which has a uniformly minimal realiza-
tion {A;, By, C1, Ag, By, Cy, D} and is J-lossless.

MY
J

A1 CiJD:J ~QuB:J
B, D,

Ay CiIDIJ — QBT
B D.

Proposition 7.2 Let be known a set of interpolation data (Ay,Cy, Az, C2), where (A;,C))
is uniformly observable, (Ay, C3) is uniformly reachable and £4, < 1, £y, < 1, and a

diagonal operator Q12 which satisfies:
CLICy = Qua4; ~ A;:Q5Y (7.17)
Let Q11 and Qa2 be the solutions of the following Lyapunov equations:
Qu = 4RV A} + C1JC] (7.18)
GV = A:QuA; — CJC; (7.19)

The double sided interpolation problem has solutions iff the Hermitian operator

— Qll Q12
9= [sz QnJ (720

is uniformly positive definite. In this case, a realization of a J-lossless operator which
solves the interpolation problem is { A1, By, Cy, Az, By, Ca, D} for some diagonal operators
By, B, and D. The realization satisfies:
4 afeh? @y 4 al
I Gl ei QY I C
Bl D@ J Bl D@
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*

I Qll QIZ I
= Az @n @2 Ay (7.21)
32 I J B2 I
" On O .
Furthermore, © can be partitioned as o | The solutions S then can be expressed
21 O

as:
5 = (51012 + B22) (5181 + On) (7.22)

where S, s an arbitrary operator which is upper and ||SL || < 1.

Proof: Step 1. If such a @ exists, then there is a solution.

Assume that for the given data (Ai, C1, As,C2), there is a diagonal Hermitian operator
@ > 0 which is partitioned as in equation (7.20) and satisfies the conditions given by
(7.17), (7.18) and (7.19). The condition @ > 0 indicates that Q1; > 0, Q22 > 0 and
Qu — Q12Q37 Q% > 0. With conditions (7.19) and Qa, 3> 0, we can find some diagonal
operators B, and D, such that the condition:

* (__1)
{Az Ce ] [sz 4, Cz] _ {sz ] (7.23)
B, D, -J -J

B, D,
is satisfied. With {4,, B,, Cs, D, }, we can define an anticausal J-lossless operator ©, as:

0, = Dy + B,Z*(I — A,Z°)'C,

Define a Hermitian operator M = Q1 — Q12Q7; @}, which is uniformly positive definite,
then Q11 = M + Q12037 Q},. With condition (7.18), we have:

M+ Q103 Q% =AMV + QYRR AL + CLICE
With condition (7.17), the above expression can be written as
M +Qu:Q7 Q1 = AMTVAL + (CLIG; = QuA3)Qs ™ V(CLIC; - QuA;)” + CLIC;
and with the relation in (7.23), we can further formulate the above equation as

M = AAMUYA + (CL1IDLT — QuBLI)J(ChI DS — QB J)"
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Define C, = C1JDzJ — Q12B:J. With this condition and the condition M > 0, we can
find some diagonal operators B; and D, such that the condition:

A c] M
B, D.| J

We then can define a causal J-lossless operator O, as

A C, MED

B, D, J

0. = D.+ B,Z(I — A/Z)"C.

With ©, € U and a ©, € £ and both J-lossless, the cascade connection of them © = 0.0,
is J-lossless and with Proposition 4.3, the realization of © is {A;, By, C1, Az, By, C2, D}
with By = DB, + BiY"V A, and D = D.D, + BiY("VC,, where Y € D is the solution
of the Lyapunov equation C.B, = Y — A;Y{"DA,. This J-lossless operator produces,
from Proposition 7.1, a strictly contractive S = HM(©;0) = 0370}, which solves the
interpolation problem.

Conversely, if there is a J-lossless operator © which has a realization

{A1, B1,C4, Az, By, Cy, D} with some diagonal operators By, By and D which solve the
interpolation problem, then there is a @ > 0 which satisfies the conditions given by
(7.17), (7.18) and (7.19).

Step 2. The realization of © satisfies (7.21).

Since @, is causally J-lossless, (7.16) is satisfied. With Proposition 4.3 in Chapter 4 we ‘
also have:

DLCy = BaQi, — BiQG VA
and
DJID* = J + ByQuB; — BiQ{VB;

Put all the conditions into one expression we obtain (7.21).

Step 3. The solutions has the form HM(©; Sr) with S1 any strictly contractive operator
in U.

If an operator S is an interpolant, it should satisfies the four interpolation conditions:

1. Seu,;
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2. “SHoo <1
I

3. (Z — Ay)™'Cy [ eu,

4.8 -1)Crz- AT e

Let Si be a strictly contractive upper operator and © = D + By(Z* ~ A1)™*C1 + By(Z —
A2)7'C; be a J-lossless operator as we defined before. Then (S;0,; + ©s;) is invertible.
Let S = HM(©;S1), that is

S = HM(@;SL) = (SL@m + 022)—1(51,@11 + @21) (7.24)

With Theorem 4.6 in Chapter 4 we know that since © is J-lossless, S € i and ||S[|o < 1
in (7.24) for any Sy, such that Sy, € U and ||Sz ||« < 1. Then we see that S = HM(0; 51)
satisfies the first two interpolation conditions.

By using the relation of J-unitarity, S can also be expressed as,
S= (9I2 + GZZSL)(G;ISL + 9I1)~1 (7-25)

Define ¢ = 03,51 + 03, and ¢! = (03,5, + 03,)"! = (05703,5L + I)~1O;;". Since O is
J-lossless, both ©17" and —©;7°03, are upper and strictly contractive. Thus. ¢~ is upper.
(7.25) can be expressed as

1] _fen el 1], -
- (6 gl

Multiplying on the left of (7.26) by ©J results:

I 1
(D -|- Bl(Z* —_ Al)—lcl + Bz(z - Az)_ICZ)J = J ¢_1
S St
The right hand side of this expression is upper. Since (D + By(Z* — 4;)7!C}) ,: IS ] is

I
also upper, By(Z — A;)71C; g must be upper. Because the realization is uniformly

minimal, condition 3 is satisfied.

Define ¢ = 57,015 + ©35. ¢'~1 is also upper. Rewrite the relation (7.24) in the form:

" Ou Oy
(s 1]=¢""[ss I][ez: 9;}
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Multiplying by JO* on the right of this expression and following the same procedure as
for Condition 3, we can prove that condition 4 is also satisfied with such a S. So the set
of § = HM(©;.5;) is solutions of the interpolation problem. m}

If we take Sz, = 0, then we obtain the solution § = 03,017 = 03,042, which is sometimes
called the central solution of the interpolation problem. From this proposition we can see
that the solutions of interpolation problem are the same as what we have found before

for the H,, control problem.

7.4 Conclusions .

Let G be a chain scattering representation of a time-varying plant P. The H,, control
problem in the case that G is invertible is equivalent to the interpolation problem. The
solvability of the problem is determined by the definiteness of a Pick operator which is
specified by the interpolation data (or system realization). The solution of the problem is
given by a homographic transformation of a J-lossless operator which is constructed under
the condition the Pick operator is uniformly positive definite, and a strictly contractive
upper operator. For the H,, control problem, we can compute the J-lossless factorization
with the algorithm represented in chapter 5 and 6 if the factorization exists. With the
result of the factorization we can design controllers which solve the Ho, control problem.

For a given set of interpolation data (A4;,C1, A2, C3), where (Ay,C1) is uniformly observ-
able and (A, C5) is uniformly reachable, and a diagonal operator Q12 which satisfies:

C1IC; = QuaA% — A,QGY

Let Qu and @92 be the solutions of Lyapunov equations ¢y, = AlQ 1)A"‘ + C1JCY and
= AyQ2 A} — CrJC; respectively. Under the condition:

Qil Q12 >0
QIZ Q22
. . - _ | O On2
we can calculate a uniformly minimal realization of a J-lossless operator © = 0. ©
21 Oz

who'’s homographic transformation HM(©; Sz) with Si a strictly contractive and upper

operator solves the interpolation problem of the given data. The calculation is as follows:

Step 1: Compute the uniformly minimal realization {Aj, B,,C3, D, } of a anticausal J-
lossless operator @, such that (7.23) is satisfied.
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Step 2. Compute the uniformly minimal realization {A, By, CyJD%J — Q1B J, D.} of a
causal J-lossless operator O, such that (7.16) is satisfied.

Step 3. With Lemma 2.1 in Chapter 2, cascade ©, with ©,, we can determine the
uniformly minimal realization of ©.

The computation is carried out locally and recursively. As we analyzed before, since
L4, < 1 and {4, < 1, the recursive calculation of Q3 and @, converges to the true

solution despite of the wrong initial point.

7.5 Appendix: The proof of Corollary 7.1

The proof requires some preliminaries and lemmas.

Let T' € X be an invertible locally finite operator with a strong basis of its anticausal
output state space F¢(T) = (I — A,Z*)"'C,. Using (A,,C,), define an inner operator
U € U such that H}(U*) = HZ(T'). then TU € U (see Proposition 5.1). Let U*T~! € X
with a strong basis of its anticausal input state space F**(U*T~) = B, (I — A.Z*)".
Similarly, using (A,, B,), define an inner operator V € U such that H*(V*) = H*(U*T1),
then VU*T~! € U. Define A = VU*T~' € Y. Then T has a factorization T = A-1VU*.

We first show that this is an inner-outer factorization. Indeed, since TUU; C Uy, we have
Uy C T'U,. Hence,

T7Uy © Uty = UV*AUy © Ully = U(V* Ay S Uy) (7.27)

It follows that Uy C V*Alf;. This implies that the closure of Alf; contains ; so that A

is outer.

Equation (7.27) can be rewritten as
L2T77 0 LU = (LL,A*V 6 Lo)U

Define K'(T) = L,U* C L3 and H'(T) = L2A*V © L3 = L,V © Ly. Then H'(T) C UZ
and

LT~ =H' (T & K'(T) (7.28)

Lemma 7.2 Let Ty € X, T; € X, Ty and Ty invertible. Suppose that Ty = 1,75,
H'(T1) = H'(T3) and K'(Ty) = K'(T3), then T, € U.
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Proof: Since K'(Ty) = K'(Ty), with the definition of K’ we know that there is an inner
operator U such that TyU C U and ToU C U.

Let u € £y and y = uT5*. With (7.28), we have that y € H"(T2)U* @ K'(T3).

Since also H'(Th) = H'(Tz),
LT =H (TH)U* @ K'(Ty) = H'U*(T2) @ K'(Ty)

and y € H'(Ty)U* @ K'(Ty). With (7.28)we have that yT; € L, Hence uT = yT; € L,
and it follows that T € £, or T, € U. , O

We now derive the dual of this result.

Let T € X be an invertible locally finite operator with a strong basis of the anticausal
input state space of its inverse F**(T~1) = B, Z*(I — A,Z*)~'. Using (A, B,), define an
inner operator Vi € U such that H*(Vy*) = H*(T~!). Then VT € U. Let TV € X
with a strong basis of its anticausal output state space F¢(TVy) = (I — A,Z*)"'C..
Using (A4, C,), define an inner operator U; € U such that TV;U; = A; € U. Then
T~' = V;ULATY. Define K"(T) = UpVi € Uy and H'(T) = UpU; ©U; € L2271, A similar
analysis as above for Lemma 7.2 shows in that A, is outer and we obtain:

UT =H TV, @ K'(T) (7.29)
Dually, we have the next lemma.

Lemma 7.3 Let Ty € X, Ty € X and both invertible. Suppose Ty = T, Ty so that T,
T T, Suppose that H (Ty) = H'(Ty) and K'(Ty) = K'(Ty). Then T;' € U.

Proof: The proof is similar to Lemma 7.2. a

With Lemma 7.2 and 7.3, proof of Corollary 7.1 is as follows.

Proof of Corollary 7.1: In accordance with Lemma 7.2, let Ty = T,T3, if H'(T})
H'(T;) and K'(Ty) = K'(T3), so that T, € U.

Suppose that 7; has a minimal realization {A;, By, C1, Az, Ba,C2, D} and suppose that
T7! has a minimal realization {4}, B, C;, A3, B, C3, D'}. First, we prove the corollary
for a special Ty, denoted by W, which is unitary and has a realization

{A¥,B.,, B, A, B,,,C,, D, } for some diagonal operators B,,, B,, and D,,, and is such
that Ty = T, W for some operator T,. We have to show that under the conditions H2(Ty) =
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H(W) and H(T7Y) = HH(W ™), we have H'(Ty) = H' (W) and K'(Ty) = K'(W), so
that T is upper.

Indeed, since H2(T;) = H(W), we can choose the inner operator U such that H:(U*) =
HY(Ty) = HAW), WU C U and WU C U. Then, K'(Ty) = K'(W). With the definition

of H*, we have

H(T5) = P(L,T5) = PIH'(T)U* @ K'(Th)] = PIH (1))
HAW1) = P(L,W ) = P (W)U" @ K'(W)] = P[H' (W)U"]

Since H*(T!) = HA(W 1) then P[H"(T1)U*] = P[H"(W)U*]. Because both H"'(Ty) €
U Z and H' (W) € UpZ, thus H'(T;) = H'(W). Then with Lemma 7.2, we have T, € U.

Similarly, with Ty = W*T,"%, under the conditions H2(Ty) = HH(W), H*(T7!) =
He(W~1) and according to Lemma 7.3, we can show that 7.~ € ¢{. Thus T, is outer.

Finally, we translate this result for W to a result for 7;. There is an operator T, such
that T, W = T;. Under the conditions H*(T;!) = HY(T7') = HYW 1) and H(T:) =
H2(Ty) = H2(W), we can show that T, is outer with the same strategy. With Ty = T,T,
we have T, = T;T:'l. Ty = W = Uy. Thus T, is outer.

The corollary is proved.
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Chapter 8
Conclusions

In this thesis, we have introduced a subspace model identification approach to identify
discrete time-varying systems. Special attention has been paid to the periodic discrete
time system identification in this part (Chapter 3). Secondly, by using and extending the
time-varying system theory in [1] [2] and [3], the factorization theory in [3] for operators
is not restricted to the upper operator case but extended to the more general bounded
operator case. The resulting Outer—J-lossless factorization algorithms for time-varying
systems in combination with the chain scattering representation method produce a so-
lution to H, control problem in discrete time-varying systems. From this research, the

following conclusions can be drawn.

. Discrete time-varying system state space models can be identified with a MOESP
identification approach under the condition that an ensemble of input and output
measurements is available. In the algorithm that was developed, we have only con-
sidered the measurement error at the output of the system. If this output noise is
zero-mean white, the estimated model is unbiased and consistent. A modified ap-
proach, named the PI scheme, takes the past measurement as instrumental variable
and can be used to estimate the state space model unbiasedly even if the output
noise is colored. The algorithm is particularly suited to identify periodic systems
because the repetition of the expéeriments of such a system is intrinsic. Another
feature of the algorithm is that it allows the dimensions of the inputs, outputs and
states to vary as well. The varying state dimensions are identified from the data.
This is very useful in the identification of multi-rate sampled systems.

. With the notation of anticausal systems defined by lower operators, several fac-
torization theorems in time-varying systems can be extended to general bounded
operators of mixed causality. Although we only considered a special factorization,

namely the outer-J-lossless factorization, other types of factorizations, such as the

178
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inner-outer factorization, can also be obtained with the same strategy. For an outer—
J-lossless factorization of a mixed upper/lower operator, one time-varying Lyapunov
equation has to be solved in order to obtain a factorization into a stable operator
and an anticausal J-lossless operator, and then three time-varying Lyapunov-type
equations should be solved to factor the state operator into an outer factor and a
causal J-lossless operator. The second step is equivalent to solving a time-varying
Riccati equation. The existence of the factorization depends on the definiteness of
the solution of the first Lyapunov equation and the solution of the Riccati equation.

. If a time-varying system can be expressed as a causal system, the J-lossless conju-
gation method can be used for the outer-J-lossless (J-lossless-outer) factorization
of this system. This results in one forward and one backward time-varying Ric-
cati recursion. The existence of the factorization depends on the definiteness of the

solutions of these Riccati equations.

. The outer-J-lossless (J-lossless—outer) factorization can be used to solve the H,
control problem or sensitivity minimization problem in time-varying systems. The
solution to a system exists if the outer—J-lossless (J-lossless—outer) factorization of
the chain scattering representation of the system exists. In that case, the set of ad-
missible controllers is given by the homographic transformation of the inverse of the
outer factor and any strictly contractive upper operator. With these controllers, the
H,, norm of the closed loop operator is smaller than a prescribed bound. Numerical
simulations have shown the usefulness of this approach and the factorization algo-
rithm developed in this thesis for solving the H,, control problems of time-varying

systems.

) If the chain scattering operator is invertible, the Ho, problem is similar to the inter-
polation problem in the sense that both need to define a set of functions (operators)
to fit a data set (system) under the condition that the functions (operators) are
analytic (upper) and contractive. The condition for the solvability of interpola-
tion problem is given by the definiteness of the Pick matrix (operator) which is
determined by the original data set.

The following is proposed for future research:

1. For the H,, control problem, we only considered the case ¢ = r, m > p and r > gq,
m = p where ¢, r, m and p are the dimensions of the measurement, disturbance, output
and controlled input respectively. This corresponds to the so-called two block problem in
H,, control. The more general case where r > g, m > p is left for further study because
the structure of the Riccati equations in discrete time case are much more complicated

than in the continuous time case. This extension still requires significant efforts.
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Qll Q12
iz Qn

for the interpolation problem in Chapter 7, remains a difficult task. Recall that to solve
the two sided interpolation problem for a given data set (A, Cy, Az, C,), three Lyapunov

equations have to be solved. In particular, we have to find @y, in equation

2. How to compute @12, the off diagonal term of the Pick operator Q =

C1IC; = QuA; — 4Q5Y
The difficult lies in the fact that A; and A, are not necessarily invertible. It is not clear
how to solve for @}y, recursively.

3. A J-RQ factorization is supposed to be an efficient way for computing the outer-J-

lossless factorization. We need an efficient and effective algorithm for this.

4. Besides H,, control, there are maybe other applications of outer—J-lossless factoriza-

tions.
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10.
11.

12.

13.

14.

15.

lossary of notation

. R denotes the real numbers. R ™ is a n-dimensional vector over R and R "*™

indicates a matrix over R with n rows and m columns.
. Z denotes the set of integers and Z * the set of positive integers.
. €" denotes the complex vector space with dimension n.

M=C" where M =[--- M.y, My, My --- ] with M; € Z*: Space of (non-
uniform) sequences with i-th entry in €,

. M = jM: Dimension sequence of M.

. £3*: Space of bounded vector sequences with dimensions defined by the dimension
sequence M = §M; €M = {u € M : ||uf|; < oo}.

. X(M,N): Space of bounded operators £1 — £,
. U, L, D: Upper/lower/diagonal bounded operators in X.

. Xo,Up, L2, D,: (Hilbert) spaces of operators in X,U, L, D with bounded Hilbri —
Schmidt-norm. The HS-norm of an operator A € X (M, N) is defined by: [|A||%4s =

i 1A 13-
A*: The adjoint of operator A.
Z: Bilateral causal shift operator. Z=! = Z*: The inverse of Z.

UZ,LZ!: Strictly upper/lower bounded operators in X. Similar notations are used
for Us, £, spaces as UsZ, L2771,

I Identity matrix with dimension m. The subscript m is often omitted.

T-%) = Z¥TZ~*: Diagonal shift of T' € X over k positions into north-west direction
(see section 2.1).

AR} = AR g(-1) | A1)
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16

17

18.

19.

20.

21.

22,

23.

24.

25.

26.

217.

Al = A A .. 4(k-1)

P,Po,P.,,Pu,z,Pr,z-1: projection onto Uy, Dy, Lo, UsZ, LoZ71.

Tixy = Po(Z7*T) : The k-th diagonal above the main diagonal of T'.
{A, B} = Py(AB*): Diagonal inner product.

A > 0: A is uniformly strictly positive definite. (A € X (M, M) is a bounded
Hermitian operator. A>> 0 if e > 0, for all U € X,, {UA,U} > £{U,U}.)

C,0 or C., O, : Reachability, observability operators of causal systems.
C., O, : Reachability, observability operators of anticausal systems.

H(T), HoAT),K(T),Ko(T) : Input state space, output state space, input null space, '
output null space of an operater T € U.

HY(T), H2(T),K*(T), K:(T) : Input state space, output state space, input null
space, output null space of an operator T € L.

F,F,, Fa; F2: Strong basis representation of H, He, H®, H§.

Ar = Po(FF*): The Gramian operator associated to a basis representation F.

{ AlC

B|D
tion of the system is:

] and {A, B,C, D}: State realization of a causal system. The State equa-

XZ1 XA+ UB
Y = XC+4+UD

where A, B, C' and D are diagonal operators, and U, Y and X are input, output

and state sequences respectively.

We also use {A, B, C, D} to represent a realization of a bounded upper operator or
a bounded lower operator and {A;, By, C1, Ay, B3, Cs, D} a realization of a bounded
operator. We always declare what the representation is before we use it.
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(41, J2)-co-isometry, 70
(J2, J1)-isometry, 70
(J2,d1)-lossless, 73

anticausal Jo-lossless factorization, 87
anticausal system, 2, 16

anticausally stable, 17

anticausally unstable, 17
approximation of H,, norm, 156

bounded anticausal operator, 27
bounded causal operator, 25
bounded diagonal operator, 14
bounded lower operator, 14
bounded operator, 14

bounded upper operator, 14

causal form, 22

causal J-lossless factorization, 89
causal system, 2, 16

causally stable, 17

causally unstable, 17

chain scattering operator, 69
chain scattering representation, 6
co-isometric operator, 65
co-isometry, 65

co-lossless, 65

conjugated (J1,J2)-lossless, 73

conjugated J-lossless—outer factorization,

100
conjugated system, 136
consistency, 56
controllability index, 38

convergence of the Riccati recursion, 118
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detectability, 22

deterministic ensemble identification prob-
lem, 35

dichotomy, 104

double sided interpolation, 163

dual chain scattering operator, 69

elementary J-orthonormal operator, 123
elementary orthonormal operator, 123
embedding problem, 94

ensemble, 4

ensemble identification problem, 34

finite 2-norm, 14

general time-varying system, 16
generalized Hankel matrices, 37
generalized Hankel operator, 2

H,, control, 4

H,, control problem, 131

H,, norm, 156

H,, operator, 15

Hermitian operator, 20, 65
Hilbert space, 2, 14
Hilbert-Schmidt norm, 15
Hilbert-Schmidt space, 15
HoMographic transformation, 70

index sequence, 13
inertia, 95

infinite norm, 14 -
inner, 65

input normal form, 68
input null space, 26



INDEX

185

input port, 70

input port signature matrix, 70
input port variable, 70

input state space, 26

input variable, 70

interpolation problem, 9
isometric operator, 65

1sometry, 65

J-Gramian operator, 71
J-lossless conjugation, 103
J-lossless conjugator, 108
J-lossless factorization, 6
J-orthonormal, 71

J-RQ factorization, 120
J-spectral factorization, 97
J-unitary, 70

Left D-invariant subspace, 25
locally finite operator, 18
locally persistent excitation, 39
lossless, 65

Lyapunov equation, 8, 19

minimal realization, 21

MOESP, 7

multi-input, multi-output (MIMO), 34

multirate sampling, 51

Neumann expansion, 15

non-uniform vector sequence, 13

non-uniform vector sequence space, 13

observability Gramian, 21
observability index, 38
observability matrix, 37
observability operator, 21
observable, 21

ordinary MOESP algorithm, 45
outer, 82

outer—J-lossless factorization algorithm, 96

outor—(Jz, J1 )-lossless factorization, 6

output normal form, 68

output null space, 26

output port, 70

output port signature matrix, 70
output state space, 26

output variable, 70

periodic system, 51
Pick operator, 167
positive, 20

QR factorization, 40

reachability Gramian, 21
reachability index, 22
reachability operator, 21
reachable, 21

regular, 71

regular realization, 71
Riccati equation, 8

scattering operator, 69

Schur’s inversion formula, 117
semipositive, 20

shift operator, 15

similarity transformation, 16
similarly equivalent, 16
spectral radius, 15
stabilizability, 22

strictly contractive, 15

Strong basis, 25

strong basis representations, 26
subspace model identification, 4
SVD, 42

symplectic, 103

the Dual of the HoMographic transforma-

tion, 70
Toeplitz operator, 2
transfer operator, 14
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unbiasedness, 56

uniformly balanced, 39
uniformly minimal realization, 21
uniformly observable, 21
uniformly reachable, 21
uniformly strictly positive, 20
unitary, 65



Summary

This thesis deals with linear discrete time-varying system state space model identification
and Hy control problems. We use two kinds of descriptions for discrete time-varying
systems: bounded operator descriptions and state equation representations. These two
settings are well connected to each other by a notation which was first introduced by Alpay,
Dewilde and Dym at the beginning of this decade and the realization theory developed

by Van der Veen in recent years for discrete time-varying systems.

An algorithm for state space model identification of discrete time-varying systems is de-
veloped. It is based on two approaches: (1) ensemble identification approach and (2)
a subspace model approach. The algorithm works directly on an ensemble of repeated
experimental input/output measurements and it is an extension of a specific subspace
model identification approach, the MOESP approach, for time invariant systems. The
algorithm retains all the properties from the MOESP and it can provide an unbiased con-
sistent state space model when the noise on the output is zero-mean white or zero-mean
coloured. Particular attention has been paid to periodic systems where the repetition of

the experiments is intrinsic.

The H, control problem for discrete time-varying systems has been considered with a
so-called standard set-up in this thesis. The solution to the problem is an extension of
the recently developed solution introduced by Tsai, Postlethwaite and Kimura to the con-
tinuous time invariant H,, control problem. This solution is based on two fundamental
notions: the chain scattering representation and the J-lossless factorization. The H,
control problem is solvable if a J-lossless factorization of the chain scattering representa-
tion of the system exists. In that case, the controllers for the closed loop system can be
designed in a systematic way as a homographic transformation of the inverse of the outer
factor which comes from the factorization and any strictly contractive stable functions
(strictly contractive upper operators). These controllers guarantee the H, norm of the
closed loop transfer function (operator) smaller than a prescribed bound. Hence, J-lossless
factorization theory for time-varying systems is the basis for our solution. We extend the
factorization theory for operator description from upper operators to the general operator

case and have developed a time-varying J-lossless factorization theory and algorithm. It
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turns out that for a general operator, we need to solve one Lyapunov equation and a set
of Lyapunov type equations for the factorization. We have shown that the latter set of
equations is equivalent to a Riccati equation. The existence of the factorization is deter-
mined by the definiteness of the solutions to these equations. In the case that the chain
scattering representation of a system has a causal realization, the J-lossless conjugation
method which is used by Kimura in J-lossless factorization for time invariant systems
can be extended to the time-varying setting. Two Riccati equations are needed to solve
for the factorization in this case and the existence of the factorization depends on the
definiteness to the solutions of these two Riccati equations.

The H, control problem has a description in terms of a certain constrained interpolation
problem. In the case that the chain scattering representation is invertible, we have shown
the equivalence of the H,, control problem and the double sided interpolation problem.
The solvability of the problems is determined by the positive definiteness of a Pick operator
which is specified by the interpolation data (or system realization).



Samenvatting

Tijdsvariérende Systeemidentificatie,
J-verliesvrije Factorisatie en H.-regeling

Deze thesis behandelt twee oﬁderwerpen: lineaire discrete tijdsvariérende systeemiden-
tificatie, en het H,, control probleem voor zulke systemen. De modelbeschrijvingen die
worden gebruikt zijn normbegrensde operatoren en toestandsmodellen. Deze beschrijvin-
gen zijn nauw verbonden via een notatie die begin negentiger jaren ge.i'ntroduceerd is door
Dewilde, Dym en Alpay, in samenhang met een discrete tijdsvariérende realisatietheorie
ontwikkeld door Van der Veen.

Het voorgestelde identificatiealgoritme voor LTV systemen combineert twee aanpakken,
de eerste gebaseerd op ensemble identificatie, en de tweede op een subspace modeller-
ingstechniek. Het algoritme werkt direct op een ensemble van meetdata verkregen door
herhaalde experimenten op het tijdsvariérende systeem, en het is een uitbreiding van de
zogenaamde MOESP methode voor identificatie van tijdsinvariante systemen. Het algo-
ritme behoudt de eigenschappen van MOESP en geeft een ongebiasde consistente schatting
van het toestandsmodel als de ruis op de uitgang wit is, of gekleurd met gemiddelde
waarde nul. Speciale aandacht wordt gegeven aan de klasse van periodieke systemen,

waarvoor de herhaling van het experiment intrinsiek is.

Het H.-probleem voor discrete tijdsvariérende systemen dat onderzocht wordt in deze
thesis is het zogenaamde standaard-H,, probleem. De oplossingsmethode die gebruik
wordt is een uitbreiding van de recente techniek van Tsai, Péstlethwaite en Kimura,
die ontwikkeld werd voor continue tijdsinvariante systemen. De oplossing is gebaseerd
op twee fundamentele begrippen: de chain-scattering representatie en de J-verliesvrije
factorisatie. Het H,, probleem is oplosbaar als de J-verliesvrije factorisatie van de chain-
scattering representatie van het systeem bestaat. In dat geval kunnen de regelaars voor
het gesloten-lus systeem op een systematische manier ontworpen worden middels de ho-
mografische transformatie van de inverse van de outer factor, geparametriseerd door een

willekeurige stabiele en causale operator. Deze regelaars garanderen dat de H-norm van
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het gesloten-lus systeem kleiner is dan een vooraf opgelegde waarde. Het blijkt dus dat
J-verliesvrije factorisaties de basis vormen voor onze oplossingstechniek, zodat hieraan
bijzondere aandacht gegeven wordt. Deze factorisatietheorie is uitgebreid van causale
(bovendriehoeks) operatoren naar operatoren met gemengde causaliteit, en we ontwikke-
len een algoritme voor de factorisatie. Het blijkt dat we één Lyapunov vergelijking en een
stelsel van twee Lyapunov-achtige vergelijkingen moeten oplossen. Het stelsel is equiv-
alent aan een Riccativergelijking. Het bestaan van de factorisatie is bepaald door het
bestaan van positief-definiete oplossingen van al deze vergelijkingen. Een andere fac-
torisatietechniek is de J-verliesvrije conjugatiemethode van Kimura. In het geval dat de
chain-scattering representatie van het systeem causaal is, kan deze methode uitgebreid
worden naar het discrete tijdsvarierende domein. Het bestaan van de factorisatie hangt
dan af van het positief-definiet zijn van de oplossingen van twee Riccativergelijkingen.

Het H.-probleem heeft een beschrijving in termen van een bepaald interpolatieprobleem
met randcondities. Als de chain-scattering representatie inverteerbaar is, tonen we aan
dat deze problemen equivalent zijn en dezelfde condities voor oplosbaarheid hebben. De
oplossing bestaat als de zogenaamde Pick-operator die de interpolatiecondities beschrijft

positief-definiet is.



